Sample records for uhp terrane china

  1. Constraining Metamorphic Timing and Processes by Dating Garnet, Zircon, Titanite and Monazite in UHP and HP Rocks from Weihai, Sulu UHP Terrane, Eastern China

    NASA Astrophysics Data System (ADS)

    Wang, D.; Vervoort, J. D.; Fisher, C. M.; Cao, H.

    2016-12-01

    The Sulu UHP terrane is the extension of the Dabie orogenic belt to the east, offset 500 km to the northeast by the Tanlu fault [1]. The focus of this study, the Weihai area, is located at the northernmost part of the Sulu UHP terrane, and consists mainly of gneisses overprinted by amphibolite-facies assemblages, in addition to minor eclogite, granulite, and some ultramafic rocks [1]. Time constrains are critical to our understanding of the processes of UHP metamorphism, as well as the tectonic evolution of the region. In the last decade, U-Pb dating of metamorphic domains of zircons has been widely applied to determine the history of the UHP metamorphism (240 - 220 Ma) [1]. Recent garnet Lu-Hf dating from the Dabie terrane (240 - 220Ma) suggests the initiation of prograde metamorphism to be prior to ca. 240 Ma [2]. In-situ U-Pb dating of accessary minerals using LA-ICPMS (i.e. monazite, titanite, rutile, etc.), can provide important information to augment and complement the zircon U-Pb metamorphic dates. In this study, we collected samples throughout the Weihai area. Protolith ages of these samples range from Paleoproterozoic to Neoproterozoic ( 1850 - 700 Ma) as indicated by U-Pb dating of zircon cores. Zircon metamorphic rims yield U-Pb ages of 240 - 220 Ma, likely indicating the UHP stage of the Sulu terrane [3]. Four eclogites yield Lu-Hf garnet isochrons with dates between 239 and 224 Ma, consistent with garnet Lu-Hf dates from Dabie UHP terrane [2]. Sm-Nd isochrons indicate systematic younger dates (220 - 210 Ma) interpreted as cooling ages. Titanites extracted from four samples give U-Pb ages ranging from 220 to 200 Ma, in agreement with the titanite dates from the southern Sulu terrane [4]. Monazites from three samples give precise dates between 214 and 211 Ma. Collectively, monazite and titanite U-Pb ages are broadly consistent with the garnet Sm-Nd isochrons, and thus we interpret these as cooling ages. Based on the dates of different systems

  2. Foundering and Exhumation of UHP Terranes: Race Car or School Bus?

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Hacker, B. R.

    2008-12-01

    Recent geochronologic data from the giant ultrahigh-pressure (UHP) terrane, in the Western Gneiss Region of Norway, indicate that subduction and exhumation were relatively slow (a few mm/yr), and that the terrane was exhumed to the surface as a relatively thick, coherent body. These conclusions are in stark contrast to those reached in previous studies of some of the best-studied, smaller UHP terranes and suggest that the processes that form and/or exhume small UHP terranes are fundamentally different from the processes that affect large UHP terranes. These differences may be the result of variations in the buoyancy forces of different proportions of subducted felsic crust, mafic crust, and mantle lithosphere. Initial collision occurs via the subduction of smaller portions of continental material, such as microcontinents or ribbon continents. Because the proportion of continental crust is small, the processes involved in early UHP terrane formation are dominated by the oceanic slab; subduction rates are fast because average plate densities are high, and, as a result, subduction angles are steep. Because these smaller, thinner portions of crust are weak, they deform easily and mix readily with the mantle. As the collision matures, thicker and larger portions of continental material-such as a continental margin-are subducted, and the subduction regime changes from one that was ocean dominated to one that is continent dominated. The increased buoyancy of the larger volume of continental crust resists the pull of the leading oceanic lithosphere; subduction shallows and plate rates slow. Because the downgoing continent is thick, it is strong, remains cohesive and has limited interaction with the mantle. Although the subduction regime during early orogenesis is distinct from that during late orogenesis, the degree of mountain building and crustal thickening may be similar in both stages as small volumes and fast flow rates of buoyant material give way to large volumes

  3. U-Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China: Implications for mantle metasomatism and subduction-zone UHP metamorphism

    USGS Publications Warehouse

    Zhang, R.Y.; Yang, J.S.; Wooden, J.L.; Liou, J.G.; Li, T.F.

    2005-01-01

    We studied the Zhimafang ultrahigh-pressure metamorphic (UHP) peridotite from pre-pilot drill hole PP-1 of Chinese Continental Scientific Drilling project in the Sulu UHP terrane, eastern China. The peridotite occurs as lens within quartofeldspathic gneiss, and has an assemblage of Ol + Opx + Cpx + Phl + Ti-clinohumite (Ti-Chu) + Grt (or chromite) ?? magnesite (Mgs). Zircons were separated from cores at depths of 152 m (C24, garnet lhezolite), 160 m (C27, strongly retrograded phlogopite-rich peridotite) and 225 m (C50, banded peridotite), and were dated by SHRIMP mass spectrometer. Isometric zircons without inherited cores contain inclusions of olivine (Fo91-92), enstatite (En91-92), Ti-clinohumite, diopside, phlogopite and apatite. The enstatite inclusions have low Al2O3 contents of only 0.04-0.13 wt.%, indicating a UHP metamorphic origin. The weighted mean 206Pb/238U zircon age for garnet lherzolite (C24) is 221 ?? 3 Ma, and a discordia lower intercept age for peridotite (C50) is 220 ?? 2 Ma. These ages are within error and represent the time of subduction-zone UHP metamorphism. A younger lower intercept age of 212 ?? 3 Ma for a foliated wehrlite (C27) was probably caused by Pb loss during retrograde metamorphism. The source of zirconium may be partially attributed to melt/fluid metasomatism within the mantle wedge. Geochronological and geochemical data confirm that the mantle-derived Zhimafang garnet peridotites (probably the most representative type of Sulu garnet peridotites) were tectonically inserted into a subducting crustal slab and subjected to in situ Triassic subduction-zone UHP metamorphism. ?? 2005 Elsevier B.V. All rights reserved.

  4. Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, Western China

    USGS Publications Warehouse

    Mattinson, C.G.; Wooden, J.L.; Liou, J.G.; Bird, D.K.; Wu, C.L.

    2006-01-01

    Amphibolite-facies para-and orthogneisses near Dulan, at the southeast end of the North Qaidam terrane, enclose minor eclogite and peridotite which record ultra-high pressure (UHP) metamorphism associated with the Early Paleozoic continental collision of the Qilian and Qaidam microplates. Field relations and coesite inclusions in zircons from paragneiss suggest that felsic, mafic, and ultramafic rocks all experienced UHP metamorphism and a common amphibolite-facies retrogression. SHRIMP-RG U-Pb and REE analyses of zircons from four eclogites yield weighted mean ages of 449 to 422 Ma, and REE patterns (flat HREE, no Eu anomaly) and inclusions of garnet, omphacite, and rutile indicate these ages record eclogite-facies metamorphism. The coherent field relations of these samples, and the similar range of individual ages in each sample suggests that the ???25 m.y. age range reflects the duration of eclogite-facies conditions in the studied samples. Analyses from zircon cores in one sample yield scattered 433 to 474 Ma ages, reflecting partial overlap on rims, and constrain the minimum age of eclogite protolith crystallization. Inclusions of Th + REE-rich epidote, and zircon REE patterns are consistent with prograde metamorphic growth. In the Lu??liang Shan, approximately 350 km northwest in the North Qaidam terrane, ages interpreted to record eclogite-facies metamorphism of eclogite and garnet peridotite are as old as 495 Ma and as young as 414 Ma, which suggests that processes responsible for extended high-pressure residence are not restricted to the Dulan region. Evidence of prolonged eclogite-facies metamorphism in HP/UHP localities in the Northeast Greenland eclogite province, the Western Gneiss Region of Norway, and the western Alps suggests that long eclogite-facies residence may be globally significant in continental subduction/collision zones.

  5. An exotic terrane in the Sulu UHP region, China

    NASA Astrophysics Data System (ADS)

    Chu, W.; Zhang, R.; Tsujimori, T.; Liou, J. G.

    2004-12-01

    The Haiyangsuo region of about 15 km2 along the coast in the NE part of the Triassic Sulu UHP terrane occurs three major rock types: amphibolitized metagabbro, gneiss and granitic dikes. Three different gneisses were observed in the field: A) Light color felsic gneiss is the dominant country rock and contains Qtz, Pl, Ms and Bi. B) Dark color plagioclase-amphibole gneiss occurs as thin layers within country rock; C) Granulite facies rock occurs as discontinuous lens. The amphibolitized metagabbros intrude into the gneisses as massive bodies (several m to hundreds of m in size) and thin dikes. Both metamorphic intrusives and gneisses are cross-cut by granitic dikes. The amphibolitized metagabbro was divided into three types: coronal metagabbro, transitional rock and garnet amphibolite: 1) Coronal metagabbro preserves gabbroic texture and primary assemblage of Opx+Cpx+Pl+Amp+Ilm. Most pyroxene grains are partially rimmed by thin corona of Amp+Ab+Qtz. Garnet occurs as fine-grained coronas at interface between plagioclase, pyroxene or ilmenite. 2) Transitional rocks contain similar assemblage and texture but most orthopyroxenes were partially or totally replaced by Amp+Qtz; garnet increases in content and size. Some gabbroic textures are preserved, but calcic plagioclase was replaced by zoisite, albite and muscovite. 3) Garnet amphibolite occurs at the margins of intrusive bodies and boudins where only minor relict clinopyroxenes preserve. Garnet coronal chains are not clear any more. Granitic dikes show pronounced deformation with mylonitic texture and contain 40-50% quartz porphyroclasts. Zircon separates from 2 metagabbros, 4 gneisses and 1 granitic rock were dated by using Stanford SHRIMP-RG. Metagabbroic zircons are angular and fractured shapes. The upper-intercept ages of gneisses rang from 1730 to about 2400 Ma, indicating variable protoith age. The 2 garnet amphibolites have upper-intercept ages 1734±5Ma and 1735±21Ma respectively. They are much older than

  6. Geochronology and tectonic significance of Middle Proterozoic granitic orthogneiss, North Qaidam HP/UHP terrane, Western China

    USGS Publications Warehouse

    Mattinson, C.G.; Wooden, J.L.; Liou, J.G.; Bird, D.K.; Wu, C.L.

    2006-01-01

    Amphibolite-facies para- and orthogneisses near Dulan, in the southeast part of the North Qaidam terrane, enclose minor ultra-high pressure (UHP) eclogite and peridotite. Field relations and coesite inclusions in zircons from paragneiss suggest that felsic, mafic, and ultramafic rocks all experienced UHP metamorphism and a common amphibolite-facies retrogression. Ion microprobe U-Pb and REE analyses of zircons from two granitic orthogneisses indicate magmatic crystallization at 927 ?? Ma and 921 ?? 7 Ma. Zircon rims in one of these samples yield younger ages (397-618 Ma) compatible with partial zircon recrystallization during in-situ Ordovician-Silurian eclogite-facies metamorphism previously determined from eclogite and paragneiss in this area. The similarity between a 2496 ?? 18 Ma xenocrystic core and 2.4-2.5 Ga zircon cores in the surrounding paragneiss suggests that the granites intruded the sediments or that the granite is a melt of the older basement which supplied detritus to the sediments. The magmatic ages of the granitic orthogneisses are similar to 920-930 Ma ages of (meta)granitoids described further northwest in the North Qaidam terrane and its correlative west of the Altyn Tagh fault, suggesting that these areas formed a coherent block prior to widespread Mid Proterozoic granitic magmatism. ?? Springer-Verlag 2006.

  7. Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China

    USGS Publications Warehouse

    Mattinson, C.G.; Wooden, J.L.; Zhang, J.X.; Bird, D.K.

    2009-01-01

    In the southeastern part of the North Qaidam terrane, near Dulan, paragneiss hosts minor peridotite and UHP eclogite. Zircon geochronology and trace element geochemistry of three paragneiss samples (located within a ???3 km transect) indicates that eclogite-facies metamorphism resulted in variable degrees of zircon growth and recrystallization in the three samples. Inherited zircon core age groups at 1.8 and 2.5 Ga suggest that the protoliths of these rocks may have received sediments from the Yangtze or North China cratons. Mineral inclusions, depletion in HREE, and absence of negative Eu anomalies indicate that zircon U-Pb ages of 431 ?? 5 Ma and 426 ?? 4 Ma reflect eclogite-facies zircon growth in two of the samples. Ti-in-zircon thermometry results are tightly grouped at ???660 and ???600 ??C, respectively. Inclusions of metamorphic minerals, scarcity of inherited cores, and lack of isotopic or trace element inheritance demonstrate that significant new metamorphic zircon growth must have occurred. In contrast, zircon in the third sample is dominated by inherited grains, and rims show isotopic and trace element inheritance, suggesting solid-state recrystallization of detrital zircon with only minor new growth. ?? 2009 Elsevier Ltd.

  8. SHRIMP U-Pb zircon dating from eclogite lenses in marble, Dabie-Sulu UHP terrane: restriction on the prograde, UHP and retrograde metamorphic ages

    NASA Astrophysics Data System (ADS)

    Liu, F.; Gerdes, A.; Xue, H.; Liang, F.

    2006-12-01

    Eclogite as lenses in impure marbles from Dabie-Sulu UHP terrane, represent parts of deeply subducted meta- sedimentary rocks. To constrain the age of metamorphism during subduction and exhumation, zircons from 2 eclogite samples in Dabie-Sulu impure marbles have been investigated. Beside Inherited (detrital) grains, 3 different metamorphic zircon domains have been identified based on distribution of mineral inclusion, trace elements and cathodoluminescence (CL) imaging: 1. Dark-luminescent rounded cores with quartz eclogite- facies mineral inclusions suggest formation at high-pressure (HP) metamorphic conditions. 2. White- luminescent zircon, either surrounding domain 1 or as rounded to spindly cores with index coesite eclogite- facies mineral inclusions indicates formation at UHP conditions. 3. Grey-luminescent rims around domain 2 with low-pressure mineral inclusions suggest formation during late regional amphibolite-facies retrogression. The three distinct zircon domains were dated by SHRIMP and yielded three discrete and meaningful age groups: 245±4 Ma for prograde HP metamorphism, 235±3 Ma for UHP metamorphism and 215±6 Ma for late amphibolite-facies retrogression from Dabie-Sulu eclogite. This data suggests that subduction and exhumation took place in about 10-11 Myr and 19-20 Myr, respectively. Continental materials was subducted from surface to the deep mantle depth at rates of 10 km/Myr, and subsequently exhumed from the mantle to the base of the crust at rates of 7 km/Myr. Ultrafast exhumation of the Dabie-Sulu UHP terrane from depth of 160 to 30 km was probably driven by buoyancy forces after UHP slab break-off at deep mantle depths.

  9. Petrology, geochemistry and isotopic ages of eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China

    NASA Astrophysics Data System (ADS)

    Song, Shuguang; Yang, Jingsui; Liou, J. G.; Wu, Cailai; Shi, Rendeng; Xu, Zhiqin

    2003-10-01

    The Dulan eclogite-gneiss region is located in the eastern part of the North Qaidam eclogite belt, NW China. Widespread evidence demonstrates that this region is a typical ultrahigh-pressure (UHP) metamorphic terrane. Eclogites occur as lenses or layers in both granitic and pelitic gneisses. Two distinguished sub-belts can be recognized and differ in mineralogy, petrology and geochemistry. The North Dulan Belt (NDB) has tholeiitic protoliths with high TiO 2 and lower Al 2O 3 and MgO contents. REE patterns and trace element contents resemble those of N-type and E-type MORB. In contrast, eclogites in the South Dulan Belt (SDB) are of island arc protoliths with low TiO 2, high Al 2O 3 and show LREE-enriched and HFSE-depleted patterns. Sm-Nd isotope analyses give isochron ages of 458-497 Ma for eclogite-facies metamorphism for the two sub-belts. The ages are similar to those of Yuka and Altun eclogites in the western extension of the North Qaidam-Altun eclogite belt. The Dulan UHP metamorphic terrane, together with several other recently recognized eclogite-bearing terrenes within the North Qaidam-Altun HP-UHP belt, constitute the key to the understanding of the tectonic evolution of the northern Tibetan Plateau. The entire UHP belt extends for more than 1000 km from the Dulan UHP terrane in the southeast to the Altun eclogite-gneiss terrane in the west. This super-belt marks an early Paleozoic continental collision zone between the Qaidam Massif and the Qilian Massif.

  10. Protolith and metamorphic ages of the Haiyangsuo Complex, eastern China: A non-UHP exotic tectonic slab in the Sulu ultrahigh-pressure terrane

    USGS Publications Warehouse

    Liou, J.G.; Tsujimori, T.; Chu, W.; Zhang, R.Y.; Wooden, J.L.

    2006-01-01

    The Haiyangsuo Complex in the NE Sulu ultrahigh-pressure (UHP) terrane has discontinuous, coastal exposures of Late Archean gneiss with amphibolitized granulite, amphibolite, Paleoproterozoic metagabbroic intrusives, and Cretaceous granitic dikes over an area of about 15 km2. The U-Pb SHRIMP dating of zircons indicates that theprotolith age of a garnet-biotite gneiss is >2500 Ma, whereas the granulite-facie metamorphism occurred at around 1800 Ma. A gabbroic intrusion was dated at ???1730 Ma, and the formation of amphibolite-facies assemblages in both metagabbro and granulite occurred at ???340-460 Ma. Petrologic and geochronological data indicate that these various rocks show no evidence of Triassic eclogite-facies metamorphism and Neoproterozoic protolith ages that are characteristics of Sulu-Dabie HP-UHP rocks, except Neoproterozoic inherited ages from post-collisional Jurassic granitic dikes. Haiyangsuo retrograde granulites with amphibolite-facies assemblages within the gneiss preserve relict garnet formed during granulite-facies metamorphism at ???1.85 Ga. The Paleoproterozoic metamorphic events are almost coeval with gabbroic intrusions. The granulite-bearing gneiss unit and gabbro-dominated unit of the Haiyangsuo Complex were intruded by thin granitic dikes at about 160 Ma, which is coeval with post-collisional granitic intrusions in the Sulu terrane. We suggest that the Haiyangsuo Complex may represent a fragment of the Jiao-Liao-Ji Paleoproterozoic terrane developed at the eastern margin of the Sino-Korean basement, which was juxtaposed with the Sulu terrane prior to Jurassic granitic activity and regional deformation. ?? Springer-Verlag 2006.

  11. Thermochronology of the Sulu ultrahigh-pressure metamorphic terrane: Implications for continental collision and lithospheric thinning

    NASA Astrophysics Data System (ADS)

    Liu, Li-Ping; Li, Zheng-Xiang; Danišík, Martin; Li, Sanzhong; Evans, Noreen; Jourdan, Fred; Tao, Ni

    2017-08-01

    The thermal history of the Dabie-Sulu orogenic belt provides important constraints on the collision process between the South China and North China blocks during the Mesozoic, and possible lithospheric thinning event(s) in the eastern North China Block. This study reports on the thermal evolution of the Sulu ultrahigh-pressure metamorphic (UHP) terrane using zircon U-Pb geochronology and multiple thermochronology methods such as mica and hornblende 40Ar/39Ar, zircon and apatite fission track, and zircon and apatite (U-Th)/He dating. 40Ar/39Ar and zircon (U-Th)/He data show that the UHP terrane experienced accelerated cooling during 180-160 Ma. This cooling event could be interpreted to have resulted from extensional unroofing of an earlier southward thrusting nappe, or, more likely, an episode of northward thrusting of the UHP rocks as a hanging wall. A subsequent episode of exhumation took place between ca. 125 Ma and 90 Ma as recorded by zircon (U-Th)/He data. This event was more pronounced in the northwest section of the UHP terrane, whereas in the southeast section, the zircon (U-Th)/He system retained Jurassic cooling ages of ca. 180-160 Ma. The mid-Cretaceous episode of exhumation is interpreted to have resulted from crustal extension due to the removal of thickened, enriched mantle. A younger episode of exhumation was recorded by apatite fission track and apatite (U-Th)/He ages at ca. 65-40 Ma. Both latter events were linked to episodic thinning of lithosphere along the Sulu UHP terrane in an extensional environment, likely caused by the roll-back of the Western Pacific subduction system.

  12. SHRIMP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Fulai; Gerdes, Axel; Zeng, Lingsen; Xue, Huaimin

    2008-06-01

    In this study, we link mineral inclusion data, trace element analyses, U-Pb age and Hf isotope composition obtained from distinct zircon domains of complex zircon to unravel the origin and multi-stage metamorphic evolution of amphibolites from the Sulu ultrahigh-pressure (UHP) terrane, eastern China. Zircon grains separated from amphibolites from the CCSD-MH drill hole (G12) and Niushan outcrop (G13) were subdivided into two main types based on cathodoluminescence (CL) and Laser Raman spectroscopy: big dusty zircons with inherited cores and UHP metamorphic rims and small clear zircons. Weakly zoned, grey-white luminescent inherited cores preserve mineral inclusions of Cpx + Pl + Ap ± Qtz indicative of a mafic igneous protolith. Dark grey luminescent overgrowth rims contain the coesite eclogite-facies mineral inclusion assemblage Coe + Grt + Omp + Phe + Ap, and formed at T = 732-839 °C and P = 3.0-4.0 GPa. In contrast, white luminescent small clear zircons preserve mineral inclusions formed during retrograde HP quartz eclogite to LP amphibolite-facies metamorphism (T = 612-698 °C and P = 0.70-1.05 GPa). Inherited zircons from both samples yield SHRIMP 206Pb/238U ages of 695-520 Ma with an upper intercept age of 800 ± 31 Ma. The UHP rims yield consistent Triassic ages around 236-225 and 239-225 Ma for G12 and G13 with weighted means of 229 ± 3 and 231 ± 3 Ma, respectively. Small clear zircons from both samples give 206Pb/238U ages around 219-210 Ma with a weighted mean of 214 ± 3 Ma, interpreted as the age of retrograde quartz eclogite-facies metamorphism. Matrix amphibole from both samples indicate Ar-Ar ages of 209 ± 0.7 and 207 ± 0.7 Ma, respectively, probably dating late amphibolite-facies retrogression. The data suggest subduction of Neoproterozoic mafic igneous rocks to UHP conditions in Middle Triassic (∼230 Ma) times and subsequent exhumation to an early HP (∼214 Ma) and a late LP stage (∼208 Ma) over a period of ∼16 and 6 Myr, respectively

  13. Fluid-rock interactions during UHP metamorphism: A review of the Dabie-Sulu orogen, east-central China

    NASA Astrophysics Data System (ADS)

    Zhang, Z. M.; Shen, K.; Liou, J. G.; Dong, X.; Wang, W.; Yu, F.; Liu, F.

    2011-08-01

    Comprehensive review on the characteristics of petrology, oxygen isotope, fluid inclusion and nominally anhydrous minerals (NAMs) for many Dabie-Sulu ultrahigh-pressure (UHP) metamorphic rocks including drill-hole core samples reveals that fluid has played important and multiple roles during complicated fluid-rock interactions attending the subduction and exhumation of supracrustal rocks. We have identified several distinct stages of fluid-rock interactions as follows: (1) The Neoproterozoic supercrustal protoliths of UHP rocks experienced variable degrees of hydration through interactions with cold meteoric water with extremely low oxygen isotope compositions during Neoproterozoic Snow-ball Earth time. (2) A series of dehydration reactions took place during Triassic subduction of the Yangtze plate beneath the Sino-Korean plate; the released fluid entered mainly into volatile-bearing high-pressure (HP) and UHP minerals, such as phengite, zoisite-epidote, talc, lawsonite and magnesite, as well as into UHP NAMs, such as garnet, omphacite and rutile. (3) Silicate-rich supercritical fluid (hydrous melt) existed during the UHP metamorphism at mantle depths >100 km which mobilized many normally fluid-immobile elements and caused unusual element fractionation. (4) The fluid exsolved from the NAMs during the early exhumation of the Dabie-Sulu terrane was the main source for HP hydrate retrogression and generation of HP veins. (5) Local amphibolite-facies retrogression at crustal depths took place by infiltration of aqueous fluid of various salinities possibly derived from an external source. (6) The greenschist-facies overprinting and low-pressure (LP) quartz veins were generated by fluid flow along ductile shear zones and brittle faults during late-stage uplift of the UHP terrane.

  14. STRUCTURAL GEOMETRY OF AN EXHUMED UHP TERRANE IN THE EASTERN SULU OROGEN, CHINA: IMPLICATIONS FOR CONTINENTAL COLLISIONAL PROCESSES

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kusky, T.

    2009-12-01

    High-precision 1:1,000 mapping of Yangkou Bay, eastern Sulu orogen, defines the structural geometry and history of the world’s most significant UHP (Ultrahigh Pressure) rock exposures. Four stages of folds are recognized in the UHP rocks and associated quartzo-feldspathic gneiss. Eclogite facies rootless F1 and isoclinal F2 folds are preserved locally in coesite-eclogite. Mylonitic to ultramylonitic cosesit-eclogite shear zones separate 5-10-meter-thick nappes of ultramafic-mafic UHP rocks from banded quartzo-feldspathic gneiss. These shear zones are folded, and progressively overprinted by amphibolite and greenschist facies shear zones that become wider with lower grade. The deformation sequences is explained by deep subduction of offscraped thrust slices of oceanic or lower continental crust, caught between the colliding North and South China cratons in the Mesozoic. After these slices were structurally isolated along the plate interface, they were rolled like ball-bearings, in the subduction channel during their exhumation, forming several generations of folds, sequentially lower-grade foliations and lineations, and intruded by several generations of in situ and exotically derived melts. The shear zones formed during different generations of deformation are wider with lower grades, suggesting that deep-crustal/upper mantle deformation operates efficiently (perhaps with more active crystallographic slip systems) than deformation at mid to upper crustal levels.

  15. Carbonatitic metasomatism in orogenic dunites from Lijiatun in the Sulu UHP terrane, eastern China

    NASA Astrophysics Data System (ADS)

    Su, Bin; Chen, Yi; Guo, Shun; Chu, Zhu-Yin; Liu, Jing-Bo; Gao, Yi-Jie

    2016-10-01

    Among orogenic peridotites, dunites suffer the weakest crustal metasomatism at the slab-mantle interface and are the best lithology to trace the origins of orogenic peridotites and their initial geodynamic processes. Petrological and geochemical investigations of the Lijiatun dunites from the Sulu ultrahigh-pressure (UHP) terrane indicate a complex petrogenetic history involving melt extraction and multistage metasomatism (carbonatitic melt and slab-derived fluid). The Lijiatun dunites consist mainly of olivine (Fo = 92.0-92.6, Ca = 42-115 ppm), porphyroblastic orthopyroxene (En = 91.8-92.8), Cr-spinel (Cr# = 50.4-73.0, TiO2 < 0.2 wt.%) and serpentine. They are characterized by refractory bulk-rock compositions with high MgO (45.31-47.07 wt.%) and Mg# (91.5-91.9), and low Al2O3 (0.48-0.70 wt.%), CaO (0.25-0.44 wt.%) and TiO2 (< 0.03 wt.%) contents. Whole-rock platinum group elements (PGE) are similar to those of cratonic mantle peridotites and Re-Os isotopic data suggest that dunites formed in the early Proterozoic ( 2.2 Ga). These data indicate that the Lijiatun dunites were the residues of 30% partial melting and were derived from the subcontinental lithospheric mantle (SCLM) beneath the North China craton (NCC). Subsequent carbonatitic metasomatism is characterized by the formation of olivine-rich (Fo = 91.6-92.6, Ca = 233-311 ppm), clinopyroxene-bearing (Mg# = 95.9-96.7, Ti/Eu = 104-838) veins cutting orthopyroxene porphyroblasts. Based on the occurrence of dolomite, mass-balance calculation and thermodynamic modeling, carbonatitic metasomatism had occurred within the shallow SCLM (low-P and high-T conditions) before dunites were incorporated into the continental subduction channel. These dunites then suffered weak metasomatism by slab-derived fluids, forming pargasitic amphibole after pyroxene. This work indicates that modification of the SCLM beneath the eastern margin of the NCC had already taken place before the Triassic continental subduction. Orogenic

  16. U-Pb zircon geochronology and Zr-in-rutile thermometry of eclogites from the Dulan area, North Qaidam ultra-high pressure (UHP) terrane, western China

    NASA Astrophysics Data System (ADS)

    Hernández Uribe, D.; Stubbs, K.; Lehman, M. R.; Gilmore, V.; Kylander-Clark, A. R.; Mattinson, C. G.

    2016-12-01

    The Dulan area, in the North Qaidam terrane, exposes UHP eclogites and gneisses that experienced a 20 Myr UHP event at P-T conditions of 30 kbar and 700 °C. Two eclogites were analyzed using Zr-in-rutile thermometry and zircon U-Pb + trace element analysis to constrain the metamorphic evolution of the area. A kyanite-phengite eclogite presents a mineral assemblage of grt + omp + ph + ky + rt + zo + qz. Rutile analyses show a Zr concentration of 173-250 ppm with a mean of 207 ± 19 ppm. The calculated temperatures yielded 685-716 °C with an average of 700 ± 7°C. Zircon U-Pb analyses gave an upper intercept age of 880 ± 89 Ma. These analyses from cathodoluminiscence (CL)-dark core zircons show a negative Eu anomaly and a steep HREE slope suggesting a magmatic origin for the protolith. Analyses from CL-bright rims gave a weighted mean age of 427 ± 2 Ma. These zircons show an eclogite facies trace elements pattern suggesting that the age represent the HP-UHP event. Titanium concentration in zircons gave a weighted mean of 4.41 ± 0.25 ppm. This Ti concentration yielded a calculated temperature of 674 °C A phengite eclogite shows a mineral assemblage of grt + omp + ph + rt + zo + qz. Rutile in matrix analyses show a Zr concentration of 123-161 ppm with a mean of 139 ± 9 ppm. Calculated temperatures for these rutiles ranges from 659-680 °C with a mean temperature of 668 ± 5 °C. U-Pb analyses from CL-dark zircon cores gave a weighted mean age of 844 ± 7 Ma. These zircons show a negative Eu anomaly and a steep HREE slope suggesting a magmatic origin for the protolith. Analyses from CL-grey rims gave a weighted mean age of 433 ± 4 Ma. These zircons show an eclogite facies trace elements pattern, representing the timing of the HP-UHP event. Titanium concentration in zircons gave a weighted mean of 3.13 ± 0.34 ppm. This concentration yielded calculated temperature 647 °C. The obtained ages are in the same range as the ones obtained for the northern and southern

  17. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Wang, Chao; Cao, Yu-Ting; Chen, Dan-Ling; Kang, Lei; Yang, Wen-Qiang; Zhu, Xiao-Hui

    2012-04-01

    Petrography, mineral chemistry and pressure-temperature (P-T) estimates were carried out for the eclogite from the South Altyn in NW China. The results suggest three stages of metamorphism: an ultra-high pressure (UHP) eclogite-facies metamorphism at 717-871 °C and ≥ 2.8 GPa, a high pressure (HP) granulite-facies metamorphism at 624-789 °C and 1.42-1.52 GPa, and an amphibolite-facies metamorphism at 597-728 °C and 0.99-1.17 GPa. Cathodoluminescence investigation revealed that zircons from the retrograde eclogite display a distinct core-rim structure. Cores are grey-white luminescent and contain mineral inclusions of Garnet + Omphacite + Rutile + Quartz, suggesting eclogite-facies metamorphic origin. The rims are dark grey luminescent and contain Garnet + Clinopyroxene + Pagioclase inclusions, forming at HP granulite-facies conditions. A few residual zircon grains with mottled internal structure also occur as the metamorphic cores. LA-ICPMS zircon U-Pb dating yielded three discrete age groups: (1) a Neoproterozoic protolith age of 752 ± 7 Ma for the residual grains, (2) an eclogite-facies metamorphic age of 500 ± 7 Ma for the metamorphic cores, and (3) a HP granulite-facies retrograde age of 455 ± 2 Ma for the rims. These ages indicate that the protolith of the Altyn eclogite probably formed in response to breakup of the Rodinia supercontinent during the Neoproterozoic; it was subjected to continental deep subduction and UHP metamorphism during early Paleozoic (~ 500 Ma) and subsequently underwent two stages of retrograde metamorphism during exhumation. The petrological and geochronological data suggest a clockwise P-T-t path for the UHP eclogite. According to pressures and ages for the peak UHP eclogite-facies and the retrograde HP granulite-facies metamorphism, an exhumation rate of 1.2 mm/yr was estimated for the eclogite, which is considerably slower than that of some UHP rocks from other UHP terranes (> 5 mm/yr). While the peak metamorphic age of 500 Ma

  18. Cretaceous-Eocene provenance connections between the Palawan Continental Terrane and the northern South China Sea margin

    NASA Astrophysics Data System (ADS)

    Shao, Lei; Cao, Licheng; Qiao, Peijun; Zhang, Xiangtao; Li, Qianyu; van Hinsbergen, Douwe J. J.

    2017-11-01

    The plate kinematic history of the South China Sea opening is key to reconstructing how the Mesozoic configuration of Panthalassa and Tethyan subduction systems evolved into today's complex Southeast Asian tectonic collage. The South China Sea is currently flanked by the Palawan Continental Terrane in the south and South China in the north and the two blocks have long been assumed to be conjugate margins. However, the paleogeographic history of the Palawan Continental Terrane remains an issue of uncertainty and controversy, especially regarding the questions of where and when it was separated from South China. Here we employ detrital zircon U-Pb geochronology and heavy mineral analysis on Cretaceous and Eocene strata from the northern South China Sea and Palawan to constrain the Late Mesozoic-Early Cenozoic provenance and paleogeographic evolution of the region testing possible connection between the Palawan Continental Terrane and the northern South China Sea margin. In addition to a revision of the regional stratigraphic framework using the youngest zircon U-Pb ages, these analyses show that while the Upper Cretaceous strata from the Palawan Continental Terrane are characterized by a dominance of zircon with crystallization ages clustering around the Cretaceous, the Eocene strata feature a large range of zircon ages and a new mineral group of rutile, anatase, and monazite. On the one hand, this change of sediment compositions seems to exclude the possibility of a latest Cretaceous drift of the Palawan Continental Terrane in response to the Proto-South China Sea opening as previously inferred. On the other hand, the zircon age signatures of the Cretaceous-Eocene strata from the Palawan Continental Terrane are largely comparable to those of contemporary samples from the northeastern South China Sea region, suggesting a possible conjugate relationship between the Palawan Continental Terrane and the eastern Pearl River Mouth Basin. Thus, the Palawan Continental

  19. Origin and tectonic evolution of early Paleozoic arc terranes abutting the northern margin of North China Craton

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Pei, Fu-Ping; Zhang, Ying; Zhou, Zhong-Biao; Xu, Wen-Liang; Wang, Zhi-Wei; Cao, Hua-Hua; Yang, Chuan

    2017-12-01

    The origin and tectonic evolution of the early Paleozoic arc terranes abutting the northern margin of the North China Craton (NCC) are widely debated. This paper presents detrital zircon U-Pb and Hf isotopic data of early Paleozoic strata in the Zhangjiatun arc terrane of central Jilin Province, northeast (NE) China, and compares them with the Bainaimiao and Jiangyu arc terranes abutting the northern margin of the NCC. Detrital zircons from early Paleozoic strata in three arc terranes exhibit comparable age groupings of 539-430, 1250-577, and 2800-1600 Ma. The Paleoproterozoic to Neoarchean ages and Hf isotopic composition of the detrital zircons imply the existence of the Precambrian fragments beneath the arc terranes. Given the evidences from geology, igneous rocks, and detrital zircons, we proposed that the early Paleozoic arc terranes abutting the northern margin of the NCC are a united arc terrane including the exotic Precambrian fragments, and these fragments shared a common evolutionary history from Neoproterozoic to early-middle Paleozoic.

  20. Grain-scale Sr isotope heterogeneity in amphibolite (retrograded UHP eclogite, Dabie terrane): Implications for the origin and flow behavior of retrograde fluids during slab exhumation

    NASA Astrophysics Data System (ADS)

    Guo, Shun; Yang, Yueheng; Chen, Yi; Su, Bin; Gao, Yijie; Zhang, Lingmin; Liu, Jingbo; Mao, Qian

    2016-12-01

    To constrain the origin and flow behavior of amphibolite-facies retrograde fluids during slab exhumation, we investigate the textures, trace element contents, and in situ strontium (Sr) isotopic compositions (using LA-MC-ICP-MS) of multiple types of epidote and apatite in the UHP eclogite and amphibolites from the Hualiangting area (Dabie terrane, China). The UHP epidote porphyroblasts in the eclogite (Ep-E), which formed at 28-30 kbar and 660-720 °C, contain high amounts of Sr, Pb, Th, Ba, and light rare earth elements (LREEs) and have a narrow range of initial 87Sr/86Sr ratios (0.70431 ± 0.00012 to 0.70454 ± 0.00010). Two types of amphibolite-facies epidote were recognized in the amphibolites. The first type of epidote (Ep-AI) developed in all the amphibolites and has slightly lower trace element contents than Ep-E. The Ep-AI has a same initial 87Sr/86Sr ratio range as the Ep-E and represents the primary amphibolite-facies retrograde product that is associated with an internally buffered fluid at 8.0-10.3 kbar and 646-674 °C. The other type of epidote (Ep-AII) occurs as irregular fragments, veins/veinlets, or reaction rims on the Ep-AI in certain amphibolites. Elemental X-ray maps reveal the presence of Ep-AI relics in the Ep-AII domains (appearing as a patchy texture), which indicates that Ep-AII most likely formed by the partial replacement of the Ep-AI in the presence of an infiltrating fluid. The distinctly lower trace element contents of Ep-AII are ascribed to element scavenging by a mechanism of dissolution-transport-precipitation during replacement. The Ep-AII in an individual amphibolite exhibits large intra- and inter-grain variations in the initial 87Sr/86Sr ratios (0.70493 ± 0.00030 to 0.70907 ± 0.00022), which are between those of the Ep-AI and granitic gneisses (wall rock of the amphibolites, 0.7097-0.7108). These results verify that the infiltrating fluid was externally derived from granitic gneisses. The matrix apatite in the amphibolites has

  1. Preservation of Partial Melt Textures in Inclusions in Garnet Megacrysts of Pelitic Paragneiss, UHP Terrane, North-East Greenland Eclogite Province

    NASA Astrophysics Data System (ADS)

    Lang, H. M.; Gilotti, J. A.

    2005-12-01

    inclusions are commonly rimmed by a moat of plagioclase + K-feldspar, which extends into apophyses in garnet. These feldspar rims indicate that the most mobile and volatile-rich portion of the melt was able to penetrate garnets and travel along garnet-inclusion boundaries. Possible melt inclusions have been described in natural garnets from other UHP terranes (Stockert, et al., 2001, Geology; Hwang, et al., 2001, Earth and Planetary Science Letters) and have been produced experimentally (Perchuk, et al., 2005, Terra Nova). In the experiments and at least one of the natural occurrences, patchy microstructures (attributed to high Ca) were observed in BSE images of garnet surrounding the melt inclusions. Although we observe no garnet zoning in BSE images, patchy high-Ca zoning is apparent on X-ray maps of garnet surrounding the melt inclusions in our samples. Small, euhedral, high-Ca garnets are abundant in melt lenses in the matrix, so crystallization or recrystallization of high-Ca garnet surrounding the melt inclusions is not surprising.

  2. Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China: Record of collisional tectonics, erosional exhumation, and sediment production

    USGS Publications Warehouse

    Weislogel, A.L.; Graham, S.A.; Chang, E.Z.; Wooden, J.L.; Gehrels, G.E.

    2010-01-01

    To test the idea that the voluminous upper Middle to Upper Triassic turbidite strata in the Songpan-Ganzi complex of central China archive a detrital record of Dabie ultrahigh-pressure (UHP) terrane unroofing, we report 2080 single detrital U-Pb zircon ages by sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis from 29 eastern Songpan-Ganzi complex sandstone samples. Low (<0.07) Th/U zircons, consistent with crystallization under UHP conditions, are rare in eastern Songpan-Ganzi complex zircon, and U-Pb ages of low Th/U zircons are incompatible with a Dabie terrane source. An unweighted pair group method with arithmetic mean nearest-neighbor analysis of Kolmogorov-Smirnov two-sample test results reveals that the eastern Songpan-Ganzi complex is not a single contiguous turbidite system but is instead composed of three subsidiary depocenters, each associated with distinct sediment sources. The northeastern depocenter contains zircon ages characterized by Paleozoic and bimodally distributed Precambrian zircon populations, which, together with south-to southeast-directed paleocurrent data, indicate derivation from the retro-side of the Qinling-Dabie (Q-D) collisional orogen wedge. In the central depocenter, the dominantly Paleozoic detrital zircon signature and south-to southwest-oriented paleocurrent indicators reflect a profusion of Paleozoic zircon grains. These data are interpreted to reflect an influx of material derived from erosion of Paleozoic supra-UHP rocks of the Dabie terrane in the eastern Qinling-Dabie orogen, which we speculate may have been enhanced by development of a monsoonal climate. This suggests that erosional unroofing played a significant role in the initial phase of UHP exhumation and likely influenced the petrotectonic and structural evolution of the Qinling-Dabie orogen, as evidenced by compressed Triassic isotherms/grads reported in the

  3. Trace-element record in zircons during exhumation from UHP conditions, North-East Greenland Caledonides

    USGS Publications Warehouse

    McClelland, W.C.; Gilotti, J.A.; Mazdab, F.K.; Wooden, J.L.

    2009-01-01

    Coesite-bearing zircon formed at ultrahigh-pressure (UHP) conditions share general characteristics of eclogite-facies zircon with trace-element signatures characterized by depleted heavy rare earth elements (HREE), lack of an Eu anomaly, and low Th/ U ratios. Trace-element signatures of zircons from the Caledonian UHP terrane in North-East Greenland were used to examine the possible changes in signature with age during exhumation. Collection and interpretation of age and trace-element analyses of zircon from three samples of quartzofeldspathic gneiss and two leucocratic intrusions were guided by core vs. rim zoning patterns as imaged by cathodoluminesence. Change from igneous to eclogite-facies metamorphic trace-element signature in protolith zircon is characterized by gradual depletion of HREE, whereas newly formed metamorphic rims have flat HREE patterns and REE concentrations that are distinct from the recrystallized inherited cores. The signature associated with eclogite-facies metamorphic zircon is observed in coesite-bearing zircon formed at 358 ?? 4 Ma, metamorphic rims formed at 348 ?? 5 Ma during the initial stages of exhumation, and metamorphic rims formed at 337 ?? 5 Ma. Zircons from a garnet-bearing granite emplaced in the neck of an eclogite boudin and a leucocratic dike that cross-cuts amphibolite-facies structural fabrics have steeply sloping HREE patterns, variably developed negative Eu anomalies, and low Th/U ratios. The granite records initial decompression melting and exhumation at 347 ?? 2 Ma and later zircon rim growth at 329 ?? 5. The leucocratic dike was likely emplaced at amphibolite-facies conditions at 330 ?? 2 Ma, but records additional growth of compositionally similar zircon at 321 ??2 Ma. The difference between the trace-element signature of metamorphic zircon in the gneisses and in part coeval leucocratic intrusions indicates that the zircon signature varies as a function of lithology and context, thus enhancing its ability to aid in

  4. Nature and geodynamic setting of the protoliths of the UHP metamorphic Complex and migmatites in Bixiling area, the Dabie Orogen, China

    NASA Astrophysics Data System (ADS)

    Li, H.; Jahn, B.; Wang, D.; Yu, H.; Liu, Z.; Hou, G.

    2013-12-01

    differentiated mafic intrusive body. These rocks were deeply subducted into a mantle depth during the Triassic continental collision between the Yangtze Craton and North China Craton, and thereafter were exhumed to the surface. Their residual geochemical characteristics and spatial / temporal relationship could impose constraints on the tectonic evolution of the Dabieshan UHP terrane.

  5. Terrane-Scale Metastability in Subducted Himalayan Continental Crust as Revealed by Integrated Petrological and Geodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Palin, R. M.; Reuber, G. S.; White, R. W.; Kaus, B. J. P.; Weller, O. M.

    2017-12-01

    The Tso Morari massif, northwest India, is one of only two regions in the Himalayan Range that exposes subduction-related ultrahigh-pressure (UHP) metamorphic rocks. The tectonic evolution of the massif is strongly debated, however, as reported pressure estimates for peak metamorphism range between 2.4 GPa and 4.8 GPa. Such ambiguity hinders effective lithospheric-scale modeling of the early stages of the orogen's evolution. We present the results of integrated petrological and geodynamic modeling (Palin et al., 2017, EPSL) that provide new quantitative constraints on the prograde-to-peak pressure-temperature-time (P-T-t) path, and predict the parageneses that felsic and mafic components of the massif crust should have formed under equilibrium conditions. Our model shows that peak P-T conditions of 2.6-2.8 GPa and 600-620 °C, representative of subduction to 90-100 km depth (assuming lithostatic pressure), were reached just 3 Myr after the onset of collision. These P-T-t constraints correlate well with those reported for similar UHP eclogite in the along-strike Kaghan Valley, Pakistan, suggesting that the northwest Himalaya contains dismembered remnants of a 400-km long UHP terrane comparable in size to the Western Gneiss Region, Norway, and the Dabie-Sulu belt, China. The extremely high pressures (up to 4.8 GPa) for peak metamorphism reported by some workers are likely to be unreliable due to thermobarometry having been performed on minerals that did not represent equilibrium assemblages. Furthermore, key high-P minerals predicted to form in subducted Tso Morari continental crust (e.g. jadeite, Mg-rich garnet) are absent from natural samples in the region, reflecting the widespread metastable preservation of lower-pressure protolith assemblages during subduction and exhumation. This result questions the reliability of geodynamic simulations of orogenesis that are commonly predicated on equilibrium metamorphism operating continuously throughout tectonic cycles.

  6. Stable Isotopes, Multidisciplinary Studies, and the Leadership of J.G. Liou in UHP Metamorphism

    NASA Astrophysics Data System (ADS)

    Rumble, D.

    2005-12-01

    J.G. Liou has played a crucial role in improving knowledge of UHP metamorphism by leading multi-disciplinary, multi-institutional teams of researchers and by encouraging new investigators and providing them access to samples. Stable isotope geochemistry has made important contributions to understanding UHP metamorphism including: (1) The discovery of O- and H-isotope signatures of meteoric water in UHP rocks from China and Kazakhstan demonstrates that their protoliths originated at or near Earth's surface in a cold climate(a); (2) The mapping of contiguous tracts of outcrops extending over distances of 100 km where both eclogites and their wall rocks retain unusually low d18O and dD is consistent with the subduction and exhumation of UHP slabs as coherent structural units(b); (3) Analysis of samples from the Chinese Continental Scientific Drilling project reveals not only that UHP metamorphic rocks have not exchanged O-isotopes with mantle rocks while they were buried in the upper mantle but also that garnet peridotite slabs from the mantle have not exchanged with crustal wall rocks(c). Recent advances have resulted from multidisciplinary geochemical investigations. The analysis of zircons for both d18O and U-Pb established the age of cold climate, meteoric water alteration of protoliths to be Neoproterozoic for UHP rocks from Dabie and Sulu, China(d). Thus, O-isotopes plus age dating raises the possibility that evidence of snowball Earth conditions has been preserved in an unlikely host: UHP metamorphic rocks. A comparison of U-Pb, Sm-Nd, and Rb-Sr isotope data with analyses for d18O in coexisting minerals shows that discordant age dates correlate with mineral pairs that are not in O-isotope exchange equilibrium(e). It may be seen that multidisciplinary geochemical investigations provide mutually reinforcing data that greatly strengthens interpretations. New discoveries of de novo microdiamonds accompanied by multiphase mineral inclusions in UHP metamorphosed

  7. Recent progress in recognition of UHP metamorphism in allochthons of the Scandinavian Caledonides (Seve Nappe Complex and Tromsø Nappe)

    NASA Astrophysics Data System (ADS)

    Janák, Marian; Ravna, Erling; Majka, Jarosław; Klonowska, Iwona; Kullerud, Kåre; Gee, David; Froitzheim, Nikolaus

    2017-04-01

    metamorphism in the SNC related to continent-continent or arc-continent collision? (2) Which processes lead to the emplacement of peridotite bodies with subcontinental mantle affinity into Baltican continental crust? (3) Was the Tromsø Nappe of Laurentian origin, or a part of the Baltoscandian margin emplaced by out-of-sequence thrusting, or a terrane of unknown affinity? Therefore, it is important to constrain the areal extent, pressure-temperature conditions, timing, and kinematics of UHP metamorphism in these allochthonous units.

  8. Provenance analysis of the Late Paleozoic sedimentary rocks in the Xilinhot Terrane, NE China, and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Han, Jie; Zhou, Jian-Bo; Wilde, Simon A.; Song, Min-Chun

    2017-08-01

    The Xilinhot Terrane is located in the eastern segment of the Central Asian Orogenic Belt in NE China, and is a key to a hotly debated issue on the Paleozoic tectonic evolution of this giant progenic belt. To constrain the tectonic evolution of the Xilinhot Terrane in the Late Paleozoic, we undertook zircon U-Pb dating and geochemical analyses of the Zhesi and Benbatu formations in the Suolun and Xi Ujimqin areas in the Xilinhot Terrane. Samples of the Benbatu Formation yield detrital zircon U-Pb ages ranging from 2659 Ma to 316 Ma, with four age populations at: 2659-1826 Ma, 1719-963 Ma, 590-402 Ma, and 396-316 Ma, whereas samples from the Zhesi Formation yield detrital zircon U-Pb ages ranging from 1967 Ma to 250 Ma, with four age populations at: 1967-1278 Ma, 971-693 Ma, 561-403 Ma, and 399-250 Ma. The age groups of both the Benbatu and Zhesi formations in the Xilinhot Terrane are similar to those in other parts of the Central Asian Orogenic Belt (CAOB). This evidence indicates that the Xilinhot Terrane is a microcontinent, and not an accretionary complex as previously thought. Furthermore, the youngest zircon grains in the Benbatu and Zhesi formations yield weighted mean 206Pb/238U ages of 322 ± 12 Ma (MSDW = 0.12, n = 4) and 257 ± 2.8 Ma (MSDW = 1.6, n = 8), respectively. Combined with fossil data, our new data suggest that the Benbatu and Zhesi formations in the Xilinhot Terrane were possibly deposited at ∼322 Ma and ∼257 Ma, respectively. Based on the provenance of the Carboniferous-Permian sandstones came from the blocks of NE China, we speculate that the Xilinhot Terrane is the western part of the Songliao block.

  9. Application of ultra high pressure (UHP) in starch chemistry.

    PubMed

    Kim, Hyun-Seok; Kim, Byung-Yong; Baik, Moo-Yeol

    2012-01-01

    Ultra high pressure (UHP) processing is an attractive non-thermal technique for food treatment and preservation at room temperature, with the potential to achieve interesting functional effects. The majority of UHP process applications in food systems have focused on shelf-life extension associated with non-thermal sterilization and a reduction or increase in enzymatic activity. Only a few studies have investigated modifications of structural characteristics and/or protein functionalities. Despite the rapid expansion of UHP applications in food systems, limited information is available on the effects of UHP on the structural and physicochemical properties of starch and/or its chemical derivatives included in most processed foods as major ingredients or minor additives. Starch and its chemical derivatives are responsible for textural and physical properties of food systems, impacting their end-use quality and/or shelf-life. This article reviews UHP processes for native (unmodified) starch granules and their effects on the physicochemical properties of UHP-treated starch. Furthermore, functional roles of UHP in acid-hydrolysis, hydroxypropylation, acetylation, and cross-linking reactions of starch granules, as well as the physicochemical properties of UHP-assisted starch chemical derivatives, are discussed.

  10. Protracted or multiple subduction of metapelites (Rhodope UHP domain, Greece)?

    NASA Astrophysics Data System (ADS)

    Krohe, A.; Wawrzenitz, N. H.; Mposkos, E.; Romer, R. L.

    2012-12-01

    The Rhodope domain formed along the suture between the European and the Apulian/Adriatic plate, which collided in the early Tertiary (closure of the Vardar/Axios ocean). Its metamorphic history includes UHP metamorphism documented by diamond inclusions in garnet (Mposkos & Kostopoulos 2001, Perraki et al. 2006, Schmidt et al. 2010), presumably of Jurassic age, and Eocene stages of MP and HP metamorphism. The age of UHPM is still a matter of debate: U-Pb SHRIMP ages extend from 184-172 Ma (monazite in metapelites) to ca. 42 Ma with clusters at 170-160, 150-140, 80-60, 50, 42 Ma, (U-Pb SHRIMP dating of zircon from amphibolitized eclogites and metapelites). These ages are interpreted to date subsequent stages of (U)HP metamorphism and decompression (Liati et al., 2005, Hoinkes et al. 2008, Bauer et al. 2006, Krenn et al 2010). However, these ages are obviously difficult to link with the metamorphic reactions. The metamorphic history has been interpreted in different ways, reflecting: (i) successive accretion of small terranes with rapid subduction and uplift histories (e.g. Liati et al. 2005); (ii) a composite of different tectonic units varying in earlier P-T histories, assembled by shear zones that reflect tectonic erosion and differential exhumation along the plate interface and that are now erased and overprinted (Krohe and Mposkos, 2002, Mposkos et al., 2010). These interpretations imply a different kinematics of the tectonic movements at depths, mechanical processes and process rates. Additionally, a protracted polymetamorphic history of larger volumes of the Rhodope UHP domain may be considered; e.g. the Kimi complex stayed in the lower crust for ca. 50-60 Ma after exhumation of the UHP rocks to this lower crustal level (Mposkos and Krohe, 2006). To constrain a precise age of the HP granulite facies and a minimum age of UHP metamorphism, we conduct an integrated structural, petrologic and geochronological study in a metapelite from the Sidronero Complex. The

  11. Two types of gneisses associated with eclogite at Shuanghe in the Dabie terrane: carbon isotope, zircon U-Pb dating and oxygen isotope

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Gong, Bing; Zhao, Zi-Fu; Fu, Bin; Li, Yi-Liang

    2003-10-01

    There are two types of gneisses, biotite paragneiss and granitic orthogneiss, to be closely associated with UHP eclogite at Shuanghe in the Dabie terrane. Both concentration and isotope composition of bulk carbon in apatite and host gneisses were determined by the EA-MS online technique. Structural carbonate within the apatite was detected by the XRD and FTIR techniques. Significant 13C-depletion was observed in the apatite with δ13C values of -28.6‰ to -22.3‰ and the carbon concentrations of 0.70-4.98 wt.% CO 2 despite a large variation in δ18O from -4.3‰ to +10.6‰ for these gneisses. There is significant heterogeneity in both δ13C and δ18O within the gneisses on the scale of several tens meters, pointing to the presence of secondary processes after the UHP metamorphism. Considerable amounts of carbonate carbon occur in some of the gneisses that were also depleted in 13C primarily, but subjected to overprint of 13C-rich CO 2-bearing fluid after the UHP metamorphism. The 13C-depleted carbon in the gneisses is interpreted to be inherited from their precursors that suffered meteoric-hydrothermal alteration before plate subduction. Both low δ13C values and structural carbonate in the apatite suggest the presence of 13C-poor CO 2 in the UHP metamorphic fluid. The 13C-poor CO 2 is undoubtedly derived from oxidation of organic matter in the subsurface fluid during the prograde UHP metamorphism. Zircons from two samples of the granitic orthogneiss exhibit low δ18O values of -4.1‰ to -1.1‰, demonstrating that its protolith was significantly depleted in 18O prior to magma crystallization. U-Pb discordia datings for the 18O-depleted zircons yield Neoproterozoic ages of 724-768 Ma for the protolith of the granitic orthogneiss, consistent with protolith ages of most eclogites and orthogneisses from the other regions in the Dabie-Sulu orogen. Therefore, the meteoric-hydrothermal alteration is directly dated to occur at mid-Neoproterozoic, and may be correlated

  12. Partially Melted UHP Eclogite in the Sulu Orogenic Belt, China and its rheological significance to deep continental subduction: Micro- to Macro-scale Evidence

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Kusky, Timothy; Polat, Ali; Wang, Songjie; Jiang, Xingfu; Zong, Keqing; Wang, Junpeng; Deng, Hao; Fu, Jianmin

    2015-04-01

    Partially Melted UHP Eclogite in the Sulu Orogenic Belt, China and its rheological significance to deep continental subduction: Micro- to Macro-scale Evidence Numerous studies have described partial melting processes in low-high pressure meta-sedimentary rocks, some of which may generate melts that coalesce to form plutons. However, migmatized ultrahigh pressure (UHP) eclogite has never been clearly described from the microscale to macroscale, though experimental studies prove dehydration partial melting of eclogite at high pressure condition1 and low degrees of partially melted eclogite have been reported from the Qaidam UHP orogenic belt in NW China2,3 or inferred from multiphase solid (MS) inclusions within eclogite4 in the Sulu UHP belt. We present field-based documentation of decompression partial melting of UHP eclogite from Yangkou and General's Hill, Sulu Orogen. Migmatized eclogite shows successive stages of anatexis, initially starting from intragranular and grain boundary melt droplets, which grow into a 3D interconnected intergranular network, then segregate and accumulate in pressure shadow areas, and finally merge to form melt channels and dikes that transport melts to upper lithospheric levels. In-situ phengite breakdown-induced partial melting is directly identified by MS inclusions of Kfs+ barium-bearing Kfs + Pl in garnet, connected by 4-10 μm wide veinlets consisting of Bt + Kfs + Pl next to the phengite. Intergranular veinlets of plagioclase + K-feldspar first form isolated beads of melt along grain boundaries and triple junctions of quartz, and with higher degrees of melting, eventually form interconnected 3D networks along grain boundaries in the leucosome, allowing melt to escape from the intergranular realm and collect in low-stress areas. U-Pb (zircon) dating and petrological analyses on residue and leucocratic rocks shows that partial melting occurred at 228-219 Ma, shortly after peak UHP metamorphism (~230 Ma), and at depths of 30-90 km

  13. Metamorphism of eclogites from the UHP Maksyutov Complex, south Ural Mountains, Russia

    NASA Astrophysics Data System (ADS)

    Burlick, T. D.; Leech, M. L.

    2013-12-01

    The Maksyutov Complex is a mid- to late Paleozoic ultrahigh-pressure (UHP) subduction terrane in the south Ural Mountains of Russia. Radial fractures around quartz inclusions in garnet, omphacite, and glaucophane interpreted as pre-existing coesite; and microdiamond aggregates in garnet identified by Raman spectroscopy demonstrate Maksyutov rocks were subducted to UHP conditions (>2.8 GPa for coesite and >3.0 GPa for diamond at 600°C). Peak UHP eclogite-facies metamorphism (Grt+Omp+Ph+Coe+Rt ×Ttn) took place at c. 385 M and Maksyutov rocks were exhumed through retrograde blueschist-facies metamorphism (Grt+Gln+Ph+Qz×Chl×Ep) by 360 Ma. Pseudosections were constructed to constrain the P-T conditions recorded by the equilibrium mineral assemblanges in eclogites and their retrograded equivalents using bulk rock XRF analysis in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2 and the suite of free energy minimization programs, Perple_X 6.6.8 [Connolly 2009] with the internally consistent end-member thermodynamic database from Holland and Powell [1998] (mod 2004); solution models for omphacite (Holland and Powell, 1996), clinoamphibole (Dale et al. 2005), white mica (Coggon & Holland 2002, Auzanneau et al 2010), chlorite and garnet (Holland and Powell 1998; Powell and Holland 1999), and feldspar (Thompson and Hovis 1979; Newton et al. 1980) were used with H2O as a saturated component. Both conventional thermometry, using microprobe analyses and Grt-Cpx cation exchange as well as pseudosection modeling result in higher peak equilibrium temperatures than has been previously been reported in the Maksyutov. Pseudosection modeling gives minimum P-T conditions of 625°-675°C and 2.8-3.1 GPa for peak assemblages from the least retrogressed eclogites, while Fe-Mg exchange thermometry yields temperatures of 775°C × 25°C for pressures ranging from 2.5 to 3.5 GPa.

  14. Raman spectroscopy of detrital garnet from the (U)HP terrane of eastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Andò, Sergio; Baldwin, Suzanne L.; Fitzgerald, Paul G.; Malusà, Marco G.; Aliatis, Irene; Vezzoli, Giovanni; Garzanti, Eduardo

    2013-04-01

    adjacent to orogenic systems, Raman-assisted heavy-mineral studies allow us to detect the first arrival of eclogitic garnet, and thus to assess the minimum age of exhumation and final unroofing of high-pressure rocks (Malusà et al., 2011; Malusà and Garzanti, 2012). However, in the (U)HP terrane of southeastern Papua New Guinea, sediments derived from the actively exhuming D'Entrecasteaux Island core complexes are still being deposited offshore, are rarely preserved sub-aerially, and as such stratigraphic constraints are limited. Raman analysis of detrital garnets from placer sand thus provides invaluable constraints to compare with mineral assemblages preserved in exhumed eclogites. REFERENCES Andò S., Bersani D., Vignola P., Garzanti E. 2009. Raman spectroscopy as an effective tool for high-resolution heavy-mineral analysis: Examples from major Himalayan and Alpine fluvio-deltaic systems. Spectrochim. Acta A73:450-455. Andò S., Morton A., Garzanti E. 2013. Metamorphic grade of source rocks revealed by chemical fingerprints of detrital amphibole and garnet. Geol. Soc. London Spec. Publ. Sediment Provenance Studies in Hydrocarbon Exploration & Production. Baldwin S.L., Monteleone B., Webb L.E., Fitzgerald P.G., Grove M., Hill E.J. 2004. Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea. Nature 431:263-267. Baldwin S.L., Webb L.E., Monteleone B.D. 2008. Late Miocene coesite-eclogite exhumed in the Woodlark Rift. Geology 36:735-738 Bersani D., Andò S., Vignola P., Moltifiori G., Marino I.G., Lottici P.P., Diella V., 2009. Micro-Raman spectroscopy as a routine tool for garnet analysis. Spectrochim. Acta A73:484-491. Hill E.J., Baldwin S.L. 1993. Exhumation of high-pressure metamorphic rocks during crustal extension in the D'Entrecasteaux region, Papua New Guinea. J. Metam. Geol. 11:261-277. Malusà M.G., Faccenna C., Garzanti E., Polino R. 2011. Divergence in subduction zones and exhumation of high-pressure rocks (Eocene Western Alps

  15. Hydration, dehydration, and melting of metamorphosed granitic and dioritic rocks at high- and ultrahigh-pressure conditions

    NASA Astrophysics Data System (ADS)

    Massonne, Hans-Joachim

    2009-10-01

    Phase relations of three common upper crustal rocks, quartz diorite, granite and evolved granite, with different water contents were studied by calculating P- T pseudosections with the computer program PERPLE_X for the range 0.5 to 4.5 GPa and 500 to 1250 °C. Of particular interest were the generation of fluids and the consumption of H 2O along various P- T paths typical for high-pressure and ultrahigh-pressure (UHP) metamorphism to better understand crustal rocks involved in deep-seated continent-continent collisional environments. The phase relations in all studied rock compositions are similar. Typically, jadeite/omphacite + phengite (Si apfu between 3.3 and 3.5) + garnet + coesite ± kyanite occur at UHP. At T < 700 °C, K-feldspar and lawsonite can also be present at "dry" and "wet" conditions, respectively. The exhumation of a lawsonite-absent UHP assemblage leads either to phengite-dehydration melting accompanied by garnet growth or, at slight cooling, to no dehydration whereas dehydration is typical for exhumation from depths corresponding to 1.5 GPa. These findings are applied to the UHP Sulu terrane in eastern China. The majority of gneisses of this terrane typically do not show garnet. It is assumed that these rocks are of low-pressure nature and would, thus, probably belong to the upper plate during Triassic continent-continent collision. The reported UHP gneisses occur locally, are associated with eclogites, experienced fluid infiltration at UHP, and were exhumed accompanied by slight cooling as no phengite-dehydration melting took place. These characteristics could point to metamorphism in a subduction channel.

  16. UHP metamorphism in Greece: Petrologic data from the Rhodope Mountains

    NASA Astrophysics Data System (ADS)

    Baziotis, I. P.; Mposkos, E.; Krohe, A.; Wawrzenitz, N. H.; Liu, Y.; Taylor, L. A.

    2012-12-01

    Metamorphic rocks contain invaluable information for understanding the orogenic mechanisms of a tectonic regime. It is now well recorded and recognized that subduction of oceanic lithosphere and collision of continental blocks can result in sinking of subducted rocks to deeper levels than normal (>100 km). Further, the discovery of coesite and diamond in apparently regionally metamorphosed rocks provoked issues, for returning these rocks to the surface relatively fast, thereby preserving the UHP conditions. These UHPM terrains have been identified in more than twenty provinces worldwide. In Greece, UHPM rocks occur in the Rhodope area, one of the major tectono-metamorphic units located in NE Greece. This region consists of different metamorphic complexes involved in the Alpine collisional history between the Eurasian and African plates (e.g., Krohe & Mposkos, 2002-Geol Soc London Spec Pub, 204, 151). In Rhodope, a Jurassic UHP metamorphism is confirmed in the uppermost Kimi and the underlying Sidironero complexes (Mposkos & Kostopoulos, 2001- EPSL, 192, 497; Perraki et al., 2004-5th ISEMG, T2-35, 2006- EPSL, 241, 672; Liati, 2005- Con Min Pet, 150, 608; Bauer et al., 2007- Lithos, 99, 207). UHP metamorphism is evidenced by the presence of octahedral microdiamond inclusions (3 to 10 μm) in protective garnets, within the metapelitic gneisses. Microdiamonds probably formed from a supercritical fluid under extreme P-T conditions. The latter is strengthened by the presence of composite inclusions consisting of CO2, calcite, and microdiamonds. Other UHP indicators include: 1) quartz rods and rutile needle exsolutions in metapelitic garnet, suggesting a former titaniferous super-silicic (majoritic) garnet formed at P >4GPa; 2) oriented quartz lamellae in eclogitic clinopyroxene having been exsolved from a former super-silicic UHP precursor; and 3) coesite pseudomorphs in garnet, where radial cracks around multi-crystalline-quartz aggregates are indicative of the former

  17. Generating Melt During Exhumation of Continental Crust from Ultrahigh Pressure (UHP) Conditions

    NASA Astrophysics Data System (ADS)

    Brown, M.; Wang, S.; Wang, L.; Piccoli, P. M.; Johnson, T. E.

    2017-12-01

    Hydrate breakdown rather than fluid-present melting is commonly cited during exhumation of UHP continental crust, but may have been overemphasized in relation to petrographic evidence. In this study from the central Sulu belt, China, we posit that dm- to m-scale dikes of leucosome in stromatic migmatite, formerly UHP eclogite, crystallized from hydrous melt derived by evolution of supercritical fluid as it drained through exhuming crust and increased in solute content. Leucosomes comprise Qz + Ph + Ab + Aln/Ep + Grt. Overgrowths of Zrn on inherited cores and new grains crystallized at ca. 223-219 Ma, within the age range of HP eclogite facies recrystallization in the belt. Si-in-Ph/Ti-in-Zrn thermobarometry yields crystallization conditions of 3.0-2.5 GPa at 830-770 °C. Compositions are granitic with normalized TE patterns enriched in LREE relative to HREE and enriched in LILE relative to HFSE, features consistent with crystallization from crustally derived hydrous melt. The leucosomes have Sr-Nd isotope compositions intermediate between host eclogites and surrounding gneisses. At the metamorphic peak, the source rocks were likely fluid deficient or fluid absent. During exhumation from UHP conditions, structural water stored in nominally anhydrous minerals during the prograde evolution was exsolved to form a grain boundary supercritical fluid in eclogite and gneiss. By migrating from grain boundaries into channels and draining from the volumetrically dominant gneiss through eclogite, the fluid acquired a blended Sr-Nd isotope composition intermediate between end-members. Concomitantly, the ascending fluid evolved to a denser, more viscous and more polymerized hydrous melt by dissolution of the silicate matrix. Trapped around the transition from UHP to HP eclogite facies conditions, the melt crystallized by diffusive loss of water to the host eclogite. Aggregates of Pl + Bt around Ph and thin films and cuspate veinlets/patches of Kfs along grain boundaries in

  18. Amphibole equilibria as monitors of P-T path and process in the exhumation of HP/UHP terranes

    NASA Astrophysics Data System (ADS)

    Waters, David; Airaghi, Laura; Czertowicz, Thomas

    2014-05-01

    Recent advances in modelling and the development of refined activity-composition relations allow the calculation of phase diagrams involving complex mineral solid solutions, such as calcic, sodic-calcic and sodic amphiboles (e.g. Diener et al., 2007, J metamorphic Geol.). Amphiboles are commonly found in eclogite facies metabasites, and formed at different metamorphic stages. Such rocks commonly show complex reaction microstructures that reveal their history. The focus in this contribution is on two distinct amphibole types: coarse, post-peak matrix amphibole, and amphibole involved in symplectitic microstructures replacing omphacite. These studies serve as a test of the current activity models and calculation approaches, but more importantly as a framework for understanding the processes and P-T path during exhumation of subducted terranes. Examples are taken from the Western Gneiss Complex of Norway and from the Kaghan Valley (Pakistan), but are more generally applicable to crustal blocks that have exhumed through the P-T 'window' in which comparable petrological features develop. The microstructural types of interest here are: broad irregular interstitial amphibole grains, which commonly merge with a coarse spongy intergrowth of amphibole with quartz and/or albite (most likely replacing omphacite); and a fine-grained symplectite of low-Na clinopyroxene with sodic plagioclase and minor hornblende invading omphacite. Many specimens show these varieties as a sequence, inferred to reflect decreasing pressure (and ultimately, temperature). Amphibole compositions cover a wide range: the most sodic occur in large interstitial grains and fall near the junction of the winchite, barroisite and taramite fields of the IMA classification; they trend towards a pargasitic hornblende, still with significant glaucophane component; spongy amphiboles typically lie on a trend towards lower glaucophane component; symplectite amphibole is generally a common hornblende on a typical

  19. Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic

    NASA Astrophysics Data System (ADS)

    Cocks, L. Robin M.; Torsvik, Trond H.

    2007-05-01

    The old terrane of Siberia occupied a very substantial area in the centre of today's political Siberia and also adjacent areas of Mongolia, eastern Kazakhstan, and northwestern China. Siberia's location within the Early Neoproterozoic Rodinia Superterrane is contentious (since few if any reliable palaeomagnetic data exist between about 1.0 Ga and 540 Ma), but Siberia probably became independent during the breakup of Rodinia soon after 800 Ma and continued to be so until very near the end of the Palaeozoic, when it became an integral part of the Pangea Supercontinent. The boundaries of the cratonic core of the Siberian Terrane (including the Patom area) are briefly described, together with summaries of some of the geologically complex surrounding areas, and it is concluded that all of the Palaeozoic underlying the West Siberian Basin (including the Ob-Saisan Surgut area), Tomsk Terrane, Altai-Sayan Terranes (including Salair, Kuznetsk Alatau, Batenov, Kobdin and West Sayan), Ertix Terrane, Barguzin Terrane, Tuva-Mongol Terrane, Central Mongolia Terrane Assemblage, Gobi Altai and Mandalovoo Terranes, Okhotsk Terrane and much of the Verkhoyansk-Kolyma region all formed parts of peri-Siberia, and thus rotated with the main Siberian Craton as those areas were progressively accreted to the main Siberian Terrane at various times during the latest Neoproterozoic and Palaeozoic. The Ertix Terrane is a new term combining what has been termed the "Altay Terrane" or "NE Xinjiang" area of China, and the Baytag, Baaran and Bidz terranes of Mongolia. The Silurian Tuvaella brachiopod fauna is restricted only to today's southern parts of peri-Siberia. Thus, allowing for subsequent rotation, the fauna occurs only in the N of the Siberian Terrane, and, as well as being a helpful indicator of what marginal terranes made up peri-Siberia, is distinctive as being the only Silurian fauna known from northern higher latitudes globally. In contrast, the other terranes adjacent to peri

  20. On the preservation mechanism of intragranular coesite in the Yangkou, Sulu UHP eclogite

    NASA Astrophysics Data System (ADS)

    Wang, L.; Zhang, J.; Wang, S.; Shi, F.; Cen, Y.

    2012-12-01

    Yangkou Bay, in the Sulu ultrahigh-pressure (UHP) belt of eastern China is the only known locality in the world in which UHP eclogite contains intragranular coesite. The question remains then, how is the extremely rare occurrence of intragranular coesite preserved in the Sulu belt, and if we can identify the reasons for its preservation, might it be found in other UHP belts? Preservation of coesite inclusions or intragranular coesite has been interpreted to result from multiple reasons, but lack of fluid availability is a critical factor, and the survival is not only because of their incorporation in a strong host phase but because of the ability of the host to prevent fluid infiltration until fracturing occurs at low temperatures. High-precision field structural geology mapping in the Yangkou area has revealed the complex deformation history including multi-stage folding events. The earliest folding event occurred before the eclogite reached peak metamorphism, and is preserved as rootless F1 isoclines that preserve the earliest evidence for UHP metamorphism, including intragranular coesite. We report the structural and petrological phenomenon that the intragranular coesite is uniquely preserved within the hinge zones of F1 rootless eclogite folds that have a mineral assemblage of Grt+Omp+Rt+Cs. However, the limbs of F1 folds or overprinted F1+F2 folds have a mineral assemblage of Grt+Omp+Rt+Qtz+Phg, and experienced different degrees of retrogression. The peak metamorphic P-T condition for coesite-bearing eclogite is P=4.0-4.5GPa, 745-909°C. however, the peak metamorphic P-T condition for phengite-quartz bearing eclogite is 3.8-4.1GPa, 733-840°C. The hydrogen concentration was investigated by FTIR (Fourier Transform Infrared Spectroscopy) in these two samples. In the intragranular coesite eclogite, coesite is basically free of water (<10 ppm), very low in garnet (8-50 ppm) and average hydrogen concentration of omphacite is 106-200 ppm; however, with the

  1. Divergent plate motion drives rapid exhumation of (ultra)high pressure rocks

    NASA Astrophysics Data System (ADS)

    Liao, Jie; Malusà, Marco G.; Zhao, Liang; Baldwin, Suzanne L.; Fitzgerald, Paul G.; Gerya, Taras

    2018-06-01

    Exhumation of (ultra)high pressure [(U)HP] rocks by upper-plate divergent motion above an unbroken slab, first proposed in the Western Alps, has never been tested by numerical methods. We present 2D thermo-mechanical models incorporating subduction of a thinned continental margin beneath either a continental or oceanic upper plate, followed by upper-plate divergent motion away from the lower plate. Results demonstrate how divergent plate motion may trigger rapid exhumation of large volumes of (U)HP rocks directly to the Earth's surface, without the need for significant overburden removal by erosion. Model exhumation paths are fully consistent with natural examples for a wide range of upper-plate divergence rates. Exhumation rates are systematically higher than the divergent rate imposed to the upper plate, and the modeled size of exhumed (U)HP domes is invariant for different rates of upper-plate divergence. Major variations are instead predicted at depth for differing model scenarios, as larger amounts of divergent motion may allow mantle-wedge exhumation to shallow depth under the exhuming domes. The transient temperature increase, due to ascent of mantle-wedge material in the subduction channel, has a limited effect on exhumed continental (U)HP rocks already at the surface. We test two examples, the Cenozoic (U)HP terranes of the Western Alps (continental upper plate) and eastern Papua New Guinea (oceanic upper plate). The good fit between model predictions and the geologic record in these terranes encourages the application of these models globally to pre-Cenozoic (U)HP terranes where the geologic record of exhumation is only partly preserved.

  2. Tectonic exhumation and boundary structure of the Kokchetav HP - UHP metamorphic belt (Northern Kazakhstan): constraints from 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Zhimulev, Fedor; de Grave, Johan; Travin, Aleksey; Buslov, Mikhail

    2010-05-01

    The Kokchetav metamorphic belt (KMB) is part of the Early Paleozoic orogenic belt of Northern Kazakhstan and constitutes one of the most famous, classical ultra-high pressure (UHP) metamorphic terranes. The KMB mainly consists of gneisses, mica schists and eclogites. These were formed by Cambrian continental subduction and associated metamorphism of the Precambrian Kokchetav microcontinent and subsequent exhumation of fragments of this metamorphosed continental crust. Several subterranes can be distinguished in the KMB: Barchi, Kumdi-Kol, Sulu-Tube, Enbek-Berlyk, Kulet and Borovoe. These subterranes differ not only in rock composition or in genetic pT conditions, but also in the age of the individual metamorphic events, including the timing of peak, and regressive stages. Most geochronological data indicate a Cambrian age of UHP and HP metamorphism and subsequent exhumation of the KMB. However, there is no field evidence of Cambrian geodynamic processes in the region: Cambrian sediments, volcanic rocks, or large magmatic bodies are completely absent in the KMB setting. The youngest geochronological information in the KMB was obtained on the garnet-mica schists from the Enbek-Berlyk subterrane. The 40Ar/39Ar ages of the muscovite from these schists lies in the range of 490 to 475 Ma (mainly 480-485 Ma). All 40Ar/39Ar stepwise heating experiments yield well-defined plateau and isochron ages. This age is considered to represent the time of emplacement of various heterogeneous nappes, including nappes that consist of HP - UHP metamorphic rocks, to upper crustal levels. To the north, the Kokchetav HP - UHP metamorphic belt is bounded by the Northern Kokchetav tectonic zone (NKTZ). This zone includes thin nappes of (1) Palaeo-Mesoproterozoic gneiss of the metamorphic basement of the Kokchetav microcontinent and Neoproterozoic meta-sandstones and dolomites of its deformed sedimentary cover, (2) pre-Ordovician volcanic rocks of island-arc affinity, (3) Early Ordovician

  3. Mercury's Geochemical Terranes Revisited

    NASA Astrophysics Data System (ADS)

    Peplowski, P. N.; Stockstill-Cahill, K. R.

    2018-05-01

    We applied analytical tools to redefine Mercury's major geochemical terranes. The composition and petrology of each terrane will be discussed, along with analyses of gamma-ray data aimed at deriving absolute abundances of Si and Mg in each terrane.

  4. Aleutian terranes from Nd isotopes

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Kay, S. M.; Rubenstone, J. L.

    1986-01-01

    Nd isotope ratios substantiate the identification of oceanic crustal terranes within the continental crustal basement of the Aleutian island arc. The oceanic terranes are exposed in the westernmost Aleutians, but to the east, they are completely buried by isotopically distinct arc-volcanic rocks. Analogous oceanic terranes may be important components of the terrane collages that comprise the continents.

  5. Buoyancy-Driven, Rapid Exhumation of Ultrahigh-Pressure Metamorphosed Continental Crust

    NASA Astrophysics Data System (ADS)

    Ernst, W. G.; Maruyama, S.; Wallis, S.

    1997-09-01

    Preservation of ultrahigh-pressure (UHP) minerals formed at depths of 90-125 km require unusual conditions. Our subduction model involves underflow of a salient (250 ± 150 km wide, 90-125 km long) of continental crust embedded in cold, largely oceanic crust-capped lithosphere; loss of leading portions of the high-density oceanic lithosphere by slab break-off, as increasing volumes of microcontinental material enter the subduction zone; buoyancy-driven return toward midcrustal levels of a thin (2-15 km thick), low-density slice; finally, uplift, backfolding, normal faulting, and exposure of the UHP terrane. Sustained over ≈ 20 million years, rapid (≈ 5 mm/year) exhumation of the thin-aspect ratio UHP sialic sheet caught between cooler hanging-wall plate and refrigerating, downgoing lithosphere allows withdrawal of heat along both its upper and lower surfaces. The intracratonal position of most UHP complexes reflects consumption of an intervening ocean basin and introduction of a sialic promontory into the subduction zone. UHP metamorphic terranes consist chiefly of transformed, yet relatively low-density continental crust compared with displaced mantle material--otherwise such complexes could not return to shallow depths. Relatively rare metabasaltic, metagabbroic, and metacherty lithologies retain traces of phases characteristic of UHP conditions because they are massive, virtually impervious to fluids, and nearly anhydrous. In contrast, H2O-rich quartzofeldspathic, gneissose/schistose, more permeable metasedimentary and metagranitic units have backreacted thoroughly, so coesite and other UHP silicates are exceedingly rare. Because of the initial presence of biogenic carbon, and its especially sluggish transformation rate, UHP paragneisses contain the most abundantly preserved crustal diamonds.

  6. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust.

    PubMed

    Ernst, W G; Maruyama, S; Wallis, S

    1997-09-02

    Preservation of ultrahigh-pressure (UHP) minerals formed at depths of 90-125 km require unusual conditions. Our subduction model involves underflow of a salient (250 +/- 150 km wide, 90-125 km long) of continental crust embedded in cold, largely oceanic crust-capped lithosphere; loss of leading portions of the high-density oceanic lithosphere by slab break-off, as increasing volumes of microcontinental material enter the subduction zone; buoyancy-driven return toward midcrustal levels of a thin (2-15 km thick), low-density slice; finally, uplift, backfolding, normal faulting, and exposure of the UHP terrane. Sustained over approximately 20 million years, rapid ( approximately 5 mm/year) exhumation of the thin-aspect ratio UHP sialic sheet caught between cooler hanging-wall plate and refrigerating, downgoing lithosphere allows withdrawal of heat along both its upper and lower surfaces. The intracratonal position of most UHP complexes reflects consumption of an intervening ocean basin and introduction of a sialic promontory into the subduction zone. UHP metamorphic terranes consist chiefly of transformed, yet relatively low-density continental crust compared with displaced mantle material-otherwise such complexes could not return to shallow depths. Relatively rare metabasaltic, metagabbroic, and metacherty lithologies retain traces of phases characteristic of UHP conditions because they are massive, virtually impervious to fluids, and nearly anhydrous. In contrast, H2O-rich quartzofeldspathic, gneissose/schistose, more permeable metasedimentary and metagranitic units have backreacted thoroughly, so coesite and other UHP silicates are exceedingly rare. Because of the initial presence of biogenic carbon, and its especially sluggish transformation rate, UHP paragneisses contain the most abundantly preserved crustal diamonds.

  7. Late Triassic paleomagnetic result from the Baoshan Terrane, West Yunnan of China: Implication for orientation of the East Paleotethys suture zone and timing of the Sibumasu-Indochina collision

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Huang, Baochun; Yan, Yonggang; Zhang, Donghai

    2015-11-01

    In order to better understand the paleogeographic position of the Baoshan Terrane in the northernmost part of the Sibumasu Block during formation of the Pangea supercontinent, a paleomagnetic study has been conducted on Late Triassic basaltic lavas from the southern part of the Baoshan Terrane in the West Yunnan region of Southwest China. Following detailed rock magnetic investigations and progressive thermal demagnetization, stable characteristic remanent magnetizations (ChRMs) were successfully isolated from Late Triassic Niuhetang lava flows. The ChRMs are of dual polarity and pass fold and reversal tests with magnetic carriers dominated by magnetite and subordinate oxidation-induced hematite; we thus interpret them as a primary remanence. This new paleomagnetic result indicates that the Baoshan Terrane was located at low paleolatitudes of ∼15°N in the Northern Hemisphere during Late Triassic times. Together with available paleomagnetic data from the Baoshan Terrane and surrounding areas, a wider paleomagnetic comparison supports the view that the East Paleotethys Ocean separated the Sibumasu and Indochina blocks and closed no later than Late Triassic times. We argue that the currently approximately north-to-south directed Changning-Menglian suture zone is very likely to have been oriented nearly east-to-west at the time of the Sibumasu-Indochina collision.

  8. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust

    PubMed Central

    Ernst, W. G.; Maruyama, S.; Wallis, S.

    1997-01-01

    Preservation of ultrahigh-pressure (UHP) minerals formed at depths of 90–125 km require unusual conditions. Our subduction model involves underflow of a salient (250 ± 150 km wide, 90–125 km long) of continental crust embedded in cold, largely oceanic crust-capped lithosphere; loss of leading portions of the high-density oceanic lithosphere by slab break-off, as increasing volumes of microcontinental material enter the subduction zone; buoyancy-driven return toward midcrustal levels of a thin (2–15 km thick), low-density slice; finally, uplift, backfolding, normal faulting, and exposure of the UHP terrane. Sustained over ≈20 million years, rapid (≈5 mm/year) exhumation of the thin-aspect ratio UHP sialic sheet caught between cooler hanging-wall plate and refrigerating, downgoing lithosphere allows withdrawal of heat along both its upper and lower surfaces. The intracratonal position of most UHP complexes reflects consumption of an intervening ocean basin and introduction of a sialic promontory into the subduction zone. UHP metamorphic terranes consist chiefly of transformed, yet relatively low-density continental crust compared with displaced mantle material—otherwise such complexes could not return to shallow depths. Relatively rare metabasaltic, metagabbroic, and metacherty lithologies retain traces of phases characteristic of UHP conditions because they are massive, virtually impervious to fluids, and nearly anhydrous. In contrast, H2O-rich quartzofeldspathic, gneissose/schistose, more permeable metasedimentary and metagranitic units have backreacted thoroughly, so coesite and other UHP silicates are exceedingly rare. Because of the initial presence of biogenic carbon, and its especially sluggish transformation rate, UHP paragneisses contain the most abundantly preserved crustal diamonds. PMID:11038569

  9. Terranes and the tectonic assembly of South America: The fifth Circum-Pacific terrane conference

    NASA Astrophysics Data System (ADS)

    Moore, G. W.

    1994-10-01

    A central theme of the 5th Circum-Pacific Terrane Conference held at Santiago, Chile, 11-14 November 1991, was the new theory that Australia and Antarctica separated from western North America during the Late Proterozoic, then crashed into Africa and South America to form Gondwana in the Late Cambrian. Particular interest centered on the Precordillera Terrane, which came from central North America and was accreted to Argentina during the Ordovician, and on the Avalon Terrane, derived from northern South American and accreted to Laurasia during the Taconic Orogeny. The mobility of plates and terranes has been so great that before the Mesozoic the Circum-Pacific and Circum-Atlantic regions were one and the same.

  10. Detrital Zircon Signature of Proterozoic Metasedimentary Rocks of the Pearya Terrane, Northern Ellesmere Island: Implications for Terrane Stratigraphy and Circum-Arctic Terrane Correlations

    NASA Astrophysics Data System (ADS)

    Malone, S. J.; McClelland, W.

    2012-12-01

    The Pearya Terrane, currently recognized as the only exotic terrane in the Canadian Arctic margin, includes early Tonian metaigneous rocks and a sequence of sedimentary rocks ranging from Proterozoic shallow marine to Silurian arc-accretionary units. Succession II (Trettin, 1987) of the Pearya Terrane represents variably metamorphosed metasedimentary rocks of presumed Neoproterozoic to early Ordocician age. These units are structurally juxtaposed with earliest Neoproterozoic orthogneiss of Succession I and the overlaying sedimentary rocks of the Paleozoic section. Detrital zircon age spectra from seven samples of Neoproterozoic meta-sedimentary rocks define three groups on the basis of dominant age peaks and the age of the youngest peaks. Group I, representing three quartzite samples, contains young zircon age peaks at c. 1050 Ma with numerous c. 1100 Ma to 1800 Ma peaks. Detrital zircon spectra from Group I correlate closely with data from the latest Mesoproterozoic Brennevinsfjorden Group of Northeastern Svalbard, suggesting that the base of Succession II may be older than the Succession I orthogneiss, and that the contact between them is tectonic. Group II is defined by a dominant c. 970 Ma age peak that overlaps with ages determined for basement orthogneiss units and indicates that local sedimentary sources, possibly relating to Tonian igneous activity, dominated. Group III displays a similar pattern of c. 1000 Ma to 1800 Ma age peaks to Group I, but contains a small population of c. 600 Ma to 700 Ma grains that are likely sourced from elements of the Timanide orogen and/or the Arctic Alaska-Chukotka (AAC) microplate. The ubiquitous Mesoproterozoic ages suggest extensive sediment input from the Grenville-Svegonorwegian domains of Laurentia and Baltica, either directly or by sediment recycling. This is consistent with detrital zircon datasets from other North Atlantic-Arctic Caledonide terranes, reinforcing stratigraphic links between the Pearya Terrane

  11. Origin of narrow terranes and adjacent major terranes occurring along the denali fault in the eastern and central alaska range, alaska

    USGS Publications Warehouse

    Nokleberg, W.J.; Richter, D.H.

    2007-01-01

    Several narrow terranes occur along the Denali fault in the Eastern and Central Alaska Range in Southern Alaska. These terranes are the Aurora Peak, Cottonwood Creek, Maclaren, Pingston, and Windy terranes, and a terrane of ultramafic and associated rocks. Exterior to the narrow terranes to the south is the majorWrangellia island arc composite terrane, and to the north is the major Yukon Tanana metamorphosed continental margin terrane. Overlying mainly the northern margin of the Wrangellia composite terrane are the Kahiltna overlap assemblage to the west, and the Gravina- Nutzotin-Gambier volcanic-plutonic- sedimentary belt to the east and southeast. The various narrow terranes are interpreted as the result of translation of fragments of larger terranes during two major tectonic events: (1) Late Jurassic to mid-Cretaceous accretion of the Wrangellia island arc composite terrane (or superterrane composed of the Wrangellia, Peninsular, and Alexander terranes) and associated subduction zone complexes; and (2) starting in about the Late Cretaceous, dextral transport of the Wrangellia composite terrane along the Denali fault. These two major tectonic events caused: (1) entrapment of a lens of oceanic lithosphere along the suture belt between the Wrangellia composite terrane and the North American Craton Margin and outboard accreted terranes to form the ultramafic and mafic part of the terrane of ultramafic and associated rocks, (2) subsequent dextral translation along the Denali fault of the terrane of ultramafic and associated rocks, (3) dextral translation along the Denali fault of the Aurora Peak, Cottonwood Creek, and Maclaren and continental margin arc terranes from part of the Coast plutonic-metamorphic complex (Coast-North Cascade plutonic belt) in the southwest Yukon Territory or Southeastern Alaska, (4) dextral translation along the Denali fault of the Pingston passive continental margin from a locus along the North American Continental Margin, and (5

  12. Late Ordovician palaeogeography and the positions of the Kazakh terranes through analysis of their brachiopod faunas

    NASA Astrophysics Data System (ADS)

    Popov, Leonid E.; Cocks, Robin M.

    2017-09-01

    Detailed biogeographical and biofacies analyses of the Late Ordovician brachiopod faunas with 160 genera, grouped into 94 faunas from individual lithotectonic units within the Kazakh Orogen strongly support an archipelago model for that time in that area. The Kazakh island arcs and microcontinents within several separate clusters were located in the tropics on both sides of the Equator. Key units, from which the Late Ordovician faunas are now well known, include the Boshchekul, Chingiz-Tarbagatai, and Chu-Ili terranes. The development of brachiopod biogeography within the nearly ten million year time span of the Late Ordovician from about 458 to 443 Ma (Sandbian, Katian, and Hirnantian), is supported by much new data, including our revised identifications from the Kazakh Orogen and elsewhere. The Kazakh archipelago was west of the Australasian segment of the Gondwana Supercontinent, and relatively near the Tarim, South China and North China continents, apart from the Atashu-Zhamshi Microcontinent, which probably occupied a relatively isolated position on the south-western margin of the archipelago. Distinct faunal signatures indicate that the Kazakh terranes were far away from Baltica and Siberia throughout the Ordovician. Although some earlier terranes had joined each other before the Middle Ordovician, the amalgamation of Kazakh terranes into the single continent of Kazakhstania by the end of the Ordovician is very unlikely. The Late Ordovician brachiopods from the other continents are also compared with the Kazakh faunas and global provincialisation statistically determined.

  13. Large-Scale, Long-Lived Subduction of Ultrahigh-Pressure Terranes: Western Gneiss Region, Norway

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Hacker, B. R.; Johnson, C. M.; Beard, B. L.; Corfu, F.; Mahlen, N. J.

    2007-12-01

    Recent Lu-Hf and Sm-Nd ages of garnets and a U-Pb age of zircon of eclogites from the Western Gneiss Region (WGR) ultrahigh-pressure (UHP) terrane, Norway, demonstrate that eclogite-facies metamorphism occurred over a large area (60,000 km2) for an unexpectedly long time. This observation stands in stark contrast to the general belief that continental subduction, and attendant (U)HP metamorphism, occurs over short timescales. Four HP eclogites (~700-800°C, ~2.0-2.5 GPa) from the central WGR yielded equivalent Lu-Hf ages of ~416 Ma; three of these samples gave Sm-Nd ages of ~400 Ma. Given the distribution coefficients for Lu and Sm, the older Lu-Hf ages reflect prograde growth, but are younger than the initiation of garnet crystallization. The younger Sm-Nd ages represent either eclogite-facies cooling through the blocking temperature of the Sm-Nd system or an 'average' age of garnet growth. Both cases imply >16 m.y. of eclogite- facies conditions. Two UHP eclogites (~750-850°C, ~3 GPa) from the same region yielded significantly younger, but equivalent Lu-Hf and Sm-Nd ages of ~380 Ma, which likely indicate passage through the blocking temperature of both systems up to 20 m.y. after the HP eclogites had passed through the blocking temperature. Because these eclogites are unretrogressed, their ages are the youngest known for eclogite stability in the WGR. An eclogite from the northern WGR yielded a Sm-Nd age of 413.9 ± 3.7 Ma. This could represent a different HP history than that of the central WGR: U/Pb ages in the north are also ~15 m.y. older. Two HP (~650°C, ~2 GPa) eclogites from the southern WGR yielded Lu-Hf ages of 410.2 ± 3.1 and 427.5 ± 7.7 Ma, indicating a similar garnet growth history to the central WGR eclogites. A retrogressed eclogite from the undated eastern portion of the WGR gave a 206Pb/238U age of 408.0 ± 1.7 Ma. Thermal models mirror results from similar studies (Roselle et al., 2002), and confirm that slow subduction likely produced the P

  14. Geophysical constraints for terrane boundaries in southern Mongolia

    NASA Astrophysics Data System (ADS)

    Guy, Alexandra; Schulmann, Karel; Munschy, Marc; Miehe, Jean-Marc; Edel, Jean-Bernard; Lexa, Ondrej; Fairhead, Derek

    2014-05-01

    The Central Asian Orogenic Belt (CAOB) is a typical accretionary orogen divided into numerous lithostratigraphic terranes corresponding to magmatic arcs, back arcs, continental basement blocks, accretionary wedges and metamorphic blocks. These terranes should be in theory characterized by contrasting magnetic and gravity signatures thanks to their different petrophysical properties. To test this hypothesis, the stratigraphically defined terranes in southern Mongolia were compared with potential field data to constrain their boundaries and extent. The existence of terranes in southern Mongolia cannot be attested by the uniform geophysical fabrics due to the lack of systematic correspondence between the high/low amplitude and high/low frequency geophysical domains and major terranes. Processed magnetic and gravity grids show that both gravity and magnetic lineaments are E-W trending in the west and correlate with direction of some geological units. In the east, both magnetic and gravity lineaments are disrupted by NE-SW trending heterogeneities resulting in complete blurring of the geophysical pattern. Correlation of magnetic signal with geological map shows that the magnetic highs coincide with late Carboniferous-early Permian volcanic and plutonic belts. The matched-filtering shows good continuity of signal to the depth located along the boundaries of these high magnetic anomalies which may imply presence of deeply rooted tectono-magmatic zones. The axes of high density bodies in the western and central part of the studied CAOB are characterized by periodic alternations of NW-SE trending high frequency and high amplitude gravity anomalies corresponding to late Permian to Triassic cleavage fronts up to 20 km wide. The matched-filtering analysis shows that the largest deformation zones are deeply rooted down to 20 km depth. Such a gravity signal is explained by the verticalization of high density mantle and lower crustal rocks due to localized vertical shearing

  15. The exhumation of the (U)HP rocks of the Central and Western Penninic Alps: comparison study between thermo-mechanical models and field data

    NASA Astrophysics Data System (ADS)

    Schenker, Filippo Luca; Schmalholz, Stefan M.; Baumgartner, Lukas P.; Pleuger, Jan

    2015-04-01

    The Central and Western Penninic (CWP) Alps form an orogenic wedge of imbricate tectonic nappes. Orogenic wedges form typically at depths < 60 km. Nevertheless, a few nappes and massifs (i.e. Adula/Cima Lunga, Dora-Maira, Monte Rosa, Gran Paradiso, Zermatt-Saas) exhibit High- and Ultra-High-Pressure (U)HP metamorphic rocks suggesting that they were buried by subduction to depths >60 km and subsequently exhumed into the accretionary wedge. Mechanically, the exhumation of the (U)HP rocks from mantle depths can be explained by two contrasting buoyancy-driven models: (1) overall return flow of rocks in a subduction channel and (2) upward flow of individual, lighter rock units within a heavier material (Stokes flow). In this study we compare published numerical exhumation models of (1) and (2) with structural and metamorphic data of the CWP Alps. Model (1) predicts the exhumation of large volumes of (U)HP rocks within a viscous channel (1100-500 km2 in a 2D cross-section through the subduction zone). The moderate volume (e.g. ~7 km2 in a geological cross-section of the UHP unit of the Dora-Maira) and the coherent architecture of the (U)HP nappes suggests that the exhumation through (1) is unlikely for (U)HP nappes of the CWP Alps. Model (2) predicts the exhumation of appropriate volumes of (U)HP rocks, but generally the (U)HP rocks exhume vertically in the overriding plate and are not incorporated into the orogenic wedge. Nevertheless, the exhumation through (2) is feasible either with a vertical or with an extremely viscous and dense subduction channel. Whether these characteristics are applicable to the CWP UHP nappes will be discussed in light of field observations.

