Sample records for ul49 homolog gene

  1. Identification of a spliced gene from duck enteritis virus encoding a protein homologous to UL15 of herpes simplex virus 1.

    PubMed

    Zhu, Hongwei; Li, Huixin; Han, Zongxi; Shao, Yuhao; Wang, Yu; Kong, Xiangang

    2011-04-06

    In herpesviruses, UL15 homologue is a subunit of terminase complex responsible for cleavage and packaging of the viral genome into pre-assembled capsids. However, for duck enteritis virus (DEV), the causative agent of duck viral enteritis (DVE), the genomic sequence was not completely determined until most recently. There is limited information of this putative spliced gene and its encoding protein. DEV UL15 consists of two exons with a 3.5 kilobases (kb) inron and transcribes into two transcripts: the full-length UL15 and an N-terminally truncated UL15.5. The 2.9 kb UL15 transcript encodes a protein of 739 amino acids with an approximate molecular mass of 82 kiloDaltons (kDa), whereas the UL15.5 transcript is 1.3 kb in length, containing a putative 888 base pairs (bp) ORF that encodes a 32 kDa product. We also demonstrated that UL15 gene belonged to the late kinetic class as its expression was sensitive to cycloheximide and phosphonoacetic acid. UL15 is highly conserved within the Herpesviridae, and contains Walker A and B motifs homologous to the catalytic subunit of the bacteriophage terminase as revealed by sequence analysis. Phylogenetic tree constructed with the amino acid sequences of 23 herpesvirus UL15 homologues suggests a close relationship of DEV to the Mardivirus genus within the Alphaherpesvirinae. Further, the UL15 and UL15.5 proteins can be detected in the infected cell lysate but not in the sucrose density gradient-purified virion when reacting with the antiserum against UL15. Within the CEF cells, the UL15 and/or UL15.5 localize(s) in the cytoplasm at 6 h post infection (h p. i.) and mainly in the nucleus at 12 h p. i. and at 24 h p. i., while accumulate(s) in the cytoplasm in the absence of any other viral protein. DEV UL15 is a spliced gene that encodes two products encoded by 2.9 and 1.3 kb transcripts respectively. The UL15 is expressed late during infection. The coding sequences of DEV UL15 are very similar to those of alphaherpesviruses and

  2. The early UL31 gene of equine herpesvirus 1 encodes a single-stranded DNA-binding protein that has a nuclear localization signal sequence at the C-terminus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seongman; Chul Ahn, Byung; O'Callaghan, Dennis J.

    2012-10-25

    The amino acid sequence of the UL31 protein (UL31P) of equine herpesvirus 1 (EHV-1) has homology to that of the ICP8 of herpes simplex virus type 1 (HSV-1). Here we show that the UL31 gene is synergistically trans-activated by the IEP and the UL5P (EICP27). Detection of the UL31 RNA transcript and the UL31P in EHV-1-infected cells at 6 h post-infection (hpi) as well as metabolic inhibition assays indicated that UL31 is an early gene. The UL31P preferentially bound to single-stranded DNA over double-stranded DNA in gel shift assays. Subcellular localization of the green fluorescent protein (GFP)-UL31 fusion proteins revealedmore » that the C-terminal 32 amino acid residues of the UL31P are responsible for the nuclear localization. These findings may contribute to defining the role of the UL31P single-stranded DNA-binding protein in EHV-1 DNA replication.« less

  3. Human Cytomegalovirus UL50 and UL53 Recruit Viral Protein Kinase UL97, Not Protein Kinase C, for Disruption of Nuclear Lamina and Nuclear Egress in Infected Cells

    PubMed Central

    Sharma, Mayuri; Kamil, Jeremy P.; Coughlin, Margaret; Reim, Natalia I.

    2014-01-01

    Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or the viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 colocalized with the nuclear rim, and this was dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53 detected UL97 but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and they recruit UL97, not PKC, for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them. PMID:24155370

  4. Human cytomegalovirus UL50 and UL53 recruit viral protein kinase UL97, not protein kinase C, for disruption of nuclear lamina and nuclear egress in infected cells.

    PubMed

    Sharma, Mayuri; Kamil, Jeremy P; Coughlin, Margaret; Reim, Natalia I; Coen, Donald M

    2014-01-01

    Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or the viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 colocalized with the nuclear rim, and this was dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53 detected UL97 but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and they recruit UL97, not PKC, for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them.

  5. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein.

    PubMed

    Cunningham, C; Davison, A J; MacLean, A R; Taus, N S; Baines, J D

    2000-01-01

    Herpes simplex virus type 1 (HSV-1) gene UL14 is located between divergently transcribed genes UL13 and UL15 and overlaps the promoters for both of these genes. UL14 also exhibits a substantial overlap of its coding region with that of UL13. It is one of the few HSV-1 genes for which a phenotype and protein product have not been described. Using mass spectrometric and immunological approaches, we demonstrated that the UL14 protein is a minor component of the virion tegument of 32 kDa which is expressed late in infection. In infected cells, the UL14 protein was detected in the nucleus at discrete sites within electron-dense nuclear bodies and in the cytoplasm initially in a diffuse distribution and then at discrete sites. Some of the UL14 protein was phosphorylated. A mutant with a 4-bp deletion in the central region of UL14 failed to produce the UL14 protein and generated small plaques. The mutant exhibited an extended growth cycle at low multiplicity of infection and appeared to be compromised in efficient transit of virus particles from the infected cell. In mice injected intracranially, the 50% lethal dose of the mutant was reduced more than 30,000-fold. Recovery of the mutant from the latently infected sacral ganglia of mice injected peripherally was significantly less than that of wild-type virus, suggesting a marked defect in the establishment of, or reactivation from, latent infection.

  6. Kinetics of transcription of infectious laryngotracheitis virus genes.

    PubMed

    Mahmoudian, Alireza; Markham, Philip F; Noormohammadi, Amir H; Browning, Glenn F

    2012-03-01

    The kinetics of expression of only a few genes of infectious laryngotracheitis virus (ILTV) have been determined, using northern blot analysis. We used quantitative reverse transcriptase PCR to examine the kinetics of expression of 74 ILTV genes in LMH cells. ICP4 was the only gene fully expressed in the presence of cycloheximide, and thus classified as immediate-early. The genes most highly expressed early in infection, and thus classified as early, included UL1 (gL), UL2, UL3, UL4, UL5, UL6, UL7, UL8, UL13, UL14, UL19, UL20, UL23 (TK), UL25, UL28, UL29, UL31, UL33, UL34, UL38, UL39, UL40, UL42, UL43, UL44 (gC), UL47, UL48 (α-TIF), UL49, UL54 (ICP27), US3 and US10. ORF A, ORF B, ORF C, ORF E, sORF 4/3, UL[-1], UL0, UL3.5, UL9, UL10 (gM), UL11, UL15a, UL15b, UL18, UL22 (gH), UL24, UL26, UL30, UL32, UL36, UL45, UL49.5 (gN), UL52, US2, US4 (gG), US5 (gJ) and US9 were most highly expressed late in infection and were thus considered late genes. Several genes, including ORF D, UL12, UL17, UL21, UL27 (gB), UL35, UL37, UL41, UL46, UL50, UL51, UL53 (gK), US8 (gE), US6 (gD) and US7 (gI), had features of both early and late genes and were classified as early/late. Our findings suggest transcription from most of ILTV genes is leaky or subject to more complex patterns of regulation than those classically described for herpesviruses. This is the first study examining global expression of ILTV genes and the data provide a basis for future investigations of the pathogenesis of infection with ILTV. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Crystal Structure of the N-Terminal Half of the Traffic Controller UL37 from Herpes Simplex Virus 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenigsberg, Andrea L.; Heldwein, Ekaterina E.; Sandri-Goldin, Rozanne M.