  16. New palaeomagnetic data from Argun terrane. Testing its association with Amuria and the Mongol-Okhotsk Ocean

    NASA Astrophysics Data System (ADS)

    Gordienko, I. V.; Metelkin, D. V.; Vetluzhskikh, L. I.; Mikhaltsov, N. E.; Kulakov, E. V.

    2018-06-01

    In this study, we present new palaeomagnetic and geological data obtained from Ediacaran and Cambrian sedimentary rocks of Argun terrane, which is traditionally considered a key element of the hypothetical Amuria composite continent. Since 1990, when Amuria was first proposed in palaeogeographic reconstructions, it became one of the principle members in the global palaeotectonic schemes. A scenario when collision of Amuria with Siberian margin resulted in formation of the Mongol-Okhotsk Ocean is universally accepted and supported by majority of researchers. However, time of Amuria's final assembly and relative position of the blocks within Amuria before the collision with Siberia is still a topic of debate. Questions about principal allocation of Argun terrane and its relation to Amuria during the late Neoroterozoic-Cambrian are addressed in this study. Palaeomagnetic poles for the Ediacaran-early Cambrian rocks of Argun terrane differ within an error from coeval poles from Siberia indicating that Argun terrane could have been located similar to its present-day position with respect to Siberia already at 560-525 Ma. This observation calls into question association of Argun terrane with Amuria, which in classic reconstructions is usually placed close to the North China Craton. It also questions our current understanding of the Amuria palaeocontinent and consequently, accuracy of global palaeogeographic reconstructions for the late Neoproterozoic-Cambrian in general, and those of the eastern part of the Central Asia in particular.

  17. Mantle wedge exhumation beneath the Dora-Maira (U)HP dome unravelled by local earthquake tomography (Western Alps)

    NASA Astrophysics Data System (ADS)

    Solarino, Stefano; Malusà, Marco G.; Eva, Elena; Guillot, Stéphane; Paul, Anne; Schwartz, Stéphane; Zhao, Liang; Aubert, Coralie; Dumont, Thierry; Pondrelli, Silvia; Salimbeni, Simone; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang

    2018-01-01

    In continental subduction zones, the behaviour of the mantle wedge during exhumation of (ultra)high-pressure [(U)HP] rocks provides a key to distinguish among competing exhumation mechanisms. However, in spite of the relevant implications for understanding orogenic evolution, a high-resolution image of the mantle wedge beneath the Western Alps is still lacking. In order to fill this gap, we perform a detailed analysis of the velocity structure of the Alpine belt beneath the Dora-Maira (U)HP dome, based on local earthquake tomography independently validated by receiver function analysis. Our results point to a composite structure of the mantle wedge above the subducted European lithosphere. We found that the Dora-Maira (U)HP dome lays directly above partly serpentinized peridotites (Vp 7.5 km/s; Vp/Vs = 1.70-1.72), documented from 10 km depth down to the top of the eclogitized lower crust of the European plate. These serpentinized peridotites, possibly formed by fluid release from the subducting European slab to the Alpine mantle wedge, are juxtaposed against dry mantle peridotites of the Adriatic upper plate along an active fault rooted in the lithospheric mantle. We propose that serpentinized mantle-wedge peridotites were exhumed at shallow crustal levels during late Eocene transtensional tectonics, also triggering the rapid exhumation of (U)HP rocks, and were subsequently indented under the Alpine metamorphic wedge in the early Oligocene. Our findings suggest that mantle-wedge exhumation may represent a major feature of the deep structure of exhumed continental subduction zones. The deep orogenic levels here imaged by seismic tomography may be exposed today in older (U)HP belts, where mantle-wedge serpentinites are commonly associated with coesite-bearing continental metamorphic rocks.

  18. Circum-North Pacific tectonostratigraphic terrane map

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Baranov, Boris B.; Byalobzhesky, Stanislav G.; Bundtzen, Thomas K.; Feeney, Tracey D.; Fujita, Kazuya; Gordey, Steven P.; Grantz, Arthur; Khanchuk, Alexander I.; Natal'in, Boris A.; Natapov, Lev M.; Norton, Ian O.; Patton, William W.; Plafker, George; Scholl, David W.; Sokolov, Sergei D.; Sosunov, Gleb M.; Stone, David B.; Tabor, Rowland W.; Tsukanov, Nickolai V.; Vallier, Tracy L.; Wakita, Koji

    1994-01-01

    after accretion of most terranes in the region; (2) Cenozoic and Mesozoic basinal deposits that occur within a terrane or on the craton; (3) plutonic rocks. The postaccretion igneous units are identified by age-lithologic abbreviations and by name. These overlap assemblages and basinal deposits formed mainly during sedimentation and magmatism that occurred after accretion of terranes to each other or to a continental margin. Overlap assemblages provide minimum ages on the timing of accretion of terranes. Some Cenozoic and Mesozoic overlap assemblages and basinal deposits, as well as fragments of terranes, are extensively offset by movement along postaccretion faults. In addition, in onshore areas, the map depicts major preaccretion plutonic rocks that are limited to individual terranes. and in offshore areas. the map depicts major oceanic plates,-ocean floor magnetic lineations. oceanic spreading ridges, and seamounts. The map consists of five sheets. Sheets I and 2 depict, at a scale of I :5.000.000. the tectonostratigraphic terranes. preaccretion plutonic rocks, and postaccretion Cenozoic and Mesozoic overlap sedimentary, volcanic. and plutonic assemblages, and basinal deposits for the Circum- orth Pacific including the Russian Far East, northern Hokkaido Island of Japan, Alaska. the Canadian Cordillera, part of the U.S.A. Pacific Northwest. and adjacent offshore areas. Sheet 3 provides the list of map units for Sheets I and 2. Sheet 4 is a index map showing generalized onshore terranes and overlap assemblages for onshore parts of the Circum-North Pacific at a scale of I: I 0,000,000. Sheet 4 is a guide to the more complicated onshore features depicted on Sheets I and 2. Sheet 5 is an index map showing the major geographic regions for the Circum-North Pacific. Significant differences exist between the representation of onshore and offshore geology on Sheets I and 2. These are: (I) compared to the onshore part of the map, the offshore part is depicted in a more

  19. Kilbuck terrane: Oldest known rocks in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Box, S.E.; Moll-Stalcup, E.J.; Wooden, J.L.

    1990-12-01

    The Kilbuck terrane in southwestern Alaska is a narrow, thin crustal sliver or flake of amphibolite facies orthogneiss. The igneous protolith of this gneiss was a suite of subduction-related plutonic rocks. U-Pb data on zircons from trondhjemitic and granitic samples yield upper-intercept (igneous) ages of 2,070 {plus minus}16 and 2,040 {plus minus}74 Ma, respectively. Nd isotope data from these rocks suggest that a diorite-tonalite-trondhjemite suite ({epsilon}{sub Nd}(T) = +2.1 to +2.7; T is time of crystallization) evolved from partial melts of depleted mantle with no discernible contamination by older crust, whereas a coeval granitic pluton ({epsilon}{sub Nd}(T) = {minus}5.7) containsmore » a significant component derived from Archean crust. Orthogneisses with similar age and Nd isotope characteristics are found in the Idono complex 250 km to the north. Early Proterozoic rocks are unknown elsewhere in Alaska. However, Phanerozoic plutons cutting several continental terranes in Alaska (southern Brooks Range and Ruby, Seward, and Yukon-Tanana terranes) have Nd isotope compositions indicative of Early Proterozoic (or older) crustal components that could be correlative with rocks of the Kilbuck terrane. Rocks with similar igneous ages in cratonal North America are rare, and those few that are known have Nd isotope compositions distinct from those of the Kilbuck terrane. Conversely, provinces with Nd model ages of 2.0-2.1 Ga are characterized by extensive 1.8 Ga or younger plutonism, which is unknown in the Kilbuck terrane. At present the case for a North American parentage of the Kilbuck terrane is not compelling. The possibility that the Kilbuck terrane was displaced from provinces of similar age in other cratons (e.g., Australian, Baltic, Guiana, and west African shields), or from the poorly dated Siberian craton, cannot be excluded.« less

  20. Deformation Enhanced Recrystallization of Titanite: Insight from the Western Gneiss Region Ultrahigh-Pressure Terrane

    NASA Astrophysics Data System (ADS)

    Gordon, S. M.; Reddy, S. M.; Blatchford, H.; Whitney, D. L.; Kirkland, C. L.; Teyssier, C.; Evans, N. J.; McDonald, B.

    2017-12-01

    Titanite readily recrystallizes due to metamorphism, deformation, and/or fluids making it an ideal chronometer for tracking the exhumation of high-grade rocks. The Western Gneiss Region (WGR), Norway, is a giant UHP terrane exhumed as a fairly coherent slab. Parts of the WGR underwent little deformation during exhumation; however, meters-scale shear zones, located across the WGR, deformed over a range of pressures, from (U)HP to amphibolite facies. Titanite from quartzofeldpathic gneiss within, directly adjacent to, and 300 m away from a mylonitic shear zone within the southern WGR have been analyzed to track exhumation and investigate effects of deformation on recrystallization and trace-element mobility. EBSD was used to characterize the microstructural evolution of the gneisses, and trace-element concentrations and timing of recrystallization were estimated by split-stream LA-ICPMS. Titanite grain size decreases from outside (>200) to inside (<75 µm) the shear zone. Gneiss in and directly adjacent to the shear zone contain partially to completely recrystallized grains, with 207-corrected 206Pb/238U ages of <405 Ma. Gneiss within the shear zone shows a greater percentage of recrystallized grains. EBSD data indicate that some titanite comprises multiple subgrains within an optically coherent single grain. Subgrains in titanite cores show evidence of inherited radiogenic Pb, whereas subgrains in rims and tails of deformed sigma grains were recrystallized. In a gneiss directly adjacent to the shear zone, optically coherent grains are zoned, with increasing Sr and decreasing Zr from core to rim; titanite subgrains within the shear-zone gneiss are too small to analyze. In comparison, titanite from the gneiss outside the shear zone does not show any internal microstructures or evidence for Scandian recrystallization and has low U and high 204Pb. These results show that most trace elements are unaffected by deformation of titanite; however, Pb is mobile. Deformation

  1. Deformation Enhanced Recrystallization of Titanite: Insight from the Western Gneiss Region Ultrahigh-Pressure Terrane

    NASA Astrophysics Data System (ADS)

    Gordon, S. M.; Reddy, S. M.; Blatchford, H.; Whitney, D. L.; Kirkland, C. L.; Teyssier, C.; Evans, N. J.; McDonald, B.

    2016-12-01

    Titanite readily recrystallizes due to metamorphism, deformation, and/or fluids making it an ideal chronometer for tracking the exhumation of high-grade rocks. The Western Gneiss Region (WGR), Norway, is a giant UHP terrane exhumed as a fairly coherent slab. Parts of the WGR underwent little deformation during exhumation; however, meters-scale shear zones, located across the WGR, deformed over a range of pressures, from (U)HP to amphibolite facies. Titanite from quartzofeldpathic gneiss within, directly adjacent to, and 300 m away from a mylonitic shear zone within the southern WGR have been analyzed to track exhumation and investigate effects of deformation on recrystallization and trace-element mobility. EBSD was used to characterize the microstructural evolution of the gneisses, and trace-element concentrations and timing of recrystallization were estimated by split-stream LA-ICPMS. Titanite grain size decreases from outside (>200) to inside (<75 µm) the shear zone. Gneiss in and directly adjacent to the shear zone contain partially to completely recrystallized grains, with 207-corrected 206Pb/238U ages of <405 Ma. Gneiss within the shear zone shows a greater percentage of recrystallized grains. EBSD data indicate that some titanite comprises multiple subgrains within an optically coherent single grain. Subgrains in titanite cores show evidence of inherited radiogenic Pb, whereas subgrains in rims and tails of deformed sigma grains were recrystallized. In a gneiss directly adjacent to the shear zone, optically coherent grains are zoned, with increasing Sr and decreasing Zr from core to rim; titanite subgrains within the shear-zone gneiss are too small to analyze. In comparison, titanite from the gneiss outside the shear zone does not show any internal microstructures or evidence for Scandian recrystallization and has low U and high 204Pb. These results show that most trace elements are unaffected by deformation of titanite; however, Pb is mobile. Deformation

  2. Linking Tengchong Terrane in SW Yunnan with Lhasa Terrane in southern Tibet through magmatic correlation

    NASA Astrophysics Data System (ADS)

    Xie, Jincheng; Zhu, Dicheng; Dong, Guochen; Zhao, Zhidan; Wang, Qing

    2016-04-01

    New zircon U-Pb data, along with the data reported in the literature, reveal five phases of magmatic activity in the Tengchong Terrane since the Early Paleozoic with spatial and temporal variations summarized as: Cambrian-Ordovician (500-460 Ma) to the eastern, minor Triassic (245-206 Ma) in the eastern and western, abundant Early Cretaceous (131-114 Ma) in the eastern, extensive Late Cretaceous (77-65 Ma) in the central, and Paleocene-Eocene (65-49 Ma) in the central and western Tengchong Terrane, in which the Cretaceous-Eocene magmatism was migrated from east to west (Xu et al., 2012). The increased zircon eHf(t) of the Early Cretaceous granitoids from -12.3 to -1.4 at ca. 131-122 Ma to -4.6 to +7.1 at ca. 122-114 Ma identified for the first time in this study and the magmatic flare-up at ca. 53 Ma in the central and western Tengchong Terrane (Wang et al., 2014, Ma et al., 2015) indicate the increased contributions from mantle- or juvenile crust-derived components. The spatial and temporal variations and changing magmatic compositions with time in the Tengchong Terrane closely resemble the Lhasa Terrane in southern Tibet. Such similarities, together with the data of stratigraphy and paleobiogeography (Zhang et al., 2013), enable us to propose that the Tengchong Terrane in SW Yunnan is most likely linked with the Lhasa Terrane in southern Tibet, both of which experience similar tectonomagmatic histories since the Early Paleozoic. References Ma, L.Y., Wang, Y.J., Fan, W.M., Geng, H.Y., Cai, Y.F., Zhong, H., Liu, H.C., Xing, X.W., 2014. Petrogenesis of the early Eocene I-type granites in west Yingjiang (SW Yunnan) and its implication for the eastern extension of the Gangdese batholiths. Gondwana Research 25, 401-419. Wang, Y.J., Zhang, L.M., Cawood, P.A., Ma, L.Y., Fan, W.M., Zhang, A.M., Zhang, Y.Z., Bi, X.W., 2014. Eocene supra-subduction zone mafic magmatism in the Sibumasu Block of SW Yunnan: Implications for Neotethyan subduction and India-Asia collision

  3. On the Preservation of Intergranular Coesite in UHP Eclogite at Yangkou Bay, Sulu belt of eastern China

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wang, S.; Brown, M.

    2016-12-01

    In contrast to coesite that occurs as inclusions in zircon and rock-forming minerals, intergranular coesite is preserved in UHP eclogite at Yangkou in the Sulu belt. The survival of intergranular coesite is intriguing because the eclogite experienced phengite growth and partial melting during exhumation. The coesite eclogite occurs as rootless isoclinal fold noses within quartz-rich schist which contains 10-20 vol% phengite, whereas phengite is absent from coesite eclogite in the fold noses. To evaluate the factors that control preservation of intergranular coesite, four samples representative of different stages along the retrograde P-T path were selected for study. For each sample we determined the number of intergranular coesite grains per cm2 and the OH content of garnet and omphacite. As the number of coesite grains decreases, the bulk rock OH content increases from <200 ppm in phengite-free coesite eclogite to 200-260 ppm in phengite-bearing (<5 vol%) coesite eclogite and up to a maximum of 430-438 ppm in quartz eclogite ( 10 vol% phengite). However, the OH content drops to a minimum of 59 ppm in residual eclogite resulting from melt drainage. This trend implies that the volume of fluid increased sufficiently during exhumation to facilitate the growth of phengite and the transformation to quartz of intergranular coesite outside of the fold noses. The fluid is inferred to have been a supercritical fluid probably residual from prograde dehydration but also derived by dissolution of nominally anhydrous minerals. Post-metamorphic-peak deformation combined with fluid percolation along sheared fold limbs induced phengite growth during initial exhumation and then facilitated partial melting. In contrast, fold hinges in competent layers are unfavourable sites for fluid penetration. At Yangkou, the intergranular coesite is preserved in the fold noses where it was protected from both penetrative deformation and fluid ingress. Therefore, the fold noses maintained a

  4. Nd, Pb, Sr, and O isotopic characterization of Saudi Arabian Shield terranes

    USGS Publications Warehouse

    Stoeser, D.B.; Frost, C.D.

    2006-01-01

    New Nd, Sr and O isotopic data for granitoid rocks of the Saudi Arabian Shield are presented together with published Nd, Pb, Sr and O isotopic data and all available geologic and geochronologic information to re-evaluate the terranes defined for the Saudi Arabian part of the Arabian-Nubian Shield. Three groups of terranes are identified: 1) the western arc terranes, 2) the eastern arc terranes, and 3) the Khida terrane. The Khida terrane is the only terrane composed of pre-Neoproterozoic continental crust. The western arc terranes are of oceanic arc affinity, and have the least radiogenic Pb and Sr and most radiogenic Nd isotopic compositions and some of the lowest ??18O values of any rocks of the Saudi Arabian Shield. Although some previous studies have characterized the eastern arc terranes as of continental affinity, this study shows that they too are composed of Neoproterozoic oceanic arcs, although their sources have slightly elevated 208Pb/204Pb, Nd, Sri, and ??18O values compared to the western arc terranes. These data suggest that either the isotopic composition of the mantle source for the western arc terranes is more depleted than that of the eastern arc terranes or the eastern arc terranes have been mixed with a small amount of cratonic source material, or both. We further elaborate on the Hulayfah-Ad Dafinah fault zone as a major boundary within the Saudi Arabian portion of the East African Orogen. With further study, its northern extension may be shown to pass through what has been defined as the Hail terrane, and its southern extension appears to lie under cover east of the Tathlith-Malahah terrane and extend into Yemen. It may represent the collision zone between East and West Gondwana, and at the very least it is an important suture between groups of arc terranes of contrasting isotopic composition caught between two converging continents.

  5. Age of UHP metamorphism in the Western Mediterranean: Insight from rutile and minute zircon inclusions in a diamond-bearing garnet megacryst (Edough Massif, NE Algeria)

    NASA Astrophysics Data System (ADS)

    Bruguier, Olivier; Bosch, Delphine; Caby, Renaud; Vitale-Brovarone, Alberto; Fernandez, Laure; Hammor, Dalila; Laouar, Rabah; Ouabadi, Aziouz; Abdallah, Nachida; Mechati, Mehdi

    2017-09-01

    Diamond-bearing UHP metamorphic rocks witness for subduction of lithospheric slabs into the mantle and their return to shallow levels. In this study we present U-Pb and trace elements analyses of zircon and rutile inclusions from a diamond-bearing garnet megacryst collected in a mélange unit exposed on the northern margin of Africa (Edough Massif, NE Algeria). Large rutile crystals (up to 300 μm in size) analyzed in situ provide a U-Pb age of 32.4 ± 3.3 Ma interpreted as dating the prograde to peak subduction stage of the mafic protolith. Trace element analyses of minute zircons (≤30 μm) indicate that they formed in equilibrium with the garnet megacryst at a temperature of 740-810 °C, most likely during HP retrograde metamorphism. U-Pb analyses provide a significantly younger age of 20.7 ± 2.3 Ma attributed to exhumation of the UHP units. This study allows bracketing the age of UHP metamorphism in the Western Mediterranean Orogen to the Oligocene/early Miocene, thus unambiguously relating UHP metamorphism to the Alpine history. Exhumation of these UHP units is coeval with the counterclockwise rotation of the Corsica-Sardinia block and most likely resulted from subduction rollback that was driven by slab pull.

  6. Constraining cooling rates of UHP metamorphic rocks with closure temperature geospeedometry: a case study from the Dabie orogen

    NASA Astrophysics Data System (ADS)

    Lloyd, M. K.; Shimizu, N.; Wang, Z.; Zheng, Y.

    2011-12-01

    UHP metamorphic rocks can reach peak temperatures and pressures >800°C and >3GPa, and provide unique opportunities for studying geochemical processes in subduction zones. How and how fast they were exhumed are, however, still outstanding questions. Here we report SIMS-based Zr concentrations in rutiles from an eclogite sample from Huangzhen in the South Dabie low-T/UHP zone, east-central China, and present a closure temperature-based approach to constrain the cooling/exhumation rate of UHP rocks. Li et al. (2004) put peak metamorphism at a time prior to 236.1 ± 4.2 Ma., but estimates for peak temperatures and pressures in South Dabie vary wildly depending on the rock suite. The fine-grained eclogites in the Dabie orogen were estimated to have reached conditions of 641-839 °C and 2.00-3.54 GPa (Shi and Wang, 2006) based on Fe-Mg partition thermometry and metamorphic phase equilibria. These samples were reported to contain quartz, zircon, and rutile phases that reached thermodynamic equilibrium with each other. In this study, Zr concentrations of rutiles were obtained using the Cameca IMS 1280 ion microprobe at Northeast National Ion Microprobe Facility, by converting secondary ion intensity ratios, 90Zr/46Ti, to concentrations using rutile standards described by Luvizotto et al. (2009), with analytical uncertainties of 5.1%. Temperatures were then calculated using the method of Ferry and Watson (2007). It was found that Zr concentrations range from 38.6(2.4) to 134.6(4.5) ppm, resulting in a temperature range of 504(24) to 583(27)°C for 72 grains with size spanning from 62 to 440 microns cross in long axis. Minor rim-ward decrease of Zr content was observed with no appreciable temperature decrease. Assuming that the rutiles grew at one stage during the peak metamorphism and that their Zr concentrations were independent of pressure, a cooling rate can be estimated for the target sample. By applying the Dodson (1973) formula for closure temperature in conjunction

  7. Geochemical Constraints for Mercury's PCA-Derived Geochemical Terranes

    NASA Astrophysics Data System (ADS)

    Stockstill-Cahill, K. R.; Peplowski, P. N.

    2018-05-01

    PCA-derived geochemical terranes provide a robust, analytical means of defining these terranes using strictly geochemical inputs. Using the end members derived in this way, we are able to assess the geochemical implications for Mercury.

  8. Proterozoic geochronological links between the Farewell, Kilbuck, and Arctic Alaska terranes

    USGS Publications Warehouse

    Bradley, Dwight C.; McClelland, William C.; Friedman, Richard M.; O'Sullivan, Paul B.; Layer, Paul; Miller, Marti L.; Dumoulin, Julie A.; Till, Alison B.; Abbott, J. Grant; Bradley, Dan B.; Wooden, Joseph L.

    2014-01-01

    New U-Pb igneous and detrital zircon ages reveal that despite being separated by younger orogens, three of Alaska’s terranes that contain Precambrian rocks—Farewell, Kilbuck, and Arctic Alaska—are related. The Farewell and Kilbuck terranes can be linked by felsic magmatism at ca. 850 Ma and by abundant detrital zircons in the Farewell that overlap the ca. 2010–2085 Ma age range of granitoids in the Kilbuck. The Farewell and Arctic Alaska terranes have already been linked via correlative Neoproterozoic to Devonian carbonate platform deposits that share nearly identical faunas of mixed Siberian and Laurentian affinity. New igneous ages strengthen these ties. Specifically, 988, 979, and 979 Ma metafelsites in the Farewell terrane are close in age to a 971 Ma granitic orthogneiss in the Arctic Alaska terrane. Likewise, 852, 850, 845, and 837 Ma granitic orthogneisses, metafelsite, and rhyolite in the Farewell terrane are similar to the reported 874 to 848 Ma age range of metarhyolites in the Arctic Alaska terrane. The Kilbuck and Arctic Alaska terranes have been previously linked on the basis of provenance: detrital zircons from the Carboniferous Nuka Formation in the Arctic Alaska terrane range from 2013 to 2078 Ma, overlapping the age of Kilbuck granitoids. A new 849 Ma age of a Kilbuck granitoid strengthens the proposed connection. Among the other new results from Kilbuck terrane is a 2085 Ma zircon from a granitoid that now stands as the oldest tightly dated rock in Alaska. We conclude that the Kilbuck, Farewell, and Arctic Alaska terranes were not independent entities with unique geologic histories but instead are related pieces of the circum-Arctic tectonic puzzle.

  9. Gondwanan/peri-Gondwanan origin for the Uchee terrane, Alabama and georgia: Carolina zone or Suwannee terrane(?) and its suture with Grenvillian basement of the Pine Mountain window

    USGS Publications Warehouse

    Steltenpohl, M.G.; Mueller, P.M.; Heatherington, A.L.; Hanley, T.B.; Wooden, J.L.

    2008-01-01

    The poorly known, suspect, Uchee terrane occupies a critical tectonic position with regard to how and when peri-Gondwanan (Carolina) and Gondwanan (Suwannee) terranes were sutured to Laurentia. It lies sandwiched between Laurentian(?) continental basement exposed in the Pine Mountain window and adjacent buried Gondwanan crust of the Suwannee terrane. The Uchee terrane has been proposed as both a septum of Piedmont rocks that once was continuous across the erosionally breached Pine Mountain window or part of the Carolina zone. To help resolve this issue, we conducted U-Pb (SHRIMP-RG) (sensitive high-resolution ion microprobe-reverse geometry) zircon studies and whole-rock isotopic analyses of principal metasedimentary and metaplutonic units. U-Pb ages for zircons from the Phenix City Gneiss suggest igneous crystallization at ca. 620 Ma, inheritance ca. 1000 to ca. 1700 Ma, and a ca. 300 Ma (Alleghanian) overprint recorded by zircon rims. Zircons from the metasedimentary/metavolcaniclastic Moffits Mill Schist yield bimodal dates at ca. 620 and 640 Ma. The 620 to 640 Ma dates make these rocks age-equivalent to the oldest parts of the Carolina slate belt (Virgilina and Savannah River) and strongly suggest a Gondwanan (Pan-African and/or Trans-Brasiliano) origin for the Uchee terrane. Alternatively, the Uchee terrane may be correlative with metamorphic basement of the Suwannee terrane. The ca. 300 Ma overgrowths on zircons are compatible with previously reported 295 to 288 Ma 40Ar/39Ar hornblende dates on Uchee terrane rocks, which were interpreted to indicate deep tectonic burial of the Uchee terrane contemporaneous with the Alleghanian orogeny recorded in the foreland. Temperature-time paths for the Uchee terrane are similar to that of the Pine Mountain terrane, indicating a minimum age of ca. 295 Ma for docking. In terms of tectono-metamorphic history of the Uchee terrane, it is important to note that no evidence for intermediate "Appalachian" dates (e.g, Acadian or

  10. Petrology, geochemistry and isotope data on a ultrahigh-pressure jadeite quartzite from Shuanghe, Dabie Mountains, East-central China

    NASA Astrophysics Data System (ADS)

    Liou, J. G.; Zhang, R. Y.; Jahn, Bor-ming

    1997-08-01

    In the Dabie ultrahigh-pressure terrane of east-central China, coesite-bearing jadeite quartzites occur locally as intercalated layers with marble and mafic eclogite. This rock assemblage is, in turn, enclosed within quartzofeldspathic gneisses. Metamorphic parageneses and kelyphitic textures reveal a multistage metamorphic evolution and complex exhumation history. The primary peak metamorphic assemblage consists of jadeite + garnet + coesite + rutile ± apatite. Minor coesite and coesite pseudomorphs occur as inclusions in jadeite and garnet. Three stages of retrograde assemblages are observed in the jadeite quartzites. Stage A is represented by the polymorphic transformation of coesite to quartz aggregates. Stage B is characterized by formation of coronas around jadeite porphyroblasts consisting of an inner layer of oligoclase + amphibole and an outer layer of albite ± aegirine—augite. The last stage (stage C) involved total replacement of jadeite and most garnets by taramitic amphibole + albite + aegirine-augite. Peak metamorphic P-T conditions were > 26 kbar at 660°C and are consistent with the estimates from the adjacent coesite-bearing eclogites. The jadeite quartzites display clockwise P-T path that matches those of the adjacent eclogites. Major and trace element data suggest that the protolith of the jadeite quartzite could have been an albitized siltstone enriched in Na and depleted in K and Ca. The highly negative present-day ɛNd value (-24.7) indicates a very old age for the protolith. Its late Archean model age (TDM) of 2.58 Ga is among the oldest so far identified for rocks from the Dabie UHPM terrane. Concordant field relations and petrogenetic considerations suggest that all mafic, politic, carbonate and gneissic rocks have experienced in-situ UHP metamorphism during Triassic continental collision between the Sino-Korean and Yangtze cratons.

  11. The Wisconsin magmatic terrane: An Early Proterozoic greenstone-granite terrane formed by plate tectonic processes

    NASA Technical Reports Server (NTRS)

    Schulz, K. J.; Laberge, G. L.

    1986-01-01

    The Wisconsin magmatic terrane (WMT) is an east trending belt of dominantly volcanic-plutonic complexes of Early Proterozoic age (approx. 1850 m.y.) that lies to the south of the Archean rocks and Early Proterozoic epicratonic sequence (Marquette Range Supergroup) in Michigan. It is separated from the epicratonic Marquette Range Supergroup by the high-angle Niagara fault, is bounded on the south, in central Wisconsin, by Archean gneisses, is truncated on the west by rocks of the Midcontinent rift system, and is intruded on the east by the post-orogenic Wolf river batholith. The overall lithologic, geochemical, metallogenic, metamorphic, and deformational characteristics of the WMT are similar to those observed in recent volcanic arc terranes formed at sites of plate convergence. It is concluded that the WMT represents an evolved oceanic island-arc terrane accreated to the Superior craton in the Early Proterozoic. This conclusion is strengthened by the apparent absence of Archean basement from most of the WMT, and the recent recognition of the passive margin character of the epicratonic Marquette Range Supergroup.

  12. Serpentinite-driven Exhumation of the UHP Lago di Cignana Unit in the Fossil Alpine Plate Interface

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Gilio, M.; Angiboust, S.; Godard, M.; Pettke, T.

    2015-12-01

    The Lago di Cignana Unit (LCU) is a coesite- [1] and diamond-bearing [2] slice of oceanic-derived eclogites and metasediments recording Alpine UHP metamorphism at 600 °C-3.2 GPa (~110 km depth) [3]. The LCU is tectonically sandwiched between the eclogitic Zermatt-Saas Zone (ZSZ; 540 °C-3.2 GPa) [4] and the blueschist Combin Zone (400 °C-0.9 GPa) [5] along a tectonic structure joining HP units recording a ~1.2 GPa (40 km) pressure difference. So far, the ZSZ has been attributed to normal HP conditions and the mechanism driving exhumation and accretion of the LCU in its present structural position is not fully understood.We performed petrography and bulk-rock trace element analyses of rocks from LCU and ZSZ serpentinites. We observed that, while serpentinites in the core of the ZSZ show normal subduction zone trace elements and REE's patterns, the Ol+Ti-chu+Chl veins and host serpentinites enveloping the LCU are strongly enriched in sediment-derived fluid-mobile elements (U, Th, Nb, Ta, Ce, Y, As, Sb) and REE's: their patterns well match those of the closely associated LCU-UHP rocks.The presence of extremely enriched Ol+Ti-chu+Chl veins in the serpentinites at direct contact with the UHP Lago di Cignana Unit suggests that fluid exchange between serpentinite and LCU crustal rocks occurred at peak metamorphic conditions. Their coupling therefore occurred during subduction burial and/or peak UHP conditions. As such, the buoyancy force originating from the relatively light serpentinites fuelled the exhumation of the Lago di Cignana Unit. In this contest, the tectonic contact between the Zermatt-Saas Zone and the Combin Zone evolved into a true tectonic plate interface surface.1. Reinecke (1998). Lithos 42(3), 147-189; 2. Frezzotti et al. (2011). Nat. Geosci. 4(10), 703-706; 3. Groppo et al. (2009). J. Metam. Geol. 27(3), 207-231; 4. Angiboust et al. (2009). Terra Nova 21(3), 171-180; 5. Reddy et al. (1999). J. Metam. Geol. 17, 573-590.

  13. Silurian Gastropoda from the Alexander terrane, southeast Alaska

    USGS Publications Warehouse

    Rohr, D.M.; Blodgett, R.B.

    2008-01-01

    Gastropods are described from Ludlow-age strata of the Heceta Limestone on Prince of Wales Island, southeast Alaska. They are part of a diverse megabenthic fauna of the Alexander terrane, an accreted terrane of Siberian or Uralian affinities. Heceta Limestone gastropods with Uralian affinities include Kirkospira glacialis, which closely resembles "Pleurotomaria" lindstromi Oehlert of Chernyshev, 1893, Retispira cf. R. volgulica (Chernyshev, 1893), and Medfracaulus turriformis (Chernyshev, 1893). Medfracaulus and similar morphotypes such as Coelocaulus karlae are unknown from rocks that are unquestionably part of the North American continent (Laurentia) during Late Silurian time. Beraunia is previously known only from the Silurian of Bohemia. Pachystrophia has previously been reported only from western North American terranes (Eastern Klamath, York, and Farewell terranes) and Europe. Bathmopterus Kirk, 1928, is resurrected and is only known from the Silurian of southeast Alaska. Newly described taxa include Hecetastoma gehrelsi n. gen. and n. sp. and Baichtalia tongassensis n. gen. and n. sp. ??2008 The Geological Society of America.

  14. Late Paleozoic orogeny in Alaska's Farewell terrane

    USGS Publications Warehouse

    Bradley, D.C.; Dumoulin, Julie A.; Layer, P.; Sunderlin, D.; Roeske, S.; McClelland, B.; Harris, A.G.; Abbott, G.; Bundtzen, T.; Kusky, T.

    2003-01-01

    Evidence is presented for a previously unrecognized late Paleozoic orogeny in two parts of Alaska's Farewell terrane, an event that has not entered into published scenarios for the assembly of Alaska. The Farewell terrane was long regarded as a piece of the early Paleozoic passive margin of western Canada, but is now thought, instead, to have lain between the Siberian and Laurentian (North American) cratons during the early Paleozoic. Evidence for a late Paleozoic orogeny comes from two belts located 100-200 km apart. In the northern belt, metamorphic rocks dated at 284-285 Ma (three 40Ar/39Ar white-mica plateau ages) provide the main evidence for orogeny. The metamorphic rocks are interpreted as part of the hinterland of a late Paleozoic mountain belt, which we name the Browns Fork orogen. In the southern belt, thick accumulations of Pennsylvanian-Permian conglomerate and sandstone provide the main evidence for orogeny. These strata are interpreted as the eroded and deformed remnants of a late Paleozoic foreland basin, which we name the Dall Basin. We suggest that the Browns Fork orogen and Dall Basin comprise a matched pair formed during collision between the Farewell terrane and rocks to the west. The colliding object is largely buried beneath Late Cretaceous flysch to the west of the Farewell terrane, but may have included parts of the so-called Innoko terrane. The late Paleozoic convergent plate boundary represented by the Browns Fork orogen likely connected with other zones of plate convergence now located in Russia, elsewhere in Alaska, and in western Canada. Published by Elsevier B.V.

  15. Linking the southern West Junggar terrane to the Yili Block: Insights from the oldest accretionary complexes in West Junggar, NW China

    NASA Astrophysics Data System (ADS)

    Ren, Rong; Han, Bao-Fu; Guan, Shu-Wei; Liu, Bo; Wang, Zeng-Zhen

    2018-06-01

    West Junggar is known to tectonically correlate with East Kazakhstan; however, the tectonic link of the southern West Junggar terrane to adjacent regions still remains uncertain. Here, we examined the oldest accretionary complexes, thus constraining its tectonic evolution and link during the Early-Middle Paleozoic. They have contrasting lithologic, geochemical, and geochronological features and thus, provenances and tectonic settings. The Laba Unit was derived from the Late Ordovician-Early Devonian continental arc system (peaking at 450-420 Ma) with Precambrian substrate, which formed as early as the Early Devonian and metamorphosed during the Permian; however, the Kekeshayi Unit was accumulated in an intra-oceanic arc setting, and includes the pre-Late Silurian and Late Silurian subunits with or without Precambrian sources. Integrated with the regional data, the southern West Junggar terrane revealed a tectonic link to the northern Yili Block during the Late Silurian to Early Devonian, as suggested by the comparable Precambrian zircon age spectra between the southern West Junggar terrane and the micro-continents in the southern Kazakhstan Orocline, the proximal accumulation of the Laba Unit in the continental arc atop the Yili Block, and the sudden appearance of Precambrian zircons in the Kekeshayi Unit during the Late Silurian. This link rejects the proposals of the southern West Junggar terrane as an extension of the northern Kazakhstan Orocline and the Middle Paleozoic amalgamation of West Junggar. A new linking model is thus proposed, in which the southern West Junggar terrane first evolved individually, and then collided with the Yili Block to constitute the Kazakhstan continent during the Late Silurian. The independent and contrasting intra-oceanic and continental arcs also support the Paleozoic archipelago-type evolution of the Central Asian Orogenic Belt.

  16. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China

    NASA Astrophysics Data System (ADS)

    Gilder, Stuart A.; Gill, James; Coe, Robert S.; Zhao, Xixi; Liu, Zhongwei; Wang, Genxian; Yuan, Kuirong; Liu, Wenlong; Kuang, Guodun; Wu, Haoruo

    1996-07-01

    In order to better constrain the paleogeographic evolution of south China we measured Sm-Nd and Rb-Sr isotopic compositions for 23 Mesozoic granites that crop out throughout the area. Tightly grouped neodymium depleted mantle model ages (1.4 ± 0.3 Ga) suggest the region is underlain by relatively homogeneous Proterozoic crust and fail to define crustal provinces. Neither the isotopic nor geologic data suggest that a Mesozoic suture exists. However, granites possessing anomalously high Sm (>8 ppm) and Nd (>45 ppm) concentrations, relatively high initial epsilon neodymium (-4 to -8), and high but variable initial 87Sr/86Sr (0.759 to 0.713) form a northeast trending zone that coincides with two prominent Mesozoic basins. Southeast of the zone lie the majority of Mesozoic intrusives and Upper Triassic to Lower Cretaceous extensional basins found in south China. Mesozoic paleomagnetic poles are well clustered northwest of the zone. Pre-Cretaceous poles southeast of it are discordant with respect to those from the northwest. The only recognized tectonostratigraphic terrane in south China lies southeast of the zone. The terrane is bordered by a northeast trending sinistral fault that was active in the Mesozoic. Other faults in south China have similar attitudes, ages, and sense of shear. Together, the observations suggest that the Mesozoic tectonic regime in south China consisted of strike-slip activity plus concomitant rifting as terranes or fragments of similar crust were transported north along sinistral faults. The zone, defined by the granites enriched in Nd and Sm, demarcates displaced terranes to the southeast from relatively stable land to the northwest.

  17. Age and composition of the UHP garnet peridotites in the Dabie orogenic belt (central China) record complex crust-mantle interaction in continental margin

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zheng, J.; Wang, B.

    2017-12-01

    The Dabie-Sulu UHP belt was created by the collision between the North and South China cratons in Middle Triassic time (240-225 Ma). There are lots of garnet-bearing ultramafic body occurs as a lens in the belt. Age and composition of the Maowu garnet peridotites in the Dabie orogenic belt are reported. The garnet harzburgites are main moderately refractory (Mg#Ol=92) and minor fertile (Mg#Ol=88) with high Ni (2344-2603 ppm) and low Al2O3 (0.35-0.54 wt.%), CaO (0.76-2.19 wt.%) and TiO2 (˜0.01 wt.%). Zircons in the harzburgites mainly document metamorphism at 230 ± 2 Ma, 275 ± 5 Ma, 357 ± 4 Ma, and complex minor populations of ages including: 1.8 Ga, 1.3 Ga, and Neoproterozic-early Paleozoic ages (901-420 Ma). The early Meszosic and late Paleozoic zircons have similar trace-element patterns and ranges in ɛHf(t) (+0.6 to +3.4), Th/U ratio (0.2-0.7) and Hf depleted-mantle model ages (TDM ) mainly cluster in the interval 1.2-0.9 Ga. In contrast, the Paleo-Mesoproterozoic zircons have negative ɛHf(t) (-24.9 to -2.7) and oldest Hf TDM = 3.4Ga. Zircons of Neoproterozic-early Paleozoic have a wide range of Hf depleted-mantle model ages (2.4-0.7Ga) and ɛHf(t) (-15.3 to +9.5). Above of the all, we suggest that the Maowu garnet harzburgites are interpreted as a fragment of the metasomatized ancient lithospheric mantle beneath the southern margin of the North China Craton. They experienced the Proterozoic thermal event (1.9-1.8Ga), which is coeval with the assembly of the supercontinent Columbia. And then 1.3Ga mantle metasomatism with asthenospheric materials resulted in the final breakup of the Columbia supercontinent. Neoproterozic-early Paleozoic (901-420 Ma), deep parts of the south margin of the craton were metasomatized during the assembly and breakup of the Rodinia supercontinent. Then, the southern margin of the craton occurred oceanic crust subduction ( 357 Ma), subsequent continental deep subduction and final continent-continent collision in Triassic.

  18. Multi-stage barites in partially melted UHP eclogite: implications for fluid/melt activities during deep continental subduction in the Sulu orogenic belt

    NASA Astrophysics Data System (ADS)

    Wang, Songjie; Wang, Lu

    2015-04-01

    Barite (BaSO4) is well-known from deep-sea sedimentary environments but has received less attention to its presence in high-grade metamorphic rocks. Recently, barite in ultrahigh pressure (UHP) eclogite has drawn increasing attention from geologists, especially in the Dabie-Sulu orogen, since it is an important indicator for high-salinity fluid events, thus aiding in further understanding HP-UHP fluid / melt evolution. However, its formation time and mechanism in UHP eclogite are still controversial, with three representative viewpoints: (1) Liu et al. (2000) found barite-anhydrite-coesite inclusions in zircon and interpreted them to have formed by UHP metamorphic fluids; (2) Zeng et al. (2007) recognized isolated barite within K-feldspar (Kfs) and Quartz (Qz) surrounded by radial cracks in omphacite, and interpreted Kfs+Qz to be reaction products of potassium-rich fluid/melt and coesite, with the barite formed by prograde metamorphic fluids; (3) Gao et al. (2012) and Chen et al. (2014) found barite-bearing Multiphase Solid (MS) inclusions within garnet and omphacite and assumed that the barite formed by phengite breakdown possibly caused by eclogite partial melting during exhumation, though no direct evidence were proposed. The controversy above is mainly due to the lack of direct formation evidence and absence of a clear link with the metamorphic evolution of UHP eclogite along the subduction-exhumation path. We report detailed petrological and micro-structural analyses revealing four types of barites clearly linked with (1) the prograde, (2) earlier stage of partial melting and (3) later stage of crystallization differentiation, as well as (4) high-grade amphibolite-facies retrogression of a deeply subducted and partially melted intergranular coesite-bearing eclogite from Yangkou Bay, Sulu Orogen. Round barite inclusions (type-I) within UHP-stage garnet and omphacite are formed by internally buffered fluids from mineral dehydration during prograde metamorphism

  19. Continental collision with a sandwiched accreted terrane: Insights into Himalayan-Tibetan lithospheric mantle tectonics?

    NASA Astrophysics Data System (ADS)

    Kelly, Sean; Butler, Jared P.; Beaumont, Christopher

    2016-12-01

    Many collisional orogens contain exotic terranes that were accreted to either the subducting or overriding plate prior to terminal continent-continent collision. The ways in which the physical properties of these terranes influence collision remain poorly understood. We use 2D thermomechanical finite element models to examine the effects of prior 'soft' terrane accretion to a continental upper plate (retro-lithosphere) on the ensuing continent-continent collision. The experiments explore how the style of collision changes in response to variations in the density and viscosity of the accreted terrane lithospheric mantle, as well as the density of the pro-lithospheric mantle, which determines its propensity to subduct or compress the accreted terrane and retro-lithosphere. The models evolve self-consistently through several emergent phases: breakoff of subducted oceanic lithosphere; pro-continent subduction; shortening of the retro-lithosphere accreted terrane, sometimes accompanied by lithospheric delamination; and, terminal underthrusting of pro-lithospheric mantle beneath the accreted terrane crust or mantle. The modeled variations in the properties of the accreted terrane lithospheric mantle can be interpreted to reflect metasomatism during earlier oceanic subduction beneath the terrane. Strongly metasomatized (i.e., dense and weak) mantle is easily removed by delamination or entrainment by the subducting pro-lithosphere, and facilitates later flat-slab underthrusting. The models are a prototype representation of the Himalayan-Tibetan orogeny in which there is only one accreted terrane, representing the Lhasa terrane, but they nonetheless exhibit processes like those inferred for the more complex Himalayan-Tibetan system. Present-day underthrusting of the Tibetan Plateau crust by Indian mantle lithosphere requires that the Lhasa terrane lithospheric mantle has been removed. Some of the model results support previous conceptual interpretations that Tibetan

  20. Partial melting of UHP calc-gneiss from the Dabie Mountains

    NASA Astrophysics Data System (ADS)

    Liu, Penglei; Wu, Yao; Liu, Qiang; Zhang, Junfeng; Zhang, Li; Jin, Zhenmin

    2014-04-01

    Exhumation melting has been proposed for the ultra-high pressure (UHP) metamorphic rocks in the Dabie Mountains based on melting experiments. We document here the first petrological and mineralogical evidence demonstrating that the UHP calc-gneisses from the Ganjialing area in the Dabie Mountains experienced partial melting during early exhumation. The assemblage of garnet, phengite (Si = 3.65 pfu), coesite, rutile and carbonate preserved in the calc-gneisses indicates a peak metamorphic condition of 692-757 °C and 4.0-4.8 GPa. Partial melting is indicated by several lines of evidence: the melting textures of phengite, the feldspar-dominated films, bands, branches, blebs and veins, the euhedral K-feldspars, the intergrowth film of plagioclase and K-feldspar, the plagioclase + biotite intergrowth after garnet and the epidote poikiloblasts. Polyphase inclusions in garnet are characterized with wedge-like offshoots and serrate outlines whereas those in epidote display negative crystal shapes, which can be best interpreted by entrapment of former melts. We propose a wet melting reaction of Phn + Q ± Na-Cpx + H2O = Bt + Pl + Grt + felsic melts, which likely took place at ca.650-800 °C and ca.1.0-2.0 GPa, to interpret the melting event in the calc-gneisses. Chemical exchanges between garnet and melts produced new garnet domains with higher almandine, spessartine, MREE, HREE and Y but lower grossular, pyrope, P, Sc, Ti, V and Zr contents. Zr-in-rutile thermometer reveals a low temperature of 620-643 °C at 5 GPa, indicating a later reset for Zr in rutile. Healed fractures are suggested to be responsible for the formation of some polyphase inclusions in garnet.

  1. Far-travelled permian chert of the North Fork terrane, Klamath mountains, California

    USGS Publications Warehouse

    Mankinen, E.A.; Irwin, W.P.; Blome, C.D.

    1996-01-01

    Permian chert in the North Fork terrane and correlative rocks of the Klamath Mountains province has a remanent magnetization that is prefolding and presumably primary. Paleomagnetic results indicate that the chert formed at a paleolatitude of 8.6?? ?? 2.5?? but in which hemisphere remains uncertain. This finding requires that these rocks have undergone at least 8.6?? ?? 4.4?? of northward transport relative to Permian North America since their deposition. Paleontological evidence suggests that the Permian limestone of the Eastern Klamath terrane originated thousands of kilometers distant from North America. The limestone of the North Fork terrane may have formed at a similar or even greater distance as suggested by its faunal affinity to the Eastern Klamath terrane and more westerly position. Available evidence indicates that convergence of the North Fork and composite Central Metamorphic-Eastern Klamath terranes occurred during Triassic or Early Jurassic time and that their joining together was a Middle Jurassic event. Primary and secondary magnetizations indicate that the new composite terrane containing these and other rocks of the Western Paleozoic and Triassic belt behaved as a single rigid block that has been latitudinally concordant with the North American craton since Middle Jurassic time.

  2. Terrane accretion: Insights from numerical modelling

    NASA Astrophysics Data System (ADS)

    Vogt, Katharina; Gerya, Taras

    2016-04-01

    The oceanic crust is not homogenous, but contains significantly thicker crust than norm, i.e. extinct arcs, spreading ridges, detached continental fragments, volcanic piles or oceanic swells. These (crustal) fragments may collide with continental crust and form accretionary complexes, contributing to its growth. We analyse this process using a thermo-mechanical computer model (i2vis) of an ocean-continent subduction zone. In this model the oceanic plate can bend spontaneously under the control of visco-plastic rheologies. It moreover incorporates effects such as mineralogical phase changes, fluid release and consumption, partial melting and melt extraction. Based on our 2-D experiments we suggest that the lithospheric buoyancy of the downgoing slab and the rheological strength of crustal material may result in a variety of accretionary processes. In addition to terrane subduction, we are able to identify three distinct modes of terrane accretion: frontal accretion, basal accretion and underplating plateaus. We show that crustal fragments may dock onto continental crust and cease subduction, be scrapped off the downgoing plate, or subduct to greater depth prior to slab break off and subsequent exhumation. Direct consequences of these processes include slab break off, subduction zone transference, structural reworking, formation of high-pressure terranes, partial melting and crustal growth.

  3. The nature of Archean terrane boundaries: an example from the northern Wyoming Province

    USGS Publications Warehouse

    Mogk, D.W.; Mueller, P.A.; Wooden, J.L.

    1992-01-01

    The Archean northern Wyoming Province can be subdivided into two geologically distinct terranes, the Beartooth-Bighorn magmatic terrane (BBMT) and the Montana metasedimentary terrane (MMT). The BBMT is characterized by voluminous Late Archean (2.90-2.74 Ga) magmatic rocks (primarily tonalite, trondhjemite, and granite); metasedimentary rocks are preserved only as small, rare enclaves in this magmatic terrane. The magmatic rocks typically have geochemical and isotopic signatures that suggest petrogenesis in a continental magmatic arc environment. The MMT, as exposed in the northern Gallatin and Madison Ranges, is dominated by Middle Archean trondhjemitic gneisses (3.2-3.0 Ga); metasedimentary rocks, however, are significantly more abundant than in the BBMT. Each terrane has experienced a separate and distinct geologic history since at least 3.6 Ga ago based on differences in metamorphic and structural styles, composition of magmatic and metasupracrustal rocks, and isotopic ages; consequently, these may be described as discrete terranes in the Cordilleran sense. Nonetheless, highly radiogenic and distinctive Pb-Pb isotopic signatures in rocks of all ages in both terranes indicate that the two terranes share a significant aspect of their history. This suggests that these two Early to Middle Archean crustal blocks, that initially evolved as part of a larger crustal province, experienced different geologic histories from at least 3.6 Ga until their juxtaposition in the Late Archean (between 2.75 to 2.55 Ga ago). Consequently, the boundary between the BBMT and MMT appears to separate terranes that are not likely to be exotic in the sense of their Phanerozoic counterparts. Other Archean provinces do appear to contain crustal blocks with different isotopic signatures (e.g. West Greenland, India, South Africa). The use of the term exotic, therefore, must be cautious in situations where geographic indicators such as paleontologic and/or paleomagnetic data are not available

  4. The Apuseni Mountains, Romania, a Variscan Collage of Ordovician Gondwanan Terranes

    NASA Astrophysics Data System (ADS)

    Balintoni, I. C.; Balica, C.; Zaharia, L.; Chen, F.; Cliveti, M.; Hann, H. P.; Ghergari, L.

    2007-12-01

    The basement of the Apuseni Mountains, Romania, consists of three pre-Variscan terranes, sutured during an Early Variscan amalgamation around 351 Ma (Balintoni et al., this volume). The northern Someş Terrane (ST) is predominantly gneissic, while the southern Baia de Arieş Terrane (BAT) is dominated by the presence of large carbonate lenses, although metagranites and other types of orthogneisses can be found. These two terranes are sutured through the Biharia terrane, probably an accreted island arc. LA-ICP-MS datings on zircons extracted from orthogneisses and metagranites were performed in order to constrain the age of ST and BAT. A number of previously CL-imaged crystals were ablated at the China's University of Geosciences, Wuhan. From ST we dated an orthogneiss occurring in structurally lowermost position, a metatuff situated in the upper strongly retrogressed part and a twenty detrital crystal population sampled from a metasandstone. The 206Pb/238U apparent ages were projected using the weighted average plots.A magmatic crystallization age of 472.8±5.0 Ma (Upper Early Ordovician) resulted for one of the orthogneiss samples, besides several older ages at 505.7, 566.3 and 708.2 Ma corresponding to inherited cores. Another sample from the same rock appeared strongly affected by lead loss during a later thermotectonic event, most of the apparent ages grouping around 352±14 Ma. This age is similar with the age of the suture between ST and BT (Balintoni et al., this volume). The main zircon population of one metatuff sample furnished an averaged age of 423±7.2 Ma, also found in two additional samples, but their significance is obscure for the moment. Two primary magmatic ages arise at 464.2 and 473.8 Ma, an older value of 758.7 Ma corresponding to an inherited core. Detrital zircon ages range between 534.8 and 2596.8 Ma. The younger value represents an upper age constraint for the protolith age of ST-rocks. From BAT we dated the Lupşa metaporphyroid and the

  5. Deformation during terrane accretion in the Saint Elias orogen, Alaska

    USGS Publications Warehouse

    Bruhn, R.L.; Pavlis, T.L.; Plafker, G.; Serpa, L.

    2004-01-01

    The Saint Elias orogen of southern Alaska and adjacent Canada is a complex belt of mountains formed by collision and accretion of the Yakutat terrane into the transition zone from transform faulting to subduction in the northeast Pacific. The orogen is an active analog for tectonic processes that formed much of the North American Cordillera, and is also an important site to study (1) the relationships between climate and tectonics, and (2) structures that generate large- to great-magnitude earthquakes. The Yakutat terrane is a fragment of the North American plate margin that is partly subducted beneath and partly accreted to the continental margin of southern Alaska. Interaction between the Yakutat terrane and the North American and Pacific plates causes significant differences in the style of deformation within the terrane. Deformation in the eastern part of the terrane is caused by strike-slip faulting along the Fairweather transform fault and by reverse faulting beneath the coastal mountains, but there is little deformation immediately offshore. The central part of the orogen is marked by thrusting of the Yakutat terrane beneath the North American plate along the Chugach-Saint Elias fault and development of a wide, thin-skinned fold-and-thrust belt. Strike-slip faulting in this segment may he localized in the hanging wall of the Chugach-Saint Elias fault, or dissipated by thrust faulting beneath a north-northeast-trending belt of active deformation that cuts obliquely across the eastern end of the fold-and-thrust belt. Superimposed folds with complex shapes and plunging hinge lines accommodate horizontal shortening and extension in the western part of the orogen, where the sedimentary cover of the Yakutat terrane is accreted into the upper plate of the Aleutian subduction zone. These three structural segments are separated by transverse tectonic boundaries that cut across the Yakutat terrane and also coincide with the courses of piedmont glaciers that flow from

  6. Geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    USGS Publications Warehouse

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    2015-01-01

    The boundaries separating the Alaska Peninsula terrane from other terranes are commonly indistinct or poorly defined. A few boundaries have been defined at major faults, although the extensions of these faults are speculative through some areas. The west side of the Alaska Peninsula terrane is overlapped by Tertiary sedimentary and volcanic rocks and Quaternary deposits.

  7. Atmospheric Ar and Ne returned from mantle depths to the Earth's surface by forearc recycling.

    PubMed

    Baldwin, Suzanne L; Das, J P

    2015-11-17

    In subduction zones, sediments, hydrothermally altered lithosphere, fluids, and atmospheric gases are transported into the mantle, where ultrahigh-pressure (UHP) metamorphism takes place. However, the extent to which atmospheric noble gases are trapped in minerals crystallized during UHP metamorphism is unknown. We measured Ar and Ne trapped in phengite and omphacite from the youngest known UHP terrane on Earth to determine the composition of Ar and Ne returned from mantle depths to the surface by forearc recycling. An (40)Ar/(39)Ar age [7.93 ± 0.10 My (1σ)] for phengite is interpreted as the timing of crystallization at mantle depths and indicates that (40)Ar/(39)Ar phengite ages reliably record the timing of UHP metamorphism. Both phengite and omphacite yielded atmospheric (38)Ar/(36)Ar and (20)Ne/(22)Ne. Our study provides the first documentation, to our knowledge, of entrapment of atmospheric Ar and Ne in phengite and omphacite. Results indicate that a subduction barrier for atmospheric-derived noble gases does not exist at mantle depths associated with UHP metamorphism. We show that the crystallization age together with the isotopic composition of nonradiogenic noble gases trapped in minerals formed during subsolidus crystallization at mantle depths can be used to unambiguously assess forearc recycling of atmospheric noble gases. The flux of atmospheric noble gas entering the deep Earth through subduction and returning to the surface cannot be fully realized until the abundances of atmospheric noble gases trapped in exhumed UHP rocks are known.

  8. Crustal structure and continental dynamics of Central China: A receiver function study and implications for ultrahigh-pressure metamorphism

    NASA Astrophysics Data System (ADS)

    He, Chuansong; Dong, Shuwen; Chen, Xuanhua; Santosh, M.; Li, Qiusheng

    2014-01-01

    The Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt records the tectonic history of Paleozoic convergence between the South China and North China Blocks. In this study, the distribution of crustal thickness and P- and S-wave velocity ratio (Vp/Vs) is obtained by using the H-k stacking technique from the Dabie-Sulu belt in central China. Our results show marked differences in the crustal structure between the Dabie and Sulu segments of the ultrahigh-pressure (UHP) orogen. The lower crust in the Dabie orogenic belt is dominantly of felsic-intermediate composition, whereas the crust beneath the Sulu segment is largely intermediate-mafic. The crust of the Dabie orogenic belt is thicker by ca. 3-5 km as compared to that of the surrounding region with the presence of an ‘orogenic root’. The crustal thickness is nearly uniform in the Dabie orogenic belt with a generally smooth crust-mantle boundary. A symmetrically thickened crust in the absence of any deep-structural features similar to that of the Yangtze block suggests no supportive evidence for the proposed northward subduction of the Yangtze continental block beneath the North China Block. We propose that the collision between the Yangtze and North China Blocks and extrusion caused crustal shortening and thickening, as well as delamination of the lower crust, resulting in asthenospheric upwelling and lower crustal UHP metamorphism along the Dabie Orogen. Our results also reveal the presence of a SE to NW dipping Moho in the North China Block (beneath the Tran-North China Orogen and Eastern Block), suggesting the fossil architecture of the northwestward subduction of the Kula plate.

  9. Some contrasting biostratigraphic links between the Baker and Olds Ferry Terranes, eastern Oregon

    USGS Publications Warehouse

    Nestell, Merlynd K.; Blome, Charles D.

    2016-01-01

    New stratigraphic and paleontologic data indicate that ophiolitic melange windows in the Olds Ferry terrane of eastern Oregon contain limestone blocks and chert that are somewhat different in age than those present in the adjacent Baker terrane melange. The melange windows in the Olds Ferry terrane occur as inliers in the flyschoid Early and Middle Jurassic age Weatherby Formation, which depositionally overlies the contact between the melange-rich Devonian to Upper Triassic rocks of the Baker terrane on the north, and Upper Triassic and Early Jurassic volcanic arc rocks of the Huntington Formation on the south. The Baker terrane and Huntington Formation represent fragments of a subduction complex and related volcanic island arc, whereas the Weatherby Formation consists of forearc basin sedimentary deposits. The tectonic blocks in the melange windows of the Weatherby Formation (in the Olds Ferry terrane) are dated by scarce biostratigraphic evidence as Upper Pennsylvanian to Lower Permian and Upper Triassic. In contrast, tectonic blocks of limestone in theBaker terrane yield mostly fusulinids and small foraminifers of Middle Pennsylvanian Moscovian age at one locality.Middle Permian (Guadalupian) Tethyan fusulinids and smaller foraminifers (neoschwagerinids and other Middle Permian genera) are present at a few other localities. Late Triassic conodonts and bryozoans are also present in a few of the Baker terrane tectonic blocks. These limestone blocks are generally embedded in Permian and Triassic radiolarian bearing chert or argillite. Based on conodont, radiolarian and fusulinid data, the age limits of the meange blocks in the Weatherby Formation range from Pennsylvanian to Late Triassic.

  10. Paleobiogeographic affinities of emsian (late early devonian) gastropods from farewell terrane (west-central Alaska)

    USGS Publications Warehouse

    Fryda, J.; Blodgett, R.B.

    2008-01-01

    The vast majority of Emsian gastropods from Limestone Mountain, Medfra B-4 quadrangle, west-central Alaska (Farewell terrane) belong to species with lecithotrophic larval strategy. The present data show that there is no significant difference in the paleobiogeo-graphic distribution of Emsian gastropod genera with lecithotrophic and planktotrophic larval strategies. Numerical analysis of the faunal affinities of the Emsian gastropod fauna from the Farewell terrane reveals that this terrane has much stronger faunal connections to regions like Variscan Europe, eastern Australia, and the Alexander terrane of southeast Alaska than to cratonic North America (Laurentia). The Canadian Arctic Islands is the only region of cratonic North America (Laurentia) that shows significant faunal affinities to the Emsian gastropod faunas of the Farewell terrane. The analysis also indicates a close faunal link between the Farewell and Alexander terranes. Published paleontological and geological data suggest that the Farewell and Alexander terranes represents tectonic entities that have been rifted away from the Siberia, Baltica, or the paleo-Pacific margin of Australia. The results of the present numerical analysis are not in conflict with any of these possibilities. However, the principle of spatial continuity of the wandering path prefers Siberia as the most probable "parental" paleocontinent for the derivation of both the Farewell and Alexander terranes. ?? 2008 The Geological Society of America.

  11. The Late Triassic bivalve Monotis in accreted terranes of Alaska

    USGS Publications Warehouse

    Silberling, Norman J.; Grant-Mackie, J. A.; Nichols, K.M.

    1997-01-01

    Late Triassic bivalves of the genus Monotis occur in at least 16 of the lithotectonic terranes and subterranes that together comprise nearly all of Alaska, and they also occur in the Upper Yukon region of Alaska where Triassic strata are regarded as representing non-accretionary North America. On the basis of collections made thus far, 14 kinds of Monotis that differ at the species or subspecies level can be recognized from alaska. These are grouped into the subgenera Monotis (Monotis), M. (Pacimonotis), M. (Entomonotis), and M. (Eomonotis). In places, Monotis shells of one kind or another occur in rock-forming abundance. On the basis of superpositional data from Alaska, as well as from elsewhere in North America and Far Eastern Russia, at least four distince biostratigraphic levels can be discriminated utilizing Monotis species. Different species of M. (Eomonotis) characterize two middle Norian levels, both probably within the supper middle Norian Columbianus Ammonite Zone. Two additional levels are recognized in the lower upper Norian Cordilleranus Ammonite Zone utilizing species of M. (Monotis) or M. (Entomonotis), both of which subgenera are restricted to the late Norian. An attached-floating mode of life is commonly attributed to Monotis; thus, these bivalves would have been pseudoplanktonic surface dwellers that were sensitive to surface-water temperature and paleolatitude. Distinctly different kinds of Monotis occur at different paleolatitudes along the Pacific and Arctic margins of the North American craton inboard of the accreted terranes. Comparison between thse craton-bound Monotis faunas and those of the Alaskan terranes in southern Alaska south of the Denali fault were paleoequatorial in latitude during Late Triassic time. Among these terranes, the Alexander terrane was possibly in the southern hemisphere at that time. Terranes of northern Alaska, on the other hand, represent middle, possibly high-middle, northern paleolatitudes.

  12. Role of strike-slip faulting in the evolution of allochthonous terranes in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karig, D.E.; Sarewitz, D.R.; Haeck, G.D.

    1986-10-01

    Concepts of allochthonous terrane transport and emplacement are dominated by the assumption that most terranes originate on the subducting plate, collide with the upper plate, and are emplaced there. Movement of terranes along the convergent margin is recognized but is generally attributed to postcollision slip. In the northern Philippines, allochthonous terranes originate primarily within the arc system, have been translated along it by strike-slip faults, and were emplaced by cessation of that slip. The authors suggest that in the Philippines some originally vertical strike-slip boundaries may have evolved into shallow-dipping sutures marked by fold and thrust systems. This mode ofmore » terrane evolution may be more common than generally appreciated, particularly in orogenic belts developed in response to oblique convergence.« less

  13. Timing of the final closure of the Paleo-Asian Ocean in the Alxa Terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Zhao, Guochun

    2017-04-01

    The Alxa Terrane is a crucial place situated between the North China Craton to the east and the Tarim Craton to the west. The Late Paleozoic magmatic record in the Alxa Terrane places important constraints on the timing of the final closure of the middle segment of the Paleo-Asian Ocean (PAO). In this study, new LA-ICPMS zircon U-Pb dating results reveal ca. 300-268 Ma gabbros and diorites in the Bayan Nuru area in the eastern part of the Alxa Terrane. The 300 Ma gabbros show plagioclase accumulations with anorthite compositions (An92-95), arc-like geochemical affinities with relative enrichment in large ionic lithophile elements and depletion in high field strength elements (e.g., Ti, Nb and Ta), as well as negative Hf(t) (-6.01 to -1.75) and Nd(t) (-9.5 to -7.1) values and high initial 87Sr/86Sr ratios (0.707157-0.707220). These features indicate a magma source of an enriched lithospheric mantle metasomatized by high fluid activities. In comparison, the 280-268 Ma gabbros and diorites also have arc-like geochemical affinities but show increasingly evolved isotope compositions, implying more sediment inputs. Compiled zircon ɛHf(t) and whole-rock ɛNd(t) values of the magmatic rocks in the Alxa Terrane decrease from the Late Carboniferous to the Early Permian, and increase from the Middle Permian to the Triassic. The considerably large spread in ɛHf(t) and ɛNd(t) values at ca. 280-265 Ma likely reflects a tectonic switch from a subduction setting to a post-collisional setting, corresponding to the timing of the final closure of the PAO in the Alxa Terrane. Thus, the PAO progressively closed from west to east along the northern margin of the Tarim Craton, the Alxa Terrane, and then the northern margin of the North China Craton during Late Carboniferous to Middle Triassic time. This work was financially supported by a NSFC Project (41190075) entitled "Final Closure of the Paleo-Asian ocean and Reconstruction of East Asian Blocks in Pangea", the fifth

  14. Early Precambrian gneiss terranes and Pan-African island arcs in Yemen: Crustal accretion of the eastern Arabian Shield

    NASA Astrophysics Data System (ADS)

    Windley, Brian F.; Whitehouse, Martin J.; Ba-Bttat, Mahfood A. O.

    1996-02-01

    Within the Precambrian of Yemen, we have identified four gneiss terranes and two island-arc terranes on the basis of existing literature, mapping, and our own field observations, together with new Sm-Nd isotopic data. The two western gneiss terranes can be correlated with well-documented terranes (Asir and Afif) in Saudi Arabia. To the east of these, the Abas and Al-Mahfid gneiss terranes yield Sm-Nd model ages (tDM) of 1.7 2.3 Ga and 1.3 2.7 Ga, respectively, and cannot be correlated with any documented terranes in Saudi Arabia. These two terranes are separated by a Pan-African island-arc terrane that has been obducted onto one or both of the gneiss terranes, and a second arc bounds the Al-Mahfid gneiss terrane to the east. Our discovery of extensive Proterozoic to late Archean gneisses in Yemen provides important constraints upon the much-discussed tectonic framework of northeast Gondwana and the rate of Pan-African crustal growth. The terranes in Yemen may be correlated with comparable terranes on the eastern margin of the Arabian Shield and in northern Somalia. Thus Yemen provides a link between the arc collage of the Arabian Shield and the gneissic Mozambique belt of East Africa.

  15. Seismic evidence for multiple-stage exhumation of high/ultrahigh pressure metamorphic rocks in the eastern Dabie orogenic belt

    NASA Astrophysics Data System (ADS)

    Luo, Yinhe; Zhao, Kaifeng; Tang, Chi-Chia; Xu, Yixian

    2018-05-01

    The Dabie-Sulu orogenic belt in China contains one of the largest exposures of high and ultrahigh pressure (HP and UHP) metamorphic rocks in the world. The origin of HP/UHP metamorphic rocks and their exhumation to the surface in this belt have attracted great interest in the geologic community because the study of exhumation history of HP/UHP rocks helps to understand the process of continental-continental collision and the tectonic evolution of post-collision. However, the exhumation mechanism of the HP-UHP rocks to the surface is still contentious. In this study, by deploying 28 broadband seismic stations in the eastern Dabie orogenic belt and combining seismic data from 40 stations of the China National Seismic Network (CNSN), we image the high-resolution crustal isotropic shear velocity and radial anisotropy structure using ambient noise tomography. Our high-resolution 3D models provide new information about the exhumation mechanism of HP/UHP rocks and the origin of two dome structures.

  16. Eclogite-facies metamorphism in impure marble from north Qaidam orogenic belt: Geodynamic implications for early Paleozoic continental-arc collision

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Xu, Rongke; Schertl, Hans-Peter; Zheng, Youye

    2018-06-01

    In the North Qaidam ultrahigh-pressure (UHP) metamorphic belt, impure marble and interbedded eclogite represent a particular sedimentary provenance and tectonic setting, which have important implications for a controversial problem - the dynamic evolution of early Paleozoic subduction-collision complexes. In this contribution, detailed field work, mineral chemistry, and whole-rock geochemistry are presented for impure marble to provide the first direct evidence for the recycling of carbonate sediments under ultrahigh-pressures during subduction and collision in the Yuka terrane, in the North Qaidam UHP metamorphic belt. According to conventional geothermobarometry, pre-peak subduction to 0.8-1.3 GPa/485-569 °C was followed by peak UHP metamorphism at 2.5-3.3 GPa/567-754 °C and cooling to amphibolite facies conditions at 0.6-0.7 GPa/571-589 °C. U-Pb dating of zircons from impure marble reveals a large group with ages ranging from 441 to 458 Ma (peak at 450 Ma), a smaller group ranging from 770 to 1000 Ma (peak at 780 Ma), and minor >1.8 Ga zircon aged ca. 430 Ma UHP metamorphism. The youngest detrital zircons suggest a maximum depositional age of ca. 442 Ma and a burial rate of ca. 1.0-1.1 cm/yr when combined with P-T conditions and UHP metamorphic age. The REE and trace element patterns of impure marble with positive Sr and U anomalies, negative high field strength elements (Nb, Ta, Zr, Hf, and Ti), and Ce anomalies imply that the marble had a marine limestone precursor. Impure marble intercalated with micaschist and eclogite was similar to limestone and siltstone protoliths deposited in continental fore-arc or arc setting with basic volcanic activity. Therefore, the Yuka terrane most likely evolved in a continental island arc setting during the Paleozoic. These data suggest that metasediments were derived from a mixture of Proterozoic continental crust and juvenile early Paleozoic oceanic and/or island arc crust. In addition, their protoliths were likely

  17. Unraveling the Switch from Subduction to Exhumation within a Collisional Orogen: Split-stream U-Pb and Trace-element Results from the Western Gneiss Region, Norway (Invited)

    NASA Astrophysics Data System (ADS)

    Gordon, S. M.; Whitney, D. L.; Teyssier, C. P.; Fossen, H.; Desormeau, J. W.; Jessen, B.

    2013-12-01

    During continental collision, crustal material may be subducted to great depths and subsequently exhumed. Ultrahigh-pressure (UHP) terranes preserve a record of the subduction of crustal material during suturing of colliding continents and the exhumation of this material during extension and, in some cases, collapse of the orogen. The UHP rocks of the Western Gneiss Region (WGR), Norway, resulted from the collision of Baltica with Laurentia during the final stages of the Caledonian orogeny. The WGR represents one of the two largest UHP terranes on Earth and consists of a UHP eclogite-bearing domain south of the Møre-Trøndelag strike-slip fault and a HP mafic granulite-bearing domain north of the fault. At least some of the HP granulite is overprinted eclogite. To evaluate the metamorphic and structural relationship of mafic rocks and associated migmatite in both regions, we obtained LA-ICP-MS U-Pb dates and trace-element analyses for zircon from a variety of textural types of leucosome associated with mafic layers and lenses. Five leucosomes within highly deformed migmatite in the HP granulite complex on the Roan Peninsula reveal U-Pb lower-intercept ages from ca. 405 to 409 Ma and upper-intercept Proterozoic dates. These zircons have distinct trace-elements patterns: all of the zircons that yield Proterozoic dates have overall much higher REE concentrations, a more significant negative Eu anomaly (-0.3 to -0.7) and steeper HREE patterns (Lu/Dy = 5-12). In comparison, the Caledonian zircons reveal flatter Eu anomalies (-0.3 to 0.2) and less steep HREE patterns (Lu/Dy = 2-7), although the individual patterns do not seem to correlate with age. The Caledonian zircon patterns suggest crystallization at high-pressures and are distinct from the inherited Proterozoic grains. Similar results were obtained from zircon rims extracted from layer-parallel to crosscutting leucosomes from the UHP domain. Trace elements in zircon in these samples record the transition from high

  18. Provenance of sandstones in the Golconda terrane, north central Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, E.A.

    1991-02-01

    The upper Paleozoic Golconda terrane of north-central Nevada is a composite of several structurally bounded subterranes made of clastic, volcanic, and carbonate rocks. The clastic rocks provide important clues for the interpretation of the provenance and paleogeographic settings of the different lithologic assemblages found in these subterranes. Two petrographically distinct sandstones are identified in the Golconda terrane in the Osgood Mountains and the Hot springs Range of north-central Nevada. The sandstone of the Mississippian Farrel Canyon Formation, part of the Dry Hills subterrane, is characterized by quartzose and sedimentary and lithic-rich clasts with a small feldspar component. in contrast, themore » sandstone of the Permian Poverty Peak (II) subterrane is a silty quartzarenite with no lithic component, and a very limited feldspar component. The sandstone of the Farrel Canyon Formation is similar to nonvolcanic sandstones reported from elsewhere in the Golconda terrane. Modal data reflect a provenance of a recycled orogen and permit the interpretation that it could have been derived from the antler orogen as has been proposed for other sandstones of the golconda terrane. The sandstone of the Poverty Peak (II) subterrane is more mature than any of the other sandstones in either the Golconda terrane, the Antler overlap sequence, or the Antler foreland basin sequence. Modal data put the Poverty Peak (II) sandstone in the continental block provenance category. The distinct extrabasinal provenances represented in these different sandstones support the idea that the Golconda basin was made up of complex paleogeographic settings, which included multiple sources of extrabasinal sediment.« less

  19. Role of mantle dynamics in rebuilding the Tianshan Orogenic Belt in NW China: A seismic tomographic investigation

    NASA Astrophysics Data System (ADS)

    He, Chuansong; Santosh, M.

    2018-05-01

    The Tianshan orogenic belt, Junggar terrane and Altai terrane are located at the southwestern part of the Central Asian Orogenic Belt (CAOB). Here, we investigate the velocity structure beneath the Xinjiang region in NW China, which includes the Tarim terrane, Tianshan orogenic belt, Junggar terrane and Altai terrane with a view to evaluate the mantle dynamics based on teleseismic data recorded by 103 seismic stations. Our tomographic results show both high and low velocity perturbations beneath the Tianshan orogenic belt. We suggest that the high velocity perturbations beneath this orogenic belt might represent the northward subducted lithosphere of the Tarim Basin and the southward subducted lithosphere of the Junggar Basin. The low velocity structure beneath the Tianshan orogenic belt might represent asthenosphere upwelling that triggered the extensive magmatism which contributed to rebuilding of the Tianshan orogenic belt.

  20. Atmospheric Ar and Ne returned from mantle depths to the Earth’s surface by forearc recycling

    PubMed Central

    Baldwin, Suzanne L.; Das, J. P.

    2015-01-01

    In subduction zones, sediments, hydrothermally altered lithosphere, fluids, and atmospheric gases are transported into the mantle, where ultrahigh-pressure (UHP) metamorphism takes place. However, the extent to which atmospheric noble gases are trapped in minerals crystallized during UHP metamorphism is unknown. We measured Ar and Ne trapped in phengite and omphacite from the youngest known UHP terrane on Earth to determine the composition of Ar and Ne returned from mantle depths to the surface by forearc recycling. An 40Ar/39Ar age [7.93 ± 0.10 My (1σ)] for phengite is interpreted as the timing of crystallization at mantle depths and indicates that 40Ar/39Ar phengite ages reliably record the timing of UHP metamorphism. Both phengite and omphacite yielded atmospheric 38Ar/36Ar and 20Ne/22Ne. Our study provides the first documentation, to our knowledge, of entrapment of atmospheric Ar and Ne in phengite and omphacite. Results indicate that a subduction barrier for atmospheric-derived noble gases does not exist at mantle depths associated with UHP metamorphism. We show that the crystallization age together with the isotopic composition of nonradiogenic noble gases trapped in minerals formed during subsolidus crystallization at mantle depths can be used to unambiguously assess forearc recycling of atmospheric noble gases. The flux of atmospheric noble gas entering the deep Earth through subduction and returning to the surface cannot be fully realized until the abundances of atmospheric noble gases trapped in exhumed UHP rocks are known. PMID:26542683

  1. UHP metamorphism in the Western Mediterranean : A tale of a Tethys fragment (Edough Massif, NE Algeria) and its geodynamic consequences

    NASA Astrophysics Data System (ADS)

    Bruguier, Olivier; Bosch, Delphine; Caby, Renaud; Fernandez, Laure; Abdallah, Nachida; Arnaud, Nicolas; Hammor, Dalila; Laouar, Rabah; Mechati, Medhi; Monié, Patrick; Ouabadi, Aziouz; Toubal, Abder

    2016-04-01

    The Edough Massif of NE Algeria is part of the Maghrebides, a peri-Mediterranean Alpine belt that extends from Morocco to Tunisia. The belt resulted mainly from the eastward retreat of the Tethyan slab and from the drift of continental fragments, some of which finally collided with the north African margin. In this study we report the recent discovery of metamorphic diamonds (5-30 μm in size) included in a garnet megacryst and identified by Raman spectroscopy and the characteristic sharp band at 1332 cm-1 for crystalline diamond. The studied megacryst was taken from a weathered actinolitite horizon inserted within a major mylonite-ultramylonite band, which outcrops at the base of an allochtonous oceanic unit thrust onto the African paleomargin. The host garnet is almandine-dominant with a sharp increase in grossular component in the rim and is rich in exsolution of small acicular rutile needles. Major and trace elements show a gradual but significant zonation from core to rim characterized by a decrease in HREE, Y and Mn, typical of a prograde growth in a closed system. Trace element analyses of large prismatic rutile (up to 300 μm) indicate that the host metamorphic rock was a mafic protolith of MORB affinity and the Zr-in-rutile thermometry indicates a temperature range of 724-778°C for rutile growth. U-Pb analyses of these large rutile crystals provide an age of 32.4 ± 3.3 Ma interpreted as dating the prograde subduction stage of the mafic protolith. Minute zircons (≤ 30μm), disseminated in the garnet, display a multifaceted appearance and low Th/U ratios consistent with a metamorphic origin. The lack of HREE depletion in these zircons indicates that their metamorphic growth was not coeval with garnet. U-Pb analyses and Ti-in-zircon thermometry indicate they nucleated at 20.9 ± 2.2 Ma during near isothermal decompression related to exhumation of the UHP units. This study allows bracketing the age of UHP metamorphism in the Western Mediterranean to the

  2. New Insights from Seismic Imaging over the Youanmi Terrane, Western Australia

    NASA Astrophysics Data System (ADS)

    Ahmadi, Omid; Juhlin, Christopher

    2014-05-01

    The Youanmi terrane is located in the central parts of the Yilgarn craton, Western Australia, an Archean granite-greenstone unit containing numerous mineral deposits such as gold, base metals, nickel, uranium and gemstones. The terrane is surrounded by the Kalgoorlie and Narryer terranes to the east and west, respectively. To the southwest it is bounded by the South West terrane. In order to study the transitions between the Youanmi terrane and the surrounding terranes, as well as identifying potential mineral rich areas, the Geological Survey of Western Australia acquired three deep crustal 2D seismic profiles with a total length of about 700 km in 2010. Correlated record lengths of 20 seconds allow the deep structure of the crust to be investigated with the data, down to Moho depths and greater. Initial processing using a conventional 2D flow show a highly reflective crust with several interesting features. We have now reprocessed the data following mainly the previous processing flow, but with a focus on the shallower crust, less than 10 seconds (about 27 km). Due to the complex geology in the region, 3D aspects of the structures need to be considered in the data processing. Therefore, we investigated the effect of cross-dip corrections to the data. The cross-dip correction has two advantages; (i) reflections are more coherent and enhanced after the correction and (ii) the orientation and dip angle of the geological structures of the corresponding reflections can be identified in the cross-line direction. Where the profiles intersect each other sparse 3D processing can be performed. First arrival travel-time tomography was also tested on parts of the dataset. Travel-time inversion may provide better velocity models at shallow depths than standard reflection seismic processing provides. Preliminary results show that the travel-time tomography has a depth of investigation of about 1 km, a depth that is of interest for mining purposes. Therefore, the tomography

  3. Protolith relations of the Gravina belt and Yukon-Tanana terrane in central southeastern Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClelland, W.C.; Gehrels, G.E.; Patchett, P.J.

    1992-01-01

    Metamorphic rocks west of the Coast Mountains batholith in central southeastern Alaska are divided into the Gravina belt, Taku terrane, and newly defined Ruth assemblage. The Ruth assemblage comprises metapelite, quartzose metaclastic strata, quartzite, marble, felsic metatuff, mafic metavolcanic rocks, and orthogneiss. Depositional and emplacement ages of 367 {plus minus} 10 Ma and 345 {plus minus} 13 Ma inferred from discordant U/Pb zircon analyses on felsic metatuff and granodioritic orthogneiss, respectively, require that at least portions of the Ruth assemblage be Late Devonian and early Mississippian in age. The assemblage is similar in age and protolith to, and thus correlatedmore » with, the Yukon-Tanana terrane. The Gravina belt is characterized by upper Jurassic and lower Cretaceous mafic volcanic rocks and tuffaceous turbiditic clastic strata that unconformably overlie the Alexander terrane. Metamorphic rocks that structurally underlie the Taku terrane and Rugh assemblage are included in this assemblage. Trace element geochemistry and the abundance of pyroclastic flows associated with tuffaceous turbidites suggest that the Gravina belt evolved in an intra-arc basinal setting. In central southeastern Alaska, the mid-Cretaceous structure that currently separates the Ruth assemblage (Yukon-Tanana correlative) from the Gravina belt marks the fundamental boundary between the Alexander-Wrangellia terrane and inboard Yukon-Tanana and Stikine terranes.« less

  4. Subduction metamorphism in the Himalayan ultrahigh-pressure Tso Morari massif: An integrated geodynamic and petrological modelling approach

    NASA Astrophysics Data System (ADS)

    Palin, Richard M.; Reuber, Georg S.; White, Richard W.; Kaus, Boris J. P.; Weller, Owen M.

    2017-06-01

    The Tso Morari massif is one of only two regions where ultrahigh-pressure (UHP) metamorphism of subducted crust has been documented in the Himalayan Range. The tectonic evolution of the massif is enigmatic, as reported pressure estimates for peak metamorphism vary from ∼2.4 GPa to ∼4.8 GPa. This uncertainty is problematic for constructing large-scale numerical models of the early stages of India-Asia collision. To address this, we provide new constraints on the tectonothermal evolution of the massif via a combined geodynamic and petrological forward-modelling approach. A prograde-to-peak pressure-temperature-time (P-T-t) path has been derived from thermomechanical simulations tailored for Eocene subduction in the northwestern Himalaya. Phase equilibrium modelling performed along this P-T path has described the petrological evolution of felsic and mafic components of the massif crust, and shows that differences in their fluid contents would have controlled the degree of metamorphic phase transformation in each during subduction. Our model predicts that peak P-T conditions of ∼2.6-2.8 GPa and ∼600-620 ∘C, representative of 90-100 km depth (assuming lithostatic pressure), could have been reached just ∼3 Myr after the onset of subduction of continental crust. This P-T path and subduction duration correlate well with constraints reported for similar UHP eclogite in the Kaghan Valley, Pakistan Himalaya, suggesting that the northwest Himalaya contains dismembered remnants of what may have been a ∼400-km-long UHP terrane comparable in size to the Western Gneiss Region, Norway, and the Dabie-Sulu belt, China. A maximum overpressure of ∼0.5 GPa was calculated in our simulations for a homogeneous crust, although small-scale mechanical heterogeneities may produce overpressures that are larger in magnitude. Nonetheless, the extremely high pressures for peak metamorphism reported by some workers (up to 4.8 GPa) are unreliable owing to conventional thermobarometry

  5. Magnetic susceptibility of ultrahigh pressure eclogite: The role of retrogression

    NASA Astrophysics Data System (ADS)

    Xu, Haijun; Jin, Zhenmin; Mason, Roger; Ou, Xingong

    2009-09-01

    Retrograde metamorphism played the dominant role in changing the low-field rock magnetic properties and density of 198 specimens of variably retrograded eclogites from the main borehole of the Chinese Continental Scientific Drilling Project (CCSD) and from surface outcrops in the Donghai area in the southern part of the Sulu UHP belt, China. Bulk magnetic susceptibility ( κ) of unretrogressed UHP eclogite is controlled by whole-rock chemical composition and ranges from 397 to 2312 μSI with principal magnetic susceptibility carrying minerals paramagnetic garnet, omphacite, rutile and phengite. Partially retrograded eclogites show large variations in magnetic susceptibility between 804 and 24,277 μSI, with high mean magnetic susceptibility values of 4372 ± 4149 μSI caused by appreciable amounts of Fe-Ti oxide minerals such as magnetite, ilmenite and/or titanohematite produced by retrograde metamorphic reactions. Completely retrograded eclogites have lower susceptibilities of 1094 ± 600 μSI and amphibolite facies mineral assemblages lacking high magnetic susceptibility minerals. Jelínek's corrected anisotropy ( Pj) of eclogites ranges from 1.001 to 1.540, and shows a positive correlation with low-field magnetic susceptibility ( κ). Arithmetic mean bulk density ( ρ) shows a steady decrease from 3.54 ± 0.11 g/cm 3 (fresh eclogite) to 2.98 ± 0.06 g/cm 3 (completely retrograded eclogite). Retrograde metamorphic changes in mineral composition during exhumation appear to be the major factor causing variations in low field magnetic susceptibility and anisotropy. Retrograde processes must be taken into account when interpreting magnetic surveys and geophysical well logs in UHP metamorphic terranes, and petrophysical properties such as density and low-field magnetic susceptibility could provide a means for semi-quantifying the degree of retrogression of eclogite during exhumation.

  6. Tracing collisional route of the Danubian terranes (South Carpathians, Romania), using detrital U-Pb isotopic record

    NASA Astrophysics Data System (ADS)

    Balica, Constantin; Balintoni, Ioan; Campeanu, Mara

    2017-04-01

    The Danubian Realm of the South Carpathians, Romania, comprises a set of Alpine tectonic units exposed in a large tectonic window, under the Getic Realm. Each of the Danubian tectonic unit has a pre-Alpine basement composed mainly of high-grade metamorphic rocks, several Neoproterozoic granitoids (e.g. [1]), and low-grade Paleozoic formations. The whole basement is intruded by Variscan plutons. Two pre-Variscan metamorphic rock sequences of Pan-African origin [2] have been identified in the Danubian basement: The Drǎgșan and Lainici Pǎiuș. The relation between these two groups is purely tectonic, since they are separated by a Variscan thrust fault. An oceanic crust fragment, (i.e. Tisovița terrane), of presumably Early Devonian age separates the Drǎgșan and Lainici-Pǎiuș pre-Variscan terranes by the Poiana Mraconia terrane fragment of presumably Getic affinity. Generally, most of the doubts in what concen the origin and provenance of the two main terranes, Lainici-Pǎiuș and Drǎgșan, have been cleared up [3]. According to the latest review, the large metasedimentary Lainici-Pǎiuș tract, extensively crosscutted by a network of heterogranular leucogranite and pierced by Cadomian granitoid plutons correspond to a continental margin volcanic arc of Ganderian origin and Peri-Amazonian provenance. The time of formation is constrained, based on the presence of ca 600 Ma granitoid plutons which is Late Neoproterozoic [3]. On what concerns the Drǎgșan terrane, its main lithology (i.e. banded amphibolites) has oceanic island arc isotopic and geochemical signatures [3]. In fact, its lithostratigraphic composition - a lower orthogneiss assemblage, a median metabasic-ultrabasic assemblage and an upper mica gneiss unit- recommends it as of rather composite nature. One of the key points in constraining the age of the Drǎgșan terrane basement is the 808 Ma, age recorded by an augen gneiss zircons and the 811 Ma age recorded by some meta-rhyolite inherited zircons

  7. Gravity signatures of terrane accretion

    NASA Astrophysics Data System (ADS)

    Franco, Heather; Abbott, Dallas

    1999-01-01

    In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.

  8. Mineralogical Evidence for the Bulk Transformation of Continental Crust to Ultrahigh-Pressure Conditions in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Peterman, E. M.; Hacker, B. R.; Kylander-Clark, A. R.

    2005-12-01

    Evidence for (ultra)high-pressure --(U)HP-- metamorphism in modern orogenic belts and the preservation of exhumed (U)HP terranes around the world suggest that subduction and exhumation of continental crust plays an important role in Phanerozoic plate tectonics. The Western Gneiss region (WGR) of Norway, a major (U)HP province extending over 60,000 km2, provides an excellent opportunity to study how subduction to depths >100 km affects continental crust. By studying a ~60 km wide transect bounded to the north by Vartdalsfjorden and Rovdefjorden and the south by the Möre og Romsdal county boundary, we are able to examine mineralogical changes that occurred during subduction and exhumation within a rock composed predominantly of orthogneiss and variably transformed mafic bodies, which indicate the depths to which these rocks were subducted. Previous studies (e.g. Hacker et al., 2005) have suggested that Caledonian deformation in WGR host gneisses is primarily limited to brittle-ductile fabrics characterized by greenschist to lower-amphibolite facies metamorphism; the majority of the deformation in the rocks, including the pervasive foliation and foliation-parallel isoclinal folds, occurred between 1200 and 900 Ma. On the northern half of our study area, however, locally occurring neoblastic garnet crosscuts the foliation in the gneiss. The boundary of this garnet zone coincides with the local HP-UHP boundary, as determined by the presence of coesite in eclogite. Because garnet can retain information about changes in pressure and temperature, as well as the availability of water within the crust to catalyze chemical reactions, our findings suggest that 1) portions of the orthogneiss did transform at high pressures, 2) the presence of garnet within the orthogneiss may indicate conditions that approximate UHP and can therefore be useful in defining the boundaries between UHP and HP conditions, and 3) the growth of garnet during (U)HP metamorphism may be controlled by

  9. Seismic probing of continental subduction zones

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Xu, Xiaobing; Malusà, Marco G.

    2017-09-01

    High-resolution images of Earth's interior provide pivotal information for the understanding of a range of geodynamic processes, including continental subduction and exhumation of ultrahigh-pressure (UHP) metamorphic rocks. Here we present a synthesis of available global seismic observations on continental subduction zones, and selected examples of seismic probing from the European Alps, the Himalaya-Tibet and the Qinling-Dabie orogenic belts. Our synthesis and examples show that slabs recognized beneath exhumed continental UHP terranes generally have shallow dip angles (<45°) at depths <100 km, to become much steeper at depths >100 km. Slabs underlined by a clear high velocity anomaly from Earth's surface to the mantle are generally Cenozoic in age. Some of these slabs are continuous, whereas other continental subduction zones are located above discontinuous high velocity anomalies possibly suggesting slab breakoff. The density of seismic stations and the quality of recordings are of primary importance to get high-resolution images of the upper mantle to be used as a starting point to provide reliable geodynamic interpretations. In some cases, areas previously indicated as possible site of slab breakoff, such as the European Alps, have been later proven to be located above a continuous slab by using higher quality travel time data from denser seismic arrays. Discriminating between oceanic and continental slabs can be challenging, but valuable information can be provided by combining teleseismic tomography and receiver function analysis. The upper mantle beneath most continental UHP terranes generally shows complex seismic anisotropy patterns that are potentially preserved even in pre-Cenozoic subduction zones. These patterns can be used to provide information on continental slabs that are no longer highlighted by a clear high-velocity anomaly.

  10. Middle Proterozoic age for the Montpelier Anorthosite, Goochland terrane, eastern Piedmont, Virginia

    USGS Publications Warehouse

    Aleinikoff, J.N.; Horton, J. Wright; Walter, M.

    1996-01-01

    Uranium-lead dating of zircons from the Montpelier Anorthosite confirms previous interpretations, based on equivocal evidence, that the Goochland terrane in the eastern Piedmont of Virginia contains Grenvillian basement rocks of Middle Proterozoic age. A very few prismatic, elongate, euhedral zircons, which contain 12-29 ppm uranium, are interpreted to be igneous in origin. The vast majority of zircons are more equant, subangular to anhedral, contain 38-52 ppm uranium, and are interpreted to be metamorphic in origin. One fraction of elongate zircon, and four fragments of a very large zircon (occurring in a nelsonite segregation) yield an upper intercept age of 1045 ?? 10 Ma, interpreted as the time of anorthosite crystallization. Irregularly shaped metamorphic zircons are dated at 1011 ?? 2 Ma (weighted average of the 207Pb/206Pb ages). The U-Pb isotopic systematics of metamorphic titanite were reset during the Alleghanian orogeny at 297 ?? 5 Ma. These data provide a minimum age for gneisses of the Goochland terrane that are intruded by the anorthosite. Middle Proterozoic basement rocks of the Goochland terrane may be correlative with those in the Shenandoah massif of the Blue Ridge tectonic province, as suggested by similarities between the Montpelier Anorthosite and the Roseland anorthosite. Although the areal extent of Middle Proterozoic basement and basement-cover relations in the eastern Piedmont remain unresolved, results of this investigation indicate that the Goochland terrane is an internal massif of Laurentian crust rather than an exotic accreted terrane.

  11. Nd isotopic characterization of metamorphic rocks in the Coast Mountains, Alaskan and Canadian Cordillera: Ancient crust bounded by juvenile terranes

    NASA Astrophysics Data System (ADS)

    Samson, Scott D.; Patchett, P. Jonathan; McClelland, William C.; Gehrels, George E.

    1991-08-01

    Nd isotopic data are reported for 52 samples from the crustal region between the Alexander-Wrangellia terrane and the Stikine terrane of the Alaskan and Canadian Cordillera. This region is composed of the Gravina belt, a Jurassic-Cretaceous assemblage of volcanic and clastic sedimentary rocks, the Taku terrane, a terrane of probable Early Permian to Late Triassic age, and four assemblages of metamorphic rocks that occur to the west of and within the Coast Mountains batholith. The Gravina belt has ɛNd(T) values that range from -1.1 to +8.3, similar to values of the underlying Alexander terrane, and consistent with the interpretation that it is a juvenile belt that formed in a back-arc or intra-arc basin within the Alexander terrane. Mid-Cretaceous plutons that were emplaced into the Gravina belt have ɛNd(T) values of +4.4 to +5.7 and were probably produced by mantle-derived melts that incorporated some Alexander terrane crust. The Taku terrane has ɛNd(0) values that range from -5.5 to +3.3, with corresponding depleted-mantle model (TDM) ages of 440 to 1430 Ma. A mid-Cretaceous pluton intruding the Taku terrane has an ɛNd(T) value of +5.1, a value indistinguishable from those determined for Cretaceous plutons intruding the Gravina belt. Metamorphic rocks east of and structurally overlying the Taku terrane are divided into the Tracy Arm assemblage, ɛNd(0)=-26 to 0, TDM=800-2450 Ma; the Endicott Arm assemblage, eNd(0)=-10 to -1.3, TDM=950-1500 Ma; the Port Houghton assemblage, ɛNd(0)=-9.4 to +1.1, TDM = 550-1500 Ma; and the Ruth assemblage, ɛNd(0) = -9.4 to +2.0, TDM=650-1300 Ma. These isotopic signatures indicate that a substantial component of each metamorphic assemblage was derived from Precambrian continental crust. The metamorphic rocks from these assemblages are lithologically very similar to rocks of the Yukon-Tanana (YTT) terrane of eastern Alaska and Yukon Territory and have such similar U-Pb detrital zircon ages and Nd isotopic compositions to YTT

  12. Kinematics of the mosquito terrane, Coldfoot Area, Alaska: Keys to Brooks Range tectonics: Final report, Project No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, T.A.; Coney, P.J.