    Inner tegument protein UL37 is conserved among all three subfamilies of herpesviruses. Studies of UL37 homologs from two alphaherpesviruses, herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV), have suggested that UL37 plays an essential albeit poorly defined role in intracellular capsid trafficking. At the same time, HSV and PRV homologs cannot be swapped, which suggests that in addition to a conserved function, UL37 homologs also have divergent virus-specific functions. Accurate dissection of UL37 functions requires detailed maps in the form of atomic-resolution structures. Previously, we reported the crystal structure of the N-terminal half of UL37 (UL37N) from PRV. Here,more » we report the crystal structure of HSV-1 UL37N. Comparison of the two structures reveals that UL37 homologs differ in their overall shapes, distributions of surface charges, and locations of projecting loops. In contrast, the previously identified R2 surface region is structurally conserved. We propose that within the N-terminal half of UL37, functional conservation is centered within the R2 surface region, whereas divergent structural elements pinpoint regions mediating virus-specific functions and may engage different binding partners. Together, the two structures can now serve as templates for a structure-guided exploration of both conserved and virus-specific functions of UL37. IMPORTANCEThe ability to move efficiently within host cell cytoplasm is essential for replication in all viruses. It is especially important in the neuroinvasive alphaherpesviruses, such as human herpes simplex virus 1 (HSV-1), HSV-2, and veterinarian pseudorabies virus (PRV), that infect the peripheral nervous system and have to travel long distances along axons. Capsid movement in these viruses is controlled by capsid-associated tegument proteins, yet their specific roles have not yet been defined. Systematic exploration of the roles of tegument proteins in capsid trafficking requires detailed

  8. Incidence of Ganciclovir Resistance in CMV-positive Renal Transplant Recipients and its Association with UL97 Gene Mutations.

    PubMed

    Aslani, Hamid Reza; Ziaie, Shadi; Salamzadeh, Jamshid; Zaheri, Sara; Samadian, Fariba; Mastoor-Tehrani, Shayan

    2017-01-01

    Human cytomegalovirus (CMV) remains the most common infection affecting organ transplant recipients. Despite advances in the prophylaxis and acute treatment of CMV, it remains an important pathogen affecting the short- and long-term clinical outcome of solid organ transplant recipient. The emergence of CMV resistance in a patient reduces the clinical efficacy of antiviral therapy, complicates therapeutic and clinical management decisions, and in some cases results in loss of the allograft and/or death of the patient. Common mechanisms of CMV resistance to ganciclovir have been described chiefly with the UL97 mutations. Here we evaluate Incidence of ganciclovir resistance in 144 CMV-positive renal transplant recipients and its association with UL97 gene mutations. Active CMV infection was monitored by viral DNA quantification in whole blood, and CMV resistance was assessed by UL97 gene sequencing. Six mutations in six patients were detected. Three patients (2.6%) of 112 patients with history of ganciclovir (GCV) treatment had clinical resistance with single UL97 mutations at loci known to be related to resistance (including mutations at codon 594, codon 460, and codon 520). three patients who were anti-CMV drug naïve had single UL97 mutations (D605E) without clinical resistance. Our results confirm and extend our earlier findings on the specific mutations in the UL97 phosphotransferase gene in loci that have established role in ganciclovir resistance and also indicate that clinical ganciclovir resistance due to UL97 gene mutations is an issue in subjects with history of with ganciclovir treatment. D605E mutations remains a controversial issue that needs further investigations.

  9. Characterization of the duck enteritis virus UL55 protein

    PubMed Central

    2011-01-01

    Background Characteration of the newly identified duck enteritis virus UL55 gene product has not been reported yet. Knowledge of the protein UL55 can provide useful insights about its function. Results The newly identified duck enteritis virus UL55 gene was about 561 bp, it was amplified and digested for construction of a recombinant plasmid pET32a(+)/UL55 for expression in Escherichia coli. SDS-PAGE analysis revealed the recombinant protein UL55(pUL55) was overexpressed in Escherichia coli BL21 host cells after induction by 0.2 mM IPTG at 37°C for 4 h and aggregated as inclusion bodies. The denatured protein about 40 KDa named pUL55 was purified by washing five times, and used to immune rabbits for preparation of polyclonal antibody. The prepared polyclonal antibody against pUL55 was detected and determined by Agar immundiffusion and Neutralization test. The results of Wstern blotting assay and intracellular analysis revealed that pUL55 was expressed most abundantly during the late phase of replication and mainly distributed in cytoplasm in duck enteritis virus infected cells. Conclusions In this study, the duck enteritis virus UL55 protein was successfully expressed in prokaryotic expression system. Besides, we have prepared the polyclonal antibody against recombinant prtein UL55, and characterized some properties of the duck enteritis virus UL55 protein for the first time. The research will be useful for further functional analysis of this gene. PMID:21609474

  10. Human Cytomegalovirus UL18 Utilizes US6 for Evading the NK and T-Cell Responses

    PubMed Central

    Kim, Youngkyun; Park, Boyoun; Cho, Sunglim; Shin, Jinwook; Cho, Kwangmin; Jun, Youngsoo; Ahn, Kwangseog

    2008-01-01

    Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses. PMID:18688275

  11. The non-essential UL50 gene of avian infectious laryngotracheitis virus encodes a functional dUTPase which is not a virulence factor.

    PubMed

    Fuchs, W; Ziemann, K; Teifke, J P; Werner, O; Mettenleiter, T C

    2000-03-01

    The DNA sequence of the infectious laryngotracheitis virus (ILTV) UL50, UL51 and UL52 gene homologues was determined. Although the deduced UL50 protein lacks the first of five conserved domains of the corresponding proteins of mammalian alphaherpesviruses, the ILTV gene product was also shown to possess dUTPase activity. The generation of UL50-negative ILTV mutants was facilitated by recombination plasmids encoding green fluorescent protein (GFP), and expression constructs of predicted transactivator proteins of ILTV (alphaTIF, ICP4) were successfully used to increase the infectivity of viral genomic DNA. A GFP-expressing UL50-deletion mutant of ILTV showed reduced cell-to-cell spread in vitro, and was attenuated in vivo. A similar deletion mutant without the foreign gene, however, propagated like wild-type ILTV in cell culture and was pathogenic in chickens. We conclude that the viral dUTPase is not required for efficient replication of ILTV in the respiratory tract of infected animals. The replication defect of the GFP-expressing ILTV recombinant is most likely caused by toxic effects of the reporter gene product, since spontaneously occurring inactivation mutants exhibited wild-type-like growth.

  12. The Human Cytomegalovirus-Specific UL1 Gene Encodes a Late-Phase Glycoprotein Incorporated in the Virion Envelope

    PubMed Central

    Shikhagaie, Medya; Mercé-Maldonado, Eva; Isern, Elena; Muntasell, Aura; Albà, M. Mar; López-Botet, Miguel; Hengel, Hartmut

    2012-01-01

    We have investigated the previously uncharacterized human cytomegalovirus (HCMV) UL1 open reading frame (ORF), a member of the rapidly evolving HCMV RL11 family. UL1 is HCMV specific; the absence of UL1 in chimpanzee cytomegalovirus (CCMV) and sequence analysis studies suggest that UL1 may have originated by the duplication of an ancestor gene from the RL11-TRL cluster (TRL11, TRL12, and TRL13). Sequence similarity searches against human immunoglobulin (Ig)-containing proteins revealed that HCMV pUL1 shows significant similarity to the cellular carcinoembryonic antigen-related (CEA) protein family N-terminal Ig domain, which is responsible for CEA ligand recognition. Northern blot analysis revealed that UL1 is transcribed during the late phase of the viral replication cycle in both fibroblast-adapted and endotheliotropic strains of HCMV. We characterized the protein encoded by hemagglutinin (HA)-tagged UL1 in the AD169-derived HB5 background. UL1 is expressed as a 224-amino-acid type I transmembrane glycoprotein which becomes detectable at 48 h postinfection. In infected human fibroblasts, pUL1 colocalized at the cytoplasmic site of virion assembly and secondary envelopment together with TGN-46, a marker for the trans-Golgi network, and viral structural proteins, including the envelope glycoprotein gB and the tegument phosphoprotein pp28. Furthermore, analyses of highly purified AD169 UL1-HA epitope-tagged virions revealed that pUL1 is a novel constituent of the HCMV envelope. Importantly, the deletion of UL1 in HCMV TB40/E resulted in reduced growth in a cell type-specific manner, suggesting that pUL1 may be implicated in regulating HCMV cell tropism. PMID:22345456

  13. Interaction of Human Cytomegalovirus Tegument Proteins ppUL35 and ppUL35A with Sorting Nexin 5 Regulates Glycoprotein B (gpUL55) Localization.

    PubMed

    Maschkowitz, Gregor; Gärtner, Sabine; Hofmann-Winkler, Heike; Fickenscher, Helmut; Winkler, Michael

    2018-05-01

    Human cytomegalovirus (HCMV) is a widespread human pathogen that causes asymptomatic infection in healthy individuals but poses a serious threat to immunocompromised patients. During the late phase of HCMV infection, the viral capsid is transported to the cytoplasmic viral assembly center (cVAC), where it is enclosed by the tegument protein layer and the viral envelope. The cVAC consists of circularly arranged vesicles from the trans -Golgi and endosomal networks. The HCMV gene UL35 encodes ppUL35 and its shorter form, ppUL35A. We have previously shown that the UL35 gene is involved in HCMV assembly, but it is unknown how UL35 proteins regulate viral assembly. Here we show that sorting nexin 5 (SNX5), a component of the retromer and part of the retrograde transport pathway, interacts with UL35 proteins. Expression of wild-type proteins but not mutants defective in SNX5 binding resulted in the cellular redistribution of the cation-independent mannose-6-phosphate receptor (CI-M6PR), indicating that UL35 proteins bind and negatively regulate SNX5 to modulate cellular transport pathways. Furthermore, binding of UL35 proteins to SNX5 was required for efficient viral replication and for transport of the most abundant HCMV glycoprotein B (gB; gpUL55) to the cVAC. These results indicate that ppUL35 and ppUL35A control the localization of the essential gB through the regulation of a retrograde transport pathway. Thus, this work is the first to define a molecular interaction between a tegument protein and a vesicular transport factor to regulate glycoprotein localization. IMPORTANCE Human cytomegalovirus is ubiquitously present in the healthy population, but reactivation or reinfection can cause serious, life-threatening infections in immunocompromised patients. For completion of its lytic cycle, human cytomegalovirus induces formation of an assembly center where mature virus particles are formed from multiple viral proteins. Viral glycoproteins use separate vesicular

  14. The decoy Fcγ receptor encoded by the cytomegalovirus UL119-UL118 gene has differential affinity to IgG proteins expressing different GM allotypes.

    PubMed

    Pandey, Janardan P; Namboodiri, Aryan M; Radwan, Faisal F; Nietert, Paul J

    2015-08-01

    Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that has been implicated in many diseases. However, there is significant divergence between HCMV seroprevalence and the prevalence of HCMV-associated diseases, implying the presence of host genetic factors that might modulate immunity to this virus. HCMV deploys many sophisticated strategies to evade host immunosurveillance. One strategy involves encoding for proteins that have functional properties of the Fcγ receptor (FcγR). The aim of the present investigation was to determine whether the UL119-UL118-encoded recombinant FcγR ectodomain binds differentially to genetically disparate IgG1 proteins. Results show that mean absorbance values for binding of HCMV UL119-UL118-encoded Fcγ receptor to the immunoglobulin GM (γ marker) 1,17-expressing IgG1 were significantly higher than to the IgG1 expressing the allelic GM 3 allotype (0.225 vs. 0.151; p=0.039). These findings suggest possible mechanisms underlying the maintenance of immunoglobulin GM gene polymorphism and its putative role in the etiology of HCMV-associated diseases. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  15. Identification of conserved amino acids in the herpes simplex virus type 1 UL8 protein required for DNA synthesis and UL52 primase interaction in the virus replisome.

    PubMed

    Muylaert, Isabella; Zhao, Zhiyuan; Andersson, Torbjörn; Elias, Per

    2012-09-28

    We have used oriS-dependent transient replication assays to search for species-specific interactions within the herpes simplex virus replisome. Hybrid replisomes derived from herpes simplex virus type 1 (HSV-1) and equine herpesvirus type 1 (EHV-1) failed to support DNA replication in cells. Moreover, the replisomes showed a preference for their cognate origin of replication. The results demonstrate that the herpesvirus replisome behaves as a molecular machine relying on functionally important interactions. We then searched for functional interactions in the replisome context by subjecting HSV-1 UL8 protein to extensive mutagenesis. 52 mutants were made by replacing single or clustered charged amino acids with alanines. Four mutants showed severe replication defects. Mutant A23 exhibited a lethal phenotype, and mutants A49, A52 and A53 had temperature-sensitive phenotypes. Mutants A49 and A53 did not interact with UL52 primase as determined by co-immunoprecipitation experiments. Using GFP-tagged UL8, we demonstrate that all mutants were unable to support formation of ICP8-containing nuclear replication foci. Extended mutagenesis suggested that a highly conserved motif corresponding to mutant A49 serves an important role for establishing a physical contact between UL8 and UL52. The replication-defective mutations affected conserved amino acids, and similar phenotypes were observed when the corresponding mutations were introduced into EHV-1 UL8.