    1988-04-01

    Within the large-scale geometry of the Brooks Range, the Angayucham terrane occurs as a vast overthrust sheet. From the north flank of the Ruby terrane it underlies the Koyukuk basin and stretches north as the roof thrust to the various nappe terranes of the Brooks Range. The tectonic relationship of the Ruby terrane to the south flank of the Brooks Range lies largely obscured beneath the Angayucham in the eastern apex of the Koyukuk basin. The Mosquito terrane occurs as a window through the Angayucham at this juncture. The composition and structures of the Mosquito terrane reveal that is themore » result of shear along a sub-horizontal step or flange within the prominent, through-going dextral strike-slip fault system which cuts across the eastern Koyukuk basin and southeastern Brooks Range. Units of the Mosquito were derived from both the Angayucham and Ruby terranes. A consistent tectonic fabric imposed upon them is kinematically linked to the strike-slip system and indicates a northeasterly direction of transport across the terrane. The presence of Ruby-correlative units within the Mosquito suggests the Ruby underlies the Angayucham and that it is in contact with terrances of the southern Brooks Range at that structural level along high-angle strike-slip faults. These relationships demonstrate that an episode of dextral transpression is the latest in the history of terrane accretion and tectonic evolution of the Brooks Range. 35 refs.« less

  13. Basaltic Martian analogues from the Baikal Rift Zone and Mongolian terranes

    NASA Astrophysics Data System (ADS)

    Gurgurewicz, J.; Kostylew, J.

    2007-08-01

    In order to compare the results of studies of the western part of the Valles Marineris canyon on Mars there have been done field works on terrestrial surface areas similar with regard to geological setting and environmental conditions. One of the possible terrestrial analogues of the Valles Marineris canyon is the Baikal Rift Zone [1]. Field investigations have been done on the south end of the Baikal Lake, in the Khamar-Daban massif, where the outcrops of volcanic rocks occur. The second part of the field works has been done in the Mongolian terranes: Mandalovoo, Gobi Altay and Bayanhongor, because of environmental conditions being similar to those on Mars. The Mandalovoo terrane comprises a nearly continuous Paleozoic islandarc sequence [2]. In the Gobi Altay terrane an older sequence is capped by younger Devonian-Triassic volcanic-sedimentary deposits [2]. The Bayanhongor terrane forms a northwest-trending, discontinuous, narrow belt that consists of a large ophiolite allochton [3]. The collected samples of basalts derive from various geologic environments. The CORONA satellite-images have been used for the imaging of the Khamar-Daban massif and the Mandalovoo terrane. These images have the same spatial resolution and range as the Mars Orbiter Camera images of the Mars Global Surveyor mission. In the Mandalovoo terrane these images allowed to find an area with large amounts of tectonic structures, mainly faults (part of the Ongi massif), similar to the studied area on Mars. Microscopic observations in thin sections show diversification of composition and structures of basalts. These rocks have mostly a porphyric structure, rarely aphyric. The main components are plagioclases, pyroxenes and olivines phenocrysts, in different proportions. The groundmass usually consist of plagioclases, pyroxenes and opaques. The most diversified are basalts from the Mandalovoo terrane. Infrared spectroscopy has been used to analyse the composition of the rock material and compare

  14. White mica K-Ar geochronology of HP-UHP units in the Lago di Cignana area, western Alps, Italy: Tectonic implications for exhumation

    NASA Astrophysics Data System (ADS)

    Gouzu, Chitaro; Yagi, Koshi; Thanh, Ngo Xuan; Itaya, Tetsumaru; Compagnoni, Roberto

    2016-04-01

    High-pressure and ultra-high pressure (HP-UHP) blueschist- and eclogite-facies metabasaltic and metasedimentary rocks occur in four different tectonic units near Lago di Cignana, western Alps. We have determined K-Ar ages for white micas (matrix phengite and paragonite) from the Lago di Cignana UHP unit (LCU; 39-41 Ma); the lower and upper units of the Zermatt-Saas meta-ophiolite (LU and UU; 37-38 Ma and 38-41 Ma respectively), and the Combin unit (CU; 36-40 Ma). These K-Ar ages overlap with single-grain Ar-Ar plateau ages (36-42 Ma) previously determined for phengites from LCU metasediments. Matrix white micas have been severely deformed during exhumation, and their chemistries differ from those of micas included in garnet. Although individual mica grains in the matrix could have experienced different degrees of deformation which have reset their K-Ar systems, "bulk" white mica separates provide the average age of all the individual grains in the separate. The similarity of ages determined for white micas from the LCU, LU, UU and CU units, regardless of rock type and mineral species, suggests that these four units were metamorphosed together as part of a single metamorphic sequence in the Piemonte-Liguria paleosubduction zone and were subsequently exhumed together. However, present-day structural relationship among those units and the limited occurrence of UHP minerals in LCU suggests that the exhumation of LCU was more rapid than that for LU, UU and CU. The age gaps between the youngest value of white mica K-Ar ages in each unit and the inferred timing of the metamorphic peak (U-Pb age: 44 Ma) is 5, 7, 6 and 8 Myr for LCU, LU, UU and CU, respectively. These intervals are considerably shorter than that determined for the Sanbagawa HP metamorphic belt of Southwest Japan (> 31 Myr). The short interval observed for the Lago di Cignana units that we have studied is consistent with the model of rapid exhumation of the UHP-bearing metamorphic domain, suggesting the

  15. Early Paleozoic tectonics for the New Siberian Islands terrane (Eastern Arctic)

    NASA Astrophysics Data System (ADS)

    Metelkin, D. V.; Chernova, A. I.; Vernikovsky, V. A.; Matushkin, N. Yu.

    2017-11-01

    The New Siberian Islands archipelago is one of the few research objects accessible for direct study on the eastern Arctic shelf. There are several models that have different interpretations of the Paleozoic tectonic history and the structural affinity of the New Siberian Islands terrane. Some infer a direct relationship with the passive continental margin of the Siberian paleocontinent. Others connect it with the marginal basins of Baltica and Laurentia, or the Chukotka-Alaska microplate. Our paleomagnetic investigation led us to create an apparent polar wander path for the early Paleozoic interval of geological history. Based on it we can conclude that the New Siberian Islands terrane could not have been a part of these continental plates. This study considers the possible tectonic scenarios of the Paleozoic history of the Earth, presents and discusses the corresponding global reconstructions describing the paleogeography and probable mutual kinematics of the terranes of the Eastern Arctic.

  16. Three-dimensional velocity structure of Siletzia and other accreted terranes in the Cascadia forearc of Washington

    USGS Publications Warehouse

    Parsons, T.; Wells, R.E.; Fisher, M.A.; Flueh, E.; ten Brink, Uri S.

    1999-01-01

    Eocene mafic crust with high seismic velocities underlies much of the Oregon and Washington forearc and acts as a backstop for accretion of marine sedimentary rocks from the obliquely subducting Juan de Fuca slab. Arc-parallel migration of relatively strong blocks of this terrane, known as Siletzia, focuses upper crustal deformation along block boundaries, which are potential sources of earthquakes. In a three-dimensional velocity model of coastal Washington, we have combined surface geology, well data, and travel times from earthquakes and controlled source seismic experiments to resolve the major boundaries of the Siletz terrane with the adjacent accreted sedimentary prism and volcanic arc. In southern Washington and northern Oregon the Siletz terrane appears to be a thick block (???20 km) that extends west of the coastline and makes a high-angle contact with the offshore accreted sedimentary prism. On its east flank the high-velocity Siletz terrane boundary coincides with an en echelon zone of seismicity in the arc. In northern Washington the western edge of Siletzia makes a lower-angled, fault-bound contact with the accretionary prism. In addition, alternating, east-west trending uplifts and downwarps of the Siletz terrane centered on the antiformal Olympic Mountains may reflect focusing of north-south compression in the northern part of the Siletz terrane. This compressional strain may result from northward transport and clockwise rotation of the Siletz terrane into the relatively fixed Canadian Coast Mountains restraining bend along the coast.

  17. Neoproterozoic complexes of the shelf cover of the Dzabkhan terrane basement in the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Kozakov, I. K.; Kuznetsov, A. B.; Erdenegargal, Ch.; Salnikova, E. B.; Anisimova, I. V.; Plotkina, Ju. V.; Fedoseenko, A. M.

    2017-09-01

    The formation stages of high-grade metamorphic complexes and the related granitoids of the Dzabkhan terrane basement are considered. The age data (U-Pb method, TIMS) of zircons from the trondhjemite block of the eastern part of the Dzabkhan terrane, which is directly overlain by the dolomite sequence of the Tsagaan Oloom Formation, are given. Trondhjemites yield the U-Pb zircon age of 862 ± 3 Ma. In their structural position, they are assigned to typical postmetamorphic formations that determine the formation and cratonization of rocks of the host block. The geochronological study of trondhjemites gives grounds to distinguish fragments of the continental crust in the Dzabkhan terrane basement, the formation of which occurred at different periods of time: ˜860 and ˜790 Ma. Geological-geochronological and Sm‒Nd isotope-geochemical studies indicate that the Dzabkhan terrane basement is not a single block of the Early Precambrian continental crust, but a composite terrane, comprising Neoproterozoic ensialic and island-arc structural and compositional complexes. Correlation of Sr isotopic characteristics with the 87Sr/86Sr variation curve in the Neoproterozoic and Cambrian seawater shows that carbonate deposits accumulated at the eastern margin of the Dzabkhan terrane near the end of the Neoproterozoic, 700-550 Ma, and in the central part of the terrane in the Early Cambrian, 540-530 Ma.

  18. Early Proterozoic ties between two suspect terranes and the Mojave crustal block of the Southwestern U.S

    USGS Publications Warehouse

    Bender, E. Erik; Morrison, Jean; Anderson, J. Lawford; Wooden, Joseph L.

    1993-01-01

    Southern California and adjacent areas contain two suspect or exotic terranes comprised largely of ancient continental crust, namely the Tujunga (San Gabriel) and Joshua Tree terranes, that have been considered part of a larger displaced terrane, the Santa Lucia-Orocopia allochthon. Paleomagnetic data for the allochthon indicate northward transport in excess of 2000 km and, thus, an origin extraneous to North America. However, Early Proterozoic plutons of the Mojave crustal block and the Joshua Tree and Tujunga terranes have strikingly comparable features, including: (1) crystallization ages of 1.63 to 1.68 Ga; (2) biotite + sphene + magnetite hornblende garnet mineralogy; (3) high LIL and enriched HFS elemental composition; (4) WPG (within-plate granite) trace element chemistry; (5) similar and unique oxygen isotopic compositions; and (6) distinct Pb and Nd isotopic signatures. These features of the Mojave block, which clearly originated as part of native North America, nevertheless distinguish it from crust elsewhere in North America. On the basis of data presented here, we conclude that the Tujunga terrane is a disrupted portion of the Mojave crustal block and is neither far-traveled nor exotic to North America. Its apparent "exotic" nature stems from derivation out of the middle crust. We also conclude that the Joshua Tree terrane is correlative to the Mojave block. We have found no significant evidence for its displacement and consider Joshua Tree to be contiguous with the Mojave block and thus not a valid terrane. The Tujunga (San Gabriel) and Joshua Tree terranes should not be considered as part of, or having shared the same transport as, the Santa Lucia-Orocopia allocthon.

  19. Paleomagnetic Progress in Peri-Gondwanan Terranes of Cape Breton Island, Nova Scotia

    NASA Astrophysics Data System (ADS)

    Grunow, A. M.; Thompson, M. D.; Barr, S. M.; White, C. E.

    2009-05-01

    Paleopoles from primary Ediacaran magnetization directions established the Gondwanan origin of northern Appalachian Avalonian terranes, but magnetic overprints in the same rocks also provide useful tectonic information. Thus, in the Southeastern New England Avalon Zone, virtual geomagnetic poles (VGPs) calculated from magnetic B and C components in both 595 Ma Lynn-Mattapan volcanic rocks and 490-488 Ma Nahant Gabbro track mid- and late Paleozoic segments of the North American apparent polar wander path (APWP), suggesting the influence of Acadian and Neo-Acadian accretionary events. We report here on multi- vectorial magnetizations in pilot samples from Cape Breton Island, Nova Scotia where the Bras d'Or and Mira terranes represent both Ganderian and Avalonian elements transferred from Gondwana. Overprint relationships in these terranes may constrain their amalgamation with each other as well their docking with Laurentia. As in southeastern New England, secondary remanences can be identified in Cape Breton Island as consistent magnetization directions in rocks of differing ages. The S- to SSE-trending and gently downward pointing direction reported in 1985 by Johnson and Van der Voo in Middle Cambrian sedimentary rocks of the Bourinot Group (Bras d'Or terrane), for example, is also present in the 563 Ma Main à Dieu Formation and in 620 Ma Chisholm Brook Granite and East Bay Hill rhyolite (Mira terrane). This magnetization represents the C component already found around Boston, MA. The resulting VGPs in both areas occupy positions on the North American APWP consistent with a Neo-Acadian overprint, possibly related to the docking of the Meguma terrane against previously accreted Avalonia. Other overprint directions encountered in this investigation give rise to VGPs that do not coincide with the North American APWP, hence appear to reflect tectonic events independent of Laurentia. One such cluster comprising both Mira and Bras d'Or VGPs includes the paleopole also

  20. A tectonic reconstruction of accreted terranes along the paleo-Pacific margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Bammel, Brandon

    The southern oceanic margin of Gondwana was nearly 40,000 km long or 24,854.8 miles. The southern margin was the result of the Terra Australis orogen. Spanning 18,000 km or 11,184.7 miles and is proposed as one of the largest and longest lived orogens in Earth history. The paleo-Pacific margin of Gondwana consisted of segments of the Australian-Antarctic craton, southern South America (modern Argentina and Chile), southern South Africa, Marie Byrdland, New Zealand and its adjacent continental shelf, the Ellsworth Mountains, and the Transantarctic Mountains. The process of terrane accretion has played a substantial part in the assembly of the continents as they look today. The paleo-Pacific margin of Gondwana was an active region of terrane accretion from the Neoproterozoic to the Late Mesozoic. This research study examines the accretion of terranes across the paleo-Pacific Gondwana margin to provide a comprehensive reconstruction. A paleogeographic basemap was created using PALEOMAP Project maps and the geology data was provided by the School of Geoscience from the University of Witwatersrand of South Africa. Location and data analyzed for terranes were collected building a PDF library of journal articles across numerous geological publications.

  1. Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases

    NASA Astrophysics Data System (ADS)

    Butler, Jared P.; Beaumont, Christopher

    2017-04-01

    The plate tectonic setting in which proto-ophiolite 'oceanic' lithosphere is created remains controversial with a number of environments suggested. Recent opinions tend to coalesce around supra-subduction zone (SSZ) forearc extension, with a popular conceptual model in which the proto-ophiolite forms during foundering of oceanic lithosphere at the time of spontaneous or induced onset of subduction. This mechanism is favored in intra-oceanic settings where the subducting lithosphere is old and the upper plate is young and thin. We investigate an alternative mechanism; namely, decoupling of the subducting oceanic lithosphere in the forearc of an active continental margin, followed by subduction zone (trench) retreat and creation of a forearc oceanic rift basin, containing proto-ophiolite lithosphere, between the continental margin and the retreating subduction zone. A template of 2D numerical model experiments examines the trade-off between strength of viscous coupling in the lithospheric subduction channel and net slab pull of the subducting lithosphere. Three tectonic styles are observed: 1) C, continuous subduction without forearc decoupling; 2) R, forearc decoupling followed by rapid subduction zone retreat; 3) B, breakoff of subducting lithosphere followed by re-initiation of subduction and in some cases, forearc decoupling (B-R). In one case (BA-B-R; where BA denotes backarc) subduction zone retreat follows backarc rifting. Subduction zone decoupling is analyzed using frictional-plastic yield theory and the Stefan solution for the separation of plates containing a viscous fluid. The numerical model results are used to explain the formation of Xigaze group ophiolites, southern Tibet, which formed in the Lhasa terrane forearc, likely following earlier subduction and not necessarily during subduction initiation. Either there was normal coupled subduction before subduction zone decoupling, or precursor slab breakoff, subduction re-initiation and then decoupling

  2. Assessment of Paleozoic terrane accretion along the southern central Andes using detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    McKenzie, R.; Horton, B. K.; Fuentes, F.; Fosdick, J. C.; Capaldi, T.; Stockli, D. F.; Alvarado, P. M.

    2015-12-01

    Two distinct Paleozoic terranes known as Cuyania and Chilenia occupy the southern central Andes of Argentina and Chile. Because the proposed terrane boundaries coincide with major structural elements of the modern Andean system at 30-36°S, it is important to understand their origins and potential role in guiding later Andean deformation. The Cuyania terrane of western Argentina encompasses the Precordillera (PC) and a thick-skinned thrust block of the western Sierras Pampeanas, persisting southward to the San Rafael Basin (SRB). Although recently challenged, Cuyania has been long considered a piece of southern Laurentia that rifted away during the early Cambrian and collided with the Argentine margin during the Ordovician. Chilenia is situated west of Cuyania and includes the Frontal Cordillera (FC) and Andean magmatic arc. This less-studied terrane was potentially accreted during an enigmatic Devonian orogenic event. We present new detrital zircon U-Pb age data from siliciclastic sedimentary rocks that span the entire Paleozoic to Triassic from the FC, PC, and SRB. Cambrian rocks of the PC exhibit similar zircon age distributions with prominent ~1.4 and subordinate ~1.1 Ga populations, which are distinct from other Paleozoic strata. Plutonic rocks with these ages are common in southern Laurentia, whereas ~1.4 Ga zircons are uncommon in South American age distributions. This supports a Laurentian origin for Cuyania in isolation from Argentina during the Cambrian. Upper Paleozoic strata from the PC, FC, and SRB all yield similar age data suggesting shared provenance across the proposed Cuyania-Chilenia suture. Age distributions also notably lack Devonian-age grains. The regional paucity of Devonian plutonic rocks and detrital zircon casts doubt on a possible arc system between these terranes at this time, a key requisite for the mid-Paleozoic transfer and accretion of Chilenia to the Argentine margin. Collectively, these data question the precise boundaries of the

  3. Ternary feldspar thermometry of Paleoproterozoic granulites from In-Ouzzal terrane (Western Hoggar, southern Algeria)

    NASA Astrophysics Data System (ADS)

    Benbatta, A.; Bendaoud, A.; Cenki-Tok, B.; Adjerid, Z.; Lacène, K.; Ouzegane, K.

    2017-03-01

    The In Ouzzal terrane in western Hoggar (Southern Algeria) preserves evidence of ultrahigh temperature (UHT) crustal metamorphism. It consists in Archean crustal units, composed of orthogneissic domes and greenstone belts, strongly remobilized during the Paleoproterozoic orogeny which was recognized as an UHT event (peak T > 1000 °C and P ≈ 9-12 kbar). This metamorphism was essentially defined locally in Al-Mg granulites, Al-Fe granulites and quartzites outcropping in the Northern part of the In Ouzzal terrane (IOT). In order to test and verify the regional spread of the UHT metamorphism in this terrane, ternary feldspar thermometry on varied rock types (Metanorite, Granulite Al-Mg and Orthogneiss) and samples that crop out in different zones of the In Ouzzal terrane. These rocks contain either perthitic, antiperthitic or mesoperthitic parageneses. Ternary feldspars used in this study have clearly a metamorphic origin. The obtained results combined with previous works show that this UHT metamorphism (>900 °C) affected the whole In Ouzzal crustal block. This is of major importance as for future discussion on the geodynamic context responsible for this regional UHT metamorphism.

  4. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction

    NASA Astrophysics Data System (ADS)

    Zhu, Di-Cheng; Li, Shi-Min; Cawood, Peter A.; Wang, Qing; Zhao, Zhi-Dan; Liu, Sheng-Ao; Wang, Li-Quan

    2016-02-01

    Integration of lithostratigraphic, magmatic, and metamorphic data from the Lhasa-Qiangtang collision zone in central Tibet (including the Bangong suture zone and adjacent regions of the Lhasa and Qiangtang terranes) indicates assembly through divergent double sided subduction. This collision zone is characterized by the absence of Early Cretaceous high-grade metamorphic rocks and the presence of extensive magmatism with enhanced mantle contributions at ca. 120-110 Ma. Two Jurassic-Cretaceous magmatic arcs are identified from the Caima-Duobuza-Rongma-Kangqiong-Amdo magmatic belt in the western Qiangtang Terrane and from the Along Tso-Yanhu-Daguo-Baingoin-Daru Tso magmatic belt in the northern Lhasa Terrane. These two magmatic arcs reflect northward and southward subduction of the Bangong Ocean lithosphere, respectively. Available multidisciplinary data reconcile that the Bangong Ocean may have closed during the Late Jurassic-Early Cretaceous (most likely ca. 140-130 Ma) through arc-arc "soft" collision rather than continent-continent "hard" collision. Subduction zone retreat associated with convergence beneath the Lhasa Terrane may have driven its rifting and separation from the northern margin of Gondwana leading to its accretion within Asia.

  5. Accretion in the wake of terrane collision: The Neogene accretionary wedge off Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Fruehn, J.; von Huene, Roland E.; Fisher, M.A.

    1999-01-01

    Subduction accretion and repeated terrane collision shaped the Alaskan convergent margin. The Yakutat Terrane is currently colliding with the continental margin below the central Gulf of Alaska. During the Neogene the terrane's western part was subducted after which a sediment wedge accreted along the northeast Aleutian Trench. This wedge incorporates sediment eroded from the continental margin and marine sediments carried into the subduction zone on the Pacific plate. Prestack depth migration was performed on six seismic reflection lines to resolve the structure within this accretionary wedge and its backstop. The lateral extent of the structures is constrained by high-resolution swath bathymetry and seismic lines collected along strike. Accretionary structure consists of variably sized thrust slices that were deformed against a backstop during frontal accretion and underplating. Toward the northeast the lower slope steepens, the wedge narrows, and the accreted volume decreases notwith-standing a doubling of sediments thickness in the trench. In the northeasternmost transect, near the area where the terrane's trailing edge subducts, no frontal accretion is observed and the slope is eroded. The structures imaged along the seismic lines discussed here most likely result from progressive evolution from erosion to accretion, as the trailing edge of the Yakutat Terrane is subducting.

  6. Kilbuck terrane: oldest known rocks in Alaska

    USGS Publications Warehouse

    Box, S.E.; Moll-Stalcup, E. J.; Wooden, J.L.; Bradshaw, J.Y.

    1990-01-01

    The Kilbuck terrane in southwestern Alaska is a narrow, thin crustal sliver or flake of amphibolite facies orthogneiss. The igneous protolith of this gneiss was a suite of subduction-related plutonic rocks. U-Pb data on zircons from trondhjemitic and granitic samples yield upper-intercept (igneous) ages of 2070 ?? 16 and 2040 ?? 74 Ma, respectively. Nd isotope data from these rocks suggest that a diorite-tonalite-trondhjemite suite (??Nd[T] = +2.1 to +2.7; T is time of crystallization) evolved from partial melts of depleted mantle with no discernible contamination by older crust, whereas a coeval granitic pluton (??Nd[T] = -5.7) contains a significant component derived from Archean crust. Orthogneisses with similar age and Nd isotope characteristics are found in the Idono complex 250 km to the north. Early Proterozoic rocks are unknown elsewhere in Alaska. The possibility that the Kilbuck terrane was displaced from provinces of similar age in other cratons (e.g., Australian, Baltic, Guiana, and west African shields), or from the poorly dated Siberian craton, cannot be excluded. -from Authors

  7. Geology of ultra-high-pressure rocks from the Dabie Shan, Eastern China

    NASA Astrophysics Data System (ADS)

    Schmid, Robert

    2001-02-01

    A multidisciplinary study has been carried out to contribute to the understanding of the geologic evolution of the largest known occurrence of ultra-high-pressure (UHP) rocks on Earth, the Dabie Shan of eastern China. Geophysical data, collected along a ca. 20 km E-W trending seismic line in the eastern Dabie Shan, indicate that the crust comprises three layers. The upper crust has a homogeneously low reflectivity and exhibits roughly subhorizontal reflectors down to ca. 15 km. It is therefore interpreted to portray a crustal UHP slab thrust over non-UHP crust. An aprubt change in intensity and geometry of observed reflectors marks the boundary of a mid- to lower crustal zone which is present down to ca. 33 km. This crustal zone likely represents cratonal Yangtze crust that was unaffected by the Triassic UHP event and which has acted as the footwall during exhumation of the crustal wedge. Strong and continuous reflectors occurring at ca. 33-40 km depth most likely trace the Moho at the base of the crust. Any trace of a crustal root, that may have formed in response to collision tectonics, is therefore not preserved. A shollow tomographic velocity modell based on inversion of the first arrivals is constructed additionally. This model clearly images the distinct lithologies on both sides of the Tan Lu fault. Sediments to the east exhibit velocities of about 3.4 - 5.0 km* s^-1, whereas the gneisses have 5.2 - 6.0 km*s^-1. Geometry of velocity isolines may trace the structures present in the rocks. Thus the sediments dip shallowly towards the fault, whereas isoclinal folds are imaged to occur in the gneisses. Field data from the UHP unit of the Dabie Shan enables definition of basement-cover sequences that represent sections of the former passive margin of the Yangtze craton. One of the cover sequences, the Changpu unit, still displays a stratigraphic contact with basement gneisses, while the other, the Ganghe unit, includes no relative basement exposure. The latter

  8. Evidence for a Mid-Crustal Continental Suture and Implications for Multistage (U)HP exhumation, Liverpool Land, East Greenland

    NASA Astrophysics Data System (ADS)

    Johnston, S.; Brueckner, H.; Gehrels, G.; Manthei, C.; Hacker, B.; Kylander-Clark, A.; Hartz, E. H.

    2008-12-01

    /Pb titanite age of 413 ± 1 Ma (2s). This new data defines two distinct LL gneiss complexes beneath the Hurry Inlet Detachment and suggests the presence of a previously unidentified continental suture between the Tvaerdal and Jaettedal gneisses. Similar timing, metamorphic conditions, and detrital zircon signatures to units farther inland, as well as the presence of Archean detrital zircons indicate a Laurentian continental affinity for Jaettedal paragneiss. In contrast, ~400 Ma (U)HP metamorphism and Mesoproterozoic basement ages, which have not been identified in Laurentia, suggests correlation of the Tvaerdal gneiss with the Baltican-derived Western Gneiss Region. Furthermore, the suture between the Tvaerdal and Jaettedal gneisses, with kinematics that remain undefined, represents a structure responsible for the juxtaposition of the younger (U)HP Tvaerdal orthogneiss against the older mid-crustal Jaettedal paragneiss, and the initial stages of (U)HP exhumation from mantle depths to lower-middle crustal levels. This initial exhumation may have triggered subsequent displacement along the Hurry Inlet Detachment responsible for the final stages of (U)HP exhumation in the upper crust.

  9. An evolving tectonic environment of Late Carboniferous to Early Permian granitic plutons in the Chinese Altai and Eastern Junggar terranes, Central Asian Orogenic Belt, NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Liu, Dongdong; Luo, Qun; Liu, Luofu; Zhang, Yunzhao; Zhu, Deyu; Wang, Pengfei; Dai, Quanqi

    2018-06-01

    The Central Asian Orogenic Belt (CAOB) represents one of the most important sites of juvenile crustal growth during the Phanerozoic. Located in the central part of the CAOB, the Chinese Altai and Eastern Junggar terranes record the collisional processes between the peri-Siberian and Kazakhstan orogenic systems. However, the precise timing of collision between the two terranes remains controversial. The Wukuli and Kadelat plutons in the Chinese Altai belt are dated at ∼305 and ∼280 Ma respectively, whereas the Aketas pluton in the Eastern Junggar terrane is dated at ∼308 Ma. Granites from the Wukuli and Kadelat plutons are strongly peraluminous (A/CNK > 1.1), and are characterized by low Al2O3, Na2O, MnO, MgO, CaO and heavy rare earth element (HREE) contents, but with high SiO2, K2O and Rb contents as well as high Rb/Sr ratios. Granites from the Wukuli pluton have low εNd(t) and εHf(t) values of -3.7 to -3.4 and -9.7 to +4.9, whereas those from the Kadelat pluton have values of -3.6 to -3.4 and -8.0 to +2.6. These features suggest S-type affinity for the Wukuli and Kadelat plutons with magma derivation through partial melting of Mesoproterozoic metasediments. The Aketas pluton is composed of weakly peraluminous quartz monzonites that have A/CNK values ranging from 0.92 to 1.08, with high Na2O, Sr, and Sr/Y, and low Y, Yb, Nb, and Ta. These rocks display positive εNd(t) (+4.8 to +6.4) and εHf(t) (+9.7 to +14.6) values, and low initial 87Sr/86Sr ratios (0.703357-0.703868), similar to modern adakites, suggesting that the quartz monzonites were derived from the partial melting of lower crustal material. The geochemical characteristics suggest that the Aketas pluton was formed in a subduction-related setting, the Wukuli pluton in a syn-collisional setting, and the Kadelat pluton in the subsequent post-orogenic strike-slip-related setting. In combination with data from other granitoids in these two terranes, the Aketas pluton represents the youngest record of

  10. Middle Jurassic strata link Wallowa, Olds Ferry, and Izee terranes in the accreted Blue Mountains island arc, northeastern Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.D.L.; Vallier, T.; Stanley, G.D. Jr.

    1992-08-01

    Middle Jurassic strata atop the Wallowa terrane in northeastern Oregon link the Wallowa, Izee, and Olds Ferry terranes as related elements of a single long-lived and complex oceanic feature, the Blue Mountains island arc. Middle Jurassic strata in the Wallowa terrane include a dacitic ash-flow deposit and contain fossil corals and bivalves of North American affinity. Plant fossils in fluvial sandstones support a Jurassic age and indicate a seasonal temperate climate. Corals in a transgressive sequence traditionally overlying the fluvial units are of Bajocian age and are closely related to endemic varieties of the Western Interior embayment. They are unlikemore » Middle Jurassic corals in other Cordilleran terranes; their presence suggests that the Blue Mountains island arc first approached the North American craton at high paleolatitudes in Middle Jurassic time. The authors consider the Bajocian marine strata and underlying fluvial volcaniclastic units to be a basin-margin equivalent of the Izee terrane, a largely Middle Jurassic (Bajocian) succession of basinal volcaniclastic and volcanic rocks known to overlie the Olds Ferry and Baker terranes.« less

  11. Crustal structure of norther Oaxaca terrane; The Oaxaca and caltepec faults, and the Tehuacan Valley. A gravity study.

    NASA Astrophysics Data System (ADS)

    Campos-Enriquez, J. O.; Alatorre-Zamora, M. A.; Ramón, V. M.; Belmonte, S.

    2014-12-01

    Northern Oaxaca terrane, southern Mexico, is bound by the Caltepec and Oaxaca faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacan depression. Several gravity profiles across these faults and the Oaxaca terrane (including the Tehuacan Valley) enables us to establish the upper crustal structure of this region. Accordingly, the Oaxaca terrane is downward displaced to the east in two steps. First the Santa Lucia Fault puts into contact the granulitic basamental rocks with Phanerozoic volcanic and sedimentary rocks. Finally, the Gavilan Fault puts into contact the Oaxaca terrane basement (Oaxaca Complex) into contact with the volcano-sedimentary infill of the valley. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex?). A structural high at the western Tehuacan depression accomadates the east dipping faults (Santa Lucia and Gavilan faults) and the west dipping faults of the Oaxaca Fault System. To the west of this high structural we have the depper depocenters. The Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. The faults are regional tectonic structures. They seem to continue northwards below the Trans-Mexican Volcanic Belt. A major E-W to NE-SW discontinuity on the Oaxaca terrane is inferred to exist between profiles 1 and 2. The Tehuacan Valley posses a large groundwater potential.

  12. The Khida terrane - Geology of Paleoproterozoic rocks in the Muhayil area, eastern Arabian Shield, Saudi Arabia

    USGS Publications Warehouse

    Stoeser, D.B.; Whitehouse, M.J.; Stacey, J.S.

    2001-01-01

    The bulk of the Arabian Shield of Saudi Arabia is underlain by Neoproterozoic terranes of oceanic affinity that were accreted during Pan-African time (about 680- 640Ma). Geologicalmappingandisotopicinvestigations during the 1980’s,however, provided the first evidence for Paleoproterozoic continental crust within the east- central part of the shield in Saudi Arabia. These studies delineated an older basement domain, herein referred to as the Khida terrane (Fig. l), which is defined as that part of the southern Afif composite terrane underlain by Paleoproterozoicto Archean continental crust (Stoeser and Stacey, 1988). The isotopic and geochronologic work to support our current studies within the Khida terrane are discussed in a companion abstract (Whitehouse et al., this volume). The regional geology and geochronology of the region has been summarized in detail by Johnson (1996). The current study is based on the continued use of samples previously collected in the Khida area by the authors and others as well as new field work conducted by us in 1999. This work further defines the occurrence of late Paleoproterozoic rocks at Jabal Muhayil, which is located at the eastern margin of the exposed terrane (Fig. 1). Our isotopic work is at an early stage and this abstract partly relates geologic problems that remain to be resolved. 

  13. The ophiolitic North Fork terrane in the Salmon River region, central Klamath Mountains, California

    USGS Publications Warehouse

    Ando, C.J.; Irwin, W.P.; Jones, D.L.; Saleeby, J.B.

    1983-01-01

    The North Fork terrane is an assemblage of ophiolitic and other oceanic volcanic and sedimentary rocks that has been internally imbricated and folded. The ophiolitic rocks form a north-trending belt through the central part of the region and consist of a disrupted sequence of homogeneous gabbro, diabase, massive to pillowed basalt, and interleaved tectonitic harzburgite. U-Pb zircon age data on a plagiogranite pod from the gabbroic unit indicate that at least this part of the igneous sequence is late Paleozoic in age.The ophiolitic belt is flanked on either side by mafic volcanic and volcaniclastic rocks, limestone, bedded chert, and argillite. Most of the chert is Triassic, including much of Late Triassic age, but chert with uncertain stratigraphic relations at one locality is Permian. The strata flanking the east side of the ophiolitic belt face eastward, and depositional contacts between units are for the most part preserved. The strata on the west side of the ophiolitic belt are more highly disrupted than those on the east side, contain chert-argillite melange, and have unproven stratigraphic relation to either the ophiolitic rocks or the eastern strata.Rocks of the North Fork terrane do not show widespread evidence of penetrative deformation at elevated temperatures, except an early tectonitic fabric in the harzburgite. Slip-fiber foliation in serpentinite, phacoidal foliation in chert and mafic rocks, scaly foliation in argillite, and mesoscopic folds in bedded chert are consistent with an interpretation of large-scale anti-formal folding of the terrane about a north-south hinge found along the ophiolitic belt, but other structural interpretations are tenable. The age of folding of North Fork rocks is constrained by the involvement of Triassic and younger cherts and crosscutting Late Jurassic plutons. Deformation in the North Fork terrane must have spanned a short period of time because the terrane is bounded structurally above and below by Middle or Late

  14. Two possibilities for New Siberian Islands terrane tectonic history during the Early Paleozoic based on paleomagnetic data

    NASA Astrophysics Data System (ADS)

    Metelkin, Dmitry V.; Chernova, Anna I.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.

    2017-04-01

    The New Siberian Islands (NSI), located in the East Siberian Sea in the junction region of various structural elements, are a key target for deciphering the tectonic evolution of the Eastern Arctic. In recent years, we went on several expeditions and gathered an extensive geological material for this territory. Among other things, we could prove that the basement of the De Long and Anjou archipelagos structures is Precambrian and the overlying Paleozoic sections formed within the same terrane. The form of the boundaries of the NSI terrane are actively debated and are probably continued from the Lyakhovsky islands in the south-west to the southern parts of the submerged Mendeleev Ridge, for which there is increasing evidence of continental crust. Today there are several models that interpret the Paleozoic-Mesozoic tectonic history and structural affiliation of the NSI terrane. Some propose that the Paleozoic sedimentary section formed in a passive margin setting of the Siberian paleocontinent. Others compare its history with marginal basins of the Baltica and Laurentia continents or consider the NSI terrane as an element of the Chukotka-Alaska microplate. These models are mainly based on results of paleobiogeographical and lithological-facies analyses, including explanations of probable sources for detrital zircons. Our paleomagnetic research on sedimentary, volcanogenic-sedimentary and igneous rocks of the Anjou (Kotelny and Bel'kovsky islands) and De Long (Bennett, Jeannette and Henrietta islands) archipelagos let us calculate an apparent polar wander path for the early Paleozoic interval of geological history, which allows us to conclude that the NSI terrane could not have been a part of the continental plates listed above, but rather had active tectonic boundaries with them. Our paleomagnetic data indicate that the NSI terrane drifted slowly and steadily in the tropical and subtropical regions no higher than 40 degrees. However, the main uncertainty for the

  15. Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2014-12-01

    Allochthonous accreted terranes are exotic geologic units that originated from anomalous crustal regions on a subducting oceanic plate and were transferred to the overriding plate by accretionary processes during subduction. The geographical regions that eventually become accreted allochthonous terranes include island arcs, oceanic plateaus, submarine ridges, seamounts, continental fragments, and microcontinents. These future allochthonous terranes (FATs) contribute to continental crustal growth, subduction dynamics, and crustal recycling in the mantle. We present a review of modern FATs and their accreted counterparts based on available geological, seismic, and gravity studies and discuss their crustal structure, geological origin, and bulk crustal density. Island arcs have an average crustal thickness of 26 km, average bulk crustal density of 2.79 g cm-3, and three distinct crustal units overlying a crust-mantle transition zone. Oceanic plateaus and submarine ridges have an average crustal thickness of 21 km and average bulk crustal density of 2.84 g cm-3. Continental fragments presently on the ocean floor have an average crustal thickness of 25 km and bulk crustal density of 2.81 g cm-3. Accreted allochthonous terranes can be compared to these crustal compilations to better understand which units of crust are accreted or subducted. In general, most accreted terranes are thin crustal units sheared off of FATs and added onto the accretionary prism, with thicknesses on the order of hundreds of meters to a few kilometers. However, many island arcs, oceanic plateaus, and submarine ridges were sheared off in the subduction interface and underplated onto the overlying continent. Other times we find evidence of terrane-continent collision leaving behind accreted terranes 25-40 km thick. We posit that rheologically weak crustal layers or shear zones that were formed when the FATs were produced can be activated as detachments during subduction, allowing parts of the FAT

  16. Modulation of Crustal Faulting in the Crescent Terrane by the Volume of Underthrust Accretionary Complex Along the Washington Cascadia Forearc

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.

    2017-12-01

    Amphibious seismic experiments reveal widespread underthrusting of Cascadia accretionary rocks beneath basalts of the Crescent terrane, a large igneous province in the Washington forearc. Along margin variations in the volumes of the underthrust accretionary rocks appear to modulate the faulting within the overlying Crescent terrane, which hosts nearly all of the seismicity in the Washington forearc: the underlying accretionary rocks appear to deform aseismically. The underthrusting and underplating of large volumes of accretionary rocks on the Olympic Peninsula have uplifted and completely eroded a significant volume of the Crescent terrane, affecting the load-bearing strength of the forearc. I propose that as a consequence, the remnant Crescent terrane is actively deforming, as evidenced by the concentrated seismicity within it beneath Puget Lowland. This seismicity, focal mechanisms, fault geometries, and seismic tomography indicate that clockwise rotation and north-south compression of the forearc crust inferred from GPS data are accommodated by numerous thrust and strike slip faults in the remnant Crescent terrane. In addition to the spatial association between the erosion of the Crescent terrane on the Olympic Peninsula and the crustal faulting beneath Puget Lowland, support for the interpretation that the two are related also derives from the temporal coincidence between the mid to late Miocene uplift of the Crescent terrane on the peninsula and the mid-Miocene initiation of the thrust faulting in the lowland. In contrast, the underthrusting and underplating of lower volumes of accretionary rocks in the Washington forearc south of the Olympic Peninsula correlate with lower rates of crustal seismicity. These lower volumes of accretionary rocks have not caused the removal of a significant fraction of the Crescent terrane, resulting in a stronger, more structurally coherent Crescent terrane that deforms at lower rate than to the north.

  17. Paleomagnetic study of the Eastern Klamath terrane, California, and implications for the tectonic history of the Klamath Mountains Province

    USGS Publications Warehouse

    Mankinen, Edward A.; Irwin, William P.; Gromme, C. Sherman

    1989-01-01

    Paleomagnetic study of Permian through Jurassic volcanic and sedimentary strata of the Eastern Klamath terrane has shown the remanent magnetization of many of these rocks to be prefolding and most likely primary. Similarities in magnetic declinations recorded by coeval strata over a broad area are consistent with the hypothesis that the terrane, in general, has behaved as a single rigid block. Paleomagnetic data indicate that the volcanic island arc represented by this terrane, the nucleus of the province, was facing toward the present southwest during late Paleozoic time, although its orientation during earlier periods is unknown. Whether the arc was separated from the North American craton by a small marginal basin or originated far offshore cannot be determined from paleomagnetic data. The declination anomalies for both Permian and Triassic strata are similar (average = 106° ± 12°), so we infer that clockwise rotation of the late Paleozoic arc did not begin until latest Triassic or earliest Jurassic time. The arc may have completed its initial rotation with respect to stable North America by Middle Jurassic time. After some retrograde motion, the arc was again facing west by the Late Jurassic, by which time some of the more westerly terranes of the province had become attached to the Eastern Klamath terrane. The composite Klamath Mountains terranes continued to rotate until the final 60° of clockwise rotation was nearly complete by the Early Cretaceous. Coincidence of the waning stages of rotation, at about 136 Ma, with the beginning of deposition of the basal Great Valley sequence onto the Klamath basement probably represents the completion of accretion of the Klamath Mountains terranes to the North American continent. Nearly all the rotation occurred while the Klamath Mountains terranes were part of a converging oceanic plate, with only about 20° of rotation in mid‐Tertiary time during Basin and Range extension. No data currently available show evidence

  18. Radiolarian biostratigraphy of the Quinn River Formation, Black Rock terrane, north-central Nevada: correlations with eastern Klamath terrane geology

    USGS Publications Warehouse

    Blome, C.D.; Reed, K.M.

    1995-01-01

    The Quinn River Formation, Black Rock terrane, Quinn River Crossing, is one of the few Nevadan sections of Permian and Triassic strata that are unaffected by Sonoman deformation. The formation consists of: 1) a basal tuff overlain by limestone and ferruginous dolomite, 2) interbedded radiolarian-bearing chert and argillite, 3) siltstone and carbonaceous shale, and 4) partly volcaniclastic rocks. All but the uppermost (barren) chert samples contain Late Permian radiolarian taxa. These radiolarians suggest that early Wordian conodonts reported from near the top of the chert and argillite unit are reworked. Poorly preserved Early(?) or Middle triassic radiolarians and Middle Triassic ammonites and pectenacid bivalves from the middle part of the volcaniclastic unit indicate the Early Triassic deposition cannot be documented at Quinn River. The ages of the Quinn River brachiopod, conodont, and radiolarian faunas resemble those of the Dekkas and Pit Formations, eastern Klamath terrane, northern California. The analogous Quinn River and eastern Klamath rock types and faunal ages, as well as similar hiatuses in their stratigraphic records, suggest that they may be lateral equivalents that formed in the same island-arc sedimentary basin. -from Authors

  19. Provenance of Jurassic sediments in the Hefei Basin, east-central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan

    NASA Astrophysics Data System (ADS)

    Li, Renwei; Wan, Yusheng; Cheng, Zhenyu; Zhou, Jianxiong; Li, Shuangying; Jin, Fuquan; Meng, Qingren; Li, Zhong; Jiang, Maosheng

    2005-03-01

    The provenance of the Jurassic sediments in the Hefei Basin is constrained by compositions of the detrital K-white micas and garnets, and SHRIMP dating of the detrital zircons, which can help to understand the evolution and to reconstruct the paleogeographic distribution of HP-UHP rocks in the Jurassic Dabie Shan. (1) For the oldest Mesozoic sediments at the bottom of the Fanghushan Formation ( J1), the predominance of the early Paleozoic and Luliang (1700-1900 Ma) zircons indicates a major source from the North China Block. However, Neoproterozoic zircons as the major component in other Jurassic sediments indicate that the source rocks were mainly derived from the exhumed Yangtze Block in the Dabie Shan. (2) The co-occurrence of high-Si phengites and Triassic zircons provides stratigraphic evidence that the first exposure of the UHP rocks at the Earth's surface in the Dabie Shan occurred in the Early Jurassic during deposition of the Fanghushan Formation. (3) From the east to the west of the Hefei Basin, there is a spatial variation in the compositions for detrital micas and garnets, and in the U-Pb ages of detrital zircons. Evidently, HP-UHP rocks were widely distributed at outcrop in the eastern Dabie Shan. In contrast, they were less important in the western Dabie Shan during the Jurassic.

  20. Two flysch belts having distinctly different provenance suggest no stratigraphic link between the Wrangellia composite terrane and the paleo-Alaskan margin

    USGS Publications Warehouse

    Hults, Chad P.; Wilson, Frederic H.; Donelick, Raymond A.; O'Sullivan, Paul B.

    2013-01-01

    The provenance of Jurassic to Cretaceous flysch along the northern boundary of the allochthonous Wrangellia composite terrane, exposed from the Lake Clark region of southwest Alaska to the Nutzotin Mountains in eastern Alaska, suggests that the flysch can be divided into two belts having different sources. On the north, the Kahiltna flysch and Kuskokwim Group overlie and were derived from the Farwell and Yukon-Tanana terranes, as well as smaller related terranes that were part of the paleo-Alaskan margin. Paleocurrent indicators for these two units suggest that they derived sediment from the north and west. Sandstones are predominantly lithic wacke that contain abundant quartz grains, lithic rock fragments, and detrital mica, which suggest that these rocks were derived from recycled orogen and arc sources. Conglomerates contain limestone clasts that have fossils matching terranes that made up the paleo-Alaskan margin. In contrast, flysch units on the south overlie and were derived from the Wrangellia composite terrane. Paleocurrent indicators for these units suggest that they derived sediment from the south. Sandstones are predominantly feldspathic wackes that contain abundant plagioclase grains and volcanic rock fragments, which suggest these rocks were derived from an arc. Clast compositions in conglomerate south of the boundary match rock types of the Wrangellia composite terrane. The distributions of detrital zircon ages also differentiate the flysch units. Flysch units on the north average 54% Mesozoic, 14% Paleozoic, and 32% Precambrian detrital zircons, reflecting derivation from the older Yukon-Tanana, Farewell, and other terranes that made up the paleo-Alaskan margin. In comparison, flysch units on the south average 94% Mesozoic, 1% Paleozoic, and 5% Precambrian zircons, which are consistent with derivation from the Mesozoic oceanic magmatic arc rocks in the Wrangellia composite terrane. In particular, the flysch units on the south contain a large

  1. The Athabasca Granulite Terrane and Evidence for Dynamic Behavior of Lower Continental Crust

    NASA Astrophysics Data System (ADS)

    Dumond, Gregory; Williams, Michael L.; Regan, Sean P.

    2018-05-01

    Deeply exhumed granulite terranes have long been considered nonrepresentative of lower continental crust largely because their bulk compositions do not match the lower crustal xenolith record. A paradigm shift in our understanding of deep crust has since occurred with new evidence for a more felsic and compositionally heterogeneous lower crust than previously recognized. The >20,000-km2 Athabasca granulite terrane locally provides a >700-Myr-old window into this type of lower crust, prior to being exhumed and uplifted to the surface between 1.9 and 1.7 Ga. We review over 20 years of research on this terrane with an emphasis on what these findings may tell us about the origin and behavior of lower continental crust, in general, in addition to placing constraints on the tectonic evolution of the western Canadian Shield between 2.6 and 1.7 Ga. The results reveal a dynamic lower continental crust that evolved compositionally and rheologically with time.

  2. Sandstone petrographic evidence and the Chugach-Prince William terrane boundary in southern Alaska

    USGS Publications Warehouse

    Dumoulin, Julie A.

    1988-01-01

    The contact between the Upper Cretaceous Valdez Group and the Paleocene and Eocene Orca Group has been inferred to be the boundary between the Chugach and the Prince William tectonostratigraphic terranes. Sandstone petrographic data from the Prince William Sound area show no compositional discontinuity across this contact. These data are best explained by considering the Valdez and Orca Groups to be part of a single terrane - a thick flysch sequence derived primarily from a progressively unroofing magmatic arc with increasing input from subduction-complex sources through time.

  3. Lead isotope studies of the Guerrero composite terrane, west-central Mexico: implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Potra, Adriana; Macfarlane, Andrew W.

    2014-01-01

    New thermal ionization mass spectrometry and multi-collector inductively coupled plasma mass spectrometry Pb isotope analyses of three Cenozoic ores from the La Verde porphyry copper deposit located in the Zihuatanejo-Huetamo subterrane of the Guerrero composite terrane are presented and the metal sources are evaluated. Lead isotope ratios of 3 Cenozoic ores from the El Malacate and La Esmeralda porphyry copper deposits located in the Zihuatanejo-Huetamo subterrane and of 14 ores from the Zimapan and La Negra skarn deposits from the adjoining Sierra Madre terrane are also presented to look for systematic differences in the lead isotope trends and ore metal sources among the proposed exotic tectonostratigraphic terranes of southern Mexico. Comparison among the isotopic signatures of ores from the Sierra Madre terrane and distinct subterranes of the Guerrero terrane supports the idea that there is no direct correlation between the distinct suspect terranes of Mexico and the isotopic signatures of the associated Cenozoic ores. Rather, these Pb isotope patterns are interpreted to reflect increasing crustal contribution to mantle-derived magmas as the arc advanced eastward onto a progressively thicker continental crust. The lead isotope trend observed in Cenozoic ores is not recognized in the ores from Mesozoic volcanogenic massive sulfide and sedimentary exhalative deposits. The Mesozoic ores formed prior to the amalgamation of the Guerrero composite terrane to the continental margin, which took place during the Late Cretaceous, in intraoceanic island arc and intracontinental marginal basin settings, while the Tertiary deposits formed after this event in a continental arc setting. Lead isotope ratios of the Mesozoic and Cenozoic ores appear to reflect these differences in tectonic setting of ore formation. Most Pb isotope values of ores from the La Verde deposit (206Pb/204Pb = 18.674-18.719) are less radiogenic than those of the host igneous rocks, but plot within the

  4. Oblique wedge extrusion of UHP/HP complexes in the Late Triassic: structural analysis and zircon ages of the Atbashi Complex, South Tianshan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Sang, Miao; Xiao, Wenjiao; Bakirov, Apas

    2017-04-01

    The exhumation and tectonic emplacement of eclogites and blueschists takes place in forearc accretionary complexes by either forearc- or backarc-directed extrusion, but few examples have been well analysed in detail. Here we present an example of oblique wedge extrusion of UHP/HP rocks in the Atbashi accretionary complex of the Kyrgyz South Tianshan. The Atbashi Eclogite-Blueschist Complex (AEBC) is a conventional, formal name for the Atbashi Formation that contains pelitic to siliceous schists alternating with HP/UHP eclogites and blueschists. The main belt of the AEBC strikes SW-NE mostly parallel to the Atbashi-Inylchek Fault. Our field mapping and structural analysis demonstrate that the Atbashi Eclogite-Blueschist Complex is situated in a complicated duplex formed by a northerly dextral transpression system and a southerly sinistral transtension system, both of which contain a series of strike-slip duplexese at several scales. The two shear systems suggest that the Atbashi Complex underwent a unique oblique south- westward extrusion with a general plunge to the NE, the horizontal projection of which is sub-parallel to the strike of the major structures. This indicates that the Atbashi Complex was extruded obliquely southwestwards during eastward penetration of the southern tip of the Yili- Central Tianshan Arc of the Kazakhstan Orocline during the Late Triassic. Also, to constrain the extrusion of the AEBC and to place it in its temporal framework during docking of the Tarim Craton to the southern margin of the Ili-Tianshan Arc, we report new zircon U-Pb isotopic data for four eclogites and one garnet-bearing quartz-schist, in order to document the timing event during extrusion. The youngest ages of the eclogites and the garnet-bearing quartz-schist may be Late Triassic of 217-221 Ma and 223.9 Ma, respectively, suggesting that the main extrusion was later than previously proposed and that the final orogenesis was not completed until the Late Triassic. The HP/UHP

  5. Elemental and isotopic (C, O, Sr, Nd) compositions of Late Paleozoic carbonated eclogite and marble from the SW Tianshan UHP belt, NW China: Implications for deep carbon cycle

    NASA Astrophysics Data System (ADS)

    Zhu, Jianjiang; Zhang, Lifei; Lü, Zeng; Bader, Thomas

    2018-03-01

    Subduction zones are important for understanding of the global carbon cycle from the surface to deep part of the mantle. The processes involved the metamorphism of carbonate-bearing rocks largely control the fate of carbon and contribute to local carbon isotopic heterogeneities of the mantle. In this study, we present petrological and geochemical results for marbles and carbonated eclogites in the Southwestern Tianshan UHP belt, NW China. Marbles are interlayered with coesite-bearing pelitic schists, and have Sr-Nd isotopic values (εNd (T=320Ma) = -3.7 to -8.9, 87Sr/86Sr (i) = 0.7084-0.7089), typical of marine carbonates. The marbles have dispersed low δ18OVSMOW values (ranging from 14 to 29‰) and unaffected carbon isotope (δ13CVPDB = -0.2-3.6‰), possibly due to infiltration of external H2O-rich fluids. Recycling of these marbles into mantle may play a key role in the carbon budget and contributed to the mantle carbon isotope heterogeneity. The carbonated eclogites have high Sr isotopic compositions (87Sr/86Sr (i) = 0.7077-0.7082) and positive εNd (T = 320 Ma) values (from 7.6 to 8.2), indicative of strong seafloor alteration of their protolith. The carbonates in the carbonated eclogites are mainly dolomite (Fe# = 12-43, Fe# = Fe2+/(Fe2+ + Mg)) that were added into oceanic basalts during seafloor alteration and experienced calcite - dolomite - magnesite transformation during the subduction metamorphic process. The uniformly low δ18O values (∼11.44‰) of carbonates in the carbontaed eclogites can be explained by closed-system equilibrium between carbonate and silicate minerals. The low δ13C values (from -3.3 to -7.7‰) of the carbonated eclogites most likely reflect contribution from organic carbon. Recycling of these carbonated eclogites with C isotope similar to typical mantle reservoirs into mantle may have little effect on the mantle carbon isotope heterogeneity.

  6. Concepts for diamond exploration in "on/off craton" areas—British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Simandl, George J.

    2004-09-01

    The tectonic setting of British Columbia (BC) differs from classic diamond-bearing intracratonic regions such as the Northwest Territories and South Africa. Nevertheless, several diamond occurrences have been reported in BC. It is also known that parts of the province are underlain by Proterozoic and possibly Archean basement. Because the continents of today are composites of fragments of ancient continents, it is possible that some of the regions underlain by old crystalline basement in eastern British Columbia were associated with a deep crustal keel. The keel may have predated the break-up of the early Neoproterozoic supercontinent called Rodinia and was preserved possibly until the Triassic. Some of these old continental fragments may have been displaced relative to their position of origin and dissociated from their keel, or the keel may have since been destroyed. Such fragments represent favourable exploration grounds in terms of the "Diamondiferous Mantle Root" model (DMR model) if they were intersected by kimberlites or lamproites prior to displacement or destruction of their underlying deep keel. Therefore, extrapolation of fragments of the diamond-bearing Precambrian basement from the Northwest Territories or Alberta to BC provides a sufficient reason for initiating reconnaissance indicator mineral surveys. The "Eclogite Subduction Zone" model (ES model) predicts formation of diamonds at lower pressure (i.e., depth) than required by the DMR model in convergent tectonic settings. Although not proven, this model is supported by thermal modeling of cold subduction zones and recent discoveries of diamonds in areas characterized by convergent tectonic settings. If the ES model is correct, then the parts of BC with a geological history similar to today's "cold" subduction zones, such as Honshu (Japan), or to continental collision zones, such as Kokchetav massif (Kazakhstan) and the Dabie-Sulu Terrane (east central China), may be diamondiferous. The terranes

  7. Lithospheric electrical structure of the middle Lhasa terrane in the south Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Liang, Hongda; Jin, Sheng; Wei, Wenbo; Gao, Rui; Ye, Gaofeng; Zhang, Letian; Yin, Yaotian; Lu, Zhanwu

    2018-04-01

    The Lhasa terrane in southern Tibetan plateau is a huge tectono-magmatic belt and an important metallogenic belt. Its formation evolution process and mineralization are affected by the subduction of oceanic plate and subsequent continental collision. However, the evolution of Lhasa terrane has been a subject of much debate for a long time. The Lithospheric structure records the deep processes of the subduction of oceanic plate and continental collision. The magnetotelluric (MT) method can probe the sub-surface electrical conductivity, newly dense broadband and long period magnetotelluric data were collected along a south-north trending profile that across the Lhasa terrane at 88°-89°E. Dimensionality analyses demonstrated that the MT data can be interpreted using two-dimensional approaches, and the regional strike direction was determined as N110°E.Based on data analysis results, a two-dimensional (2-D) resistivity model of crust and upper mantle was derived from inversion of the transverse electric mode, transverse magnetic mode and vertical magnetic field data. Inversion model shows a large north-dipping resistor that extended from the upper crust to upper mantle beneath the Himalaya and the south of Lhasa Terrane, which may represent the subducting Indian continental lithosphere. The 31°N may be an important boundary in the Lhasa Terrane, the south performs a prominent high-conductivity anomaly from the lower crust to upper mantle which indicates the existence of asthenosphere upwelling, while the north performs a higher resistivity and may have a reworking ancient basement. The formation of the ore deposits in the study area may be related to the upwelling of the mantle material triggered by slab tearing and/or breaking off of the Indian lithosphere, and the mantle material input also contributed the total thickness of the present-day Tibetan crust. The results provide helpful constrains to understand the mechanism of the continent-continent collision and

  8. Low palaeoelevation of the northern Lhasa terrane during late Eocene: Fossil foraminifera and stable isotope evidence from the Gerze Basin.

    PubMed

    Wei, Yi; Zhang, Kexin; Garzione, Carmala N; Xu, Yadong; Song, Bowen; Ji, Junliang

    2016-06-08

    The Lhasa terrane is a key region for understanding the paleoelevation of the southern Tibetan Plateau after India-Asia collision. The Gerze Basin, located in the northern part of the Lhasa terrane, is a shortening-related basin. We discovered Lagena laevis (Bandy) fossils in upper Eocene strata of the Gerze Basin. This type of foraminifera is associated with lagoon and estuarine environments, indicating that the northern part of the Lhasa terrane was near sea level during the late Eocene. We speculate that these foraminifera were transported inland by storm surges to low elevation freshwater lakes during times of marine transgressions. This inference is consistent with the relatively positive δ(18)O values in carbonate from the same deposits that indicate low palaeoelevations close to sea level. Considering the palaeoelevation results from the nearby Oligocene basins at a similar latitude and the volcanic history of the Lhasa terrane, we infer that large-magnitude surface uplift of the northern Lhasa terrane occurred between late Eocene and late Oligocene time.

  9. Mantle Lithosphere Rheology, Vertical Tectonics, and the Exhumation of (U)HP Rocks

    NASA Astrophysics Data System (ADS)

    Bodur, Ömer F.; Göǧüş, Oǧuz H.; Pysklywec, Russell N.; Okay, Aral I.

    2018-02-01

    Numerical modeling results indicate that mantle lithosphere rheology can influence the pressure-temperature-time (P-T-t) trajectories of continental crust subducted and exhumed during the onset of continental collision. Exhumation of ultrahigh-pressure ( 35 kbar)/high-temperature ( 750°C) metamorphic rocks is more prevalent in models with stronger continental mantle lithosphere (e.g., dry), whereas high-pressure ( 9-22 kbar)/low-temperature (350°C-630°C) metamorphic rocks occur in models with weaker rheology (e.g., hydrated) for the same layer. In the latter case, the buried crustal rocks can remain encased in ablatively subducting mantle lithosphere, reach only moderate temperatures, and exhume by dripping/detachment of the lithospheric root. In this transition from subduction to a dripping style of "vertical tectonics," burial and exhumation of crustal rocks are driven without imposed far-field plate convergence. The model results are compared against thermobarometric P-T estimates from major (ultra)high-pressure metamorphic terranes. We propose that the exhumation of high-pressure/low-temperature metamorphic rocks in Tavşanlı and Afyon zones in western Anatolia may be caused by viscous dripping of mantle lithosphere suggesting a weaker continental mantle lithosphere, whereas (ultra)high-pressure exhumation (e.g., Dabie Shan-eastern China and Dora Maira-western Alps) may be associated with plate-like subduction. In the latter case, the slab is much stronger and deformation is localized to the subduction interface along which rocks are buried to >100 km depth before they are exhumed to the near surface.

  10. Ocean plateau-seamount origin of basaltic rocks, Angayucham terrane, central Alaska

    USGS Publications Warehouse

    Barker, F.; Jones, D.L.; Budahn, J.R.; Coney, P.J.

    1988-01-01

    The Angayucham terrane of north-central Alaska (immediately S of the Brooks Range) is a large (ca. 500 km E-W), allochthonous complex of Devonian to Lower Jurassic pillow basalt, diabase sills, gabbro plutons, and chert. The mafic rocks are transitional normal-to-enriched, mid-ocean-ridge (MORB) type tholeiites (TiO2 1.2-3.4%, Nb 7-23 ppm, Ta 0.24-1.08 ppm, Zr 69-214 ppm, and light REE's slightly depleted to moderately enriched). Geologic and geochemical constraints indicate that Angayucham terrane is the upper "skin' (ca. 3-4 km thick) of a long-lived (ca. 170-200 ma) oceanic plateau whose basaltic-gabbroic rocks are like those of seamounts of the East Pacific Rise. -Authors

  11. A New Model of the Early Paleozoic Tectonics and Evolutionary History in the Northern Qinling, China

    NASA Astrophysics Data System (ADS)

    Dong, Yunpeng; Zhang, Guowei; Yang, Zhao; Qu, Hongjun; Liu, Xiaoming

    2010-05-01

    The Qinling Orogenic Belt extends from the Qinling Mountains in the west to the Dabie Mountains in the east. It lies between the North China and South China Blocks, and is bounded on the north by the Lushan fault and on the south by the Mianlue-Bashan-Xiangguang fault (Zhang et al., 2000). The Qinling Orogenic Belt itself is divided into the North and South Qinling Terranes by the Shangdan suture zone. Although the Shangdan zone is thought to represent the major suture separating the two blocks, there still exists debate about the timing and mechanism of convergence between these two blocks. For instance, some authors suggested an Early Paleozoic collision between the North China Block and South China Block (Ren et al., 1991; Kroner et al., 1993; Zhai et al., 1998). Others postulated left-lateral strike-slip faulting along the Shangdan suture at ca. 315 Ma and inferred a pre-Devonian collision between the two blocks (Mattauer et al., 1985; Xu et al., 1988). Geochemistry of fine-grained sediments in the Qinling Mountains was used to argue for a Silurian-Devonian collision (Gao et al., 1995). A Late Triassic collision has also been proposed (Sengor, 1985; Hsu et al., 1987; Wang et al., 1989), based on the formation of ultrahigh-pressure metamorphic rocks in the easternmost part of the Qinling Orogenic Belt at ~230 Ma (e.g., Li et al., 1993; Ames et al., 1996). Paleomagnetic data favor a Late Triassic-Middle Jurassic amalgamation of the North China and South China Blocks (Zhao and Coe, 1987; Enkin et al., 1992). It is clear that most authors thought that the Qinling Mountains are a collisional orogen, even they have different methods about the timing of the orogeny. Based on new detailed investigations, we propose a new model of the Early Paleozoic Tectonics and Evolutionary History between the North China and South China Blocks along the Shangdan Suture. The Shangdan suture is marked by a great number of ophiolites, island-arc volcanic rocks and other related rock

  12. Geophysical Investigations of a Proterozoic Carbonatite Terrane, southeast Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Denton, K. M.; Ponce, D. A.; Miller, D. M.; Peacock, J.; Miller, J. S.

    2015-12-01

    One of the world's largest rare-earth element-rich carbonatite deposits is located in the eastern Mojave Desert at Mountain Pass, California. The eastern Mojave Desert carbonatite terrane consists of a ~1.7 Ga gneiss and schist rocks that are host to a ~1.417 Ga (Premo, 2013) ultrapotassic intrusive suite (shonkinite, syenite, and granite) and a ~1.375 Ga (DeWitt, 1983) carbonatite deposit . Regional geophysical data indicate that this carbonatite terrane occurs within a north-northwest trending ~1-km wide bench in a gravity high and along the eastern edge of a prominent magnetic high in the eastern Clark Mountain Range. To improve our understanding of the geophysical and structural framework of the eastern Mojave carbonatite terrane, we collected over 2,300 gravity stations and over 640 physical rock property samples. Carbonatite rocks typically have distinct gravity, magnetic, and radioactive signatures because they are relatively dense, often contain magnetite, and are commonly enriched in thorium and/or uranium. Contrary to this trend, our results show that the carbonatite deposit is essentially nonmagnetic with an average susceptibility of 0.18 x 10-3 SI (n=31), and the ultrapotassic intrusive suite is very weakly magnetic with an average susceptibility of 2.0 x 10-3 SI (n=36). However, these rocks are found along a steep gradient of a prominent aeromagnetic anomaly. The lack of magnetic signature from the rocks of the eastern Mojave carbonatite terrane suggests alteration of magnetic minerals. This is corroborated by its location within a broader alteration zone and observed magnetic low. If so, such an alteration event occurred after emplacement of the carbonatite deposit, which likely remobilized rare earth elements in the surrounding rocks. Further, an alteration event is consistent with geology, high rare-earth element concentration, and unusual geochemistry of the carbonatite deposit. Temporal constraints (DeWitt, 1987; Premo, 2013) also suggest

  13. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2012-08-01

    Crustal growth at convergent margins can occur by the accretion of future allochthonous terranes (FATs), such as island arcs, oceanic plateaus, submarine ridges, and continental fragments. Using geodynamic numerical experiments, we demonstrate how crustal properties of FATs impact the amount of FAT crust that is accreted or subducted, the type of accretionary process, and the style of deformation on the overriding plate. Our results show that (1) accretion of crustal units occurs when there is a weak detachment layer within the FAT, (2) the depth of detachment controls the amount of crust accreted onto the overriding plate, and (3) lithospheric buoyancy does not prevent FAT subduction during constant convergence. Island arcs, oceanic plateaus, and continental fragments will completely subduct, despite having buoyant lithospheric densities, if they have rheologically strong crusts. Weak basal layers, representing pre-existing weaknesses or detachment layers, will either lead to underplating of faulted blocks of FAT crust to the overriding plate or collision and suturing of an unbroken FAT crust. Our experiments show that the weak, ultramafic layer found at the base of island arcs and oceanic plateaus plays a significant role in terrane accretion. The different types of accretionary processes also affect deformation and uplift patterns in the overriding plate, trench migration and jumping, and the dip of the plate interface. The resulting accreted terranes produced from our numerical experiments resemble observed accreted terranes, such as the Wrangellia Terrane and Klamath Mountain terranes in the North American Cordilleran Belt.

  14. Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2014-07-01

    Allochthonous accreted terranes are exotic geologic units that originated from anomalous crustal regions on a subducting oceanic plate and were transferred to the overriding plate during subduction by accretionary processes. The geographical regions that eventually become accreted allochthonous terranes include island arcs, oceanic plateaus, submarine ridges, seamounts, continental fragments, and microcontinents. These future allochthonous terranes (FATs) contribute to continental crustal growth, subduction dynamics, and crustal recycling in the mantle. We present a review of modern FATs and their accreted counterparts based on available geological, seismic, and gravity studies and discuss their crustal structure, geological origin, and bulk crustal density. Island arcs have an average crustal thickness of 26 km, average bulk crustal density of 2.79 g cm-3, and have 3 distinct crustal units overlying a crust-mantle transition zone. Oceanic plateaus and submarine ridges have an average crustal thickness of 21 km and average bulk crustal density of 2.84 g cm-3. Continental fragments presently on the ocean floor have an average crustal thickness of 25 km and bulk crustal density of 2.81 g cm-3. Accreted allochthonous terranes can be compared to these crustal compilations to better understand which units of crust are accreted or subducted. In general, most accreted terranes are thin crustal units sheared off of FATs and added onto the accretionary prism, with thicknesses on the order of hundreds of meters to a few kilometers. In addition many island arcs, oceanic plateaus, and submarine ridges were sheared off in the subduction interface and underplated onto the overlying continent. And other times we find evidence of collision leaving behind accreted terranes 25 to 40 km thick. We posit that rheologically weak crustal layers or shear zones that were formed when the FATs were produced can be activated as detachments during subduction, allowing parts of the FAT crust to

  15. Low palaeoelevation of the northern Lhasa terrane during late Eocene: Fossil foraminifera and stable isotope evidence from the Gerze Basin

    PubMed Central

    Wei, Yi; Zhang, Kexin; Garzione, Carmala N.; Xu, Yadong; Song, Bowen; Ji, Junliang

    2016-01-01

    The Lhasa terrane is a key region for understanding the paleoelevation of the southern Tibetan Plateau after India-Asia collision. The Gerze Basin, located in the northern part of the Lhasa terrane, is a shortening-related basin. We discovered Lagena laevis (Bandy) fossils in upper Eocene strata of the Gerze Basin. This type of foraminifera is associated with lagoon and estuarine environments, indicating that the northern part of the Lhasa terrane was near sea level during the late Eocene. We speculate that these foraminifera were transported inland by storm surges to low elevation freshwater lakes during times of marine transgressions. This inference is consistent with the relatively positive δ18O values in carbonate from the same deposits that indicate low palaeoelevations close to sea level. Considering the palaeoelevation results from the nearby Oligocene basins at a similar latitude and the volcanic history of the Lhasa terrane, we infer that large-magnitude surface uplift of the northern Lhasa terrane occurred between late Eocene and late Oligocene time. PMID:27272610

  16. Origin, transport, and emplacement of an exotic island-arc terrane exposed in eastern Kamchatka, Russia

    USGS Publications Warehouse

    Geist, Eric L.; Vallier, Tracy L.; Scholl, David W.

    1994-01-01

    The regional stratigraphy of eastern Kamchatka includes an exotic, Early-Late Cretaceous ophiolite and Late Cretaceous island-arc volcanic sequence. Integrating the existing geologic and geophysical data, we examine the origin, transport, emplacement, and postemplacement deformation of the island-arc terrane, which is named the Olyutorsky island arc. Results from several paleomagnetic studies consistently indicate that the island-arc terrane originated >1000 km to the south of where it is presently exposed. Although the formative paleolatitudes of the island-arc rocks approximately correspond to the location of the Izanagi-Farallon subduction zone, the age of the volcanic rocks postdates the cessation of Izanagi-Farallon convergence, thus indicating that an unnamed plate or back-arc basin existed in the northwest Pacific during Late Cretaceous time. We examine two possible models for northward transport of the island-arc terrane to Kamchatka: (1) infra-oceanic transport with the Pacific or Kula plates and (2) coastwise translation of the island-arc terrane after accretion to the Eurasian margin far to the south of Kamchatka. For both models, the dominant Eocene and Miocene deformation ages observed in eastern Kamchatka are used as two possible age limits for the cessation of northward transport. Although the observed paleolatitudes from paleomagnetic data correspond best with the infra-oceanic transport model, the provenance of the Paleogene "transport" stratigraphy indicates a near-shore sediment supply. Our preferred interpretation is that the island-arc terrane (1) accreted onto the Eurasian margin concurrent with cessation of island-arc volcanism (Maastrichtian-Danian) and (2) underwent northward coastwise translation along a major strike-slip fault zone ending by middle-late Eocene time (43-50 Ma). It is unclear whether the ophiolite was exposed during arc-continent collision or whether the ophiolite was obducted onto the island arc prior to collision. A

  17. The Nature of Mare Basalts in the Procellarum KREEP Terrane

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Gillis, Jeffrey J.; Korotev, Randy L.; Jolliff, Bradley L.

    2000-01-01

    Unlike Apollo 12 and 15 basalts, many mare lavas of the Procellarum KREEP Terrane (PKT) have Th concentrations of 2.5-6 ppm and perhaps greater, as well as high TiO2. Lunar "picritic" volcanic glasses from the PKT have a similar range.

  18. Minor elements, HREE and d18O distribution in UHP garnets from the Dora-Maira massif (western Alps)

    NASA Astrophysics Data System (ADS)

    Brunet, F.; Chazot, G.; Vielzeuf, D.; Chopin, C.

    2003-04-01

    preferentially incorporated into garnet. Garnet growth leads to progressive depletion of these elements in the matrix. There is no significant influx of HREE during UHP garnet growth. The homogeneity of the δ18O ratio within garnet crystals is also an indication of UHP growth in a close metamorphic system. Jadeite-quartzite veins have geochemical characteristics close to that of the country-rock gneiss from which they could originate. They would then represent an evidence of Mg-quartzite and country gneiss interaction at UHP.

  19. The basement of the Punta del Este Terrane (Uruguay): an African Mesoproterozoic fragment at the eastern border of the South American Río de La Plata craton

    NASA Astrophysics Data System (ADS)

    Basei, Miguel A. S.; Peel, Elena; Sánchez Bettucci, Leda; Preciozzi, Fernando; Nutman, Allen P.

    2011-04-01

    The Punta del Este Terrane (eastern Uruguay) lies in a complex Neoproterozoic (Brasiliano/Pan-African) orogenic zone considered to contain a suture between South American terranes to the west of Major Gercino-Sierra Ballena Suture Zone and eastern African affinities terranes. Zircon cores from Punta del Este Terrane basement orthogneisses have U-Pb ages of ca. 1,000 Ma, which indicate an lineage with the Namaqua Belt in Southwestern Africa. U-Pb zircon ages also provide the following information on the Punta del Este terrane: the orthogneisses containing the ca. 1,000 Ma inheritance formed at ca. 750 Ma; in contrast to the related terranes now in Africa, reworking of the Punta del Este Terrane during Brasiliano/Pan-African orogenesis was very intense, reaching granulite facies at ca. 640 Ma. The termination of the Brasiliano/Pan-African orogeny is marked by formation of acid volcanic and volcanoclastic rocks at ca. 570 Ma (Sierra de Aguirre Formation), formation of late sedimentary basins (San Carlos Formation) and then intrusion at ca. 535 Ma of post-tectonic granitoids (Santa Teresa and José Ignacio batholiths). The Punta del Este Terrane and unrelated western terranes represented by the Dom Feliciano Belt and the Río de La Plata Craton were in their present positions by ca. 535 Ma.

  20. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Fu, Bin; Gong, Bing; Li, Long

    2003-07-01

    Discovery of coesite, diamond, and extreme 18O-depletion in eclogites from the Dabie-Sulu orogen in central-east China has contributed much to our understanding of subduction of continental crust to mantle depths and its subsequent exhumation. Hydrogen, oxygen, and carbon isotope distributions were systematically investigated in the past 8 years for ultrahigh pressure (UHP) eclogites, gneisses, granulites, marbles, and peridotites from this exciting region. The available data show the following characteristic features: (1) variable δ18O values of -11‰ to +10‰ for the eclogites and gneisses, with both equilibrium and disequilibrium fractionations of oxygen isotopes among minerals; (2) disequilibrium fractionation of hydrogen isotopes between mica and epidote from both eclogites and gneisses, with low δD values up to -127‰ to -100‰ for phengite; (3) negative δ13C values of -28‰ to -21‰ for apatite as well as host-eclogites and gneisses; (4) positive δ13C values of +1‰ to +6‰ for coesite-bearing marble associated with eclogites; (5) zircons from metamorphic rocks of different grades show a large variation in δ18O from -11‰ to +9‰, with U-Pb ages of 700 to 800 Ma for the timing of low- δ18O magma crystallization. It appears that the UHP metamorphic rocks exhibit ranges of δ18O values that are typical of potential precursor protolith rocks. Preservation of the oxygen isotope equilibrium fractionations among the minerals of the UHP eclogites and gneisses suggests that these rocks acquired the low δ18O values by meteoric-hydrothermal alteration before the UHP metamorphism. Thus, the UHP metamorphic rocks largely reflect the δ18O values of their premetamorphic igneous or sedimentary precursors. The stable isotope data demonstrate that basaltic, granitic, and sedimentary protoliths of the eclogites, orthogneiss, and paragneiss in the orogen were at or near the earth's surface, and subjected to varying degrees of water-rock interaction at some

  1. Geochemistry of siliciclastic rocks in the Peninsular, Chugach, and Prince William terranes: Implications for the tectonic evolution of south central Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, S.A.; Casey, J.F.; Bradley, D.

    1992-01-01

    According to some interpretations, south-central Alaska consists of a series of unrelated terranes juxtaposed by dominantly strike-slip motions some time after formation. Alternatively, these so-called terranes may be related components of a seaward-facing arc, forearc, and accretionary prism. To shed new light on the tectonic history of this area, 150 samples of siliciclastic rocks were analyzed for major, trace, and rare earth elements (REE). Shales were sampled from the Upper Cretaceous Matanuska and Paleogene Chickaloon Fms. of the Peninsular Terrane (forearc basin); argillaceous melange matrix from the Mesozoic McHugh Complex and slate from turbidites of the Upper Cretaceous Valdez Groupmore » of the Chugach Terrane (landward part of accretionary prism); and slate from turbidites of the Paleogene Orea Group of the Prince William Terrane (seaward part of accretionary prism). One tectonic model that may fit these geochemical data requires an early linkage between the Peninsular and Chugach-Prince William composite terranes. The geochemical signatures suggest that the McHugh Complex was derived from a mafic volcanic source and may represent an early accretionary stage of sediments derived from an oceanic arc. The progressive continental enrichment of the Valdez and Orca Groups may reflect later accretionary processes during and/or after the collision of the Talkectna arc with the North American continent. The similar increasingly continental source documented in the geochemistry of the forearc basin shales of the Matanuska and Chickaloon Fms. may suggest: that the presently defined Peninsular, Chugach, and Prince William terranes collectively represent one continuously evolving, seaward facing arc, forearc, and accretionary prism complex.« less

  2. Zircon U-Pb ages, geochemistry, and Nd-Hf isotopes of the TTG gneisses from the Jiaobei terrane: Implications for Neoarchean crustal evolution in the North China Craton

    NASA Astrophysics Data System (ADS)

    Shan, Houxiang; Zhai, Mingguo; Wang, Fang; Zhou, Yanyan; Santosh, M.; Zhu, Xiyan; Zhang, Huafeng; Wang, Wei

    2015-02-01

    The Precambrian basement in the Jiaobei terrane is largely composed of Tonalite-Trondhjemite-Granodiorite (TTG) suite of rocks and offers important insights into the crustal evolution history of the North China Craton (NCC). The LA-ICP-MS zircon U-Pb age data presented in this study show that the magmatic protoliths of the TTG gneisses formed during 2508-2547 Ma and recorded the Paleoproterozoic metamorphism (∼1905 Ma). The rocks are enriched in LILE (Rb, Ba and Sr) and depleted in HFSE (Nb, Ta, Zr and Hf). They are characterized by high Sr contents (406-2906 ppm), Sr/Y ratios (31.3-355) and subchondritic Nb/Ta ratios (18.5-68.9). The TTGs show relatively high ΣREE contents (72.0-266 ppm) with strongly enriched LREE ((La/Yb)N = 11.5-121) and positive or negligible negative Eu anomalies (Eu/Eu∗ = 0.84-1.89). These geochemical features suggest that the magma source might have been rutile-bearing amphibole eclogite. Their high Mg# numbers (42-56) and high Cr (153-285 ppm) and Ni contents (22.2-74.5 ppm) indicate interaction with the mantle wedge during magma ascent. The whole rock εNd (t) values (+2.6 to +3.8) and most of the magmatic zircon εHf (t) values (+1.3 to +7.6) suggest juvenile to evolved isotopic signatures. All these lines of evidence suggest that the TTG rocks in this study formed through partial melting of subducted oceanic slab in a continental arc environment. The drill holes in the Jiaobei terrane are dominated by ∼2.5 Ga TTG gneisses, suggesting that the TTG magma at ∼2.5 Ga is more widely distributed deep underground than that of ∼2.7-2.9 Ga, at least within the approachable depth range of our research. Some zircon grains from Jiaobei TTGs give high εHf (t) values plotting above the curve of 0.75 ∗ εHf of DM, and their TCDM ages are very close to the time of the zircon crystallization. However, the majority of the εHf (t) values fall below the curve of 0.75 ∗ εHf of DM and their TCDM ages are concentrated between ∼2.7-2.9 Ga

  3. Paleozoic subduction complex and Paleozoic-Mesozoic island-arc volcano-plutonic assemblages in the northern Sierra terrane

    USGS Publications Warehouse

    Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.

    2000-01-01

    This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.

  4. Geophysical modeling of the northern Appalachian Brompton-Cameron, Central Maine, and Avalon terranes under the New Jersey Coastal Plain

    USGS Publications Warehouse

    Maguire, T.J.; Sheridan, R.E.; Volkert, R.A.

    2004-01-01

    A regional terrane map of the New Jersey Coastal Plain basement was constructed using seismic, drilling, gravity and magnetic data. The Brompton-Cameron and Central Maine terranes were coalesced as one volcanic island arc terrane before obducting onto Laurentian, Grenville age, continental crust in the Taconian orogeny [Rankin, D.W., 1994. Continental margin of the eastern United States: past and present. In: Speed, R.C., (Ed.), Phanerozoic Evolution of North American Continent-Ocean Transitions. DNAG Continent-Ocean Transect Volume. Geological Society of America, Boulder, Colorado, pp. 129-218]. Volcanic island-arc rocks of the Avalon terrane are in contact with Central Maine terrane rocks in southern Connecticut where the latter are overthrust onto the Brompton-Cameron terrane, which is thrust over Laurentian basement. Similarities of these allochthonous island arc terranes (Brompton-Cameron, Central Maine, Avalon) in lithology, fauna and age suggest that they are faulted segments of the margin of one major late Precambrian to early Paleozoic, high latitude peri-Gondwana island arc designated as "Avalonia", which collided with Laurentia in the early to middle Paleozoic. The Brompton Cameron, Central Maine, and Avalon terranes are projected as the basement under the eastern New Jersey Coastal Plain based on drill core samples of metamorphic rocks of active margin/magmatic arc origin. A seismic reflection profile across the New York Bight traces the gentle dipping (approximately 20 degrees) Cameron's Line Taconian suture southeast beneath allochthonous Avalon and other terranes to a 4 sec TWTT depth (approximately 9 km) where the Avalonian rocks are over Laurentian crust. Gentle up-plunge (approximately 5 degrees) projections to the southwest bring the Laurentian Grenville age basement and the drift-stage early Paleozoic cover rocks to windows in Burlington Co. at approximately 1 km depth and Cape May Co. at approximately 2 km depths. The antiformal Shellburne

  5. The Khida terrane - Geochronological and isotopic evidence for Paleoproterozoic and Archean crust in the eastern Arabian Shield of Saudi Arabia

    USGS Publications Warehouse

    Whitehouse, M.J.; Stoeser, D.B.; Stacey, J.S.

    2001-01-01

    The Khida terrane of the eastern Arabian Shield of Saudi Arabia has been proposed as being underlain by Paleoproterozoic to Archean continental crust (Stoeser and Stacey, 1988). Detailed geological aspects of the Khida terrane, particularly resulting from new fieldwork during 1999, are discussed in a companion abstract (Stoeser et al., this volume). We present conventional and ion- microprobe U-Pb zircon geoenronology, Nd whole-rock, and feldspar Pb isotopic data that further elucidate the pre-Pan-African evolution of the Khida terrane. Locations for the Muhayil samples described below are shown in figure 2 of Stoeser et al. (this volume). 

  6. The Precambrian terranes of Yemen and their correlation with those of Saudi Arabia and Somalia: Implications for the accretion of Gondwana

    USGS Publications Warehouse

    Windley, B.F.; Whitehouse, M.J.; Stoeser, D.B.; Al-Khirbash, S.; Ba-Bttat, M. A. O.; Al-Ghotbah, A.

    2001-01-01

    Most of the basement of Yemen consists of early Precambrian continental high-grade terranes and Neoproterozoic low-grade island arcs that were accreted together to form an arc-continent collage during the Pan-African orogeny (Windley et al., 1996; Whitehouse et al., 1998; Whitehouse et al., in press). The suture zones between the arc and gneiss terranes are major crustal- scale tectonic boundaries. The terranes are situated east of the Nabitah suture and of the collage of low-grade, mainly island arc terranes of the Arabian Shield, but they have been reworked by a Neoproterozoic event associated with island arc accretion. Further east in Yemen are mostly unconformable, very weakly deformed and very low-grade or unmetamorphosed sediments. Thus Yemen provides key information on the broad zone of Neoproterozoic reworking associated with the collisional boundary between western and eastern Gondwana. 

  7. Timing of terrane accretion in eastern and east-central Maine

    NASA Astrophysics Data System (ADS)

    Ludman, Allan

    1986-05-01

    The Norumbega fault zone is often cited as a post-Acadian suture between exotic blocks, even though stratigraphic, structural, and metamorphic data indicate that there is little offset of the Silurian-Devonian strata that the zone cuts in eastern Maine. Similarly, the Kingman fault zone has been shown by gravity and geochemical studies to separate distinct crustal blocks, whereas mapping shows that it lies entirely within a Silurian turbidite package. These conflicts are resolved if the two fault zones represent boundaries between Ordovician or older crustal blocks that had accreted to form a composite terrane prior to deposition of the cover sequences. The faults now mapped within these younger rocks formed by reactivation of the pre-Silurian boundaries during late Acadian time; movement continued until the late Carboniferous. Most of the accretionary history of Maine had thus ended before the Silurian. A complex composite terrane may have formed during Cambrian-Ordovician time that (1) interacted with cratonic North America during the Taconian orogeny and (2) became the “basement” upon which the Silurian and Lower Devonian strata of eastern Maine were deposited.

  8. Structural terranes and their relationships in Sierra Leone

    NASA Astrophysics Data System (ADS)

    Williams, Howard R.; Culver, Stephen J.

    Sierra Leone, composed mainly of Archaean granite-greenstone terrane, is bounded in the west by a westward dipping zone of intense, ductile, simple shear deformation which produced very fine-grained, high grade rocks. This zone has been interpreted as a possible Archaean suture developed following the collision of the Guyana Shield and the West African Craton. Granulite facies metamorphic supracrustals of the Kasila Group occur to the west of the sheared zone. Marampa Group lower grade metamorphics were thrust eastwards during the collision event. Late Precambrian rifting, well to the east of the mylonite zone and subsequent compression, preserved very low grade to unmetamorphosed Rokel River Group sediments and volcanics. Limited Pan-African tectonic transport of Archaean and late Precambrian material was again toward the east. All structural and stratigraphic units can be traced northward into Guinea where they disappear beneath the Paleozoic sediments of the Bové Basin. To the south, the Kasila Group, the granite-greenstone terrane and the mylonitized zone can be traced into Liberia. The Gibi Mountain Formation of Liberia is probably laterally equivalent to the lower portions of the Rokel River Group. This interpretation of the geology of Sierra Leone differs greatly from that of Guinea where the mylonitized zone, associated with a positive gravity anomaly, has been interpreted as a suture zone resulting from Pan-African continent-continent collision.

  9. Remelting of nanogranitoids in UHP felsic granulites from Erzgebirge (Bohemian Massif, Germany)

    NASA Astrophysics Data System (ADS)

    Acosta-vigil, A.; Stöckhert, B.; Hermann, J.; Yaxley, G.; Cesare, B.; Bartoli, O.

    2017-12-01

    Crustal melting commonly takes place at pressures ≤ 1.5 GPa. Anatexis at UHP conditions, however, can occur during subduction of continental crust down to mantle depths. Understanding the timing, mechanisms and nature of this process is important as it has major mechanical and geochemical implications. One way to address this problem is through the novel studies of nanogranitoids in migmatites and granulites (Cesare et al. 2015). We have remelted crystallized former melt inclusions (nanogranitoids) trapped in garnets of diamond-bearing UHP felsic granulites from Erzgebirge, Bohemian Massif. These rocks are made of Qtz+Phe+Pl+Grt+Ky+Bt+Dia, and their peak conditions have been estimated at P≥4.5 GPa and T≥1000 ºC. Nanogranitoids appear homogeneously distributed throughout the entire garnet crystals, are 5-50 µm across and often isometric, with partially developed negative crystal shape, and were trapped during garnet growth in the presence of melt. The mineral assemblage within nanogranites consists of Qtz+Pl+Phe+Pg+Phl±Ky±Dia±Gr±Ap±Rt (Stöckhert et al. 2009). Fragments of nanogranitoids-bearing garnets were loaded inside gold capsules, enclosed in SiO2 or C powders that acted as cushion, either dry or with H2O in excess, and subjected to conditions between 975-1100 ºC and 2.5-4.5 GPa for 2-24 hrs. Re-homogenization has not been completely achieved. Nanogranitoids partially melt, melt often coexists with Als, diamond or Gr, and Grt grows into the melt to form a higher #Mg and Ti, ≈5 µm fringe. Preliminary EMP analyses indicate that melts are granitic sensu stricto, with low FeOt+MgO (≈2 wt%), moderate to high in ASI, and high in TiO2 (≈0.4-0.8 wt%), P2O5 (up to 1 wt%) and volatiles (100-EMP totals ≈ 10-15 wt%). These preliminary results suggest that (i) anatexis started in the presence of a H2O-rich fluid phase, (ii) melt was present and equilibrated at quite high T (>850-950 ºC, Hayden & Watson 2007) at or close to peak conditions, (iii) Als

  10. Paleomagnetic evidence that the central block of Salinia (California) is not a far-traveled terrane

    USGS Publications Warehouse

    Whidden, K.J.; Lund, S.P.; Bottjer, D.J.; Champion, D.; Howell, D.G.

    1998-01-01

    New paleomagnetic results from Late Cretaceous (75-85 m.y.) red beds on the central block of Salinia indicate that Salinia was located within 6?? (in latitude) of its current cratonal North American position during the Late Cretaceous (after correction for Neogene San Andreas Fault transport). The red beds formed as alluvial-fan overbank deposits with hematite cement deposited directly on Salinian granites in the La Panza Range. Paleomagnetic analysis shows two components of magnetization in the red beds, a low-blocking-temperature present-day overprint residing in goethite and a high-blocking-temperature (>600??) component residing in hematite. The hematite magnetization is a chemical remanent magnetization which formed soon after deposition during pedogenesis. The bedding-corrected hematite remanence contains a magnetic polarity stratigraphy with antipodal normal and reversed directions. Twenty-three Class I sites (??95 < 20??) have an average hematite direction with inclination = 54.4?? and declination = 18.2?? (??95 = 6.1??) after structural correction. These paleomagnetic data suggest that Salinia resided at about 35??N latitude during the Late Cretaceous, within 6?? of its current location adjacent to cratonal North America. By contrast, a summary of paleomagnetic data from the Peninsular Ranges terrane and the Sur-Obispo terrane, which are currently outboard of Salinia, shows northward transport of these terranes of 12,.o\\ to 22?? relative to their current locations in North America since the Cretaceous. The offsets increase systematically away from the craton with the most outboard Sur-Obispo terrane (which is composed of accretionary prism and distal forearc material) showing the largest degree of northward translation.

  11. Provenance of the exotic Northern Sierra terrane (North American Cordillera) based on U-Pb detrital zircon data

    NASA Astrophysics Data System (ADS)

    Powerman, V.; Girty, G.; Hanson, R. E.; Grove, M.; Miller, E. L.; Hourigan, J. K.

    2017-12-01

    Ages of detrital zircons from the Northern Sierra terrane (NST) suggest an exotic provenance with respect to NW Laurentia. We have acquired U-Pb LA-ICPMS dz ages from 16 samples collected from the uppermost NST allochthon, the Sierra City mélange, and 1 sample from the lower Culbertson Lake allochthon. Age distributions can be divided into 3 partly intersecting groups: (a) 6 mélange samples and the 1 Culbertson Lake allochthon sample are dominated by >1 Ga grains; (b)5 samples are characterized by the additional presence of Early Paleozoic and Neoproterozoic grains (520-640;680-800;840-1000Ma); (c) 9 samples, 8 feldspathic, 1—qtz-rich, can be also characterized by the presence of 360-520Ma grains. These results strengthen the non Laurentian nature of detrital sources:(1)most of the detrital age distributions possess ages in the 1.49-1.61Ga interval, the "N.American magmatic gap";(2) Ediacaran zircons cannot be linked to any igneous event within West Laurentia. Most samples possess detrital age distributions that include the 1.0-2.0 Ga peak, characteristic of Baltica rather than Laurentia. These data, supplemented by SHRIMP-RG data (353-368Ma) from stitching igneous units suggest the following model: parts of NST were located at the NE margin of Baltica in the early Paleozoic, receiving "Baltica" (1.0-2.0 Ga) and "Timanide"(Late Vendian — Early Cambrian) zircons. This crustal block was later rifted away from Baltica and by mid-Paleozoic was juxtaposed with allochthons of presumably NW Laurentia provenance. The assembled terrane was involved in a subduction zone, resulting in the emplacement of 353-368Ma igneous rocks. The U-Pb detrital zircon age distributions presented here are similar to signatures of strata in along strike exotic terranes of the North American Cordillera (such as the Yreka terrane of the Klamath Mts., the Alexander terrane of S.Alaska and the Arctic Chukotka-Alaska terrane) by having Timanian, Baltica, and Caledonian signatures. Hence, it

  12. Common Pb isotope mapping of UHP metamorphic zones in Dabie orogen, Central China: Implication for Pb isotopic structure of subducted continental crust

    NASA Astrophysics Data System (ADS)

    Shen, Ji; Wang, Ying; Li, Shu-Guang

    2014-10-01

    We report Pb isotopic compositions for feldspars separated from 57 orthogneisses and 2 paragneisses from three exhumed UHPM slices representing the North Dabie zone, the Central Dabie zone and the South Dabie zone of the Dabie orogen, central-east China. The feldspars from the gneisses were recrystallized during Triassic continental subduction and UHP metamorphism. Precursors of the orthogneisses are products of Neoproterozoic bimodal magmatic events, those in north Dabie zone emplaced into the lower crust and those in central and south Dabie zones into middle or upper crust, respectively. On a 207Pb/204Pb vs. 206Pb/204Pb diagram, almost all orthogneisses data lie to the left of the 0.23 Ga paleogeochron and plot along the model mantle evolution curve with the major portion of the data plotting below it. On a 208Pb/204Pb vs. 206Pb/204Pb diagram the most of data of north Dabie zone extend in elongate arrays along the lower crustal curve and others extend between the lower crustal curve to near the mantle evolution curve for the plumbotectonics model. This pattern demonstrates that the Pb isotopic evolution of the feldspars essentially ended at 0.23 Ga and the orthogneiss protoliths were principally dominated by reworking of ancient lower crust with some addition of juvenile mantle in the Neoproterozoic rifting tectonic zone. According to geological evolution history of the locally Dabie orogen, a four-stage Pb isotope evolution model including a long time evolution between 2.0 and 0.8 Ga with a lower crust type U/Pb ratio (μ = 5-6) suggests that magmatic emplacement levels of the protoliths of the orthogneisses in the Dabie orogen at 0.8 Ga also play an important role in the Pb evolution of the exhumed UHPM slices, corresponding to their respective Pb characters at ca. 0.8-0.23 Ga. For example, north Dabie zone requires low μ values (3.4-9.6), while central and south Dabie zones require high μ values (10.9-17.2). On the other hand, Pb isotopic mixing between

  13. Deducing the ancestry of terranes: SHRIMP evidence for South America derived Gondwana fragments in central Europe

    NASA Astrophysics Data System (ADS)

    Friedl, Gertrude; Finger, Fritz; McNaughton, Neal J.; Fletcher, Ian R.

    2000-11-01

    We present here an example of how the sensitive high-resolution ion microprobe (SHRIMP) zircon dating method can provide a terrane-specific geochronological fingerprint for a rock and thus help to reveal major tectonic boundaries within orogens. This method, applied to inherited zircons in a ca. 580 Ma metagranitoid rock from the eastern Bohemian Massif, has provided, for the first time in the central European Variscan basement, unequivocal evidence for Mesoproterozoic and late Paleoproterozoic geologic events ca. 1.2 Ga, 1.5 Ga, and 1.65 1.8 Ga. The recognition of such zircon ages has important consequences because it implies that parts of the Precambrian section of Variscan central Europe were originally derived from a Grenvillian cratonic province, as opposed to the common assumption of an African connection. A comparison with previously published SHRIMP data suggests, however, that these Mesoproterozoic and late Paleoproterozoic zircon ages may be restricted to the Moravo-Silesian unit in the eastern Variscides, whereas the Saxothuringian and Moldanubian zones appear to contain a typical north African (i.e., Neoproterozoic plus Eburnian) inherited-zircon age spectrum. This finding supports new tectonic concepts, according to which Variscan Europe is composed of a number of completely unrelated terranes with extremely different paleogeographic origins. The Moravo-Silesian unit can be best interpreted as a peri-Gondwana terrane, which was situated in the realm of the Amazonian cratonic province by the late Precambrian, comparable to the Avalonian terranes of North America and the United Kingdom.

  14. Geology and metallogeny of the Ar Rayn terrane, eastern Arabian shield: Evolution of a Neoproterozoic continental-margin arc during assembly of Gondwana within the East African orogen

    USGS Publications Warehouse

    Doebrich, J.L.; Al-Jehani, A. M.; Siddiqui, A.A.; Hayes, T.S.; Wooden, J.L.; Johnson, P.R.

    2007-01-01

    The Neoproterozoic Ar Rayn terrane is exposed along the eastern margin of the Arabian shield. The terrane is bounded on the west by the Ad Dawadimi terrane across the Al Amar fault zone (AAF), and is nonconformably overlain on the east by Phanerozoic sedimentary rocks. The terrane is composed of a magmatic arc complex and syn- to post-orogenic intrusions. The layered rocks of the arc, the Al Amar group (>689 Ma to ???625 Ma), consist of tholeiitic to calc-alkaline basaltic to rhyolitic volcanic and volcaniclastic rocks with subordinate tuffaceous sedimentary rocks and carbonates, and are divided into an eastern and western sequence. Plutonic rocks of the terrane form three distinct lithogeochemical groups: (1) low-Al trondhjemite-tonalite-granodiorite (TTG) of arc affinity (632-616 Ma) in the western part of the terrane, (2) high-Al TTG/adakite of arc affinity (689-617 Ma) in the central and eastern part of the terrane, and (3) syn- to post-orogenic alkali granite (607-583 Ma). West-dipping subduction along a trench east of the terrane is inferred from high-Al TTG/adakite emplaced east of low-Al TTG. The Ar Rayn terrane contains significant resources in epithermal Au-Ag-Zn-Cu-barite, enigmatic stratiform volcanic-hosted Khnaiguiyah-type Zn-Cu-Fe-Mn, and orogenic Au vein deposits, and the potential for significant resources in Fe-oxide Cu-Au (IOCG), and porphyry Cu deposits. Khnaiguiyah-type deposits formed before or during early deformation of the Al Amar group eastern sequence. Epithermal and porphyry deposits formed proximal to volcanic centers in Al Amar group western sequence. IOCG deposits are largely structurally controlled and hosted by group-1 intrusions and Al Amar group volcanic rocks in the western part of the terrane. Orogenic gold veins are largely associated with north-striking faults, particularly in and near the AAF, and are presumably related to amalgamation of the Ar Rayn and Ad Dawadimi terranes. Geologic, structural, and metallogenic

  15. Processes in continental collision zones: Preface

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Zhang, Lifei; McClelland, William C.; Cuthbert, Simon

    2012-04-01

    Formation and exhumation of high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks in continental subduction zones are the two fundamental geodynamic aspects of collisional orogensis. This volume is based on the Session 08c titled "Geochemical processes in continental collision zones" at Goldschmidt 2010 in Knoxville, USA. It focuses on micro- to macro-scale processes that are temporally and spatially linked to different depths of crustal subduction/exhumation and associated mineralogical changes. They are a key to understanding a wide spectrum of phenomena, involving HP/UHP metamorphism and syn-/post-collisional magmatism. Papers in this volume report progresses in petrological, geochronological and geochemical studies of UHP metamorphic rocks and their derivatives in China, with tectonic settings varying from arc-continent collision to continent-continent collision. Microbeam in-situ analyses of metamorphic and magmatic minerals are successfully utilized to solve various problems in the study of continental deep subduction and UHP metamorphism. In addition to their geochronological applications to dating of HP to UHP metamorphic events during continental collision, microbeam techniques have also served as an efficient means to recognize different generations of mineral growth during continental subduction-zone metamorphism. Furthermore, metamorphic dehydration and partial melting of UHP metamorphic rocks during subduction and exhumation are highlighted with respect to their effects on fluid action and element mobilization. These have provided new insights into chemical geodynamics in continental subduction zones.

  16. Rotations in the actively colliding Finisterre Arc Terrane: paleomagnetic constraints on Plio-Pleistocene evolution of the South Bismarck microplate, northeastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Weiler, P. D.; Coe, R. S.

    2000-01-01

    We report paleomagnetic results from 12 Plio-Pleistocene localities in the actively colliding Finisterre Arc Terrane of northeastern Papua New Guinea (PNG). Calcareous, hemipelagic cover rocks possess a stable, syn-collisional remagnetization indicating a clockwise rotation of the colliding terrane through about 40° in post-Miocene time. A decrease in paleomagnetic declination anomalies as a function of along-strike distance in the Finisterre Arc Terrane, analyzed by our preferred model of a linear remagnetization and a migrating Euler pole, suggests an average rotation rate of 8° Ma -1, in good agreement with the instantaneous rate from global positioning system geodesy. Thus, we propose that this rotation results from a coherent, rigid-body rotation of the Finisterre Terrane rather than from sequential docking of independently colliding blocks of the terrane. Moreover, we conclude that these paleomagnetic declinations result mainly from South Bismarck Plate motion, and not decoupled rotation of the crustal terrane independent of the underlying lithosphere. We examine models of a syn-collisional remagnetization with both fixed and migrating Euler poles of South Bismarck/Australia plate relative motion, and suggest that the Euler pole describing South Bismarck Plate motion has migrated southwestward to its present location on the collision suture in response to the propagating collision. This plate kinematic model agrees with the variability in depth of the seismogenic slab beneath the collision zone. Our best-fit model of pole migration describes South Bismarck/Australia relative motion producing a highly oblique collision in its early stages, with the Finisterre Arc Terrane converging along a left-lateral Ramu-Markham suture, gradually changing to the nearly orthogonal convergence observed today.

  17. A Hands-On Approach to Teaching the Terrane Concept in Historical Geology.

    ERIC Educational Resources Information Center

    Bykerk-Kauffman, Ann

    1989-01-01

    Describes an exercise in which students convert lithostratigraphic columns into chronostratigraphic columns, infer paleolatitude using paleomagnetic data, interpret depositional environments, determine the timing of deformation and terrane collision, construct models, and synthesize the results into a geologic history. Background data, procedures,…

  18. Precise U-Pb Zircon Constraints on the Earliest Magmatic History of the Carolina Terrane.

    PubMed

    Wortman; Samson; Hibbard

    2000-05-01

    The early magmatic and tectonic history of the Carolina terrane and its possible affinities with other Neoproterozoic circum-Atlantic arc terranes have been poorly understood, in large part because of a lack of reliable geochronological data. Precise U-Pb zircon dates for the Virgilina sequence, the oldest exposed part, constrain the timing of the earliest known stage of magmatism in the terrane and of the Virgilina orogeny. A flow-banded rhyolite sampled from a metavolcanic sequence near Chapel Hill, North Carolina, yielded a U-Pb zircon date of 632.9 +2.6/-1.9 Ma. A granitic unit of the Chapel Hill pluton, which intrudes the metavolcanic sequence, yielded a nearly identical U-Pb zircon date of 633 +2/-1.5 Ma, interpreted as its crystallization age. A felsic gneiss and a dacitic tuff from the Hyco Formation yielded U-Pb zircon dates of 619.9 +4.5/-3 Ma and 615.7 +3.7/-1.9 Ma, respectively. Diorite and granite of the Flat River complex have indistinguishable U-Pb upper-intercept dates of 613.9 +1.6/-1.5 Ma and 613.4 +2.8/-2 Ma. The Osmond biotite-granite gneiss, which intruded the Hyco Formation before the Virgilina orogeny, crystallized at 612.4 +5.2/-1.7 Ma. Granite of the Roxboro pluton, an intrusion that postdated the Virgilina orogeny, yielded a U-Pb upper intercept date of 546.5 +3.0/-2.4 Ma, interpreted as the time of its crystallization. These new dates both provide the first reliable estimates of the age of the Virgilina sequence and document that the earliest known stage of magmatism in the Carolina terrane had begun by 633 +2/-1.5 Ma and continued at least until 612.4 +5.2/-1.7 Ma, an interval of approximately 25 m.yr. Timing of the Virgilina orogeny is bracketed between 612.4 +5.2/-1.7 Ma and 586+/-10 Ma (reported age of the upper Uwharrie Formation). The U-Pb systematics of all units studied in the Virgilina sequence are simple and lack any evidence of an older xenocrystic zircon component, which would indicate the presence of a continental

  19. Continuation, south of Oaxaca City (southern Mexico) of the Oaxaca-Juarez terrane boundary and of the Oaxaca Fault. Based in MT, gravity and magnetic studies

    NASA Astrophysics Data System (ADS)

    Campos-Enriquez, J. O.; Corbo, F.; Arzate-Flores, J.; Belmonte-Jimenez, S.; Arango-Galván, C.

    2010-12-01

    The Oaxaca Fault represents Tertiary extensional reactivation of the Juarez shear zone constituting the boundary-suture between the Oaxaca and Juarez terranes (southern Mexico). South of Oaxaca City, the fault trace disappears and there are not clear evidences for its southward continuation at depth. The crust in southern México has been studied through seismic refraction, and seismological and magnetotelluric (MT) studies. The refraction studies did not image the Oaxaca Fault. However, previous regional MT studies suggest that the Oaxaca-Juarez terrane boundary lies to the east of the Zaachila and Mitla sub-basins, which implies sinistral displacement along the Donaji Fault. Campos-Enriquez et al. (2009) established the shallow structure of the Oaxaca-Juarez terrane boundary based in detailed gravity and magnetic studies. This study enabled: 1) to establish the shallow structure of the composite depression comprising three N-S sub-basins: the northern Etla and southern Zaachila sub-basins separated by the Atzompa sub-basin. According to the Oaxaca-Juarez terrane boundary is displaced sinistrally ca. 20 km along the E-W Donají Fault, which defines the northern boundary of the Zaachila sub-basin. At the same time,, the Oaxaca Fault may either continue unbroken southwards along the western margin of a horst in the Zaachila sub-basin or be offset along with the terrane boundary. This model implies that originally the suture was continuous south of the Donaji Fault. A constraint for the accreation of the Oaxaca and Juarez terranes. Thirty MT soundings were done in the area of the Central Valleys, Oaxaca City (southern Mexico). In particular we wanted to image the possible southward continuation of the Oaxaca Fault. 22 Mt sounding are located along two NE-SW profiles to the northern and to the south of the City of Oaxaca. To the north of Oaxaca City, the electrical resistivity distribution obtained show a clear discontinuity across the superficial trace of the Oaxaca

  20. Hurricane Mountain Formation melange: history of Cambro-Ordovician accretion of the Boundary Mountains terrane within the northern Appalachian orthotectonic zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, G.M.; Boudette, E.L.

    1985-01-01

    The Hurricane Mountain Formation (HMF) melange and associated ophiolitic and volcanogenic formations of Cambrian and lowermost Ordovician age bound the SE margin of the Precambrian Y (Helikian) Chain Lakes Massif in western Maine. HMF melange matrix, though weakly metamorphosed, contains a wide variety of exotic greenschist to amphibolite facies blocks as components of its polymictic assemblage, but blocks of high-grade cratonal rocks such as those of Chain Lakes or Grenville affinity are lacking. Formations of melange exposed in structural culminations of Cambrian and Ordovician rocks NE of the HMF in Maine and in the Fournier Group in New Brunswick aremore » lithologically similar and probably tectonically correlative with the HMF; taken together, they may delineate a common pre-Middle Ordovician tectonic boundary. The authors infer that the Hurricane Mountain and St. Daniel melange belts define the SE and NW margins of the Boundary Mountains accreted terrane (BMT), which may consist of cratonal basement of Chain Lakes affinity extending from eastern Gaspe (deBroucker and St. Julien, 1985) to north-central New Hampshire. The Laurentian continental margin, underlain by Grenville basement, underplated the NW margin of this terrane, marked by the SDF suture zone, in late Cambrian to early Ordovician time, while terranes marked by Cambrian to Tremadocian (.) lithologies dissimilar to the Boundary Mountains terrane were accreted to its outboard margin penecontemporaneously. The docking of the Boundary Mountains terrane and the initiation of its peripheral melanges are equated to the Penobscottian disturbance.« less

  1. Episodic behavior of Gondwanide deformation in eastern Australia: Insights from the Gympie Terrane

    NASA Astrophysics Data System (ADS)

    Hoy, Derek; Rosenbaum, Gideon

    2017-08-01

    The mechanisms that drove Permian-Triassic orogenesis in Australia and throughout the Cordilleran-type Gondwanan margin is a subject of debate. Here we present field-based results on the structural evolution of the Gympie Terrane (eastern Australia), with the aim of evaluating its possible role in triggering widespread orogenesis. We document several deformation events (D1-D3) in the Gympie Terrane and show that the earliest deformation, D1, occurred only during the final pulse of orogenesis (235-230 Ma) within the broader Gondwanide Orogeny. In addition, we found no evidence for a crustal suture, suggesting that terrane accretion was not the main mechanism behind deformation. Rather, the similar spatiotemporal evolution of Permian-Triassic orogenic belts in Australia, Antarctica, South Africa, and South America suggest that the Gondwanide Orogeny was more likely linked to large-scale tectonic processes such as plate reorganization. In the context of previous work, our results highlight a number of spatial and temporal variations in pulses of deformation in eastern Australia, suggesting that shorter cycles of deformation occurred at a regional scale within the broader episode of the Gondwanide Orogeny. Similarly to the Cenozoic evolution of the central and southern Andes, we suggest that plate coupling and orogenic cycles in the Late Paleozoic to Early Mesozoic Gondwanide Orogeny have resulted from the superposition of mechanisms acting at a range of scales, perhaps contributing to the observed variations in the intensity, timing, and duration of deformation phases within the orogenic belt.

  2. Evolution of the Archean continental crust in the nucleus of the Yangtze block: Evidence from geochemistry of 3.0 Ga TTG gneisses in the Kongling high-grade metamorphic terrane, South China

    NASA Astrophysics Data System (ADS)

    Qiu, Xiao-Fei; Ling, Wen-Li; Liu, Xiao-Ming; Lu, Shan-Song; Jiang, Tuo; Wei, Yun-Xu; Peng, Lian-Hong; Tan, Juan-Juan

    2018-04-01

    Archean Tonalite-Trondhjemite-Granodiorite (TTG) rocks are scattered within the Kongling high-grade metamorphic terrane (KHMT) in the northern South China block. A comprehensive geochronological and geochemical study is carried out on the Taoyuan granitic gneisses, a newly recognized TTG suite in the northwestern KHMT. This suite has long been regarded as a Mesoproterozoic magmatic pluton, but U-Pb zircon ages of 2994 ± 22 Ma and 2970 ± 15 Ma are obtained by LA-ICP-MS method in this study. The Taoyuan gneiss suite is trondhjemitic in composition, and has high SiO2 (67.80-74.93 wt.%), Na2O (5.11-5.81 wt.%) contents with Na2O/K2O ratios greater than unity, and low Ni (2.56-7.61 ppm), Cr (1.26-7.67 ppm), Yb (0.32-0.82 ppm) and Y (4.48-11.5 ppm) contents. Plots show large variation in La/Yb and Sr/Y ratios and pronounced depletion in Nb, Ta and Ti in the primitive mantle-normalized spiderdiagram. The gneiss suite also displays two-stage Nd model ages close to its crystallization age with corresponding εNd(t) values of -2.5 to +3.5. It is thus suggested that the Taoyuan gneisses, in fact, is part of the Archean Kongling basement complex. Geochemical evidence implies that the TTG rocks may be derived from partial melting of subducted oceanic crust from a garnetiferous amphibolite source with residual assemblage of garnet + amphibole + plagioclase. Our study further indicates that the nucleus of the Yangtze block might experience a juvenile continental crustal growth during Mesoarchean. We also suggest that the Yangtze block may have its own crustal evolutionary history independent from the North China craton and the Tarim block before Paleoproterozoic.

  3. SHRIMP U-Pb evidence for a Late Silurian age of metasedimentary rocks in the Merrimack and Putnam-Nashoba terranes, eastern New England

    USGS Publications Warehouse

    Wintsch, R.P.; Aleinikoff, J.N.; Walsh, G.J.; Bothner, Wallace A.; Hussey, A.M.; Fanning, C.M.

    2007-01-01

    U-Pb ages of detrital, metamorphic, and magmatic zircon and metamorphic monazite and titanite provide evidence for the ages of deposition and metamorphism of metasedimentary rocks from the Merrimack and Putnam-Nashoba terranes of eastern New England. Rocks from these terranes are interpreted here as having been deposited in the middle Paleozoic above Neoproterozoic basement of the Gander terrane and juxtaposed by Late Paleozoic thrusting in thin, fault-bounded slices. The correlative Hebron and Berwick formations (Merrimack terrane) and Tatnic Hill Formation (Putnam-Nashoba terrane), contain detrital zircons with Mesoproterozoic, Ordovician, and Silurian age populations. On the basis of the age of the youngest detrital zircon population (???425 Ma), the Hebron, Berwick and Tatnic Hill formations are no older than Late Silurian (Wenlockian). The minimum deposition ages of the Hebron and Berwick are constrained by ages of cross-cutting plutons (414 ?? 3 and 418 ?? 2 Ma, respectively). The Tatnic Hill Formation must be older than the oldest metamorphic monazite and zircon (???407 Ma). Thus, all three of these units were deposited between ???425 and 418 Ma, probably in the Ludlovian. Age populations of detrital zircons suggest Laurentian and Ordovician arc provenance to the west. High grade metamorphism of the Tatnic Hill Formation soon after deposition probably requires that sedimentation and burial occurred in a fore-arc environment, whereas time-equivalent calcareous sediments of the Hebron and Berwick formations probably originated in a back-arc setting. In contrast to age data from the Berwick Formation, the Kittery Formation contains primarily Mesoproterozoic detrital zircons; only 2 younger grains were identified. The absence of a significant Ordovician population, in addition to paleocurrent directions from the east and structural data indicating thrusting, suggest that the Kittery was derived from peri-Gondwanan sources and deposited in the Fredericton Sea

  4. Exotic island arc Paleozoic terranes on the eastern margin of Gondwana: Geochemical whole rock and zircon U-Pb-Hf isotope evidence from Barry Station, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Manton, Ryan J.; Buckman, Solomon; Nutman, Allen P.; Bennett, Vickie C.

    2017-08-01

    Early Paleozoic intra-oceanic terranes crop out along the Peel-Manning Fault System, in the southern New England Orogen, NSW Australia. These are the Cambrian ophiolitic Weraerai terrane and the Siluro-Devonian island arc Gamilaroi terrane. There has been debate whether these terranes formed at the Gondwana margin or if they are intra-oceanic, and were accreted to Gondwana later in the Paleozoic. Major-trace-REE elemental data indicate Weraerai terrane formed in a supra-subduction environment. Rare zircons extracted from Weraerai terrane gabbro-plagiogranite suites at Barry Station yield a U-Pb zircon date of 504.9 ± 3.5 Ma with initial εHf values of + 11.1 indicating a juvenile source. Amphibole-bearing felsic dykes and net-vein complexes are also found within the gabbro with a U-Pb zircon date of 503.2 ± 5.7 Ma and initial εHf values of + 11.6. These are coeval in age with their host rocks and we propose they represent partial melts of the mafic crust during the circulation of seawater. The Gamilaroi trondhjemites of prehnite-pumpellyite-greenschist metamorphic grade terrane yielded very few zircons with an age of 413 ± 8.7 Ma. Zircon initial εHf values range from + 5.0 to + 2.9, indicating an input from an evolved crustal source, unlike the purely oceanic Weraerai terrane. Gamilaroi terrane trondhjemites are enriched in LREE have low K2O and K2O/Na2O ratios and strong negative Nb anomalies consistent with supra-subduction zone environments. Multiple subduction zones may well have existed within the Panthalassa Ocean during the early-mid Paleozoic with the Weraerai-Gamilaroi being accreted onto the Gondwanan margin during the latest Devonian.

  5. Peninsular terrane basement ages recorded by Paleozoic and Paleoproterozoic zircon in gabbro xenoliths and andesite from Redoubt volcano, Alaska

    USGS Publications Warehouse

    Bacon, Charles R.; Vazquez, Jorge A.; Wooden, Joseph L.

    2012-01-01

    Historically Sactive Redoubt volcano is an Aleutian arc basalt-to-dacite cone constructed upon the Jurassic–Early Tertiary Alaska–Aleutian Range batholith. The batholith intrudes the Peninsular tectonostratigraphic terrane, which is considered to have developed on oceanic basement and to have accreted to North America, possibly in Late Jurassic time. Xenoliths in Redoubt magmas have been thought to be modern cumulate gabbros and fragments of the batholith. However, new sensitive high-resolution ion microprobe (SHRIMP) U-Pb ages for zircon from gabbro xenoliths from a late Pleistocene pyroclastic deposit are dominated by much older, ca. 310 Ma Pennsylvanian and ca. 1865 Ma Paleoproterozoic grains. Zircon age distributions and trace-element concentrations indicate that the ca. 310 Ma zircons date gabbroic intrusive rocks, and the ca. 1865 Ma zircons also are likely from igneous rocks in or beneath Peninsular terrane basement. The trace-element data imply that four of five Cretaceous–Paleocene zircons, and Pennsylvanian low-U, low-Th zircons in one sample, grew from metamorphic or hydrothermal fluids. Textural evidence of xenocrysts and a dominant population of ca. 1865 Ma zircon in juvenile crystal-rich andesite from the same pyroclastic deposit show that this basement has been assimilated by Redoubt magma. Equilibration temperatures and oxygen fugacities indicated by Fe-Ti–oxide minerals in the gabbros and crystal-rich andesite suggest sources near the margins of the Redoubt magmatic system, most likely in the magma accumulation and storage region currently outlined by seismicity and magma petrology at ∼4–10 km below sea level. Additionally, a partially melted gabbro from the 1990 eruption contains zircon with U-Pb ages between ca. 620 Ma and ca. 1705 Ma, as well as one zircon with a U-Th disequilibrium model age of 0 ka. The zircon ages demonstrate that Pennsylvanian, and probably Paleoproterozoic, igneous rocks exist in, or possibly beneath, Peninsular

  6. Crustal melting during subduction at mantle depth: anatomy of near-UHP nanogranites (Orlica-Śnieżnik Dome, Bohemian Massif)

    NASA Astrophysics Data System (ADS)

    Ferrero, Silvio; Ziemann, Martin; Walczak, Katarzyna; Wunder, Bernd; O'Brien, Patrick J.; Hecht, Lutz

    2015-04-01

    Small volumes (≤ 50µm) of hydrous melt were trapped as primary inclusions in peritectic garnets during partial melting of metagranitoids from the Orlica-Śnieżnik Dome (Bohemian Massif) at mantle depth [1]. Detailed microstructural/microchemical investigation confirmed the occurrence of a granitic assemblage (biotite+feldspars+quartz) in every investigated inclusion, i.e they are nanogranites [2]. MicroRaman mapping of unexposed inclusions showed the occurrence of residual, H2O-rich glass in interstitial position. Despite the oddity of this finding within a classic regional HP/HT terrain, an incomplete crystallization of the melt inclusions (MI) is consistent with the (relatively) rapid exhumation of the Orlica-Śnieżnik Dome proposed by some authors [e.g. 3]. Moreover glassy and partially crystallized MI have been already reported in lower-P (<1 GPa) migmatites [4]. MicroRaman investigation also showed the possible presence of kumdykolite, a high-temperature polymorph of albite reported in UHP rocks from the Kokchetav Massif as well as the Bohemian massif ([5] and references therein). Experimental re-homogenization of nanogranites was achieved using a piston cylinder apparatus at 2.7 GPa and 875°C under dry conditions, in order to investigate melt composition and H2O content with in situ techniques. The trapped melt is granitic, hydrous (6 wt% H2O) and metaluminous (ASI=1.03), and it is similar to those produced experimentally from crustal lithologies at mantle conditions. Re-homogenization conditions are consistent with the results of geothermobarometric calculations on the host rock, suggesting that no H2O loss occurred during exhumation - this would have caused a shift of the inclusion melting T toward higher values. Coupled with the absence of H2O-loss microstructural evidence, e.g. decrepitation cracks and/or vesciculation [4] in re-homogenized nanogranites, this evidence suggests that the nanogranites still preserves the original H2O content of the

  7. Interpretation of gravity profiles across the northern Oaxaca terrane, its boundaries and the Tehuacán Valley, southern Mexico

    NASA Astrophysics Data System (ADS)

    Campos-Enríquez, J. O.; Alatorre-Zamora, M. A.; Keppie, J. D.; Belmonte-Jiménez, S. I.; Ramón-Márquez, V. M.

    2014-12-01

    A gravity study was conducted across the northern Oaxaca terrane and its bounding faults: the Caltepec and Oaxaca Faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacán depression. On the west, at depth, the Tehuacán valley is limited by the normal buried Tehuacán Fault. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex). The tectonic depression is filled with Phanerozoic rocks and has a deeper depocenter to the west. The gravity data also indicate that on the west, the Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. A major E-W to NE-SW discontinuity is inferred to exist between profiles 1 and 2.

  8. Cathodoluminescence of diamond as an indicator of its metamorphic history

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya; Bruce, Loryn; Longo, Micaela; Ryder, John; Dobrzhinetskaya, Larissa

    2010-05-01

    Diamond displays a supreme resistance to chemical and mechanical weathering, ensuring its survival through complex and prolonged crustal processes, including metamorphism and exhumation. For these reasons, volcanic sources and secondary and tertiary collectors for detrital placer diamonds, like Ural or Bingara diamonds, may be difficult to determine. If metamorphic processes leave their marks on diamond, they can be used to reconstruct crustal geologic processes and ages of primary diamondiferous volcanics. Four diamond suites extracted from metamorphic rocks have been characterized using optical CL, infrared and CL spectroscopy, and photoluminescence at the liquid nitrogen temperature. The studied diamonds are from the ~2.7 Ga sedimentary conglomerate and lamprophyric breccia metamorphosed in the greenschist facies (Wawa, Northern Ontario, Canada) during the 2.67 Ga Kenoran orogeny, and from the ultra-high pressure (UHP) terranes of Kokchetav (Kazakhstan) and Erzgebirge (Germany) exhumated in the Paleozoic. Wawa diamonds (Type IaAB and Type II) displayed green, yellow, orange, and red CL colours controlled by the CL emittance at 520, 576 nm, and between 586 and 664 nm. The UHP terranes diamonds show much weaker CL; few luminescent stones display CL peaks at 395, 498, 528 nm and a broad band at 580-668 nm. In contrast, most common diamonds found in unmetamorphosed rocks, i.e. octahedrally grown Type IaAB stones, luminescence blue emitting light at ~415-440 nm and 480-490 nm. There is a noticeable difference between cathodoluminescence of these diamonds and diamonds in metamorphic rocks. The studied diamonds that experienced metamorphism show a shift of CL emission to longer wavelengths (above 520 nm) and to green, yellow and red CL colours. Photoluminescence has the high resolution necessary to assign luminescence to specific optical centers of diamond. Diamonds in metamorphic rocks contain H3 (pairs of substitutional nitrogen atoms separated by a vacancy) and NVo

  9. Terrane accumulation and collapse in central Europe: seismic and rheological constraints

    NASA Astrophysics Data System (ADS)

    Meissner, R.

    1999-05-01

    An attempt is made to compare the tectonic units and their evolution in central Europe with the deep seismic velocity structure and patterns of reflectivity. Caledonian and Variscan terrane accretion and orogenic collapse dominate the tectonic development in central and western Europe and have left their marks in a distinct velocity structure and crustal thickness as well as in the various reflectivity patterns. Whereas the memory of old collisional structures is still preserved in the rigid upper crust, collapse processes have formed and modified the lower crust. They have generally created rejuvenated, thin crusts with shallow Mohos. In the Variscan internides, the center of collision and post-orogenic heat pulses, the lower crust developed strong and thick seismic lamellae, the (cooler) externides show a thrust and shear pattern in the whole crust, and the North German Basin experienced large mafic intrusions in the lower crust and developed a high-velocity structure with only very thin lamellae on top of the Moho. The various kinds of reflectivity patterns in the lithosphere can be explained by a thermo-rheological model from terrane collision, with crustal thickening to collapse in a hot, post-orogenic setting.

  10. Bedrock geology and tectonic evolution of the Wrangellia, Peninsular, and Chugach Terranes along the Trans-Alaska Crustal Transect in the Chugach Mountains and Southern Copper River Basin, Alaska

    NASA Astrophysics Data System (ADS)

    Plafker, George; Nokleberg, W. J.; Lull, J. S.

    1989-04-01

    The Trans-Alaskan Crustal Transect in the southern Copper River Basin and Chugach Mountains traverses the margins of the Peninsular and Wrangellia terranes, and the adjacent accretionary oceanic units of the Chugach terrane to the south. The southern Wrangellia terrane margin consists of a polymetamorphosed magmatic arc complex at least in part of Pennsylvanian age (Strelna Metamorphics and metagranodiorite) and tonalitic metaplutonic rocks of the Late Jurassic Chitina magmatic arc. The southern Peninsular terrane margin is underlain by rocks of the Late Triassic (?) and Early Jurassic Talkeetna magmatic arc (Talkeetna Formation and Border Ranges ultra-mafic-mafic assemblage) on Permian or older basement rocks. The Peninsular and Wrangellia terranes are parts of a dominantly oceanic superterrane (composite Terrane II) that was amalgamated by Late Triassic time and was accreted to terranes of continental affinity north of the Denali fault system in the mid- to Late Cretaceous. The Chugach terrane in the transect area consists of three successively accreted units: (1) minor greenschist and intercalated blueschist, the schist of Liberty Creek, of unknown protolith age that was metamorphosed and probably accreted during the Early Jurassic, (2) the McHugh Complex (Late Triassic to mid-Cretaceous protolith age), a melange of mixed oceanic, volcaniclastic, and olistostromal rocks that is metamorphosed to prehnite-pumpellyite and lower greenschist facies that was accreted by middle Cretaceous time, and (3) the Upper Cretaceous Valdez Group, mainly magmatic arc-derived flysch and lesser oceanic volcanic rocks of greenschist facies that was accreted by early Paleocene time. A regional thermal event that culminated in early middle Eocene time (48-52 Ma) resulted in widespread greenschist facies metamorphism and plutonism.

  11. Structural Analyses of the Kahiltna Terrane: A Kinematic Record of the Collision of the Talkeetna Superterrane

    NASA Astrophysics Data System (ADS)

    Bier, S. E.; Fisher, D.

    2002-12-01

    Macro-, meso-, and microscale structural analyses from several localities across the ~1000 km Kahiltna Terrane provide valuable kinematic insights into the late Cretaceous collision between the Talkeetna superterrane and North America. The Kahiltna Terrane, a Jurassic-Cretaceous flysch basin inboard of the Talkeetna superterrane (Wrangellia, Peninsular, and Alexander terranes), contains incremental strain indicators that record a history of oblique collision and subsequent deformation in a strike-slip regime. A comparison of structural data from localities across the Kahiltna terrane suggests a unique history not yet described in previous work on south-central Alaskan tectonics. Data was collected from the Reindeer Hills area, the northwestern Talkeetna Mountains, Denali National Park, the Peters Hills, and the Tordrillo Mountains. In the Reindeer Hills, a melange zone occurs as a series of exposures dismembered by ongoing strike slip faulting between the flysch of the Kahiltna terrane and the precollisional edge of the North American continent. This melange is characterized by fault-bounded blocks of Paleozoic limestone and sandstone within an argillite matrix with a conspicuous scaly fabric. The blocks range in size from 10 cm to tens of meters; and melange fish indicate a south-directed shear sense. The melange is overlain by a red and green (Triassic-Jurassic?) conglomerate along an unconformity that likely marks the base of a perched slope basin near the toe of an accretionary wedge. The strike of bedding and cleavage in this area trends EW. The fold axes trend NW-SE and folds verge to the south. In the northwest corner of the Talkeetna Mountains, the structure is dominated by north vergent folds and faults. The strike of bedding trends ~025°; whereas the strike of the cleavage is ~060°. Both cleavage and bedding dip to the southeast. The fold axes trend roughly NE-SW. North of the Denali Fault System, in Denali National Park, strike of bedding is ~122° and

  12. U-Pb SHRIMP geochronology and trace-element geochemistry of coesite-bearing zircons, North-East Greenland Caledonides

    USGS Publications Warehouse

    McClelland, W.C.; Power, S.E.; Gilotti, J.A.; Mazdab, F.K.; Wopenka, B.

    2006-01-01

    Obtaining reliable estimates for the timing of eclogite-facies metamorphism is critical to establishing models for the formation and exhumation of high-pressure and ultrahigh-pressure (UHP) metamorphic terranes in collisional orogens. The presence of pressure-dependent phases, such as coesite, included in metamorphic zircon is generally regarded as evidence that zircon growth occurred at UHP conditions and, ifdated, should provide the necessary timing information. We report U-Pb sensitive high-resolution ion microprobe (SHRIMP) ages and trace-element SHRIMP data from coesite-bearing zircon suites formed during UHP metamorphism in the North- East Greenland Caledonides. Kyanite eclogite and quartzofeldspathic host gneiss samples from an island in J??kelbugt (78??00'N, 18??04'W) contained subspherical zircons with well-defined domains in cathodoluminescence (CL) images. The presence of coesite is confirmed by Raman spectroscopy in six zircons from four samples. Additional components of the eclogite-facies inclusion suite include kyanite, omphacite, garnet, and rutile. The trace-element signatures in core domains reflect modification of igneous protolith zircon. Rim signatures show flat heavy rare earth element (HREE) patterns that are characteristic of eclogite-facies zircon. The kyanite eclogites generally lack a Eu anomaly, whereas a negative Eu anomaly persists in all domains of the host gneiss. The 207Pb- corrected 206Pb/238U ages range from 330 to 390 Ma for the host gneiss and 330-370 Ma for the kyanite eclogite. Weighted mean 206Pb/238U ages for coesite-bearing domains vary from 364 ?? 8 Ma for the host gneiss to 350 ?? 4 Ma for kyanite eclogite. The combined U-Pb and REE data interpreted in conjunction with observed CL domains and inclusion suites suggest that (1) Caledonian metamorphic zircon formed by both new zircon growth and recrystallization, (2) UHP metamorphism occurred near the end of the Caledonian collision, and (3) the 30-50m.y. span of ages

  13. Implications of SHRIMP and microstructural data on the age and kinematics of shearing in the Asir terrane, southern Arabian Shield, Saudi Arabia

    USGS Publications Warehouse

    Johnson, P.R.; Kattan, F.H.; Wooden, J.L.

    2001-01-01

    The Asir terrane consists of north-trending belts of variably metamorphosed volcanic, sedimentary, and plutonic rocks that are cut by numerous shear zones (Fig. 1). Previous workers interpreted the shear zones as sutures, structures that modify earlier sutures, or structures that define the margins of tectonic belts across which there are significant lithologic differences and along which there may have been major transposition (Frisch and Al-Shanti, 1977; Greenwood et al., 1982; Brown et al., 1989). SHRIMP data from zircons (Table 1) and sense-of-shear data recently acquired from selected shear zones in the terrane help to constrain the minimum ages and kinematics of these shearing events and lead to an overall model of terrane assembly that is more complex than previously proposed. 

  14. Petrochemistry of Mafic Rocks Within the Northern Cache Creek Terrane, NW British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    English, J. M.; Johnston, S. T.; Mihalynuk, M. G.

    2002-12-01

    The Cache Creek terrane is a belt of oceanic rocks that extend the length of the Cordillera in British Columbia. Fossil fauna in this belt are exotic with respect to the remainder of the Canadian Cordillera, as they are of equatorial Tethyan affinity, contrasting with coeval faunas in adjacent terranes that show closer linkages with ancestral North America. Preliminary results reported here from geochemical studies of mafic rocks within the Nakina area of NW British Columbia further constrain the origin of this enigmatic terrane. The terrane is typified by tectonically imbricated slices of chert, argillite, limestone, wacke and volcaniclastic rocks, as well as mafic and ultramafic rocks. These lithologies are believed to represent two separate lithotectonic elements: Upper Triassic to Lower Jurassic, subduction-related accretionary complexes, and dismembered basement assemblages emplaced during the closure of the Cache Creek ocean in the Middle Jurassic. Petrochemical analysis revealed four distinct mafic igneous assemblages that include: magmatic 'knockers' of the Nimbus serpentinite mélange, metabasalts of 'Blackcaps' Mountain, augite-phyric breccias of 'Laughing Moose' Creek, and volcanic pediments to the reef-forming carbonates of the Horsefeed Formation. Major and trace element analysis classifies the 'Laughing Moose' breccias and the carbonate-associated volcanics as alkaline in nature, whereas the rest are subalkaline. Tectonic discrimination diagrams show that the alkaline rocks are of within-plate affinity, while the 'Blackcaps' basalts and 'knockers' from within the mélange typically straddle the island-arc tholeiite and the mid-ocean ridge boundaries. However, primitive mantle normalized multi-element plots indicate that these subalkaline rocks have pronounced negative Nb anomalies, a characteristic arc signature. The spatial association of alkaline volcanic rocks with extensive carbonate domains points to the existence of seamounts within the Cache

  15. Development, description, and application of a geographic information system data base for water resources in karst terrane in Greene County, Missouri

    USGS Publications Warehouse

    Waite, L.A.; Thomson, Kenneth C.

    1993-01-01

    A geographic information system data base was developed for Greene County, Missouri, to provide data for use in the protection of water resources. The geographic information system data base contains the following map layers: geology, cave entrances and passages, county and quadrangle boundary, dye traces, faults, geographic names, hypsography, hydrography, lineaments, Ozark aquifer potentio- metric surface, public land survey system, sink- holes, soils, springs, and transportation. Several serious incidents of ground-water contamination have been reported in the karst terrane developed in soluble carbonate rocks in Greene County. Karst terranes are environmentally sensitive because any contaminant carried by surface runoff has the potential for rapid transport through solution enlarged fractures to the ground-water system. In the karst terrane in Greene County, about 2,500 sinkholes have been located; these sinkholes are potential access points for contamination to the ground-water system. Recent examples of ground-water contamination by sewage, fertilizers, and hydrocarbon chemicals have demonstrated the sensitivity of ground water in the Greene County karst terrane to degradation. The ground-water system is a major source of drinking water for Greene County. The population in Greene County, which includes Springfield, the third largest city in Missouri, is rapidly increasing and the protection of the water resources of Greene County is an increasing concern.

  16. Hydrogeologic terranes and potential yield of water to wells in the Valley and Ridge Physiographic Province in the eastern and southeastern United States

    USGS Publications Warehouse

    Hollyday, E.F.; Hileman, G.E.

    1996-01-01

    The Valley and Ridge Physiographic Province is underlain by deformed sedimentary rock of Paleozoic age including dolomite, limestone, shale, and sandstone. Regolith (soil, sediment, and weathered rock) covers the Paleozoic rock throughout most of the province. Local differences in lithology, structure, and weathering can result in four orders of magnitude variation in the water-yielding properties of the geologic units that underlie the area. Selected rock types, however, can account for a substantial part of this variation because of the unique way in which these dense, consolidated sedimentary rock types deform and weather to produce secondary openings.On the basis of relations among rock type, water-yielding openings, and water-yielding properties (as indicated by specific capacity), the regolith and consolidated rock were classified and mapped as five hydrogeologic terranes alluvium, dolomite, limestone, argillaceous carbonate rock, and siliciclastic rock. The hydrogeologic terranes are named after the predominant outcrop lithology within them. The western toe of the Blue Ridge Mountains is classified as a subdivision of the dolomite hydrogeologic terrane that may produce yields of water in excess of 1,000 gallons per minute (gal/min) to public and industrial supply wells. Specific-capacity data for homogeneous data sets, which consist of all wells that have the same characteristics in regard to casing diameter, primary use of the water, and topographic setting, revealed significant differences in water-yielding properties among the five hydrogeologic terranes. According to results of Tukey statistical tests at a probability (alpha level) of 0.05, 8 out of 10 pairs of hydrogeologic terranes (for example, alluvium/limestone) had significantly different median specific-capacity values. The median value for public and industrial supply wells in the western toe is three times greater than the value for comparable wells in the dolomite hydrogeologic terrane

  17. Petrology and geochemistry of the high-pressure Nilgiri Granulite Terrane, Southern India

    NASA Technical Reports Server (NTRS)

    Srikantappa, C.; Ashamanjari, K. G.; Raith, M.

    1988-01-01

    The Nilgiri granulite terrane in Southern India is predominantly composed of late Archaean medium- to coarse-grained enderbitic to charnockitic rocks. The dominant regional foliation strikes N60 to 70E with generally steep dips. Tight minor isoclinal folds have been observed in places. Granoblastic polygonal micro-structures are common and indicate thorough post-kinematic textural and chemical equilibration at conditions of the granulite facies (2.5 Ga ago). Late compressional deformation in connection with the formation of the Moyar and Bhavani shear zones to the north and south of the Nilgiri block, resulted in wide-spread development of weakly to strongly strained fabrics and was accompanied by minor rehydration. Enderbites and charnockites range from tonalitic to granodioritic in composition. A magmatogenic origin of the protoliths is inferred from their chemical characteristics which resemble those of the andesitic to dacitic members of Cordillera-type calc-alkaline igneous suites. A significant lithological feature of the Nilgiri granulite terrane are numerous extended bodies, lenses and pods of gabbroic and pyroxenitic rocks which are aligned conformable to the foliation of the enderbite-charnockite complex and which have also been deformed and metamorphosed at granulite facies conditions.

  18. kepler's dark worlds: A low albedo for an ensemble of Neptunian and Terran exoplanets

    NASA Astrophysics Data System (ADS)

    Jansen, Tiffany; Kipping, David

    2018-05-01

    Photometric phase curves provide an important window onto exoplanetary atmospheres and potentially even their surfaces. With similar amplitudes to occultations but far longer baselines, they have a higher sensitivity to planetary photons at the expense of a more challenging data reduction in terms of long-term stability. In this work, we introduce a novel non-parametric algorithm dubbed phasma to produce clean, robust exoplanet phase curves and apply it to 115 Neptunian and 50 Terran exoplanets observed by kepler. We stack the signals to further improve signal-to-noise, and measure an average Neptunian albedo of Ag < 0.23 to 95% confidence, indicating a lack of bright clouds consistent with theoretical models. Our Terran sample provides the first constraint on the ensemble albedo of exoplanets which are most likely solid, constraining Ag < 0.42 to 95% confidence. In agreement with our constraint on the greenhouse effect, our work implies that kepler's solid planets are unlikely to resemble cloudy Venusian analogs, but rather dark Mercurian rocks.

  19. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zeng, Yun-Chuan; Xu, Ji-Feng; Chen, Jian-Lin; Wang, Bao-Di; Kang, Zhi-Qiang; Huang, Feng

    2018-02-01

    The formation of the Shiquanhe-Yunzhug-Namu Tso ophiolite mélange zone (SNMZ) within the Lhasa Terrane, Tibetan Plateau, is key to understanding the Mesozoic tectonic evolution of this terrane, which remains controversial. We show that the Yunzhug ophiolite in the central segment of the SNMZ formed at 150 Ma, based on U-Pb dating of zircons from a gabbroic sample in a well-developed sheeted dike complex. Geochemically, these mafic rocks are dominated by E-MORB-type compositions, along with minor amounts of rocks with P-MORB-type compositions. The samples also exhibit high εNd(t) values and lack negative Nb and Ta anomalies. Data for all the samples plot within the MORB array on a Th/Yb-Nb/Yb diagram. Therefore, these mafic rocks most likely formed in either a slow spreading oceanic setting or an embryonic ocean, and not in a back-arc basin as has been previously assumed. Taking into account the regional geology, we propose that the Yunzhug ophiolite is part of a distinct ophiolitic belt and represents material formed in an embryonic ocean within the Lhasa Terrane, which provides new insights into the Jurassic tectonic evolution of the Lhasa Terrane.

  20. Paleomagnetic Constraints on Terrane Translation: the Churn Creek Succession in South Central British Columbia

    NASA Astrophysics Data System (ADS)

    Mahoney, J. B.; Enkin, R. J.; Haskin, M.

    2001-12-01

    A fundamental controversy in Cordilleran tectonics concerns the timing and magnitude of terrane displacement in the Cretaceous to Tertiary evolution of the North American continental margin. Paleomagnetic data from stratified and plutonic rocks in the Canadian Cordillera suggest large-scale northward translation of these rocks relative to the North American craton between ca. 90-55 Ma. Previous paleomagnetic interpretation predicted the existence of a major fault separating the Intermontane Superterrane, which was displaced ~1000 km northward during this period, from the Insular Superterrane, which was displaced ~3000 km northward during the same time interval. Geologic data, including structural, stratigraphic and sedimentologic studies, suggest less than a few hundred km motion between the superterranes, and less than 1000 km with respect to the craton. The conflicting data sets have generated intense debate between proponents of two fundamentally opposed tectonic models, one proposing major latitudinal displacement during Late Cretaceous to Eocene time, and one arguing for terrane accretion at or slightly south of the present latitude in mid-Cretaceous time. Stratigraphic and paleomagnetic data from Churn Creek, in south-central British Columbia document widely disparate terrane displacement values within a single stratigraphic section. Upper Cretaceous strata exposed in Churn Creek comprise two rock packages: a lower package of Albian volcanic and minor volcaniclastic rocks, and a disconformably overlying upper package of Albian to Santonian polymict conglomerate and associated clastic strata. Paleomagnetic data suggest the lower package formed 700 +/- 600 km to the south of its present position at ~100-105 Ma, tying it to other Intermontane Superterrane results. The disconformably overlying upper package was deposited 3000 +/- 450 km to the south at between ~92-83 Ma, confirming the important Mount Tatlow result for the Insular Superterrane. Thus we

  1. Titanite-scale insights into multi-stage magma mixing in Early Cretaceous of NW Jiaodong terrane, North China Craton

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Yang, Kui-Feng; Fan, Hong-Rui; Liu, Xuan; Cai, Ya-Chun; Yang, Yue-Heng

    2016-08-01

    The Early Cretaceous Guojialing-type granodiorites in northwestern Jiaodong terrane carry significant records for strong mantle-crust interaction during the destruction of North China Craton (NCC); however, the definite petrogenetic mechanism and detailed magmatic process remain an enigma. Titanite in igneous rocks can serve as an effective petrogenetic indicator. Here, we present integrated geochronological and geochemical studies on titanites from Guojialing-type granodiorites and their dioritic enclaves to constrain their petrogenesis. Titanites from granodiorites (G-type) and plagioclase-rich dioritic enclaves (E-type-I) present an identical U-Pb age ( 130 Ma) and an indistinguishable wide range of Zr and total REEs contents, and Th/U ratios. However, these two types of titanites exhibit distinct micro-scale textures and geochemical compositions. G-type titanites are characterized by oscillatory zonings with two Light BSE zones (LBZ) and two or three dark BSE zones, whereas E-type-I titanites are marked by core-mantle-rim zonings. Drastic increase of LREEs, Zr, Hf, and Fe and decrease of Nb, Ta, Al, and F contents are observed in LBZ of G-type titanites, whereas remarkable reduction of LREEs, Zr, and Hf and elevation of F contents are observed from the cores to the mantles of E-type-I titanites. Based on Zr-in-titanite thermometry, G-type titanites are interpreted to have experienced twice notable temperature increase, while E-type-I titanites are inferred to have undergone a rapid cooling process. Furthermore, we suggest that the drastic chemical changes in G-type and E-type-I titanites are ascribed to early-stage magma mixing between a colder felsic magma and a Fe-, REE-rich hotter dioritic magma. Compared to G-type and E-type-I titanites, titanites from plagioclase-poor dioritic enclaves (E-type-II) are characterized by their occurrence in interstitial space and present a relatively younger U-Pb age ( 128 Ma) and much narrower and lower range of Zr, total

  2. Geophysical Framework of a Rare Earth Element Enriched Terrane, Mountain Pass, California

    NASA Astrophysics Data System (ADS)

    Denton, K. M.; Ponce, D. A.; Peacock, J.; Miller, D. M.; Miller, J. S.

    2016-12-01

    Carbonatite ore deposits continue to be the primary source for rare earth elements (REEs), however large viable REE ore deposits are uncommon. The Mountain Pass carbonatite deposit, located in the eastern Mojave Desert of California, is the largest economic deposit of light REEs in North America. A 1.417 Ga ultrapotassic suite (shonkinite, syenite, and granite) and a 1.375 Ga barite-bastnasite-rich carbonatite (sovite) ore deposit comprise the enclave of REE-enriched outcrops and dikes that occupy a narrow ( 3 km) zone of 1.7 Ga gneiss extending at least 10-km to the southeast from southern Clark Mountain. Modeling of gravity, magnetic, and magnetotelluric (MT) data reveals subsurface features that form the structural framework of the REE terrane. The carbonatite and ultrapotassic mafic suite is associated with a local gravity high that is superimposed on a 4 km-wide gravity terrace, likely related to less dense granitic gneiss basement. Although physical property data indicate that the intrusive suite and carbonatite are essentially and nonmagnetic, aeromagnetic data indicate that these rocks occur along the eastern edge of a prominent north-northwest trending aeromagnetic high. This relationship suggests that they may have been preferentially emplaced along a zone of weakness or fault. The source of the magnetic high is 2-3 km below the surface and coincides with a relatively electrically conductive (3 orders of magnitude higher than surrounding rock) feature. MT data indicate that the western edge of the magnetic feature could be connected to a deeper ( 8 km) conductive feature related to possible intrusions and/or hydrothermal systems. The lack of a magnetic signature of the REE terrane can be explained by alteration of magnetite, given that the terrane lies within a broader alteration zone and observed magnetic low. If so, such an alteration event, capable of remobilizing rare earth elements, likely occurred during or after emplacement of the intrusive suite

  3. The Ellsworth terrane, coastal Maine: Geochronology, geochemistry, and Nd-Pb isotopic composition - Implications for the rifting of Ganderia

    USGS Publications Warehouse

    Schulz, K.J.; Stewart, D.B.; Tucker, R.D.; Pollock, J.C.; Ayuso, R.A.

    2008-01-01

    The Ellsworth terrane is one of a number of fault-bounded blocks that occur along the eastern margin of Ganderia, the western-most of the peri-Gondwanan domains in the northern Appalachians that were accreted to Laurentia in the Paleozoic. Geologic relations, detrital zircon ages, and basalt geochemistry suggest that the Ellsworth terrane is part of Ganderia and not an exotic terrane. In the Penobscot Bay area of coastal Maine, the Ellsworth terrane is dominantly composed of bimodal basalt-rhyolite volcanic sequences of the Ellsworth Schist and unconformably overlying Castine Volcanics. We use new U-Pb zircon geochronology, geochemistry, and Nd and Pb isotopes for these volcanic sequences to constrain the petrogenetic history and paleotectonic setting of the Ellsworth terrane and its relationship with Ganderia. U-Pb zircon geochronology for rhyolites indicates that both the Ellsworth Schist (508.6 ?? 0.8 Ma) and overlying Castine Volcanics (503.5 ?? 2.5 Ma) are Middle Cambrian in age. Two tholefitic basalt types are recognized. Type Tb-1 basalt, present as pillowed and massive lava flows and as sills in both units, has depleted La and Ce ([La/Nd]N = 0.53-0.87) values, flat heavy rare earth element (REE) values, and no positive Th or negative Ta anomalies on primitive mantle-normalized diagrams. In contrast, type Th-2 basalt, present only in the Castine Volcanics, has stightly enriched LREE ([La/Yb]N = 1.42-2.92) values and no Th or Th anomalies. Both basalt types have strongly positive ??Nd (500) values (Th-1 = +7.9-+8.6; Th-2 = +5.6-+7.0) and relatively enriched Pb isotopic compositions (206Ph/204Pb = 18.037-19.784; 207/204Pb = 15.531-15.660; 2088Pb/204Pb = 37.810-38.817). The basalts have compositions transitional between recent normal and enriched mid-ocean-ridge basalt, and they were probably derived by partial melting of compositionatly heterogeneous asthenosphenc mantle. Two types of rhyolite also are present. Type R-1 rhyolite, which mostly occurs as tuffs

  4. Late Proterozoic-Paleozoic evolution of the Arctic Alaska-Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions

    USGS Publications Warehouse

    Amato, J.M.; Toro, J.; Miller, E.L.; Gehrels, G.E.; Farmer, G.L.; Gottlieb, E.S.; Till, A.B.

    2009-01-01

    The Seward Peninsula of northwestern Alaska is part of the Arctic Alaska-Chukotka terrane, a crustal fragment exotic to western Laurentia with an uncertain origin and pre-Mesozoic evolution. U-Pb zircon geochronology on deformed igneous rocks reveals a previously unknown intermediate-felsic volcanic event at 870 Ma, coeval with rift-related magmatism associated with early breakup of eastern Rodinia. Orthogneiss bodies on Seward Peninsula yielded numerous 680 Ma U-Pb ages. The Arctic Alaska-Chukotka terrane has pre-Neoproterozoic basement based on Mesoproterozoic Nd model ages from both 870 Ma and 680 Ma igneous rocks, and detrital zircon ages between 2.0 and 1.0 Ga in overlying cover rocks. Small-volume magmatism occurred in Devonian time, based on U-Pb dating of granitic rocks. U-Pb dating of detrital zircons in 12 samples of metamorphosed Paleozoic siliciclastic cover rocks to this basement indicates that the dominant zircon age populations in the 934 zircons analyzed are found in the range 700-540 Ma, with prominent peaks at 720-660 Ma, 620-590 Ma, 560-510 Ma, 485 Ma, and 440-400 Ma. Devonian- and Pennsylvanian-age peaks are present in the samples with the youngest detrital zircons. These data show that the Seward Peninsula is exotic to western Laurentia because of the abundance of Neoproterozoic detrital zircons, which are rare or absent in Lower Paleozoic Cordilleran continental shelf rocks. Maximum depositional ages inferred from the youngest detrital age peaks include latest Proterozoic-Early Cambrian, Cambrian, Ordovician, Silurian, Devonian, and Pennsylvanian. These maximum depositional ages overlap with conodont ages reported from fossiliferous carbonate rocks on Seward Peninsula. The distinctive features of the Arctic Alaska-Chukotka terrane include Neoproterozoic felsic magmatic rocks intruding 2.0-1.1 Ga crust overlain by Paleozoic carbonate rocks and Paleozoic siliciclastic rocks with Neoproterozoic detrital zircons. The Neoproterozoic ages are

  5. The relationship between the opening of South China Sea and the formation of the Tibetan Plateau (Invited)

    NASA Astrophysics Data System (ADS)

    Mo, X.

    2010-12-01

    The South China Sea is one of the largest marginal seas in western Pacific and underwent a complex history. Xu et al.(2004) suggested that the evolution of the South China Sea can be divided into two first order phases: Paleogene (—Early Miocene) rifting and Neogene post- rifting. An oceanic crust was formed during 32-17 Ma. Whether or not the opening of South China Sea were related to Indo-Eurasia collision and the formation of the Tibetan Plateau is one of challenging problem in Earth sciences. With an exception of the southwestern China, the Chinese continent has become an united continent in the Triassic by the Indosinian orogeny. However, the Qinghai-Tibet area in SW China was still an oceanic region, that is, the Neo-Tethys. During the period of 145-100 Ma, the Lhasa terrane collided with the Qiangtang terrane and added to the south margin of the Eurasian continent. On the other hand, the Indian plate subducted underneath the Eurasian continent since Jurassic- Cretaceous. Subsequently, collision between the two continents, India and Eurasia, were completed during 65-40 Ma, and went into a post-collisional stage, characterized by intra-continental movements, including intra-continental subduction, overthrust, strike-slip and so on. The Tibetan Plateau, the highest plateau in the world had been formed by multi-stage uplifts. Several huge strike-slip shear zone such as the Red River Fault and the Altyn were formed during that period. The >1000-km-long Oligocene—Miocene left-lateral Red River shear zone (RRSZ) and the Pliocene—active right-lateral Red River fault (RRF), stretching from SE Tibet to the South China Sea, has been cited as a lithospheric scale strike-slip fault. The age of RRSZ was recently determined no earlier than 31.9-24.2Ma and no later than 21.7 Ma (Searle et al., 2010). Many geologists believe that there possibly be close relationship between the opening of the South China Sea and Indo-Eurasia collision and the formation of the Tibetan

  6. North America as an exotic terrane'' and the origin of the Appalachian--Andean Mountain system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalziel, I.W.D; Gahagan, L.M.; Dalla Salda, L.H.

    1992-01-01

    North America was sutured to Gondwana in the terminal Alleghanian event of Appalachian orogenesis, thus completing the late Paleozoic assembly of Pangea. The suggestion that the Pacific margins of East Antarctica-Australia and Laurentia may have been juxtaposed during the Neoproterozoic prompts reevaluation of the widely held assumptions that the ancestral Appalachian margin rifted from northwestern Africa during the earliest Paleozoic opening of Iapetus, and remained juxtaposed to that margin, even though widely separated from it at times, until the assembly of Pangea. The lower Paleozoic carbonate platform of northwestern Argentina has been known for a long time to contain Olenellidmore » trilobites of the Pacific or Columbian realm. Although normally regarded as some kind of far-travelled terrane that originated along the Appalachian margin of Laurentia, it has recently been interpreted as a fragment detached from the Ouachita embayment of Laurentia following Taconic-Famatinian collision with Gondwana during the Ordovician. The Oaxaca terrane of Mexico, on the other hand, contains a Tremadocian trilobite fauna of Argentine-Bolivian affinities, and appears to have been detached from Gondwana following the same collision. The Wilson cycle'' of Iapetus ocean basin opening and closing along the Appalachian and Andean orogens may have involved more than one such continental collision during clockwise drift of Laurentia around South America following late Neoproterozoic to earliest Cambrian separation. Together with the collisions of baltic and smaller terranes with Laurentia, this could explain the protracted Paleozoic orogenic history of both the Appalachian and proto-Andean orogens.« less

  7. Early paleozoic gabbro-amphibolites in the structure of the Bureya Terrane (eastern part of the Central Asian Fold Belt): First geochronological data and tectonic position

    NASA Astrophysics Data System (ADS)

    Smirnov, Yu. V.; Sorokin, A. A.; Kudryashov, N. M.

    2012-07-01

    Resulting from U-Pb geochronological study, it has been found that the gabbro-amphibolites composing the Bureya (Turan) Terrane in the eastern part of the Central Asian Fold Belt are Early Paleozoic (Early Ordovician; 455 ± 1.5 Ma) in age rather than Late Proterozoic as was believed earlier. The gabbro-amphibolites and associated metabasalts are close to tholeiites of the intraoceanic island arcs in terms of the geochemical properties. It is suggested that the tectonic block composed of these rocks was initially a seafloor fragment that divided the Bureya and Argun terranes in the Early Paleozoic and was later tectonically incorporated into the modern structure of the Bureya Terrane as a result of Late Paleozoic and Mesozoic events.

  8. Two-types of Early Cretaceous adakitic porphyries from the Luxi terrane, eastern North China Block: Melting of subducted Paleo-Pacific slab and delaminated newly underplated lower crust

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Xu, Zhaowen; Lu, Xiancai; Fu, Bin; Lu, Jianjun; Yang, Xiaonan; Zhao, Zengxia

    2016-01-01

    The origin and tectonic setting of Early Cretaceous adakitic rocks from the Luxi terrane in the eastern North China Block (NCB) remain debated. To resolve this issue, we determined whole-rock geochemistry, zircon U-Pb ages, and in situ Hf-O isotopes of the Mengyin and Liujing adakitic porphyries from the Luxi terrane. Zircon U-Pb dating results reveal that both the Mengyin and Liujing plutons were emplaced during the Early Cretaceous, with weighted mean 206Pb/238U ages of 130 ± 1 Ma (2σ) and 131 ± 2 Ma (2σ), respectively. In addition, abundant Neoarchean-Paleoproterozoic inherited zircon cores are identified in the Mengyin adakitic porphyry with 207Pb/206Pb ages ranging from 2.53 to 2.42 Ga. Rocks of both plutons are silicic (SiO2 = 65.4-70.2 wt.%), metaluminous, and alkaline in composition, comprising mainly quartz syenite porphyries. Samples from both plutons are enriched in large ion lithophile elements (LILEs) (e.g., Rb, Sr, and Ba), and light rare earth elements (LREEs), depleted in high field strength elements (HFSEs) (e.g., Nb, Ta, and Ti), and heavy rare earth elements (HREEs), and have either positive or no Eu anomalies. In addition, both adakitic porphyries have high Mg# values (51-64), high Sr and La contents, low Y and Yb contents, and high Sr/Y (Mengyin = 149-264; Liujing = 58-110) and (La/Yb)N (Mengyin = 32.4-45.3; Liujing = 43.8-53.1) ratios, similar to adakitic rocks worldwide. The Mengyin adakitic porphyry has higher whole-rock εNd(t) values (-5.8 to - 4.1), more radiogenic Pb [(206Pb/204Pb)i = 18.35-18.39, (207Pb/204Pb)i = 15.55-15.56, (208Pb/204Pb)i = 38.20-38.23], higher zircon rim εHf(t) values (+ 3.3 to + 8.8) and δ18O values (+ 6.5‰ to + 7.9‰), and lower (87Sr/86Sr)i ratios (0.7049-0.7050) than the Liujing adakitic porphyry [εNd(t) = - 12.4 to - 12.2, (206Pb/204Pb)i = 17.63-17.72, (207Pb/204Pb)i = 15.56-15.58, (208Pb/204Pb)i = 37.76-37.94, εHf(t) = - 14.8 to - 11.2, δ18O = + 5.9‰ to + 7.1‰, (87Sr/86Sr)i = 0.7090-0.7091]. The

  9. Initiation of Extension in South China Continental Margin during the Active-Passive Margin Transition: Thermochronological and Kinematic Constraints

    NASA Astrophysics Data System (ADS)

    Zuo, X.; Chan, L. S.

    2015-12-01

    The South China continental margin is characterized by a widespread magmatic belt, prominent NE-striking faults and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from active to passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. Our zircon fission-track data in this region show two episodes of exhumation: The first episode, occurring during 170-120Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115-70Ma, including the Yunkai Terrane and the Nanling Range. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the fact that exhumation of the granite-dominant Nanling Range occurred earlier than that of the gneiss-dominant Yunkai Terrane. In addition to the difference in rock types, the heat from Jurassic-Early Cretaceous magmatism in Nanling may have softened the upper crust, causing the area to exhume more readily than Yunkai. Numerical modeling results also indicate that (1) high lithospheric geothermal gradient, high slab dip angle and low convergence velocity favor the reversal of crustal stress state from compression to extension in the upper continental plate; (2) late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension imply that the Late Cretaceous-early Paleogene red-bed basins in South China could have formed during the late stage of the subduction, accounting for the occurrence of volcanic events in some sedimentary basins. We propose that the rifting started as early as Late Cretaceous, probably before the cessation of subduction process.

  10. First data on age of metarhyolites from the Turan Group of the Bureya Terrane, eastern part of the Central Asian Foldbelt

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Smirnov, Yu. V.; Smirnova, Yu. N.; Kudryashov, N. M.

    2011-07-01

    The U-Pb geochronological studies showed that metarhyolites from the Turan Group of the Bureya (Turan) Terrane to the east of the Central Asian Foldbelt are Middle Cambrian (504 ± 8 Ma), not Neoproterozoic in age, as was suggested before. Metarhyolites are younger than the Early Cambrian terrigenous-carbonate sediments from this terrane characterized by the Atdabanian archaeochyatid. Considering that volcanic rocks have features of intraplate origin, it may be assumed that their formation corresponds to the breakup of the Early Paleozoic passive continental margin.

  11. First Evidence of Middle Triassic Basic Magmatism in the Southwestern Part of the Dzhugdzhur-Stanovoi Superterrane (Ilikan Terrane)

    NASA Astrophysics Data System (ADS)

    Buchko, I. V.; Sorokin, A. A.; Rodionov, A. A.; Kudryashov, N. M.

    2018-04-01

    U-Pb ID-TIMS zircon analyses of the Dzhigda gabbro-gabbrodiorite Massif (Ilikan block in the southwestern part of the Dzhugdzhur-Stanovoi superterrane) have been carried out. The results demonstrate that the formation of the massif at 244 ± 5 Ma corresponds to one of the stages of formation of the Selenga-Vitim volcano-plutonic belt. The latter stretches along the southeastern margin of the North Asian Craton along its border with the Mongol-Okhotsk fold belt. This indicates that the Selenga-Vitim volcano-plutonic belt along with granitoids and volcanics comprises Permian-Triassic massifs and that this belt is superimposed onto structures of not only the Selenga-Stanovoi terrane but also the Dzhugdzhur-Stanovoi terrane.

  12. Paleomagnetic contributions to the Klamath Mountains terrane puzzle-a new piece from the Ironside Mountain batholith, northern California

    USGS Publications Warehouse

    Mankinen, Edward A.; Gromme, C. Sherman; Irwin, W. Porter

    2013-01-01

    We obtained paleomagnetic samples from six sites within the Middle Jurassic Ironside Mountain batholith (~170 Ma), which constitutes the structurally lowest part of the Western Hayfork terrane, in the Klamath Mountains province of northern California and southern Oregon. Structural attitudes measured in the coeval Hayfork Bally Meta-andesite were used to correct paleomagnetic data from the batholith. Comparing the corrected paleomagnetic pole with a 170-Ma reference pole for North America indicates 73.5° ± 10.6° of clockwise rotation relative to the craton. Nearly one-half of this rotation may have occurred before the terrane accreted to the composite Klamath province at ~168 Ma. No latitudinal displacement of the batholith was detected.

  13. The Phuket Terrane: A Late Palaeozoic rift at the margin of Sibumasu

    NASA Astrophysics Data System (ADS)

    Ridd, Michael F.

    2009-09-01

    It is widely accepted that Sibumasu rifted from Gondwana in the Late Palaeozoic. But the rifts themselves have not previously been documented in Southeast Asia. This paper identifies the pre-Middle Permian Kaeng Krachan Group of Upper Peninsular Thailand as the infill of one such rift, which is given the name Phuket Terrane. Indirect evidence suggests the rift-infill is several kilometres thick and glacially-influenced diamictites are conspicuous in the succession. There are significant similarities with the >3 km thick pre-Middle Permian rift-infill of the Carnarvon Basin of Western Australia. East of the Khlong Marui Fault belt the succession is thinner and diamictites are a minor component. A tectono-stratigraphic model is proposed involving Gondwana glaciers dropping their load at the (present) western margin of the Phuket Terrane from where it was re-sedimented in the rapidly subsiding marine rift basin. It is suggested that the Khlong Marui Fault formed part of the eastern boundary of the rift system. The Three Pagodas Fault belt similarly juxtaposes different pre-Middle Permian successions. Rifting ceased in the Early Permian and a passive margin formed as the Mesotethys ocean widened, the upper part of the Kaeng Krachan Group and the overlying Ratburi Limestone representing the post-rift sequence.

  14. U-Pb detrital zircon geochronology from the basement of the Central Qilian Terrane: implications for tectonic evolution of northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Changfeng; Wu, Chen; Zhou, Zhiguang; Yan, Zhu; Jiang, Tian; Song, Zhijie; Liu, Wencan; Yang, Xin; Zhang, Hongyuan

    2018-03-01

    The Tuolai Group dominates the Central Qilian Terrane, and there are different opinions on the age and tectonic attribute of the Tuolai Group. Based on large-scale geologic mapping and zircon dating, the Tuolai Group is divided into four parts: metamorphic supracrustal rocks, Neoproterozoic acid intrusive rocks, early-middle Ordovician acid intrusive rocks and middle Ordovician basic intrusive rocks. The metamorphic supracrustal rocks are the redefined Tuolai complex-group and include gneiss and schist assemblage by faulting contact. Zircon U-Pb LA-MC-ICP-MS dating was conducted on these samples of gneiss and migmatite from the gneiss assemblage, quartzite, two-mica schist and slate from the schist assemblage. The five detrital samples possess similar age spectra; have detrital zircon U-Pb main peak ages of 1.7 Ga with youngest U-Pb ages of 1150 Ma. They are intruded by Neoproterozoic acid intrusive rocks. Therefore, the Tuolai Group belonging to late Mesoproterozoic and early Neoproterozoic. With this caveat in mind, we believe that U-Pb detrital zircon dating, together with the geologic constraints obtained from this study and early work in the neighboring regions. We suggest that the formation age of the entire crystalline basement rocks of metasedimentary sequence from the Central Qilian Terrane should be constrained between the Late Mesoproterozoic and the Late Neoproterozoic, but not the previous Paleoproterozoic. The basement of the Central Qilian Terrane contains the typical Grenville ages, which indicates the Centre Qilian Terrane have been experienced the Grenville orogeny event.

  15. Unravelling the pre-Variscan evolution of the Habach terrane (Tauern Window, Austria) by U-Pb SHRIMP zircon data

    NASA Astrophysics Data System (ADS)

    Eichhorn, Roland; Loth, Georg; Kennedy, Allen

    2001-08-01

    The U-Pb SHRIMP age determinations of zircons from the Habach terrane (Tauern Window, Austria) reveal a complex evolution of this basement unit, which is exposed in the Penninic domain of the Alpine orogen. The oldest components are found in zircons of a metamorphosed granitoid clast, of a migmatitic leucosome, and of a meta-rhyolitic (Variscan) tuff which bear cores of Archean age. The U-Pb ages of discordant zircon cores of the same rocks range between 540 and 520 Ma. It is assumed that the latter zircons were originally also of Archean origin and suffered severe lead loss, whilst being incorporated into Early-Cambrian volcanic arc magmas. The provenance region of the Archean (2.64-2.06 Ga) zircons is assumed to be a terrane of Gondwana affinity: i.e., the West African craton (Hoggar Shield, Reguibat Shield). The Caledonian metamorphism left a pervasive structural imprint in amphibolite facies on rocks of the Habach terrane; it is postdated by discordant zircons of a migmatitic leucosome at <440 Ma (presumably ca. 420 Ma). Alpine and Variscan upper greenschist- to amphibolite-facies conditions caused partial lead loss in zircons of a muscovite gneiss ('white schist') only, where extensive fluid flow and brittle deformation due to its position near a nappe-sole thrust enhanced the grains' susceptibility to isotopic disturbance. The Habach terrane - an active continental margin with ensialic back-arc development - showed subduction-induced magmatic activity approx. between 550 and 507 Ma. Back-arc diorites and arc basalts were intruded by ultramafic sills and subsequently by small patches of mantle-dominated unaltered and (in the vicinity of a major tungsten deposit) altered granitoids. Fore-arc (shales) and back-arc (greywackes, cherts) basin sediments as well as arc and back-arc magmatites were not only nappe-stacked by the Caledonian compressional regime closing the presumably narrow oceanic back-arc basin and squeezing mafic to ultramafic cumulates out of high

  16. Contrasting tectonothermal domains and faulting in the Potomac terrane, Virginia-Maryland - Discrimination by 40Ar/39Ar and fission-track thermochronology

    USGS Publications Warehouse

    Kunk, Michael J.; Wintsch, R.P.; Naeser, C.W.; Naeser, N.D.; Southworth, C.S.; Drake, Avery A.; Becker, J.L.

    2005-01-01

    New 40Ar/39Ar data reveal ages and thermal discontinuities that identify mapped and unmapped fault boundaries in the Potomac terrane in northern Virginia, thus confirming previous interpretations that it is a composite terrane. The rocks of the Potomac terrane were examined along the Potomac River, where it has been previously subdivided into three units: the Mather Gorge, Sykesville, and Laurel Formations. In the Mather Gorge Formation, at least two metamorphic thermal domains were identified, the Blockhouse Point and Bear Island domains, separated by a fault active in the late Devonian. Early Ordovician (ca. 475 Ma) cooling ages of amphibole in the Bear Island domain reflect cooling from Taconic metamorphism, whereas the Blockhouse Point domain was first metamorphosed in the Devonian. The 40Ar/39Ar data from muscovites in a third (eastern) domain within the Mather Gorge Formation, the Stubblefield Falls domain, record thrusting of the Sykesville Formation over the Mather Gorge Formation on the Plummers Island fault in the Devonian. The existence of two distinctly different thermal domains separated by a tectonic boundary within the Mather Gorge argues against its status as a formation. Hornblende cooling ages in the Sykesville Formation are Early Devonian (ca. 400 Ma), reflecting cooling from Taconic and Acadian metamorphism. The ages of retrograde and overprinting muscovite in phyllonites from domain-bounding faults are late Devonian (Acadian) and late Pennsylvanian (Alleghanian), marking the time of assembly of these domains and subsequent movement on the Plummers Island fault. Our data indicate that net vertical motion between the Bear Island domain of the Mather Gorge complex and the Sykesville Formation across the Plummers Island fault is east-side-up. Zircon fission-track cooling ages demonstrate thermal equillbrium across the Potomac terrane in the early Permian, and apatite fission-track cooling ages record tilting of the Potomac terrane in the Cretaceous

  17. a Possible Ancient Core Complex in the Northern Cache Creek Terrane, British Columbia

    NASA Astrophysics Data System (ADS)

    Zagorevski, A.

    2013-12-01

    The Cache Creek terrane (CCT) in Canadian Cordillera comprises a belt of Mississippian to Jurassic oceanic rocks that include Tethyan carbonates and alkaline basalts that are demonstrably exotic to Laurentia. The exotic Tethyan faunas in the CCT, combined with its inboard position with respect to Stikinia and Yukon-Tanana terranes has led to a variety of tectonic hypotheses including oroclinal enclosure of CCT by Stikinia, Yukon-Tanana and Quesnellia during the Jurassic. Detailed studies have demonstrated that the northern CCT is in fact a composite terrane that includes ophiolitic rocks of both ocean island and island arc origins. The western margin of the CCT is characterized by imbricated harzburgite, island arc tholeiite, sedimentary rocks and locally significant felsic volcanic rocks of the Kutcho arc. Gabbro is volumetrically minor and sheeted dyke complexes are either very rare or not developed. The felsic arc volcanic rocks and the pyroxenite bodies that cut the harzburgite have been previously isotopically dated as Middle Triassic (ca. 245 Ma) suggesting that melt percolation through the mantle was coeval with Kutcho arc magmatism and coincided with a magmatic gap in Stikinia. In general the contact between the mantle and supracrustal rocks is faulted making it difficult to determine the original relationships between the mantle and island arc tholeiites. Locally, the contact appears to be intact and is characterized by mantle tectonites with pyroxenite veins overlain by cumulate plagioclase-orthopyroxene gabbro and fine grained diabase. Elsewhere, volcanic and sedimentary rocks sit in fault contact structurally above the mantle. The absence of voluminous gabbro and sheeted dyke complexes, presence of coeval magmas in the crust and mantle, and low angle extensional faulting in some areas suggests that the western part of the CCT may preserve an ocean core complex similar to the Godzilla Megamullion in the Parece-Vela Basin. Such a hypothesis suggests that

  18. Gamma-ray spectrometry of granitic suites of the Paranaguá Terrane, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Weihermann, Jessica Derkacz; Ferreira, Francisco José Fonseca; Cury, Leonardo Fadel; da Silveira, Claudinei Taborda

    2016-09-01

    The Paranaguá Terrane, located in the coastal portion of the states of Santa Catarina, Paraná and São Paulo in Southern Brazil is a crustal segment constituted mainly by an igneous complex, with a variety of granitic rocks inserted into the Serra do Mar ridge. The average altitude is approximately 1200 m above sea level, with peaks of up to 1800 m. Due to the difficulty of accessing the area, a shortage of outcrops and the thick weathering mantle, this terrane is understudied. This research aims to evaluate the gamma-ray spectrometry data of the granitic suites of the Paranaguá Terrane, in correspondence with the geological, petrographical, lithogeochemical, relief and mass movement information available in the literature. Aerogeophysical data were acquired along north-south lines spaced at 500 m, with a mean terrain clearance of 100 m. These data cover potassium (K, %), equivalent in thorium (eTh, ppm) and equivalent in uranium (eU, ppm). After performing a critical analysis of the data, basic (K, eU, eTh) and ternary (R-K/G-eTh/B-eU) maps were generated and then superimposed on the digital elevation model (DEM). The investigation of the radionuclide mobility across the relief and weathering mantle consisted of an analysis of the schematic profiles of elevation related with each radionuclide; a comparison of the K, eU and eTh maps with their 3D correspondents; and the study of mass movements registered in the region. A statistical comparison of lithogeochemical (K, U, Th) and geophysical (K, eU, eTh) data showed consistency in all the granitic suites studied (Morro Inglês, Rio do Poço and Canavieiras-Estrela). Through gamma-ray spectrometry, it was possible to establish relationships between scars (from mass movements) and the gamma-ray responses as well as the radionuclide mobility and the relief and to map the granitic bodies.

  19. About the age of the Neoproterozoic Lainici-Paius terrane (South Carpathians, Romania)

    NASA Astrophysics Data System (ADS)

    Balica, C.; Balintoni, I.; Ducea, M. N.; Berza, T.; Stremtan, C.

    2009-12-01

    The pre-Alpine basement of the Danubian domain nappes from South Carpathians consists of high grade metamorphic groups and late Neoproterozoic plutons, underlying low grade metamorphosed Ordovician to early Carboniferous formations (e.g. Seghedi et al., 2005). Two types of pre-Ordovician metamorphic complexes with contrasting protoliths petrology, metamorphism and associated igneous activity, involved in a pre-Permian nappe structure are separated: Lainici-Paius group, dominated by HT-LP metasediments and Dragsan group, dominated by medium grade metabasites. Based on their distinct lithologic compositions, geologic histories and clear boundaries, we consider these two groups as parts of two different terranes (i.e. Lainici-Paius and Dragsan terranes). The southern part of Lainici-Paius terrane is intruded by elongated plutons up to 100 km long and 15 km wide. Based on the geochemical composition, the plutons are assigned to two distinct suites, (i) medium K, calc-alkaline, mostly granodioritic-tonalitic suite (i.e. Susita type) and (ii) very high K, calc-alkaline and mostly granitic (i.e. Tismana type). The first suite comprises Susita and Oltet granitoid bodies and the second suite consists of Tismana and Novaci granitic plutons. Previous age dating was carried out only on Tismana (567±3 Ma upper intercept, Liégeois et al., 1996) and Novaci (588±5 Ma, Grünenfelder et al., 1983 recalculated by Liégeois et al., 1996) granites. In situ zircon U/Pb LA-ICP-MS analyses performed on all four granitoid plutons yielded 596.3±5.7 Ma for Tismana granite, 592.0±5.1 Ma for Novaci granite, 591.0±3.5 Ma for Susita granite and 588.7±3 Ma for Oltet granite. The same method has been additionally applied for detrital zircons from a metasandstone sequence comprised by the Lainici-Paius complex. Fifty-five ages out of 78 dated grains are ranging between 690.1±5.5 Ma and 811.4±12,7 Ma. Therefore, considering the protolith ages of the four dated granites and the youngest age

  20. Grenville age of basement rocks in Cape May NJ well: New evidence for Laurentian crust in U.S. Atlantic Coastal Plain basement Chesapeake terrane

    USGS Publications Warehouse

    Sheridan, R.E.; Maguire, T.J.; Feigenson, M.D.; Patino, L.C.; Volkert, R.A.

    1999-01-01

    The Chesapeake terrane of the U.S. mid-Atlantic Coastal Plain basement is bounded on the northwest by the Salisbury positive gravity and magnetic anomaly and extends to the southeast as far as the Atlantic coast. It underlies the Coastal Plain of Virginia, Maryland, Delaware and southern New Jersey. Rubidium/Strontium dating of the Chesapeake terrane basement yields an age of 1.025 ?? 0.036 Ga. This age is typical of Grenville province rocks of the Middle to Late Proterozoic Laurentian continent. The basement lithologies are similar to some exposed Grenville-age rocks of the Appalachians. The TiO2 and Zr/P2O5 composition of the metagabbro from the Chesapeake terrane basement is overlapped by those of the Proterozoic mafic dikes in the New Jersey Highlands. These new findings support the interpretation that Laurentian basement extends southeast as far as the continental shelf in the U.S. mid-Atlantic region. The subcrop of Laurentian crust under the mid-Atlantic Coastal Plain implies unroofing by erosion of the younger Carolina (Avalon) supracrustal terrane. Dextral-transpression fault duplexes may have caused excessive uplift in the Salisbury Embayment area during the Alleghanian orogeny. This extra uplift in the Salisbury area may have caused the subsequent greater subsidence of the Coastal Plain basement in the embayment.

  1. Bokan Mountain peralkaline granitic complex, Alexander terrane (southeastern Alaska): evidence for Early Jurassic rifting prior to accretion with North America

    USGS Publications Warehouse

    Dostal, Jaroslav; Karl, Susan M.; Keppie, J. Duncan; Kontak, Daniel J.; Shellnutt, J. Gregory

    2013-01-01

    The circular Bokan Mountain complex (BMC) on southern Prince of Wales Island, southernmost Alaska, is a Jurassic peralkaline granitic intrusion about 3 km in diameter that crosscuts igneous and metasedimentary rocks of the Alexander terrane. The BMC hosts significant rare metal (rare earth elements, Y, U, Th, Zr, and Nb) mineralization related to the last stage of BMC emplacement. U–Pb (zircon) and 40Ar/39Ar (amphibole and whole-rock) geochronology indicates the following sequence of intrusive activity: (i) a Paleozoic basement composed mainly of 469 ± 4 Ma granitic rocks; (ii) intrusion of the BMC at 177 ± 1 Ma followed by rapid cooling through ca. 550 °C at 176 ± 1 Ma that was synchronous with mineralization associated with vertical, WNW-trending pegmatites, felsic dikes, and aegirine–fluorite veins and late-stage, sinistral shear deformation; and (iii) intrusion of crosscutting lamprophyre dikes at >150 Ma and again at ca. 105 Ma. The peralkaline nature of the BMC and the WNW trend of associated dikes suggest intrusion during NE–SW rifting that was followed by NE–SW shortening during the waning stages of BMC emplacement. The 177 Ma BMC was synchronous with other magmatic centres in the Alexander terrane, such as (1) the Dora Bay peralkaline stock and (2) the bimodal Moffatt volcanic suite located ∼30 km north and ∼100 km SE of the BMC, respectively. This regional magmatism is interpreted to represent a regional extensional event that precedes deposition of the Late Jurassic – Cretaceous Gravina sequence that oversteps the Wrangellia and Alexander exotic accreted terranes and the Taku and Yukon–Tanana pericratonic terranes of the Canadian–Alaskan Cordillera.

  2. Bokan Mountain peralkaline granitic complex, Alexander terrane (southeastern Alaska): evidence for Early Jurassic rifting prior to accretion with North America

    USGS Publications Warehouse

    Dostal, Jaroslav; Karl, Susan M.; Keppie, J. Duncan; Kontak, Daniel J.; Shellnutt, J. Gregory

    2013-01-01

    The circular Bokan Mountain complex (BMC) on southern Prince of Wales Island, southernmost Alaska, is a Jurassic peralkaline granitic intrusion about 3 km in diameter that crosscuts igneous and metasedimentary rocks of the Alexander terrane. The BMC hosts significant rare metal (rare earth elements, Y, U, Th, Zr, and Nb) mineralization related to the last stage of BMC emplacement. U–Pb (zircon) and 40Ar/39Ar (amphibole and whole-rock) geochronology indicates the following sequence of intrusive activity: (i) a Paleozoic basement composed mainly of 469 ± 4 Ma granitic rocks; (ii) intrusion of the BMC at 177 ± 1 Ma followed by rapid cooling through ca. 550 °C at 176 ± 1 Ma that was synchronous with mineralization associated with vertical, WNW-trending pegmatites, felsic dikes, and aegirine–fluorite veins and late-stage, sinistral shear deformation; and (iii) intrusion of crosscutting lamprophyre dikes at >150 Ma and again at ca. 105 Ma. The peralkaline nature of the BMC and the WNW trend of associated dikes suggest intrusion during NE–SW rifting that was followed by NE–SW shortening during the waning stages of BMC emplacement. The 177 Ma BMC was synchronous with other magmatic centres in the Alexander terrane, such as (1) the Dora Bay peralkaline stock and (2) the bimodal Moffatt volcanic suite located ~30 km north and ~100 km SE of the BMC, respectively. This regional magmatism is interpreted to represent a regional extensional event that precedes deposition of the Late Jurassic – Cretaceous Gravina sequence that oversteps the Wrangellia and Alexander exotic accreted terranes and the Taku and Yukon–Tanana pericratonic terranes of the Canadian–Alaskan Cordillera.

  3. Late Cretaceous tectonothermal evolution of the southern Lhasa terrane, South Tibet: Consequence of a Mesozoic Andean-type orogeny

    NASA Astrophysics Data System (ADS)

    Dong, Xin; Zhang, Ze-ming; Klemd, Reiner; He, Zhen-yu; Tian, Zuo-lin

    2018-04-01

    The Lhasa terrane of the southern Tibetan Plateau participated in a Mesozoic Andean-type orogeny caused by the northward subduction of the Neo-Tethyan oceanic lithosphere. However, metamorphic rocks, which can unravel details of the geodynamic evolution, are rare and only exposed in the south-eastern part of the Lhasa terrane. Therefore, we conducted a detailed petrological, geochemical and U-Pb zircon geochronological study of the late Cretaceous metamorphic rocks and associated gabbros from the Nyemo inlier of the southern Lhasa terrane. The Nyemo metamorphic rocks including gneisses, schists, marbles and calc-silicate rocks, experienced peak amphibolite-facies contact metamorphism under P-T conditions of 3.5-4.0 kbar and 642-657 °C with a very high geothermal gradient of 45-50 °C/km, revealing a distinct deflection from the steady-state geotherm during low-pressure metamorphism. Inherited magmatic zircon cores from the metamorphic rocks yielded protolith ages of 197-194 Ma, while overgrowth zircon rims yielded metamorphic ages of ca. 86 Ma. Whole-rock chemistry and zircon Hf isotopes suggest that the protoliths of the gneisses and schists are andesites and tuffs of the early Jurassic Sangri Group, which were derived from a depleted mantle source of a continental arc affinity. The coeval intimately-associated gabbro (ca. 86 Ma) crystallized under P-T conditions of 3.5-5.3 kbar and 914-970 °C, supplying the heat flux high enough to cause the contact metamorphism of the Sangri Group rock types. We propose that the intrusion of the gabbro and a simultaneous pressure increase of up to 4.0 kbar, which is related to crustal thickening due to crustal overthrusting and the intrusion of mafic material, resulted in the late Cretaceous metamorphism of the early Jurassic Sangri Group during an Andean-type orogeny. Furthermore the Nyemo metamorphic rocks, which have previously been considered to represent slivers of the Precambrian metamorphic basement of the Lhasa terrane

  4. Early Cretaceous bimodal volcanic rocks in the southern Lhasa terrane, south Tibet: Age, petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ding, Lin; Liu, Zhi-Chao; Zhang, Li-Yun; Yue, Ya-Hui

    2017-01-01

    Limited geochronological and geochemical data from Early Cretaceous igneous rocks of the Gangdese Belt have resulted in a dispute regarding the subduction history of Neo-Tethyan Ocean. To approach this issue, we performed detailed in-situ zircon U-Pb and Hf isotopic, whole-rock elemental and Sr-Nd isotopic analyses on Late Mesozoic volcanic rocks exposed in the Liqiongda area, southern Lhasa terrane. These volcanic rocks are calc-alkaline series, dominated by basalts, basaltic andesites, and subordinate rhyolites, with a bimodal suite. The LA-ICPMS zircon U-Pb dating results of the basaltic andesites and rhyolites indicate that these volcanic rocks erupted during the Early Cretaceous (137-130 Ma). The basaltic rocks are high-alumina (average > 17 wt.%), enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs), showing subduction-related characteristics. They display highly positive zircon εHf(t) values (+ 10.0 to + 16.3) and whole-rock εNd(t) values (+ 5.38 to + 7.47). The silicic suite is characterized by low Al2O3 (< 15.4 wt.%), Mg# (< 40), and TiO2 (< 0.3 wt.%) abundances; enriched and variable concentrations of LILEs and REEs; and strongly negative Eu anomalies (Eu/Eu* = 0.08-0.19), as well as depleted Hf isotopic compositions (εHf(t) = + 4.9 to + 16.4) and Nd isotopic compositions (εNd(t) = + 5.26 to + 6.71). Consequently, we envision a process of basaltic magmas similar to that of MORB extracted from a source metasomatized by slab-derived components for the petrogenesis of mafic rocks, whereas the subsequent mafic magma underplating triggered partial melting of the juvenile crust to generate acidic magma. Our results confirm the presence of Early Cretaceous volcanism in the southern Lhasa terrane. Combined with the distribution of the contemporary magmatism, deformation style, and sedimentary characteristics in the Lhasa terrane, we favor the suggestion that the Neo

  5. Increasing influence of exotic terranes as sources of shales from the Sevier and Taconic Foreland basins : Evidence from Nd isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samson, S.D.; Andersen, C.B.

    1994-03-01

    The influence of outboard tectonostratigraphic terranes as a source of sediment to Ordovician foreland basins is unknown. To determine if there were changes in provenance, or changes in the importance of a given source region, the authors have analyzed shales from two foreland basins, the Tactonic Foreland basin of central New York and the Sevier Foreland basin of Tennessee, for their Nd isotopic compositions. Shales from the Taconic basin include those from the lower portion of Utica shale, Corynoides americanus graptolite Zone, and the uppermost portion of the Utica shale, including the Geniculograptus pygmaeus graptolite Zone. Initial [epsilon][sub Nd] valuesmore » for the oldest Taconic basin shales are [minus]12. Initial [epsilon][sub Nd] values for the younger Taconic basin shales range from [minus]9.7 to [minus]8.4. This increase in [epsilon][sub Nd] may reflect an increased influence of terranes outboard of the Laurentian margin. Samples from the Sevier basin include those from the Blockhouse and Tellico Formations. A sample of the lower Blockhouse Fm. has an initial [epsilon][sub Nd] of [minus]9.4, while mid-formation levels have [epsilon][sub Nd] = [minus]8.8. Initial [epsilon][sub Nd] ranges from [minus]8.0 to [minus]7.2 from Tellico Formation shales. Thus a trend towards increasing [epsilon][sub Nd] with decreasing age is also seen in the Sevier basin. This again suggests the possibility of an increasing influence from nearby terranes. The fact that the [epsilon][sub Nd] values are higher in the Sevier basin than in the Taconic basin indicates that the Sevier shales received detritus with a less evolved isotopic composition. This may reflect fundamentally different sources, such as a more juvenile terrane as an important source of Sevier basin shales.« less

  6. Paleomagnetic Constraints on the Tectonic History of the Mesozoic Ophiolite and Arc Terranes of Western Mexico

    NASA Astrophysics Data System (ADS)

    Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.

    2017-12-01

    The North American Cordillera has been shaped by a long history of accretion of arcs and other buoyant crustal fragments to the western margin of the North American Plate since the Early Mesozoic. Accretion of these terranes resulted from a complex tectonic history interpreted to include episodes of both intra-oceanic subduction within the Panthalassa/Pacific Ocean, as well as continental margin subduction along the western margin of North America. Western Mexico, at the southern end of the Cordillera, contains a Late Cretaceous-present day long-lived continental margin arc, as well as Mesozoic arc and SSZ ophiolite assemblages of which the origin is under debate. Interpretations of the origin of these subduction-related rock assemblages vary from far-travelled exotic intra-oceanic island arc character to autochthonous or parautochthonous extended continental margin origin. We present new paleomagnetic data from four localities: (1) the Norian SSZ Vizcaíno peninsula Ophiolite; (2) its Lower Jurassic sedimentary cover; and (3) Barremian and (4) Aptian sediments derived from the Guerrero arc. The data show that the Mexican ophiolite and arc terranes have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. These spreading phases resulted in the temporal existence of tectonic plates between the North American and Farallon Plates, and upon closure of the basins, in the growth of the North American continent without addition of any far-travelled exotic terranes.

  7. Potassium metasomatism of volcanic and sedimentary rocks in rift basins, calderas and detachment terranes

    NASA Technical Reports Server (NTRS)

    Chapin, C. E.; drographic basins.

    1985-01-01

    The chemical, mineralogical, and oxygen-isotopic changes accompanying K-metasomatism are described. The similarities with diagenetic reactions in both deep marine and alkaline, saline-lake environments are noted. The common occurrence of K-metasomatism in upper-plate rocks of detachment terranes indicates that the early stage of severe regional extension causes crustal downwarping and, in arid to semi-arid regions, development of closed hydrographic basins.

  8. Origin of Silurian reefs in the Alexander Terrane of southeastern Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soja, C.M.

    1991-04-01

    Lower to Upper Silurian (upper Llandovery-Ludlow) limestones belonging to the Heceta Formation record several episodes of reef growth in the Alexander terrane of southeastern Alaska. As the oldest carbonates of wide-spread distribution in the region, the Heceta limestones represent the earliest development of a shallow-marine platform within the Alexander arc and the oldest foundation for reef evolution. These deposits provide important insights into the dynamic processes, styles, and bathymetry associated with reef growth in tectonically active oceanic islands. Massive stromatoporoids, corals, and red algae are preserved in fragmental rudstones and represent a fringing reef that formed at the seaward edgemore » of the incipient marine shelf. Accessory constituents in this reef include crinoids and the cyanobacterium Girvanella. Small biostromes were constructed by ramose corals and stromatoporoids on oncolitic substrates in backreef or lagoonal environments. These buildups were associated with low-diversity assemblages of brachiopods and with gastropods, amphiporids, calcareous algae and cyanobacteria. Microbial boundstones reflect the widespread encrustation of cyanobacteria and calcified microproblematica on shelly debris as stromatolitic mats that resulted in the development of a stromatactoid-bearing mud mound and a barrier reef complex. Epiphytaceans, other microbes, and aphrosalpingid sponges were the primary frame-builders of the barrier reefs. These buildups attained significant relief at the shelf margin and shed detritus as slumped blocks and debris flows into deep-water sites along the slope. The similarity of these stromatolitic-aphrosalpingid reefs to those from Siluro-Devonian strata of autochthonous southwestern Alaska suggests paleobiogeographic ties of the Alexander terrane to cratonal North America during the Silurian.« less

  9. The duration of prograde garnet crystallization in the UHP eclogites at Lago di Cignana, Italy

    NASA Astrophysics Data System (ADS)

    Skora, Susanne; Lapen, Thomas J.; Baumgartner, Lukas P.; Johnson, Clark M.; Hellebrand, Eric; Mahlen, Nancy J.

    2009-10-01

    The distinct core-to-rim zonation of different REEs in garnet in metamorphic rocks, specifically Sm relative to Lu, suggests that Sm-Nd and Lu-Hf isochron ages will record different times along a prograde garnet growth history. Therefore, REE zonations in garnet must be measured in order to correctly interpret the isochron ages in terms of the garnet growth interval, which could span several m.y. New REE profiles, garnet crystal size distributions, and garnet growth modeling, combined with previously published Sm-Nd and Lu-Hf geochronology on a UHP eclogite of the Zermatt-Saas Fee (ZSF) ophiolite, Lago di Cignana (Italy), demonstrate that prograde garnet growth of this sample occurred over a ~ 30 to 40 m.y. interval. Relative to peak metamorphism at 38 to 40 Ma, garnet growth is estimated to have begun at ~ 11 to 14 kbar pressure at ~ 70 to 80 Ma. Although such a protracted garnet growth interval is surprising, this is supported by plate tectonic reconstructions which suggest that subduction of the Liguro-Piemont ocean occurred through slow and oblique convergence. These results demonstrate that REE zonations in garnet, coupled to crystal size distributions, provide a powerful means for understanding prograde metamorphic paths when combined with Sm-Nd and Lu-Hf geochronology.