  16. Metagenomic gene annotation by a homology-independent approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froula, Jeff; Zhang, Tao; Salmeen, Annette

    2011-06-02

    Fully understanding the genetic potential of a microbial community requires functional annotation of all the genes it encodes. The recently developed deep metagenome sequencing approach has enabled rapid identification of millions of genes from a complex microbial community without cultivation. Current homology-based gene annotation fails to detect distantly-related or structural homologs. Furthermore, homology searches with millions of genes are very computational intensive. To overcome these limitations, we developed rhModeller, a homology-independent software pipeline to efficiently annotate genes from metagenomic sequencing projects. Using cellulases and carbonic anhydrases as two independent test cases, we demonstrated that rhModeller is much faster than HMMERmore » but with comparable accuracy, at 94.5percent and 99.9percent accuracy, respectively. More importantly, rhModeller has the ability to detect novel proteins that do not share significant homology to any known protein families. As {approx}50percent of the 2 million genes derived from the cow rumen metagenome failed to be annotated based on sequence homology, we tested whether rhModeller could be used to annotate these genes. Preliminary results suggest that rhModeller is robust in the presence of missense and frameshift mutations, two common errors in metagenomic genes. Applying the pipeline to the cow rumen genes identified 4,990 novel cellulases candidates and 8,196 novel carbonic anhydrase candidates.In summary, we expect rhModeller to dramatically increase the speed and quality of metagnomic gene annotation.« less

  17. UL31 and UL34 Proteins of Herpes Simplex Virus Type 1 Form a Complex That Accumulates at the Nuclear Rim and Is Required for Envelopment of Nucleocapsids

    PubMed Central

    Reynolds, Ashley E.; Ryckman, Brent J.; Baines, Joel D.; Zhou, Yuping; Liang, Li; Roller, Richard J.

    2001-01-01

    The herpes simplex virus type 1 (HSV-1) UL34 protein is likely a type II membrane protein that localizes within the nuclear membrane and is required for efficient envelopment of progeny virions at the nuclear envelope, whereas the UL31 gene product of HSV-1 is a nuclear matrix-associated phosphoprotein previously shown to interact with UL34 protein in HSV-1-infected cell lysates. For these studies, polyclonal antisera directed against purified fusion proteins containing UL31 protein fused to glutathione-S-transferase (UL31-GST) and UL34 protein fused to GST (UL34-GST) were demonstrated to specifically recognize the UL31 and UL34 proteins of approximately 34,000 and 30,000 Da, respectively. The UL31 and UL34 gene products colocalized in a smooth pattern throughout the nuclear rim of infected cells by 10 h postinfection. UL34 protein also accumulated in pleiomorphic cytoplasmic structures at early times and associated with an altered nuclear envelope late in infection. Localization of UL31 protein at the nuclear rim required the presence of UL34 protein, inasmuch as cells infected with a UL34 null mutant virus contained UL31 protein primarily in central intranuclear domains separate from the nuclear rim, and to a lesser extent in the cytoplasm. Conversely, localization of UL34 protein exclusively at the nuclear rim required the presence of the UL31 gene product, inasmuch as UL34 protein was detectable at the nuclear rim, in replication compartments, and in the cytoplasm of cells infected with a UL31 null virus. When transiently expressed in the absence of other viral factors, UL31 protein localized diffusely in the nucleoplasm, whereas UL34 protein localized primarily in the cytoplasm and at the nuclear rim. In contrast, coexpression of the UL31 and UL34 proteins was sufficient to target both proteins exclusively to the nuclear rim. The proteins were also shown to directly interact in vitro in the absence of other viral proteins. In cells infected with a virus

  18. The herpes simplex virus 1 UL51 protein interacts with the UL7 protein and plays a role in its recruitment into the virion.

    PubMed

    Roller, Richard J; Fetters, Rachel

    2015-03-01

    The alphaherpesvirus UL51 protein is a tegument component that interacts with the viral glycoprotein E and functions at multiple steps in virus assembly and spread in epithelial cells. We show here that pUL51 forms a complex in infected cells with another conserved tegument protein, pUL7. This complex can form in the absence of other viral proteins and is largely responsible for recruitment of pUL7 to cytoplasmic membranes and into the virion tegument. Incomplete colocalization of pUL51 and pUL7 in infected cells, however, suggests that a significant fraction of the population of each protein is not complexed with the other and that they may accomplish independent functions. The ability of herpesviruses to spread from cell to cell in the face of an immune response is critical for disease and shedding following reactivation from latency. Cell-to-cell spread is a conserved ability of herpesviruses, and the identification of conserved viral genes that mediate this process will aid in the design of attenuated vaccines and of novel therapeutics. The conserved UL51 gene of herpes simplex virus 1 plays important roles in cell-to-cell spread and in virus assembly in the cytoplasm, both of which likely depend on specific interactions with other viral and cellular proteins. Here we identify one of those interactions with the product of another conserved herpesvirus gene, UL7, and show that formation of this complex mediates recruitment of UL7 to membranes and to the virion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. [Construction and transfection of eucaryotic expression recombinant vector containing truncated region of UL83 gene of human cytomegalovirus and it's sheltered effect as DNA vaccine].

    PubMed

    Gao, Rong-Bao; Li, Yan-Qiu; Wang, Ming-Li

    2006-06-01

    To construct eucaryotic expression recombinant vector containing vivo truncated region of UL83 gene of human cytomegalovirus, realize its steady expression in Hep-2 cell, and study sheltered effect of the eucaryotic expression recombinant vector as DNA vaccine. A vivo truncated UL83 gene fragment encoding for truncated HCMV pp65 was obtained by PCR from human cytomegalovirus AD169 stock genome. By gene recombinant ways, the truncated UL83 gene fragment was cloned into eucaryotic expression vector pEGFP-C1 with reported gene coding GFP to construct recombinant vector pEGFP-C1-UL83. The recombinant vector pEGFP-C1-UL83 was tested by different methods including PCR, restriction digestion and gene sequencing. Test results showed the recombinant vector was constructed successfully. After pEGFP-C1-UL83 was transfected into Hep-2 cell by lipofectin mediation, expression of GFP and truncated pp65 fusion protein in Hep-2 cell was observed at different time points by fluorescence microscope. Results showed that quantity of fusion protein expression was the highest at 36h point. Then, Hep-2 cell was cultured selectively by RPMI-1640 containing G418 (200 microg/mL) to obtain a new cell stock of expressing truncated UL83 Gene fragment steadily. RT-PCR and Western blot results showed the truncated fragment of UL83 gene could be expressed steadily in Hep-2 cell. The result showed a new cell stock of expressing Tpp65 was established. This cell stock could be useful in some HCMV research fields, for example, it could be a tool in study of pp65 and HCMV infection, and it could provide a platform for the research into the therapy of HCMV infection. Immune sheltered effect of pEGFP-C1-UL83 as DNA vaccine was studied in vivo of HCMV congenital infection mouse model. The mouse model was immunized solely by pEGFP-C1-UL83, and was immunized jointly by pEGFP-C1-UL83 and its expression product. When the mouse was pregnant and brought to bed, differential antibody of anti-HCMV pp65 was

  20. The Product of the Herpes Simplex Virus Type 1 UL25 Gene Is Required for Encapsidation but Not for Cleavage of Replicated Viral DNA

    PubMed Central

    McNab, Alistair R.; Desai, Prashant; Person, Stan; Roof, Lori L.; Thomsen, Darrell R.; Newcomb, William W.; Brown, Jay C.; Homa, Fred L.

    1998-01-01

    The herpes simplex virus type 1 (HSV-1) UL25 gene contains a 580-amino-acid open reading frame that codes for an essential protein. Previous studies have shown that the UL25 gene product is a virion component (M. A. Ali et al., Virology 216:278–283, 1996) involved in virus penetration and capsid assembly (C. Addison et al., Virology 138:246–259, 1984). In this study, we describe the isolation of a UL25 mutant (KUL25NS) that was constructed by insertion of an in-frame stop codon in the UL25 open reading frame and propagated on a complementing cell line. Although the mutant was capable of synthesis of viral DNA, it did not form plaques or produce infectious virus in noncomplementing cells. Antibodies specific for the UL25 protein were used to demonstrate that KUL25NS-infected Vero cells did not express the UL25 protein. Western immunoblotting showed that the UL25 protein was associated with purified, wild-type HSV A, B, and C capsids. Transmission electron microscopy indicated that the nucleus of Vero cells infected with KUL25NS contained large numbers of both A and B capsids but no C capsids. Analysis of infected cells by sucrose gradient sedimentation analysis confirmed that the ratio of A to B capsids was elevated in KUL25NS-infected Vero cells. Following restriction enzyme digestion, specific terminal fragments were observed in DNA isolated from KUL25NS-infected Vero cells, indicating that the UL25 gene was not required for cleavage of replicated viral DNA. The latter result was confirmed by pulsed-field gel electrophoresis (PFGE), which showed the presence of genome-size viral DNA in KUL25NS-infected Vero cells. DNase I treatment prior to PFGE demonstrated that monomeric HSV DNA was not packaged in the absence of the UL25 protein. Our results indicate that the product of the UL25 gene is required for packaging but not cleavage of replicated viral DNA. PMID:9445000

  1. Human cytomegalovirus UL76 induces chromosome aberrations

    PubMed Central

    2009-01-01

    Background Human cytomegalovirus (HCMV) is known to induce chromosome aberrations in infected cells, which can lead to congenital abnormalities in infected fetuses. HCMV UL76 belongs to a conserved protein family from herpesviruses. Some reported roles among UL76 family members include involvement in virulence determination, lytic replication, reactivation of latent virus, modulation of gene expression, induction of apoptosis, and perturbation of cell cycle progression, as well as potential nuclease activity. Previously, we have shown that stable expression of UL76 inhibits HCMV replication in glioblastoma cells. Methods To examine chromosomal integrity and the DNA damage signal γ-H2AX in cells constitutively expressing UL76, immunofluorescent cell staining and Western blotting were performed. The comet assay was employed to assess DNA breaks in cells transiently expressing UL76. Results We report that stably transfected cells expressing UL76 developed chromosome aberrations including micronuclei and misaligned chromosomes, lagging and bridging. In mitotic cells expressing UL76, aberrant spindles were increased compared to control cells. However, cells with supernumerary centrosomes were marginally increased in UL76-expressing cells relative to control cells. We further demonstrated that UL76-expressing cells activated the DNA damage signal γ-H2AX and caused foci formation in nuclei. In addition, the number of cells with DNA breaks increased in proportion to UL76 protein levels. Conclusion Our findings suggest that the virus-associated protein UL76 induces DNA damage and the accumulation of chromosome aberrations. PMID:19930723

  2. Herpes Simplex Virus 1 UL37 Protein Tyrosine Residues Conserved among All Alphaherpesviruses Are Required for Interactions with Glycoprotein K, Cytoplasmic Virion Envelopment, and Infectious Virus Production

    PubMed Central

    Chouljenko, Dmitry V.; Jambunathan, Nithya; Chouljenko, Vladimir N.; Naderi, Misagh; Brylinski, Michal; Caskey, John R.

    2016-01-01

    ABSTRACT The herpes simplex virus 1 (HSV-1) UL37 protein functions in virion envelopment at trans-Golgi membranes, as well as in retrograde and anterograde transport of virion capsids. Recently, we reported that UL37 interacts with glycoprotein K (gK) and its interacting partner protein UL20 (N. Jambunathan, D. Chouljenko, P. Desai, A. S. Charles, R. Subramanian, V. N. Chouljenko, and K. G. Kousoulas, J Virol 88:5927–5935, 2014, http://dx.doi.org/10.1128/JVI.00278-14), facilitating cytoplasmic virion envelopment. Alignment of UL37 homologs encoded by alphaherpesviruses revealed the presence of highly conserved residues in the central portion of the UL37 protein. A cadre of nine UL37 site-specific mutations were produced and tested for their ability to inhibit virion envelopment and infectious virus production. Complementation analysis revealed that replacement of tyrosines 474 and 480 with alanine failed to complement the UL37-null virus, while all other mutated UL37 genes complemented the virus efficiently. The recombinant virus DC474-480 constructed with tyrosines 474, 476, 477, and 480 mutated to alanine residues produced a gK-null-like phenotype characterized by the production of very small plaques and accumulation of capsids in the cytoplasm of infected cells. Recombinant viruses having either tyrosine 476 or 477 replaced with alanine produced a wild-type phenotype. Immunoprecipitation assays revealed that replacement of all four tyrosines with alanines substantially reduced the ability of gK to interact with UL37. Alignment of HSV UL37 with the human cytomegalovirus and Epstein-Barr virus UL37 homologs revealed that Y480 was conserved only for alphaherpesviruses. Collectively, these results suggest that the UL37 conserved tyrosine 480 residue plays a crucial role in interactions with gK to facilitate cytoplasmic virion envelopment and infectious virus production. IMPORTANCE The HSV-1 UL37 protein is conserved among all herpesviruses, functions in both

  3. A “Coiled-Coil” Motif Is Important for Oligomerization and DNA Binding Properties of Human Cytomegalovirus Protein UL77