  10. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin

    USGS Publications Warehouse

    Liu, M.; Mooney, W.D.; Li, S.; Okaya, N.; Detweiler, S.

    2006-01-01

    The 1000-km-long Darlag-Lanzhou-Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42??km in the Ordos basin to 63??km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4??km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3??km/s are 0.15??km/s lower than the worldwide average of 6.45??km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4??km/s and only 0.5??km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38??km as the crustal thickness increases from

  11. "Fullerene-like" Raman bands in UHP metamorphic diamonds: Metastable intermediate phases for diamond formation

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Igarashi, M.; Hashiguchi, Y.; Ogasawara, Y.

    2011-12-01

    Mysterious Raman bands at 1430-1480 cm-1 suggesting carbon (or carbon-bearing) species have been discovered in UHP metamorphic microdiamonds entirely enclosed in dolomite marble from Kokchetav Massif (Igarashi et al., 2011). Such Raman bands first discovered at some domains in a T-type (see Ishida et al., 2003) diamond in dolomite marble in 2005, but we have not reported this because of the possibility of misidentification by contamination. Later, similar bands were also found in the rim and the core of S-type and R-type. The relative intensities of these Raman bands to diamond (at 1332 cm-1) were 10-40 % in average (max. 90-110 %) and FWHMs are broad (25-45 cm-1). The possibility of the appearance of these Raman bands was low. As we used ordinary polished thin sections (thickness: 25 μm) and the organic materials used in thin section making have Raman bands at ca. 1450 cm-1, we carefully examined observed Raman spectra and the positions of the source materials of these bands to exclude the possibility of contaminations. Examined microdiamond grains are entirely enclosed in the host garnet, and no crack was observed in the host. We conducted 2D Raman mappings at different depths with 2 μm intervals. The result showed that the domains having these Raman bands were located within diamond grains and limited area (1-3 μm). These bands were never detected from outside diamond grains (e.g., host garnet). Thus, the unknown Raman bands at 1430-1480 cm-1 were attributed to some materials inside microdiamonds entirely included in the host garnet. The possibility of contamination was denied. Recently, we found similar Raman bands in the microdiamonds in garnet in Grt-Bt gneiss. Examined microdiamonds are entirely enclosed in garnet grain and no extra phase observed near laser spots in these microdiamond grains under an optical microscope. The Raman bands at 1430-1480 cm-1 were found from 4 microdiamond grains. The peak positions and FWHMs of these bands were as follows: (a

  12. Seismic images of a Grenvillian terrane boundary

    USGS Publications Warehouse

    Milkereit, B.; Forsyth, D. A.; Green, A.G.; Davidson, A.; Hanmer, S.; Hutchinson, Deborah R.; Hinze, W. J.; Mereu, R.F.

    1992-01-01

    A series of gently dipping reflection zones extending to mid-crustal depths is recorded by seismic data from Lakes Ontario and Erie. These prominent reflection zones define a broad complex of southeast-dipping ductile thrust faults in the interior of the Grenville orogen. One major reflection zone provides the first image of a proposed Grenvillian suture—the listric boundary zone between allochthonous terranes of the Central Gneiss and Central Metasedimentary belts. Curvilinear bands of reflections that may represent "ramp folds" and "ramp anticlines" that originally formed in a deep crustal-scale duplex abut several faults. Vertical stacking of some curvilinear features suggests coeval or later out-of-sequence faulting of imbricated and folded thrust sheets. Grenvillian structure reflections are overlain by a thin, wedge-shaped package of shallow-dipping reflections that probably originates from sediments deposited in a local half graben developed during a period of post-Grenville extension. This is the first seismic evidence for such extension in this region, which could have occurred during terminal collapse of the Grenville orogen, or could have marked the beginning of pre-Appalachian continental rifting.

  13. Paleozoic–early Mesozoic gold deposits of the Xinjiang Autonomous Region, northwestern China

    USGS Publications Warehouse

    Rui, Zongyao; Goldfarb, Richard J.; Qiu, Yumin; Zhou, T.; Chen, R.; Pirajno, Franco; Yun, Grace

    2002-01-01

    The late Paleozoic–early Mesozoic tectonic evolution of Xinjiang Autonomous Region, northwestern China provided a favorable geological setting for the formation of lode gold deposits along the sutures between a number of the major Eastern Asia cratonic blocks. These sutures are now represented by the Altay Shan, Tian Shan, and Kunlun Shan ranges, with the former two separated by the Junggar basin and the latter two by the immense Tarim basin. In northernmost Xinjiang, final growth of the Altaid orogen, southward from the Angara craton, is now recorded in the remote mid- to late Paleozoic Altay Shan. Accreted Early to Middle Devonian oceanic rock sequences contain typically small, precious-metal bearing Fe–Cu–Zn VMS deposits (e.g. Ashele). Orogenic gold deposits are widespread along the major Irtysh (e.g. Duyolanasayi, Saidi, Taerde, Kabenbulake, Akexike, Shaerbulake) and Tuergen–Hongshanzui (e.g. Hongshanzui) fault systems, as well as in structurally displaced terrane slivers of the western Junggar (e.g. Hatu) and eastern Junggar areas. Geological and geochronological constraints indicate a generally Late Carboniferous to Early Permian episode of gold deposition, which was coeval with the final stages of Altaid magmatism and large-scale, right-lateral translation along older terrane-bounding faults. The Tian Shan, an exceptionally gold-rich mountain range to the west in the Central Asian republics, is only beginning to be recognized for its gold potential in Xinjiang. In this easternmost part to the range, northerly- and southerly-directed subduction/accretion of early to mid-Paleozoic and mid- to late Paleozoic oceanic terranes, respectively, to the Precambrian Yili block (central Tian Shan) was associated with 400 to 250 Ma arc magmatism and Carboniferous through Early Permian gold-forming hydrothermal events. The more significant resulting deposits in the terranes of the southern Tian Shan include the Sawayaerdun orogenic deposit along the Kyrgyzstan

  14. Evidence for Terrane Accretion, Localized Rifting and Magmatism from the Crustal Velocity Structure of the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Marzen, R. E.; Shillington, D. J.; Lizarralde, D.; Harder, S. H.

    2017-12-01

    The crustal structure in the Southeastern United States records a rich tectonic history, including multiple terrane accretion events, the formation of the supercontinent Pangea, widespread magmatism from the Central Atlantic Magmatic Province (CAMP), and crustal thinning before the breakup of Pangea. We use wide-angle refraction seismic data from Lines 1 and 2 of the SUGAR (SUwannee suture and GeorgiA Rift basin) seismic experiment to constrain crustal structure in order to better understand these tectonic events. The 320 and 420 km lines extend from the northwest to the southeast, crossing the Mesozoic rift basins that record crustal thinning prior to the breakup of Pangea and multiple potential suture zones between accreted terranes. We model crustal P-wave velocity structure with reflection/refraction tomography based on refractions through the sediments, crust and mantle and reflections from the base of the sediments, within the crust and the Moho. To the north on Line 2, we observe high Vp and Vs within the Inner Piedmont and Carolina accreted terranes underlain by a low velocity zone at 5 km depth. These observations are consistent with metamorphosed terranes accreting onto the Laurentian margin along a low velocity region that represents meta-sedimentary rocks and/or an Appalachian detachment. Additionally, differences in the basin structure, lower crustal velocities, and crustal thickness between Lines 1 and 2 reflect varying extension and magmatism between the two Mesozoic rift segments. Line 1 has thicker and more laterally extensive syn-rift sediments and a more pronounced region of crustal thinning. In contrast, syn-rift sediments along Line 2 are thinner and limited to a couple of smaller basins, and the crust of Line 2 gradually thins towards the coast. The thinned crust beneath Line 1 is characterized by high velocities of >7.0 km/s, which we interpret as mafic intrusions related to rifting or CAMP; in contrast, no evidence of elevated lower crustal

  15. Yield of bedrock wells in the Nashoba terrane, central and eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.; Barbaro, Jeffrey R.

    2012-01-01

    The yield of bedrock wells in the fractured-bedrock aquifers of the Nashoba terrane and surrounding area, central and eastern Massachusetts, was investigated with analyses of existing data. Reported well yield was compiled for 7,287 wells from Massachusetts Department of Environmental Protection and U.S. Geological Survey databases. Yield of these wells ranged from 0.04 to 625 gallons per minute. In a comparison with data from 103 supply wells, yield and specific capacity from aquifer tests were well correlated, indicating that reported well yield was a reasonable measure of aquifer characteristics in the study area. Statistically significant relations were determined between well yield and a number of cultural and hydrogeologic factors. Cultural variables included intended water use, well depth, year of construction, and method of yield measurement. Bedrock geology, topography, surficial geology, and proximity to surface waters were statistically significant hydrogeologic factors. Yield of wells was higher in areas of granites, mafic intrusive rocks, and amphibolites than in areas of schists and gneisses or pelitic rocks; higher in valleys and low-slope areas than on hills, ridges, or high slopes; higher in areas overlain by stratified glacial deposits than in areas overlain by till; and higher in close proximity to streams, ponds, and wetlands than at greater distances from these surface-water features. Proximity to mapped faults and to lineaments from aerial photographs also were related to well yield by some measures in three quadrangles in the study area. Although the statistical significance of these relations was high, their predictive power was low, and these relations explained little of the variability in the well-yield data. Similar results were determined from a multivariate regression analysis. Multivariate regression models for the Nashoba terrane and for a three-quadrangle subarea included, as significant variables, many of the cultural and

  16. US Environmental rotection Agency's strategy for ground-water-quality monitoring at hazardous-waste land-disposal facilities located in karst terranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, M.S.

    1988-11-01

    Ground-water monitoring of hazardous-waste land-disposal units by a network of wells is ineffective when located in karstic terranes. The U.S. Environmental Protection Agency (EPA) is currently proposing to modify its current ground-water-quality monitoring requirement of one upgradient well and three downgradient wells for disposal units located in karstic terranes. The convergent nature of subsurface flow to cave streams in karstic terranes requires that effective monitoring wells intercept the cave streams. Wells located around a hazardous-waste disposal unit, but not in the specific cave stream draining the site, are only providing irrelevant data and a false sense of security because themore » water samples from such wells are not necessarily from the hazardous-waste disposal unit. A case study is provided in this paper. EPA is drafting a guidance document that will allow monitoring by wells, only if the up- and down-gradient wells can be demonstrated to be hydraulically connected by means of dye-trace studies. If not, then the monitoring of springs shown to be hydraulically connected to the facility by dye-tracing studies would be required. Monitoring for sinkhole development will also be required to provide advance warning of sinkhole collapse. The investigation and determination of the probability of sinkhole collapse is given special treatment.« less

  17. Confirmation of the southwest continuation of the Cat Square terrane, southern Appalachian Inner Piedmont, with implications for middle Paleozoic collisional orogenesis

    USGS Publications Warehouse

    Huebner, Matthew T.; Hatcher, Robert D.; Merschat, Arthur J.

    2017-01-01

    Detailed geologic mapping, U-Pb zircon geochronology and whole-rock geochemical analyses were conducted to test the hypothesis that the southwestern extent of the Cat Square terrane continues from the northern Inner Piedmont (western Carolinas) into central Georgia. Geologic mapping revealed the Jackson Lake fault, a ∼15 m-thick, steeply dipping sillimanite-grade fault zone that truncates lithologically distinct granitoids and metasedimentary units, and roughly corresponds with a prominent aeromagnetic lineament hypothesized to represent the southern continuation of the terrane-bounding Brindle Creek fault. Results of U-Pb SHRIMP geochronology indicate Late Ordovician to Silurian granitoids (444–439 Ma) occur exclusively northwest of the fault, whereas Devonian (404–371 Ma) granitoids only occur southeast of the fault. The relatively undeformed Indian Springs granodiorite (three individual bodies dated 317–298 Ma) crosscuts the fault and occurs on both sides, which indicates the Jackson Lake fault is a pre-Alleghanian structure. However, detrital zircon signatures from samples southeast of the Jackson Lake fault reveal dominant Grenville provenance, in contrast to Cat Square terrane detrital zircon samples from the northern Inner Piedmont, which include peri-Gondwanan (600–500 Ma) and a prominent Ordovician-Silurian (∼430 Ma) signature. We interpret the rocks southeast of the Jackson Lake fault to represent the southwestern extension of the Cat Square terrane primarily based on the partitioning of granitoid ages and lithologic distinctions similar to the northern Inner Piedmont.Data suggest Cat Square terrane metasedimentary rocks were initially deposited in a remnant ocean basin setting and developed into an accretionary prism in front of the approaching Carolina superterrane, ultimately overridden by it in Late Devonian to Early Mississippian time. Burial to >20 km resulted in migmatization of lower plate rocks, forming an infrastructure beneath the

  18. Accretionary history of the Altai-Mongolian terrane: perspectives from granitic zircon U-Pb and Hf-isotope data

    NASA Astrophysics Data System (ADS)

    Cai, Keda; Sun, Min; Xiao, Wenjiao

    2014-05-01

    The Central Asian Orogenic Belt (CAOB) consists of many tectonic terranes with distinct origin and complicated evolutionary history. Understanding of individual block is crucial to reconstruct the geodynamic history of the gigantic accetionary collage. This study presents zircon U-Pb ages and Hf isotopes for the granitoid rocks in the Russian Altai mountain range (including Gorny Altai, Altai-Mongolian terrane and CTUS suture zone between them), in order to clarify the timing of granitic magmatism, source nature, continental crustal growth and tectonic evolution. Our dating results suggest that granitic magmatism of the Russian Altai mountain range occurred in three major episodes including 445~429 Ma, 410~360 Ma and ~241 Ma. Most of the zircons within the Paleozoic granitoids present comparable positive ɛHf(t) values and Neoproterozoic crustal model ages, which favor the interpretation that the juvenile crustal materials produced in the early stage of CAOB were probably dominant sources for the Paleozoic magmatism in the region. The inference is also supported by widespread occurrence of short-lived juvenile materials including ophiolites, seamount relics and arc assemblages in the north CAOB. Consequently, the Paleozoic massive granitic rocks maybe not represent continental crustal growth at the time when they were emplaced, but rather record reworking of relatively juvenile Proterozoic crustal rocks although mantle-derived mafic magma was possibly involved to sever as heat engine during granitic magma generation. The Early Triassic granitic intrusion may be product in an intra-plate environment, as the case of same type rocks in the adjacent areas. The positive ɛHf(t) values (1.81~7.47) and corresponding Hf model ages (0.80~1.16 Ga) together with evidence of petrology are consistent with the interpretation that the parental magma of the Triassic granitic intrusion was produced from enriched mantle-derived sources under an usually high temperature condition

  19. Zircon U-Pb dating of eclogite from the Qiangtang terrane, north-central Tibet: a case of metamorphic zircon with magmatic geochemical features

    NASA Astrophysics Data System (ADS)

    Zhai, Qing-guo; Jahn, Bor-ming; Li, Xian-hua; Zhang, Ru-yuan; Li, Qiu-li; Yang, Ya-nan; Wang, Jun; Liu, Tong; Hu, Pei-yuan; Tang, Suo-han

    2017-06-01

    Zircon is probably the most important mineral used in the dating formation of high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic rocks. The origin of zircon, i.e., magmatic or metamorphic, is commonly assessed by its external morphology, internal structure, mineral inclusions, Th/U ratios and trace element composition. In this study, we present an unusual case of metamorphic zircon from the Qiangtang eclogite, north-central Tibet. The zircon grains contain numerous eclogite-facies mineral inclusions, including omphacite, phengite, garnet and rutile; hence, they are clearly of metamorphic origin. However, they display features similar to common magmatic zircon, including euhedral crystal habit, high Th/U ratios and enriched heavy rare earth elements pattern. We suggest that these zircon grains formed from a different reservoir from that for garnet where no trace elements was present and trace element equilibrium between zircon and garnet was achieved. U-Pb dating of zircon gave an age of 232-237 Ma for the eclogite, and that of rutile yielded a slightly younger age of ca. 217 Ma. These ages are consistent with the reported Lu-Hf mineral isochron and phengite Ar-Ar ages. The zircon U-Pb and mineral Lu-Hf isochron ages are interpreted as the time of the peak eclogite-facies metamorphism, whereas the rutile U-Pb and phengite Ar-Ar ages represent the time of exhumation to the middle crust. Thus, the distinction between metamorphic and magmatic zircons cannot be made using only Th/U ratios and heavy REE compositions for HP-UHP metamorphic rocks of oceanic derivation.

  20. Regional geophysical expression of a carbonatite terrane in the eastern Mojave Desert, California

    USGS Publications Warehouse

    Ponce, David A.; Denton, Kevin M.; Miller, David M.

    2013-01-01

    A world-class, rare earth element carbonatite deposit is located near Mountain Pass, in the eastern Mojave Desert of California and is hosted by Proterozoic rocks that extend along the eastern margins of the Clark Mountain Range, Mescal Range, and Ivanpah Mountains in a north-northwest trending fault-bounded block. This Proterozoic block is generally composed of a complex of 1.7 - 1.6 Ga gneisses and schists that are intruded by ~1.4 Ga carbonatite and ultrapotassic mafic dikes. In the latter suite, common intrusive rock types include shonkinite, syenite, and alkali granites that are associated with carbonatite dikes. Regional geophysical data reveal that the carbonatite deposit itself occurs along the northeast edge of a prominent magnetic high with an amplitude of 200 nanoteslas, which appears to be related to the surrounding Proterozoic block. More than 340 gravity stations and 155 physical property samples were collected to augment existing geophysical data to determine the geophysical and geologic setting of the eastern Mojave Desert carbonatite terrane. Physical properties of representative rock types in the area show that 23 samples of carbonatite ore have an average saturated bulk density of 2,866 with a range of 2,440 to 3,192 kg/m3 and a magnetic susceptibility of 0.22 with a range of 0.03 to 0.61x 10-3 SI units, 17 samples of syenite have an average saturated bulk density of 2,670 with a range of 2,555 to 2,788 kg/m3 and a magnetic susceptibility of 3.50 with a range of 0.19 to 11.46 x 10-3 SI units, 19 samples of shonkinite dike have an average saturated bulk density of 2,800 with a range of 2,603 to 3,000 kg/m3 and a magnetic susceptibility of 0.71 with a range of 0.00 to 4.44 x 10-3 SI units, and 28 samples of Proterozoic gneiss have an average saturated bulk density of 2,734 with a range of 2,574 to 3,086 kg/m3 and a magnetic susceptibility of 1.23 with a range of 0.01 to 7.48 x 10-3 SI units. In general, carbonatites have distinctive gravity

  1. Proterozoic polymetamorphism in the Quanji Block, northwestern China: Evidence from microtextures, garnet compositions and monazite CHIME ages

    NASA Astrophysics Data System (ADS)

    Wang, Qinyan; Pan, Yuanming; Chen, Nengsong; Li, Xiaoyan; Chen, Haihong

    2009-05-01

    The Quanji Block, situated close to the triple junction of three major Precambrian terranes in China (i.e., the North China Craton, the Yangtze Block and the Tarim Block), is composed of Precambrian metamorphic crystalline basement and an unmetamorphosed Mesozoic-Paleozoic sedimentary cover; it has been interpreted as a remnant continental fragment. Microtextural relationships, garnet trace element compositions, and monazite CHIME ages in paragneisses, schists and granitic leucosomes show two episodes of regional metamorphism in the Quanji Block basement. The first regional metamorphism and accompaning anatexis took place at ˜1.93 Ga; the second regional metamorphism occurred between ˜1.75 and ˜1.71 Ga. Mineral compositions of the first metamorphism, including those of monazite, were significantly disturbed by the second event. These two regional metamorphic episodes were most likely linked to assembly and breakup of the supercontinent Columbia, respectively.

  2. Paleomagnetic study of an active arc-continent collision, Finisterre Arc Terrane, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Weiler, Peter Donald

    1999-12-01

    This dissertation includes 3 studies from the active collision zone between the Finisterre volcanic arc and Papua New Guinea. Chapter 1 is a paleomagnetic study of thrust sheets of the fold and thrust belt north of the Ramu-Markham suture indicating very rapid vertical-axis rotations related to tectonic transport of thrust units. Our data indicate that rotations as great as 90° since 1 Ma have occurred locally in the Erap Valley area. Such rapid rotations during thrust sheet emplacement may be more common in fold and thrust belts than is presently recognized. Anisotropy of magnetic susceptibility (AMS) lineations are rendered parallel by the same rotations used to restore the paleomagnetic remanence to N-S thus independently confirming the rapid rotations. In Chapter 2, we compare the AMS fabrics from the Erap Valley with microscopic shape fabrics obtained through digital image analysis. We find that the orientations of principal axes found by the two techniques agree very well, but that the maximum and intermediate axes of the magnetic fabric are inverted relative to the grain shape. We interpret the shape fabric as a primary depositional fabric, and the magnetic fabric as the result of a weak tectonic strain overprinting a depositional fabric. Thus, comparison of these fabrics detects the earliest transition from depositional to tectonic strain fabric. Finally, in Chapter 3, we turn to larger scale paleomagnetic results from the colliding Finisterre Arc. Hemipelagic rocks possess a syn-collisional remagnetization indicating a clockwise rotation of the colliding terrane through about 40° in post-Miocene time. Decreasing paleomagnetic declination anomalies as a function of along-strike distance in the Finisterre Terrane, analyzed by our preferred model of a linear remagnetization and a migrating Euler pole, suggests an average rotation rate of 8°/Ma. Thus, we propose that the rotation results from a rigid-body rotation of the Finisterre Terrane rather than from

  3. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane

    NASA Astrophysics Data System (ADS)

    Wei, Youqing; Zhao, Zhidan; Niu, Yaoling; Zhu, Di-Cheng; Liu, Dong; Wang, Qing; Hou, Zengqian; Mo, Xuanxue; Wei, Jiuchuan

    2017-05-01

    Understanding the geological history of the Lhasa Terrane prior to the India-Asia collision ( 55 ± 10 Ma) is essential for improved models of syn-collisional and post-collisional processes in the southern Lhasa Terrane. The Miocene ( 18-10 Ma) adakitic magmatism with economically significant porphyry-type mineralization has been interpreted as resulting from partial melting of the Jurassic juvenile crust, but how this juvenile crust was accreted remains poorly known. For this reason, we carried out a detailed study on the volcanic rocks of the Yeba Formation (YF) with the results offering insights into the ways in which the juvenile crust may be accreted in the southern Lhasa Terrane in the Jurassic. The YF volcanic rocks are compositionally bimodal, comprising basalt/basaltic andesite and dacite/rhyolite dated at 183-174 Ma. All these rocks have an arc-like signature with enriched large ion lithophile elements (LILEs; e.g., Rb, Ba and U) and light rare earth elements (LREEs) and depleted high field strength elements (HFSEs; e.g., Nb, Ta, Ti). They also have depleted whole-rock Sr-Nd and zircon Hf isotopic compositions, pointing to significant mantle isotopic contributions. Modeling results of trace elements and isotopes are most consistent with the basalts being derived from a mantle source metasomatized by varying enrichment of subduction components. The silicic volcanic rocks show the characteristics of transitional I-S type granites, and are best interpreted as resulting from re-melting of a mixed source of juvenile amphibole-rich lower crust with reworked crustal materials resembling metagraywackes. Importantly, our results indicate northward Neo-Tethyan seafloor subduction beneath the Lhasa Terrane with the YF volcanism being caused by the initiation of back-arc rifting. The back-arc setting is a likely site for juvenile crustal accretion in the southern Lhasa Terrane.

  4. The Proterozoic Mount Isa Fault Zone, northeastern Australia: is it really a ca. 1.9 Ga terrane-bounding suture?

    NASA Astrophysics Data System (ADS)

    Bierlein, Frank P.; Betts, Peter G.

    2004-09-01

    In marked contrast to Palaeoproterozoic Laurentia, the location of sutures and boundaries of discrete crustal fragments amalgamated during Palaeoproterozoic formation of the North Australian Craton remain highly speculative. Interpretations of suture locations have relied heavily on the analysis of regional geophysical datasets because of sparse exposure of rocks of the appropriate age. The Mount Isa Fault Zone has been interpreted as one such Palaeoproterozoic terrane-bounding suture. Furthermore, the coincidence of this fault zone with major shale-hosted massive sulphide Pb-Zn-Ag orebodies has led to speculations that trans-lithospheric faults may be an important ingredient for the development of this deposit type. This study has integrated geophysical and geochemical data to test the statute of the Mount Isa Fault as a terrane-bounding suture. Forward modelling of gravity data shows that basement rocks on either side of the Mount Isa Fault have similar densities. These interpretations are consistent with geochemical observations and Sm-Nd data that suggest that basement lithologies on either side of the Mount Isa Fault are geochemically and isotopically indistinguishable from each other, and that the Mount Isa Fault is unlikely to represent a suture zone that separates different Palaeoproterozoic terranes. Our data indicate that the crustal blocks on both sides of the Mount Isa Fault Zone must have been in within close proximity of each other since the Palaeoproterozoic, and that the Western Fold Belt was part of the (ancestral) North Australian Craton well before the ˜1.89-1.87 Ga Barramundi Orogeny. It appears that deep crustal variations in density may be related to the boundary between a shallowly west-dipping high-density mafic to ultramafic plate and low-density basement rocks. This interpretation in turn impacts on crustal-scale models for the development of shale-hosted massive sulphide Pb-Zn mineralisation, which do not require trans

  5. Age and origin of the Merrimack terrane, southeastern New England: A detrital zircon U-Pb geochronology study

    NASA Astrophysics Data System (ADS)

    Sorota, Kristin

    Metasedimentary rocks of the Merrimack terrane (MT) originated as a thick cover sequence on Ganderia consisting of sandstones, calcareous sandstones, pelitic rocks and turbidites. In order to investigate the age, provenance and stratigraphic order of these rocks and correlations with adjoining terranes, detrital zircon suites from 7 formations across the MT along a NNE-trending transect from east-central Massachusetts to SE New Hampshire were analyzed by U-Pb LA-ICP-MS methods on 90-140 grains per sample. The youngest detrital zircons in the western units, the Worcester, Oakdale and Paxton Formations, are ca. 438 Ma while those in the Kittery, Eliot and Berwick Formations in the northeast are ca. 426 Ma. The Tower Hill Formation previously interpreted to form the easternmost unit of the MT in MA, has a distinctly different zircon distribution with its youngest zircon population in the Cambrian. All samples except for the Tower Hill Formation have detrital zircon age distributions with significant peaks in the mid-to late Ordovician, similar abundances of early Paleozoic and late Neoproterozoic zircons, significant input from ˜1.0 to ˜1.8 Ga sources and limited Archean grains. The similarities in zircon provenance suggest that all units across the terrane, except for the Tower Hill Formation, belong to a single sequence of rocks, with similar sources and with the units in the NE possibly being somewhat younger than those in east-central Massachusetts. The continuous zircon age distributions observed throughout the Mesoproterozoic and late Paleoproterozoic are consistent with an Amazonian source. All samples, except the Tower Hill Formation, show sedimentary input from both Ganderian and Laurentian sources and suggest that Laurentian input increases as the maximum depositional age decreases.

  6. U.S. EPA'S STRATEGY FOR GROUND WATER QUALITY MONITORING AT HAZARDOUS WASTE LAND DISPOSAL FACILITIES LOCATED IN KARST TERRANES

    EPA Science Inventory

    Ground water monitoring of hazardous waste land disposal units by a network of wells is ineffective when located in karstic terranes. The U.S. Environmental Protection Agency (EPA) is currently proposing to modify its current ground water quality monitoring requirement of one upg...

  7. A crustal model of the ultrahigh-pressure Dabie Shan orogenic belt, China, derived from deep seismic refraction profiling

    USGS Publications Warehouse

    Wang, Chun-Yong; Zeng, Rong-Sheng; Mooney, W.D.; Hacker, B.R.

    2000-01-01

    We present a new crustal cross section through the east-west trending ultrahigh-pressure (UHP) Dabie Shan orogenic belt, east central China, based on a 400-km-long seismic refraction profile. Data from our profile reveal that the cratonal blocks north and south of the orogen are composed of 35-km-thick crust consisting of three layers (upper, middle, and lower crust) with average seismic velocities of 6.0±0.2 km/s, 6.5±0.1 km/s, and 6.8±0.1 km/s. The crust reaches a maximum thickness of 41.5 km beneath the northern margin of the orogen, and thus the present-day root beneath the orogen is only 6.5 km thick. The upper mantle velocity is 8.0±0.1 km/s. Modeling of shear wave data indicate that Poisson's ratio increases from 0.24±0.02 in the upper crust to 0.27±0.03 in the lower crust. This result is consistent with a dominantly felsic upper crustal composition and a mafic lower crustal composition within the amphibolite or granulite metamorphic facies. Our seismic model indicates that eclogite, which is abundant in surface exposures within the orogen, is not a volumetrically significant component in the middle or lower crust. Much of the Triassic structure associated with the formation of the UHP rocks of the Dabie Shan has been obscured by post-Triassic igneous activity, extension and large-offset strike-slip faulting. Nevertheless, we can identify a high-velocity (6.3 km/s) zone in the upper (<5 km depth) crustal core of the orogen which we interpret as a zone of ultrahigh-pressure rocks, a north dipping suture, and an apparent Moho offset that marks a likely active strike-slip fault.

  8. Structure Of The Elevated Precambrian Terranes Rising Above The Brahmaputra Plains In Northeastern India.

    NASA Astrophysics Data System (ADS)

    Gaur, V. K.; Hazarika, N. K.; Mitra, S.; Priestley, K.

    2007-12-01

    We present new evidence for a thinner crust beneath most of the Shillong plateau as well as its northeast extension in Mikir Hills of northeastern India.Both these Precambrian terranes rise above the Brahmaputra plains whose crust is thicker in comparison by atleast 4~km. Although Bouger gravity over the Mikir Hills still remains to be determined, its near zero value over the ~1 km high plateau and the near normal upper mantle beneath the region, require that these elevated terranes must have been uplifted between reversed faults and continue to be supported by them under compression. The southern edge of the Shillong plateau is indeed marked by the prominent Dauki fault which swerves northeastward at the south eastern margin of the plateau to merge with the Naga thrusts that bound the Mikir Hills on the east. A similar fault bounding the plateau on the north as hypothesized by Bilham et al (2000) -the Oldham fault- is therfore required to swerve northeastward near the northeastern margin of the plateau to demarcate the Mikir Hills from the thicker crust Brahmaputra plains to its north and west. This could be explained by a strike slip offset of the Oldham fault caused by the as yet obsure but active tectonics of the NNW trending Kopili lineament that ensues from the inflexion in the Dauki-Naga thrust fault system.

  9. Thermochronology in southeast Alaska and southwest Yukon: Implications for North American Plate response to terrane accretion

    NASA Astrophysics Data System (ADS)

    Enkelmann, Eva; Piestrzeniewicz, Adam; Falkowski, Sarah; Stübner, Konstanze; Ehlers, Todd A.

    2017-01-01

    This study presents the first comprehensive dataset of low-temperature thermochronology from 43 bedrock samples collected north of the active Yakutat-North American plate boundary. Our apatite and zircon (U-Th)/He and fission-track data reveal the cooling history of the inboard Wrangellia Composite Terrane that is dominated by rapid cooling after Late Jurassic to Early Cretaceous arc magmatism followed by very little cooling and exhumation until today. Deformation resulting in rock exhumation due to the collision of the Yakutat microplate is spatially very limited (20-30 km) and is concentrated mainly in the Chugach-Prince William Terrane and rocks near the Border Ranges Fault. Focused exhumation from greater depths of ca. 10 km with very high rates (>5 km/Myr) is localized at the syntaxis region, starting ca. 10 Ma and shifted south through time. The rapid exhumation rates are explained by the development of strong feedbacks between tectonically driven surface uplift and erosion, which started already before glaciation of the area. The shift in the location towards the south is a consequence of continuous readjusting between tectonics and climate, which is changing on local and global scales since the Late Miocene.

  10. Gravity and magnetic survey of the Oaxaca city region: Cenozoic horst-and-graben structure superimposed on the Oaxaca-Juarez terrane boundary, southern Mexico

    NASA Astrophysics Data System (ADS)

    Campos-Enríquez, J. O.; Belmonte-Jiménez, S. I.; Keppie, J. D.; Ortega-Gutiérrez, F.; Arzate, J. A.; Martínez-Silva, J.; Martínez-Serrano, R. G.

    2010-04-01

    A geophysical survey of the Oaxaca Fault along the north-trending Etla and Zaachila valleys area, southern Mexico, shows a series of NNW-SSE Bouguer and magnetic anomalies with steeper gradients towards the east. The Oaxaca Fault represents Tertiary extensional reactivation of the Juarez shear zone that constitutes the boundary between the Oaxaca and Juárez terranes. Cooperative interpretation of six combined gravity and magnetic NE-SW profiles perpendicular to the valleys indicates the presence of a composite depression comprising three N-S sub-basins: the northern Etla and southern Zaachila sub-basins separated by the Atzompa sub-basin. The Etla sub-basin is bounded by the moderately E-dipping, Etla Fault and the more steeply W-dipping Oaxaca Fault, which together constitute a graben that continues southwards into the Atzompa graben. The deeper Zaachila sub-basin, south of Oaxaca city, is a wide V-shaped graben with a horst in the middle. The new geophysical data suggest that the Oaxaca-Juarez terrane boundary is displaced sinistrally ca. 20 km along the E-W Donají Fault, which defines the northern boundary of the Zaachila sub-basin. On the other hand, the Oaxaca Fault may either continue unbroken southwards along the western margin of the horst in the Zaachila sub-basin or be offset along with the terrane boundary. The sinistral movement may have taken place either during the Late Mesozoic-Early Cenozoic, Laramide Orogeny as a lateral ramp in the thrust plane or under Miocene-Pliocene, NE-SW extension. The former suggests that the Donají Fault is a transcurrent fault, whereas the latter implies that it is a transfer fault. The models imply that originally the suture was continuous south of the Donaji Fault and provide a constraint for the accretion of the Oaxaca and Juarez terranes.

  11. Geophysical interpretation of the gneiss terrane of northern Washington and southern British Columbia, and its implications for uranium exploration

    USGS Publications Warehouse

    Cady, John W.; Fox, Kenneth F.

    1984-01-01

    The Omineca crystalline belt of northeastern Washington and southern British Columbia has a regional Bouguer gravity high, and individual gneiss domes within the terrane are marked by local gravity highs. Models of crustal structure that satisfy the limited available seismic-refraction data and explain the gravity high over the gneiss terrane permit the hypothesis that the core metamorphic complexes are the surface expression of a zone of dense infrastructure that makes up the upper 20 km (kilometers) of the crust within the crystalline belt. The Omineca crystalline belt is characterized regionally by low aeromagnetic relief. The gneiss domes and biotite- and biotite-muscovite granites are generally marked by low magnetic relief, whereas hornblende-biotite granites often cause magnetic highs. Exceptional magnetic highs mark zones of magnetic rock within the biotite- and biotite-muscovite granites and the gneiss domes; these areas are worthy of study, both to determine the origin and disposition of the magnetite and to explore the possible existence of uraniferous magnetite deposits.

  12. Preliminary evaluation of the petroleum potential of the Tertiary accretionary terrane, west side of the Olympic Peninsula, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    Convergence between the Pacific and North American plates during late Eocene and late middle Miocene times produced two principal terranes of melange and broken formation (Eocene, Ozette Melange and Miocene, Hoh Melange) exposed onshore along the west side of the Olympic Peninsula. Organic geochemical analyses of 150 samples collected from these two accretionary terranes indicate that they are marginally mature and have a low content of type III organic matter, therefore, they are gas prone rather than oil prone. Geochemical analyses, using molecular markers, indicate that the oil in the Sunshine Mining Co. Medina No. 1 is related to oilmore » extracted from middle Eocene siltstone of the Ozette Melange located as much as 140 km north of the well. The stable carbon and hydrogen isotopic abundance of methane in natural gas seeps and gas in the melange along the west side of the Olympic Peninsula indicate that the gas is mainly thermogenic; however, the relation between these two sources of gas is uncertain.« less

  13. Preferential rifting of continents - A source of displaced terranes

    NASA Technical Reports Server (NTRS)

    Vink, G. E.; Morgan, W. J.; Zhao, W.-L.

    1984-01-01

    Lithospheric rifting, while prevalent in the continents, rarely occurs in oceanic regions. To explain this preferential rifting of continents, the total strength of different lithospheres is compared by integrating the limits of lithospheric stress with depth. Comparisons of total strength indicate that continental lithosphere is weaker than oceanic lithosphere by about a factor of three. Also, a thickened crust can halve the total strength of normal continental lithosphere. Because the weakest area acts as a stress guide, any rifting close to an ocean-continent boundary would prefer a continental pathway. This results in the formation of small continental fragments or microplates that, once accreted back to a continent during subduction, are seen as displaced terranes. In addition, the large crustal thicknesses associated with suture zones would make such areas likely locations for future rifting episodes. This results in the tendency of new oceans to open along the suture where a former ocean had closed.

  14. Integrated in situ U-Pb Age and Hf-O Analyses of Zircon from the Northern Yangtze Block: New Insights into the Neoproterozoic Low-δ18O Magmas in the South China Block

    NASA Astrophysics Data System (ADS)

    Yang, Y. N.; Wang, X. C.; Li, Q. L.; Li, X. H.

    2015-12-01

    The oxygen isotopic composition of Neoproterozoic magmas from the northern Yangtze Block holds a key for the origin of large-scale 18O depletion in the HP and UHP metamorphic rocks in the Dabie-Sulu orogenic belt, northern margin of the South China Block. We report here the integrated in situ U-Pb dating and O-Hf isotope analyses of zircon grains from sedimentary and volcanic rocks of the late Neoproterozoic Suixian Group (SG) from the northern Yangtze Block. Detrital zircon grains display age peaks of 0.73-0.74 Ga, 0.79 Ga, and 2.0 Ga. Zircon U-Pb ages together with Hf-O isotopic composition indicate provenance of SG dominantly from proximal Neoproterozoic igneous rock and likely hidden Paleoproterozoic basement along the northern margin of the Yangtze Block. The zircon δ18O values from SG range from 10.5‰ to 1.3‰. Zircon grains with negative δ18O value, typical result of magma-ice interaction, were not identified in this study. The major phase of low-δ18O (< 4‰) magmas initiated at ca. 780 Ma, long before the first glaciation event (< 715 Ma) in the South China Block. Thus caution should be taken when using low-δ18O zircon grains to infer cold climate. Low-δ18O zircon grains have large ranges of ɛHf(t) values, varying from -15.5 to 10.7, concentrating on negative ɛHf(t). This strongly argues against the possibility that the low-δ18O magma was produced by partial melting of high-temperature hydrothermally altered oceanic crust because this model predicted MORB-like Hf isotopes for the resultant low-δ18O magmas. This study emphasizes that high-T water-rock interaction and continental rifting tectonic setting are essential to generate abundant low-δ18O magmas. The important application of our study is to confirm that most of negative-δ18O zircons identified in HP and UHP metamorphic rocks may not have been inherited from their Neoproterozoic protoliths.

  15. Shallow magnetic inclinations in the Cretaceous Valle Group, Baja California: remagnetization, compaction, or terrane translation?

    NASA Astrophysics Data System (ADS)

    Smith, Douglas P.; Busby, Cathy J.

    1993-10-01

    Paleomagnetic data from Albian to Turonian sedimentary rocks on Cedros Island, Mexico (28.2° N, 115.2° W) support the interpretation that Cretaceous rocks of western Baja California have moved farther northward than the 3° of latitude assignable to Neogene oblique rifting in the Gulf of California. Averaged Cretaceous paleomagnetic results from Cedros Island support 20 ± 10° of northward displacement and 14 ± 7° of clockwise rotation with respect to cratonic North America. Positive field stability tests from the Vizcaino terrane substantiate a mid-Cretaceous age for the high-temperature characteristic remanent magnetization in mid-Cretaceous strata. Therefore coincidence of characteristic magnetization directions and the expected Quaternary axial dipole direction is not due to post mid-Cretaceous remagnetization. A slump test performed on internally coherent, intrabasinal slump blocks within a paleontologically dated olistostrome demonstrates a mid-Cretaceous age of magnetization in the Valle Group. The in situ high-temperature natural remanent magnetization directions markedly diverge from the expected Quaternary axial dipole, indicating that the characteristic, high-temperature magnetization was acquired prior to intrabasinal slumping. Early acquisition of the characteristic magnetization is also supported by a regional attitude test involving three localities in coherent mid-Cretaceous Valle Group strata. Paleomagnetic inclinations in mudstone are not different from those in sandstone, indicating that burial compaction did not bias the results toward shallow inclinations in the Vizcaino terrane.

  16. GPR Imaging of Fault Related Folds in a Gold-Bearing Metasedimentary Sequence, Carolina Terrane, Southern Appalachian Mountains

    NASA Astrophysics Data System (ADS)

    Diemer, J. A.; Bobyarchick, A. R.

    2015-12-01

    The Carolina terrane comprises Ediacaran to earliest Paleozoic mixed magmatic and sedimentary assemblages in the central and eastern Piedmont of the Southern Appalachian Mountains. The terrane was primarily deformed during the Late Ordovician Cherokee orogeny, that reached greenschist facies metamorphism. The Albemarle arc, a younger component of the Carolina terrane, contains volcanogenic metasedimentary rocks with intercalated mainly rhyolitic volcanic rocks. Regional inclined to overturned folds with axial planar cleavage verge southeast. At mesoscopic scales (exposures of a few square meters), folds sympathetic with regional folds are attenuated or truncated by ductile shear zones or contractional faults. Shear and fault zones are most abundant near highly silicified strataform zones in metagraywacke of the Tillery Formation; these zones are also auriferous. GPR profiles were collected across strike of two silicified, gold-bearing zones and enclosing metagraywacke to characterize the scale and extent of folding in the vicinity of ore horizons. Several GSSI SIR-3000 / 100 MHz monostatic GPR profiles were collected in profiles up to 260 meters long. In pre-migration lines processed for time zero and background removal, several clusters of shallow, rolling sigmoidal reflectors appeared separated by sets of parallel, northwest-dipping reflective discontinuities. These features are inferred to be reverse faults carrying contractional folds. After migration with an average velocity of 0.105 m/ns, vertical heights of the inferred folds became attenuated but not removed, and contractional fault reflections remained prominent. After migration, a highly convex-up cluster of reflections initially assumed to be a fold culmination resolved to an elliptical patch of high amplitudes. The patch is likely an undisclosed shaft or covered trench left by earlier gold prospecting. In this survey, useful detail appeared to a depth of 7.5 meters, and only a few gently inclined

  17. Intraplate deformation on north-dipping basement structures in the Northern Gawler Craton, Australia: reactivation of original terrane boundaries or later intra-cratonic thrusts?

    NASA Astrophysics Data System (ADS)

    Baines, G.; Giles, D.; Betts, P. G.; Backé, G.

    2007-12-01

    Multiple intraplate orogenic events have deformed Neoproterozoic to Carboniferous sedimentary sequences that cover the Archean to Mesoproterozoic basement of the northern Gawler Craton, Australia. These intraplate orogenies reactivated north-dipping basement penetrating faults that are imaged on seismic reflection profiles. These north-dipping structures pre-date Neoproterozoic deposition but their relationships to significant linear magnetic and gravity anomalies that delineate unexposed Archean to Early Mesoproterozoic basement terranes are unclear. The north-dipping structures are either terrane boundaries that formed during continental amalgamation or later faults, which formed during a mid- to late-Mesoproterozoic transpressional orogeny and cross-cut the original lithological terrane boundaries. We model magnetic and gravity data to determine the 3D structure of the unexposed basement of the northern Gawler Craton. These models are constrained by drill hole and surface observations, seismic reflection profiles and petrophysical data, such that geologically reasonable models that can satisfy the data are limited. The basement structures revealed by this modelling approach constrain the origin and significance of the north-dipping structures that were active during the later intraplate Petermann, Delamerian and Alice Springs Orogenies. These results have bearing on which structures are likely to be active during present-day intraplate deformation in other areas, including, for example, current seismic activity along similar basement structures in the Adelaide "Geosyncline".

  18. Cyclic formation and stabilization of Archean lithosphere by accretionary orogenesis: Constraints from TTG and potassic granitoids, North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Cawood, Peter A.; Liu, Shuwen; Guo, Rongrong; Bai, Xiang; Wang, Kang

    2017-09-01

    Accretionary orogens are major sites of modern continental growth, yet their role in the development of Archean continental crust remains enigmatic. Diverse granitoid suites from tonalite-trondhjemite-granodiorite (TTG) to potassic granitoids appeared during late Archean, representing a period of major continental formation and stabilization. In this study, whole-rock geochemical and zircon U-Pb and Lu-Hf isotopic data are reported for Neoarchean granitoid gneisses from the Northern Liaoning Terrane, northeastern North China Craton (NCC). Older granitoid gneisses ( 2592-2537 Ma) define three magmatic zones migrating from southeast to northwest, each showing a common magmatic evolution from high-pressure TTGs to medium-/low-pressure TTGs and potassic granitoids. They have depleted zircon ƐHf(t) of +0.5 to +8.7. Younger 2529-2503 Ma potassic granitoids and TTGs occur throughout the terrane, which are marked by variable zircon ƐHf(t) of -4.7 to +8.1, and are coeval with regional high-grade metamorphism. Petrogenetic modeling and changing Sr/Y and (La/Yb)N of the granitoids suggest that the crust experienced episodic thickening and thinning and became progressively evolved through development of potassic granitoids and sedimentary successions. The metavolcanic basement to the granitoids display tholeiitic to calc-alkaline affinities, together with the top-to-the-northwest thrusting and associated volcanogenic massive sulfide-type Cu-Zn deposits, suggesting cyclic crustal formation of Northern Liaoning within an accretionary orogen with a SE-dipping subduction polarity. Cyclic crustal thickening and thinning is related to tectonic switching from advancing to retreating relations between the downgoing and overriding plate. After 2530 Ma, this accretionary system accreted to the ancient continental nucleus of NCC (Anshan-Benxi Terrane), signifying final lithosphere stabilization.

  19. Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Fu; Liu, Zhi-Bin; Chen, Qi

    2017-09-01

    Syn-collisional and postcollisional granitoids are common in collisional orogens, and they were primarily produced by partial melting of subducted continental crust. This is exemplified by Mesozoic granitoids from the Dabie-Sulu orogenic belt in east-central China. These granitoids were emplaced in small volumes in the Late Triassic (200-206 Ma) and the Late Jurassic (146-167 Ma) but massively in the Early Cretaceous (111-143 Ma). Nevertheless, all of them exhibit arc-like trace element distribution patterns and are enriched in Sr-Nd-Hf isotope compositions, indicating their origination from the ancient continental crust. They commonly contain relict zircons with Neoproterozoic and Triassic U-Pb ages, respectively, consistent with the protolith and metamorphic ages for ultrahigh-pressure (UHP) metaigneous rocks in the Dabie-Sulu orogenic belt. Some granitoids show low zircon δ18O values, and SIMS in-situ O isotope analysis reveals that the relict zircons with Neoproterozoic and Triassic U-Pb ages also commonly exhibit low δ18O values. Neoproterozoic U-Pb ages and low δ18O values are the two diagnostic features that distinguish the subducted South China Block from the obducted North China Block. Thus, the magma source of these Mesozoic granitoids has a genetic link to the subducted continental crust of the South China Block. On the other hand, these granitoids contain relict zircons with Paleoproterozoic and Archean U-Pb ages, which are present in both the South and North China Blocks. Taken together, the Mesozoic granitoids in the Dabie-Sulu orogenic belt and its hanging wall have their magma sources that are predominated by the continental crust of the South China Block with minor contributions from the continental crust of the North China Block. The Triassic continental collision between the South and North China Blocks brought the continental crust into the thickened orogen, where they underwent the three episodes of partial melting in the Late Triassic, Late

  20. Contrasting styles of sedimentation and deformation in the Chugach Terrane accretionary complex, south-central Alaska

    NASA Astrophysics Data System (ADS)

    Amato, J. M.; Pavlis, T. L.; Worthman, C.; Kochelek, E.; Day, E. M.; Clift, P. D.; Hecker, J.

    2011-12-01

    In southeast Alaska the Chugach terrane represents an accretionary complex associated with several arcs active at 200-65 Ma. This lithostratigraphic unit consists of blueschists with Early Jurassic metamorphic ages and uncertain depositional ages; the Jurassic-Cretaceous McHugh Complex; and the Late Cretaceous Valdez Group. Detrital zircon ages from densely sampled transects reveals patterns in the assembly of the complex. Blueschists are almost totally barren of zircon, suggesting protoliths derived from mafic-intermediate volcanic protoliths far from a continental source. There is an age gap between the blueschists and the McHugh complex interpreted to be caused by an episode of tectonic erosion. The McHugh Complex is two separate units that are lithologically and geochronologically distinct. The older McHugh is a melange is dominated by stratally disrupted volcanic rocks, chert, and argillite. The oldest McHugh rocks have maximum depositional ages (MDA) of 177-150 Ma at Seldovia and 157-145 Ma at Turnagain Arm; the lack of older rocks at Turnagain Arm suggests removal of structural section by faulting. The MDAs of the older McHugh rocks do not decrease progressively away from the arc. There is a 45 m.y. gap in MDA between the older McHugh and the Late Cretaceous McHugh rocks. The younger McHugh rocks are dominated by volcanogenic sandstone and coarse conglomerate and MDA decreases from 100 Ma near the boundary with the older McHugh mesomelange to 85 Ma near the Valdez Group. The Valdez Group consists of coherently bedded turbidites with a MDA range of 85-60 Ma that decreases progressively outboard of the arc source. A sample from the Orca Group of the Prince William terrane is lithologically similar to the Valdez Group and there is no gap in MDA between Valdez and Orca Groups. 55 Ma dikes cut the McHugh and Valdez Groups in the western Chugach and Kenai Mountains. The oldest units of the Chugach terrane are the most deformed, with deformation and metamorphism

  1. Petrogenesis and tectonic implications of the Neoarchean North Liaoning tonalitic-trondhjemitic gneisses of the North China Craton, North China

    NASA Astrophysics Data System (ADS)

    Wang, Maojiang; Liu, Shuwen; Wang, Wei; Wang, Kang; Yan, Ming; Guo, Boran; Bai, Xiang; Guo, Rongrong

    2016-12-01

    Tonalitic-trondhjemitic-granodioritic (TTG) gneisses are dominant lithological assemblages in Archean high grade metamorphic terranes in the world. These TTG gneisses preserve important information in formation and evolution of Archean continental crust. Tangtu-Majuanzi microblock in North Liaoning Province (NLP) is one of the major Neoarchean metamorphic basement terranes in the northeastern margin of the North China Craton (NCC). The Tangtu-Majuanzi microblock is composed mainly of Neoarchean tonalitic-trondhjemitic (TT) gneisses, subordinate granodioritic to monzogranitic association (GMA) and minor supracrustal rocks. The tonalitic-trondhjemitic gneisses are divided into high MgO Group (HMG) and low MgO Group (LMG) based on their chemical compositions. Detailed petrogenetic investigations suggest that the magmatic precursors of the HMG samples were derived from partial melting of subducted slabs and contaminated by the overlying mantle wedge during its ascent; whereas, magmatic precursors of the LMG samples were derived from the juvenile lower crust. LA-ICPMS zircon U-Pb isotopic dating analyses reveal that the magmatic precursors of the HMG samples were formed at 2553-2531 Ma. An older HMG tonalitic gneiss sample was discovered at Sandaoguan in the southmost of the studied area, with its magmatic precursor emplaced at 2680 Ma. The magmatic precursors of the LMG samples emplaced at 2595-2583 Ma. Combined with previous credible chronological data, our newly obtained zircon U-Pb dating and Lu-Hf isotopic data indicate that three episodes of magmatism at ∼2700-2680 Ma, ∼2600-2570 Ma and ∼2550-2510 Ma occurred in the Tangtu-Majuanzi microblock, and the TT gneisses in this microblock were subjected to generally amphibolite-facies metamorphism at ∼2520-2470 Ma. Based on the above Neoarchean crust-mantle thermal-dynamic processes, we propose that the Neoarchean magmatism and metamorphism in the Tangtu-Majuanzi microblock of North Liaoning Province occurred in

  2. Early Jurassic Volcanism in the South Lhasa Terrane, Southern Tibet: Record of Back-arc Extension in the Active Continental Margin

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Zhao, Z.; Zhu, D. C.; Wang, Z.; Liu, D.; Mo, X.

    2015-12-01

    Indus-Yarlung Zangbo Suture Zone (IYZSZ) represents the Mesozoic remnants of the Neo-Tethyan Ocean lithosphere after its northward subduction beneath the Lhasa Terrane. The evolution of the Neo-Tethyan Ocean prior to India-Asia collision remains unclear. To explore this period of history, we investigate zircon U-Pb geochronology, geochemistry and Nd-Hf isotopes of the Early Jurassic bimodal-like volcanic sequence around Dagze area, south Tibet. The volcanic sequence comprises calc-alkaline basalts to rhyolites whereas intermediate components are volumetrically restricted. Zircons from a basaltic andesite yielded crystallization age of 178Ma whereas those from 5 silicic rocks were dated at 183-174Ma, which suggest that both the basaltic and the silicic rocks are coeval. The basaltic rocks are enriched in LREE and LILE, and depleted in HFSE, with Epsilon Nd(t) of 1.6-4.0 and zircon Epsilon Hf(t) of 0.7-11.8, which implies that they were derived from a heterogenetic mantle source metasomatized by subduction components. Trace element geochemistry shows that the basaltic rocks are compositionally transitional from normal mid-ocean ridge basalts (N-MORB) to island arc basalts (IAB, e.g. Zedong arc basalts of ~160-155Ma in the south margin of Lhasa Terrane), with the signature of immature back-arc basin basalts. The silicic rocks display similar Nd-Hf isotopic features of the Gangdese batholith with Epsilon Nd(t) of 0.9-3.4 and zircon Epsilon Hf(t) of 2.4-17.7, indicating that they were possibly generated by anatexis of basaltic juvenile lower crust, instead of derived from the basaltic magma. These results support an Early to Middle Jurassic (183-155Ma) model that the back-arc extension tectonic setting were existing in the active continental margin in the south Lhasa Terrane.

  3. Contingency table analysis of pebble lithology and roundness: A case study of Huangshui River, China and comparison to rivers in the Rocky Mountains, USA

    USGS Publications Warehouse

    Miao, X.; Lindsey, D.A.; Lai, Z.; Liu, Xiuying

    2010-01-01

    Contingency table analysis of pebble lithology and roundness is an effective way to identify the source terrane of a drainage basin and to distinguish changes in basin size, piracy, tectonism, and other events. First, the analysis to terrace gravel deposited by the Huangshui River, northeastern Tibet Plateau, China, shows statistically contrasting pebble populations for the oldest terrace (T7, Dadongling, 1.2. Ma) and the youngest terraces (T0-T3, ?. 0.15. Ma). Two fluvial processes are considered to explain the contrast in correlation between lithology and roundness in T7 gravel versus T0-T3 gravel: 1) reworking of T7 gravel into T0-T3 gravel and 2) growth in the size of the river basin between T7 and T0-T3 times. We favor growth in basin size as the dominant process, from comparison of pebble counts and contingency tables. Second, comparison of results from Huangshui River of China to three piedmont streams of the Rocky Mountains, USA highlights major differences in source terrane and history. Like Rocky Mountain piedmont gravel from Colorado examples, the Huangshui gravels show a preference (observed versus expected frequency) for rounded granite. But unlike Rocky Mountain gravel, Huangshui gravel shows a preference for angular quartzite and for rounded sandstone. In conclusion, contrasting behavior of lithologies during transport, not always apparent in raw pebble counts, is readily analyzed using contingency tables to identify the provenance of individual lithologies, including recycled clasts. Results of the analysis may help unravel river history, including changes in basin size and lithology. ?? 2009.

  4. Cenozoic extensional tectonics of the Western Anatolia Extended Terrane, Turkey

    NASA Astrophysics Data System (ADS)

    Çemen, I.; Catlos, E. J.; Gogus, O.; Diniz, E.; Hancer, M.

    2008-07-01

    The Western Anatolia Extended Terrane in Turkey is located on the eastern side of the Aegean Extended Terrane and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene during the formation of the Izmir-Ankara-Erzincan suture zone. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal-slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the Central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alaşehir and the south-dipping Büyük Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alaşehir, Büyük Menderes, and Simav grabens, containing high

  5. Palaeomagnetism of Precambrian dyke swarms in the North China Shield: The ˜1.8 Ga LIP event and crustal consolidation in late Palaeoproterozoic times

    NASA Astrophysics Data System (ADS)

    Piper, John D. A.; Jiasheng, Zhang; Huang, Baochung; Roberts, Andrew P.

    2011-06-01

    The North China Shield (NCS) is cut by a laterally-extensive dyke swarm emplaced at 1.78-1.76 Ga when an extensional regime succeeded regional metamorphism and completion of cratonisation by ˜1.85 Ga. Palaeomagnetic study of these dykes and adjoining metamorphic country rocks identifies a dominant shallow axis comprising a contiguous population with NE to N declinations and rare opposite polarity. Dykes with NE shallow magnetic declination (A1, D/ I = 36/-1°) recognised from previous study and emplaced in granulite terranes in the north are displaced by more northerly declinations (A2, D/ I = 8/2°) in lower grade metamorphic terranes to the south. Contact tests indicate a primary cooling-related origin to these magnetisations although tests are in part ambiguous because magnetisations in the granulite basement are comparable. Petrologic and rock magnetic considerations imply that magnetisation of the dykes occurred during uplift from depths as deep as 20 km following the peak of metamorphism at ˜1.85 Ga. A temporal migration A2 → A1 is implied by the higher crustal level and earlier acquisition of the former, and the deeper source and later acquisition of the latter. A third population of dyke magnetisations (A3, D/ I = 18/43°) is distributed towards steeper inclinations and close to the Mesozoic-Recent palaeofield. These are either partial or complete overprints of A1-A2 magnetisations with greater degrees of alteration indicated by demagnetisation and thermomagenetic spectra, or are much younger dykes of Mesozoic-Tertiary age. A minority fourth (later Precambrian but presently undated) dual polarity population has a magnetisation (11 dykes, D/ I = 108/7°) with contact tests indicating a primary cooling-related origin. The ˜1.78-1.76 Ga time of emplacement of the dominant dyke swarms in this study is widely represented by contemporaneous igneous rocks in other major shields linked to major Large Igneous Province (LIP)-related events. The new definition of

  6. Effects of silicate weathering on water chemistry in forested, upland, felsic terrane of the USA

    NASA Astrophysics Data System (ADS)

    Stauffer, Robert E.; Wittchen, Bruce D.

    1991-11-01

    We use data from the US EPA National Surface Water Survey (NSWS), the USGS Bench-Mark Station monitoring program, and the National Acid Deposition Program (NADP) to evaluate the role of weathering in supplying base cations to surface waters in forested, upland, felsic terrane of the northeastern, northcentral, and northwestern (Idaho batholith) United States. Multivariate regression reveals differential effects of discharge on individual base cations and silica, but no secular trend in the Ca/Na denudation rate over 24 yr (1965-1988) for the Wild River catchment in the White Mountains. Because the turn-over time for Na in the soil-exchange complex is only ca. 1.5 yr, the long-term behavior of the ratios Ca/Na and Si/Na in waters leaving this catchment indicates that weathering is compensating for base cation export. In every subregion, Ca and Mg concentrations in lakes are statistically linked to nonmarine Na, but the median Ca/Na ratio is greater than the ratio in local plagioclase. We attribute this inequality to nonstoichiometric weathering of calcium in juvenile (formerly glaciated) terrane, not to leaching of exchangeable cations by SO 4, because intraregional and cross-regional statistical analysis reveals no effect of atmospherically derived sulfate ion. The median base cation denudation rates (meq m -2 yr -1) for these American lake regions are: Maine granites (108); western Adirondack felsic gneiss (85); Vermilion batholith (42); Idaho batholith (52). The regional rates are high enough to compensate for present wet deposition of acidifying anions except in some vulnerable lake watersheds in the western Adirondacks.

  7. Syn-convergence extension in the southern Lhasa terrane: Evidence from late Cretaceous adakitic granodiorite and coeval gabbroic-dioritic dykes

    NASA Astrophysics Data System (ADS)

    Ma, Xuxuan; Xu, Zhiqin; Meert, Joseph G.

    2017-10-01

    Late Cretaceous (∼100-80 Ma) magmatism in the Gangdese magmatic belt plays a pivotal role in understanding the evolutionary history and tectonic regime of the southern Lhasa terrane. The geodynamic process for the formation of the early Late Cretaceous magmatism has long been an issue of hot debates. Here, petrology, geochronology and geochemistry of early Late Cretaceous granodiorite and coeval gabbroic-dioritic dykes in the Caina region, southern Lhasa, were investigated in an effort to ascertain their petrogenesis, age of intrusion, magma mixing and tectonic setting. Zircon U-Pb dating of granodiorite yields 206Pb/238U ages of 85.8 ± 1.7 and 86.4 ± 1.1 Ma, whilst that of the E-W trending dykes yields ages of 82.7 ± 2.6 and 83.5 ± 3.5 Ma. Within error, the crystallization ages of the dykes and the granodiorite are indistinguishable. Field observations and mineralogical microstructures are suggestive of a magma mixing process during the formation of the dykes and the granodiorite. The granodiorite exhibits geochemical features that are in agreement with those of subduction-related high-SiO2 adakites. The granodiorite and dykes have relatively constant εNd(t) values of +2.2 to +4.9 and initial 87Sr/86Sr ratios (0.7045-0.7047). These similar characteristics are herein interpreted as an evolutionary series from the dykes to granodiorite, consistent with magma mixing process. Ti-in-zircon thermometer and Al-in-hornblende barometer indicate that the granodiorite and the dioritic dyke crystallized at temperatures of ca. 750 and 800 °C, depths of ca. 6-10 and 5-9 km, respectively. Taking into account the synchronous magmatic rocks in the Gangdese Belt and the coeval rifted basin within the Lhasa terrane, the granodiorite and dykes reveal an early Late Cretaceous syn-convergence extensional regime in the southern Lhasa terrane, triggered by slab rollback of the Neotethyan oceanic lithosphere.

  8. Fate of Subducting Organic Carbon: Evidence from HP/UHP Metasedimentary Suites

    NASA Astrophysics Data System (ADS)

    Kraft, K.; Bebout, G. E.

    2017-12-01

    Community interest in deep-Earth C cycling has focused attention on extents of C release from subducting oceanic lithosphere and sediment and the fate of this released C. Many have suggested that, based on isotopic and other arguments, 20% of the C subducted into the deeper mantle is in reduced form (organic); however, individual margins show large variation in carbonate to organic C ratios. Despite the size of the potentially deeply subducted organic C reservoir, its fate in subducting sections remains largely unexplored, with most attention paid to release of carbonate C. To characterize the forearc behavior of organic C, metamorphosed to P-T as high as that beneath volcanic fronts, we evaluated records of reduced C (RC) contents and isotope compositions in HP/UHP metasediments: 1) Schistes Lustres/Cignana (SLC) suite (Alps; Cook-Kollars et al., 2014, Chem Geol) with abundant carbonate and resembling sediment entering the East Sunda trench; and (2) Franciscan Complex (FC), W. Baja Terrain (WBT), Catalina Schist (CS) metasediments (Sadofsky and Bebout, 2003, G3), largely sandstone-shale sequences containing very little carbonate. In general, more Al-rich samples (shaley) in the terrigenous metasedimentary suites have higher concentrations of RC, which in low-grade units preserves δ13C of its organic protoliths. Carbonate-poor rocks in the SLC suite, and at ODP Site 765, show correlated major element (Al, Mg, Mn, Ti, P) and RC contents (up to 1.2 wt.%) reflecting sandstone-shale mixture. In the FC, WBT, and CS, the more Al-rich samples contain up to 2 wt. % RC. In high-grade Catalina Schist, RC has elevated δ13C due to C loss in CH4 and high-grade Alps rocks show reduced RC wt. % normalized to Al content. We consider processes that could alter contents and isotopic compositions of RC in sediment, e.g., devolatilization, closed-system exchange with carbonate, redox reactions, isotopic exchange with C in externally-derived fluids. It appears that, on modern Earth

  9. Evidence for pre-Taconic metamorphism in the Potomac terrane, Maryland and Virginia: Hornblende and Muscovite [sup 40]Ar/[sup 39]Ar results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, J.L.; Wintsch, R.P.; Kunk, M.J.

    1993-03-01

    New [sup 40]Ar/[sup 39]Ar age spectra of hornblende and white mica from the Great Falls area of the Potomac terrane of Maryland and Virginia indicate pre-Taconic metamorphism. Age spectra of hornblende samples are interpreted to represent cooling from peak metamorphic conditions through their closure temperatures for argon diffusion ([approximately]500C) at about 490 Ma. These older Ordovician postmetamorphic cooling ages strongly contrast with younger post-Ordovician metamorphic cooling ages now being reported in the Blue Ridge and Goochland terranes to the west and east respectively. A late phyllitic sheen observed on rocks in the field and petrographic observations of undulose plagioclase andmore » amphibole, and older muscovite, and kinked primary muscovite in the Bear Island Granodiorite reflect a younger retrogressive metamorphism involving the growth of secondary muscovite (Fisher's S4 ). [sup 40]Ar/[sup 39]Ar Age spectra of white micas from the Bear Island Granodiorite are complex and probably indicate both primary and secondary white mica, the latter apparently growing below the closure temperature for retention of argon in muscovite ([approximately]350C). The age spectra permit an estimate of a minimum age of 420 Ma for cooling through closure of the older generation of white mica. The above ages of hornblende and muscovite closure imply a minimum cooling rate of [approximately]2C/m.y., and exhumation rate of about 1 mm/yr. The projected time of peak metamorphism at upper amphibolite facies for the Great Falls area clearly predates the Ordovician Taconic orogeny and suggests that these rocks escaped this event and largely escaped younger Paleozoic metamorphic events, which are well documented in adjacent terranes.« less

  10. Sedimentology of Hirnantian glaciomarine deposits in the Balkan Terrane, western Bulgaria: Fixing a piece of the north peri-Gondwana jigsaw puzzle

    NASA Astrophysics Data System (ADS)

    Chatalov, Athanas

    2017-04-01

    Glaciomarine deposits of late Hirnantian age in the western part of the Palaeozoic Balkan Terrane have persistent thickness ( 7 m) and lateral uniformity in rock colour, bedding pattern, lithology, and sedimentary structures. Four lithofacies are distinguished from base to top: lonestone-bearing diamictites, interbedded structureless mudstones, crudely laminated diamictites, and finely laminated mudstones. The diamictites are clast-poor to clast-rich comprising muddy to sandy varieties. Their compositional maturity is evidenced by the very high amount of detrital quartz compared to the paucity of feldspar and unstable lithic grains. Other textural components include extraclasts derived from the local Ordovician basement, mudstone intraclasts, and sediment aggregates. Turbate structures, grain lineations, and soft sediment deformation of the matrix below larger grains are locally observed. Sedimentological analysis reveals that deposition occurred in an ice-intermediate to ice-distal, poorly agitated shelf environment by material supplied from meltwater buoyant plumes and rain-out from ice-rafted debris. Remobilization by mass-flow processes (cohesive debris flows and slumps) was an important mechanism particularly for the formation of massive diamictites. The glaciomarine deposits represent a typical deglaciation sequence reflecting retreat of the ice front (grounded or floating ice sheet), relative sea-level rise and gradually reduced sedimentation rate with increasing contribution from suspension fallout. This sequence was deposited on the non-glaciated shelf of the intracratonic North Gondwana platform along the southern margin of the Rheic Ocean. The Hirnantian strata of the Balkan Terrane can be correlated with similar glaciomarine deposits known from peri-Gondwana terranes elsewhere in Europe showing clear 'Armorican affinity'. Several lines of evidence suggest that the provenance of siliciclastic material was associated mainly with sedimentary recycling of

  11. Is Absence of Evidence of UHPM Evidence of Absence: Did Conditions on Earth Before the Ediacaran Period Allow Formation of UHP Rocks but Only Rarely Their Exhumation?

    NASA Astrophysics Data System (ADS)

    Brown, M.

    2008-12-01

    UHPM provides petrologic evidence of transport of continental lithosphere to asthenospheric depth and return of some of these materials to crustal depth. The rock record registers UHPM since the Ediacaran Period, and studies of inclusion assemblages in zircon have increased the evidence of UHPM in Phanerozoic orogens and enabled an assessment of the real estate involved. Plots of apparent thermal gradient vs. age of metamorphism and P vs. age of metamorphism reveal two dramatic changes in inferred thermal environment and inferred depth of metamorphism from which continental lithosphere has been recovered during Earth evolution. First, from the Mesoarchean Era to the Neoproterozoic Era, sutures in subduction-to- collision orogens are marked by eclogite and high-pressure granulite metamorphism (characterized by apparent thermal gradients of 750-350 C/GPa). The P of metamorphism in sutures jumped from <1 GPa during the Eoarchean-Paleoarchean up to 2 GPa during the Paleoproterozoic. Second, from the Cryogenian- Ediacaran to the present, many sutures in subduction-to-collision orogens, and sometimes intracratonic sutures in the overriding plate, are marked by UHPM (characterized by apparent thermal gradients of <350 C/GPa) with P of metamorphism >2.7GPa. Given this pattern of secular change to colder apparent thermal gradients in sutures, the recent discovery of diamonds in zircons of crustal paragenesis in Neoarchean sedimentary rocks is surprising. Maybe UHPM has been possible since the Neoarchean but the evidence was rarely exhumed or if exhumed maybe the evidence was rarely preserved? The Appalachian/Caledonian-Variscide-Altaid and the Cimmerian-Himalayan-Alpine orogenic systems were formed by successive closure of short-lived oceans by transfer and suturing of ribbon-continent terranes derived from the Gondwanan side. Subduction of young ocean lithosphere followed by choking of the subduction channel by arc or terrane collision limited transport of water to the

  12. Lithology and mineralogy recognition from geochemical logging tool data using multivariate statistical analysis.

    PubMed

    Konaté, Ahmed Amara; Ma, Huolin; Pan, Heping; Qin, Zhen; Ahmed, Hafizullah Abba; Dembele, N'dji Dit Jacques

    2017-10-01

    The availability of a deep well that penetrates deep into the Ultra High Pressure (UHP) metamorphic rocks is unusual and consequently offers a unique chance to study the metamorphic rocks. One such borehole is located in the southern part of Donghai County in the Sulu UHP metamorphic belt of Eastern China, from the Chinese Continental Scientific Drilling Main hole. This study reports the results obtained from the analysis of oxide log data. A geochemical logging tool provides in situ, gamma ray spectroscopy measurements of major and trace elements in the borehole. Dry weight percent oxide concentration logs obtained for this study were SiO 2 , K 2 O, TiO 2 , H 2 O, CO 2 , Na 2 O, Fe 2 O 3 , FeO, CaO, MnO, MgO, P 2 O 5 and Al 2 O 3 . Cross plot and Principal Component Analysis methods were applied for lithology characterization and mineralogy description respectively. Cross plot analysis allows lithological variations to be characterized. Principal Component Analysis shows that the oxide logs can be summarized by two components related to the feldspar and hydrous minerals. This study has shown that geochemical logging tool data is accurate and adequate to be tremendously useful in UHP metamorphic rocks analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Crustal Structure Of Western China

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yuan, X.; Mooney, W. D.; Coleman, R. G.

    Western China is a showcase of complex geological and geophysical features, includ- ing sedimentary basins, regimes of continental collisional tectonics, and the thickest crust found on Earth. Here, we present new results of a 2700-km-long seismic re- fraction profile across northwest China and the northeastern Tibetan Plateau. Seismic energy for this profile was provided by twelve chemical explosive shots fired in bore- holes. The charge size ranged from 1500 to 4000 kg, sufficient to provide clear first arrivals to a maximum distance of 300 km. The distance between shotpoints ranged from 63 to 205 km, and the interval between portable seismographs was between 2 and 4 km. The profile was recorded along existing roads, and provided nearly straight profile segments. We have divided the seismic profile into two segments- the northern segment from the Altai mountains to the Altyn Tagh fault, and the southern segment from the Altyn Tagh fault to the Longmen Shan. The crustal velocity structure and Poissons ratio (sigma) for the transect, which provide a constraint on crustal composi- tion, were determined from P- and S-wave data. The crustal thickness along the profile was determined, and the crust was found to have three layers with P-wave velocities (Vp) of 6.0-6.3 km/s, 6.3-6.6 km/s, and 6.9-7.0 km/s, respectively. We interpret the consistent three-layer stratification of the crust to indicate that the crust has undergone partial melting and differentiation after Paleozoic terrane accretion. Pn velocities were found to be about 7.7 to 7.8 km/s.

  14. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    NASA Astrophysics Data System (ADS)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-06-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  15. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    NASA Astrophysics Data System (ADS)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-03-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  16. Hydrogeology and hydrogeologic terranes of the Blue Ridge and Piedmont Physiographic Provinces in the eastern United States

    USGS Publications Warehouse

    Mesko, Thomas O.; Swain, Lindsay A.; Hollyday, E.F.

    2000-01-01

    ), hydrogeologic terranes in the Valley and Ridge Physiographic Province (Chapter C), and ground-water geochemistry (Chapter D).The purposes of this atlas are to summarize the hydrogeology, to describe an analysis of maps and well records, and to present a classification and map of the hydrogeologic terranes of the Blue Ridge and Piedmont Physiographic Provinces within the APRASA study area. Hydrogeologic terranes are defined for this atlas as regionally mappable areas characterized by similar water-yielding properties of a grouping of selected rock types. The hydrogeologic terranes represent areas of distinct hydrologic character. The terranes are intended to help water users locate and develop adequate water supplies and to help hydrologists interpret the regional hydrogeology.Previous investigations provide maps and descriptions of the geologic units, describe the local quantity and quality of ground water within these units, and establish the statistical methods for comparing the water-yielding properties of these units. State geologic maps show the distribution of geologic units at a scale of 1:500,000 for Alabama (Osborne and others, 1989), Georgia (Lawton and others, 1976), North Carolina (Brown and Parker, 1985), and Virginia (Calver and Hobbs, 1963). State maps show geologic units at a scale of 1:250,000 for Maryland (Cleaves and others, 1968), New Jersey (Lewis and Kummel, 1912), Pennsylvania (Berg and others, 1980), South Carolina (Overstreet and Bell, 1965), Tennessee (Hardeman, 1966), and West Virginia (Cardwell and others, 1968). Quadrangle geologic maps show geologic units at a scale of 1:24,000 for parts of Delaware within the APRASA area (Woodruff and Thompson, 1972, 1975). Many reports have been published describing the groundwater resources of a county, parts of a county, multi-county areas, or river basins.The statistical methods used in this atlas are based largely on those used by Helsel and Hirsch (1992) and by Knopman (1990, p. 7-9). In her analysis of well

  17. U-Pb Geochronology of Devonian Granites in the Meguma Terrane of Nova Scotia, Canada: Evidence for Hotspot Melting of a Neoproterozoic Source.

    PubMed

    Keppie; Krogh

    1999-09-01

    U-Pb isotopic analyses of monazite and zircon from six granitic plutons in the Meguma Terrane yield nearly concordant ages of 373+/-3 Ma, interpreted as the time of intrusion. U-Pb analyses of euhedral zircons with thick rims overgrowing cores, which were abraded to remove all or most of the rim, plot on chords between 370+/-3 and 628+/-33 Ma (Larrys River and Halfway Cove plutons), 372+/-3 and approximately 660 Ma (Shelburne pluton), and 373+/-2 and approximately 732 Ma (Barrington Passage pluton). The upper intercepts are interpreted as the age of magma source, correlatives of which are present in the Avalon Composite Terrane to the north. This basement may be either in depositional or tectonic contact with the overlying Cambro-Ordovician Meguma Group. Other zircons in the granites are generally irregular-euhedral with thin rims, and most U-Pb isotopic analyses fall between two chords from 373-2040 and 373-2300 Ma, with a few lying outside this field. These zircons are probably derived from the country rock (Goldenville Formation), which a previous study has shown contains detrital zircons with concordant U-Pb ages of 3000, 2000, and 600 Ma, and numerous intermediate discordant ages. These new ages, along with published data, document a relatively short (5-10 m.yr.) but voluminous period of magmatism. This age is approximately synchronous with intrusion of mafic rocks and lamprophyre dikes and regional low-pressure metamorphism and was followed by rapid denudation of 5-12 km. These observations may be interpreted in terms of shallowly dipping subduction and overriding of a mantle plume that eventually penetrates through the subducting plate to melt the overriding continental plate. Subsequent northward migration of the plume could explain both the approximately 360 Ma magmatism in the Cobequid Highlands (Avalon Composite Terrane) and the mid-Carboniferous plume-related intrusions around the Magdalen Basin.

  18. Devonian granitoids and their hosted mafic enclaves in the Gorny Altai terrane, northwestern Central Asian Orogenic Belt: crust-mantle interaction in a continental arc setting

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Sun, Min

    2016-04-01

    of the Yaloman intrusive complex. Our data imply that mantle-derived melts not only provided heat to melt the pre-existing Neoproterozoic crustal materials but also served as an important component in controlling the geochemical diversity of the granitoids. The mineral assemblages and compositions suggest that the Yaloman intrusive complex was possibly crystallized from a relatively oxidizing and water-enriched magma chamber, indicative of a continental-arc related tectonic setting in stead of a collisional origin as previously proposed. Collectively, our study suggests that the widespread Devonian granitoids within the Gorny Altai terrane signify significant vertical crustal growth and differentiation via underplating of subduction-related mafic melts. Acknowledgement This study is financially supported by the Major Research Project of the Ministry of Science and Technology of China (2014CB44801 and 2014CB448000), Hong Kong Research Grant Council (HKU705311P and HKU704712P) and National Science Foundation of China (41273048).

  19. Isotopic and trace element variations in the Ruby Batholith, Alaska, and the nature of the deep crust beneath the Ruby and Angayucham Terranes

    USGS Publications Warehouse

    Arth, Joseph G.; Zmuda, Clara C.; Foley, Nora K.; Criss, Robert E.; Patton, W.W.; Miller, T.P.

    1989-01-01

    Thirty-six samples from plutons of the Ruby batholith of central Alaska were collected and analyzed for 22 trace elements, and many were analyzed for the isotopic compositions of Sr, Nd, O, and Pb in order to delimit the processes that produced the diversity of granodioritic to granitic compositions, to deduce the nature of the source of magmas at about 110 Ma, and to characterize the deep crust beneath the Ruby and Angayucham terranes. Plutons of the batholith show a substantial range in initial 87Sr/86Sr (SIR) of 0.7055–0.7235 and a general decrease from southwest to northeast. Initial 143Nd/144Nd (NIR) have a range of 0.51150–0.51232 and generally increase from southwest to northeast. The δ18O values for most whole rocks have a range of +8.4 to +11.8 and an average of +10.3‰. Rb, Cs, U, and Th show large ranges of concentration, generally increase as SiO2 increases, and are higher in southwest than in northeast plutons. Sr, Ba, Zr, Hf, Ta, Sc, Cr, Co, and Zr show large ranges of concentration and generally decrease as SiO2 increases. Rare earth elements (REE) show fractionated patterns and negative Eu anomalies. REE concentrations and anomalies are larger in the southwest than in the northeast plutons. Uniformity of SIR and NIR in Sithylemenkat and Jim River plutons suggests a strong role for fractional crystallization or melting of uniform magma sources at depth. Isotopic variability in Melozitna, Ray Mountains, Hot Springs, and Kanuti plutons suggests complex magmatic processes such as magma mixing and assimilation, probably combined with fractional crystallization, or melting of a complex source at depth. The large variations in SIR and NIR in the batholith require a variation in source materials at depth. The southwestern plutons probably had dominantly siliceous sources composed of metamorphosed Proterozoic and Paleozoic upper crustal rocks. The northeastern plutons probably had Paleozoic sources that were mixtures of siliceous and intermediate

  20. Paleointensity determination on Neoarchaean dikes within the Vodlozerskii terrane of the Karelian craton

    NASA Astrophysics Data System (ADS)

    Shcherbakova, V. V.; Lubnina, N. V.; Shcherbakov, V. P.; Zhidkov, G. V.; Tsel'movich, V. A.

    2017-09-01

    The results of paleomagnetic studies and paleointensity determinations from two Neoarchaean Shala dikes with an age of 2504 Ma, located within the Vodlozerskii terrane of the Karelian craton, are presented. The characteristic components of primary magnetization with shallow inclinations I = -5.7 and 1.9 are revealed; the reliability of the determinations is supported by two contact tests. High paleointensity values are obtained by the Thellier-Coe and Wilson techniques. The calculated values of the virtual dipole moment (11.5 and 13.8) × 1022 A m2 are noticeably higher than the present value of 7.8 × 1022 A m2. Our results, in combination with the previous data presented in the world database, support the hypothesized existence of a period of high paleointensity in the Late Archaean-Early Proterozoic.

  1. Tectonics and distribution of gold deposits in China - An overview

    USGS Publications Warehouse

    Zhou, T.; Goldfarb, R.J.; Phillips, G.N.

    2002-01-01

    present along the northern, southeastern and southern margins of the North China craton, along the southwestern and northwestern margins of the Yangtze craton, in the Tianshan and Altayshan orogenic belts in northern Xinjiang, and throughout the southeastern China fold belt. Gold-placer deposits derived from these primary deposits are concentrated in the northernmost part of northeastern China and along the northerwestern margin of the Yangtze craton. The major provinces with significant gold in porphyry-related copper systems and base metal skarns are present in the Yangtze River area along the northeastern and southeastern margin of the Yangtze craton, in the fold belt in southwestern China, and scattered through northern China. Three-quarters of the Chinese gold-only deposits occur within the North China craton margins. Half are located in the uplifted Precambrian metamorphie rocks and most of the remainder are hosted in the Phanerozoic granitoids that intruded the reworked Precambrian terranes. The abundance of granite-hosted gold contrasts the North China craton with other Precambrian cratons, such as those in Western Australia, central Canada, and Zimbabwe, where gold is mainly hosted in the Archean greenstone belts. This difference may be explained by the multiple episodes of Phanerozoic tectonism along the North China craton margins resulting from the collision of the Angara, North China, and South China cratons, and from subduction of the Izanagi-Pacific oceanic plates underneath the eastern China continent.

  2. Cenozoic mantle composition evolution of southern Tibet indicated by Paleocene ( 64 Ma) pseudoleucite phonolitic rocks in central Lhasa terrane

    NASA Astrophysics Data System (ADS)

    Qi, Yue; Gou, Guo-Ning; Wang, Qiang; Wyman, Derek A.; Jiang, Zi-Qi; Li, Qiu-Li; Zhang, Le

    2018-03-01

    The question of whether continental subduction processes in collisional orogenic belts can trigger wide-spread mantle metesomatism and crustal material recycling remains unresolved. Miocene (25-8 Ma) ultrapotassic rocks in southern Tibet are the only mantle-derived magmatic rocks emplaced after the collision between India and Asia and they have been linked to the onset of east-west extensional stresses as the surface uplift of the Tibetan Plateau reached near-maximum elevation. However, their petrogenesis remains highly controversial, particularly the issue of whether their extremely enriched Sr-Nd isotopic characteristics were related to metasomatism derived from subducted Indian continental materials during the Cenozoic. Here we report on a Paleocene silicate-unsaturated, pseudoleucite phonolitic dike, in the Rongniduo area of central Lhasa terrane. In-situ SIMS (secondary ion mass spectrometry) apatite U-Pb age indicates the dike was generated at 64.1 ± 4.2 Ma, which slightly predates the age of initial India and Asia collision (about 55-50 Ma). This is the oldest age yet reported for ultrapotassic rocks in southern Tibet. Samples from this dike have distinctly more depleted Sr-Nd (whole rock: (87Sr/86Sr)i = 0.7064 to 0.7062, εNd(t) = - 1.5 to 0.4; in situ apitite: (87Sr/86Sr)i = 0.7059 to 0.7060, εNd(t) = - 2.0 to 0.4) isotopic compositions, than those of Miocene (25-8 Ma) ultrapotassic rocks in the central Lhasa terrane ((87Sr/86Sr)i = 0.7106 to 0.7399, εNd(t) = - 10.6 to - 18.5). Our new data provides important constraints on pre-collisional mantle characteristics beneath the Lhasa terrane. We suggest that these 64 Ma pseudoleucite phonolitic rocks were derived from the enriched lithospheric mantle metasomatized by subducted Tethyan oceanic materials in response to Neo-Tethyan slab roll-back. As a consequence, the younger Miocene ultrapotassic rocks, which display different geochemical compositions from the pre-collisional ultrapotassic rocks, were most

  3. Amalgamation of East Eurasia Since Late Paleozoic: Constraints from the Apparent Polar Wander Paths of the Major China Blocks

    NASA Astrophysics Data System (ADS)

    Wu, L.; Kravchinsky, V. A.; Potter, D. K.

    2014-12-01

    It has been a longstanding challenge in the last few decades to quantitatively reconstruct the paleogeographic evolution of East Eurasia because of its great tectonic complexities. As the core region, the major China cratons including North China Block, South China Block and Tarim Block hold the key clues for the understanding of the amalgamation history, tectonic activities and biological affinity among the component blocks and terranes in East Eurasia. Compared with the major Gondwana and Laurentia plates, however, the apparent polar wander paths of China are not well constrained due to the outdated paleomagnetic database and relatively loose pole selection process. With the recruitment of the new high-fidelity poles published in the last decade, the rejection of the low quality data and the strict implementation of Voo's grading scheme, we build an updated paleomagnetic database for the three blocks from which three types of apparent polar wander paths (APWP) are computed. Version 1 running mean paths are constructed during the pole selection and compared with those from the previous publications. Version 2 running mean and spline paths with different sliding time windows are computed from the thoroughly examined poles to find the optimal paths with the steady trend, reasonable speed for the polar drift and plate rotation. The spline paths are recommended for the plate reconstructions, however, considering the poor data coverage during certain periods. Our new China APWPs, together with the latest European reference path, the geological, geochronological and biological evidence from the studied Asian plates allow us to reevaluate the paleogeographic and tectonic history of East Eurasia.

  4. Thondhjemite of the Talkeetna Mountains: An unusually large low-K pluton in Alaska's Peninsular terrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, A.B.; Arth, J.G.; Csejtey, B.

    1993-04-01

    An unusually large, elongate Jurassic pluton of trondhjemite, about 120- by 10--15 km in dimensions, intruded Jurassic plutonic and metamorphic rocks of the Peninsular terrane in the central Talkeetna Mountains of south-central Alaska. Muscovite and biotite yield minimum ages of 150--145 Ma. The N40[degree]E-trending body is concordant with regional structures. It is the youngest member of a subduction-related Jurassic plutonic suite in the Peninsular terrane that, along with Wrangellia, was accreted to the North American continent in the middle Cretaceous. Rocks, commonly sheared, are medium to coarse grained and leucocratic (CI = 3--9). Biotite is the chief mafic mineral. Minormore » muscovite and garnet are common and green hornblende rare. Samples (n = 27) from the body's entire length have an average Mg[number sign] of 45 and an SiO[sub 2] continuum of 67--74% (avg. 70.7%). High Al[sub 2]O[sub 3] (14.4--17.9%, avg. 16.5%) is typical of continental trondhjemite. Averages for Zr (109 ppm) and Nb (3.5 ppm) and the ratios K/Rb (491) and Zr/Nb (34) are typical of orogenic igneous rocks of subduction origin. Four samples analyzed have low ([sup 87]Sr/[sup 86]Sr)[sub i] (avg. 0.7036). Very low Rb/Sr (avg. 0.027) is similar to Idaho batholith trondhjemites. REE patterns with low to moderate LREE and HREE with flat patterns and low contents suggest residual garnet or hornblende during partial melting or fractionation. The pluton appears homogeneous in outcrop. However, some geographic variations in chemistry, as in SiO[sub 2] contents and especially in Eu/Eu[sup *], suggest existence of perhaps three regionally separate plumbing systems, or chambers in which different processes such as plagioclase accumulation or hornblende fractionation were active.« less

  5. Detrital rutile geochemistry and thermometry from the Dabie orogen: Implications for source-sediment links in a UHPM terrane

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Xiao, Yilin; Wörner, G.; Kronz, A.; Simon, K.; Hou, Zhenhui

    2014-08-01

    This study explores the potential of detrital rutile geochemistry and thermometry as a provenance tracer in rocks from the Central Dabie ultrahigh-pressure metamorphic (UHPM) zone in east-central China that formed during Triassic continental collision. Trace element data of 176 detrital rutile grains selected from local river sediments and 91 rutile grains from distinct bedrocks in the Shuanghe and Bixiling areas, obtained by both electron microprobe (EMP) and in situ LA-ICP-MS analyses, suggest that geochemical compositions and thermometry of detrital rutiles are comparable to those from their potential source rocks. After certification of the Cr-Nb discrimination method for the Central Dabie UHPM zone, we show that 29% of the detrital rutiles in the Shuanghe area were derived from metamafic sources whereas in the Bixiling area that it is up to 76%. Furthermore, the proportion of distinct types of detrital rutiles combined with modal abundances of rutile in metapelites and metamafic bedrocks can be used to estimate the proportion of different source lithologies. Based on this method the proportion of mafic source rocks was estimated to ∼10% at Shuanghe and >60% at Bixiling, respectively, which is consistent with the proportions of eclogite (the major rutile-bearing metamafic rock) distribution in the field. Therefore, the investigation of detrital rutiles is a potential way to evaluate the proportion of metamafic rocks and even to prospect for metamafic bodies in UHPM terranes. Zr-in-rutile temperatures were calculated at different pressures and compared with temperatures derived from rock-in rutiles and garnet-clinopyroxene Fe-Mg thermometers. Temperatures calculated for detrital rutiles range from 606 °C to 707 °C and 566 °C to 752 °C in Shuanghe and Bixiling, respectively, at P = 3 GPa with an average temperatures of ca. 630 °C for both areas. These temperature averages and ranges are similar to those calculated for rutiles from surrounding source rocks

  6. Sm-Nd Mineral Isochron Age Patterns from Garnet-bearing Peridotite of the Western Gneiss Region, Norwegian Caledonides: Discrete Mantle Events or Continuous Re- equilibration?

    NASA Astrophysics Data System (ADS)

    Brueckner, H. K.

    2007-12-01

    The garnet peridotites (and pyroxenites) of the UHP Western Gneiss Region of Norway give Sm-Nd garnet, clinopyroxene, whole rock, orthopyroxene, amphibole ages that range from ca. 1.7 Ga to 424 Ma. Most of these twenty seven ages are much older than the continent-continent collision that transferred these peridoitites from the mantle into the crust (i.e. the 400 Ma Scandian Orogeny) suggesting the garnet peridotites of the WGR are unique relative to those in other UHP terranes, which invariably give ages that overlap the time of UHP metamorphism of the enclosing country rocks. All but the youngest ages given by WGR peridotites reflect processes that occurred deep in the mantle beneath the Baltic Shield, but it is unclear if they date a series of discrete events related to the tectonic evolution of the Baltic Shield or if the ages reflect continuous, but variable, re-equilibration of the Sm-Nd system between phases during the residence of the peridotites in the mantle. Three ages overlap the 1.75 to 1.55 Ga Gothian Orogeny while twelve ages are within error of the 1.2 to 0.9 Ga Sveconorwegian Orogeny. The three youngest ages (438 to 424 Ma) are associated with a younger generation of garnets and may mark the beginning of eclogite-facies metamorphism of Baltica as it was subducted beneath Laurentia during the Scandian Orogeny. However, the remaining nine ages spread more or less continuously between these three major events. The overall pattern on a histogram is a range of ages with a pronounced peak at and near the Sveconorwegian Orogeny. The ages therefore appear to date continuous diffusion between minerals from garnet-bearing assemblages that formed originally during or, less likely, before the Gothian Orogeny interrupted by a pronounced thermal event during the Svconorwegian Orogeny and a recrystallization event during the early stages of the Scandian orogeny. The degree of re-equilibration was probably controlled by the ambient temperature of the peridotite

  7. Multisystem dating of modern river detritus from Tajikistan and China: Implications for crustal evolution and exhumation of the Pamir

    USGS Publications Warehouse

    Barbara Carappa,; Mustapha, F.S.; Cosca, Michael A.; Gehrels, George E.; Schoenbhohm, L; Sobel, E.; DeCelles.P.,; Russell, Joellen; Goodman, Paul

    2014-01-01

    The Pamir is the western continuation of Tibet and the site of some of the highest mountains on Earth, yet comparatively little is known about its crustal and tectonic evolution and erosional history. Both Tibet and the Pamir are characterized by similar terranes and sutures that can be correlated along strike, although the details of such correlations remain controversial. The erosional history of the Pamir with respect to Tibet is significantly different as well: Most of Tibet has been characterized by internal drainage and low erosion rates since the early Cenozoic; in contrast, the Pamir is externally drained and topographically more rugged, and it has a strongly asymmetric drainage pattern. Here, we report 700 new U-Pb and Lu-Hf isotope determinations and >300 40Ar/39Ar ages from detrital minerals derived from rivers in China draining the northeastern Pamir and >1000 apatite fission-track (AFT) ages from 12 rivers in Tajikistan and China draining the northeastern, central, and southern Pamir. U-Pb ages from rivers draining the northeastern Pamir are Mesozoic to Proterozoic and show affinity with the Songpan-Ganzi terrane of northern Tibet, whereas rivers draining the central and southern Pamir are mainly Mesozoic and show some affinity with the Qiangtang terrane of central Tibet. The εHf values are juvenile, between 15 and −5, for the northeastern Pamir and juvenile to moderately evolved, between 10 and −40, for the central and southern Pamir. Detrital mica 40Ar/39Ar ages for the northeastern Pamir (eastern drainages) are generally older than ages from the central and southern Pamir (western drainages), indicating younger or lower-magnitude exhumation of the northeastern Pamir compared to the central and southern Pamir. AFT data show strong Miocene–Pliocene signals at the orogen scale, indicating rapid erosion at the regional scale. Despite localized exhumation of the Mustagh-Ata and Kongur-Shan domes, average erosion rates for the northeastern Pamir

  8. Eastern boundary of the Siletz terrane in the Puget Lowland from gravity and magnetic modeling with implications for seismic hazard analysis

    NASA Astrophysics Data System (ADS)

    Anderson, M. L.; Blakely, R. J.; Wells, R. E.; Dragovich, J.

    2011-12-01

    The forearc of the Cascadia subduction zone in coastal Oregon and Washington is largely composed of a 15-30 km-thick stack of basalt flows comprising the Crescent Formation (WA) and Siletz River Volcanics (OR), and collectively termed the Siletz terrane. We are developing 3-D structural maps of the Puget Lowland to distinguish older and currently active structures for seismic hazard analysis. The boundaries of the Siletz terrane in particular may strongly influence crustal rheology and neotectonic structures of the region. Careful analysis of the areal extent of this terrane will also facilitate more accurate interpretation of seismic data and gravity anomalies, which will help define the extent and shape of overlying basins. Absence of extensive outcrop in the Lowland and a widespread veneer of Quaternary deposits require extensive subsurface geophysical studies to establish Lowland-wide crustal structure. Previous studies have used active seismic surveys and interpretation of existing industry seismic data, with several studies using gravity and magnetic data or passive-source tomography support. However, steeply dipping boundaries in the mid-crust are difficult targets for seismic study. We need to independently discriminate between potential models established by seismic data using gravity and magnetic datasets. In the Puget Lowland the Siletz is a region of high seismic wave speed, density, and magnetic susceptibility, and therefore its mid-crustal boundaries are good targets for definition by gravity and magnetic data. We present interpretations of gravity and magnetic anomalies for the Puget Lowland region that together establish the most likely position and structure of the Crescent Formation boundary in the mid-upper crust. Well-constrained physical properties of Crescent basalts inform our aeromagnetic map interpretation and give us baseline values for constructing three two-dimensional models by simultaneous forward modeling of aeromagnetic and isostatic

  9. Precambrian domains in Lithuania: evidence of terrane tectonics

    NASA Astrophysics Data System (ADS)

    Skridlaite, Grazina; Motuza, Gediminas

    2001-09-01

    The West Lithuanian Granulite (WLG) and East Lithuanian domains (ELD) form the Proterozoic basement of Lithuania and can be distinguished on the basis of differing structural patterns, lithologies, and evolutionary histories. They are juxtaposed along the Mid-Lithuanian Suture Zone (MLSZ). In the WLG, the main lithotectonic complexes comprise felsic and intermediate, mostly metasedimentary granulites in the south-west and mafic metaigneous granulites in the north-east. The former are interpreted as marine metapelites, while most of the mafic ones have been derived from island-arc tholeiites. These rock complexes trend NW-SE and are marked by contrasting gravity and magnetic anomalies. NE- and E-W-striking faults and shear zones complicate the potential-field patterns. Sets of NW-trending anomalies also extend from Lithuania across the Baltic Sea to south-central Sweden and indicate that the WLG complexes continue into the Baltic/Fennoscandian Shield. Voluminous anatectic granites alternate with the metapelites, whereas the mafic granulites occur together with enderbites and charnockites. In the ELD, the main structures produce strong, NNE-SSW-oriented gravity and magnetic anomalies which trend parallel to the Belarus-Baltic Granulite Belt (BBG) and other terranes situated still farther east. The ELD is composed of metasedimentary rocks interpreted as one-time graywackes, shales and dolomites accumulated in continental-margin arc and shallow-water basinal environments. Amphibolites and gabbros with MORB and IAT characteristics, and voluminous granitoids are also present. The coexistence of juvenile mafic rocks with continental-margin and shelf sediments suggests an oceanic back-arc setting. The two Lithuanian basement domains display contrasting metamorphic histories that suggest separate developments before the eventual amalgamation. In the WLG, the metapelites indicate peak metamorphism at high temperatures (up to 850-900°C) and moderate pressures (8-10 kbar

  10. Detrital zircon U-Pb geochronology and provenance of the Carboniferous-Permian glaciomarine pebbly slates in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhu, D.; Zhao, Z.; Chung, S.; Li, C.; Sui, Q.; Fu, X.; Mo, X.