    PubMed Central

    Dittmer, Alexandra; Lapp, Sara; Bogner, Elke

    2011-01-01

    Human cytomegalovirus (HCMV) UL77 gene encodes the essential protein UL77, its function is characterized in the present study. Immunoprecipitation identified monomeric and oligomeric pUL77 in HCMV infected cells. Immunostaining of purified virions and subviral fractions showed that pUL77 is a structural protein associated with capsids. In silico analysis revealed the presence of a coiled-coil motif (CCM) at the N-terminus of pUL77. Chemical cross-linking of either wild-type pUL77 or CCM deletion mutant (pUL77ΔCCM) implicated that CCM is critical for oligomerization of pUL77. Furthermore, co-immunoprecipitations of infected and transfected cells demonstrated that pUL77 interacts with the capsid-associated DNA packaging motor components, pUL56 and pUL104, as well as the major capsid protein. The ability of pUL77 to bind dsDNA was shown by an in vitro assay. Binding to certain DNA was further confirmed by an assay using biotinylated 36-, 250-, 500-, 1000-meric dsDNA and 966-meric HCMV-specific dsDNA designed for this study. The binding efficiency (BE) was determined by image processing program defining values above 1.0 as positive. While the BE of the pUL56 binding to the 36-mer bio-pac1 containing a packaging signal was 10.0±0.63, the one for pUL77 was only 0.2±0.03. In contrast to this observation the BE of pUL77 binding to bio-500 bp or bio-1000 bp was 2.2±0.41 and 4.9±0.71, respectively. By using pUL77ΔCCM it was demonstrated that this protein could not bind to dsDNA. These data indicated that pUL77 (i) could form homodimers, (ii) CCM of pUL77 is crucial for oligomerization and (iii) could bind to dsDNA in a sequence independent manner. PMID:21998635

  4. Description of durancin TW-49M, a novel enterocin B-homologous bacteriocin in carrot-isolated Enterococcus durans QU 49.

    PubMed

    Hu, C-B; Zendo, T; Nakayama, J; Sonomoto, K

    2008-09-01

    To characterize the novel bacteriocin produced by Enterococcus durans. Enterococcus durans QU 49 was isolated from carrot and expressed bactericidal activity over 20-43 degrees C. Bacteriocins were purified to homogeneity using the three-step purification method, one of which, termed durancin TW-49M, was an enterocin B-homologous peptide with most identical residues occurring in the N-terminus. Durancin TW-49M was more tolerant in acidic than in alkali. DNA sequencing analysis revealed durancin TW-49M was translated as a prepeptide of the double-glycine type. Durancin TW-49M and enterocin B expressed similar antimicrobial spectra, in which no significant variation due to the diversity in their C-termini was observed. Durancin TW-49M, a novel nonpediocin-like class II bacteriocin, was characterized to the amino acid and genetic levels. The diverse C-terminal parts of durancin TW-49M and enterocin B were hardly to be suggested as the place determining the target cell specificity. This is the first and comprehensive study of a novel bacteriocin produced by Ent. durans. The high homology at the N-terminal halves between durancin TW-49M and enterocin B makes them suitable to study the structure-function relationship of bacteriocins and their immunity proteins.

  5. End-joining inhibition at telomeres requires the translocase and polySUMO-dependent ubiquitin ligase Uls1.

    PubMed

    Lescasse, Rachel; Pobiega, Sabrina; Callebaut, Isabelle; Marcand, Stéphane

    2013-03-20

    In eukaryotes, permanent inhibition of the non-homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non-essential Swi2/Snf2-related translocase and a Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere-telomere fusions. Uls1 requirement is alleviated by the absence of poly-SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly-SUMO conjugates. We propose that one of Uls1 functions is to clear non-functional poly-SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly-SUMOylated proteins on DNA in eukaryotes.

  6. Localization of herpes simplex virus type 1 UL37 in the Golgi complex requires UL36 but not capsid structures.

    PubMed

    Desai, Prashant; Sexton, Gerry L; Huang, Eugene; Person, Stanley

    2008-11-01

    The herpes simplex virus type 1 (HSV-1) UL37 gene encodes a 120-kDa polypeptide which resides in the tegument structure of the virion and is important for morphogenesis. The goal of this study was to use green fluorescent protein (GFP) to follow the fate of UL37 within cells during the normal course of virus replication. GFP was inserted in frame at the C terminus of UL37 to generate a fluorescent-protein-tagged UL37 polypeptide. A virus designated K37eGFP, which replicated normally on Vero cells, was isolated and was shown to express the fusion polypeptide. When cells infected with this virus were examined by confocal microscopy, the fluorescence was observed to be predominantly cytoplasmic. As the infection progressed, fluorescence began to accumulate in a juxtanuclear structure. Mannosidase II and giantin were observed to colocalize with UL37eGFP at these structures, as judged by immunofluorescence assays. Therefore, UL37 traffics to the Golgi complex during infection. A VP26mRFP marker (red fluorescent protein fused to VP26) was recombined into K37eGFP, and when cells infected with this "dual-color" virus were examined, colocalization of the red (capsid) and green (UL37) fluorescence in the Golgi structure was observed. Null mutations in VP5 (DeltaVP5), which abolished capsid assembly, and in UL36 (Delta36) were recombined into the K37eGFP virus genome. In cells infected with K37eGFP/DeltaVP5, localization of UL37eGFP to the Golgi complex was similar to that for the parental virus (K37eGFP), indicating that trafficking of UL37eGFP to the Golgi complex did not require capsid structures. Confocal analysis of cells infected with K37eGFP/Delta36 showed that, in the absence of UL36, accumulation of UL37eGFP at the Golgi complex was not evident. This indicates an interaction between these two proteins that is important for localization of UL37 in the Golgi complex and thus possibly for cytoplasmic envelopment of the capsid. This is the first demonstration of a

  7. Inhibition of Human Cytomegalovirus DNA Polymerase by C-Terminal Peptides from the UL54 Subunit

    PubMed Central

    Loregian, Arianna; Rigatti, Roberto; Murphy, Mary; Schievano, Elisabetta; Palu, Giorgio; Marsden, Howard S.

    2003-01-01

    In common with other herpesviruses, the human cytomegalovirus (HCMV) DNA polymerase contains a catalytic subunit (Pol or UL54) and an accessory protein (UL44) that is thought to increase the processivity of the enzyme. The observation that antisense inhibition of UL44 synthesis in HCMV-infected cells strongly inhibits viral DNA replication, together with the structural similarity predicted for the herpesvirus processivity subunits, highlights the importance of the accessory protein for virus growth and raises the possibility that the UL54/UL44 interaction might be a valid target for antiviral drugs. To investigate this possibility, overlapping peptides spanning residues 1161 to 1242 of UL54 were synthesized and tested for inhibition of the interaction between purified UL54 and UL44 proteins. A peptide, LPRRLHLEPAFLPYSVKAHECC, corresponding to residues 1221 to 1242 at the very C terminus of UL54, disrupted both the physical interaction between the two proteins and specifically inhibited the stimulation of UL54 by UL44. A mutant peptide lacking the two carboxy-terminal cysteines was markedly less inhibitory, suggesting a role for these residues in the UL54/UL44 interaction. Circular dichroism spectroscopy indicated that the UL54 C-terminal peptide can adopt a partially α-helical structure. Taken together, these results indicate that the two subunits of HCMV DNA polymerase most likely interact in a way which is analogous to that of the two subunits of herpes simplex virus DNA polymerase, even though there is no sequence homology in the binding site, and suggest that the UL54 peptide, or derivatives thereof, could form the basis for developing a new class of anti-HCMV inhibitors that act by disrupting the UL54/UL44 interaction. PMID:12857903

  8. Butterfly eyespot serial homology: enter the Hox genes

    PubMed Central

    2011-01-01

    Hox genes modify serial homology patterns in many organisms, exemplified in vertebrates by modification of the axial skeleton and in arthropods by diversification of the body segments. Butterfly wing eyespots also appear in a serial homologous pattern that, in certain species, is subject to local modification. A paper in EvoDevo reports the Hox gene Antp is the earliest known gene to have eyespot-specific expression; however, not all Lepidoptera express Antp in eyespots, suggesting some developmental flexibility. See research article: http://www.evodevojournal.com/content/2/1/9 PMID:21527048

  9. Homologous gene replacement in Physarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burland, T.G.; Pallotta, D.

    1995-01-01

    The protist Physarum polycephalum is useful for analysis of several aspects of cellular and developmental biology. To expand the opportunities for experimental analysis of this organism, we have developed a method for gene replacement. We transformed Physarum amoebae with plasmid DNA carrying a mutant allele, ardD{Delta}1, of the ardD actin gene; ardD{Delta}1 mutates the critical carboxy-terminal region of the gene product. Because ardD is not expressed in the amoeba, replacement of ardD{sup +} with ardD{Delta}1 should not be lethal for this cell type. Transformants were obtained only when linear plasmid DNA was used. Most transformants carried one copy of ardD{Delta}1more » in addition to ardD{sup +}, but in two (5%), ardD{sup +} was replaced by a single copy of ardD{Delta}1. This is the first example of homologous gene replacement in Physarum. ardD{Delta}1 was stably maintained in the genome through growth, development and meiosis. We found no effect of ardD{Delta}l on viability, growth, or development of any of the various cell types of Physarum. Thus, the carboxy-terminal region of the ardD product appears not to perform a unique essential role in growth or development. Nevertheless, this method for homologous gene replacement can be applied to analyze the function of any cloned gene. 38 refs., 6 figs., 1 tab.« less

  10. The UL5 and UL52 subunits of the herpes simplex virus type 1 helicase-primase subcomplex exhibit a complex interdependence for DNA binding.

    PubMed

    Biswas, N; Weller, S K

    2001-05-18

    Herpes simplex virus type 1 encodes a heterotrimeric helicase-primase complex composed of the products of the UL5, UL52, and UL8 genes. The UL5 protein contains seven motifs found in all members of helicase Superfamily 1 (SF1), and the UL52 protein contains several conserved motifs found in primases; however, the contributions of each subunit to the biochemical activities of the subcomplex are not clear. In this work, the DNA binding properties of wild type and mutant subcomplexes were examined using single-stranded, duplex, and forked substrates. A gel mobility shift assay indicated that the UL5-UL52 subcomplex binds more efficiently to the forked substrate than to either single strand or duplex DNA. Although nucleotides are not absolutely required for DNA binding, ADP stimulated the binding of UL5-UL52 to single strand DNA whereas ATP, ADP, and adenosine 5'-O-(thiotriphosphate) stimulated the binding to a forked substrate. We have previously shown that both subunits contact single-stranded DNA in a photocross-linking assay (Biswas, N., and Weller, S. K. (1999) J. Biol. Chem. 274, 8068-8076). In this study, photocross-linking assays with forked substrates indicate that the UL5 and UL52 subunits contact the forked substrates at different positions, UL52 at the single-stranded DNA tail and UL5 near the junction between single-stranded and double-stranded DNA. Neither subunit was able to cross-link a forked substrate when 5-iododeoxyuridine was located within the duplex portion. Photocross-linking experiments with subcomplexes containing mutant versions of UL5 and wild type UL52 indicated that the integrity of the ATP binding region is important for DNA binding of both subunits. These results support our previous proposal that UL5 and UL52 exhibit a complex interdependence for DNA binding (Biswas, N., and Weller, S. K. (1999) J. Biol. Chem. 274, 8068-8076) and indicate that the UL52 subunit may play a more active role in helicase activity than had previously been

  11. The Human Cytomegalovirus UL51 Protein Is Essential for Viral Genome Cleavage-Packaging and Interacts with the Terminase Subunits pUL56 and pUL89

    PubMed Central

    Borst, Eva Maria; Kleine-Albers, Jennifer; Gabaev, Ildar; Babić, Marina; Wagner, Karen; Binz, Anne; Degenhardt, Inga; Kalesse, Markus; Jonjić, Stipan; Bauerfeind, Rudolf

    2013-01-01

    Cleavage of human cytomegalovirus (HCMV) genomes as well as their packaging into capsids is an enzymatic process mediated by viral proteins and therefore a promising target for antiviral therapy. The HCMV proteins pUL56 and pUL89 form the terminase and play a central role in cleavage-packaging, but several additional viral proteins, including pUL51, had been suggested to contribute to this process, although they remain largely uncharacterized. To study the function of pUL51 in infected cells, we constructed HCMV mutants encoding epitope-tagged versions of pUL51 and used a conditionally replicating virus (HCMV-UL51-ddFKBP), in which pUL51 levels could be regulated by a synthetic ligand. In cells infected with HCMV-UL51-ddFKBP, viral DNA replication was not affected when pUL51 was knocked down. However, no unit-length genomes and no DNA-filled C capsids were found, indicating that cleavage of concatemeric HCMV DNA and genome packaging into capsids did not occur in the absence of pUL51. pUL51 was expressed mainly with late kinetics and was targeted to nuclear replication compartments, where it colocalized with pUL56 and pUL89. Upon pUL51 knockdown, pUL56 and pUL89 were no longer detectable in replication compartments, suggesting that pUL51 is needed for their correct subnuclear localization. Moreover, pUL51 was found in a complex with the terminase subunits pUL56 and pUL89. Our data provide evidence that pUL51 is crucial for HCMV genome cleavage-packaging and may represent a third component of the viral terminase complex. Interference with the interactions between the terminase subunits by antiviral drugs could be a strategy to disrupt the HCMV replication cycle. PMID:23175377

  12. Sequence homology and expression profile of genes associated with DNA repair pathways in Mycobacterium leprae.

    PubMed

    Sharma, Mukul; Vedithi, Sundeep Chaitanya; Das, Madhusmita; Roy, Anindya; Ebenezer, Mannam