    2011-12-01

    from different terranes of the Tibetan Plateau. Such difference may have been associated primarily with the different paleogeographical positions of the Lhasa Terrane that was adjacent to northern Australia and of the Qiangtang and Tethyan Himalaya terranes that were situated in the northern margin of the Indian continent, respectively. [Financially supported by the National Key Project for Basic Research of China (2011CB403102), the Chinese National Natural Science Foundation (41073013 and 40830317), and the Programme of the China Geological Survey (1212011121260 and 1212011121066)]. Zhu, D.C., et al., 2011a. Geology 39, 727-730. Zhu, D.C., et al., 2011b. Acta Petrologica Sinica 27, 1917-1930.

  11. The age and composition of the pre-Cenozoic basement of the Jalisco Block: implications for and relation to the Guerrero composite terrane

    NASA Astrophysics Data System (ADS)

    Valencia, Victor A.; Righter, Kevin; Rosas-Elguera, Jose; López-Martínez, Margarita; Grove, Marty

    2013-09-01

    The Jalisco Block is thought to be part of the Guerrero terrane, but the nature and age of the underlying crystalline basement are largely unknown. We have collected a suite of schists, granitoids, and weakly metamorphosed marine sediments from various parts of the Jalisco Block including Atenguillo and Ameca, Mascota and San Sebastián, Cuale, Puerto Vallarta, Punta Mita, Yelapa, and Tomatlán. The schists range in age from 135 to 161 Ma, with many exhibiting Proterozoic and Phanerozoic zircon ages. The granitoids range in age from 65 to 90 Ma, and are calc-alkaline compositionally—similar to granitoids from the Puerto Vallarta and Los Cabos batholiths. The Jalisco granitoids also experienced similar uplift rates to granitoids from the regions to the north and south of the Jalisco Block. The marine sediments yield a maximum depositional age of 131 Ma, and also contain a significant zircon population with ages extending back to the Archean. Granitoids from this study define two age groups, even after the effects of thermal resetting and different closure temperatures are considered. The 66.8-Ma silicic ash flow tuff near Union de Tula significantly expands the extent of this Cretaceous-Paleocene age ash flow tuff unit within the Jalisco Block, and we propose calling the unit "Carmichael silicic ash flow tuff volcanic succession" in honor of Ian Carmichael. The ages of the basement schists in the Jalisco Block fully overlap with the ages of terranes of continental Mexico, and other parts of the Guerrero terrane in the south, confirming the autochthonous origin of the Jalisco Block rather than exotic arc or allochthonous origin. Geologic data, in combination with geochronologic and oxygen isotopic data, suggest the evolution of SW Mexico with an early 200-1,200-Ma passive margin, followed by steep subduction in a continental arc setting at 160-165 Ma, then shallower subduction by 135 Ma, and finally, emplacement of granitoids at 65-90 Ma.

  12. Velocity Structure of the Subducted Yakutat Terrane, Alaska: Insights from Guided Waves

    NASA Astrophysics Data System (ADS)

    Coulson, S.; Garth, T.; Rietbrock, A.

    2017-12-01

    Subduction zone guided wave arrivals from intermediate depth earthquakes provide insight into the fine scale velocity structure of the subducting oceanic crust as it dehydrates. These observations can be used to determine the average velocity and thickness of the crustal low velocity layer (LVL) at depth, allowing inferences to be drawn about composition and degree of hydration. We constrain guided wave dispersion by comparing waveforms recorded in the subduction forearc with simulated waveforms, produced using a 2D finite difference waveform propagation model. The structure of the Aleutian arc is complex due to the accretion of the Yakutat Terrane (YT) to the east, which is partially coupled with the subducting Pacific plate. An unusually thick LVL associated with the YT has been inferred down to 140 km depth by receiver function studies and travel time tomography. Focussing on a profile running NNW-SSE close to Anchorage, we constrain slab geometry using global and local catalogues, as well as the curvature inferred from receiver functions (Kim et al., 2014). P-wave arrivals from 41 earthquakes (2012-2015) show significant guided wave dispersion on at least one station; high frequency (>1-3 Hz) energy is delayed by up to 2-3 seconds. Choosing the clearest dispersion observations, we systematically vary both LVL width and P-wave velocity, to find the lowest misfit between the observed and synthetic waveforms. Multiple modelled events show the thickness of the LVL associated with subducted YT to be 6-10 km, significantly thinner than inferred by receiver function studies. Most events are accounted for by an LVL velocity contrast of 12.5-15% with overriding mantle material, however, observations of the deepest event in the northern corner of the YT require a velocity contrast of 6%. Lower velocities in the shallower slab (70-120 km) cannot be accounted for by reacted or unreacted MORB or gabbro compositions. We postulate the presence of interbedded sediments within

  13. Evolutional trends and palaeobiogeography of the Ordovician trilobite Ovalocephalus Koroleva 1959

    PubMed Central

    Zhiyi, Zhou; Wenwei, Yuan; Zhiqiang, Zhou

    2010-01-01

    Ovalocephalus has a long stratigraphic range and wide geographical distribution in Ordovician peri-Gondwana. Based largely on the well-preserved specimens recently collected from China, all known forms are revised and listed. Phylogenetic analysis was conducted on the genus, involving 10 species. As suggested by the strict consensus tree, evolutional trends of the genus include mainly the isolation of the anterior glabellar portion anterior to S1, the forward shifting of eyes and the related lengthening (exsag.) of the posterior fixigena, the reduction of the number of pygidial axial segments and pleural abaxial rounded free tips, the shortening of the pygidial postaxial region, and the development of cranidial genal spines. Ovalocephalus may have originated in shallow-water sites of the South China Plate in the Early Floian, but migrated into the deep-water regions from the Darriwilian onwards. All the records of the genus from the Early Floian to Early Katian were confined to eastern peri-Gondwanan plates and terranes in low-latitude zones. It was only restricted to the South China, Tarim and North China plates until the Middle Darriwilian, but the Late Darriwilian eustatic sea-level rise and especially the Sandbian–Early Katian immense transgression may have brought about its dispersal to Alborz, Sibumasu and central Asian terranes. Following the closure of the Tornquist Sea, the genus was even able to spread to Baltica during the latest Katian, and the pre-Hirnantian warming (the Boda event) may have promoted a wider distribution of Ovalocephalus to western peri-Gondwana (the Taurides and Armorica terranes) in the then-high latitudes. PMID:19403533

  14. Origin of the mafic microgranular enclaves (MMEs) and their host granitoids from the Tagong pluton in Songpan-Ganze terrane: An igneous response to the closure of the Paleo-Tethys ocean

    NASA Astrophysics Data System (ADS)

    Chen, Qiong; Sun, Min; Zhao, Guochun; Yang, Fengli; Long, Xiaoping; Li, Jianhua; Wang, Jun; Yu, Yang

    2017-10-01

    The Songpan-Ganze terrane is mainly composed of a Triassic sedimentary sequence and late Triassic-Jurassic igneous rocks. A large number of plutons were emplaced as a result of tectono-magmatic activity related to the late stages of Paleo-Tethys ocean closure and ensuing collision. Granitoids and their hosted mafic enclaves can provide important constraints on the crust-mantle interaction and continental crustal growth. Mesozoic magmatism of Songpan-Ganze remains enigmatic with regard to their magma generation and geodynamic evolution. The Tagong pluton (209 Ma), in the eastern part of the Songpan-Ganze terrane, consists mainly of monzogranite and granodiorite with abundant coeval mafic microgranular enclaves (MMEs) (ca. 208-209 Ma). The pluton comprises I-type granitoid that possesses intermediate to acidic compositions (SiO2 = 61.6-65.8 wt.%), high potassium (K2O = 3.2-4.1 wt.%), and high Mg# (51-54). They are also characterized by arc-type enrichment of LREEs and LILEs, depletion of HFSEs (e.g. Nb, Ta, Ti) and moderate Eu depletions (Eu/Eu* = 0.46-0.63). Their evolved zircon Hf and whole-rock Nd isotopic compositions indicate that their precursor magmas were likely generated by melting of old lower continental crust. Comparatively, the MMEs have lower SiO2 (53.4-58.2 wt.%), higher Mg# (54-67) and show covariation of major and trace elements, coupled with field and petrographic observations, such as the disequilibrium textures of plagioclase and amphibole, indicating that the MMEs and host granitoids were originated from different magma sources but underwent mafic-felsic magma mixing process. Geochemical and isotopic data further suggest that the precursor magma of the MMEs was formed in the continental arc setting, mainly derived from an ancient metasomatized lithospheric mantle wedge. The Triassic granitoids from the Songpan-Ganze terrane show remarkable temporal-spatial-petrogenetic affinities to the counterparts of subduction zones in the Yidun and Kunlun arc

  15. A geologic guide to Wrangell-Saint Elias National Park and Preserve, Alaska; a tectonic collage of northbound terranes

    USGS Publications Warehouse

    Winkler, Gary R.; with contributions by MacKevett, E. M.; Plafker, George; Richter, D.H.; Rosenkrans, D.S.; Schmoll, H.R.

    2000-01-01

    Wrangell-Saint Elias National Park and Preserve, the largest unit in the U.S. National Park System, encompasses near 13.2 million acres of geological wonderments. This geologic guide presents history of exploration and Earth-science investigation; describes the complex geologic makeup; characterizes the vast college of accretion geologic terranes in this area of Alaska's continental margin; recapitulates the effects of earthquakes, volcanoes, and glaciers; characterizes the copper and gold resources of the parklands; and describes outstanding locales within the park and preserve area. A glossary of geologic terms and a categorized list of additional sources of information complete this report.

  16. Geochemistry, Metamorphic Assemblages, and Microstructures in Small Ultramafic Bodies from the Northern Nason Terrane, Washington

    NASA Astrophysics Data System (ADS)

    Magloughlin, J. F.

    2014-12-01

    Ultramafic bodies ranging from <1 to 2500 m in length occur in multiple settings across the northern part of the Nason Terrane in the North Cascade Mountains of Washington State. Within the Wenatchee Ridge Orthogneiss (WRO) the bodies are approximately equidimensional, ranging from dm-scale metasomatized lenses up to an exposed diameter of (typically) approximately 40 m. Some bodies are completely serpentinized, but others include dunite, harzburgite, and rare seams of pyroxenite. Many are rimmed by blackwall (talc, phlogopite, tremolite, chlorite, serpentine) coinciding with the Late Cretaceous metamorphism. The Napeequa Ultramafic Body (NUB), cut through and well exposed by the Napeequa River west of Lake Wenatchee, is within the White River Shear Zone (WRSZ, Magloughlin & McEwan, 1988). Though highly variable, it consists of dunite and peridotite and is variably serpentinized with common Mg-amphibole. Assemblages include serp+carb+chl+talc+opq and suggest upper greenschist to low amphibolite facies overprinting. Rare high-strain zones resemble relict pseudotachylyte veins. More common are ultramylonitic zones with olivine grain sizes of <5 microns, suggesting terrane-boundary paleostresses of >250 MPa. The Nine Mile Creek Ultramafic Body (NMCUB) and Grave Ultramafic Body (GUB) are the largest bodies outside of the White River Shear Zone, and are approximately 300 m and 800 long, respectively. Both are characterized by ol+talc+amph along with chlorite pseudomorphs, commonly cut by <40 micron thick ribbons of calcite, and rarely containing Si defined by chromite. These tectonites contain fine-grained olivine, but post-deformational, metamorphic cummingtonite and tremolite. In both bodies, a moderate to strong foliation is developed. It is suggested both bodies are retrogressed garnet peridotites. An interesting problem is why the possible retrogressed garnet peridotite bodies are present south of the WRSZ and surrounded by the metatonalites of the WRO, but none

  17. Field occurrences and petrology of eclogites from the Dabie Mountains, Anhui, central China

    NASA Astrophysics Data System (ADS)

    Wang, X.; Jing, Y.; Liou, J. G.; Pan, G.; Liang, W.; Xia, M.; Maruyama, S.

    1990-11-01

    Four distinct types of eclogites are recognized according to their field occurrences and mineral parageneses in a gneiss terrane of the Dabie Mountains, a collision zone between the Sino-Korean and Yangtze cratons in central China. Some eclogites contain coesite and its quartz pseudomorphs enclosed in garnet and omphacite. Type I eclogites occur as layers in serpentinites and contain garnet, clinopyroxene, orthopyroxene, phengite, rutile, and coesite pseudomorph. Type II eclogites occur as lenticular bodies inside serpentinites and contain garnet, clinopyroxene, quartz, rutile, and edenitic hornblende. Type III eclogites occur as blocks of 2 cm to 20 m in size in a matrix of hornblende gneiss and biotite gneiss, and Type IV eclogites occur as thin layers interbedded with amphibolites. P- T estimates for these different eclogites indicate that they were formed under different physical conditions. All the eclogites were affected by later regional metamorphism for which the P- T conditions are estimated. This paper provides an introduction to the abundant eclogites from central China which have not been reported previously in Western literature. Specifically, the mode of field occurrence, petrography, mineral chemistry and formation conditions of the four types of eclogites are described. The paper is thus designed to establish a petrological framework for future detailed studies of the eclogites and their country rocks in an ancient zone of collision.

  18. Effect of crustal heterogeneities and effective rock strength on the formation of HP and UHP rocks.

    NASA Astrophysics Data System (ADS)

    Reuber, Georg; Kaus, Boris; Schmalholz, Stefan; White, Richard

    2015-04-01

    The formation of high pressure and ultra-high pressure rocks has been controversially discussed in recent years. Most existing petrological interpretations assume that pressure in the Earth is lithostatic and therefore HP and UHP rocks have to come from great depth, which usually involves going down a subduction channel and being exhumed again. Yet, an alternative explanation points out that pressure in the lithosphere is often non-lithostatic and can be either smaller or larger than lithostatic as a function of location and time. Whether this effect is tectonically significant or not depends on the magnitude of non-lithostatic pressure, and as a result a number of researchers have recently performed numerical simulations to address this. Somewhat disturbingly, they obtained widely differing results with some claiming that overpressures as large as a GPa can occur (Schmalholz et al. 2014), whereas others show that overpressures of exhumed rocks are generally less than 20% and thus insignificant (Li et al. 2010; Burov et al. 2014). In order to understand where these discrepancies come from, we reproduce the simulations of Li et al (2010) of a typical subduction and collision scenario, using an independently developed numerical code (MVEP2). For the same model setup and parameters, we confirm the earlier results of Li et al. (2010) and obtain no more than ~20% overpressure in exhumed rocks of the subduction channel. Yet, a critical assumption in their models is that the subducted crust is laterally homogeneous and that it has a low effective friction angle that is less than 7o. The friction angle of (dry) rocks is experimentally well-constrained to be around 30o, and low effective friction angles require, for example, high-fluid pressures. Whereas high fluid pressures might exist in the sediment-rich upper crust, they are likely to be much lower or absent in the lower crust from which melt has been extracted or in rocks that underwent a previous orogenic cycle. In a

  19. Geochronology of plutonic rocks and their tectonic terranes in Glacier Bay National Park and Preserve, southeast Alaska: Chapter E in Studies by the U.S. Geological Survey in Alaska, 2008-2009

    USGS Publications Warehouse

    Brew, David A.; Tellier, Kathleen E.; Lanphere, Marvin A.; Nielsen, Diane C.; Smith, James G.; Sonnevil, Ronald A.

    2014-01-01

    We have identified six major belts and two nonbelt occurrences of plutonic rocks in Glacier Bay National Park and Preserve and characterized them on the basis of geologic mapping, igneous petrology, geochemistry, and isotopic dating. The six plutonic belts and two other occurrences are, from oldest to youngest: (1) Jurassic (201.6–145.5 Ma) diorite and gabbro of the Lituya belt; (2) Late Jurassic (161.0–145.5 Ma) leucotonalite in Johns Hopkins Inlet; (3) Early Cretaceous (145.5–99.6 Ma) granodiorite and tonalite of the Muir-Chichagof belt; (4) Paleocene tonalite in Johns Hopkins Inlet (65.5–55.8 Ma); (5) Eocene granodiorite of the Sanak-Baranof belt; (6) Eocene and Oligocene (55.8–23.0 Ma) granodiorite, quartz diorite, and granite of the Muir-Fairweather felsic-intermediate belt; (7) Eocene and Oligocene (55.8–23.0 Ma) layered gabbros of the Crillon-La Perouse mafic belt; and (8) Oligocene (33.9–23.0 Ma) quartz monzonite and quartz syenite of the Tkope belt. The rocks are further classified into 17 different combination age-compositional units; some younger belts are superimposed on older ones. Almost all these plutonic rocks are related to Cretaceous and Tertiary subduction events. The six major plutonic belts intrude the three southeast Alaska geographic subregions in Glacier Bay National Park and Preserve, from west to east: (1) the Coastal Islands, (2) the Tarr Inlet Suture Zone (which contains the Border Ranges Fault Zone), and (3) the Central Alexander Archipelago. Each subregion includes rocks assigned to one or more tectonic terranes. The various plutonic belts intrude different terranes in different subregions. In general, the Early Cretaceous plutons intrude rocks of the Alexander and Wrangellia terranes in the Central Alexander Archipelago subregion, and the Paleogene plutons intrude rocks of the Chugach, Alexander, and Wrangellia terranes in the Coastal Islands, Tarr Inlet Suture Zone, and Central Alexander Archipelago subregions.

  20. Age, geochemical and Sr Nd Pb isotopic constraints for mantle source characteristics and petrogenesis of Teru Volcanics, Northern Kohistan Terrane, Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, S. D.; Stern, R. J.; Manton, M. I.; Copeland, P.; Kimura, J. I.; Khan, M. A.

    2004-11-01

    This paper presents new geochemical and geochronology data for the Teru Volcanic Formation (previously known as the Shamran Volcanics) exposed west of Gilgit in the Kohistan terrane of the Pakistani Himalayas. The Teru Volcanic Formation ranges from basalt through andesite to rhyolite and has subalkaline and midalkaline affinities. Trace-element compositions and isotopic characteristics suggest these magmas were formed in a subduction zone setting; isotopic studies also support this conclusion. It is suggested that these lavas originated from a depleted mantle source, which experienced contamination by variable subduction components. Model mixing calculations using 87Sr/ 86Sr and 143Nd/ 144Nd data suggest that addition of 0.2-0.6% of Indus margin sediments and/or 2-4% of fluids derived from Indus margin sediment can generate the compositional variation of the Teru Volcanic Formation. Two samples from the Teru Volcanic Formation yielded 40Ar/ 39Ar ages of 43.8+0.5 and 32.5+0.4 Ma. These ages make the volcanic rocks of the Teru Volcanic Formation the youngest reported in the Kohistan terrane. These volcanic rocks unconformably overly the Shunji Pluton, which has a 65 Ma Rb-Sr whole-rock isochron age. The results of this research suggest that subduction-related volcanism was active until 33 Ma in the India-Asia collision zone.

  1. Ar/Ar geochronology in the western Tianshan (northwestern China): from Carboniferous (ultra)high-pressure metamorphism and thrusting to Permian strike-slip deformation and fluid ingress

    NASA Astrophysics Data System (ADS)

    de Jong, K.; Wang, B.; Ruffet, G.; Shu, L. S.; Faure, M.

    2012-04-01

    The Tianshan belt (northwestern China) is a major tectonic element of the southern Central Asian Orogenic Belt that contains a number of ophiolitic mélanges and (ultra)high-pressure metamorphic belts formed after closure of oceanic and back-arc basins that resulted in terrane collisions. Deciphering its tectonic evolution is thus crucial for understanding the amalgamation of Central Asia. We produce robust 40Ar/39Ar laser-probe evidence that the Tianshan is a Late Palaeozoic (ultra)high-pressure metamorphic collision belt, not a Triassic one, as suggested by some SHRIMP zircon ages in recent literature. Instead of trying to date the peak pressure conditions we focused on 40Ar/39Ar analysis of white mica formed during retrograde recrystallisation when the (ultra)high-pressure metamorphic rocks of the Changawuzi-Kekesu complex were exhumed. Exhumation was coeval with their northward thrusting over the southern margin of the Yili terrane, the easternmost element of the Kazakhstan composite super-terrane, which produced main phase tectonic structures. The Yili terrane comprises a Proterozoic basement covered by metasediments, intruded by Early Carboniferous granites when it formed part of a continental margin arc. During the Permian deformation was partitioned in vertical brittle-ductile strike-slip fault zones that reactivated these suture zones and in which bimodal magmatism was concentrated. We also investigate the effects of these events on the isotopic ages of mica. 40Ar/39Ar laser-probe dating of white mica reveals that the strongest retrogressed blueschists immediately above the basal thrust fault of the Changawuzi-Kekesu belt gave the youngest plateau age of 316 ± 2 Ma (1σ). White mica in greenschist-facies metamorphic quartzite from the ductilely deformed metasedimentary cover of the Yili terrane's crystalline basement, taken at about 1 km below the thrust contact with the overlying Changawuzi-Kekesu belt, yielded a plateau age of 323 ± 1 Ma (1

  2. Age and correlation of the Calera Limestone in the Permanente terrane of northern California

    USGS Publications Warehouse

    Sliter, William V.; McGann, Mary

    1992-01-01

    Planktonic foraminifers indicate that outcrops of Calera Limestone from the Permanente terrane in the Franciscan Complex of northern California range in age from possibly as old as Barremian to late Turonian. Underlying black limestone, which is devoid of planktonic foraminifers, presumably is Barremian in age or older. The top of the sequence exposed in major quarries is always faulted. Improved biostratigraphic resolution shows two patterns of missing time intervals. The primary pattern, which is found at all localities and involves missing planktonic foraminiferal zones in the late Aptian to early Albian and the late Albian, is linked to paleoceanographic changes in the Cretaceous Pacific Ocean. The secondary pattern, which is found at the scattered outcrops outside the major quarries and involves missing zones in the Albian and Cenomanian, suggests the results of a common tectonic history related to the accretion of a large seamount.

  3. Accretion of Grenvillian terranes to the southwestern border of the Río de la Plata craton, western Argentina

    NASA Astrophysics Data System (ADS)

    Varela, Ricardo; Basei, Miguel A. S.; González, Pablo D.; Sato, Ana M.; Naipauer, Maximiliano; Campos Neto, Mario; Cingolani, Carlos A.; Meira, Vinicius T.

    2011-04-01

    A comprehensive review of the geological, geochronological, and isotopic features of the Mesoproterozoic Grenvillian terranes attached to the southwest of the Río de la Plata craton in Early Paleozoic times is presented in this paper. They are grouped into the northern (sierras de Umango, Maz and del Espinal and surroundings), central (Sierra de Pie de Palo, southern Precordillera and Frontal Cordillera), and southern (San Rafael and Las Matras Blocks) segments. The Mesoproterozoic basement consists mainly of arc related, intermediate to acidic and mafic-ultramafic rocks of 1,244-1,027 Ma, with juvenile, Laurentian affinity. Exception to it is the Maz Group, with a protracted history and reworked character. They are affected by 846-570 Ma, extensional magmatism in the northern and central segments, which represents the Neoproterozoic breakup of the Rodinia supercontinent. Successive passive margin sedimentation is registered in Late Neoproterozoic (~640-580 Ma) and Cambro-Ordovician (~550-470 Ma) times. The southern segment is noted for the younger sedimentation alone, and for showing the exclusive primary unconformable relationship between the Mesoproterozoic basement and Early Ordovician cover. The effects of Early Paleozoic Famatinian orogeny, associated with the collisions of Cuyania and Chilenia terranes, are recorded as main phase (480-450 Ma), late phase (440-420 Ma), and Chanic phase (400-360 Ma). Among them, the tectonothermal climax is the Ordovician main phase, to which klippe and nappe structures typical of collisional orogens are related in the northern and central segments. Preliminary data allow us to suggest a set of paired metamorphic belts, with an outboard high-P/T belt, and an inboard Barrowian P/T belt.

  4. Crustal structure beneath the Blue Mountains terranes and cratonic North America, eastern Oregon, and Idaho, from teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Christian Stanciu, A.; Russo, Raymond M.; Mocanu, Victor I.; Bremner, Paul M.; Hongsresawat, Sutatcha; Torpey, Megan E.; VanDecar, John C.; Foster, David A.; Hole, John A.

    2016-07-01

    We present new images of lithospheric structure obtained from P-to-S conversions defined by receiver functions at the 85 broadband seismic stations of the EarthScope IDaho-ORegon experiment. We resolve the crustal thickness beneath the Blue Mountains province and the former western margin of cratonic North America, the geometry of the western Idaho shear zone (WISZ), and the boundary between the Grouse Creek and Farmington provinces. We calculated P-to-S receiver functions using the iterative time domain deconvolution method, and we used the H-k grid search method and common conversion point stacking to image the lithospheric structure. Moho depths beneath the Blue Mountains terranes range from 24 to 34 km, whereas the crust is 32-40 km thick beneath the Idaho batholith and the regions of extended crust of east-central Idaho. The Blue Mountains group Olds Ferry terrane is characterized by the thinnest crust in the study area, 24 km thick. There is a clear break in the continuity of the Moho across the WISZ, with depths increasing from 28 km west of the shear zone to 36 km just east of its surface expression. The presence of a strong midcrustal converting interface at 18 km depth beneath the Idaho batholith extending 20 km east of the WISZ indicates tectonic wedging in this region. A north striking 7 km offset in Moho depth, thinning to the east, is present beneath the Lost River Range and Pahsimeroi Valley; we identify this sharp offset as the boundary that juxtaposes the Archean Grouse Creek block with the Paleoproterozoic Farmington zone.

  5. Development and application of a soil organic matter-based soil quality index in mineralized terrane of the Western US

    USGS Publications Warehouse

    Blecker, S.W.; Stillings, Lisa L.; Amacher, M.C.; Ippolito, J.A.; DeCrappeo, N.M.

    2013-01-01

    Soil quality indices provide a means of distilling large amounts of data into a single metric that evaluates the soil’s ability to carry out key ecosystem functions. Primarily developed in agroecosytems, then forested ecosystems, an index using the relation between soil organic matter and other key soil properties in more semi-arid systems of the Western US impacted by different geologic mineralization was developed. Three different sites in two different mineralization types, acid sulfate and Cu/Mo porphyry in California and Nevada, were studied. Soil samples were collected from undisturbed soils in both mineralized and nearby unmineralized terrane as well as waste rock and tailings. Eight different microbial parameters (carbon substrate utilization, microbial biomass-C, mineralized-C, mineralized-N and enzyme activities of acid phosphatase, alkaline phosphatase, arylsulfatase, and fluorescein diacetate) along with a number of physicochemical parameters were measured. Multiple linear regression models between these parameters and both total organic carbon and total nitrogen were developed, using the ratio of predicted to measured values as the soil quality index. In most instances, pooling unmineralized and mineralized soil data within a given study site resulted in lower model correlations. Enzyme activity was a consistent explanatory variable in the models across the study sites. Though similar indicators were significant in models across different mineralization types, pooling data across sites inhibited model differentiation of undisturbed and disturbed sites. This procedure could be used to monitor recovery of disturbed systems in mineralized terrane and help link scientific and management disciplines.

  6. Modeling the exhumation path of partially melted ultrahigh-pressure metapelites, North-East Greenland Caledonides

    NASA Astrophysics Data System (ADS)

    Lang, Helen M.; Gilotti, Jane A.

    2015-06-01

    Pseudosection modeling constrains the pressure-temperature (P-T) exhumation path of partially melted ultrahigh-pressure (UHP) metapelites exposed in the North-East Greenland UHP terrane. A robust peak P and T estimate of 3.6 GPa and 970 °C based on mineral assemblages in nearby kyanite eclogites is the starting point for the P-T path. Although the peak assemblage for the metapelite is not preserved, the calculated modeled peak assemblage contained substantial clinopyroxene, garnet, phengite, K-feldspar and coesite with minor kyanite and rutile. Combining the pseudosection and observed textures, the decompression path crosses the coesite-quartz transition before reaching the dry phengite dehydration melting reaction where phengite is abruptly consumed. In the range of 2.5 to 2.2 GPa, clinopyroxene is completely consumed and garnet grows to its maximum volume and grossular content, matching the high grossular rims of relict megacrysts. Plagioclase joins the assemblage and the pseudosection predicts up to 12-13 vol.% melt in the supersolidus assemblage, which contained garnet, liquid, K-feldspar, plagioclase, kyanite, quartz and rutile. At this stage, the steep decompression path flattened out and became nearly isobaric. The melt crystallization assemblage that formed when the path crossed the solidus with decreasing temperature contains phengite, garnet, biotite, 2 feldspars, kyanite, quartz and rutile. Therefore, the path must have intersected the solidus at approximately 1.2 GPa, 825 °C. The pseudosection predicts that garnet is consumed on the cooling path, but little evidence of late garnet consumption or other retrograde effects is observed. This may be due to partial melt loss from the rock. Isochemical PT-n and PT-X sections calculated along the P-T path display changes in mineral assemblage and composition that are consistent with preserved assemblages.

  7. Deformation and Metasomatic Evolution at the Subduction Plate Interface As Viewed from Study of HP/UHP Metamorphic Rocks

    NASA Astrophysics Data System (ADS)

    Bebout, G. E.; Penniston-Dorland, S.

    2014-12-01

    We provide a view of lithologic makeup, deformation, and fluid-rock interaction along the deep forearc to subarc plate interface, based on insights gained from study of HP/UHP metamorphic rocks. Exposures of plate-boundary shear zones on which we base our perspective represent 30-80 km depths and are on Catalina Island and at Monviso, Syros, and New Caledonia. Each contains highly deformed zones with schistose matrix, commonly with a large ultramafic component, containing bodies of less deformed mafic, sedimentary, and ultramafic rocks. These "blocks" have varying geometries, are up to km-scale, and can preserve disparate P-T histories reflecting dynamics of incorporation and entrainment. Sheared matrices contain high-variance, hydrous mineral assemblages in some cases resembling metasomatic zones ("rinds") at block-matrix contacts, and rinds and matrices have homogenized isotopic compositions reflecting extensive fluid-rock interaction. Shearing and related physical juxtaposition of disparate metasomatic rocks can result in mixed or 'hybrid' chemical compositions. The chlorite-, talc-, and amphibole-rich schists developed by these processes can stabilize H2O to great depth and influence its cycling. Fluids (hydrous fluids, silicate melts) released within slabs necessarily interact with highly deformed, lithologically hybridized zones at the plate interface as they ascend to potentially enter mantle wedges. Fluids bearing chemical/isotopic signatures of hybrid rocks appear capable of producing arc magma compositions interpreted as reflecting multiple, chemically distinct fluids sources. Geophysical signatures of these rheologically weak zones are equivocal but many recognize the presence of zones of low seismic velocity at/near the top of slabs and attribute them to hydrated rocks. Whether rocks from this interface buoyantly ascend into mantle wedges, indicated in some theoretical models, remains largely untested by field and geophysical observations.

  8. Cyclicity in Silurian island-arc carbonates, Alexander terrane, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kittredge, L.E.; Soja, C.M.

    1993-03-01

    Silurian carbonates from Alaska (Alexander terrane) record the evolution of a submarine platform during waning volcanism in an island arc. A detailed stratigraphic analysis of a 47 meter-thick sequence revealed the existence of cyclically repeated limestones: coral-stromatoporoid wackestones alternate with oncoid packstones and bioturbated, silty lime mudstones. The coral-stromatoporoid deposits are characterized by a low-diversity assemblage of dendroid corals, massive stromatoporoids, Atrypoidea brachiopods, and rare occurrences of biostromes associated with Solenopora, high-spired gastropods, and crinoids. Oncoids typically are 2-6 mm in diameter and form massive, meter-thick units. Coated grains are symmetrically developed, have a shell or algal nucleus, and aremore » also a minor component of coral-stromatoporoid beds. These lithologic units form seven, shallowing-upwards cycles (parasequences) that range in thickness from 3-9 meters. Coral-stomatoporoid wackestones form the base of each cycle and grade upwards into oncoid packstones with silty, lime mudstones at the top. This succession of lithofacies within each cycle reflects an increase in energy levels from relatively deeper water environments to relatively shallower ones. The lack of abrasion in the corals and stromatoporoids suggests predominantly quiet-water conditions in shallow subtidal areas affected by periodic turbulence. Comparison with correlative sections in Alaska and lack of correspondence with global sea level curves suggest that the primary cause of cyclicity was tectonic perturbations with secondary eustatic effects. Cyclic deposition in peri/subtidal sites was terminated by rapid drowning of the carbonate platform during late Silurian orogenesis.« less

  9. Lithospheric discontinuities beneath the U.S. Midcontinent - signatures of Proterozoic terrane accretion and failed rifting

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Gilbert, Hersh; Fischer, Karen M.; Andronicos, Christopher L.; Pavlis, Gary L.; Hamburger, Michael W.; Marshak, Stephen; Larson, Timothy; Yang, Xiaotao

    2018-01-01

    Seismic discontinuities between the Moho and the inferred lithosphere-asthenosphere boundary (LAB) are known as mid-lithospheric discontinuities (MLDs) and have been ascribed to a variety of phenomena that are critical to understanding lithospheric growth and evolution. In this study, we used S-to-P converted waves recorded by the USArray Transportable Array and the OIINK (Ozarks-Illinois-Indiana-Kentucky) Flexible Array to investigate lithospheric structure beneath the central U.S. This region, a portion of North America's cratonic platform, provides an opportunity to explore how terrane accretion, cratonization, and subsequent rifting may have influenced lithospheric structure. The 3D common conversion point (CCP) volume produced by stacking back-projected Sp receiver functions reveals a general absence of negative converted phases at the depths of the LAB across much of the central U.S. This observation suggests a gradual velocity decrease between the lithosphere and asthenosphere. Within the lithosphere, the CCP stacks display negative arrivals at depths between 65 km and 125 km. We interpret these as MLDs resulting from the top of a layer of crystallized melts (sill-like igneous intrusions) or otherwise chemically modified lithosphere that is enriched in water and/or hydrous minerals. Chemical modification in this manner would cause a weak layer in the lithosphere that marks the MLDs. The depth and amplitude of negative MLD phases vary significantly both within and between the physiographic provinces of the midcontinent. Double, or overlapping, MLDs can be seen along Precambrian terrane boundaries and appear to result from stacked or imbricated lithospheric blocks. A prominent negative Sp phase can be clearly identified at 80 km depth within the Reelfoot Rift. This arrival aligns with the top of a zone of low shear-wave velocities, which suggests that it marks an unusually shallow seismic LAB for the midcontinent. This boundary would correspond to the top of a

  10. Optimized ultra-high-pressure-assisted extraction of procyanidins from lychee pericarp improves the antioxidant activity of extracts.

    PubMed

    Zhang, Ruifen; Su, Dongxiao; Hou, Fangli; Liu, Lei; Huang, Fei; Dong, Lihong; Deng, Yuanyuan; Zhang, Yan; Wei, Zhencheng; Zhang, Mingwei

    2017-08-01

    To establish optimal ultra-high-pressure (UHP)-assisted extraction conditions for procyanidins from lychee pericarp, a response surface analysis method with four factors and three levels was adopted. The optimum conditions were as follows: 295 MPa pressure, 13 min pressure holding time, 16.0 mL/g liquid-to-solid ratio, and 70% ethanol concentration. Compared with conventional ethanol extraction and ultrasonic-assisted extraction methods, the yields of the total procyanidins, flavonoids, and phenolics extracted using the UHP process were significantly increased; consequently, the oxygen radical absorbance capacity and cellular antioxidant activity of UHP-assisted lychee pericarp extracts were substantially enhanced. LC-MS/MS and high-performance liquid chromatography quantification results for individual phenolic compounds revealed that the yield of procyanidin compounds, including epicatechin, procyanidin A2, and procyanidin B2, from lychee pericarp could be significantly improved by the UHP-assisted extraction process. This UHP-assisted extraction process is thus a practical method for the extraction of procyanidins from lychee pericarp.

  11. S-N profile of Receive function image across Qiangtang, Northern Tibet

    NASA Astrophysics Data System (ADS)

    He, R.; Gao, R.; Deng, G.; Li, W.; Hou, H.; Lu, Z.; Xiong, X.

    2010-12-01

    velocity structure, basement depth, although during Qiangtang terrane had been strongly reconstructed laterly, especiall in Cenozoic uplift of the Tibetan plateau. The above-mentioned evidences showed that Qiangtang terrance in present-day tectonic study should be divided by CUQT into two parts which includes south Qiangtang terrane in sourthern side and north Qiangtang terrrane in northern side. Because CUQT and Qiangtang terrane were traditionally named, tectonic settings within the Tibetan plateau had to be remarked renewedly . This project was financially supported together by Natural Science Foundations of China (40774051, 40974060), the basic outlay of scientific research work from Ministry of Science and Technology, China in 2009 ( J0915 ), China National Probing Project (SinoProbe-02).

  12. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Wang, Lu; Appel, Peter W. U.

    2015-11-01

    The Archean craton of West Greenland consists of many fault-bounded Eoarchean to Neoarchean tectonic terranes (crustal blocks). These tectonic terranes are composed mainly of tonalite-trondhjemite-granodiorite (TTG) gneisses, granitic gneisses, metavolcanic-dominated supracrustal belts, layered anorthositic complexes, and late- to post-tectonic granites. Rock assemblages and geochemical signatures in these terranes suggest that they represent fragments of dismembered oceanic island arcs, consisting mainly of TTG plutons, tholeiitic to calc-alkaline basalts, boninites, picrites, and cumulate layers of ultramafic rocks, gabbros, leucogabbros and anorthosites, with minor sedimentary rocks. The structural characteristics of the terrane boundaries are consistent with the assembly of these island arcs through modern style of horizontal tectonics, suggesting that the Archean craton of West Greenland grew at convergent plate margins. Several supracrustal belts that occur at or near the terrane boundaries are interpreted as relict accretionary prisms. The terranes display fold and thrust structures and contain numerous 10 cm to 20 m wide bifurcating, ductile shear zones that are characterized by a variety of structures including transposed and redistributed isoclinal folds. Geometrically these structures are similar to those occurring on regional scales, suggesting that the Archean craton of West Greenland can be interpreted as a continental scale accretionary complex, such as the Paleozoic Altaids. Melting of metavolcanic rocks during tectonic thickening in the arcs played an important role in the generation of TTGs. Non-uniformitarian models proposed for the origin of Archean terranes have no analogs in the geologic record and are inconsistent with structural, lithological, petrological and geochemical data collected from Archean terranes over the last four decades. The style of deformation and generation of felsic rocks on outcrop scales in the Archean craton of West

  13. Unravelling the complexities of a high-grade Paleoarchean terrane: Saglek Block, Labrador, Canada

    NASA Astrophysics Data System (ADS)

    Salacinska, Anna; Kusiak, Monika; Dunkley, Daniel; Whitehouse, Martin; Wilde, Simon

    2017-04-01

    The Nain Province of Labrador is on the western edge of the Archean North Atlantic Craton, and includes the Saglek Block, where >3.6 Ga Uivak orthogneisses were intercalated with a variety of supracrustals during Neoarchean granulite-grade metamorphism. In order to unravel the complex magmatic and metamorphic history of this terrane, samples of grey orthogneiss mapped as Uivak Gneiss were taken from Tigigakyuk Inlet, where previous studies have suggested the preservation of >3.9 Ga zircons [1]. Samples vary from fine, equigranular felsic-intermediate gneiss, through slightly porphyroblastic metagranitoids to metagabbros. Felsic orthogneises are mostly composed of oligoclase, quartz, biotite and K-feldspar, whereas more mafic samples contain hornblende and augite, with the latter being largely altered to pargasite during post-granulite hydration and lower-grade metamorphism. Geochemically, all samples follow a calc-alkaline differentiation trend, and are metaluminous to slightly peraluminous. Based on the normative albite-anorthite-orthoclase diagram, samples plot within the tonalite and trondhjemite fields; however, according to the normative QAPF classification, they are granodioritic to quartz-monzodioritic. Following the criteria of Moyen and Martin (2012), only one granodioritic sample represents typical Archean TTG gneiss, while the other samples are slightly more K-rich. Although bulk compositions may have been affected by K-enrichment during granulite-facies metamorphism, these samples mostly belong to the "TTG-like" suite. Concordant SIMS U-Pb age data obtained from the zircon cores with characteristic igneous growth textures from TTG-like and quartz monzodioritic gneiss fall within the interval 3.70-3.75 Ga, consistent with previous age estimates for the protoliths of Uivak I gneisses [3,4]. Some quartz monzodioritic gneisses are significantly younger (3.55 Ga), showing that the gneisses at Tigigakyuk Inlet are not of a simple magmatic suite, but are

  14. Ultrahigh Pressure Processing Produces Alterations in the Metabolite Profiles of Panax ginseng.

    PubMed

    Lee, Mee Youn; Singh, Digar; Kim, Sung Han; Lee, Sang Jun; Lee, Choong Hwan

    2016-06-22

    Ultrahigh pressure (UHP) treatments are non-thermal processing methods that have customarily been employed to enhance the quality and productivity of plant consumables. We aimed to evaluate the effects of UHP treatments on ginseng samples (white ginseng: WG; UHP-treated WG: UWG; red ginseng: RG; UHP-treated RG: URG; ginseng berries: GB; and UHP-treated GB: UGB) using metabolite profiling based on ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Multivariate data analyses revealed a clear demarcation among the GB and UGB samples, and the phenotypic evaluations correlated the highest antioxidant activities and the total phenolic and flavonoid compositions with the UGB samples. Overall, eight amino acids, seven organic acids, seven sugars and sugar derivatives, two fatty acids, three notoginsenosides, three malonylginsenosides, and three ginsenosides, were identified as significantly discriminant metabolites between the GB and UGB samples, with relatively higher proportions in the latter. Ideally, these metabolites can be used as quality biomarkers for the assessment of ginseng products and our results indicate that UHP treatment likely led to an elevation in the proportions of total extractable metabolites in ginseng samples.

  15. Circum-Pacific accretion of oceanic terranes to continental blocks: accretion of the Early Permian Dun Mountain ophiolite to the E Gondwana continental margin, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair

    2016-04-01

    Accretionary orogens, in part, grow as a result of the accretion of oceanic terranes to pre-existing continental blocks, as in the circum-Pacific and central Asian regions. However, the accretionary processes involved remain poorly understood. Here, we consider settings in which oceanic crust formed in a supra-subduction zone setting and later accreted to continental terranes (some, themselves of accretionary origin). Good examples include some Late Cretaceous ophiolites in SE Turkey, the Jurassic Coast Range ophiolite, W USA and the Early Permian Dun Mountain ophiolite of South Island, New Zealand. In the last two cases, the ophiolites are depositionally overlain by coarse clastic sedimentary rocks (e.g. Permian Upukerora Formation of South Island, NZ) that then pass upwards into very thick continental margin fore-arc basin sequences (Great Valley sequence, California; Matai sequence, South Island, NZ). Field observations, together with petrographical and geochemical studies in South Island, NZ, summarised here, provide evidence of terrane accretion processes. In a proposed tectonic model, the Early Permian Dun Mountain ophiolite was created by supra-subduction zone spreading above a W-dipping subduction zone (comparable to the present-day Izu-Bonin arc and fore arc, W Pacific). The SSZ oceanic crust in the New Zealand example is inferred to have included an intra-oceanic magmatic arc, which is no longer exposed (other than within a melange unit in Southland), but which is documented by petrographic and geochemical evidence. An additional subduction zone is likely to have dipped westwards beneath the E Gondwana margin during the Permian. As a result, relatively buoyant Early Permian supra-subduction zone oceanic crust was able to dock with the E Gondwana continental margin, terminating intra-oceanic subduction (although the exact timing is debatable). The amalgamation ('soft collision') was accompanied by crustal extension of the newly accreted oceanic slab, and

  16. Triassic arc-derived detritus in the Triassic Karakaya accretionary complex was not derived from either the S Eurasian margin (Istanbul terrane) or the N Gondwana margin (Taurides)

    NASA Astrophysics Data System (ADS)

    Ustaömer, Timur; Ayda Ustaömer, Petek; Robertson, Alastair H. F.; Gerdes, Axel; Zulauf, Gernold

    2014-05-01

    We present new U-Pb zircon source age data for Upper Triassic sandstones of the Istanbul Terrane (S Eurasian margin) and also for Triassic sandstones of the Taurides (N Gondwana margin). The main aim is to detect and quantify the contribution of Triassic magmatism as detritus to either of these crustal blocks. This follows the recent discovery of a Triassic magmatic arc source for the Triassic sandstones of the Palaeotethyan Karakaya subduction-accretion complex (Ustaömer et al. 2013; this meeting). Carboniferous (Variscan) zircon grains also form a significant detrital population, plus several more minor populations. Six sandstone samples were studied, two from the İstanbul Terrane (Bakırlıkıran Formation of the Kocaeli Triassic Basin) and four from the Tauride Autochthon (latest Triassic Üzümdere Formation and Mid-Triassic Kasımlar Formations; Beyşehir region). Detrital zircon grains were dated by the laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) U-Pb method at Goethe University, Frankfurt. Our results do not reveal Triassic detritus in the Üzümdere Formation. The U-Pb age of the analysed zircon grains ranges from 267 Ma to 3.2 Ga. A small fraction of Palaeozoic zircons are Permian (267 to 296 Ma), whereas the remainder are Early Palaeozoic. Ordovician grains (4%) form two age clusters, one at ca. 450 Ma and the other at ca. 474 Ma. Cambrian-aged grains dominate the zircon population, while the second largest population is Ediacaran (576 to 642 Ma). Smaller populations occur at 909-997 Ma, 827-839 Ma, 1.8-2.0 Ga and 2.4-2.6 Ga. The sandstones of the Kasımlar Formation have similar zircon age cluster to those of the somewhat younger Üzümdere Formation, ranging from 239 Ma to 2.9 Ga. A few grains gave Anisian ages. Cambrian zircon grains are less pronounced than in the Kasımlar Formation compared to the Üzümdere Formation. The detrital zircon record of Tauride sandstones, therefore, not indicates significant contribution

  17. Regional framework and geology of iron oxide-apatite-rare earth element and iron oxide-copper-gold deposits of the Mesoproterozoic St. Francois Mountains Terrane, southeast Missouri

    USGS Publications Warehouse

    Day, Warren C.; Slack, John F.; Ayuso, Robert A.; Seeger, Cheryl M.

    2016-01-01

    This paper provides an overview on the genesis of Mesoproterozoic igneous rocks and associated iron oxide ± apatite (IOA) ± rare earth element, iron oxide-copper-gold (IOCG), and iron-rich sedimentary deposits in the St. Francois Mountains terrane of southeast Missouri, USA. The St. Francois Mountains terrane lies along the southeastern margin of Laurentia as part of the eastern granite-rhyolite province. The province formed during two major pulses of igneous activity: (1) an older early Mesoproterozoic (ca. 1.50–1.44 Ga) episode of volcanism and granite plutonism, and (2) a younger middle Mesoproterozoic (ca. 1.33–1.30 Ga) episode of bimodal gabbro and granite plutonism. The volcanic rocks are predominantly high-silica rhyolite pyroclastic flows, volcanogenic breccias, and associated volcanogenic sediments with lesser amounts of basaltic to andesitic volcanic and associated subvolcanic intrusive rocks. The iron oxide deposits are all hosted in the early Mesoproterozoic volcanic and volcaniclastic sequences. Previous studies have characterized the St. Francois Mountains terrane as a classic, A-type within-plate granitic terrane. However, our new whole-rock geochemical data indicate that the felsic volcanic rocks are effusive derivatives from multicomponent source types, having compositional similarities to A-type within-plate granites as well as to S- and I-type granites generated in an arc setting. In addition, the volcanic-hosted IOA and IOCG deposits occur within bimodal volcanic sequences, some of which have volcanic arc geochemical affinities, suggesting an extensional tectonic setting during volcanism prior to emplacement of the ore-forming systems.The Missouri iron orebodies are magmatic-related hydrothermal deposits that, when considered in aggregate, display a vertical zonation from high-temperature, magmatic ± hydrothermal IOA deposits emplaced at moderate depths (~1–2 km), to magnetite-dominant IOA veins and IOCG deposits emplaced at shallow

  18. Advanced Land Observing Satellite (ALOS) Phased Array Type L-Band Synthetic Aperture Radar (PALSAR) mosaic for the Kahiltna terrane, Alaska, 2007-2010

    USGS Publications Warehouse

    Cole, Christopher J.; Johnson, Michaela R.; Graham, Garth E.

    2015-01-01

    The USGS has compiled a continuous, cloud-free 12.5-meter resolution radar mosaic of SAR data of approximately 212,000 square kilometers to examine the suitability of this technology for geologic mapping. This mosaic was created from Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data collected from 2007 to 2010 spanning the Kahiltna terrane and the surrounding area. Interpretation of these data may help geologists understand past geologic processes and identify areas with potential for near-surface mineral resources for further ground-based geological and geochemical investigations.

  19. Detrital zircon ages in Korean mid-Paleozoic meta-sandstones (Imjingang Belt and Taean Formation): Constraints on tectonic and depositional setting, source regions and possible affinity with Chinese terranes

    NASA Astrophysics Data System (ADS)

    Han, Seokyoung; de Jong, Koen; Yi, Keewook

    2017-08-01

    Sensitive High-Resolution Ion Microprobe (SHRIMP) U-Th-Pb isotopic data of detrital zircons from mature, quartz-rich meta-sandstones are used to constrain possible tectonic affinities and source regions of the rhythmically layered and graded-bedded series in the Yeoncheon Complex (Imjingang Belt) and the correlative Taean Formation. These metamorphic marine turbidite sequences presently occur along the Paleoproterozoic (1.93-1.83 Ga) Gyeonggi Massif, central Korea's main high-grade metamorphic gneiss terrane. Yet, detrital zircons yielded highly similar multimodal age spectra with peaks that do not match the age repartition in these basement rocks, as late (1.9-1.8 Ga) and earliest (∼ 2.5 Ga) Paleoproterozoic detrital modes are subordinate but, in contrast, Paleozoic (440-425 Ma) and Neoproterozoic (980-920 Ma) spikes are prominent, yet the basement essentially lacks lithologies with such ages. The youngest concordant zircon ages in each sample are: 378, 394 and 423 Ma. The maturity of the meta-sandstones and the general roundness of zircons of magmatic signature, irrespective of their age, suggest that sediments underwent considerable transport from source to sink, and possibly important weathering and recycling, which may have filtered out irradiation-weakened metamorphic zircon grains. In combination with these isotopic data, presence of a low-angle ductile fault contact between the Yeoncheon Complex and the Taean Formation and the underlying mylonitized Precambrian basement implies that they are in tectonic contact and do not have a stratigraphic relationship, as often assumed. Consequently, in all likelihood, both meta-sedimentary formations: (1) are at least of early Late Devonian age, (2) received much of their detritus from distant (reworked) Silurian-Devonian and Early Neoproterozoic magmatic sources, not present in the Gyeonggi Massif, (3) and not from Paleoproterozoic crystalline rocks of this massif, or other Korean Precambrian basement terranes, and

  20. The Cannery Formation--Devonian to Early Permian arc-marginal deposits within the Alexander Terrane, Southeastern Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Layer, Paul W.; Harris, Anita G.; Haeussler, Peter J.; Murchey, Benita L.

    2011-01-01

    cherts on both Admiralty and Kupreanof Islands contain radiolarians as young as Permian, the age of the Cannery Formation is herein extended to Late Devonian through early Permian, to include the early Permian rocks exposed in its type locality. The Cannery Formation is folded and faulted, and its stratigraphic thickness is unknown but inferred to be several hundred meters. The Cannery Formation represents an extended period of marine deposition in moderately deep water, with slow rates of deposition and limited clastic input during Devonian through Pennsylvanian time and increasing argillaceous, volcaniclastic, and bioclastic input during the Permian. The Cannery Formation comprises upper Paleozoic rocks in the Alexander terrane of southeastern Alaska. In the pre-Permian upper Paleozoic, the tectonic setting of the Alexander terrane consisted of two or more evolved oceanic arcs. The lower Permian section is represented by a distinctive suite of rocks in the Alexander terrane, which includes sedimentary and volcanic rocks containing early Permian fossils, metamorphosed rocks with early Permian cooling ages, and intrusive rocks with early Permian cooling ages, that form discrete northwest-trending belts. After restoration of 180 km of dextral displacement of the Chilkat-Chichagof block on the Chatham Strait Fault, these belts consist, from northeast to southwest, of (1) bedded chert, siliceous argillite, volcaniclastic turbidites, pillow basalt, and limestone of the Cannery Formation and the Porcupine Slate of Gilbert and others (1987); (2) greenschist-facies Paleozoic metasedimentary and metavolcanic rocks that have Permian cooling ages; (3) silty limestone and calcareous argillite interbedded with pillow basalt and volcaniclastic rocks of the Halleck Formation and the William Henry Bay area; and (4) intermediate-composition and syenitic plutons. These belts correspond to components of an accretionary complex, contemporary metamorphic rocks, forearc-basin deposits,

  1. The Hadean to Paleoarchean geodynamo: microconglomerate tests from siliciclastic metasedimentary rocks from the Southern Cross Terrane of Western Australia

    NASA Astrophysics Data System (ADS)

    Cottrell, R. D.; Tarduno, J. A.; Bono, R. K.; Thern, E. R.; Chhibber, S. K.

    2016-12-01

    Detrital zircons found within metasedimentary rocks of the Yilgarn Craton (Western Austrlia) contain information about the early history of the geodynamo. Recently reported single crystal paleointensity (SCP) values obtained from zircon grains of the Jack Hills (JH) belt (Tarduno et al., 2015) suggest the presence of a core dynamo to times as old as 4.2 Ga. Magnetizations carried by zircons within these rocks have been preserved despite multiple reheating events of the host metasedimentary unit. Two positive conglomerate tests (Tarduno and Cottrell, 2013; Tarduno et al., 2015) as well as interlaboratory studies reproducing a prior positive conglomerate test (Dare et al., 2015; 2016) attest to the primary nature of the remanence carried by these zircons. Moreover, new Li data limit heating after zircon formation to < 500 oC. Similarly, the metasedimentary rocks of the Southern Cross Terrane, more than 400 kilometers away from the Discovery Site of the Jack Hills, contain detrital Eoarchean to Hadean age zircons (Nelson, 2005; Wyche, 2007). Following Tarduno et al. (2015), a micro-conglomerate test of oriented, small ( 500-700 mm) samples centered on single zircons ( 200-350 mm) was performed using the University of Rochester's ultra-high resolution 3-component DC SQUID magnetometer that affords an order of magnitude greater sensitivity than other high-resolution SQUID rock magnetometers. The characteristic remanences from oriented zircons (N=10; R=0.81) that unblock between 565 and 580 °C, consistent with a magnetite carrier, are well defined but together cannot be distinguished from those drawn from a random distribution (Ro=5.03) at the 95% confidence level; this indicates a positive microconglomerate test. Preliminary paleointensity determinations range between 4-27 μT. Additional studies of hand samples from the Southern Cross Terrane are underway.

  2. Regional groundwater flow in structurally-complex extended terranes: An evaluation of the sources of discharge at Ash Meadows, Nevada

    NASA Astrophysics Data System (ADS)

    Bushman, Michelle; Nelson, Stephen T.; Tingey, David; Eggett, Dennis

    2010-05-01

    SummaryAsh Meadows, Nevada, USA is a site of major groundwater discharge (˜38,000 L/min) in the arid Mojave Desert, and hosts a number of endemic and threatened wetland species. In addition to these resources, Ash Meadows may also represent the future discharge location of radionuclide-laden waters from nuclear weapons testing at the Nevada Test Site. More importantly, however, Ash Meadows provides the opportunity to understand the controls on water transfer between basins through fractured bedrock. 4000+ solute analyses were assembled from the literature into a single database. The data were screened for spatial distribution, completeness, charge balance, and elevated temperatures (⩾20 °C and within regional flow systems), with 246 candidate up-gradient water remaining distributed among six potential source areas in addition to and Ash Meadows itself. These potential sources include both carbonate, volcanic and perhaps valley-fill aquifer systems. These waters were characterized by cluster analysis in order to sort similar waters in an objective fashion into potential flow paths and to establish representative endmember waters for inverse geochemical models and other modes of analysis. Isotopic tracers, both conservative and those reflecting water-rock interaction, all suggest that waters at Ash Meadows are derived by southward flow from volcanic terranes, parallel to the preferred permeability structure induced by active regional east-west extension. Solute balances support this conclusion. However, this runs counter to the prevailing model that waters at Ash Meadows are derived from easterly and northeasterly flows from the Spring Mountains and Pahranagat Valley areas by interbasin flow through a continuous fractured carbonate aquifer. This work suggests that carbonate aquifer systems in extended terranes are more compartmentalized than previously appreciated and that anisotropy in fracture permeability is key to compartmentalization and the control of flow

  3. Ancient Laurentian detrital zircon in the closing Iapetus Ocean, Southern Uplands terrane, Scotland

    NASA Astrophysics Data System (ADS)

    Waldron, John W. F.; Floyd, James D.; Simonetti, Antonio; Heaman, Larry M.

    2008-07-01

    Early Paleozoic sandstones in the Southern Uplands terrane ofScotland were deposited during closure of the Iapetus Oceanbetween Laurentia and Avalonia. Their tectonic setting and sourcesare controversial, and different authors have supported subduction-accretion,extensional continental-margin development, or back-arc basinsettings. We report new U-Pb detrital zircon ages from fiveLate Ordovician sandstones from the Northern Belt of the SouthernUplands and test models of their tectonic setting. The U-Pbzircon age distributions are dominated by peaks characteristicof sources in Laurentia and include grains as old as 3.6 Ga,older than any previously recorded in the British CaledonidesSE of the Laurentian foreland. Discordant grains in one samplesuggest derivation via erosion of metasedimentary rocks incorporatedin the Grampian-Taconian orogen. Rare Neoproterozoic grains,previously interpreted as originating from a peri-Gondwananterrane, may be derived from igneous rocks associated with Iapetanrifting. Only rare zircons are contemporary with the depositionalages. The results are difficult to reconcile with extensionalcontinental-margin and back-arc models, but they support anactive continental-margin subduction-accretion model. Closesimilarities with distributions from the Newfoundland Appalachiansare consistent with sinistral transpression during closing ofthe Iapetus Ocean.

  4. Diapirs of the Mediterranean ridge: The tectonic regime of an incipient accreted terrane

    NASA Technical Reports Server (NTRS)

    Mart, Y.

    1988-01-01

    The occurrence of diapirs in the Mediterranean ridge stems mostly from the massive deposition of salt and gypsum in the Mediterranean basin during the late Miocean. The diapiric emplacement of the evaporitic sequence is not obvious, because the mobilization of the salt beds and the initiation of the diapiric upward flow are constrained by the relatively shallow thickness of the Plio-Pleistocene sedimentary overburden and by the low heat flow that prevails in the eastern Mediterranean. The diapirs consist also of early Cretaceous shales as well as other gravitationally metastable strata which are less mobile than salt. Studies of subduction trenches and their surroundings show that shallow ridges occur seaward of the trenches in many places. The collisional motion between the African and the Eurasian plates would further enhance accretion of sediments in the Mediterranean ridge, which would attain subaerial exposure, and eventually would become a mountain range accreted to southern Europe. The numerous diapirs of salt and shales that occur in the ridge would be common features in the future accreted terrane, indicating an intermediate extensional phase in the tectonic history of the development of crustal growth.

  5. Sedimentary Provenance Constraints on the Middle Jurassic to Late Cretaceous Paleogeography of the Sichuan Basin, SW China

    NASA Astrophysics Data System (ADS)

    Li, Y.; He, D.; Li, D.; Lu, R.

    2017-12-01

    Sedimentary provenance of the Middle Jurassic to Late Cretaceous sediments in the Sichuan Basin is constrained by sandstone petrology and detrital zircon U-Pb geochronology, which provides critical insights into mid-late Mesozoic paleogeographic evolution of the Sichuan Basin. Petrographic analyses of 22 sandstone samples indicate moderate to high mature sediments and are primarily derived from cratonic or recycled sources. U-Pb age data for the Middle Jurassic to Late Cretaceous detrital zircons generally show populations at 130-200, 200-330, 400-490, 680-890, 1730-1960, and 2360-2600 Ma, with up-section variations. The Middle Jurassic sediments contain a relatively high density of 1.85 and 2.5 Ga zircons and a low density of the 800 Ma zircons, which are consistent with derivation mainly from the Songpan-Ganzi terrane and the South Qinling belt, and secondarily from the Western Jiangnan Orogen. The Late Jurassic and Early Cretaceous sedimentation with a scattered age distribution shared common multiple-source to sink systems that were predominantly draining towards the south and southeast, but increasingly drained southward, and were later disrupted by a synchronous northeastward drainage capture. Late Cretaceous sediments have a distinct reduction in <213 Ma zircons, suggesting that sedimentation involved southeastward and southwestward transport of sediments likely derived from the Songpan-Ganzi terrane, the south segment of the Longmenshan fault belt and western Yangtze Craton, and the uplifting areas of the N- and NE-Sichuan Basin. Changes in provenances during the mid-late Mesozoic period are coincident with temporal-spatial variations in depocenter migration and paleogeographic evolution of the Sichuan Basin, which are closely related to the multi-stage intracontinental subduction associated with clockwise rotation of the South China Block.

  6. The western transverse ranges microplate as a native terrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, M.D.; Reed, W.E.

    1994-04-01

    Palocurrent measurements from the entire Cretaceous section of the western Transverse Ranges microplate (WTRM) yield a northerly flow direction. Point count data indicate a mixed provenance for both conglomerates and associated sandstones. The dominant provenance was mixed magmatic arc/recycled orogen and disected/transitional arc terranes. Petrographic, quantitative SEM and microprobe analysis also indicate the presence of diagnostic Franciscan mineralogy in these sediments, including glaucophane, riebeckite, lawsonite, and serpentine, suggesting derivation from a subduction complex. Olistoclasts of chert, jadeitic graywacke, serpentine and blueschist are found intermixed within the arc-derived sediments. Olistoclasts range in size from sub-millimeter to centimeter scale and olistoliths rangemore » up to 150 m. Well preserved internal bedding in some of the olistoliths suggest emplacement by landsliding indicating very short transport distance. This Franciscan material represents the oldest melange-derived material reported from this part of California and documents uplift and erosion of the subduction complex earlier than previously suggested. These data are consistent with deposition in a Cretaceous fore-arc basin located west or south of the San Diego area. The allochthonous WTRM of southern California can be reconstructed to an originally north-south oriented fore-arc basin. After deposition of the Sespe Formation (22 Ma [+-]) the microplate was slivered by strike-slip faults and rotated clockwise approximately 90[degrees], after which, the block again accreted against the continental margin. Our reconstruction suggest that depositional and structural trends for Eocene and Cretaceous sediments is likely to be different from that in the Miocene Monterey pay zones in the Santa Barbara channel region. If our reconstruction is correct, exploration strategy for Eocene and Cretaceous petroleum in the southern California Bight should take this tectonic model into

  7. Rb-Sr whole-rock and mineral ages, K-Ar, 40Ar/39Ar, and U-Pb mineral ages, and strontium, lead, neodymium, and oxygen isotopic compositions for granitic rocks from the Salinian Composite Terrane, California:

    USGS Publications Warehouse

    Kistler, R.W.; Champion, D.E.

    2001-01-01

    This report summarizes new and published age and isotopic data for whole-rocks and minerals from granitic rocks in the Salinian composite terrane, California. Rubidium-strontium whole-rock ages of plutons are in two groups, Early Cretaceous (122 to 100 Ma) and Late Cretaceous (95 to 82 Ma). Early Cretaceous plutons occur in all granitic rock exposures from Bodega Head in the north to those from the Santa Lucia and Gabilan Ranges in the central part of the terrane. Late Cretaceous plutons have been identified in the Point Reyes Peninsula, the Santa Lucia and the Gabilan Ranges, and in the La Panza Range in the southern part of the terrane. Ranges of initial values of isotopic compositions are 87Sr/86Sr, 0.7046-0.7147, δ18O, +8.5 to +12.5 per mil, 206Pb/204Pb, 18.901-19.860, 207Pb/204Pb, 15.618-15.814, 208Pb/204Pb, 38.569- 39.493, and εNd, +0.9 to -8.6. The initial 87Sr/86Sr=0.706 isopleth is identified in the northern Gabilan Range and in the Ben Lomond area of the Santa Cruz Mountains, in Montara Mountain, in Bodega Head, and to the west of the Farallon Islands on the Cordell Bank. This isotopic boundary is offset about 95 miles (160km) by right-lateral displacements along the San Gregorio-Hosgri and San Andreas fault systems.

  8. Progressive Extensional Exhumation of the Ultrahigh-Pressure Tso Morari Terrain, NW Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Hodges, K.; Clark, R.; Monteleone, B.; Sachan, H.; Mukherjee, B. K.; Ahmad, T.

    2011-12-01

    The core of the Tso Morari dome in the Ladakh region of NW India (roughly 33 °10'N; 78°10'E) is one of only two known ultrahigh-pressure (UHP) terrains in the Himalayan-Tibetan orogenic system. The quartzofeldspathic Puga Orthogneiss from the structurally deepest portions of the terrain does not contain UHP mineralogy but surrounds dismembered lenses of mafic eclogite with accessory coesite, confirming that at least the eclogite lenses experienced UHP metamorphic conditions (Mukherjee et al., 2003, International Geology Review; Sachan et al., 2004, European Journal of Mineralogy). U-Pb zircon dates from the Puga orthogneiss (53.3 ± 0.7 Ma: Leech et al., 2007, International Geology Review) provide what appear to be the most precise available constraints on the age of UHP metamorphism at Tso Morari provided we presume that the UHP assemblages in the eclogite lenses developed at the same time as the 53.3 ± 0.7 Ma metamorphic zircon in the orthogneiss. However, other components of the zircon population studied by Leech and co-workers, as well as the results obtained using other thermochronometers and geochronometers (de Sigoyer et al., 2004, Tectonics), demonstrate that a series of lower pressure metamorphic events also affected the Tso Morari terrain between ca. 53 Ma and ca. 45 Ma, implying rapid decompression at elevated temperatures (ca. 800 - 350°C). Our 1:50000-scale geologic mapping at Tso Morari provides evidence that this exhumation was largely accommodated by two previously unrecognized low-angle ductile detachments that separate the terrain into three tectonostratigraphic units with distinctive metamorphic histories. The structurally lowest shear zone (Karla detachment) separates the Puga Orthogneiss from overlying lower amphibolite facies metasedimentary rocks of the Zoboshisha Unit, which contains no UHP assemblages. Structurally higher and demonstrably younger detachments separate the Zoboshisha Unit and the Puga Orthogneiss from greenschist to

  9. 40Ar/39Ar dating of oceanic plagiogranite: Constraints on the initiation of seafloor spreading in the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhong, Li-Feng; Cai, Guan-Qiang; Koppers, Anthony A. P.; Xu, Yi-Gang; Xu, He-Hua; Gao, Hong-Fang; Xia, Bin

    2018-03-01

    The Cenozoic opening of the South China Sea was one of the most significant tectonic events in SE Asia, coinciding with complex regional rifting, subduction, terrane collision, and large-scale continental strike-slip faulting. The timing of the initiation of seafloor spreading in the South China Sea remains controversial due to a scarcity of incontrovertible age data. This work provides the first report of an oceanic plagiogranite from the Penglai Seamount, located on the 17°N fossil spreading center of the East Sub-basin of the South China Sea, near the Manila Trench. Pyroxene and whole-rock 40Ar/39Ar dating yields ages of 32.3 ± 0.5 Ma and 28.9 ± 1.9 Ma, respectively. The plagiogranite show trace element and isotopic composition similar to those of mid-oceanic ridge basalts (MORB), with 87Sr/86Sr(t) = 0.70394; εNd(t) = 8.21; 206Pb/204Pb = 17.9930, 207Pb/204Pb = 15.4839, 208Pb/204Pb = 37.8852; εHf(t) = 20.95; and γOs(t) = 15.89. It suggested that the rock formed due to differential cooling between adjacent layers of oceanic crust and asthenospheric shearing at the oceanic spreading ridge, resulting in the development of detachment faults. This triggered the subsequent ingress of seawater along the faults, which transformed into a hydrothermal fluid under the influence of shear and geothermal heating, altering the parent gabbro, and leading to the generation of the daughter plagiogranite by anatexis during the early Oligocene. This new geochronology also demonstrates that the initial opening of the South China Sea occurred before 32 Ma, thereby constraining the Cenozoic tectonic evolution of Southeast Asia.

  10. Precambrian Field Camp at the University of Minnesota Duluth - Teaching Skills Applicable to Mapping Glaciated Terranes of the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Miller, J. D.; Hudak, G. J.; Peterson, D.

    2011-12-01

    Since 2007, the central program of the Precambrian Research Center (PRC) at the University of Minnesota Duluth has been a six-week geology field camp focused on the Precambrian geology of the Canadian Shield. This field camp has two main purposes. First and foremost is to teach students specialized field skills and field mapping techniques that can be utilized to map and interpret Precambrian shield terranes characterized by sparse outcrop and abundant glacial cover. In addition to teaching basic outcrop mapping technique , students are introduced to geophysical surveying (gravity, magnetics), glacial drift prospecting, and drill core logging techniques in several of our geological mapping exercises. These mapping methodologies are particularly applicable to minerals exploration in shield terranes. The second and equally important goal of the PRC field camp is to teach students modern map-making and map production skills. During the fifth and sixth weeks of field camp, students conduct "capstone" mapping projects. These projects encompass one week of detailed bedrock mapping in remote regions of northern Minnesota that have not been mapped in detail (e.g. scales greater than 1:24,000) and a second week of map-making and map generation utilizing geographic information systems (currently ArcGIS10), graphics software packages (Adobe Illustrator CS4), and various imaging software for geophysical and topographic data. Over the past five years, PRC students and faculty have collaboratively published 21 geologic maps through the Precambrian Research Center Map Series. These maps are currently being utilized in a variety of ways by industry, academia, and government for mineral exploration programs, development of undergraduate, graduate, and faculty research projects, and for planning, archeological studies, and public education programs in Minnesota's state parks. Acquisition of specialized Precambrian geological mapping skills and geologic map-making proficiencies has

  11. Geochemical and geochronological constraints on the origin and evolution of rocks in the active Woodlark Rift of Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Zirakparvar, Nasser Alexander

    Tectonically active regions provide important natural laboratories to glean information that is applicable to developing a better understanding of the geologic record. One such area of the World is Papua New Guinea, much of which is situated in an active and transient plate boundary zone. The focus of this PhD research is to develop a better understanding of rocks in the active Woodlark Rift, situated in Papua New Guinea's southernmost reaches. In this region, rifting and lithospheric rupture is occurring within a former subduction complex where there is a history of continental subduction and (U)HP metamorphism. The lithostratigraphic units exposed in the Woodlark Rift provide an opportunity to better understand the records of plate boundary processes at many scales from micron-sized domains within individual minerals to regional geological relationships. This thesis is composed of three chapters that are independent of one another but are all related to the overall goal of developing a better understanding of the record of plate boundary processes in the rocks currently exposed in the Woodlark Rift. The first chapter, published in its entirety in Earth and Planetary Science Letters (2011 v. 309, p. 56 - 66), is entitled 'Lu-Hf garnet geochronology applied to plate boundary zones: Insights from the (U)HP terrane exhumed within the Woodlark Rift'. This chapter focuses on the use of the Lu-Hf isotopic system to date garnets in the Woodlark Rift. Major findings of this study are that some of the rocks in the Woodlark Rift preserve a Lu-Hf garnet isotopic record of initial metamorphism and continental subduction occurring in the Late Mesozoic, whereas others only preserve a record of tectonic processes related to lithospheric rupture during the initiation of rifting in the Late Cenozoic. The second chapter is entitled 'Geochemical and geochronological constraints on the origin of rocks in the active Woodlark Rift of Papua New Guinea: Recognizing the dispersed

  12. U-Pb geochronology and Hf-Nd isotope compositions of the oldest Neoproterozoic crust within the Cadomian orogen: new evidence for a unique juvenile terrane

    NASA Astrophysics Data System (ADS)

    Samson, S. D.; D'Lemos, R. S.; Blichert-Toft, J.; Vervoort, J.

    2003-03-01

    New U-Pb dates, combined with Nd and Hf isotopic data, from rocks within the Port Morvan area of the Baie de St Brieuc region of Brittany identify a unique portion of the Neoproterozoic Cadomia terrane. Two gneisses near Port Morvan yielded U-Pb dates of 754.6±0.8 Ma and 746.0±0.9 Ma, ages that are more than 130 Myr older than the oldest units formed during the main phase of early Cadomian magmatism. Two trondhjemite boulders from the monogenetic facies of the Cesson conglomerate yielded identical ages of 665.2±0.5 Ma and 665.5±0.7 Ma, and a cobble from the polygenetic facies yields a 207Pb- 206Pb date of 637±2 Ma. Individual detrital zircons from a sandstone associated with the Cesson conglomerates yield concordant U-Pb dates ranging from 650±3 Ma to 624.1±0.6 Ma. Initial ɛNd values for the rocks in this region range from +5.0 to +6.6, indicative of a substantial input from depleted mantle. Initial ɛHf values determined on zircons from these Neoproterozoic rocks, including the detrital zircons, range from +6.7 to +14.5, consistent with the Nd isotopic results. Maximum initial ɛHf values for two 2 Ga Icartian gneisses, considered basement to Cadomia, average +8.4 and +8.7. In contrast to the results of the Port Morvan rocks, 616-608 Ma syn-tectonic intrusions from Normandy and the British Channel Islands all have negative initial ɛNd values (-10.4 to -8.3) consistent with significant contamination by ancient crust such as the 2 Ga gneisses. The oldest arc-related magmas should have interacted most extensively with Cadomian basement, buffering younger mantle-derived magmas that were generated in subsequent magmatic episodes. The rocks within the Port Morvan region are thus inconsistent as examples of the earliest Cadomian intrusions as they show no evidence of interaction with 2 Ga basement. Instead, the older ages and mantle-like isotopic composition of these rocks suggest they are part of an independent terrane that formed prior to, and independently

  13. On protolith-, metamorphic overprint, microstructure and rheology of mineral assemblages in orogenic peridotites of the central Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Gilio, Mattia; Clos, Frediano; Van Roermund, Herman L. M.

    2013-04-01

    The Scandinavian Caledonides (SC) are a deeply eroded Alpine-type orogenic belt formed by closure of the Iapetus ocean and collision between Baltica and Laurentia (500-380 Ma). The SC consists of a stack of Nappe Complexes (from bottom to top called Lower, Middle, Upper and Uppermost Allochthons) thrusted to the east over the Baltic Shield (Brueckner and Van Roermund, 2004; Gee et al., 2008). Fossil lithospheric mantle fragments, called orogenic peridotites, have been found within the (upper part of) middle, upper and uppermost Allochthons, as well as in the reworked basement gneisses (a.o Western Gneiss Complex (WGC)) along the Norwegian west coast. They occur as isolated lenses that contain diverse mineral parageneses and/or bulk rock compositions. Crustal incorporation of orogenic peridotite is classically interpreted to be the result of plate collisional processes related to orogeny (Brueckner and Medaris, 2000). The WGC and parts of the upper part of the Middle Allochthon (a.o. Seve Nappe Complex (SNC) in N Jämtland/S Västerbotten, central Sweden), are well known for the occurrence of high (HP) and ultrahigh pressure (UHP) metamorphic terranes (of Caledonian age). The (U)HPM evidence clearly demonstrates the deep metamorphic origin of these rocks interpreted to be caused by continental subduction and/or collision. Other metamorphic rocks (of Caledonian age) exposed in allochthonous nappes are solely characterised by greenschist-, amphibolite- and/or MP granulite "facies" mineral assemblages that can be interpreted, in the absence of retrogression, to have formed in less deeply subducted (and/or metamorphic) environments. This duality in metamorphic "facies" allows for a discrimination (at least theoretically) between "deep" versus "shallow" rooted nappes (in central parts of the Scandinavian Caledonides). Conform this reasoning, this duality should also be present within the Caledonian mineral assemblages (= metamorphic overprint) of orogenic peridotites (in

  14. The formation of Pangea

    NASA Astrophysics Data System (ADS)

    Stampfli, G. M.; Hochard, C.; Vérard, C.; Wilhem, C.; vonRaumer, J.

    2013-05-01

    The making of Pangea is the result of large-scale amalgamation of continents and micro-continents, which started at the end of the Neoproterozoic with the formation of Gondwana. As pieces were added to Gondwana on its South-American, Antarctica and Australia side, ribbon-like micro-continents were detached from its African and South-Chinese side: Cadomia in the late Neoproterozoic, Avalonia and Hunia in the Ordovician, Galatia in the Devonian and Cimmeria in the Permian. Cadomia was re-accreted to Gondwana, but the other ribbon-continents were accreted to Baltica, North-China, Laurussia or Laurasia. Finding the origin of these numerous terranes is a major geological challenge. Recently, a global plate tectonic model was developed together with a large geological/geodynamic database, at the Lausanne University, covering the last 600 Ma of the Earth's history. Special attention was given to the placing of Gondwana derived terranes in their original position, using all possible constraints. We propose here a solution for the Variscan terranes, another paper deals with the Altaids. The Galatian super-terrane was detached from Gondwana in the Devonian, during the opening of Paleotethys, and was quickly separated into four sub-terranes that started to by-pass each other. The leading terranes collided at the end of the Devonian with the Hanseatic terrane detached from Laurussia. In the Carboniferous, Gondwana started to impinge onto the amalgamated terranes, creating the Variscan chain and the Pangean super-continent. East of Spain Paleotethys remained opened until the Triassic, subducting northward under Laurasia. Roll-back of the Paleotethyan slab triggered the collapse of most of the European Variscan orogen, which was replaced by series of Permian rifts, some of them becoming oceanized back-arc basins during the Triassic. Major force changes at the Pangean plate limits at the end of the Triassic provoked its break-up, through the opening of the proto

  15. Trace element behavior and P-T-t evolution during partial melting of exhumed eclogite in the North Qaidam UHPM belt (NW China): Implications for adakite genesis

    NASA Astrophysics Data System (ADS)

    Zhang, Guibin; Niu, Yaoling; Song, Shuguang; Zhang, Lifei; Tian, Zuolin; Christy, Andrew G.; Han, Lei

    2015-06-01

    We have studied trace element behavior and timing of decompression melting of UHP rocks during exhumation recorded in the magmatic products, i.e., the melt phase (leucosomes), cumulate (garnetite) and residue (amphibolitized eclogite) from a single outcrop in the south Dulan area, North Qaidam UHPM belt, NW China. Two distinct episodes of partial melting are recognized. First, Grt-free tonalitic-trondhjemitic leucosome melts with higher silica crystallized at 424.0 ± 2.7 Ma. Garnets grew in the leucosome melt but fractionated out to form garnetite cumulates along with Ti-rich phases (rutile and titanite), strengthening the adakitic signature of the leucosome. Later Grt-bearing leucosome melts with an age of 412.4 ± 2.9 Ma cross-cut boudins and layers of amphibolitized eclogite. Geochemical investigation of bulk-rocks and in situ minerals verifies the genetic relationship between the amphibolitized eclogite and the tonalitic-trondhjemitic melts. Zircons from the amphibolitized eclogite have older (> 700 Ma) protolith ages, with subsequent eclogite-facies metamorphism, retrograde granulite-facies overprinting and partial melting. Phase modeling and Zr-in-rutile thermometry calculations in combination with zircon geochronology reveal the evolution P-T-t path for the exhumation and the partial melting of the deeply subducted continental crust at the North Qaidam subduction zone in the Early Paleozoic.

  16. Plate Margin Deformation and Active Tectonics Along the Northern Edge of the Yakutat Terrane in the Saint Elias Orogen, Alaska and Yukon, Canada

    NASA Technical Reports Server (NTRS)

    Bruhn, Ronald L.; Sauber, Jeanne; Cotton, Michele M.; Pavlis, Terry L.; Burgess, Evan; Ruppert, Natalia; Forster, Richard R.

    2012-01-01

    The northwest directed motion of the Pacific plate is accompanied by migration and collision of the Yakutat terrane into the cusp of southern Alaska. The nature and magnitude of accretion and translation on upper crustal faults and folds is poorly constrained, however, due to pervasive glaciation. In this study we used high-resolution topography, geodetic imaging, seismic, and geologic data to advance understanding of the transition from strike-slip motion on the Fairweather fault to plate margin deformation on the Bagley fault, which cuts through the upper plate of the collisional suture above the subduction megathrust. The Fairweather fault terminates by oblique-extensional splay faulting within a structural syntaxis, allowing rapid tectonic upwelling of rocks driven by thrust faulting and crustal contraction. Plate motion is partly transferred from the Fairweather to the Bagley fault, which extends 125 km farther west as a dextral shear zone that is partly reactivated by reverse faulting. The Bagley fault dips steeply through the upper plate to intersect the subduction megathrust at depth, forming a narrow fault-bounded crustal sliver in the obliquely convergent plate margin. Since . 20 Ma the Bagley fault has accommodated more than 50 km of dextral shearing and several kilometers of reverse motion along its southern flank during terrane accretion. The fault is considered capable of generating earthquakes because it is linked to faults that generated large historic earthquakes, suitably oriented for reactivation in the contemporary stress field, and locally marked by seismicity. The fault may generate earthquakes of Mw <= 7.5.

  17. Neoarchean crustal growth and Paleoproterozoic reworking in the Borborema Province, NE Brazil: Insights from geochemical and isotopic data of TTG and metagranitic rocks of the Alto Moxotó Terrane

    NASA Astrophysics Data System (ADS)

    Montefalco de Lira Santos, Lauro Cézar; Dantas, Elton Luiz; Cawood, Peter A.; José dos Santos, Edilton; Fuck, Reinhardt A.

    2017-11-01

    Pre-Brasiliano rocks in the Borborema Province (NE Brazil) are concentrated in basement blocks, such as the Alto Moxotó Terrane. Petrographic, geochemical, and U-Pb and Sm-Nd isotopic data from two basement metagranitic suites within the terrane provide evidence for Neoarchean (2.6 Ga) and Paleoproterozoic (2.1 Ga) subduction-related events. The Riacho das Lajes Suite is made of medium to coarse-grained hornblende and biotite-bearing metatonalites and metamonzogranites. Whole-rock geochemical data indicate that these rocks represent calcic, magnesian and meta-to peraluminous magmas, and have unequivocal affinities with high-Al low-REE tonalite-trondhjemite-granodiorites (TTG). Zircon U-Pb data from two samples of this suite indicate that they were emplaced at 2.6 Ga, which is the first discovered Archean crust in the central portion of the province. The suite has Neoarchean depleted mantle model ages (TDM) and slightly negative to positive εNd(t), indicating slight crustal contamination. The overall geochemical and isotopic data indicate a Neoarchean intraoceanic setting for genesis of the Riacho das Lajes magma via melting of basaltic oceanic crust submitted to high-pressure eclogite facies conditions. On the other hand, the Floresta Suite comprise metaigneous rocks, which are mostly tonalitic and granodioritic in composition. Geochemical data indicate that this suite shares similarities with calcic to calc-alkalic magmas with magnesian and metaluminous to slightly peraluminous characteristics. Other geochemical features include anomolous Ni, V and Cr contents, as well as high large-ion litophile elements (LILE) values. The suite yields U-Pb zircon ages of approximately 2.1 Ga, Archean to Paleoproterozoic TDM ages, and negative to positive εNd(t) values, suggesting both new crust formation and reworking of Archean crust, in addition to mantle metasomatism, reflecting mixed sources. The most likely tectonic setting for the Floresta Suite magmas involved crustal

  18. The evolution of a Gondwanan collisional orogen: A structural and geochronological appraisal from the Southern Granulite Terrane, South India

    NASA Astrophysics Data System (ADS)

    Plavsa, Diana; Collins, Alan S.; Foden, John D.; Clark, Chris

    2015-05-01

    Gondwana amalgamated along a suite of Himalayan-scale collisional orogens, the roots of which lace the continents of Africa, South America, and Antarctica. The Southern Granulite Terrane of India is a generally well-exposed, exhumed, Gondwana-forming orogen that preserves a record of the tectonic evolution of the eastern margin of the East African Orogen during the Ediacaran-Cambrian (circa 600-500 Ma) as central Gondwana formed. The deformation associated with the closure of the Mozambique Ocean and collision of the Indian and East African/Madagascan cratonic domains is believed to have taken place along the southern margin of the Salem Block (the Palghat-Cauvery Shear System, PCSS) in the Southern Granulite Terrane. Investigation of the structural fabrics and the geochronology of the high-grade shear zones within the PCSS system shows that the Moyar-Salem-Attur shear zone to the north of the PCSS system is early Paleoproterozoic in age and associated with dextral strike-slip motion, while the Cauvery shear zone (CSZ) to the south of the PCSS system can be loosely constrained to circa 740-550 Ma and is associated with dip-slip dextral transpression and north side-up motion. To the south of the proposed suture zone (the Cauvery shear zone), the structural fabrics of the Northern Madurai Block suggest four deformational events (D1-D4), some of which are likely to be contemporaneous. The timing of high pressure-ultrahigh temperature metamorphism and deformation (D1-D3) in the Madurai Block (here interpreted as the southern extension of Azania) is constrained to circa 550-500 Ma and interpreted as representing collisional orogeny and subsequent orogenic collapse of the eastern margin of the East African Orogen. The disparity in the nature of the structural fabrics and the timing of the deformation in the Salem and the Madurai Blocks suggest that the two experienced distinct tectonothermal events prior to their amalgamation along the Cauvery shear zone during the

  19. Integrated seismic model of the crust and upper mantle of the Trans-European Suture zone between the Precambrian craton and Phanerozoic terranes in Central Europe

    NASA Astrophysics Data System (ADS)

    Wilde-Piórko, Monika; Świeczak, Marzena; Grad, Marek; Majdański, Mariusz

    2010-01-01

    The structure and evolution of the Trans-European Suture zone (TESZ), contact between Precambrian Europe to the northeast and Phanerozoic terranes to the southwest is one of the main tectonic questions in Europe. The knowledge of the crustal structure, lithosphere-asthenosphere boundary and mantle transition zone between two seismic discontinuities at depths "410" and "660" km, is one of the most important issues to understand the Earth's dynamics. To create a mantle model of the TESZ and surroundings we used different seismic data collected along the 950 km long POLONAISE'97 profile P4. Previous results of 2-D ray-tracing and P-wave travel time modelling and new results of P-wave travel time residuals methods and receiver function sections provide facts about the seismic structure from the surface down to 900 km depth. In the TESZ a large basin, about 125 km wide, is filled with sedimentary strata (Vp < 6.0 km s - 1 ) to about 20 km depth. This basin is asymmetric with its northeast margin being most abrupt. The crystalline crust under this basin is only about 20 km thick today indicating that the lithosphere of Baltica was either thinned drastically or terminated along the northeast margin of the basin. The East European craton (EEC) has a ~ 45 km thick three-layered crust. The crust of the accreted terranes to the southwest is relatively thin (~ 30 km) and similar to that found in other non-cratonal areas of Western Europe. The lower crust is relatively fast (Vp > 7.0 km s - 1 ) along most of the P4 profile. However, lower values to the southwest may indicate the termination of Baltica. High velocity (~ 8.35 km s - 1 ) uppermost mantle lies beneath the Avalonia/Variscan terranes, and may be due to rifting and/or subduction. The seismic lithosphere thickness for the EEC is about 200 km, while it is only 90 km in the Palaeozoic platform (PP). The mantle transition zone is shallower and about 30 km thicker under the EEC, which could be due to thermal conditions

  20. Integration of potential and quasipotential geophysical fields and GPR data for delineation of buried karst terranes in complex environments

    NASA Astrophysics Data System (ADS)

    Eppelbaum, L. V.; Alperovich, L. S.; Zheludev, V.; Ezersky, M.; Al-Zoubi, A.; Levi, E.

    2012-04-01

    Karst is found on particularly soluble rocks, especially limestone, marble, and dolomite (carbonate rocks), but is also developed on gypsum and rock salt. Subsurface carbonate rocks involved in karst groundwater circulation considerably extend the active karst realm, to perhaps 14% of the world's land area (Price, 2009). The phenomenon of the solution weathering of limestone is the most widely known in the world. Active sinkholes growth appears under different industrial constructions, roads, railways, bridges, airports, buildings, etc. Regions with arid and semi-arid climate occupy about 30% of the Earth's land. Subsurface in arid regions is characterized by high variability of physical properties both on lateral and vertical that complicates geophysical survey analysis. Therefore for localization and monitoring of karst terranes effective and reliable geophysical methodologies should be applied. Such advanced methods were developed in microgravity (Eppelbaum et al., 2008; Eppelbaum, 2011b), magnetic (Khesin et al., 1996; Eppelbaum et al., 2000, 2004; Eppelbaum, 2011a), induced polarization (Khesin et al., 1997; Eppelbaum and Khesin, 2002), VLF (Eppelbaum and Khesin, 1992; Eppelbaum and Mishne, 2012), near-surface temperature (Eppelbaum, 2009), self-potential (Khesin et al., 1996; Eppelbaum and Khesin, 2002), and resistivity (Eppelbaum, 1999, 2007a) surveys. Application of some of these methodologies in the western and eastern shores of the Dead Sea area (e.g., Eppelbaum et al., 2008; Ezersky et al., 2010; Al-Zoubi et al., 2011) and in other regions of the world (Eppelbaum, 2007a) has shown their effectiveness. The common procedures for ring structure identification against the noise background and probabilistic-deterministic methods for recognizing the desired targets in complex media are presented in Khesin and Eppelbaum (1997), Eppelbaum et al. (2003), and Eppelbaum (2007b). For integrated analysis of different geophysical fields (including GPR images) intended

  1. Occurrence and mineral chemistry of chromite and related silicates from the Hongshishan mafic-ultramafic complex, NW China with petrogenetic implications

    NASA Astrophysics Data System (ADS)

    Ruan, Banxiao; Yu, Yingmin; Lv, Xinbiao; Feng, Jing; Wei, Wei; Wu, Chunming; Wang, Heng

    2017-10-01

    The Hongshishan mafic-ultramafic complex is located in the western Beishan Terrane, NW China, and hosts an economic Ni-Cu deposit. Chromite as accessory mineral from the complex is divided into three types based on its occurrence and morphology. Quantitative electron probe microanalysis (EPMA) have been conducted on the different types of chromites. Type 1 chromite occurs as inclusions within silicate minerals and has relatively homogeneous composition. Type 2 chromite occurs among serpentine, as interstitial phase. Type 3 chromite is zoned and exhibits a sudden change in compositions from core to rim. Type 1 chromite occurs in olivine gabbro and troctolite showing homogeneous composition. This chromite is more likely primary. Interstitial type 2 and zoned type 3 chromite has compositional variation from core to rim and is more likely modified. Abundant inclusions of orthopyroxene, phlogopite and hornblende occur within type 2 and type 3 chromites. The parental melt of type 1 chromite has an estimated composition of 14.5 wt% MgO, 12.3 wt% Al2O3 and 1.9 wt% TiO2 and is characterized by high temperature, picritic affinity, hydrous nature and high Mg and Ti contents. Compositions of chromite and clinopyroxene are distinct from those of Alaskan-type complexes and imply that the subduction-related environment is not reasonable. Post orogenic extension and the early Permian mantle plume are responsible for the emplacement of mafic-ultramafic complexes in the Beishan Terrane. The cores of zoned chromites are classified as ferrous chromite and the rims as ferrian chromite. The formation of ferrian rim involves reaction of ferrous chromite, forsterite and magnetite to produce ferrian chromite and chlorite, or alternaively, the rim can be simply envisioned as the result of external addition of magnetite in solution to the already formed ferrous chromite.

  2. The lower-temperature-pressure stability of pyrope in the presence of quartz in the system MgO-Al2O3-SiO2

    NASA Astrophysics Data System (ADS)

    Cheng, N.; Jenkins, D. M.

    2017-12-01

    Pyrope (Mg3Al2Si3O12) is the dominant component in garnets from type A eclogites. Determining the lower-pressure-temperature (P-T) stability of pyrope in the presence of quartz helps put constraints on the stability of quartz-bearing eclogites and therefore the depths to which crustal rocks in high pressure/ultra-high pressure (HP/UHP) terranes can be transferred. It also defines the lower-pressure stability of the nearly pure pyrope-bearing quartzites of the Dora Maira massif of the Western Alps (Chopin, 1984, Contrib. Min. Pet.). Aside from the approximate boundary proposed by Hensen & Essene (1971, Contrib. Min. Pet.), there has been no detailed study of the lower P-T stability of pyrope + quartz. A reversed determination of the reaction 3 enstatite + 2 kyanite = 2 pyrope + 2 quartz has been done in the system MgO-Al2O3-SiO2 over the P-T range of 900-1100 °C and 1.6-2.5 GPa for durations of 24 hours. Double capsules, one using pure enstatite and the other Al-rich (10 wt% Al2O3) enstatite in the starting mixtures, were used to obtain reversals on the Al content in the orthopyroxene (Opx). Experiments were done using a ½-inch diameter piston-cylinder press and NaCl-pyrex-MgO pressure media. Run products were analyzed using powder XRD and electron microprobe. Reaction direction was readily determined from peak height changes on XRD patterns. The reaction has been bracketed at 1.65 GPa at 1100 °C with > 12 wt% Al2O3 in Opx; 2.05 GPa at 1000 °C with 10 wt% Al2O3 in Opx; and 2.4 GPa at 930 °C with 5 wt% Al2O3 in Opx. The reaction boundary is slightly curved to higher P with increasing T caused by increasing Al in Opx. The boundary observed in this study is about 100 °C or 0.4 GPa higher than previously proposed by Hensen & Essene (1971) and 70-170 °C or 0.6-0.7 GPa higher than the boundary calculated in this system using THERMOCALC ds6.22 (Holland & Powell, 2011, J. Meta. Geol.) and about 1-4 wt% higher Al2O3 contents in Opx. Higher pressure runs in the field

  3. Detrital zircons from phanerozoic rocks of the Songliao Block, NE China: Evidence and tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Bo; Wilde, Simon A.; Zhang, Xing-Zhou; Liu, Fu-Lai; Liu, Jian-Hui

    2012-03-01

    Rocks that crop out in the northern part of the Songliao Block are mainly consist of high-grade metamorphic gneiss, Paleozoic strata and Mesozoic granites. They are essentially similar to rocks reported from beneath the Songliao Basin that occupies the majority of the Songliao Block. Four samples of Paleozoic metasedimentary rocks from Tieli in the north-eastern part of the Songliao Block yield detrital zircon U-Pb ages ranging from 2690 to 501 Ma, with four age populations at: 2071-2690 Ma, with a peak at 2585 Ma; 1776-1997 Ma, with a peak at 1890 Ma; 719-991 Ma, with a peak at 800 Ma; and 501-592 Ma, with a peak at 518 Ma. These are similar to age populations in other parts of the Central Asian Orogenic Belt (CAOB), although sediments from the Songliao Block contain more abundant Archean and Proterozoic detrital zircons than the neighboring Jiamusi-Khanka Block to the east and Xing'an Block to the west. This may indicate that rocks of this age comprise a minor component of the Songliao Block. The Pan-African zircon ages from the Songliao Block, taken together with ˜500 Ma magmatic and high-grade metamorphic zircons obtained from the nearby Erguna, Xing'an and Jiamusi-Khanka blocks, indicate that Pan-African events affected all blocks of the CAOB in NE China. This suggests that these blocks not only share a common basement, but that they had a common history. An extensive Late Pan-African (˜500 Ma) orogenic terrane thus occupies much of the CAOB in NE China.

  4. New insights into typical Archaean structures in greenstone terranes of western Ontario

    NASA Technical Reports Server (NTRS)

    Schwerdtner, W. M.

    1986-01-01

    Ongoing detailed field work in selected granitoid complexes of the western Wabigoon and Wawa Subprovinces, southern Canadian Shield, has led to several new conclusions: (1) Prominent gneiss domes are composed of prestrained tonalite-granodiorite and represent dense hoods of magmatic granitoid diapirs; (2) the deformation history of the prestrained gneiss remains to be unraveled; (3) the gneiss lacked a thick cover of mafic metavolcanics or other dense rocks at the time of magmatic diaprisim; (4) the synclinoral structure of large greenstone belts is older than the late gneiss domes and may have been initiated by volcano-tectonic processes; (5) small greenstone masses within the gneiss are complexly deformed, together with the gneiss; and, (6) no compelling evidence has been found of ductile early thrusting in the gneiss terranes. Zones of greenstone enclaves occur in hornblende-rich contaminated tonalite and are apt to be deformed magmatic septa. Elsewhere, the tonalite gneiss is biotite-rich and hornblende-poor. These conclusions rest on several new pieces of structural evidence; (1) oval plutons of syenite-diorite have magmatic strain fabrics and sharp contacts that are parallel to an axial-plane foliation in the surrounding refolded gneiss; (2) gneiss domes are lithologically composite and contain large sheath-like structures which are deformed early plutons, distorted earlier gneiss domes, or early ductile nappes produced by folding of planar plutonic septa, and (3) the predomal attitudes of gneissosity varied from point to point.

  5. Paleomagnetism of Early Paleozoic Rocks from the de Long Archipelago and Tectonics of the New Siberian Islands Terrane

    NASA Astrophysics Data System (ADS)

    Metelkin, D. V.; Chernova, A. I.; Matushkin, N. Y.; Vernikovskiy, V. A.

    2017-12-01

    The De Long archipelago is located to the north of the Anjou archipelago as a part of a large group between the Laptev Sea and the East Siberian Sea - the New Siberian Islands and consists of Jeannette Island, Bennett Island and Henrietta Island. These islands have been shown to be part of a single continental terrane, whose tectonic history was independent of other continental masses at least since the Ordovician. Paleomagnetic and precise geological data for the De Long archipelago were absent until recently. Only in 2013 special international field trips to the De Long Islands could be organized and geological, isotope-geochronological and paleomagnetic studies were carried out.On Jeannette Island a volcanic-sedimentary sequence intruded by mafic dikes was described. The age of these dikes is more likely Early Ordovician, close to 480 Ma, as evidenced by the results of our 40Ar/39Ar and paleomagnetic investigations of the dolerites as well as the result from detrital zircons in the host rocks published before. On Bennett Island, there are widespread Cambrian-Ordovician mainly terrigenous rocks. Paleomagnetic results from these rocks characterize the paleogeographic position of the De Long archipelago at 465 Ma and perhaps at 530 Ma, although there is no evidence for the primary origin of magnetization for the latter. On Henrietta Island the Early Cambrian volcanic-sedimentary section was investigated. A paleomagnetic pole for 520 Ma was obtained and confirmed by new 40Ar/39Ar results. Adding to our previous paleomagnetic data for the Anjou archipelago the extended variant of the apparent polar wander path for the New Siberian Island terrane was created. The established paleolatitudes define its location in the equatorial and subtropical zone no higher than 40 degrees during the Early Paleozoic. Because there are no good confirmations for true polarity and related geographic hemisphere we present two possibilities for tectonic reconstruction. But both these

  6. Origin of dolomitic rocks in the lower Permian Fengcheng formation, Junggar Basin, China: evidence from petrology and geochemistry

    NASA Astrophysics Data System (ADS)

    Zhu, Shifa; Qin, Yi; Liu, Xin; Wei, Chengjie; Zhu, Xiaomin; Zhang, Wei

    2017-04-01

    Although dolomitization of calcite minerals and carbonatization of volcanic rocks have been studied widely, the extensive dolomitic rocks that originated from altered volcanic and volcaniclastic rocks have not been reported. The dolomitic rocks of the Fengcheng Formation in the Junggar Basin of China appear to be formed under unusual geologic conditions. The petrological and geochemical characteristics indicate that the dolomitizing host rock is devitrified volcanic tuff. After low-temperature alteration and calcitization, these tuffaceous rocks are replaced by Mg-rich brine to form massive dolomitic tuffs. We propose that the briny (with -2 ‰ 6 ‰ of δ13CPDB and -5 ‰ 4 ‰ of δ18OPDB) and Mg-rich marine formation water (with 0.7060 0.7087 of 87Sr/86Sr ratio), the thick and intermediate-mafic volcanic ashes, and the tectonically compressional movement may have favored the formation of the unusual dolomitic rocks. We conclude that the proposed origin of the dolomitic rocks can be extrapolated to other similar terranes with volcaniclastic rocks, seabed tuffaceous sediment, and fracture filling of sill.

  7. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China: Zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic evidence

    NASA Astrophysics Data System (ADS)

    Ma, Liang; Jiang, Shao-Yong; Dai, Bao-Zhang; Jiang, Yao-Hui; Hou, Ming-Lan; Pu, Wei; Xu, Bin

    2013-03-01

    The Linglong granite is one of the most important Mesozoic plutons in the Shandong Peninsula, eastern China, and its petrogenesis has long been controversial, particularly with regard to the nature of source region and geodynamic setting. Our new precise zircon U-Pb dating results reveal that the Linglong granite was emplaced in the Late Jurassic (157-160 Ma). In addition, abundant inherited zircons are identified in the granite with four groups of age peaked at ~ 208, ~ 750, ~ 1800 and ~ 2450 Ma. Geochemical studies indicate that the Linglong granite is weakly peraluminous I-type granite, and is characterized by high SiO2, Sr and La, but low MgO, Y and Yb contents, strongly fractionated REE pattern and high Sr/Y and La/Yb ratios. It also exhibits high initial 87Sr/86Sr ratios (0.7097 to 0.7125), low ɛNd(t) (- 17.7 to - 20.3) and variable zircon ɛHf(t) (- 22.2 to - 8.7) values. Calculation of the zircon saturation temperature (TZr) reveals that the magma temperatures are 760 ± 20 °C, and the lowest TZr value of 740 °C may be close to initial magma temperature of this inheritance-rich rock. Interpretation of the elemental and isotopic data suggests that the Linglong granite has some affinities with the adakite, and was most likely derived from partial melting of thickened lower crust without any significant contribution of mantle components. The presence of a large number of inherited zircons and variable Sr-Nd-Hf isotopic compositions reveal that the Linglong granite probably has multiple sources consisting of the lower crust of both South China Block and North China Block, as well as the collision-related alkaline rocks and UHP metamorphic rocks. The continental arc-rifting related to the Izanagi plate subduction was the most likely geodynamic force for formation of the Jurassic Linglong adakatic granite in the Shandong Peninsula.

  8. What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks (Linzhou basin, Tibet)

    NASA Astrophysics Data System (ADS)

    Huang, Wentao; Dupont-Nivet, Guillaume; Lippert, Peter C.; van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Waldrip, Ross; Ganerød, Morgan; Li, Xiaochun; Guo, Zhaojie; Kapp, Paul

    2015-03-01

    The Paleogene latitude of the Lhasa terrane (southern Tibet) can constrain the age of the onset of the India-Asia collision. Estimates for this latitude, however, vary from 5°N to 30°N, and thus, here, we reassess the geochronology and paleomagnetism of Paleogene volcanic rocks from the Linzizong Group in the Linzhou basin. The lower and upper parts of the section previously yielded particularly conflicting ages and paleolatitudes. We report consistent 40Ar/39Ar and U-Pb zircon dates of 52 Ma for the upper Linzizong, and 40Ar/39Ar dates ( 51 Ma) from the lower Linzizong are significantly younger than U-Pb zircon dates (64-63 Ma), suggesting that the lower Linzizong was thermally and/or chemically reset. Paleomagnetic results from 24 sites in lower Linzizong confirm a low apparent paleolatitude of 5°N, compared to the upper part ( 20°N) and to underlying Cretaceous strata ( 20°N). Detailed rock magnetic analyses, end-member modeling of magnetic components, and petrography from the lower and upper Linzizong indicate widespread secondary hematite in the lower Linzizong, whereas hematite is rare in upper Linzizong. Volcanic rocks of the lower Linzizong have been hydrothermally chemically remagnetized, whereas the upper Linzizong retains a primary remanence. We suggest that remagnetization was induced by acquisition of chemical and thermoviscous remanent magnetizations such that the shallow inclinations are an artifact of a tilt correction applied to a secondary remanence in lower Linzizong. We estimate that the Paleogene latitude of Lhasa terrane was 20 ± 4°N, consistent with previous results suggesting that India-Asia collision likely took place by 52 Ma at 20°N.

  9. Tracing source terranes using U-Pb-Hf isotopic analysis of detrital zircons: provenance of the Orhanlar Unit of the Palaeotethyan Karakaya subduction-accretion complex, NW Turkey

    NASA Astrophysics Data System (ADS)

    Ustaömer, Timur; Ayda Ustaömer, Petek; Robertson, Alastair; Gerdes, Axel

    2016-04-01

    Sandstones of the Late Palaeozoic-Early Mesozoic Karakaya Complex are interpreted to have accumulated along an active continental margin related to northward subduction of Palaeotethys. The age of deposition and provenance of the sandstones are currently being determined using radiometric dating of detrital zircons, coupled with dating of potential source terranes. Our previous work shows that the U-Pb-Hf isotopic characteristics of the sandstones of all but one of the main tectonostratigraphic units of the Karakaya Complex are compatible with a provenance that was dominated by Triassic and Permo-Carboniferous magmatic arc-type rocks, together with a minor contribution from Lower to Mid-Devonian igneous rocks (Ustaömer et al. 2015). However, one of the tectono-stratigraphic units, the Orhanlar Unit, which occurs in a structurally high position, differs in sedimentary facies and composition from the other units of the Karakaya Complex. Here, we report new isotopic age data for the sandstones of the Orhanlar Unit and also from an extensive, associated tectonic slice of continental metamorphic rocks (part of the regional Sakarya Terrane). Our main aim is to assess the provenance of the Orhanlar Unit sandstones in relation to the tectonic development of the Karakaya Complex as a whole. The Orhanlar Unit is composed of shales, sandstone turbidites and debris-flow deposits, which include blocks of Devonian radiolarian chert and Carboniferous and Permian neritic limestones. The sandstones are dominated by rock fragments, principally volcanic and plutonic rocks of basic-to-intermediate composition, metamorphic rocks and chert, together with common quartz, feldspar and mica. This modal composition contrasts significantly with the dominantly arkosic composition of the other Karakaya Complex sandstones. The detrital zircons were dated by the U-Pb method, coupled with determination of Lu-Hf isotopic compositions using a laser ablation microprobe attached to a multicollector

  10. A Lower Carboniferous two-stage extensional basin along the Avalon-Meguma terrane boundary: Evidence from southeastern Isle Madame, Nova Scotia

    USGS Publications Warehouse

    Force, E.R.; Barr, S.M.

    2006-01-01

    Anomalously thick and coarse clastic sedimentary successions, including over 5000 m of conglomerate, are exposed on Isle Madame off the southern coast of Cape Breton Island. Two steeply to moderately dipping stratigraphic packages are recognized: one involving Horton and lower Windsor groups (Tournasian-Visean); the other involving upper Windsor and Mabou (Visean-Namurian) groups. Also anomalous on Isle Madame are three long narrow belts of "basement" rocks, together with voluminous chloritic microbreccia and minor semi-ductile mylonite, which are separated from the conglomerate-dominated successions by faults. The angular relations between the cataclastic rocks and the conglomerate units, combined with the presence of cataclasite clasts in the conglomerate units and evidence of dip-slip faults within the basin, suggest an extensional setting, where listric normal faults outline detachment allochthons. Allochthon geometry requires two stages of extension, the older stage completed in early Windsor Group time and including most of the island, and the more local younger stage completed in Mabou Group time. Domino-style upper-plate faulting in the younger stage locally repeated the older detachment relation of basement and conglomerate to form the observed narrow belts. Re-rotation of older successions in the younger stage also locally overturned the Horton Group. These features developed within a broad zone of Carboniferous dextral transcurrent faulting between already-docked Avalon and Meguma terranes. Sites of transpression and transtension alternated along the Cobequid-Chedabucto fault zone that separated these terranes. The earlier extensional features in Isle Madame likely represent the northern headwall and associated clastic debris of a pull-apart or other type of transtensional basin developed along part of this fault zone that had become listric; they were repeated and exposed by being up-ended in the second stage of extension, also on listric faults. The

  11. Late paleozoic base and precious metal deposits, East Tianshan, Xinjiang, China: Characteristics and geodynamic setting

    USGS Publications Warehouse

    Mao, J.; Goldfarb, R.J.; Wang, Y.; Hart, C.J.; Wang, Z.; Yang, J.

    2005-01-01

    The East Tianshan is a remote Gobi area located in eastern Xinjiang, northwestern China. In the past several years, a number of gold, porphyry copper, and Fe(-Cu) and Cu-Ag-Pb-Zn skarn deposits have been discovered there and are attracting exploration interest. The East Tianshan is located between the Junggar block to the north and early Paleozoic terranes of the Middle Tianshan to the south. It is part of a Hercynian orogen with three distinct E-W-trending tectonic belts: the Devonian-Early Carboniferous Tousuquan-Dananhu island arc on the north and the Carboniferous Aqishan - Yamansu rift basin to the south, which are separated by rocks of the Kanggurtag shear zone. The porphyry deposits, dated at 322 Ma, are related to the late evolutionary stages of a subduction-related oceanic or continental margin arc. In contrast, the skarn, gold, and magmatic Ni-Cu deposits are associated with post-collisional tectonics at ca. 290-270 Ma. These Late Carboniferous - Early Permian deposits are associated with large-scale emplacement and eruption of magmas possibly caused by lithosphere delamination and rifting within the East Tianshan.

  12. Sedimentary records on the subduction-accretion history of the Russian Altai, northwestern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Sun, Min

    2017-04-01

    intermediate-felsic igneous rocks, highlighting both crustal growth and recycling. Importantly, a significant amount of additional 2431-772 Ma zircons occur in the early Devonian sedimentary sequence of the GA. These detrital zircons possibly have the same source as their counterpart from the AM. This implies that the two terranes with countrary evolutionary history, i.e. the GA and AM, amalgamated before the early Devonian. To summary, the AM and GA represented two separated subduction-accretion systems in the early Paleozoic and subsequently amalgamated prior to the early Devonian, documenting complicated accretionary orogenesis and significant lateral crustal growth in the CAOB. Acknowledgement This study is financially supported by the Major Research Project of the Ministry of Science and Technology of China (2014CB44801 and 2014CB448000), Hong Kong Research Grant Council (HKU705313P and HKU17303415), National Science Foundation of China (41273048) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (162301132731).

  13. Evolution of supercritical fluid in deeply subducted continental crust: a case study of composite granite-quartz veins in the Sulu belt, China

    NASA Astrophysics Data System (ADS)

    Wang, S.; Wang, L.; Brown, M.

    2016-12-01

    Although fluid plays a key role in element transport and rock strength during subduction to and exhumation from ultrahigh pressure (UHP) metamorphic conditions, the source of supercritical fluid at P above the second critical endpoints (SCE) and the subsequent evolution are not well constrained. To provide insight into the evolution of supercritical fluid in continental subduction zones, we undertook an integrated study of composite granite-quartz veins in retrogressed and migmatitic UHP eclogite at General's Hill, N of Qingdao, in the central Sulu belt. The composite veins are irregularly distributed in the eclogite, which occurs as blocks within gneiss. The granite component is enriched in large ion lithophile elements and light rare earth elements but depleted in high field strength elements and heavy rare earth elements, indicating crystallization from a melt phase of crustal origin. Additionally, the granite contains high modal phengite (22-30 vol%) and clinozoisite/epidote (3-10 vol%), implying precipitation from a H2O-rich silicate melt. By contrast, the quartz component is dominated by SiO2 (99.10 wt%), and contains low total rare earth elements (ΣREE = 0.46 ppm), indicating precipitation from an aqueous fluid. The crystallization age of the composite veins is 221 ± 2 Ma, which is younger than the UHP metamorphism in the Sulu belt at ca 230 Ma, consistent with formation during exhumation. Initial 176Hf/177Hf ratios and δ18O values of metamorphic zircons from the composite veins, and Sr-Nd isotope compositions of the granites all lie between values for eclogite and gneiss, indicating a mixed source. Accordingly, we propose that a supercritical fluid generated from the gneiss and the included blocks of eclogite at P-T conditions above the SCE for both compositions became trapped in the eclogite during exhumation. At P below the SCE for the hydrous granite system, the mixed supercritical fluid separated into immiscible aqueous melt and aqueous fluid and

  14. Multiple cooling episodes in the Central Tarim (Northwest China) revealed by apatite fission track analysis and vitrinite reflectance data

    NASA Astrophysics Data System (ADS)

    Chang, Jian; Qiu, Nansheng; Song, Xinying; Li, Huili

    2016-06-01

    Apatite fission track and vitrinite reflectance are integrated for the first time to study the cooling history in the Central Tarim, northwest China. The paleo-temperature profiles from vitrinite reflectance data of the Z1 and Z11 wells showed a linear relationship with depth, suggesting an approximately 24.8 °C/km paleo-geothermal gradient and 2700-3900 m of erosion during the Early Mesozoic. The measured apatite fission track ages from well Z2 in the Central Tarim range from 39 to 159 Ma and effectively record the Meso-Cenozoic cooling events that occurred in Central Tarim. Moreover, two cooling events at 190-140 Ma in the Early Jurassic-Early Cretaceous and 80-45 Ma in the Late Cretaceous-Paleocene revealed by measured AFT data and thermal modeling results are related to the collisions of the Qiangtang-Lhasa terranes and the Greater India Plate with the southern margin of the Eurasian Plate, respectively. This study provides new insights into the tectonic evolution of the Tarim Basin (and more broadly Central Asia) and for hydrocarbon generation and exploration in the Central Tarim.

  15. Paleozoic Assemblage of the Northern Sierra Terrane: New Geochronology And Geochemical Data From the Stitching Late Devonian - Early Carboniferous Bowman Lake Batholith, and Associated Rocks

    NASA Astrophysics Data System (ADS)

    Powerman, V.; Hanson, R. E.; Girty, G.; Tretiakov, A.

    2016-12-01

    Previous study (Grove et al., 2008) of detrital zircon ages and the timing of magmatism within the Northern Sierra terrane (NST) suggest that it is exotic relative to western Laurentia, and link it to the Paleozoic Arctic Realm, Baltica and Caledonides. NST is a composite terrane in the North America Cordillera, consisting of four distinct allochthons, thrusted upon each other. As a first step towards the understanding of the origin and tectonic development of the NST we have undertaken the SHRIMP-RG U-Pb zircon dating of the rocks from granites, granodiorites, trondhjemites, tonalites and hypabyssal intrusions, composing the Bowman Lake batholith. The batholith stitches the allochthons of the NST and its crystallization age signifies the timing of juxtaposition SHRIMP-RG analyses from 14 samples yielded an age range of ca. 352-369 Ma, which overlaps the Devonian-Mississipian boundary and constrains the minimum age for amalgamation. Additionally, we have acquired multiple XRF data, favoring the island arc provenance of the Bowman Lake batholith Batholith. Previously proposed ties between NST and Robert Mountains allochthon seem unlikely because the latter was accreted onto the western miogeocline of Laurentia during the Late Dev.-Early Miss. while the NST was most probably still situated within the Arctic Realm. This work has been supported by the grant #14.Z50.31.0017 of the Government of the Russian Federation and by the Russian Foundation for Basic Research grant #15-55-10055. We are grateful to Stanford-USGS SHRIMP-RG center, and personally to Marty Grove and Elizabeth Miller.

  16. Structural evolution and tectonic context of the Mfongosi Group, Natal thrust front, Tugela terrane, South Africa

    NASA Astrophysics Data System (ADS)

    Basson, I. J.; Watkeys, M. K.; Phillips, D.

    2005-11-01

    The Mesoproterozoic Natal Metamorphic Province of Kwazulu-Natal in South Africa is an assemblage of several tectonic units, including accreted oceanic island arcs, obducted oceanic crust and deformed basin material. The highly deformed Mfongosi Group occurs at the leading edge of collision (the Natal thrust front), against and directly overlying the southern margin of the Kaapvaal Craton. Structures within the Mfongosi Group record "local" D1 and D2 events, the first of which was "oblique obduction", with predominantly N- to NNE-verging thrusting ( D1). This was followed by sinistral transpression combined with vertical constriction, forming SW-plunging kink folds and SW-plunging prolate pillow basalts ( D2). The third and final event ( D3) was E-W to ESE-WNW extension in a post-thrusting phase, defined by fibrous antitaxial quartz-calcite veining. The westernmost portion of the Mfongosi Group, the Ngubevu area, shows significantly higher finite strains (up to Rf = 12) compared to central Mfongosi and eastern Nkandlha areas ( Rf = 1.5 and less), suggesting highly oblique, largely NE-directed initial collision. Deformation of the NTF in the context of nappe emplacement is constrained by 40Ar/ 39Ar dating of post-cataclastic nematoblastic/porphyroblastic hornblende of the Manyane amphibolite close to the thrust between the Tugela nappe and the Mfongosi Group in the Mfongosi area. Hornblende overgrew the products of low-temperature deformation during the "local" D1 and D2. A minimum age of 1171 ± 16 Ma (95% conf., including J-error; weighted by √MSWD; MSWD = 4.3) is obtained for the tectonic juxtaposition of the Tugela nappe against the southern portions of the "Mfongosi Basin". This "local" D1 and D2 of the Mfongosi Group pre-dates the regional "oblique D1" and "left-lateral D2" previously determined for the central and southern terranes of the Natal Metamorphic Province by other researchers. Comparison of the 1171 ± 16 Ma age, with ages for shearing and

  17. Crustal structure of Wrangellia and adjacent terranes inferred from geophysical studies along a transect through the northern Talkeetna Mountains

    USGS Publications Warehouse

    Glen, J.M.G.; Schmidt, J.; Pellerin, L.; McPhee, D.K.; O'Neill, J. M.

    2007-01-01

    Recent investigations of the Talkeetna Mountains in south-central Alaska were undertaken to study the region's framework geophysics and to reinterpret structures and crustal composition. Potential field (gravity and magnetic) and magnetotelluric (MT) data were collected along northwest-trending profiles as part of the U.S. Geological Survey's Talkeetna Mountains transect project. The Talkeetna Mountains transect area comprises eight 1:63,360 quadrangles (???9500 km2) in the Healy and Talkeetna Mountains 1?? ?? 3?? sheets that span four major lithostratigraphic terranes (Glen et al., this volume) including the Wrangellia and Peninsular terranes and two Mesozoic overlap assemblages inboard (northwest) of Wrangellia. These data were used here to develop 21/2-dimensional models for the three profiles. Modeling results reveal prominent gravity, magnetic, and MT gradients (???3.25 mGal/ km, ???100nT/km, ???300 ohm-m/km) corresponding to the Talkeetna Suture Zone-a first-order crustal discontinuity in the deep crust that juxtaposes rocks with strongly contrasting rock properties. This discontinuity corresponds with the suture between relatively dense magnetic crust of Wrangellia (likely of oceanic composition) and relatively less dense transitional crust underlying Jurassic to Cretaceous flysch basins developed between Wrangellia and North America. Some area of the oceanic crust beneath Wrangellia may also have been underplated by mafic material during early to mid-Tertiary volcanism. The prominent crustal break underlies the Fog Lakes basin approximately where theTalkeetna thrust faultwaspreviouslymappedas a surface feature. Potential fieldand MT models, however, indicate that the Talkeetna Suture Zone crustal break along the transect is a deep (2-8 km), steeply west-dipping structure-not a shallow east-dipping Alpine nappe-like thrust. Indeed, most of the crustal breaks in the area appear to be steep in the geophysical data, which is consistent with regional geologic

  18. Combined garnet and zircon geochronology and trace elements studies - constraints of the UHP-(U)HT evolution of Orlica-Śnieżnik Dome (NE Bohemian Massif).

    NASA Astrophysics Data System (ADS)

    Walczak, Katarzyna; Anczkiewicz, Robert; Szczepański, Jacek; Rubatto, Daniela

    2017-04-01

    The Orlica-Śnieżnik Dome (OSD), located on the NE margin of the Bohemian Massif, is predominantly composed of amphibolite-facies orthogneiss that contain bodies of HP and UHP eclogites and granulites. Numerous geochronological studies have been undertaken to constrain the timing of the ultra-high grade metamorphic event. Despite this, the exact timing of UHP-(U)HT conditions remain dubious (e.g. Brueckner et al., 1991; Anczkiewicz et al., 2007; Bröcker et al., 2009 & 2010). We have utilized garnet and zircon geochronology to provide time constraints on the evolution of the UHT-(U)HP rocks of the OSD. We have combined the ages with trace element analyses in garnet and zircon to better understand the significance of the obtained ages in petrological context. Lu-Hf grt-wr dating of peritectic garnet from two felsic granulites constrained the time of its initial growth at 346.9 ± 1.2 and 348.3 ± 2.0 Ma, recording peak conditions of 2.7 GPa and 950°C (e.g. Ferrero et al., 2015). In situ U-Pb SHRIMP dating of zircon from the same granulite gave a younger age of 342.2 ± 3.4 Ma. HREE partitioning between garnet rim and metamorphic zircon indicate their growth in equilibrium, hence, the U-Pb zircon date constrains the terminal phase of garnet crystallization. Similar ages were obtained from two eclogite bodies from Międzygórze and Nowa Wieś localities; Lu-Hf (grt-cpx-wr) dating provided ages of 346.5 ± 2.4 and 348.1 ± 9.1 Ma for samples from Międzygórze and Nowa Wieś, respectively. The same age (within error) of 346.3 ± 5.2 Ma was reported by Bröcker et al. (2010) for zircon from the Międzygórze eclogite. Comparison of REE concentrations in garnet (this study) and in metamorphic zircon (reported in Bröcker et al., 2010) indicate that garnet and zircon crystallized in equilibrium. Furthermore, M-HREE patterns observed in both garnet and zircon strongly suggest their growth at eclogite facies conditions. Sm-Nd garnet ages obtained for both felsic and mafic

  19. A kinematic model for the formation of the Siletz-Crescent forearc terrane by capture of coherent fragments of the Farallon and Resurrection plates

    USGS Publications Warehouse

    McCrory, Patricia A.; Wilson, Douglas S.

    2013-01-01

    The volcanic basement of the Oregon and Washington Coast ranges has been proposed to represent a pair of tracks of the Yellowstone hotspot formed at a mid-ocean ridge during the early Cenozoic. This interpretation has been questioned on many grounds, especially that the range of ages does not match the offshore spreading rates and that the presence of continental coarse clastic sediments is difficult to reconcile with fast convergence rates between the oceanic plates and North America. Updates to basement geochronology and plate motion history reveal that these objections are much less serious than when they were first raised. Forward plate kinematic modeling reveals that predicted basement ages can be consistent with the observed range of about 55–49 Ma, and that the entire basement terrane can form within about 300 km of continental sources for clastic sediments. This kinematic model indicates that there is no firm reason to reject the near-ridge hotspot hypothesis on the basis of plate motions. A novel element of the model is the Resurrection plate, previously proposed to exist between the Farallon and Kula plates. By including the defunct Resurrection plate in our reconstruction, we are able to model the Farallon hotspot track as docking against the Oregon subduction margin starting about 53 Ma, followed by docking of the Resurrection track to the north starting about 48 Ma. Accretion of the Farallon plate fragment and partial subduction of the Resurrection fragment complicates the three-dimensional structure of the modern Cascadia forearc. We interpret the so-called “E” layer beneath Vancouver Island to be part of the Resurrection fragment. Our new kinematic model of mobile terranes within the Paleogene North American plate boundary allows reinterpretation of the three-dimensional structure of the Cascadia forearc and its relationship to ongoing seismotectonic processes.

  20. Crustal structure of the Dabie orogenic belt (eastern China) inferred from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Yang, Yu-shan; Li, Yuan-yuan

    2018-01-01

    In order to better characterize the crustal structure of the Dabie orogen and its tectonic history, we present a crustal structure along a 500 km long profile across the Dabie orogenic belt using various data processing and interpretation of the gravity and magnetic data. Source depth estimations from the spectral analysis by continuous wavelet transform (CWT) provide better constraints for constructing the initial density model. The calculated gravity effects from the initial model show great discrepancy with the observed data, especially at the center of the profile. More practical factors are then incorporated into the gravity modeling. First, we add a high density body right beneath the high pressure metamorphic (HPM) and ultrahigh pressure metamorphic (UHPM) belt considering the exposed HPM and UHPM rocks in the mid of our profile. Then, the anomalous bodies A, B, and C inferred from the CWT-based spectral analysis results are fixed in the model geometry. In the final crustal density structure, two anomalous bodies B and C with high density and low magnetization could possibly be attributed to metasomatised mantle materials by SiO2-rich melt derived from the foundering subducted mafic lower crust. Under the extensional environment in the early Cretaceous, the upwelling metasomatised mantle was partially melted to produce the parental magma of the post-collisional mafic-ultramafic intrusive rocks. As for the low density body A with strong magnetization located in the lower crust right beneath the HP and UHP metamorphic belt, it is more likely to be composed of serpentinized mantle peridotite (SMP). This serpentinized mantle peridotite body (SMPB) represents the emplacement of mantle-derived peridotites in the crust, accompanying the exhumation of the UHP metamorphic rocks.

  1. Enhanced inactivation of foodborne pathogenic and spoilage bacteria by FD&C Red no. 3 and other xanthene derivatives during ultrahigh pressure processing.

    PubMed

    Waite, Joy G; Yousef, Ahmed E

    2008-09-01

    Variability among microorganisms in barotolerance has been demonstrated at genus, species, and strain levels. Identification of conditions and additives that enhance the efficacy of ultrahigh pressure (UHP) against important foodborne microorganisms is crucial for maximizing product safety and stability. Preliminary work indicated that FD&C Red No. 3 (Red 3), a xanthene derivative, was bactericidal and acted synergistically with UHP against Lactobacillus spp. The objective of this study was to determine the antimicrobial efficacy of Red 3 and other xanthene derivatives, alone and combined with UHP, against spoilage and pathogenic bacteria in citrate-phosphate buffer (pH 7.0). Xanthene derivatives tested were fluorescein, Eosin Y, Erythrosin B, Phloxine B, Red 3, and Rose Bengal. Halogenated xanthene derivatives (10 ppm) were effective at reducing Listeria monocytogenes survivors but ineffective against Escherichia coli O157:H7. When combined with UHP (400 MPa, 3 min), the presence of derivatives enhanced inactivation. Because Red 3 was the only xanthene derivative to produce synergistic inactivation of both pathogens, further studies using this colorant were warranted. Efficacy of Red 3 against gram-positive bacteria (Lactobacillus plantarum and L. monocytogenes) was concentration dependent (1 to 10 ppm). E. coi O157: H7 strains were resistant to Red 3 concentrations up to 300 ppm. When Red 3 was combined with UHP, the lethality against gram-positive and gram-negative bacteria was dose dependent, with synergy being significant for most strains at > or = 3 ppm. Additional gram-positive and gram-negative bacteria showed lethalities similar to those observed for L. plantarum or L. monocytogenes, and E. coli O157:H7, respectively. Red 3 is a potentially useful additive to enhance the safety and stability of UHP-treated food products.

  2. An autochthonous Avalonian basement source for the latest Ordovician Brenton Pluton in the Meguma terrane of Nova Scotia: U-Pb-Hf isotopic constraints and paleogeographic implications

    NASA Astrophysics Data System (ADS)

    Duncan Keppie, J.; Gregory Shellnutt, J.; Dostal, Jaroslav; Fraser Keppie, D.

    2018-04-01

    The Ediacaran-Ordovician Meguma Supergroup was thrust over Avalonia basement prior to the intrusion of post-Acadian, ca. 370 Ma, S-type granitic batholiths. This has led to two main hypotheses regarding the original location of the Meguma terrane, a continental rise prism bordering either NW Africa or Avalonia. On the other hand, the pre-Acadian, ca. 440 Ma Brenton pluton has yielded the following U/Pb LA-ICP-MS zircon data: (1) 448 ± 3 Ma population peak inferred to be the intrusive age and (2) ca. 550 and 700 Ma inherited ages common to both Avalonia and NW Africa. In contrast, Hf isotopic analyses of zircon yielded model ages ranging from 814 to 1127 Ma with most between 940 and 1040 Ma: such ages are typical of Avalonia and not NW Africa. The ages of the inherited zircons found within the Brenton pluton suggest that it was probably derived by partial melting of sub-Meguma, mid-crustal Avalonian rocks, upon which the Meguma Supergroup was deposited. Although Avalonia is commonly included in the peri-Gondwanan terranes off NW Africa or Amazonia, paleomagnetic data, faunal provinciality, and Hf data suggest that, during the Ediacaran-Early Cambrian, it was an island chain lying near the tropics (ca. 20-30 °S) and was possibly a continuation of the Bolshezemel volcanic arc accreted to northern Baltica during the Ediacaran Timanide orogenesis. This is consistent with the similar derital zircon population in the Ediacaran-Cambrian Meguma Supergroup and the Dividal Group in northeastern Baltica.

  3. Delineation of karst terranes in complex environments: Application of modern developments in the wavelet theory and data mining

    NASA Astrophysics Data System (ADS)

    Alperovich, Leonid; Averbuch, Amir; Eppelbaum, Lev; Zheludev, Valery

    2013-04-01

    Karst areas occupy about 14% of the world land. Karst terranes of different origin have caused difficult conditions for building, industrial activity and tourism, and are the source of heightened danger for environment. Mapping of karst (sinkhole) hazards, obviously, will be one of the most significant problems of engineering geophysics in the XXI century. Taking into account the complexity of geological media, some unfavourable environments and known ambiguity of geophysical data analysis, a single geophysical method examination might be insufficient. Wavelet methodology as whole has a significant impact on cardinal problems of geophysical signal processing such as: denoising of signals, enhancement of signals and distinguishing of signals with closely related characteristics and integrated analysis of different geophysical fields (satellite, airborne, earth surface or underground observed data). We developed a three-phase approach to the integrated geophysical localization of subsurface karsts (the same approach could be used for following monitoring of karst dynamics). The first phase consists of modeling devoted to compute various geophysical effects characterizing karst phenomena. The second phase determines development of the signal processing approaches to analyzing of profile or areal geophysical observations. Finally, at the third phase provides integration of these methods in order to create a new method of the combined interpretation of different geophysical data. In the base of our combine geophysical analysis we put modern developments in the wavelet technique of the signal and image processing. The development of the integrated methodology of geophysical field examination will enable to recognizing the karst terranes even by a small ratio of "useful signal - noise" in complex geological environments. For analyzing the geophysical data, we used a technique based on the algorithm to characterize a geophysical image by a limited number of parameters

  4. Significance of exchanging SSURGO and STATSGO data when modeling hydrology in diverse physiographic terranes

    USGS Publications Warehouse

    Williamson, Tanja N.; Taylor, Charles J.; Newson, Jeremy K.

    2013-01-01

    The Water Availability Tool for Environmental Resources (WATER) is a TOPMODEL-based hydrologic model that depends on spatially accurate soils data to function in diverse terranes. In Kentucky, this includes mountainous regions, karstic plateau, and alluvial plains. Soils data are critical because they quantify the space to store water, as well as how water moves through the soil to the stream during storm events. We compared how the model performs using two different sources of soils data--Soil Survey Geographic Database (SSURGO) and State Soil Geographic Database laboratory data (STATSGO)--for 21 basins ranging in size from 17 to 1564 km2. Model results were consistently better when SSURGO data were used, likely due to the higher field capacity, porosity, and available-water holding capacity, which cause the model to store more soil-water in the landscape and improve streamflow estimates for both low- and high-flow conditions. In addition, there were significant differences in the conductivity multiplier and scaling parameter values that describe how water moves vertically and laterally, respectively, as quantified by TOPMODEL. We also evaluated whether partitioning areas that drain to streams via sinkholes in karstic basins as separate hydrologic modeling units (HMUs) improved model performance. There were significant differences between HMUs in properties that control soil-water storage in the model, although the effect of partitioning these HMUs on streamflow simulation was inconclusive.

  5. Tethyan, Mediterranean, and Pacific analogues for the Neoproterozoic Paleozoic birth and development of peri-Gondwanan terranes and their transfer to Laurentia and Laurussia

    NASA Astrophysics Data System (ADS)

    Keppie, J. Duncan; Nance, R. Damian; Murphy, J. Brendan; Dostal, J.

    2003-04-01

    Modern Tethyan, Mediterranean, and Pacific analogues are considered for several Appalachian, Caledonian, and Variscan terranes (Carolina, West and East Avalonia, Oaxaquia, Chortis, Maya, Suwannee, and Cadomia) that originated along the northern margin of Neoproterozoic Gondwana. These terranes record a protracted geological history that includes: (1) ˜1 Ga (Carolina, Avalonia, Oaxaquia, Chortis, and Suwannee) or ˜2 Ga (Cadomia) basement; (2) 750-600 Ma arc magmatism that diachronously switched to rift magmatism between 590 and 540 Ma, accompanied by development of rift basins and core complexes, in the absence of collisional orogenesis; (3) latest Neoproterozoic-Cambrian separation of Avalonia and Carolina from Gondwana leading to faunal endemism and the development of bordering passive margins; (4) Ordovician transport of Avalonia and Carolina across Iapetus terminating in Late Ordovician-Early Silurian accretion to the eastern Laurentian margin followed by dispersion along this margin; (5) Siluro-Devonian transfer of Cadomia across the Rheic Ocean; and (6) Permo-Carboniferous transfer of Oaxaquia, Chortis, Maya, and Suwannee during the amalgamation of Pangea. Three potential models are provided by more recent tectonic analogues: (1) an "accordion" model based on the orthogonal opening and closing of Alpine Tethys and the Mediterranean; (2) a "bulldozer" model based on forward-modelling of Australia during which oceanic plateaus are dispersed along the Australian plate margin; and (3) a "Baja" model based on the Pacific margin of North America where the diachronous replacement of subduction by transform faulting as a result of ridge-trench collision has been followed by rifting and the transfer of Baja California to the Pacific Plate. Future transport and accretion along the western Laurentian margin may mimic that of Baja British Columbia. Present geological data for Avalonia and Carolina favour a transition from a "Baja" model to a "bulldozer" model. By

  6. Effects of the Yakutat terrane collision with North America on the neighboring Pacific plate

    NASA Astrophysics Data System (ADS)

    Reece, R.; Gulick, S. P.; Christeson, G. L.; Barth, G. A.; van Avendonk, H.

    2011-12-01

    High-resolution bathymetry data show a 30 km N-S trending ridge within the deep-sea Surveyor Fan between the mouths of the Yakutat Sea Valley and Bering Trough in the Gulf of Alaska. The ridge originates in the north, perpendicular to and at the base of the continental slope, coincident with the Transition Fault, the strike-slip boundary between the Yakutat terrane (YAK) and the Pacific plate (PAC). The ridge exhibits greatest relief adjacent to the Transition Fault, and becomes less distinct farther from the shelf edge. Seismic reflection data reveal a sharp basement high beneath the ridge (1.1 sec of relief above "normal" basement in two-way travel time) as well as multiple similarly oriented strike-slip fault segments. The ridge, basement high, and faults are aligned and co-located with an intraplate earthquake swarm on the PAC, which includes four events > 6.5 Mw that occurred from 1987-1992. The swarm is defined by right-lateral strike-slip events, and is collectively called the Gulf of Alaska Shear Zone (GASZ). Based on the extent of historic seismicity, the GASZ extends at least 230 km into the PAC, seemingly ending at the Kodiak-Bowie Seamount Chain. Farther southwest, between the Kodiak-Bowie and Patton-Murray Seamount Chains, there is a large regional bathymetric low with an axis centered along the Aja Fracture Zone, perpendicular to the GASZ and Aleutian Trench. Basement and overlying sediment in the low are irregularly, but pervasively faulted. The GASZ and faulted bathymetric low could represent PAC deformation due to PAC-YAK coupling whereby YAK resistance to subduction is expressed as deformation in the thinner (weaker) PAC crust. The YAK is an allochthonous, basaltic terrane coupled to the PAC that began subducting at a low angle beneath North America (NA) ~25-40 Ma. Due to its 15-25 km thickness, the YAK is resistant to subduction compared to the normal oceanic crust of the PAC. As a result the plates developed differential motion along the

  7. Ar/Ar age data of muscovite from the Keivy Terrane (central Kola Peninsula, arctic European Russia) imply a prolonged fluid-assisted recrystallisation

    NASA Astrophysics Data System (ADS)

    de Jong, K.; Ruffet, G.; Marker, M.

    2012-04-01

    Single grain muscovite 40Ar/39Ar age data from metasediments of the Keivy Terrane point to a prolonged recrystallisation, and imply that the younger age set in metamorphic terranes with a long history cannot always be simply interpreted as due to late and slow cooling. The Keivy terrane is an element of the Palaeoproterozoic Lapland-Kola collisional belt developed along the northern margin of the Fennoscandian (Baltic) Shield. It comprises a lower series of late Archaean meta-volcanic rocks, intruded by earliest Palaeoproterozoic alkali granites that are covered by strongly deformed quartz-rich kyanite-staurolite-garnet-micaschists of the Keivy unit that have yielded magmatic zircons as young as ~2.35 Ga, which were derived from the substratum's alkaline granite. 40Ar/39Ar step-heating dating with a defocussed laser beam of muscovite grains from seven metasediments of the Keivy unit yielded saddle-shaped age spectra in most experiments. In five out of seven cases the base of the saddle corresponded to a plateau age in the range of 1667 to 1593 Ma (60-90% of the gas release; 1 sigma errors: 1.0-1.2 Ma). We do not simply interpret these 40Ar/39Ar ages in the classical way as due to cooling, because the saddle shape of the spectra enables a more complete and detailed interpretation. Saddle-shaped age spectra may result from the presence of different argon reservoirs in partially recrystallised and chemically distinct micas that degas over a different energy interval: a primary, not recrystallised or inherited domain (low and high temperature steps) and a newly formed or recrystallised one (saddle minimum in the intermediate steps). The younger subdomains formed by growth or recrystallisation could characterise the last isotopic record during an extended (re)crystallisation history. It is striking that 1612 and 1615 Ma saddle minimum ages in two samples correspond to a plateau age of 1612 Ma in another sample. Also elevated high and/or low temperature apparent ages of

  8. Kinematics of Post-Collisional Extensional Tectonics and Exhumation of the Menderes Massif in the Western Anatolia Extended Terrane, Turkey

    NASA Astrophysics Data System (ADS)

    Cemen, I.; Catlos, E. J.; Diniz, E.; Gogus, O.; Ozerdem, C.; Baker, C.; Kohn, M. J.; Goncuoglu, C.; Hancer, M.

    2006-12-01

    The Western Anatolia Extended Terrane in Turkey is one of the best-developed examples of post-collisional extended terranes and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene as the Neotethys Ocean closed and the Izmir-Ankara-Erzincan suture zone was formed. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive, uninterrupted stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal- slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alasehir and the south-dipping Buyuk Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alasehir, Buyuk

  9. Increasing the graduation rates of minority medical students.

    PubMed

    Payne, J L; Nowacki, C M; Girotti, J A; Townsel, J; Plagge, J C; Beckham, T W

    1986-05-01

    The University of Illinois College of Medicine has operated a program since 1969 to recruit minority students into the college and to increase the graduation rates of these students once they enroll. Known as the Medical Opportunities Program (MOP) until 1978, the program was expanded in 1978 and renamed the Urban Health Program (UHP). The authors of the present paper discuss the results of these programs, particularly the effect of granting minority students delays in completing graduation requirements. The MOP (1969 through 1978) increased graduation rates for minority students from 55 percent for those who graduated on time to 81 percent for both on-time and delayed graduates. Under the first seven years of the UHP (1979 through 1985), more minority students have been offered places, and more have enrolled than in the 10 years of the MOP. The retention rate under the UHP, if it holds, will be higher than that under the MOP. For the combined MOP-UHP period, the retention rate for minority students was 88 percent; 69.8 percent of the graduates were on time, and 30.2 were delayed.

  10. Ultramafic Terranes and Associated Springs as Analogs for Mars and Early Earth

    NASA Technical Reports Server (NTRS)

    Blake, David; Schulte, Mitch; Cullings, Ken; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Putative extinct or extant Martian organisms, like their terrestrial counterparts, must adopt metabolic strategies based on the environments in which they live. In order for organisms to derive metabolic energy from the natural environment (Martian or terrestrial), a state of thermodynamic disequilibrium must exist. The most widespread environment of chemical disequilibrium on present-day Earth results from the interaction of mafic rocks of the ocean crust with liquid water. Such environments were even more pervasive and important on the Archean Earth due to increased geothermal heat flow and the absence of widespread continental crust formation. The composition of the lower crust and upper mantle of the Earth is essentially the-same as that of Mars, and the early histories of these two planets are similar. It follows that a knowledge of the mineralogy, water-rock chemistry and microbial ecology of Earth's oceanic crust could be of great value in devising a search strategy for evidence of past or present life on Mars. In some tectonic regimes, cross-sections of lower oceanic crust and upper mantle are exposed on land as so-called "ophiolite suites." Such is the case in the state of California (USA) as a result of its location adjacent to active plate margins. These mafic and ultramafic rocks contain numerous springs that offer an easily accessible field laboratory for studying water/rock interactions and the microbial communities that are supported by the resulting geochemical energy. A preliminary screen of Archaean biodiversity was conducted in a cold spring located in a presently serpentinizing ultramafic terrane. PCR and phylogenetic analysis of partial 16s rRNA, sequences were performed on water and sediment samples. Archaea of recent phylogenetic origin were detected with sequences nearly identical to those of organisms living in ultra-high pH lakes of Africa.

  11. Cost-effectiveness analysis of alternative factor VIII products in treatment of haemophilia A.

    PubMed

    Hay, J W; Ernst, R L; Kessler, C M

    1999-05-01

    Manufactured factor VIII (FVIII) concentrates of varying purity are available for managing patients with haemophilia A. This study is a cost-effectiveness analysis of ultra-high purity and recombinant (UHP/R) FVIII products relative to intermediate and very-high purity (IP/VHP) preparations. Because the societal (including research and development) costs of FVIII products are unknown and product prices vary with market conditions, we conducted the analysis with treatment cost as a variable quantity. We estimated the largest price premium that could be paid for a UHP/R concentrate relative to an IP/VHP concentrate such that the UHP/R product is the more cost-effective preparation. In the analysis haemophilic patients were assumed to be seropositive for human immunodeficiency virus, seropositive for hepatitis C (HCV), or at risk for seroconversion of hepatitis A (HAV) or hepatitis B (HBV). The results showed that the maximum cost-effective UHP/R price premium is essentially zero if the patient is only at risk of HAV or HBV infection, positive but small for the base-case HCV+ patient, and positive and large for the base-case HIV+ patient having a short life expectancy. Thus UHP/R preparations are not uniformly more cost-effective than IP/VHP products across the spectrum of haemophilic patients' health problems, and the relative cost-effectiveness of the two classes of prepared FVIII products is sensitive to product prices. The methodology employed here can be used in other circumstances where multiple treatments exist for illnesses for which there are significant multiple comorbidities or health risks.

  12. Unconventional Hydrocarbon Development Hazards Within the Central United States. Report 1: Overview and Potential Risk to Infrastructure

    DTIC Science & Technology

    2015-08-01

    of the injection purpose, i.e., secondary oil and gas recovery, disposal of waste fluids, geothermal energy, and/or UHP hydraulic fracturing...activities such as reservoir impoundment, mining, wastewater injection, geothermal systems and CO2 capture have been linked directly to induced...activities, e.g., deep fluid injection, geothermal injection, and/or UHP wells, that critically affect deep lithologies and alter the existing mechanical

  13. Epistemological issues in the study of microbial life: alternative terran biospheres?

    PubMed

    Cleland, Carol E

    2007-12-01

    The assumption that all life on Earth today shares the same basic molecular architecture and biochemistry is part of the paradigm of modern biology. This paper argues that there is little theoretical or empirical support for this widely held assumption. Scientists know that life could have been at least modestly different at the molecular level and it is clear that alternative molecular building blocks for life were available on the early Earth. If the emergence of life is, like other natural phenomena, highly probable given the right chemical and physical conditions then it seems likely that the early Earth hosted multiple origins of life, some of which produced chemical variations on life as we know it. While these points are often conceded, it is nevertheless maintained that any primitive alternatives to familiar life would have been eliminated long ago, either amalgamated into a single form of life through lateral gene transfer (LGT) or alternatively out-competed by our putatively more evolutionarily robust form of life. Besides, the argument continues, if such life forms still existed, we surely would have encountered telling signs of them by now. These arguments do not hold up well under close scrutiny. They reflect a host of assumptions that are grounded in our experience with large multicellular organisms and, most importantly, do not apply to microbial forms of life, which cannot be easily studied without the aid of sophisticated technologies. Significantly, the most powerful molecular biology techniques available-polymerase chain reaction (PCR) amplification of rRNA genes augmented by metagenomic analysis-could not detect such microbes if they existed. Given the profound philosophical and scientific importance that such a discovery would represent, a dedicated search for 'shadow microbes' (heretofore unrecognized 'alien' forms of terran microbial life) seems in order. The best place to start such a search is with puzzling (anomalous) phenomena, such as

  14. Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks: Constraints from mineral hydrogen isotope and water content changes in eclogite gneiss transitions in the Sulu orogen

    NASA Astrophysics Data System (ADS)

    Chen, Ren-Xu; Zheng, Yong-Fei; Gong, Bing; Zhao, Zi-Fu; Gao, Tian-Shan; Chen, Bin; Wu, Yuan-Bao

    2007-05-01

    By taking advantage of having depth profiles between contrasting lithologies from core samples of the Chinese Continental Scientific Drilling (CCSD) project, a combined study was carried out to examine changes in mineral H isotope, total water and hydroxyl contents in garnet and omphacite across the contacts between ultrahigh-pressure (UHP) eclogite and gneiss in the Sulu orogen, east-central China. The samples of interest were from two continuous core segments from the CCSD main hole at depths of 734.21-737.16 and 929.67-932.86 m, respectively. The results show δD values of -116‰ to - 64‰ for garnet and -104‰ to -82‰ for omphacite, consistent with incorporation of meteoric water into protoliths of UHP metamorphic rocks by high-T alteration. Both equilibrium and disequilibrium H isotope fractionations were observed between garnet and omphacite, suggesting fluid-assisted H isotope exchange at local scales during amphibolite-facies retrogression. While bulk water analysis gave total H 2O concentrations of 522-1584 ppm for garnet and 1170-20745 ppm for omphacite, structural hydroxyl analysis yielded H 2O contents of 80-413 ppm for garnet and 228-412 ppm for omphacite. It appears that significant amounts of molecular H 2O are present in the minerals, pointing to enhanced capacity of water storage in the UHP eclogite minerals. Hydrogen isotope variations in the transition between eclogite and gneiss show correlations with variations in their water contents. Petrographically, the degree of retrograde metamorphism generally increases with decreasing distance from the eclogite-gneiss boundary. Thus, retrograde metamorphism results in mineral reactions and H isotope variation. Because hydroxyl solubility in nominally anhydrous minerals decreases with dropping pressure, significant amounts of water are expected to be released from the minerals during decompression exhumation. Decompression exsolution of structural hydroxyl from 1 m 3 volume of eclogite composed of

  15. The Late Cambrian Takaka Terrane, NW Nelson, New Zealand: Accretionary-prism development and arc collision followed by extension and fan-delta deposition at the SE margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Pound, K. S.

    2013-12-01

    Re-evaluation of field and lab data indicates that the Cambrian portion of the Takaka Terrane in the Cobb Valley area of NW Nelson, New Zealand preserves the remnants of an accretionary prism complex, across which the Lockett Conglomerate fan-delta was deposited as a consequence of extension. Previous work has recognized that the structurally disrupted lower Takaka Terrane rocks present an amalgam of sedimentary and igneous rocks generated prior to convergence (Junction Formation) or during convergence (Devil River Volcanics Group, Haupiri Group), including arc-related and MORB components. Portions of the sequence have in the past been loosely described as an accretionary prism. Reevaluation of the detailed mapping, sedimentological and provenance studies shows that remnants of a stratigraphic sequence (Junction Formation, Devil River Volcanics Group, Haupiri Group) can be traced through 10 fault-bounded slices, which include a mélange-dominated slice (Balloon Mélange). These slices are the remnants of the accretionary prism; the stratigraphy within each slice generally youngs to the east, and the overall pattern of aging (based on relative age from provenance studies, sparse fossils, stratigraphic relations, and limited isotopic data) indicates that the older rocks generally dominate fault slices to the east, and younger rocks dominate fault slices to the west, delineating imbricate slices within an eastward-dipping subduction zone, in which the faults record a complex history of multi-phase reactivation. The Lockett Conglomerate is a ~500-m thick fan-delta conglomerate that is the preserved within one of the fault slices, where it is stratigraphically and structurally highest unit in the lower Takaka Terrane; it is also present as blocks within the Balloon Melange. The Lockett Conglomerate is marine at its base and transitions upwards to fluvial facies. The Lockett Conglomerate has previously been interpreted to result from erosion consequent on continued

  16. Paleomagnetic data from the Caborca terrane, Mexico: Implications for Cordilleran tectonics and the Mojave-Sonora megashear hypothesis

    NASA Astrophysics Data System (ADS)

    Molina Garza, Roberto S.; Geissman, John W.

    1999-04-01

    Two ancient magnetizations have been isolated in rocks of the Caborca terrane, northwest Mexico. The characteristic magnetizations of Neoproterozoic and Paleozoic miogeoclinal shelf-strata, arc-derived Lower Jurassic marine strata, and Jurassic volcanic and volcaniclastic rocks are of dual polarity and east-northeast declination (or south-southwest) and shallow inclination. Magnetizations in Neoproterozoic and Paleozoic miogeoclinal strata are interpreted as secondary (J*) and to be of similar age to those observed in Lower and Middle Jurassic rocks. Remanence acquisition is bracketed between about 190 and 160 Ma. The overall mean (D=15.0°, I=8.5° n=38 sites; six localities; k=19.1, α95=5.5°) suggests a moderate to large clockwise rotation of 12 to 50° (depending on reference direction assumed) of the Caborca terrane, and rocks of the Sonoran segment of the Cordilleran volcanic arc, with respect to the North America craton. When compared with expected inclinations, observed values are not anomalously steep, arguing against statistically significant southward latitudinal displacement of the Caborca block after remanence acquisition. Late Cretaceous intrusions yield primary, dual-polarity steep inclination ``K'' magnetizations (D=341.4°, I=52.3° n=10 sites; five localities; k=38.3, α95=7.9°) and have locally remagnetized Neoproterozoic and Jurassic strata. When present, secondary (K*) magnetizations in Neoproterozoic strata are of higher coercivity and higher unblocking temperature than the characteristic (J*) magnetization. Importantly, the regional internal consistency of data for Late Cretaceous intrusions suggests that effects of Tertiary tilt or rotation about a vertical axis over the broad region sampled (~5000 km2) are not substantial. Late Cretaceous primary (K) magnetizations and secondary (K*) magnetizations yield a combined mean of D=348.1°, I=50.7° (N=10 localities; 47 sites; k=53.5, α95=6.7°), indicating at most small (<~10°) clockwise

  17. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling mountains, central China

    USGS Publications Warehouse

    Mao, J.; Goldfarb, R.J.; Zhang, Z.; Xu, W.; Qiu, Yumin; Deng, J.

    2002-01-01

    The gold-rich Xiaoqinling-Xiong'ershan region in eastern Shaanxi and western Henan provinces, central China, lies about 30-50 km inland of the southern margin of the North China craton. More than 100 gold deposits and occurrences are concentrated in the Xiaoqinling (west), Xiaoshan (middle), and Xiong'ershan (east) areas. Late Archean gneiss of the Taihua Group, and Middle Proterozoic metavolcanic rocks of the Xiong'er Group are the main host rocks for the deposits. Mesozoic granitoids (ca. 178-104 Ma) are present in most gold districts, but deposits are typically hosted in the Precambrian basement rocks hundreds of meters to as far as 10 km from the intrusions and related hornfels zones. Deposits in the Xiaoqinling and Xiaoshan areas are best classified as orogenic gold deposits, with ores occurring in a number of distinct belts both in quartz veins and disseminated in altered metamorphic rocks. Alteration assemblages are dominated by quartz, sericite, pyrite, and carbonate minerals. The ore-forming fluids were low salinity, CO2-rich, and characterized by isotopically heavy ??18O. Four deposits (Dongchuang, Wenyu, Yangzhaiyu, and Dahu) in the Xiaoqinling area each contain resources of about 1 Moz Au. Some of the gold deposits in the Xiong'ershan area represent more shallowly emplaced tellurium-enriched orogenic systems, which include resources of approximately 1-1.5 Moz Au at Shanggong and Beiling (or Tantou). Others are epithermal deposits (e.g., Qiyugou and Dianfang) that are hosted in volcanic breccia pipes. Isotopic dates for all gold deposits, although often contradictory, generally cluster between 172-99 Ma and are coeval with emplacement of the post-kinematic granitoids. The gold deposits formed during a period of relaxation of far-field compressional stresses, clearly subsequent to the extensive Paleozoic-early Mesozoic accretion of are terranes and the Yangtze craton onto the southern margin of the North China craton. Hydrothermal and magmatic events

  18. China.

    PubMed

    1983-12-01

    This discussion of China focuses on the following: the people; geography; history (early history, 20th century China, the People's Republic of China; the "Great Leap Forward" and the Sino Soviet Split, the Cultural Revolution, and Mao's death and present directions); government (state structure, Chinese Communist Party, and legal system); education; economy; foreign relations; defense; and relations between China and the US. As of 1982, China's population totaled just over 1.008 billion with an annual growth rate of 1.5%. Life expectancy is 68 years. Government authorities endorsed birth control in the 1950s, played it down in 1958, and began to promote it again in 1962. The present family planning program began in the early 1970s and has become more fully mobilized since 1979. The largest ethnic group is the Han Chinese, who constitute 93.3% of the total population. The People's Republic of China, located in eastern Asia, is almost as large as the European continent. 2/3 of China's area is mountainous or semidesert; only about 1/10 is cultivated. China is the oldest continuous major world civilization with records dating back about 3500 years. Mao's death in September 1976 removed a towering figure from Chinese politics and set off a scramble for succession. The post 11th Party Congress leadership has emphasized economic development and renounced the mass political movements of prior years. Important educational reforms were made in early 1978. Since 1979, the Chinese leadership has moved toward more pragmatic positions in almost all fields. The Chinese government has always been subordinate to the Chinese Communist Party (CCP), its role being to implement party policies. The primary instruments of state power are the State Council, an executive body corresponding to a cabinet, and the NPC, a legislative body. China has made impressive progress in primary education since 1949. About 93% of eligible children are enrolled in 1st grade, though only 65% finish primary

  19. Nuclear power grows in China`s energy mix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xavier

    1996-07-01

    China`s rapid economic growth in the past two decades has caused the nations`s demand for electricity to exceed its capacity. AS of 1992, with power shortages as high as 25 percent, {open_quotes}power plant operators were often forced to resort to rolling brownouts to avoid complete system breakdowns,{close_quotes} says Xavier Chen, an assistant professor with the Asian Institute of Technology`s Energy Program in Bangkok, Thailand. To keep pace with China`s economic development, Chen estimates that {open_quotes}China must increase its electricity capacity 6 to 8 percent a year each year into the foreseeable future.{close_quotes} For now, coal is transported to power plantsmore » in the rapidly developing eastern coastal provinces at great expense. Chen also notes that the environmental disadvantages of coal make it a less desirable source of energy than nuclear. Development of nuclear energy is likely to go forward for another reason: In China, there is much less opposition to nuclear power plants than in other developing nations. {open_quotes}Nuclear energy likely will plan an important role in China`s future energy mix and help close the gap between electricity production and demand,{close_quotes} Chen says.« less

  20. Timing, Controls and Tectonic Context of Gold Mineralisation in the Southern Uplands-Longford-Down Terrane, Caledonides, Scotland and Ireland.

    NASA Astrophysics Data System (ADS)

    Rice, Samuel; Cuthbert, Simon; Hursthouse, Andrew

    2017-04-01

    The relationships between regional tectonic, magmatic and metamorphic events and hydrothermal mineralisation in orogenic settings are controversial [1]. The geotectonic development of the Caledonian orogenic belt of the northern British Isles, which hosts some significant gold deposits, is well-constrained and provides an excellent framework for investigating these relationships. Gold mineralisation at two of the best known deposits, Curraghinalt and Cononish, located in the Grampian Terrane, has recently been shown to have occurred between 462.7 and 452.8 Ma, during the Late Ordovician Grampian event of the Caledonian orogeny [2]. In the Southern Uplands-Longford-Down Terrane syn and post-kinnematic intrusions constrain the age of mineralisation to between 418 and 397 Ma. Mineralisation is hosted by late Caledonian transverse D3 structures of Early Devonian age [3]. Fluid inclusion data indicate that the auriferous quartz veins were deposited from a low salinity carbonic mesothermal ( 330°C) fluid of apparently mixed magmatic-metamorphic origin, consistent with a Caledonian orogenic origin [4-6]. Gold mineralisation is associated with contemporaneous minor intrusions at several localities [7-9] exhibiting comparable mineralogy, geochemistry, fluid inclusion types and structural relationships, indicating that coeval regional magmatism may have been a significant factor for all of the deposits. Gold mineralisation in the SULDT occurred during a transition from compression to strike-slip deformation coeval with a regional pulse of orogenic magmatism [10]. The common association between gold deposits in Phanerozoic orogenic settings and intrusions may explain overlapping characteristics between orogenic, intrusion-related and porphyry gold deposits and may reflect the important role of magmatism in conveying the heat to drive hydrothermal systems at shallow crustal levels. Further work will focus on constraining the sources of mineralising fluids and metals. 1

  1. Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China.

    PubMed

    Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun

    2005-06-01

    Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of approximately 0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 x 10(3) to 2.4 x 10(4) cells/g and 3.5 x 10(8) to 4.2 x 10(9) cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids.

  2. Microbial Diversity in Ultra-High-Pressure Rocks and Fluids from the Chinese Continental Scientific Drilling Project in China

    PubMed Central

    Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun

    2005-01-01

    Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of ∼0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 × 103 to 2.4 × 104 cells/g and 3.5 × 108 to 4.2 × 109 cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids. PMID:15933024

  3. Map showing geologic terranes of the Hailey 1 degree x 2 degrees quadrangle and the western part of the Idaho Falls 1 degree x 2 degrees quadrangle, south-central Idaho

    USGS Publications Warehouse

    Worl, R.G.; Johnson, K.M.

    1995-01-01

    The paper version of Map Showing Geologic Terranes of the Hailey 1x2 Quadrangle and the western part of the Idaho Falls 1x2 Quadrangle, south-central Idaho was compiled by Ron Worl and Kate Johnson in 1995. The plate was compiled on a 1:250,000 scale topographic base map. TechniGraphic System, Inc. of Fort Collins Colorado digitized this map under contract for N.Shock. G.Green edited and prepared the digital version for publication as a geographic information system database. The digital geologic map database can be queried in many ways to produce a variety of geologic maps.

  4. Initiation of extension in South China continental margin during the active-passive margin transition: kinematic and thermochronological constraints

    NASA Astrophysics Data System (ADS)

    ZUO, Xuran; CHAN, Lung

    2015-04-01

    The southern South China Block is characterized by a widespread magmatic belt, prominent NE-striking fault zones and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from an active to a passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. In this study, we used zircon fission-track dating (ZFT) and numerical modeling to examine the timing and kinematics of the active-passive margin transition. Our ZFT results on granitic plutons in the SW Cathaysia Block show two episodes of exhumation of the granitic plutons. The first episode, occurring during 170 Ma - 120 Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115 Ma - 70 Ma. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the observation based on ZFT data that exhumation of the granite-dominant Nanling Range occurred at an earlier time than the gneiss-dominant Yunkai Terrane. In addition to the difference in geology between Yunkai and Nanling, the heating from Jurassic-Early Cretaceous magmatism in the Nanling Range may have softened the upper crust, causing the area to exhume more readily. Numerical modeling results also indicate that (1) high slab dip angle, high geothermal gradient of lithosphere and low convergence velocity favor the subduction process and the reversal of crustal stress state from compression to extension in the upper plate; (2) the late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension has shed light on the geological condition producing the red bed basins during Late Cretaceous

  5. Concentrations of nutrients, pesticides, and suspended sediment in the karst terrane of the Sinking Creek basin, Kentucky, 2004

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    Water samples were collected in streams and springs in the karst terrane of the Sinking Creek Basin in 2004 as part of study in cooperation with the Kentucky Department of Agriculture. A total of 48 water samples were collected at 7 sites (4 springs, 2 streams, and 1 karst window) from April through November 2004. The karst terrane of the Sinking Creek Basin (also known as Boiling Spring Basin) encompasses about 125 square miles in Breckinridge County and portions of Meade and Hardin Counties in Kentucky. Fourteen pesticides were detected of the 52 pesticides analyzed in the stream and spring samples. Of the 14 detected pesticides, 12 were herbicides and 2 were insecticides. The most commonly detected pesticides?atrazine, simazine, metolachlor, and acetochlor?were those most heavily used on crops during the study. Atrazine was detected in 100 percent of all samples; simazine, metolachlor, and acetochlor were detected in more than 35 percent of all samples. The pesticide-transformation compound, deethylatrazine, was detected in 98 percent of the samples. Only one nonagricultural herbicide, prometon, was detected in more than 30 percent of the samples. Malathion, the most commonly detected insecticide, was found in 4 percent of the samples, which was followed by carbofuran (2 percent). Most of the pesticides were present in low concentrations; however, atrazine was found in springs exceeding the U.S. Environmental Protection Agency?s (USEPA) standards for drinking water. Atrazine exceeded the USEPA?s maximum contaminant level 2 times in 48 detections. Concentrations of nitrate greater than 10 milligrams per liter (mg/L) were not found in water samples from any of the sites. Concentrations of nitrite plus nitrate ranged from 0.21 to 3.9 mg/L at the seven sites. The median concentration of nitrite plus nitrate for all sites sampled was 1.5 mg/L. Concentrations of nitrite plus nitrate generally were higher in the springs than in the main stem of Sinking Creek. Forty

  6. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys

    NASA Astrophysics Data System (ADS)

    Metcalfe, I.

    2013-04-01

    Present-day Asia comprises a heterogeneous collage of continental blocks, derived from the Indian-west Australian margin of eastern Gondwana, and subduction related volcanic arcs assembled by the closure of multiple Tethyan and back-arc ocean basins now represented by suture zones containing ophiolites, accretionary complexes and remnants of ocean island arcs. The Phanerozoic evolution of the region is the result of more than 400 million years of continental dispersion from Gondwana and plate tectonic convergence, collision and accretion. This involved successive dispersion of continental blocks, the northwards translation of these, and their amalgamation and accretion to form present-day Asia. Separation and northwards migration of the various continental terranes/blocks from Gondwana occurred in three phases linked with the successive opening and closure of three intervening Tethyan oceans, the Palaeo-Tethys (Devonian-Triassic), Meso-Tethys (late Early Permian-Late Cretaceous) and Ceno-Tethys (Late Triassic-Late Cretaceous). The first group of continental blocks dispersed from Gondwana in the Devonian, opening the Palaeo-Tethys behind them, and included the North China, Tarim, South China and Indochina blocks (including West Sumatra and West Burma). Remnants of the main Palaeo-Tethys ocean are now preserved within the Longmu Co-Shuanghu, Changning-Menglian, Chiang Mai/Inthanon and Bentong-Raub Suture Zones. During northwards subduction of the Palaeo-Tethys, the Sukhothai Arc was constructed on the margin of South China-Indochina and separated from those terranes by a short-lived back-arc basin now represented by the Jinghong, Nan-Uttaradit and Sra Kaeo Sutures. Concurrently, a second continental sliver or collage of blocks (Cimmerian continent) rifted and separated from northern Gondwana and the Meso-Tethys opened in the late Early Permian between these separating blocks and Gondwana. The eastern Cimmerian continent, including the South Qiangtang block and

  7. Geochemical, oxygen, and neodymium isotope compositions of metasediments from the Abitibi greenstone belt and Pontiac Subprovince, Canada: Evidence for ancient crust and Archean terrane juxtaposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, R.; Kerrich, R.; Maas, R.

    1993-02-01

    The Abitibi greenstone belt (AGB) and Pontiac Subprovince (PS) in the southwestern Superior Province are adjacent greenstone-plutonic and metasedimentary-dominated terranes, respectively, separated by a major fault zone. Metasediments from these two contrasting terranes are compared in terms of major- and trace-element and O- and Nd-isotope compositions, and detrital zircon ages. The following two compositional populations of metasediments are present in the low-grade, Abitibi southern volcanic zone: (1) a mafic-element-enriched population (MEP) characterized by flat, depleted REE patterns; enhanced Mg, Cr, Co, Ni, and Sc; low-incompatible-element contents; and minor or absent normalized negative troughs at Nb, Ta, and Ti; and (2)more » a low-mafic-element population (LMEP) featuring LREE-enriched patterns; enhanced Rb, Cs, Ba, Th, and U contents; and pronounced normalized negative troughs at Nb, Ta, and Ti. These geochemical features are interpreted to indicate that the MEP sediments were derived from an ultramafic- and mafic-dominated oceanic provenance, whereas the LMEP sediments represent mixtures of mafic and felsic are source rocks. The PS metasediments are essentially indistinguishable from Abitibi LMEP on the basis of major-element and transition metal abundances, suggesting comparable types of source rocks and degrees of maturity, but are distinct in terms of some trace elements and O-isotope compositions. The Pontiac metasediments are depleted in [sup 18]O and enriched in Cs, Ba, Pb, Th, U, Nb, Ta, Hf, Zr, and total REE and also have higher ratios of Rb/K, Cs/Rb, Ba/Rb, Ta/Nb, Th/La, and Ba/La relative to the Abitibi LMEP. Two subtypes of REE patterns have been identified in PS metasediments. The first subtype is interpreted to be derived from provenances of mixed mafic and felsic volcanic rocks, whereas the Eu-depleted type has features that are typical of post-Archean sediments or Archean K-rich granites and volcanic equivalents. 100 refs., 9 figs., 4

  8. Crustal structure and tectonics of the northern part of the Southern Granulite Terrane, India

    USGS Publications Warehouse

    Rao, V.V.; Sain, K.; Reddy, P.R.; Mooney, W.D.

    2006-01-01

    Deep seismic reflection studies investigating the exposed Archean lower continental crust of the Southern Granulite Terrane, India, yield important constraints on the nature and evolution of the deep crust, including the formation and exhumation of granulites. Seismic reflection images along the Kuppam-Bhavani profile reveal a band of reflections that dip southward from 10.5 to 15.0??s two-way-time (TWT), across a distance of 50??km. The bottom of these reflections beneath the Dharwar craton is interpreted as the Moho. Further south, another reflection band dipping northward is observed. These bands of reflectivity constitute a divergent reflection fabric that converges at the Moho boundary observed at the Mettur shear zone. Reflection fabrics that intersect at a steep angle are interpreted as a collisional signature due to the convergence of crustal blocks, which we infer resulted in crustal thickening and the formation of granulites. Anomalous gravity and magnetic signatures are also observed across the Mettur shear zone. The gravity model derived from the Bouguer gravity data corroborates seismic results. The tectonic regime and seismic reflection profiles are combined in a 3-D representation that illustrates our evidence for paleo-subduction at a collision zone. The structural dissimilarities and geophysical anomalies suggest that the Mettur shear zone is a suture between the Dharwar craton in the north and another crustal block in the south. This study contributes significantly to our understanding of the operation of Archean plate tectonics, here inferred to involve collision and subduction. Furthermore, it provides an important link between the Gondwanaland and global granulite evolution occurring throughout the late Archean. ?? 2006 Elsevier B.V. All rights reserved.

  9. Urban Health Project: A Sustainable and Successful Community Internship Program for Medical Students.

    PubMed

    Roberts, Kasey; Park, Thomas; Elder, Nancy C; Regan, Saundra; Theodore, Sarah N; Mitchell, Monica J; Johnson, Yolanda N

    2015-11-01

    Urban Health Project (UHP) is a mission and vision-driven summer internship at the University of Cincinnati College of Medicine that places first-year medical students at local community agencies that work with underserved populations. At the completion of their internship, students write Final Intern Reflections (FIRs). Final Intern Reflections written from 1987 to 2012 were read and coded to both predetermined categories derived from the UHP mission and vision statements and new categories created from the data themselves. Comments relating to UHP's mission and vision were found in 47% and 36% of FIRs, respectively. Positive experiences outweighed negative by a factor of eight. Interns reported the following benefits: educational (53%), valuable (25%), rewarding (25%), new (10%), unique (6%), and life-changing (5%). Urban Health Project is successful in providing medical students with enriching experiences with underserved populations that have the potential to change their understanding of vulnerable populations.

  10. Tracing the depositional history of Kalimantan diamonds by zircon provenance and diamond morphology studies

    NASA Astrophysics Data System (ADS)

    Kueter, Nico; Soesilo, Joko; Fedortchouk, Yana; Nestola, Fabrizio; Belluco, Lorenzo; Troch, Juliana; Wälle, Markus; Guillong, Marcel; Von Quadt, Albrecht; Driesner, Thomas

    2016-11-01

    Diamonds in alluvial deposits in Southeast Asia are not accompanied by indicator minerals suggesting primary kimberlite or lamproite sources. The Meratus Mountains in Southeast Borneo (Province Kalimantan Selatan, Indonesia) provide the largest known deposit of these so-called "headless" diamond deposits. Proposals for the origin of Kalimantan diamonds include the adjacent Meratus ophiolite complex, ultra-high pressure (UHP) metamorphic terranes, obducted subcontinental lithospheric mantle and undiscovered kimberlite-type sources. Here we report results from detailed sediment provenance analysis of diamond-bearing Quaternary river channel material and from representative outcrops of the oldest known formations within the Alino Group, including the diamond-bearing Campanian-Maastrichtian Manunggul Formation. Optical examination of surfaces of diamonds collected from artisanal miners in the Meratus area (247 stones) and in West Borneo (Sanggau Area, Province Kalimantan Barat; 85 stones) points toward a classical kimberlite-type source for the majority of these diamonds. Some of the diamonds host mineral inclusions suitable for deep single-crystal X-ray diffraction investigation. We determined the depth of formation of two olivines, one coesite and one peridotitic garnet inclusion. Pressure of formation estimates for the peridotitic garnet at independently derived temperatures of 930-1250 °C are between 4.8 and 6.0 GPa. Sediment provenance analysis includes petrography coupled to analyses of detrital garnet and glaucophane. The compositions of these key minerals do not indicate kimberlite-derived material. By analyzing almost 1400 zircons for trace element concentrations with laser ablation ICP-MS (LA-ICP-MS) we tested the mineral's potential as an alternative kimberlite indicator. The screening ultimately resulted in a small subset of ten zircons with a kimberlitic affinity. Subsequent U-Pb dating resulting in Cretaceous ages plus a detailed chemical reflection make

  11. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.

    PubMed

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Bengoa, Pablo; Jung, Je Hyung

    2017-07-01

    In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robotmediated rehabilitation trainings.

  12. Solvent-free iodination of organic molecules using the I(2)/urea-H(2)O(2) reagent system.

    PubMed

    Pavlinac, Jasminka; Zupan, Marko; Stavber, Stojan

    2007-02-21

    Introduction of iodine under solvent-free conditions into several aromatic compounds activated toward electrophilic functionalization was found to proceed efficiently using elemental iodine in the presence of a solid oxidizer, the urea-H(2)O(2) (UHP) adduct. Two types of iodo-functionalization through an electrophilic process were observed: iodination of an aromatic ring, and side-chain iodo-functionalization in the case of arylalkyl ketones. Two reaction routes were established based on the required substrate : iodine : oxidizer ratio for the most efficient iodo-transformation, and the role of UHP was elucidated in each route. The first, requiring a 1 : 0.5 : 0.6 stoichiometric ratio of substrate to iodine to UHP, followed the atom economy concept in regard to iodine and was valid in the case of aniline, 4-t-Bu-phenol, 1,2-dimethoxy benzene, 1,3-dimethoxy benzene, 1,2,3-trimethoxy benzene, 1,2,4-trimethoxy benzene, 1,3,5-trimethoxy benzene, 1-indanone and 1-tetralone. The second reaction route, where a 1 : 1 : 1 stoichiometric ratio of substrate : I(2) : UHP was needed for efficient iodination, was suitable for side-chain iodo-functionalization of acetophenone and methoxy-substituted acetophenones. Moreover, addition of iodine to 1-octene and some phenylacetylenic derivatives was found to proceed efficiently without the presence of any oxidizer and solvent at room temperature.

  13. China?s growing appetite for minerals

    USGS Publications Warehouse

    Menzie, David; Tse, Pui-Kwan; Fenton, Mike; Jorgenson, John; van Oss, Hendrik

    2004-01-01

    During the last 15 years, China's economy and consumption have grown rapidly. This report contains figures and notes from a talk that discusses China's increasing consumption of aluminum, cement, coal, copper, iron ore, petroleum, and steel in context of its developing economy.

  14. Ecosystem health in mineralized terrane; data from podiform chromite (Chinese Camp mining district, California), quartz alunite (Castle Peak and Masonic mining districts, Nevada/California), and Mo/Cu porphyry (Battle Mountain mining district, Nevada) deposits

    USGS Publications Warehouse

    Blecker, Steve W.; Stillings, Lisa L.; Amacher, Michael C.; Ippolito, James A.; DeCrappeo, Nicole M.

    2010-01-01

    within various mineralized terranes. We were also interested in examining these relations in the context of determining appropriate reference conditions with which to compare reclamation efforts.The purpose of this report is to present the data used to develop indices of soil and ecosystem quality associated with mineralized terranes (areas enriched in metal-bearing minerals), specifically podiform chromite, quartz alunite, and Mo/Cu porphyry systems. Within each of these mineralized terranes, a nearby unmineralized counterpart was chosen for comparison. The data consist of soil biological, chemical, and physical parameters, along with vegetation measurements for each of the sites described below. Synthesis of these data and index development will be the subject of future publications.

  15. Provenance and tectonic setting of siliciclastic rocks associated with the Neoproterozoic Dahongliutan BIF: Implications for the Precambrian crustal evolution of the Western Kunlun orogenic belt, NW China

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Wang, He; Wang, Min

    2017-10-01

    The Late Neoproterozoic Dahongliutan BIF is associated with siliciclastic rocks in the Tianshuihai terrane of the Western Kunlun orogenic belt (WKO), NW China. The sedimentary rocks have various weathering indices (e.g., CIA = 57-87, PIA = 61-96 and Th/U = 4.85-12.45), indicative of varying degrees of weathering in the source area. The rocks have trace element ratios, such as Th/Sc = 0.60-1.21 and Co/Th = 0.29-1.67, and light rare earth element (LREE) enriched chondrite-normalized REE patterns, suggesting that they were mainly sourced from intermediate and felsic rocks. Available U-Pb ages of detrital zircon from these rocks reveal that the detrital sources may have been igneous and metamorphic rocks from the WKO and the Tarim Block. Our study suggests that the Dahongliutan BIF and hosting siliciclastic rocks may have deposited in a setting transitional from a passive to active continental margin, probably related to the Late Neoproterozoic-Early Cambrian seafloor spreading and subduction of the Proto-Tethys Ocean. U-Pb dating of 163 detrital zircons defines five major age populations at 2561-2329 Ma, 2076-1644 Ma, 1164-899 Ma, 869-722 Ma and 696-593 Ma. These age groups broadly correspond to the major stages of supercontinent assembly and breakup events widely accepted for Columbia, Rodinia and Gondwana. Some zircons have TDM2 model ages of 3.9-1.8 Ga and negative εHf(t) values, suggesting that the Archean to Paleoproterozoic (as old as Eoarchean) crustal materials were episodically reworked and incorporated into the late magmatic process in the WKO. Some Neoproterozoic zircons have TDM2 model ages of 1.47-1.07 Ga and 1.81-1.53 Ga and positive εHf(t) values, indicating juvenile crustal growth during the Mesoproterozoic. Our new results, combined with published data, imply that both the Tianshuihai terrane in the WKO and the Tarim Block share the same Precambrian tectonic evolution history.

  16. Education in China

    ERIC Educational Resources Information Center

    Fengzhen, Yang

    2002-01-01

    In the past 20 years, China's economy has been developing rapidly. Yet is China's education keeping up the same pace as its economic development? What is the current situation for China's education? With the advent of knowledge-based economy, how will education in China adjust itself in order to meet the growing demands of economy? This paper will…

  17. Geographic information systems (GIS) spatial data compilation of geodynamic, tectonic, metallogenic, mineral deposit, and geophysical maps and associated descriptive data for northeast Asia

    USGS Publications Warehouse

    Naumova, Vera V.; Patuk, Mikhail I.; Kapitanchuk, Marina Yu.; Nokleberg, Warren J.; Khanchuk, Alexander I.; Parfenov, Leonid M.; Rodionov, Sergey M.; Miller, Robert J.; Diggles, Michael F.

    2006-01-01

    This is the online version of a CD-ROM publication. It contains all of the data that are on the disc but extra files have been removed: index files, software installers, and Windows autolaunch files. The purpose of this publication is to provide a high-quality spatial data compilation (Geographical Information System or GIS) of geodynamic, mineral deposit, and metallogenic belt maps, and descriptive data for Northeast Asia for customers and users. This area consists of Eastern Siberia, Russian Far East, Mongolia, northern China, South Korea, and Japan. The GIS compilation contains integrated spatial data for: (1) a geodynamics map at a scale of 1:5,000,000; (2) a mineral deposit location map; (3) metallogenic belt maps; (4) detailed descriptions of geologic units, including tectonostratigraphic terranes, cratons, major melange zones, and overlap assemblages, with references; (5) detailed descriptions of metallogenic belts with references; (6) detailed mineral deposit descriptions with references; and (7) page-size stratigraphic columns for major terranes.

  18. Evidence From Detrital Zircon U-Pb Analysis for Suturing of Pre-Mississippian Terranes in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Potter, C. J.; O'Sullivan, P. B.; Aleinikoff, J. N.

    2007-12-01

    Detrital zircon U-Pb ages of pre-Mississippian sandstones were determined using SHRIMP and LA-ICPMS techniques for four key geographic parts of the Arctic Alaska terrane, northern Alaska. In the northeastern Brooks Range, a sample of quartz-rich turbidites from the Proterozoic Neroukpuk Quartzite yielded zircon ages ranging from 980 Ma to 2.9 Ga with clusters at 980-1100 Ma, 1680-1850 Ma and 2220-2660 Ma. Quartz and chert-bearing sandstone in the Tulageak well from Ordovician-Silurian argillite in basement beneath the North Slope yielded a broad spectrum of ages between 1.0 to 2.1 Ga and 2.8 Ga, including peaks at 1.0-1.2 and 1.5-1.7 Ga. Paleozoic zircons cluster at 390 and 440 Ma in this sample, indicating it is Devonian. Lithic sandstone from the Silurian Iviagik Group at Cape Dyer on the Lisburne Peninsula yielded a variety of ages from 450 to 1600 Ma, with a large peak at 475-600 Ma and several grains between 1.9 and 2.5 Ga. In contrast to the broad distributions of the latter two samples, zircons in metamorphosed Proterozoic-Cambrian(?) lithic sandstone from the an unnamed metagraywacke unit near Mt. Snowden on the Dalton Highway in the southern Brooks Range are largely 600-650 Ma with lesser clusters at 1050-1200 Ma and 1600-1900 Ga. Samples of quartz-rich Mississippian sandstone at the base of the unconformably overlying Mississippian to Triassic Ellesmerian sequence near three of the pre-Mississippian sample locations were also analyzed. Mississippian sandstones from the West Dease well (near the Tulageak well) and at Cape Dyer on the Lisburne Peninsula display zircon distributions similar to those found in the underlying pre-Mississippian samples, indicating the Mississippian clastic strata are locally derived and that the observed zircon distributions are representative of a broad area. However, the Mississippian Kekiktuk Conglomerate, which rests on the Neroukpuk Quartzite in the northeastern Brooks Range, also contains a variety of ages between 560 and

  19. Teacher Mobility in Rural China: Evidence from Northwest China

    ERIC Educational Resources Information Center

    Wei, Yi

    2016-01-01

    This study investigates an understudied but crucial dimension of education in China: teacher mobility. The primary goal is to provide a basic understanding of teacher mobility in rural China. The issue has been extensively studied in many developed countries, especially in the United States. However, there is little research in China, partly…

  20. Genesis of ultra-high pressure garnet pyroxenites in orogenic peridotites and its bearing on the compositional heterogeneity of the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Marchesi, Claudio; Bosch, Delphine; Hidas, Károly

    2018-07-01

    We present an integrated geochemical study of ultra-high pressure (UHP) garnet pyroxenites from the Ronda and Beni Bousera peridotite massifs (Betic-Rif Belt, westernmost Mediterranean). Based on their Sr-Nd-Pb-Hf isotopic systematics, we classify UHP garnet pyroxenites into three groups: Group A pyroxenites (Al2O3: 15-17.5 wt.%) have low initial 87Sr/86Sr, relatively high εNd, εHf and 206Pb/204Pb ratios, and variable 207Pb/204Pb and 208Pb/204Pb. Group B pyroxenites (Al2O3 < 14 wt.%) are characterized by high initial 87Sr/86Sr and relatively low εNd, εHf and 206Pb/204Pb ratios. Group C pyroxenites (Al2O3 ∼ 15 wt.%) have depleted radiogenic signatures with relatively low initial 87Sr/86Sr and 206Pb/204Pb, high εNd and εHf, and their 207Pb/204Pb and 208Pb/204Pb ratios are similar to those of Group B pyroxenites. The major and trace element and isotopic compositions of UHP garnet pyroxenites support their derivation from ancient (1.5-3.5 Ga) oceanic crust recycled into the mantle and intimately stirred with peridotites by convection. However, the genesis of these pyroxenites requires also the involvement of recycled continental lower crust with an isotopic composition akin to the lower crustal section of the lithosphere where these UHP garnet pyroxenites now reside in. These oceanic and continental crustal components were stirred in different proportions in the convective mantle, originating pyroxenites with a more marked geochemical imprint of either oceanic (Group A) or continental lower crust (Group B), or hybrid compositions (Group C). The pyroxenite protoliths likely underwent several melting events, one of them related to the formation of the subcontinental lithospheric mantle and continental crust, generating restitic UHP garnet pyroxenites now preserved in the Ronda and Beni Bousera orogenic peridotites. The extent of melting was mostly controlled by the bulk Mg-number (Mg#) of the pyroxenite protoliths, where protoliths with low Mg# experienced higher

  1. China as an Evolving Metro-Agro-Plex (China-MAP)

    NASA Technical Reports Server (NTRS)

    Chameides, William L.; Bergin, M.; Carmichael, G.; Dickinson, R.; Giorgi, F.; Kiang, C. S.; Levy, H., II; Kasibhatla, P.; Mearns, L.; Ramaswamy, V.

    2002-01-01

    The one-year NASA-funded project was implemented to complete the analyses and model-simulations undertaken under the auspices of the 3-year research effort supported by NASA as an Interdisciplinary Earth System Science Investigation (IDS) entitled: China As An Evolving Metro-Agro-Plex (China-MAP). The primary goal of China-MAP was to assess the effects of economic development and the regional environmental changes it engenders upon agriculture in China. The project was carried out as part of the Sino-U.S. Science and Technology Protocol in the Atmospheric Sciences, an official government-to-government agreement that establishes the parameters for joint research projects between the two nations in the atmospheric sciences. The NASA-funded portion of the project focused on the development and application of a regional coupled climate/chemical transport model for East Asia (i.e., RegChem-CM). The funds provided under the subject 1-year project were used to: (1) complete specific investigations undertaken by the China-MAP Science Team using the Reg-Chem-CM expended; and (2) document the results of these and other China-MAP investigations in the peer-reviewed literature. A summary of these specific investigations in provided.

  2. New evidence for Oligocene to Recent slip along the San Juan fault, a terrane-bounding structure within the Cascadia forearc of southern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Harrichhausen, N.; Morell, K. D.; Regalla, C.; Lynch, E. M.

    2017-12-01

    Active forearc deformation in the southern Cascadia subduction zone is partially accommodated by faults in the upper crust in both Washington state and Oregon, but until recently, these types of active forearc faults have not been documented in the northern part of the Cascadia forearc on Vancouver Island, British Columbia. Here we present new evidence for Quaternary slip on the San Juan fault that indicates that this terrane-bounding structure has been reactivated since its last documented slip in the Eocene. Field work targeted by newly acquired hi-resolution lidar topography reveals a deformed debris flow channel network developed within colluvium along the central portion of the San Juan fault, consistent with a surface-rupturing earthquake with 1-2 m of offset since deglaciation 13 ka. Near the western extent of the San Juan fault, marine sediments are in fault contact with mélange of the Pandora Peak Unit. These marine sediments are likely Oligocene or younger in age, given their similarity in facies and fossil assemblages to nearby outcrops of the Carmanah Group sediments, but new dating using strontium isotope stratigraphy will confirm this hypothesis. If these sediments are part of the Carmanah Group, they occur further east and at a higher elevation than previously documented. The presence of Oligocene or younger marine sediments, more than 400 meters above current sea level, requires a substantial amount of Neogene rock uplift that could have been accommodated by slip on the San Juan fault. A preliminary analysis of fault slickensides indicates a change in slip sense from left-lateral to normal along the strike of the fault. Until further mapping and analysis is completed, however, it remains unclear whether this kinematic change reflects spatial and/or temporal variability. These observations suggest that the San Juan fault is likely part of a network of active faults accommodating forearc strain on Vancouver Island. With the recent discovery of

  3. The odyssey of the Cache Creek terrane, Canadian Cordillera: Implications for accretionary orogens, tectonic setting of Panthalassa, the Pacific superwell, and break-up of Pangea

    NASA Astrophysics Data System (ADS)

    Johnston, S. T.; Borel, G. D.

    2007-01-01

    The Cache Creek terrane (CCT) of the Canadian Cordillera consists of accreted seamounts that originated adjacent to the Tethys Ocean in the Permian. We utilize Potential Translation Path plots to place quantitative constraints on the location of the CCT seamounts through time, including limiting the regions within which accretion events occurred. We assume a starting point for the CCT seamounts in the easternmost Tethys at 280 Ma. Using reasonable translation rates (11 cm/a), accretion to the Stikinia-Quesnellia oceanic arc, which occurred at about 230 Ma, took place in western Panthalassa, consistent with the mixed Tethyan fauna of the arc. Subsequent collision with a continental terrane, which occurred at about 180 Ma, took place in central Panthalassa, > 4000 km west of North America yielding a composite ribbon continent. Westward subduction of oceanic lithosphere continuous with the North American continent from 180 to 150 Ma facilitated docking of the ribbon continent with the North American plate. The paleogeographic constraints provided by the CCT indicate that much of the Canadian Cordilleran accretionary orogen is exotic. The accreting crustal block, a composite ribbon continent, grew through repeated collisional events within Panthalassa prior to docking with the North American plate. CCT's odyssey requires the presence of subduction zones within Panthalassa and indicates that the tectonic setting of the Panthalassa superocean differed substantially from the current Pacific basin, with its central spreading ridge and marginal outward dipping subduction zones. A substantial volume of oceanic lithosphere was subducted during CCT's transit of Panthalassa. Blanketing of the core by these cold oceanic slabs enhanced heat transfer out of the core into the lowermost mantle, and may have been responsible for the Cretaceous Normal Superchron, the coeval Pacific-centred mid-Cretaceous superplume event, and its lingering progeny, the Pacific Superswell. Far field

  4. On the Opening and Closure History of the Palaeo- and Neotethys

    NASA Astrophysics Data System (ADS)

    Torsvik, T. H.

    2008-12-01

    Gondwana was by far the largest tectonic entity in the Lower Palaeozoic, stretching from the South Pole to north of the Equator. South China was located close to Gondwana whilst e.g. North China, Tarim and Annamia were not attached to core Gondwana in the Lower Palaeozoic. Most of the area from the Taurides (Turkey) to at least East of India represented a passive margin for the whole of the Lower Palaeozoic, and Ordovician palaeomagnetic data from northern India now confidently place Tethyan Himalaya at the northern margin of cratonic India at this time. The Palaeotethys opened no earlier than the late Silurian when the Armorican Terrane Assemblage separated from Gondwana and by the early Carboniferous (c. 350 Ma), Palaeotethys had grown to more than 3000 km between NW Africa and southern France. This part of the Palaeotethys was subsequently closed at c. 320 Ma during the most important growth phase of Pangea when Laurussia, Gondwana and intervening terranes collided. Although some continental elements were still adjusting their positions along the Pangea perimeter. The Neotethys probably began opening at c. 265 Ma while Palaeotethyan oceanic crust was being subducted beneath Eurasia. North and South China and Annamia were not part of Pangea and located to tropical- subtropical latitudes in the eastern part of the Palaeotethys, separated by a wide Mongol-Okhotsk Ocean from the central and northern Asian parts of Pangea. Using a new reconstruction method we can now reconstruct the 258 Ma Emeishan large igneous province and hence South China in longitude. That positioning also determines the previously unknown width of the Palaeotethys Ocean between South China and Pangea at that time, which was as much as 7000 km. Palaeotethys had essentially vanished by the Late Triassic as a result of the collisions of many peri- Gondwana terranes (Cimmeria) with Eurasia. The Late Triassic also coincided with an important reorganization in the North Atlantic and a phase of

  5. Crustal structure of Precambrian terranes in the southern African subcontinent with implications for secular variation in crustal genesis

    NASA Astrophysics Data System (ADS)

    Kachingwe, Marsella; Nyblade, Andrew; Julià, Jordi

    2015-07-01

    New estimates of crustal thickness, Poisson's ratio and crustal shear wave velocity have been obtained for 39 stations in Angola, Botswana, the Democratic Republic of Congo, Malawi, Mozambique, Namibia, Rwanda, Tanzania and Zambia by modelling P-wave receiver functions using the H-κ stacking method and jointly inverting the receiver functions with Rayleigh-wave phase and group velocities. These estimates, combined with similar results from previous studies, have been examined for secular trends in Precambrian crustal structure within the southern African subcontinent. In both Archean and Proterozoic terranes we find similar Moho depths [38-39 ± 3 km SD (standard deviation)], crustal Poisson's ratio (0.26 ± 0.01 SD), mean crustal shear wave velocity (3.7 ± 0.1 km s-1 SD), and amounts of heterogeneity in the thickness of the mafic lower crust, as defined by shear wave velocities ≥4.0 km s-1. In addition, the amount of variability in these crustal parameters is similar within each individual age grouping as between age groupings. Thus, the results provide little evidence for secular variation in Precambrian crustal structure, including between Meso- and Neoarchean crust. This finding suggests that (1) continental crustal has been generated by similar processes since the Mesoarchean or (2) plate tectonic processes have reworked and modified the crust through time, erasing variations in structure resulting from crustal genesis.

  6. 40Ar/39Ar Data for White Mica, Biotite, and K-Feldspar Samples from Low-Grade Metamorphic Rocks in the Westminster Terrane and Adjacent Rocks, Maryland

    USGS Publications Warehouse

    Kunk, Michael J.; McAleer, Ryan J.

    2008-01-01

    This report contains reduced 40Ar/39Ar data of white mica and K-feldspar mineral separates and matrix of a whole rock phyllite, all from low-grade metamorphic rocks of the Westminster terrane and adjacent strata in central Maryland. This report presents these data in a preliminary form, but in more detail than can be accommodated in todays professional journals. Also included in this report is information on the location of the samples and a brief description of the samples. The data contained herein are not interpreted in a geological context, and care should be taken by readers unfamiliar with argon isotopic data in the use of these results; many of the individual apparent ages are not geologically meaningful. This report is primarily a detailed source document for subsequent publications that will integrate these data into a geological context.

  7. Acoustic emission from a solidifying aluminum-lithium alloy

    NASA Technical Reports Server (NTRS)

    Henkel, D. P.; Wood, J. D.

    1992-01-01

    Physical phenomena associated with the solidification of an AA2090 Al-Li alloy have been characterized by AE methods. Repeatable patterns of AE activity as a function of solidification time are recorded and explained for ultrahigh-purity (UHP) aluminum and an Al-4.7 wt pct Cu binary alloy, in addition to the AA2090 Al-Li alloy, by the complementary utilization of thermal, AE, and metallographic methods. One result shows that the solidification of UHP aluminum produces one discrete period of high AE activity as the last 10 percent of solid forms.

  8. JPRS Report, China.

    DTIC Science & Technology

    1993-05-18

    Company]" came to China and performed the opera "Li Xianglan" in celebration of the 20th anniver- sary of the resumption of Sino-Japanese...JPRS-CAR-93-033 18 May 1993 !■■■■! FOREIGN BROADCAST INFORMATION SERVICE JPRS Report— China lmc Q&AujY JtöaeBcasD 19980518 252 REPRODUCED...joint ventures; vehicles of international organizations and foreign agencies in China ; vehicles used by foreign individuals in China ; and all

  9. Countering Chinas Economic Statecraft in the South China Sea

    DTIC Science & Technology

    2018-04-09

    Economic Statecraft in the South China Sea 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Bradford D...created and employed a vision and strategy to control it. China continually demonstrates its economic might in the region and conducts economic ...power to counter China’s rising influence in the South China Sea. The policy and strategy should incorporate establishing strong economic ties in

  10. Geochemistry, petrography, and zircon U-Pb geochronology of Paleozoic metaigneous rocks in the Mount Veta area of east-central Alaska: implications for the evolution of the westernmost part of the Yukon-Tanana terrane

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Day, Warren C.; Aleinikoff, John N.

    2013-01-01

    We report the results of new mapping, whole-rock major, minor, and trace-element geochemistry, and petrography for metaigneous rocks from the Mount Veta area in the westernmost part of the allochthonous Yukon–Tanana terrane (YTT) in east-central Alaska. These rocks include tonalitic mylonite gneiss and mafic metaigneous rocks from the Chicken metamorphic complex and the Nasina and Fortymile River assemblages. Whole-rock trace-element data from the tonalitic gneiss, whose igneous protolith was dated by SHRIMP U–Pb zircon geochronology at 332.6 ± 5.6 Ma, indicate derivation from tholeiitic arc basalt. Whole-rock analyses of the mafic rocks suggest that greenschist-facies rocks from the Chicken metamorphic complex, a mafic metavolcanic rock from the Nasina assemblage, and an amphibolite from the Fortymile River assemblage formed as island-arc tholeiite in a back-arc setting; another Nasina assemblage greenschist has MORB geochemical characteristics, and another mafic metaigneous rock from the Fortymile River assemblage has geochemical characteristics of calc-alkaline basalt. Our geochemical results imply derivation in an arc and back-arc spreading region within the allochthonous YTT crustal fragment, as previously proposed for correlative units in other parts of the terrane. We also describe the petrography and geochemistry of a newly discovered tectonic lens of Alpine-type metaharzburgite. The metaharzburgite is interpreted to be a sliver of lithospheric mantle from beneath the Seventymile ocean basin or from sub-continental mantle lithosphere of the allochthonous YTT or the western margin of Laurentia that was tectonically emplaced within crustal rocks during closure of the Seventymile ocean basin and subsequently displaced and fragmented by faults.

  11. Provenance of Permian-Triassic Gondwana Sequence Units Accreted to the Banda Arc: Constraints from U/Pb and Hf Analysis of Zircons and Igneous Geochemistry

    NASA Astrophysics Data System (ADS)

    Flores, J. A.; Spencer, C. J.; Harris, R. A.; Hoiland, C.

    2011-12-01

    Analysis of zircons from Australian affinity Permo-Triassic units of the Timor region yield age distributions with large peaks at 230-400 Ma and 1750-1900 Ma (n=435). Similar zircon age peaks are also found in rocks from NE Australia and the eastern Cimmerian block. It is likely that these terranes, which are now widely separated, were once part of the northern edge of Gondwana near what is now the NW margin of Australia. The Cimmerian Block was removed from Gondwana during Early Permian rifting and initiation of the Neo-Tethys Ocean. Hf analysis of zircon from the Aileu Complex in Timor and Kisar shows bimodal (juvenial and evolved) magmatism in the Gondwana Sequence of NW Australia at ~300 Ma. The magmatic event produced basalt with rift valley and ocean floor geochemical affinities, and rhyolite. Similar rock types and isotopic signatures are also found in Permo-Triassic igneous units throughout the Cimmerian continental block. The part of the Cimmerian Block with zircon distributions most like the Gondwana Sequence of NW Australia is the terranes of northern Tibet and Malaysia. The large 1750-1900 Ma zircon peak is much more wide spread, and appears in terranes from Baoshan (SW China) to Borneo. The Permo-Triassic rocks of the Timor region fill syn-rift intracratonic basins that successfully rifted in the Jurassic to form the NW margin of Australia. This passive continental margin first entered the Sunda Trench in the Timor region at around 8 Ma causing the Permo-Triassic rocks to accrete to the edge of the Asian Plate and emerge as a series of mountainous islands in the young collision zone. Eventually, the Australian continental margin will collide with the southern edge of the Asian plate and these Gondwana terranes will rejoin. However, it may be difficult to reconstruct the various ventures of they made over the past 300 Ma.

  12. An alternative plate tectonic model for the Palaeozoic Early Mesozoic Palaeotethyan evolution of Southeast Asia (Northern Thailand Burma)

    NASA Astrophysics Data System (ADS)

    Ferrari, O. M.; Hochard, C.; Stampfli, G. M.

    2008-04-01

    An alternative model for the geodynamic evolution of Southeast Asia is proposed and inserted in a modern plate tectonic model. The reconstruction methodology is based on dynamic plate boundaries, constrained by data such as spreading rates and subduction velocities; in this way it differs from classical continental drift models proposed so far. The different interpretations about the location of the Palaeotethys suture in Thailand are revised, the Tertiary Mae Yuam fault is seen as the emplacement of the suture. East of the suture we identify an Indochina derived terrane for which we keep the name Shan-Thai, formerly used to identify the Cimmerian block present in Southeast Asia, now called Sibumasu. This nomenclatural choice was made on the basis of the geographic location of the terrane (Eastern Shan States in Burma and Central Thailand) and in order not to introduce new confusing terminology. The closure of the Eastern Palaeotethys is related to a southward subduction of the ocean, that triggered the Eastern Neotethys to open as a back-arc, due to the presence of Late Carboniferous-Early Permian arc magmatism in Mergui (Burma) and in the Lhasa block (South Tibet), and to the absence of arc magmatism of the same age East of the suture. In order to explain the presence of Carboniferous-Early Permian and Permo-Triassic volcanic arcs in Cambodia, Upper Triassic magmatism in Eastern Vietnam and Lower Permian-Middle Permian arc volcanites in Western Sumatra, we introduce the Orang Laut terranes concept. These terranes were detached from Indochina and South China during back-arc opening of the Poko-Song Ma system, due to the westward subduction of the Palaeopacific. This also explains the location of the Cathaysian West Sumatra block to the West of the Cimmerian Sibumasu block.

  13. Evaluation of dopants in hydrogen to reduce hydrogen permeation in candidate Stirling engine heater head tube alloys at 760 deg and 820 deg

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.

    1982-01-01

    Alloy tubes filled with hydrogen doped with various amounts of carbon monoxide, carbon dioxide, ethane, ethylene, methane, ammonia, or water were heated in a diesel fuel-fired Stirling engine simulator materials test rig for 100 hours at 21 MPa and 760 or 820 C to determine the effectiveness of the dopants in reducing hydrogen permeation through the hot tube walls. Ultra high purity (UHP) hydrogen was used for comparison. The tube alloys were N-155, A-286, Incoloy 800, Nitronic 40, 19-9DL, 316 stainless steel, Inconel 718, and HS-188. Carbon dioxide and carbon monoxide in the concentration range 0.2 to 5 vol % were most effective in reducing hydrogen permeation through the hot tube walls for all alloys. Ethane, ethylene, methane, ammonia, and water at the concentrations investigated were not effective in reducing the permeation below that achieved with UHP hydrogen. One series of tests were conducted with UHP hydrogen in carburized tubes. Carburization of the tubes prior to exposure reduced permeation to values similar to those for carbon monoxide; however, carbon dioxide was the most effective dopant.

  14. Geodynamics map of northeast Asia

    USGS Publications Warehouse

    Parfenov, Leonid M.; Khanchuk, Alexander I.; Badarch, Gombosuren; Miller, Robert J.; Naumova, Vera V.; Nokleberg, Warren J.; Ogasawara, Masatsugu; Prokopiev, Andrei V.; Yan, Hongquan

    2013-01-01

    This map portrays the geodynamics of Northeast Asia at a scale of 1:5,000,000 using the concepts of plate tectonics and analysis of terranes and overlap assemblages. The map is the result of a detailed compilation and synthesis at 5 million scale and is part of a major international collaborative study of the mineral resources, metallogenesis, and tectonics of northeast Asia conducted from 1997 through 2002 by geologists from earth science agencies and universities in Russia, Mongolia, northeastern China, South Korea, Japan, and the USA.

  15. Implications for late Grenvillian (Rigolet phase) construction of Rodinia using new U-Pb data from the Mars Hill terrane, Tennessee and North Carolina, United States

    USGS Publications Warehouse

    Aleinikoff, John N.; Southworth, Scott; Merschat, Arthur J.

    2013-01-01

    New data for zircon (external morphology, cathodoluminescence zoning, and sensitive high resolution ion microprobe [SHRIMP] U-Pb ages) from the Carvers Gap granulite gneiss of the Mars Hill terrane (Tennessee and North Carolina, United States) require reevaluation of interpretations of the age and origin of this rock. The new results indicate that the zircon is detrital and that the sedimentary protolith of this gneiss (and related Cloudland gneiss) was deposited no earlier than ca. 1.02 Ga and was metamorphosed at ca. 0.98 Ga. Tectonic models that included the gneiss as a piece of 1.8 Ga Amazonian crust (perhaps as part of the hypothetical Columbia supercontinent) are now untenable. The remarkably fast cycle of exhumation, erosion, deposition, and deep burial also is characteristic of other late Grenvillian (post-Ottawan) Mesoproterozoic paragneisses that occur throughout the Appalachians. These rocks provide new evidence for the duration of the formation of the Rodinia supercontinent lasting until at least 0.98 Ma.

  16. Aging in China.

    ERIC Educational Resources Information Center

    Sheppard, Harold L.; Streib, Gordon F.

    This document consists of facts and impressions gathered during 1984, in the course of an 18-day visit to the Peoples Republic of China by a team of epidemiologists and gerontologists from the United States. The major portion of the paper presents demographic, economic, and social perspectives on aging in China. It is noted that China remains a…

  17. Geological characteristics and ore-forming process of the gold deposits in the western Qinling region, China

    NASA Astrophysics Data System (ADS)

    Liu, Jiajun; Liu, Chonghao; Carranza, Emmanuel John M.; Li, Yujie; Mao, Zhihao; Wang, Jianping; Wang, Yinhong; Zhang, Jing; Zhai, Degao; Zhang, Huafeng; Shan, Liang; Zhu, Laimin; Lu, Rukui

    2015-05-01

    The western Qinling, belonging to the western part of the Qinling-Dabie-Sulu orogen between the North China Block and South China Block, is one of the most important gold regions in China. Isotopic dates suggest that the Mesozoic granitoids in the western Qinling region emplaced during the Middle-Late Triassic, and the deposits formed during the Late Triassic. Almost all gold deposits in the western Qinling region are classified as orogenic, Carlin-type, and Carlin-like gold deposits, and they are the products of Qinling Orogenesis caused by the final collision between the North China Block and the South China Block. The early subduction of the Mian-Lue oceanic crust and the latter collision between South Qinling Terrane and the South China Block along the Mian-Lue suture generated lithosphere-scale thermal anomalies to drive orogen-scale hydrothermal systems. The collision-related magmatism also provided heat source for regional ore-forming fluids in the Carlin-like gold deposits. Orogenic gold deposits such as Huachanggou, Liziyuan, and Baguamiao lie between the Shang-Dan and Mian-Lue sutures and are confined to WNW-trending brittle-ductile shear zones in Devonian and Carboniferous greenschist-facies metasedimentary rocks that were highly-deformed and regionally-metamorphosed. These deposits are typical orogenic gold deposits and formed within a Late Triassic age. The deposits show a close relationship between Au and Ag. Ores contain mainly microscopic gold, and minor electrum and visible gold, along with pyrite. The ore-forming fluids were main metamorphic fluids. Intensive tectonic movements caused by orogenesis created fluid-migrating channels for precipitation locations. Although some orogenic gold deposits occur adjacent to granitoids, mineralization is not synchronous with magmatism; that is, the granitoids have no genetic relations to orogenic gold deposits. As ore-forming fluids converged into dilated fractures during the extension stage of orogenesis

  18. Legal aspects of sinkhole development and flooding in karst terranes: 1. Review and synthesis

    NASA Astrophysics Data System (ADS)

    Quinlan, James F.

    1986-03-01

    Structures built within the area of influence of a sinkhole can be affected by collapse, subsidence, or flooding. Unanticipated property losses may be involved, and litigation commonly ensues. Insurance compensation for damages that result from sinkhole collapse or subsidence in a karst terrane are covered by statute only in Florida and by voluntary agreement of companies operating in Tennessee Liability or insurance compensation for damages resulting from sinkhole flooding is not specifically covered by any state or federal statute. Regulations of the National Flood Insurance Program have been interpreted to allow coverage by this program for homes affected by sinkhole flooding in Bowling Green, Kentucky In the present article, case law, legal concepts of groundwater and surface water, liability, and law review articles relevant to sinkhole litigation are summarized The rationales of plaintiffs and defendants are reviewed Liability for damages have been based on allegations of negligence, breach of various water law doctrines, trespass, nuisance, loss of support, breach of contract, and implied warranty of habitability Defenses against these allegations have been based on the merits of each of them and on caveat emptor Several alternative rationales for claiming liability for losses incurred because of sinkhole development or flooding are proposed and discussed. The little-known Henderson v Wade Sand and Gravel is highly recommended as an alternative leading case that clearly and justifiably gives protection to adjacent landowners, and ties liability for damages caused by groundwater pumpage to nuisance law and related interference with property rights. Several little-known litigated cases of sinkhole development in response to groundwater pumpage will be summarized in a second article at a later date. Concepts of liability are evolving It can be expected that the professional geologist or engineer will have an increasing number of claims made against him or her

  19. Geophysical Characterization of a Rare Earth Element Enriched Carbonatite Terrane at Mountain Pass, California Eastern Mojave Desert

    NASA Astrophysics Data System (ADS)

    Denton, Kevin M.

    Mountain Pass, California, located in the eastern Mojave Desert, hosts one of the world's richest rare earth element (REE) deposits. The REE-rich rocks occur in a 2.5 km- wide, north-northwest trending zone of Mesoproterozoic (1.4-1.42 Ga) stocks and dikes, which intrude a larger Paleoproterozoic (1.7 Ga) schist-gneiss terrane that extends 10 km southward from Clark Mountain to the Mescal Range. Several REE-enriched bodies make up the Mountain Pass intrusive suite including shonkinite, syenite, and granite comprising an ultrapotassic intrusive suite and the Sulphide Queen carbonatite body. Two-dimensional modeling of gravity, magnetic, and electrical resistivity data reveals that the Mountain Pass intrusive suite is associated with a local gravity high that is superimposed on a 4-km wide gravity terrace. Rock property data indicate that the Mountain Pass intrusive suite is unusually nonmagnetic at the surface (2.0 x 10-3 SI, n = 67). However, aeromagnetic data indicate that these rocks occur along the eastern edge of a prominent north-northwest trending aeromagnetic high of unknown origin. The source of this unknown magnetic anomaly is 2-3 km below the surface and coincides with a body of rock having high electrical conductivity. Electrical resistivity models indicate that this unknown magnetic anomaly is several orders of magnitude more conductive (103 O•m) than the surrounding rock. Combined geophysical data suggest that the carbonatite and its associated ultrapotassic intrusive suite were preferentially emplaced along a northwest zone of weakness and/or a fault.

  20. China Emerging

    DTIC Science & Technology

    2012-03-14

    historical components to the disputes in the South China Sea that have bearing on the issue. China, Taiwan, Vietnam, Malaysia , the Philippines...government for needed efficiency. It becomes more and more untenable for an authoritative government to enforce censorship , political repression, state

  1. The reverse environmental gender gap in China: evidence from "The China Survey".

    PubMed

    Shields, Todd; Zeng, Ka

    2012-01-01

    Objectives This article explores gender differences in attitudes about the seriousness of the environment as a problem in China using the “2008 China Survey.” Methods We use generalized ordered logit models to analyze survey respondents’ environmental attitudes. Results Our results indicate that there is indeed a “gender gap” in environmental attitudes in China, but the pattern is reversed from what has been generally found in previous work conducted in the United States and Europe. Chinese men, not women, show a greater concern about environmental problems and the seriousness of the environmental degradation in China. Further, we find that this gender gap is based largely in the substantial economic and educational differences between men and women in contemporary China. Conclusions This study emphasizes the mediating influence of socioeconomic variables in explaining gender attitudes toward the environment in China. Our findings suggest that in different contexts, women may be faced with difficult decisions between immediate economic necessities and long-term environmental concerns. The observed environmental gender gap in China will likely persist unless further economic development results in improved access to education and economic conditions for Chinese women.

  2. Bioethics in China.

    PubMed

    Li, En-Chang

    2008-09-01

    Historically, the preconditions for the emergence of bioethics in China. were political reforms and their applications. The Hanzhong Euthanasia Case and the publication of Qiu Ren-zong's academic work Bioethics played a significant role in the development of bioethics in China. Other contributory factors include the establishment of the Chinese Society of Medical Ethics/Chinese Medical Association (C.M.A), the publication of the Journal of Chinese Medical Ethics, and the teaching and education of bioethics in China. Major achievements of bioethics in China include the establishment of ethics committee and ethics review system, active international communication and cooperation among the academic circles, and the successful management of the 8th World Congress of Bioethics in Beijing in 2006. Chinese bioethics focus on native Chinese realities and conditions, absorb the international research achievements in relevant fields, and combine international ideas with traditional Chinese doctrines. Admittedly, there are still some aspects to be improved, yet bioethics has attracted a lot of attention from the core leadership in China and has gained sound financial support, which augers well for its further development. This article also briefly introduces the development of bioethics in Hong Kong and Taiwan, China.

  3. Age and source of terrigenous rocks of the turan group of the bureya terrane of the eastern part of the central Asian foldbelt: Results of geochemical (Sm-Nd) and geochronological (U-Pb LA-ICP-MS) studies

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Smirnov, Yu. V.; Kotov, A. B.; Kovach, V. P.

    2014-06-01

    According to Sm-Nd isotopic-geochemical studies, the t Nd(DM) of the terrigenous rocks of the Turan Group of the Bureya terrane is 1.4-1.5 Ga and their sources are Precambrian rocks and (or) younger effusive rocks, the formation of which is related to the reworking of the Late Precambrian continental crust. The U-Pb LA-ICP-MS geochronological studies indicate dominant Vendian-Cambrian (588-483 Ma) and Late Riphean (865-737 Ma) detrital zircons. Our data point to their accumulation at the beginning of the Paleozoic rather than in the Precambrian as is accepted in modern stratigraphic schemes.

  4. China: Tradition and Transformation. Curriculum Projects. Fulbright-Hays Summer Seminars Abroad Program, 2002 (China).

    ERIC Educational Resources Information Center

    National Committee on United States-China Relations, New York, NY.

    This collection of 15 curriculum projects is the result of a summer seminar in China for teachers and scholars. Projects in the collection are: (1) "Perspectives on Modern Political/Social Issues in China" (Sandy Conlon); (2) "Ancient History X Projects/China" (Michael Corey); (3) "Education and Development: China, a Case…

  5. U.S.-China Maritime Confidence Building. Paradigms, Precedents, and Prospects (China Maritime Study, Number 6)

    DTIC Science & Technology

    2010-07-01

    China Maritime Confidence Building www.usnwc.edu/Research--- Gaming /China-Maritime-Studies-Institute.aspx Paradigms, Precedents, and Prospects David...addressed to the director of the China Maritime Studies Institute, www.usnwc.edu/Research--- Gaming / China-Maritime-Studies-Institute.aspx. To...Businesspeople enjoying a drink in Shanghai, young women having their nails manicured in trendy Beijing salons , and poor peasant farmers in central China

  6. JPRS Report, China.

    DTIC Science & Technology

    1989-07-27

    vice president of the China University of Politics and Law and supervisor of doctoral candidates in administrative law ; Sun Bingzhu [1327 3521...China. Invited to attend were Gong Xiangrui [78905 4382 3843], professor of politics and law at Beijing University; Cheng Guangzhong [7115 0342 0022...legal scholars; Chen Xiaoping [7115 1420 1627], deputy director of the constitutional law teaching and research section at the China University of

  7. Developmental Idealism in China

    PubMed Central

    Thornton, Arland; Xie, Yu

    2016-01-01

    This paper examines the intersection of developmental idealism with China. It discusses how developmental idealism has been widely disseminated within China and has had enormous effects on public policy and programs, on social institutions, and on the lives of individuals and their families. This dissemination of developmental idealism to China began in the 19th century, when China met with several military defeats that led many in the country to question the place of China in the world. By the beginning of the 20th century, substantial numbers of Chinese had reacted to the country’s defeats by exploring developmental idealism as a route to independence, international respect, and prosperity. Then, with important but brief aberrations, the country began to implement many of the elements of developmental idealism, a movement that became especially important following the assumption of power by the Communist Party of China in 1949. This movement has played a substantial role in politics, in the economy, and in family life. The beliefs and values of developmental idealism have also been directly disseminated to the grassroots in China, where substantial majorities of Chinese citizens have assimilated them. These ideas are both known and endorsed by very large numbers in China today. PMID:28316833

  8. Developmental Idealism in China.

    PubMed

    Thornton, Arland; Xie, Yu

    2016-10-01

    This paper examines the intersection of developmental idealism with China. It discusses how developmental idealism has been widely disseminated within China and has had enormous effects on public policy and programs, on social institutions, and on the lives of individuals and their families. This dissemination of developmental idealism to China began in the 19 th century, when China met with several military defeats that led many in the country to question the place of China in the world. By the beginning of the 20 th century, substantial numbers of Chinese had reacted to the country's defeats by exploring developmental idealism as a route to independence, international respect, and prosperity. Then, with important but brief aberrations, the country began to implement many of the elements of developmental idealism, a movement that became especially important following the assumption of power by the Communist Party of China in 1949. This movement has played a substantial role in politics, in the economy, and in family life. The beliefs and values of developmental idealism have also been directly disseminated to the grassroots in China, where substantial majorities of Chinese citizens have assimilated them. These ideas are both known and endorsed by very large numbers in China today.

  9. China Dust

    Atmospheric Science Data Center

    2013-04-16

    ... SpectroRadiometer (MISR) nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a ... arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the ...

  10. Headache care in China.

    PubMed

    Yu, Shengyuan; Zhang, Mingjie; Zhou, Jiying; Liu, Ruozhuo; Wan, Qi; Li, Yansheng

    2014-04-01

    Headache disorders are problematic worldwide. China is no different. A population-based door-to-door survey revealed that the 1-year prevalence of primary headache disorders in China was 23.8%, constituting a major societal burden. Many headache centers and clinics have been established in China, and headache disorders (and associated stress) are receiving an increased level of expert attention. This review summarizes the outcomes of the epidemiological survey and the progress of clinical and basic research in China, describes the present situation in terms of headache diagnosis and treatment, and discusses the future of headache care in China. © 2014 American Headache Society.

  11. South China Sea

    USGS Publications Warehouse

    Morton, Brian; Blackmore, Graham

    2001-01-01

    The South China Sea is poorly understood in terms of its marine biota, ecology and the human impacts upon it. What is known is most often contained in reports and workshop and conference documents that are not available to the wider scientific community. The South China Sea has an area of some 3.3 million km2 and depths range from the shallowest coastal fringe to 5377 m in the Manila Trench. It is also studded with numerous islets, atolls and reefs many of which are just awash at low tide. It is largely confined within the Tropic of Cancer and, therefore, experiences a monsoonal climate being influenced by the Southwest Monsoon in summer and the Northeast Monsoon in winter. The South China Sea is a marginal sea and, therefore, largely surrounded by land. Countries that have a major influence on and claims to the sea include China, Malaysia, the Philippines and Vietnam, although Thailand, Indonesia and Taiwan have some too. The coastal fringes of the South China Sea are home to about 270 million people that have had some of the fastest developing and most vibrant economies on the globe. Consequently, anthropogenic impacts, such as over-exploitation of resources and pollution, are anticipated to be huge although, in reality, relatively little is known about them. The Indo-West Pacific biogeographic province, at the centre of which the South China Sea lies, is probably the world's most diverse shallow-water marine area. Of the three major nearshore habitat types, i.e., coral reefs, mangroves and seagrasses, 45 mangrove species out of a global of 51, most of the currently recognised 70 coral genera and 20 of 50 known seagrass species have been recorded from the South China Sea. The island groups of the South China Sea are all disputed and sovereignty is claimed over them by a number of countries. Conflicts have in recent decades arisen over them because of perceived national rights. It is perhaps because of this that so little research has been undertaken on the South

  12. Prevention of US-China Armed Conflict Over South China Sea Territorial Disputes

    DTIC Science & Technology

    2013-03-01

    Publishing. October 22, 2012, 21. 11 its regional competitors , China ratified the UNCLOS soon thereafter despite disagreements with how various...support United Nations Security 2 CNBC, “ Toyota China Sales Tank as Islands Row Hits Japan Inc.,” CNBC...itself on China. It talks of fostering bilateral alliances with China’s territorial competitors ; supporting western regional organizations like

  13. China’s Energy Insecurity and the South China Sea Dispute

    DTIC Science & Technology

    2011-03-24

    St ra te gy R es ea rc h Pr oj ec t CHINA’S ENERGY INSECURITY AND THE SOUTH CHINA SEA DISPUTE BY COLONEL JAMES A. BRANDENBURG United...Project 3. DATES COVERED (From - To) Nov 2010-Mar 2011 4. TITLE AND SUBTITLE China’s Energy Insecurity and the South China Sea Dispute...CHINA’S ENERGY INSECURITY AND THE SOUTH CHINA SEA DISPUTE by Colonel James A. Brandenburg United States Air Force

  14. Geochemistry of continental subduction-zone fluids

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Hermann, Joerg

    2014-12-01

    The composition of continental subduction-zone fluids varies dramatically from dilute aqueous solutions at subsolidus conditions to hydrous silicate melts at supersolidus conditions, with variable concentrations of fluid-mobile incompatible trace elements. At ultrahigh-pressure (UHP) metamorphic conditions, supercritical fluids may occur with variable compositions. The water component of these fluids primarily derives from structural hydroxyl and molecular water in hydrous and nominally anhydrous minerals at UHP conditions. While the breakdown of hydrous minerals is the predominant water source for fluid activity in the subduction factory, water released from nominally anhydrous minerals provides an additional water source. These different sources of water may accumulate to induce partial melting of UHP metamorphic rocks on and above their wet solidii. Silica is the dominant solute in the deep fluids, followed by aluminum and alkalis. Trace element abundances are low in metamorphic fluids at subsolidus conditions, but become significantly elevated in anatectic melts at supersolidus conditions. The compositions of dissolved and residual minerals are a function of pressure-temperature and whole-rock composition, which exert a strong control on the trace element signature of liberated fluids. The trace element patterns of migmatic leucosomes in UHP rocks and multiphase solid inclusions in UHP minerals exhibit strong enrichment of large ion lithophile elements (LILE) and moderate enrichment of light rare earth elements (LREE) but depletion of high field strength elements (HFSE) and heavy rare earth elements (HREE), demonstrating their crystallization from anatectic melts of crustal protoliths. Interaction of the anatectic melts with the mantle wedge peridotite leads to modal metasomatism with the generation of new mineral phases as well as cryptic metasomatism that is only manifested by the enrichment of fluid-mobile incompatible trace elements in orogenic peridotites

  15. Urea Hydrogen Peroxide Reduces the Numbers of Lactobacilli, Nourishes Yeast, and Leaves No Residues in the Ethanol Fermentation

    PubMed Central

    Narendranath, N. V.; Thomas, K. C.; Ingledew, W. M.

    2000-01-01

    Urea hydrogen peroxide (UHP) at a concentration of 30 to 32 mmol/liter reduced the numbers of five Lactobacillus spp. (Lactobacillus plantarum, L. paracasei, Lactobacillus sp. strain 3, L. rhamnosus, and L. fermentum) from ∼107 to ∼102 CFU/ml in a 2-h preincubation at 30°C of normal-gravity wheat mash at ∼21 g of dissolved solids per ml containing normal levels of suspended grain particles. Fermentation was completed 36 h after inoculation of Saccharomyces cerevisiae in the presence of UHP, even when wheat mash was deliberately contaminated (infected) with L. paracasei at ∼107 CFU/ml. There were no significant differences in the maximum ethanol produced between treatments when urea hydrogen peroxide was used to kill the bacteria and controls (in which no bacteria were added). However, the presence of L. paracasei at ∼107 CFU/ml without added agent resulted in a 5.84% reduction in the maximum ethanol produced compared to the control. The bactericidal activity of UHP is greatly affected by the presence of particulate matter. In fact, only 2 mmol of urea hydrogen peroxide per liter was required for disinfection when mashes had little or no particulate matter present. No significant differences were observed in the decomposition of hydrogen peroxide in normal-gravity wheat mash at 30°C whether the bactericidal agent was added as H2O2 or as urea hydrogen peroxide. NADH peroxidase activity (involved in degrading H2O2) increased significantly (P = 0.05) in the presence of 0.75 mM hydrogen peroxide (sublethal level) in all five strains of lactobacilli tested but did not persist in cells regrown in the absence of H2O2. H2O2-resistant mutants were not expected or found when lethal levels of H2O2 or UHP were used. Contaminating lactobacilli can be effectively managed by UHP, a compound which when used at ca. 30 mmol/liter happens to provide near-optimum levels of assimilable nitrogen and oxygen that aid in vigorous fermentation performance by yeast. PMID:11010858

  16. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: A review

    NASA Astrophysics Data System (ADS)

    Liou, Juhn G.; Tsujimori, Tatsuki; Yang, Jingsui; Zhang, R. Y.; Ernst, W. G.

    2014-12-01

    Newly recognized occurrences of ultrahigh-pressure (UHP) minerals including diamonds in ultrahigh-temperature (UHT) felsic granulites of orogenic belts, in chromitites associated with ophiolitic complexes, and in mantle xenoliths suggest the recycling of crustal materials through deep subduction, mantle upwelling, and return to the Earth's surface. This circulation process is supported by crust-derived mineral inclusions in deep-seated zircons, chromites, and diamonds from collision-type orogens, from eclogitic xenoliths in kimberlites, and from chromitities of several Alpine-Himalayan and Polar Ural ophiolites; some of these minerals contain low-atomic number elements typified by crustal isotopic signatures. Ophiolite-type diamonds in placer deposits and as inclusions in chromitites together with numerous highly reduced minerals and alloys appear to have formed near the mantle transition zone. In addition to ringwoodite and inferred stishovite, a number of nanometric minerals have been identified as inclusions employing state-of-the-art analytical tools. Reconstitution of now-exsolved precursor UHP phases and recognition of subtle decompression microstructures produced during exhumation reflect earlier UHP conditions. For example, Tibetan chromites containing exsolution lamellae of coesite + diopside suggest that the original chromitites formed at P > 9-10 GPa at depths of >250-300 km. The precursor phase most likely had a Ca-ferrite or a Ca-titanite structure; both are polymorphs of chromite and (at 2000 °C) would have formed at minimum pressures of P > 12.5 or 20 GPa respectively. Some podiform chromitites and host peridotites contain rare minerals of undoubted crustal origin, including zircon, feldspars, garnet, kyanite, andalusite, quartz, and rutile; the zircons possess much older U-Pb ages than the time of ophiolite formation. These UHP mineral-bearing chromitite hosts evidently had a deep-seated evolution prior to extensional mantle upwelling and partial

  17. Doing Business with China.

    ERIC Educational Resources Information Center

    Department of Commerce, Washington, DC. Industry and Trade Administration.

    This publication provides background and practical information for those interested in doing business with China. The United States officially recognized the People's Republic of China (PRC) on January 1, 1979. Chinese leaders view international trade as an important factor in transforming China into a modern industrial state as well as an…

  18. Mantle Recycling of Crustal Materials through Study of Ultrahigh-Pressure Minerals in Collisional Orogens, Ophiolites, and Xenoliths

    NASA Astrophysics Data System (ADS)

    Liou, J. G.; Tsujimori, T.; Yang, J.; Zhang, R. Y.; Ernst, W. G.

    2014-12-01

    Newly recognized ultrahigh-pressure (UHP) mineral occurrences including diamonds in ultrahigh-temperature (UHT) felsic granulites of orogenic belts, in chromitites associated with ophiolitic complexes, and in mafic/ultramafic xenoliths suggest the recycling of crustal materials through profound subduction, mantle upwelling, and return to the Earth's surface. Recycling is supported by unambiguously crust-derived mineral inclusions in deep-seated zircons, chromites, and diamonds from collision-type orogens, from eclogitic xenoliths, and from ultramafic bodies of several Alpine-Himalayan and Polar Ural ophiolites; some such phases contain low-atomic number elements typified by crustal isotopic signatures. Ophiolite-type diamonds in placer deposits and as inclusions in chromitites together with numerous highly reduced minerals and alloys appear to have formed near the mantle transition zone. In addition to ringwoodite and stishovite, a wide variety of nanometric minerals have been identified as inclusions employing state-of-the-art analysis. Reconstitution of now-exsolved precursor UHP phases and recognition of subtle decompression microstructures produced during exhumation reflect earlier UHP conditions. Some podiform chromitites and associated peridotites contain rare minerals of undoubted crustal origin, including Zrn, corundum, Fls, Grt, Ky, Sil, Qtz, and Rtl; the zircons possess much older U-Pb ages than the formation age of the host ophiolites. These UHP mineral-bearing chromitites had a deep-seated evolution prior to extensional mantle upwelling and its partial melting at shallow depths to form the overlying ophiolite complexes. These new findings plus stable isotopic and inclusion characteristics of diamonds provide compelling evidence for profound underflow of both oceanic and continental lithosphere, recycling of biogenic carbon into the lower mantle, and ascent to the Earth's surface through deep mantle ascent.

  19. Paleomagnetic and Geochronologic Results of Latest Cretaceous Lava Flows From the Lhasa Terrane and Their Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Ma, Yiming; Yang, Tianshui; Bian, Weiwei; Jin, Jingjie; Wang, Qiang; Zhang, Shihong; Wu, Huaichun; Li, Haiyan; Cao, Liwan; Yuan, Haifan; Ding, Jikai

    2017-11-01

    To position the Asian southern margin before the India-Asia collision, paleomagnetic and geochronologic studies were performed on the Dianzhong Formation lava flows from the Shiquanhe area of the westernmost Lhasa terrane (LT). Zircon U-Pb analyses dated the lava flows to 69.5 ± 2.5 Ma. The characteristic remanent magnetization directions contain antipodal polarities and pass fold tests, implying that they are primary magnetizations; this interpretation is supported by rock-magnetic analyses and petrographic observations. Forty-four site-mean directions were divided into 17 statistically independent direction groups. The group-mean direction after tilt correction is Ds = 43.3°, Is = 30.3°, k = 28.0, α95 = 6.9°. The corresponding paleopole at 47.8°N, 181.4°E (A95 = 6.4°) yields a paleolatitude of 16.6° ± 6.4°N for the Shiquanhe area of westernmost Tibet (32.34°N, 80.12°E). Consistent paleolatitudes for the southern margin of the LT calculated from the western and central part of the LT indicate that the leading edge of the LT was aligned relatively W-E. When compared with the reference pole at 70 Ma for Eurasia, this new paleopole suggests that crustal shortening between the Shiquanhe area and stable Asia was 1,500 ± 800 km. This is supported by the crustal shortening (600-1,000 km) absorbed by Cenozoic thrust and fold belts within this area, indicating that the magnitude of crustal shortening within Asia north of the India-Asia suture zone was similar in the central and western part of the plateau.

  20. Plant biotechnology in China.

    PubMed

    Huang, Jikun; Rozelle, Scott; Pray, Carl; Wang, Qinfang

    2002-01-25

    A survey of China's plant biotechnologists shows that China is developing the largest plant biotechnology capacity outside of North America. The list of genetically modified plant technologies in trials, including rice, wheat, potatoes, and peanuts, is impressive and differs from those being worked on in other countries. Poor farmers in China are cultivating more area of genetically modified plants than are small farmers in any other developing country. A survey of agricultural producers in China demonstrates that Bacillus thuringiensis cotton adoption increases production efficiency and improves farmer health.

  1. China: Tradition and Transformation, Curriculum Projects. Fulbright Hays Summer Seminars Abroad 1998 (China).

    ERIC Educational Resources Information Center

    National Committee on United States-China Relations, New York, NY.

    The curriculum projects in this collection focus on diverse aspects of China, the most populous nation on the planet. The 16 projects in the collection are: (1) "Proposed Secondary Education Asian Social Studies Course with an Emphasis on China" (Jose Manuel Alvarino); (2) "Education in China: Tradition and Transition" (Sue…

  2. 77 FR 5865 - American Unity Investments, Inc., China Display Technologies, Inc., China Wind Energy, Inc., Fuda...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] American Unity Investments, Inc., China Display Technologies, Inc., China Wind Energy, Inc., Fuda Faucet Works, Inc., Greater China Media... concerning the securities of China Wind Energy, Inc. because it has not filed any periodic reports since the...

  3. Fluoride in groundwater: a case study in Precambrian terranes of Ambaji region, North Gujarat, India

    NASA Astrophysics Data System (ADS)

    Mohan Pradhan, Rudra; Biswal, Tapas Kumar

    2018-06-01

    Fluoride is one of the critical ions that influence the groundwater quality. World Health Organization (WHO, 1970) and Bureau of Indian Standards (BIS, 1991) set an upper limit of 1.5 mg L-1 in F- concentration for drinking water purpose and above affects teeth and bones of humans. The presence of fluoride in groundwater is due to an interaction of groundwater and fluoride bearing rocks. Fluoride rich groundwater is well known in granitic aquifers in India and elsewhere. Generally, the concentration of F- in groundwater is controlled by local geological setting; leaching and weathering of bedrock and climatic condition of an area. The main objective of the present study is to assess the hydrogeochemistry of groundwater and to understand the abundance of F- in groundwater in hard rock terranes of Ambaji region, North Gujarat. A total of forty-three representative groundwater samples were collected and analyzed for major cations and anions using ICP-AES, Ion Chromatograph (Metrohm 883 Basic IC Plus) and titration methods. The F- concentration in groundwater of this study area ranges from 0.17 to 2.7 mg L-1. Among, twenty groundwater samples have fluoride exceeding the maximum permissible limit as per the BIS (1.5 mg L-1). It is also noticed that residents of this region are affected by dental fluorosis. The general order of the dominance of major cations and anions are Ca2+ > Mg2+ > Na+ > K+ and HCO3- > Cl- > F- respectively. Geochemical classification of groundwater shows most of the samples are the alkaline earth-bicarbonate type. The semi-arid climatic conditions of the region, the dominance of granitoid-granulite suite rocks and the fracture network in the disturbed and brittle zone has facilitated the development of potential aquifers and enrichment in F- concentration in this area. The concentration of fluoride is due to high evaporation rate, longer residence time in the aquifer zone, intensive and long term pumping for irrigation.

  4. The metallogeny of Late Triassic rifting of the Alexander terrane in southeastern Alaska and northwestern British Columbia

    USGS Publications Warehouse

    Taylor, C.D.; Premo, W.R.; Meier, A.L.; Taggart, J.E.

    2008-01-01

    A belt of unusual volcanogenic massive sulfide (VMS) occurrences is located along the eastern margin of the Alexander terrane throughout southeastern Alaska and northwestern British Columbia and exhibits a range of characteristics consistent with a variety of syngenetic to epigenetic deposit types. Deposits within this belt include Greens Creek and Windy Craggy, the economically most significant VMS deposit in Alaska and the largest in North America, respectively. The occurrences are hosted by a discontinuously exposed, 800-km-long belt of rocks that consist of a 200- to 800-m-thick sequence of conglomerate, limestone, marine elastic sedimentary rocks, and tuff intercalated with and overlain by a distinctive unit of mafic pyroclastic rocks and pillowed flows. Faunal data bracket the age of the host rocks between Anisian (Middle Triassic) and late Norian (late Late Triassic). This metallogenic belt is herein referred to as the Alexander Triassic metallogenic belt. The VMS occurrences show systematic differences in degree of structural control, chemistry, and stratigraphic setting along the Alexander Triassic metallogenic belt that suggest important spatial or temporal changes in the tectonic environment of formation. At the southern end of the belt, felsic volcanic rocks overlain by shallow-water limestones characterize the lower part of the sequence. In the southern and middle portion of the belt, a distinctive pebble conglomerate marks the base of the section and is indicative of high-energy deposition in a near slope or basin margin setting. At the northern end of the belt the conglomerates, limestones, and felsic volcanic rocks are absent and the belt is composed of deep-water sedimentary and mafic volcanic rocks. This northward change in depositional environment and lithofacies is accompanied by a northward transition from epithermal-like structurally controlled, discontinuous, vein- and pod-shaped, Pb-Zn-Ag-Ba-(Cu) occurrences with relatively simple mineralogy

  5. An Introduction to Education in the People's Republic of China and U.S.-China Educational Exchanges.

    ERIC Educational Resources Information Center

    Perrolle, Pierre M.; Reed, Linda A.

    Information is presented on China's higher education system, China's current educational exchanges, and the U.S.-China educational exchange process. China's higher education system is considered in terms of historical themes and implications for the present, the number and types of institutions, graduate education, operation of the higher…

  6. China's water scarcity.

    PubMed

    Jiang, Yong

    2009-08-01

    China has been facing increasingly severe water scarcity, especially in the northern part of the country. China's water scarcity is characterized by insufficient local water resources as well as reduced water quality due to increasing pollution, both of which have caused serious impacts on society and the environment. Three factors contribute to China's water scarcity: uneven spatial distribution of water resources; rapid economic development and urbanization with a large and growing population; and poor water resource management. While it is nearly impossible to adjust the first two factors, improving water resource management represents a cost-effective option that can alleviate China's vulnerability to the issue. Improving water resource management is a long-term task requiring a holistic approach with constant effort. Water right institutions, market-based approaches, and capacity building should be the government's top priority to address the water scarcity issue.

  7. A brief history of Regional Warning Center China (RWC-China)

    NASA Astrophysics Data System (ADS)

    He, Han; Wang, Huaning; Du, Zhanle; Huang, Xin; Yan, Yan; Dai, Xinghua; Guo, Juan; Wang, Jialong

    2018-03-01

    Solar-terrestrial prediction services in China began in 1969 at the Beijing Astronomical Observatory (BAO), Chinese Academy of Sciences (CAS). In 1990, BAO joined the International URSIgram and World Days Service (IUWDS) and started solar-terrestrial data and prediction interchanges with other members of IUWDS. The short-term solar activity prediction service with standard URSIgram codes began in January 1991 at BAO, and forecasts have been issued routinely every weekday from then on. The Regional Warning Center Beijing (RWC-Beijing) of IUWDS was officially approved in China in 1991 and was formally established in February 1992. In 1996, the IUWDS was changed to the current name, the International Space Environment Service (ISES). In 2000, the RWC-Beijing was renamed RWC-China according to ISES requirements. In 2001, the National Astronomical Observatories, CAS (NAOC) was established. All the solar-terrestrial data and prediction services of BAO were taken up by NAOC. The headquarters of RWC-China is located on the campus of NAOC.

  8. Three-dimensional lithospheric S wave velocity model of the NE Tibetan Plateau and western North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Xingchen; Li, Yonghua; Ding, Zhifeng; Zhu, Lupei; Wang, Chunyong; Bao, Xuewei; Wu, Yan

    2017-08-01

    We present a new 3-D lithospheric Vs model for the NE Tibetan Plateau (NETP) and the western North China Craton (NCC). First, high-frequency receiver functions (RFs) were inverted using the neighborhood algorithm to estimate the sedimentary structure beneath each station. Then a 3D Vs model with unprecedented resolution was constructed by jointly inverting RFs and Rayleigh wave dispersions. A low-velocity sedimentary layer with thicknesses varying from 2 to 10 km is present in the Yinchuan-Hetao graben, Ordos block, and western Alxa block. Velocities from the middle-lower crust to the uppermost mantle are generally high in the Ordos block and low in the Alxa block, indicating that the Alxa block is not part of the NCC. The thickened crust in southwestern Ordos block and western Alxa block suggests that they have been modified. Two crustal low-velocity zones (LVZs) were detected beneath the Kunlun Fault (KF) zone and western Qilian Terrane (QLT). The origin of the LVZ beneath the KF zone may be the combined effect of shear heating, localized asthenosphere upwelling, and crustal radioactivity. The LVZ in the western QLT, representing an early stage of the LVZ that has developed in the KF zone, acts as a decollement to decouple the deformation between the upper and lower crust and plays a key role in seismogenesis. We propose that the crustal deformation beneath the NETP is accommodated by a combination of shear motion, thickening of the upper-middle crust, and removal of lower crust.

  9. Baiyun Ebo, China

    NASA Image and Video Library

    2012-04-11

    Acquired by NASA Terra spacecraft, this image shows a mine in Baiyun Ebo, Inner Mongolia, China, the site of almost half the world rare earth production. China is responsible for over 95% of global production of rare earth elements.

  10. Mantle seismic anisotropy beneath NE China and implications for the lithospheric delamination hypothesis beneath the southern Great Xing'an range

    NASA Astrophysics Data System (ADS)

    Chen, Haichao; Niu, Fenglin; Obayashi, Masayuki; Grand, Stephen P.; Kawakatsu, Hitoshi; John Chen, Y.; Ning, Jieyuan; Tanaka, Satoru

    2017-08-01

    We measured shear wave splitting from SKS data recorded by the transcontinental NECESSArray in NE China to constrain lithosphere deformation and sublithospheric flows beneath the area. We selected several hundreds of high quality SKS/SKKS waveforms from 32 teleseismic earthquakes occurring between 09/01/2009 and 08/31/2011 recorded by 125 broadband stations. These stations cover a variety of tectonic terranes, including the Songliao basin, the Changbaishan mountain range and Zhangguancai range in the east, the Great Xing'an range in the west and the Yanshan orogenic belt in the southwest. We assumed each station is underlaid by a single anisotropic layer and employed a signal-to-noise ratio (SNR) weighted multi-event stacking method to estimate the two splitting parameters (the fast polarization direction φ, and delay time, δt) that gives the best fit to all the SKS/SKKS waveforms recorded at each station. Overall, the measured fast polarization direction lies more or less along the NW-SE direction, which significantly differs from the absolute plate motion direction, but is roughly consistent with the regional extension direction. This suggests that lithosphere deformation is likely the general cause of the observed seismic anisotropy. The most complicated anisotropic structure is observed beneath the southern Great Xing'an range and southwest Songliao basin. The observed large variations in splitting parameters and the seismic tomographic images of the area are consistent with ongoing lithospheric delamination beneath this region.

  11. Geological and Geophysical Integration Regarding a Structural Evolution Modelling of a Suture Zone Controlled by a Cratonic Buttress - The Case of Dom Feliciano Orogenic Belt, SSE Brazil, Implications for Western Gondwana Assembly

    NASA Astrophysics Data System (ADS)

    Bruno, H.; Almeida, J.; Heilbron, M. C. P. L.; Salomão, M.

    2017-12-01

    The matters surrounding the amalgamation of tectonic blocks during the Brasiliano / Pan-African orogeny have been the main subject of study of several works in recent years. The main objective of this work is the hierarchy and discrimination of the boundaries between the known tectonic blocks, integrating geological and geophysical data. The geology of the study area is dominated by Precambrian terranes; Luís Alves Terrane, the vulcanosedimentary sequences of the Itajaí and Campo Alegre Basins, the metasedimentary sequences of the Brusque and Paranaguá Terranes and their granitic suites besides the granitoids of the Florianópolis Terrane. The shear zones and faults that separate these crustal blocks were developed during the Brasiliano / Pan-African orogenic cycle that led to the formation of the supercontinent Gondwana. These tectonic boundaries generally separate blocks of different rheology and crustal thickness. The integration of geological and geophysical data allowed the identification of important structural lineaments and crustal boundaries. The presented geodynamic model suggests that the suture between the block composed of the Brusque, Paranaguá and Florianópolis Terranes and the block composed by the Luís Alves Terrane is the Itajaí Perimbó Shear Zone, and not the Major Gercino Shear Zone as previously suggested. Considering the Itajaí Perimbó Shear Zone as the suture zone, the metassediments of the Brusque Terrane were deposited on the basement of the Florianópolis Terrane, hereby declared as part of the Angola Craton, and are correlated to the metassediments of the Paranaguá Terrane as a passive margin that in approximately ca. 650 My became active margin, functioning as a forearc basin. The oblique collision between the blocks would have occurred with the development of a dextral transpression in the Itajaí Perimbó Shear Zone, separating the Luís Alves Terrane from the Brusque Terrane, a sinistral transcurrence represented by the

  12. Comparison of NOx emissions from China III and China IV in-use diesel trucks based on on-road measurements

    NASA Astrophysics Data System (ADS)

    Yao, Zhiliang; Wu, Bobo; Wu, Yunong; Cao, Xinyue; Jiang, Xi

    2015-12-01

    To mitigate NOx and other emissions from diesel vehicles, China I, China II, China III and China IV emissions standards for new vehicles have been implemented nationwide. However, recent on-road measurements using a portable emission measurement system (PEMS) have revealed no significant reductions in the NOx emissions factors of diesel trucks due to the change from China II emissions standards to the more stringent China III standards. Thus, it is important to understand the effect of the China IV emissions standard on NOx emissions. In this study, nine China III and nine China IV diesel trucks of three sizes (light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs)) were tested on real roads in Beijing using a PEMS. Compared to the tested China III diesel trucks, the China IV diesel trucks showed significant reductions of the average NOx emissions factors in terms of both distance travelled and fuel consumption. However, the driving conditions had an important impact on the reduction. Under non-highway driving (NHD), several of the tested China IV diesel trucks experienced no reduction or an increase in NOx emissions compared to their China III counterparts. The NOx emissions factors of the 18 tested diesel trucks under NHD were on average 1.5-times greater than those under highway driving (HD), and the effects on NOx emissions removal from China III to China IV diesel trucks were greater under HD than under NHD. In addition, no significant reduction of NOx based on fuel consumption for China IV diesel trucks was observed for MDDTs and HDDTs compared to the test results for similar China II vehicles reported in a previous study. To reduce NOx emissions in China, additional control measures of vehicular NOx emissions should be formulated.

  13. Environmental Management in Mainland China.

    ERIC Educational Resources Information Center

    Shen, Thomas T.

    1984-01-01

    Provides an overview of China's environmental pollution management by discussing: China's Environmental Protection Organization; laws and regulations; environmental protection program; education and manpower training; and research into environmental pollution problems. (The author provided technical assistance to China's environmental pollution…

  14. Deformation of the Eastern Franciscan Belt, northern California

    USGS Publications Warehouse

    Jayko, A.S.; Blake, M.C.

    1989-01-01

    The late Jurassic and Cretaceous Eastern Franciscan belt of the northern California Coast Range consists of two multiply deformed, blueschist-facies terranes; the Pickett Peak and Yolla Bolly terranes. Four deformations have been recognized in the Pickett Peak terrane, and three in the Yolla Bolly terrane. The earliest recognized penetrative fabric, D1, occurs only in the Pickett Peak terrane. The later penetrative fabrics, D2 and D3, occur in both the Yolla Bolly and Pickett Peak terranes. D1 and D2 apparently represent fabrics that formed during subduction and accretion of the terranes. Fabrics from both D1 and D2 are consistent with SW-NE movement directions with respect to their present geographic positions. D3 postdates blueschist-facies metamorphism of the terranes and may be related to emplacement of the terranes to higher structural levels. A broad regional warping, D4, is evident from the map pattern and folding of large metamorphosed thrust sheets. D4 folds may be related to deformation associated with oblique convergence along the continental margin in late Cretaceous and (or) early Tertiary time. ?? 1989.

  15. China: Tradition and Transformation. Curriculum Projects. Fulbright-Hays Summer Seminar Abroad Program 1999 (China).

    ERIC Educational Resources Information Center

    National Committee on United States-China Relations, New York, NY.

    This collection of curriculum projects is the result of the authors' participation in a Fulbright summer seminar program in China. The following 16 curriculum projects are in the collection: (1) "Banpo Village: A Prehistoric Dig" (Sandra Bailey); (2) "China: Moving into the New Millennium: A Study of China's Past, Present and…

  16. Comparison of Geothermobarometers with Different Closure Behavior to Constrain P-T Paths

    NASA Astrophysics Data System (ADS)

    Hora, J.; Simon, K.; Kronz, A.; Xiao, Y.; Worner, G.

    2014-12-01

    Temperatures obtained from geothermobarometers depend not only on minerals reaching equilibrium, but also on preservation of those compositions through subsequent thermal history. In the case of step-function cooling histories (volcanic systems), each of several geothermometry equations (with P-dependence) can be treated as a line in P-T space for a given composition. In the absence of independent P-constraint, intersection of those lines corresponds to the simultaneous solution of the equations involved and is indicative of crystallization and storage conditions. Multiple calibrations of a given thermometer can be evaluated by their degree of match. For protracted plutonic or metamorphic cooling histories, a single intersection is not expected - instead, calculated temperatures will reflect a sequence of mineral closure based on diffusivity of the element(s) of interest in the various phases. We apply this multi-thermometer approach to quartz, rutile, and titanite formed along the retrograde path in gneiss and eclogite at Bixiling, Dabie UHP terrane, China. Using the Huang and Audetat (2012) Ti-in-quartz thermometer calibration, all available Zr-in-rutile equations intersect at approximately 7-10 kbar and 560-580°C. Zr-in-rutile calibrations diverge at higher P, and intersect the Thomas et al. (2010) Ti-in-quartz calibration over a broader range of 13-16 kbar and 550-600°C. Regardless of which intersection is used, it appears that both of these minerals have reequilibrated far below the previously reported peak conditions of >30 kbar and >750°C. Titanite, where diffusion is slower, is present in the gneiss unit as late-stage overgrowths on rutile, but records T that are approximately 150°C higher than the rutile inclusions at all P. This appears to be consistent with all minerals forming above 750°C and possibly much higher P, with quartz and rutile being reset along the retrograde path due to more rapid diffusion. When crystal sizes are taken into account

  17. Cultivating regenerative medicine innovation in China.

    PubMed

    McMahon, Dominique S; Thorsteinsdóttir, Halla; Singer, Peter A; Daar, Abdallah S

    2010-01-01

    While China has become a significant contributor and prolific publisher in regenerative medicine, its role in the field is not well understood. We analyze how capacity in regenerative medicine was built in China to identify some of its main strengths and challenges. This case study of regenerative medicine in China is primarily based on interviews with experts in China, including researchers, policy makers, clinicians, representatives of firms and regulators. Our analysis shows that diverse groups are active in this field in China. Leading research groups are contributing extensively to international peer-reviewed journals. Strong governmental support and recruitment of highly trained Chinese scientists from abroad has made it possible for China to rapidly build up capacity in regenerative medicine. However, some hospitals in China are offering stem cell therapies with limited scientific evidence supporting their efficacy/safety, and international skepticism of medical research in China presents a challenge to the development of the field. China has been able to catapult itself into the forefront of regenerative medicine but needs to address current regulatory challenges in order to secure its position in this emerging field.

  18. Differentiating Metamorphic Events in a Polymetamorphic Terrane using Zr-in-Ttn thermometry and Titanite U-Pb Geochronology

    NASA Astrophysics Data System (ADS)

    Kenney, M.; Roeske, S.; Mulcahy, S. R.; Cottle, J. M.; Coble, M. A.

    2016-12-01

    In polymetamorphic terranes, it is problematic to link ages from geochronometers to metamorphic fabrics and, therefore, to a specific deformation event(s). It is necessary to analyze a mineral which may preserve multiple age domains. Titanite has been shown to retain multiple age and elemental domains in single grains through high-grade metamorphism. In this study, titanite U-Pb geochronology is used to examine whether ages are thermally reset along a sample transect towards a mylonitic shear zone in NW Argentina. This work also seeks to understand the conditions under which titanite resists resetting. A combination of petrographic and electron microprobe analyses reveal the textures and compositional domains in titanite, garnet, and hornblende. Titanite are elongate, wrapped by the mylonitic fabric, and have patchy elemental zoning. Garnet has distinct cores with prograde zoning and thin rims, which appear to be in equilibrium with the fabric defining minerals. Hornblende has inclusion rich cores and thin overgrowth rims in equilibrium with the fabric defining minerals. In-situ U-Pb and trace element data was collected in titanite from four samples, which all preserve lower-intercept ages between 900Ma and 1.0Ga. We observed no correlation between age and elemental domains; these domains correlate with Al and Nb variations. Zr-in-titanite temperatures preserve upper amphibolite facies conditions, 660ºC-710ºC. Given these results, we conclude that titanite U-Pb ages and temperatures reflect original Grenville metamorphism. 40Ar/39Ar hornblende cooling ages, of 515 Ma, suggested titanite may be reset near the shear zone but overprinting P-T of 560ºC and 0.8 GPa, fluid infiltration, and deformation did not cause significant Pb loss. Overprinting conditions and cooling ages suggest that rims of garnet and hornblende correlate to Paleozoic metamorphism, while textural evidence and titanite ages suggest garnet and hornblende cores grew during the Proterozoic.

  19. Geoinformatics Education in China

    NASA Astrophysics Data System (ADS)

    Li, D.; Gong, J.; Yue, P.

    2014-04-01

    The paper will give an overview of the current status of education in Geoinformatics in China. First, the paper will provide a general review of the scientific and technological development of Geoinformatics in China. It then presents how the development affects the education and training in China. In the paper, universities and institutes in China that can award academic degrees related to Geoinformatics will be summarized. Next, the paper will report the work having been done by the expert group on Surveying and Mapping, including the revision of discipline catalogue and guide for graduate education and requirements. A list of typical curriculain Geoinformatics education is suggested. Finally, activities on promoting the graduate student exchange platform will be presented.

  20. Unraveling P-T-t-D Evolution of Zermatt-Saas Ophiolites from Valtournanche: from Ocean Opening to Mountain Building

    NASA Astrophysics Data System (ADS)

    Rebay, G.; Tiepolo, M.; Zanoni, D.; Langone, A.; Spalla, M. I.

    2015-12-01

    The Zermatt-Saas (ZS) Zone, formerly part of Tethyan oceanic crust and variously affected by oceanic metamorphism, is now part of the orogenic suture that developed in the Western European Alps during the Alpine subduction and collision. The ZS rocks preserve a dominant HP to UHP metamorphic imprint overprinted by greenschist facies metamorphism. The age of the oceanic protoliths is considered to be middle to upper Jurassic whereas the HP metamorphism is mostly considered to be Eocene. In upper Valtournanche ZS ophiolites, the dominant regional S2 foliation is mapped with spatial continuity in serpentinite, metarodingite and eclogite and is defined by HP/UHP parageneses in all lithotypes. It developed at 2.5 ± 0.3 GPa and 600 ± 20°C during Alpine subduction. S2 foliation of serpentinites wraps rare clinopyroxene and zircon relics. Trace element composition of clinopyroxene suggests that they crystallised from a melt in equilibrium with plagioclase: they most likely represent relicts of gabbroic assemblages. The clinopyroxene porphyroclasts have rims indented within S2 and compositions similar to fine-grained clinopyroxeneII defining S2, suggesting that they recrystallised during Alpine subduction. Zircon cores show, under CL, sector zoning typical of magmatic growth. U-Pb dates suggest their crystallisation during Middle Jurassic. Magmatic cores have thin fringe overgrowths parallel to the S2 foliation. U-Pb concordant analyses on these domains reveal an Upper Cretaceous-Paleocene crystallization most likely representing the HP to UHP Alpine re-equilibration. This suggests that some sections of the ZS have experienced HP to UHP metamorphism earlier than previously thought, opening new interpretative geodynamic scenarios. Remarkably, these new dates are similar to those recorded for the HP re-equilibration in the continental crust of the adjacent Austroalpine units (upper plate of the Alpine subduction system) and to those recorded for prograde metamorphism in

  1. Petrological and zircon evidence for the Early Cretaceous granulite-facies metamorphism in the Dabie orogen, China

    NASA Astrophysics Data System (ADS)

    Gao, Xiao-Ying; Zhang, Qiang-Qiang; Zheng, Yong-Fei; Chen, Yi-Xiang

    2017-07-01

    An integrated study of petrology, mineralogy, geochemistry, and geochronology was carried out for contemporaneous mafic granulite and diorite from the Dabie orogen. The results provide evidence for granulite-facies reworking of the ultrahigh-pressure (UHP) metamorphic rock in the collisional orogen. Most zircons from the granulite are new growth, and their U-Pb ages are clearly categorized into two groups at 122-127 Ma and 188 ± 2 Ma. Although these two groups of zircons show similarly steep HREE patterns and variably negative Eu anomalies, the younger group has much higher U, Th and REE contents and Th/U ratios, much lower εHf(t) values than the older group. This suggests their growth is associated with different types of dehydration reactions. The older zircon domains contain mineral inclusions of garnet + clinopyroxene ± quartz, indicating their growth through metamorphic reactions at high pressures. In contrast, the young zircon domains only contain a few quartz inclusions and the garnet-clinopyroxene-plagioclase-quartz barometry yields pressures of 4.9 to 12.5 kb. In addition, the clinopyroxene-garnet Fe-Mg exchange thermometry gives temperatures of 738-951 °C. Therefore, the young zircon domains would have grown through peritectic reaction at low to medium pressures. The younger granulite-facies metamorphic age is in agreement not only with the adjacent diorite at 125 ± 1 Ma in this study but also the voluminous emplacement of coeval mafic and felsic magmas in the Dabie orogen. Mineral separates from both mafic granulite and its adjacent diorite show uniformly lower δ18O values than normal mantle, similar to those for UHP eclogite-facies metaigneous rocks in the Dabie orogen. In combination with major-trace elements and zircon Lu-Hf isotope compositions, it is inferred that the protolith of mafic granulites shares with the source rock of diorites, both being a kind of mafic metasomatites at the slab-mantle interface in the continental subduction channel

  2. Sport in China.

    ERIC Educational Resources Information Center

    Knuttgen, Howard G., Ed.; And Others

    Part 1 of this book, "Evoluation and Organization of Physical Culture," examines the history and current organization of physical education and sport in the People's Republic of China. This part includes chapters on: the evolution and organization of physical culture; physical culture in China today; the organizational structure of…

  3. Outsourcing to China.

    PubMed

    Liu, Jacqueline

    2004-12-01

    To enhance competitive advantage in the face of increasing globalisation, companies need to consider moving certain operations to China, if they have not done so already. This article describes the evolving nature of outsourcing to China and what companies need to consider to be successful in this business model.

  4. China Biobanking.

    PubMed

    Zhang, Yong; Li, Qiyuan; Wang, Xian; Zhou, Xiaolin

    2015-01-01

    Biobanks are playing increasingly important roles in clinical and translational research nowadays. China, as a country with the largest population and abundant clinical resources, attaches great importance to the development of biobanks. In recent years, with the increasing support from the Chinese government, biobanks are blooming across the country. This paper provides a detailed overview of China biobanking, which is further divided in the following four parts: (i) general introduction of the number, category and distribution of current biobanks; (ii) summarization of the current development status, and issues that Chinese biobanks are faced with; (iii) international cooperation between China and the global biobanking community; (iv) prospect of the modern twenty-first century Chinese biobanks, which would achieve standardized operation, systematic specimen management, and extensive collaboration, and thus provide support for the robust research discoveries and personalized medicine etc.

  5. Teaching about Ethnicities in China

    ERIC Educational Resources Information Center

    Stedman, Caryn White

    2010-01-01

    A unit on China's ethnicities provides students rich opportunities to explore multiple themes in the social studies while helping them to develop a deeper understanding of recent events in western China. Studying China's ethnic minorities encompasses such topics as stereotyping, cultural diversity, the creation of ethnic identities, and key…

  6. Income inequality in today's China.

    PubMed

    Xie, Yu; Zhou, Xiang

    2014-05-13

    Using multiple data sources, we establish that China's income inequality since 2005 has reached very high levels, with the Gini coefficient in the range of 0.53-0.55. Analyzing comparable survey data collected in 2010 in China and the United States, we examine social determinants that help explain China's high income inequality. Our results indicate that a substantial part of China's high income inequality is due to regional disparities and the rural-urban gap. The contributions of these two structural forces are particularly strong in China, but they play a negligible role in generating the overall income inequality in the United States, where individual-level and family-level income determinants, such as family structure and race/ethnicity, play a much larger role.

  7. FUNDAMENTAL PROPERTIES OF ULTRA HIGH PERFORMANCE-STRAIN HARDENING CEMENTITIOUS COMPOSITES AND USAGE FOR REPAIR

    NASA Astrophysics Data System (ADS)

    Kunieda, Minoru; Shimizu, Kosuke; Eguchi, Teruyuki; Ueda, Naoshi; Nakamura, Hikaru

    This paper presents the fundamental properties of Ultra High Performance-Strain Hardening Cementitious Composites (UHP-SHCC), which were depeloped for repair applications. In particular, mechanical properties such as tensile response, shrinkage and bond strength were investigated experimentally. Protective performance of the material such as air permeability, water permeability and penetration of chloride ion was also confirmed comparing to that of ordinary concrete. This paper also introduces the usage of the material in repair of concrete st ructures. Laboratory tests concerining the deterioration induced by corrosion were conducted. The UHP-SHCC that coverd the RC beam resisted not only crack opening along the rebar due to corrosion but also crack opening due to loading tests.

  8. Lithospheric Structure of the Arabian Shield From the Joint Inversion of Receiver Function and Surface-Wave Dispersion Observations

    DTIC Science & Technology

    2007-01-01

    dashed lines correspond to observations and predictions, respectively. 9 Inversion results corresponding to the stations located within the Asir t~er- 17...wave velocity models ............................................................. A-2 A3 Asir terrane S-wave velocity models...island-arc terranes ( Asir , Hijaz and Midyan), and to the east, one terrane of continental affinity (Afif) and one terrane of possible continental

  9. High-pressure amphibolite facies dynamic metamorphism and the Mesozoic tectonic evolution of an ancient continental margin, east- central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, C.; Hansen, V.L.; Scala, J.A.

    1995-01-01

    Ductilely deformed amphibolite facies tectonites comprise two adjacent terranes in east-central Alaska: the northern, structurally higher Taylor Mountain terrane and the southern, structurally lower Lake George subterrane of the Yukon-Tanana terrane. The pressure, temperature, kinematic and age data are interpreted to indicate that the metamorphism of the Taylor Mountain terrane and Lake George subterrane took place during different phases of a latest Palaeozoic through early Mesozoic shortening episode resulting from closure of an ocean basin now represented by klippen of the Seventymile-Slide Mountain terrane. High- to intermediate-pressure metamorphism of the Taylor Mountain terrane took place within a SW-dipping (present-day coordinates) subduction system. High- to intermediate-pressure metamorphism of the Lake George subterrane and the structural contact zone occurred during NW-directed overthrusting of the Taylor Mountain, Seventymile-Slide Mountain and Nisutlin terranes, and imbrication of the continental margin in Jurassic time. -from Authors

  10. Cadaveric organ donation in China

    PubMed Central

    Wu, Yijin; Elliott, Robert; Li, Linzi; Yang, Tongwei; Bai, Yusen; Ma, Wen

    2018-01-01

    Abstract In this paper, we will discuss several ethical issues concerning cadaveric organ donation from the perspective of sociocultural factors that are unique to China under the condition that China has ended the use of executed prisoner's organs for transplants. It is found that though great developments have been made in organ transplantation, the ethical issues relating to organ transplantation still face dilemmas in China. It is argued that organ donation and transplantation in China could make further progress if the ethical issues proposed in this paper can be carefully considered. PMID:29517702

  11. Pension Reform in China.

    PubMed

    Liu, Tao; Sun, Li

    2016-01-01

    This article analyzes China's pension arrangement and notes that China has recently established a universal non-contributory pension plan covering urban non-employed workers and all rural residents, combined with the pension plan covering urban employees already in place. Further, in the latest reform, China has discontinued the special pension plan for civil servants and integrated this privileged welfare class into the urban old-age pension insurance program. With these steps, China has achieved a degree of universalism and integration of its pension arrangement unprecedented in the non-Western world. Despite this radical pension transformation strategy, we argue that the current Chinese pension arrangement represents a case of "incomplete" universalism. First, its benefit level is low. Moreover, the benefit level varies from region to region. Finally, universalism in rural China has been undermined due to the existence of the "policy bundle." Additionally, we argue that the 2015 pension reform has created a situation in which the stratification of Chinese pension arrangements has been "flattened," even though it remains stratified to some extent.

  12. China's Vocational Universities. ERIC Digest.

    ERIC Educational Resources Information Center

    Ding, Anning

    This ERIC Digest describes the development and characteristics of vocational universities (VUs) in China. In response to the demand for increased numbers of trained technical workers in the 1980's, VUs developed and the higher vocational education system in China was reformed. Currently, 101 vocational universities are in existence in China. These…

  13. China-U.S. Trade Issues

    DTIC Science & Technology

    2009-06-23

    failure in some cases to ensure that its exported products meet U.S. health and safety standards. Further complicating the bilateral economic...resolution cases against China to the WTO; and continuing pressure on China to appreciate its currency. Others have warned against using...Implementation Issues ............................................................................................... 16 Pending U.S. Cases Against China

  14. China-U.S. Trade Issues

    DTIC Science & Technology

    2009-06-03

    failure in some cases to ensure that its exported products meet U.S. health and safety standards. Further complicating the bilateral economic...resolution cases against China to the WTO; and continuing pressure on China to appreciate its currency. Others have warned against using “protectionist...16 Pending U.S. Cases Against China

  15. Ultrahigh pressure fast size exclusion chromatography for top-down proteomics.

    PubMed

    Chen, Xin; Ge, Ying

    2013-09-01

    Top-down MS-based proteomics has gained a solid growth over the past few years but still faces significant challenges in the LC separation of intact proteins. In top-down proteomics, it is essential to separate the high mass proteins from the low mass species due to the exponential decay in S/N as a function of increasing molecular mass. SEC is a favored LC method for size-based separation of proteins but suffers from notoriously low resolution and detrimental dilution. Herein, we reported the use of ultrahigh pressure (UHP) SEC for rapid and high-resolution separation of intact proteins for top-down proteomics. Fast separation of intact proteins (6-669 kDa) was achieved in < 7 min with high resolution and high efficiency. More importantly, we have shown that this UHP-SEC provides high-resolution separation of intact proteins using a MS-friendly volatile solvent system, allowing the direct top-down MS analysis of SEC-eluted proteins without an additional desalting step. Taken together, we have demonstrated that UHP-SEC is an attractive LC strategy for the size separation of proteins with great potential for top-down proteomics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Image analysis method to quantify the effect of different treatments on the visual meat/shell ratio of half-shelled green lipped mussels (Perna canaliculus).

    PubMed

    Kim, Min Geun; Alçiçek, Zayde; Balaban, Murat O; Atar, Hasan Huseyin

    2014-04-01

    Aquacultured green lipped mussel (Perna canaliculus) is the New Zealand export leader of seafood in terms of weight. Different treatments shrink mussel meat differently and affect the consumer perception of half-shelled mussels. In order to quantify this, digital images of half-shelled green lipped mussels subjected to two postharvest treatments (ultrahigh pressure (UHP) and heat treatment (HT)) and raw controls were taken. The ratio of the view area of the meat to that of the shell (labelled as 'visual condition index' (VCI)) was measured using image analysis. A polygonal region of interest was defined on the image to depict the boundary of the meat and to calculate the view area. Raw mussels had a VCI of 85%. HT mussels had a much reduced VCI of 41%, indicating shrinkage of the meat due to heat. UHP treatment used as a shucking method resulted in a VCI of 83%. Since VCI is one measure of quality for the consumer, this quantitative method can be used in the optimization of shucking treatment (HT or UHP). VCI can be used to optimize postharvest treatments to minimize meat shrinkage. This method can also be applied to other shellfish such as oysters and clams. © 2013 Society of Chemical Industry.

  17. What can the Cretaceous-to-present latitude history of the Lhasa terrane tell us about plate-scale deformation in the Tibetan-Himalayan orogen? (Invited)

    NASA Astrophysics Data System (ADS)

    Lippert, P. C.; Van Hinsbergen, D. J.; Dupont-Nivet, G.; Huang, W.

    2013-12-01

    Published paleomagnetic data from well-dated sedimentary and volcanic rocks from the Lhasa terrane have been re-evaluated in a statistically consistent framework to assess the latitude history of southern Tibet from ~110 Ma to the present. We apply a methodology similar to the one used by the Time-Averaged geomagnetic Field Initiative to each paleomagnetic data set to establish coherency within and between paleomagnetic data from Tibet (see Session T023 for more details). Moreover, we use only sedimentary data that have been evaluated for and, where necessary, corrected for sedimentary inclination shallowing. The resulting apparent polar wander path (APWP) shows that the southern margin of the Lhasa terrane at the longitudes of Nepal remained at 20×4°N latitude from ~110 to at least 50 Ma and subsequently drifted northward to its present latitude of 29°N. This latitude history provides a paleomagnetically-determined collision age between the Tibetan Himalaya and the southern margin of Asia that is 49.5×4.5 Ma at 21×4° N latitude. The paleomagnetic age and latitude of this collision may be a few millions of years earlier and ~2° lower if estimates for shortening within the suture zone are considered. When compared to the global APWP of Torsvik et al. (2012) in Eurasian coordinates, the Lhasa APWP indicates that at most 1100×560 km of post-50 Ma India-Asia convergence was partitioned into Asian lithosphere. The lower bound of these paleomagnetic estimates is consistent with the magnitude of upper crustal shortening within Asia calculated from orogen-scale geological reconstructions. An implication is that 1700×560 km or more post-50 Ma India-Asia convergence was partitioned into Greater India. Paleomagnetic data from the Tibetan Himalaya are consistent with >2000 km of extension of Greater Indian lithosphere after break-up from Gondwana but prior to collision with the southern margin of Asia. Cenozoic subduction of this Cretaceous extensional basin following

  18. China's Innovation Paradox

    ERIC Educational Resources Information Center

    Chan, Jeremy

    2015-01-01

    China aims to become an innovation-led nation by 2020, but its leadership is generally sceptical--and oftentimes hostile--to the market forces, open exchange of ideas, and creative destruction that have unlocked innovation in other countries. Instead, Beijing hopes to promote innovation in China through a massive expansion in higher education,…

  19. Nutrients, Select Pesticides, and Suspended Sediment in the Karst Terrane of the Sinking Creek Basin, Kentucky, 2004-06

    USGS Publications Warehouse

    Crain, Angela S.

    2010-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Kentucky Department of Agriculture, on nutrients, select pesticides, and suspended sediment in the karst terrane of the Sinking Creek Basin. Streamflow, nutrient, select pesticide, and suspended-sediment data were collected at seven sampling stations from 2004 through 2006. Concentrations of nitrite plus nitrate ranged from 0.21 to 4.9 milligrams per liter (mg/L) at the seven stations. The median concentration of nitrite plus nitrate for all stations sampled was 1.6 mg/L. Total phosphorus concentrations were greater than 0.1 mg/L, the U.S. Environmental Protection Agency's recommended maximum concentration, in 45 percent of the samples. Concentrations of orthophosphates ranged from less than 0.006 to 0.46 mg/L. Concentrations of nutrients generally were larger during spring and summer months, corresponding to periods of increased fertilizer application on agricultural lands. Concentrations of suspended sediment ranged from 1.0 to 1,490 mg/L at the seven stations. Of the 47 pesticides analyzed, 14 were detected above the adjusted method reporting level of 0.01 micrograms per liter (mug/L). Although these pesticides were detected in water-quality samples, they generally were found at less than part-per-billion concentrations. Atrazine was the only pesticide detected at concentrations greater than U.S. Environmental Protection Agency drinking water standard of 3 mug/L, and the maximum detected concentration was 24.6 mug/L. Loads and yields of nutrients, selected pesticides, and suspended sediment were estimated at two mainstream stations on Sinking Creek, a headwater station (Sinking Creek at Rosetta) and a station at the basin outlet (Sinking Creek near Lodiburg). Mean daily streamflow data were available for the estimation of loads and yields from a stream gage at the basin outlet station; however, only periodic instantaneous flow measurements were available for the

  20. Can China's health care be transplanted without China's economic policies?

    PubMed

    Blendon, R J

    1979-06-28

    China's economic policies of the past 25 years have shaped its present health-care system. China's leadership has decided to have neither a national health-insurance system nor a national health service. Instead, it decided that its health system would mirror the workings of its industrial and agricultural system. Decisions to minimize imports, ban private economic activity, assign university graduates on a compulsory basis, control wages, maintain a large domestic standing army and prevent professions or universities from acquiring independent status led directly to the present system of medical care. Consequently, transplantation of China's striking achievements in health-care delivery to the United States or other countries is unlikely to occur in the absence of transfer of the underlying economic policies.

  1. Silicate-Oxide Equilibria in the Wilson Lake Terrane, Labrador - Evidence for a Pre- Metamorphic Oxidizing Event

    NASA Astrophysics Data System (ADS)

    Korhonen, F. J.; Stout, J. H.

    2006-05-01

    The presence of Fe3+ and Ti in silicates and their presumed equilibration with Fe2+-Fe3+-Ti oxide minerals has long been recognized as an important factor in metamorphic phase equilibria. The Red Wine Mountains massif is a granulite facies unit in the Wilson Lake terrane of central Labrador, where this equilibration is especially important for estimating both temperature and fO2 during peak metamorphism. Peak assemblages are sapphirine + quartz, and orthopyroxene + sillimanite + quartz. The coexisting oxides, which are largely responsible for the pronounced aeromagnetic high of the massif, consist of nearly pure magnetite and an exsolved titanohematite. Estimates of fO2 based on magnetite + integrated titanohematite compositions are slightly below that defined by the pure magnetite-hematite buffer. This assemblage is also responsible for the magnetic signature of metagabbro and metanorite dikes, a fact which challenges the conventional wisdom that the high Fe3+ content of the host paragneisses was inherited from a highly oxidized ferruginous shale. We suggest here that prior to granulite facies metamorphism, an oxidizing hydrothermal event either coeval or following the emplacement of mafic dikes into the paragneiss host was responsible for the highly oxidized nature of the massif as a whole. Subsequent metamorphism then produced the observed assemblages. This scenario is supported by recent U-Pb zircon and monazite ages of ca. 1626 ± 10 Ma, which indicate that both metagabbro dikes and host paragneiss were metamorphosed at the same time. Dike emplacement and the oxidizing event must have preceded 1626 Ma. The implications of this pre-metamorphic oxidizing event is that Fe3+ becomes an inherent and fixed component in the chemical system during metamorphism. Phase relationships, preliminary thermodynamic modeling, and geothermobarometric constraints indicate that peak temperatures are lower than those previously determined for Fe3+-absent systems. More appropriate

  2. Weighting for China, Counting on the United States: Asia’s China Debate and U.S. Interests

    DTIC Science & Technology

    2003-12-01

    political stability . Unease exists about ethnic Chinese migration and diasporas and the possible reassertion of China s historical dominance. The United States has a prime opportunity to influence Asia s China debate because the debate is ongoing, and the United States remains regarded as fundamental to national and regional calculations including about China. Extreme U.S.-China tensions and possible pressures by either to choose sides are unwelcome. No Asian country expects or desires China to supplant U.S. regional pre-eminence. At worst, some favor a balance of great

  3. China's Silk Road and global health.

    PubMed

    Tang, Kun; Li, Zhihui; Li, Wenkai; Chen, Lincoln

    2017-12-09

    In 2013, China proposed its Belt and Road Initiative to promote trade, infrastructure, and commercial associations with 65 countries in Asia, Africa, and Europe. This initiative contains important health components. Simultaneously, China launched an unprecedented overseas intervention against Ebola virus in west Africa, dispatching 1200 workers, including Chinese military personnel. The overseas development assistance provided by China has been increasing by 25% annually, reaching US$7 billion in 2013. Development assistance for health from China has particularly been used to develop infrastructure and provide medical supplies to Africa and Asia. China's contributions to multilateral organisations are increasing but are unlikely to bridge substantial gaps, if any, vacated by other donors; China is creating its own multilateral funds and banks and challenging the existing global architecture. These new investment vehicles are more aligned with the geography and type of support of the Belt and Road Initiative. Our analysis concludes that China's Belt and Road Initiative, Ebola response, development assistance for health, and new investment funds are complementary and reinforcing, with China shaping a unique global engagement impacting powerfully on the contours of global health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. China-U.S. Trade Issues

    DTIC Science & Technology

    2008-10-07

    practices. In response, it filed a number of trade dispute resolution cases against China in the WTO, including China’s failure to protect IPR and...in China. In addition, the Administration reversed a long-standing policy that countervailing cases (dealing with government subsidies) could not be...13 WTO Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 U.S. WTO Cases Against China

  5. Early Carboniferous magmatism in Lhasa generated in passive continental margin: constrained by new SIMS dating from Carboniferous arc in Qiantang terrane, Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Dan, W.; Wang, Q.; Hao, L. L.; Qi, Y.

    2016-12-01

    In today's oceans, they are rarely undergone subduction on one side and extension on the opposite side. In contrast, there are a few magmatisms in the passive continental margins in the Tethys Ocean. However, because of their long and complex evolution of the northern continental margin of the Gondwana, the geodynamics of the magmatism occurred in this area is speculative or highly depute. One of these examples is the geodynamics of the 360-350 Ma magmatism in southern Lhasa, Tibet. Many authors speculated that it was generated in back-arc setting. Our recent new high-resolution SIMS zircon U-Pb dating reveals that there is a subduction arc with ages of 370-350 Ma in the Qiangtang terrane. The arc rocks compose of andesites, plagiogranites, A-type granites and cumulated gabbros, indicating an initial subduction. This initial subduction arc is located on the north margin of the eastern Paleo-Tethys Ocean, and it was formed slightly earlier than the 360-350 Ma magmatism in southern Lhasa, located on the south margin of the eastern Paleo-Tethys Ocean. Combined with similar aged magmatism generating the back-arc basin in the Sanjiang area, the 360-350 Ma magmatism in southern Lhasa was proposed to be generated in a passive continental margin, and induced by the regional extensional setting related to the subduction in the north margin of the eastern Paleo-Tethys Ocean.

  6. New medical education reform in China: Towards healthy China 2030.

    PubMed

    Song, Peipei; Jin, Chunlin; Tang, Wei

    2017-01-01

    On July 11, 2017, the State Council of China issued a bold plan to revolutionize medical education and promote collaboration between medical education and practice. The cornerstone of the plan is training more qualified medical professionals to improve public healthcare on the path to Healthy China 2030. According to this plan, a "5+3" training system will be instituted to train medical professionals in China, and top medical colleges will be encouraged to recruit more students. However, given the less-than-ideal professional status of Chinese doctors, the frequent incidents of violence against them, long working hours and a heavy workload, and an unsatisfactory income, attracting personnel to work in medicine and health care has become a challenge. Prior to the end of 2016, there were 3.19 million practicing (assistant) physicians in China, amount to 2.31 per thousand population. The average workload of physicians was 7.3 outpatient visits per day and 2.6 beds per day, and these figures are much higher for physicians working in tertiary hospitals. Studies have found that 78% of physicians work more than 8 hours a day and 7% of physicians work more than 12 hours a day, but the average annual income of physicians in 2015 was 77,000 yuan (about $12,360), in contrast to an average annual income of $294,000 for physicians in the United States. Medical humanities education is also emphasized by the new medical education reform to foster the humanistic spirts of medical students in order to improve public healthcare in China. In the face of a mindset that "medical technology comes first" and growing expectations among the public, public education is needed to provide the public with a more comprehensive view by explaining the limitations of modern medicine since "medicine is not a panacea". Additional efforts should be undertaken by the Government, organizations, physicians, patients, and the public to create a virtuous cycle of healthcare in China.

  7. Agricultural Meteorology in China.

    NASA Astrophysics Data System (ADS)

    Rosenberg, Norman J.

    1982-03-01

    During nearly five weeks in China (May-June 1981), the author visited scientific institutions and experiment stations engaged in agricultural meterology and climatology research and teaching. The facilities, studies, and research programs at each institution are described and the scientific work in these fields is evaluated. Agricultural meteorology and climatology are faced with some unique problems and opportunities in China and progress in these fields may be of critical importance to that nation in coming years. The author includes culinary notes and comments on protocol in China.

  8. Post-peak metamorphic evolution of the Sumdo eclogite from the Lhasa terrane of southeast Tibet

    NASA Astrophysics Data System (ADS)

    Cao, Dadi; Cheng, Hao; Zhang, Lingmin; Wang, Ke

    2017-08-01

    A reconstruction of the pressure-temperature-time (P-T-t) path of high-pressure eclogite-facies rocks in subduction zones may reveal important information about the tectono-metamorphic processes that occur at great depths along the plate interface. The majority of studies have focused on prograde to peak metamorphism of these rocks, whereas after-peak metamorphism has received less attention. Herein, we present a detailed petrological, pseudosection modeling and radiometric dating study of a retrograded eclogite sample from the Sumdo ultrahigh pressure belt of the Lhasa terrane, Tibet. Mineral chemical variations, textural discontinuities and thermodynamic modeling suggest that the eclogite underwent an exhumation-heating period. Petrographic observations and phase equilibria modeling suggest that the garnet cores formed at the pressure peak (∼2.5 GPa and ∼520 °C) within the lawsonite eclogite-facies and garnet rims (∼1.5 GPa and <650 °C) grew during post-peak amphibole eclogite-facies metamorphism. The metamorphic evolution of the Sumdo eclogite is characterized by a clockwise P-T path with a heating stage during early exhumation, a finding that conflicts with previously reported heating-compression P-T paths for the Sumdo eclogite. A garnet-whole rock Lu-Hf age of 266.6 ± 0.7 Ma, which is consistent with the loosely constrained zircon U-Pb age of 261 ± 15 Ma within uncertainty, was obtained for the sample. The peak metamorphic temperature of the sample is lower than the Lu-Hf closure temperature of garnet, which combined with the general core-to-rim decrease in the Mn and Lu concentrations and the occurrence of a second maximum Lu peak in the inner rim, is consistent with the Lu-Hf system skewing to the age of the garnet inner rim. Thus the Lu-Hf age likely reflects late eclogite-facies metamorphism. The new U-Pb and Lu-Hf ages, together with previously published radiometric dating results, suggest that the overall growth of garnet spans an interval of

  9. Higher Education Reform in China: Beyond the Expansion. China Policy Series

    ERIC Educational Resources Information Center

    Morgan, W. John, Ed.; Wu, Bin, Ed.

    2011-01-01

    A major transformation of Chinese higher education (HE) has taken place over the past decade--China has reshaped its higher education sector from elite to mass education with the number of graduates having quadrupled to three million a year over six years. China is exceptional among lower income countries in using tertiary education as a…

  10. China-U.S. Trade Issues

    DTIC Science & Technology

    2007-07-11

    economic and trade practices. It has recently filed a number of trade dispute resolution cases against China in the WTO, including over China’s failure to...various industries in China. In addition, the Administration recently reversed a long-standing policy that countervailing cases (dealing with...15 U.S. WTO Cases Against China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Violations of U.S. Intellectual Property Rights

  11. Mapping the megathrust beneath the northern Gulf of Alaska using wide-angle seismic reflection/refraction profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brocher, T.M.; Fuis, G.S.; Fisher, M.A.

    1993-04-01

    In the northern Gulf of Alaska and Prince William Sound, wide-angle seismic reflection/refraction profiling, earthquake studies, and laboratory measurements of physical properties are used to determine the geometry of the Prince William and Yakutat terranes, and the subducting Pacific plate. In this complex region, the Yakutat terrane is underthrust beneath the Prince William terrane, and both terranes are interpreted to be underlain by the Pacific plate. Wide-angle seismic reflection/refraction profiles recorded along 5 seismic lines are used to unravel this terrane geometry. Modeled velocities in the upper crust of the Prince William terrane (to 18-km depth) agree closely with laboratorymore » velocity measurements of Orca Group phyllites and quartzofeldspathic graywackes (the chief components of the Prince William terrane) to hydrostatic pressures as high as 600 MPa (6 KBAR). An interpretation consistent with these data extends the Prince William terrane to at least 18-km depth. A landward dipping reflection at depths of 16--24 km is interpreted as the base of the Prince William terrane. This reflector corresponds to the top of the Wadati-Benioff zone seismicity and is interpreted as the megathrust. Beneath this reflector is a 6.9-km/s refractor, that is strongly reflective and magnetic, and is interpreted to be gabbro in Eocene age oceanic crust of the underthrust Yakutat terrane. Both wide-angle seismic and magnetic anomaly data indicate that the Yakutat terrane has been underthrust beneath the Prince William terrane for at least a few hundred kilometers. Wide-angle seismic data are consistent with a 9 to 10[degree] landward dip of the subducting Pacific plate, distinctly different from the inferred average 3 to 4[degree] dip of the overlying 6.9-km/s refractor and Wadati-Benioff seismic zone. The preferred interpretation of the geophysical data is that one composite plate, composed of the Pacific and Yakutat plates, is subducting beneath southern Alaska.« less

  12. Analysing Forst Fores in China

    NASA Astrophysics Data System (ADS)

    Casanova, Jose-Luis; Sanz, Julia; Garcia, Miguel; Salvador, Pablo; Quin, Xianlin; Li, Zengyuan; Yin, Lingyu; Sun, Guifen; Goldammer, Johann

    2016-08-01

    Forest fires are a major concern in China because of the economical and biodiversity looses and because the emission of trace gases into the atmosphere. During 12 years LATUV has been working in the development of forest fires products, especially in North China. A catalogue of products has been generated like: forest fire detection, burnt area mapping, gas emissions, severity and burnt biomass.Forest fires can be detected by different platforms and sensor but the rate of false alarms is high because of industrial activity. The gas emissions are important, because of the forest fires inside China and because the forest fires between China and Russia that have a considerable impact in the atmosphere composition in China.The availability of new sensors on board sentinel 2 and sentinel 3 platforms will increase the product catalogue with new products more accurate and increasing the periodicity information.

  13. Characteristics, management and response to alteplase in China versus non-China participants of the ENCHANTED trial.

    PubMed

    Song, Lily; Wang, Xia; Robinson, Thompson; Lindley, Richard I; Arima, Hisatomi; Lavados, Pablo M; Chen, Xiaoying; Chalmers, John; Anderson, Craig S

    2017-06-01

    The characteristics of patients with acute ischaemic stroke (AIS) and their management vary across regions, which may influence outcomes. We examined for differential patterns of outcome between China and non-China participants of the ENhanced Control of Hypertension And Thrombolysis strokE stuDy (ENCHANTED), which tested different alteplase doses in AIS. ENCHANTED was an international, multicentre, open, blinded-endpoint trial of the effects of low-dose (0.6 mg/kg) versus standard-dose (0.9 mg/kg) intravenous alteplase on 90-day disability outcomes and symptomatic intracerebral haemorrhage (sICH) in 3310 patients with AIS. Participants (n=1419, 48%) in China were younger, and more often male, hypertensive and with prior stroke and coronary artery disease, but less likely to have atrial fibrillation and use antihypertensive, antithrombotic and lipid-lowering agents, compared with non-China patients with AIS. Although China participants had more AIS due to large artery occlusion, were treated later and had differing ancillary management, there was no significant difference in 90-day modified Rankin scale scores 2-6 (55.6% vs 47.8%; OR, adjusted for baseline and management factors 0.87 (95% CI 0.71 to 1.07; p=0.20)) and risk of sICH (Safe Implementation of Thrombolysis in Stroke-Monitoring Study criteria: 1.4% vs 1.8%; p=0.12) compared with non-China participants. There was no heterogeneity in the treatment effects of low-dose versus standard-dose alteplase between China and non-China participants. Patients with AIS recruited to the ENCHANTED trial in China had similar outcomes in response to thrombolysis treatment despite significantly differing demographic, clinical and management factors to patients with AIS in other regions.

  14. JPRS Report, China.

    DTIC Science & Technology

    1991-03-12

    79 Hainan Agricultural Experimentation Zone Approved [CHINA DAILY 28 Feb...ment of postwar Iraq and other poor Middle East coun- Effects of 4 June Not Considered Serious tries. If this question is again raised by Baker during...of authority in China, as well as future succes- military equipment to Iraq; however, over the long term, sors, have studied in the USSR. The United

  15. China Dust and Sand

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Dust and Sand Sweep Over Northeast China     View Larger Image ... these views of the dust and sand that swept over northeast China on March 10, 2004. Information on the height of the dust and an ...

  16. Distribution of tick-borne diseases in China

    PubMed Central

    2013-01-01

    As an important contributor to vector-borne diseases in China, in recent years, tick-borne diseases have attracted much attention because of their increasing incidence and consequent significant harm to livestock and human health. The most commonly observed human tick-borne diseases in China include Lyme borreliosis (known as Lyme disease in China), tick-borne encephalitis (known as Forest encephalitis in China), Crimean-Congo hemorrhagic fever (known as Xinjiang hemorrhagic fever in China), Q-fever, tularemia and North-Asia tick-borne spotted fever. In recent years, some emerging tick-borne diseases, such as human monocytic ehrlichiosis, human granulocytic anaplasmosis, and a novel bunyavirus infection, have been reported frequently in China. Other tick-borne diseases that are not as frequently reported in China include Colorado fever, oriental spotted fever and piroplasmosis. Detailed information regarding the history, characteristics, and current epidemic status of these human tick-borne diseases in China will be reviewed in this paper. It is clear that greater efforts in government management and research are required for the prevention, control, diagnosis, and treatment of tick-borne diseases, as well as for the control of ticks, in order to decrease the tick-borne disease burden in China. PMID:23617899

  17. Changes in "hotter and wetter" events across China

    NASA Astrophysics Data System (ADS)

    Liu, C.; Deng, H.; Lu, Y.; Qiu, X.; Wang, D.

    2017-12-01

    As global warming intensifies, efforts to understand the changes in extreme climate events have increased in recent years. A combined analysis of the changes in extreme temperature and precipitation events is presented in this paper. Using observational data from 1961 to 2015, a set of hotter and wetter (HW) events is defined, and we examine the changes in these events across China. The results show that more HW events occur in Central and Eastern China than in other subregions, especially in South China (SC). The rate of increase in HW events is 2.7 and 1.9 per decade in SC and East China (EC), respectively. In China, most HW events occurred in the last 20 years of the study period, indicating that China entered a period of high-frequency HW events. Indeed, the range in anomalies in the torrential rain days is greater than that of the high-temperature days in Northwest China (NWC), Central China (CC), and EC after the mid- to late 1990s. The opposite pattern is found in Northeast China (NEC), Southwest China-region 1 (SWC1), Southwest China-region 2 (SWC2), and SC. Finally, the increase in HW events in most regions of China is closely associated with warming.

  18. Current development of biorefinery in China.

    PubMed

    Tan, Tianwei; Shang, Fei; Zhang, Xu

    2010-01-01

    To meet the demand of its fast growing economy, China has become already the second largest buyer of crude oil. China is facing critical problems of energy shortage and environment deterioration. Rational and efficient energy use and environment protection are both getting more attention in China. Biomass energy is renewable energy made from biological sources. China's biomass resources are abundant, which could provide energy for future social and economic development. However technologies for biomass resource conversion in China are still just beginning. In this paper, current biomass resource distribution and technologies of biomass energy, including power generation, biofuel production and biomass-based chemical production are reviewed. Copyright 2010 Elsevier Inc. All rights reserved.

  19. The Structure of Oceanography in China.

    ERIC Educational Resources Information Center

    Churgin, James

    1984-01-01

    Describes the structure of marine science in China. Includes organization and activities of China's National Bureau of Oceanography and programs administered through various ministries, Academia Sinica (China's Academy of Sciences), universities, and provincial institutes. Comments on research vessionals and other development initiatives are also…

  20. China's "Great Leap" toward Madison Avenue.

    ERIC Educational Resources Information Center

    Anderson, Michael H.

    1981-01-01

    Examines the expanding use of advertising in China. Discusses the impact of transnational corporations in communication and other areas on the development of China, and the implications that the introduction of advertising has for China's role as one of the models for developing countries. (JMF)