    2017-01-01

    Survival of Mycobacterium leprae, the causative bacteria for leprosy, in the human host is dependent to an extent on the ways in which its genome integrity is retained. DNA repair mechanisms protect bacterial DNA from damage induced by various stress factors. The current study is aimed at understanding the sequence and functional annotation of DNA repair genes in M. leprae. T he genome of M. leprae was annotated using sequence alignment tools to identify DNA repair genes that have homologs in Mycobacterium tuberculosis and Escherichia coli. A set of 96 genes known to be involved in DNA repair mechanisms in E. coli and Mycobacteriaceae were chosen as a reference. Among these, 61 were identified in M. leprae based on sequence similarity and domain architecture. The 61 were classified into 36 characterized gene products (59%), 11 hypothetical proteins (18%), and 14 pseudogenes (23%). All these genes have homologs in M. tuberculosis and 49 (80.32%) in E. coli. A set of 12 genes which are absent in E. coli were present in M. leprae and in Mycobacteriaceae. These 61 genes were further investigated for their expression profiles in the whole transcriptome microarray data of M. leprae which was obtained from the signal intensities of 60bp probes, tiling the entire genome with 10bp overlaps. It was noted that transcripts corresponding to all the 61 genes were identified in the transcriptome data with varying expression levels ranging from 0.18 to 2.47 fold (normalized with 16SrRNA). The mRNA expression levels of a representative set of seven genes ( four annotated and three hypothetical protein coding genes) were analyzed using quantitative Polymerase Chain Reaction (qPCR) assays with RNA extracted from skin biopsies of 10 newly diagnosed, untreated leprosy cases. It was noted that RNA expression levels were higher for genes involved in homologous recombination whereas the genes with a low level of expression are involved in the direct repair pathway. This study provided

  13. Cellular homeoproteins, SATB1 and CDP, bind to the unique region between the human cytomegalovirus UL127 and major immediate-early genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee Jialing; Klase, Zachary; Gao Xiaoqi

    An AT-rich region of the human cytomegalovirus (CMV) genome between the UL127 open reading frame and the major immediate-early (MIE) enhancer is referred to as the unique region (UR). It has been shown that the UR represses activation of transcription from the UL127 promoter and functions as a boundary between the divergent UL127 and MIE genes during human CMV infection [Angulo, A., Kerry, D., Huang, H., Borst, E.M., Razinsky, A., Wu, J., Hobom, U., Messerle, M., Ghazal, P., 2000. Identification of a boundary domain adjacent to the potent human cytomegalovirus enhancer that represses transcription of the divergent UL127 promoter. J.more » Virol. 74 (6), 2826-2839; Lundquist, C.A., Meier, J.L., Stinski, M.F., 1999. A strong negative transcriptional regulatory region between the human cytomegalovirus UL127 gene and the major immediate-early enhancer. J. Virol. 73 (11), 9039-9052]. A putative forkhead box-like (FOX-like) site, AAATCAATATT, was identified in the UR and found to play a key role in repression of the UL127 promoter in recombinant virus-infected cells [Lashmit, P.E., Lundquist, C.A., Meier, J.L., Stinski, M.F., 2004. Cellular repressor inhibits human cytomegalovirus transcription from the UL127 promoter. J. Virol. 78 (10), 5113-5123]. However, the cellular factors which associate with the UR and FOX-like region remain to be determined. We reported previously that pancreatic-duodenal homeobox factor-1 (PDX1) bound to a 45-bp element located within the UR [Chao, S.H., Harada, J.N., Hyndman, F., Gao, X., Nelson, C.G., Chanda, S.K., Caldwell, J.S., 2004. PDX1, a Cellular Homeoprotein, Binds to and Regulates the Activity of Human Cytomegalovirus Immediate Early Promoter. J. Biol. Chem. 279 (16), 16111-16120]. Here we demonstrate that two additional cellular homeoproteins, special AT-rich sequence binding protein 1 (SATB1) and CCAAT displacement protein (CDP), bind to the human CMV UR in vitro and in vivo. Furthermore, CDP is identified as a FOX-like binding

  14. Multiple homologous genes knockout (KO) by CRISPR/Cas9 system in rabbit.

    PubMed

    Liu, Huan; Sui, Tingting; Liu, Di; Liu, Tingjun; Chen, Mao; Deng, Jichao; Xu, Yuanyuan; Li, Zhanjun

    2018-03-20

    The CRISPR/Cas9 system is a highly efficient and convenient genome editing tool, which has been widely used for single or multiple gene mutation in a variety of organisms. Disruption of multiple homologous genes, which have similar DNA sequences and gene function, is required for the study of the desired phenotype. In this study, to test whether the CRISPR/Cas9 system works on the mutation of multiple homologous genes, a single guide RNA (sgRNA) targeting three fucosyltransferases encoding genes (FUT1, FUT2 and SEC1) was designed. As expected, triple gene mutation of FUT1, FUT2 and SEC1 could be achieved simultaneously via a sgRNA mediated CRISPR/Cas9 system. Besides, significantly reduced serum fucosyltransferases enzymes activity was also determined in those triple gene mutation rabbits. Thus, we provide the first evidence that multiple homologous genes knockout (KO) could be achieved efficiently by a sgRNA mediated CRISPR/Cas9 system in mammals, which could facilitate the genotype to phenotype studies of homologous genes in future. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus.

    PubMed

    Coleman, Stewart; Choi, K Yeon; Root, Matthew; McGregor, Alistair

    2016-07-01

    In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107-179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model.

  16. A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus

    PubMed Central

    McGregor, Alistair

    2016-01-01

    In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107–179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model. PMID:27387220

  17. pUL34 binding near the human cytomegalovirus origin of lytic replication enhances DNA replication and viral growth.

    PubMed

    Slayton, Mark; Hossain, Tanvir; Biegalke, Bonita J

    2018-05-01

    The human cytomegalovirus (HCMV) UL34 gene encodes sequence-specific DNA-binding proteins (pUL34) which are required for viral replication. Interactions of pUL34 with DNA binding sites represses transcription of two viral immune evasion genes, US3 and US9. 12 additional predicted pUL34-binding sites are present in the HCMV genome (strain AD169) with three binding sites concentrated near the HCMV origin of lytic replication (oriLyt). We used ChIP-seq analysis of pUL34-DNA interactions to confirm that pUL34 binds to the oriLyt region during infection. Mutagenesis of the UL34-binding sites in an oriLyt-containing plasmid significantly reduced viral-mediated oriLyt-dependent DNA replication. Mutagenesis of these sites in the HCMV genome reduced the replication efficiencies of the resulting viruses. Protein-protein interaction analyses demonstrated that pUL34 interacts with the viral proteins IE2, UL44, and UL84, that are essential for viral DNA replication, suggesting that pUL34-DNA interactions in the oriLyt region are involved in the DNA replication cascade. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Human Cytomegalovirus pUL97 Regulates the Viral Major Immediate Early Promoter by Phosphorylation-Mediated Disruption of Histone Deacetylase 1 Binding

    PubMed Central

    Bigley, Tarin M.; Reitsma, Justin M.; Mirza, Shama P.

    2013-01-01

    Human cytomegalovirus (HCMV) is a common agent of congenital infection and causes severe disease in immunocompromised patients. Current approved therapies focus on inhibiting viral DNA replication. The HCMV kinase pUL97 contributes to multiple stages of viral infection including DNA replication, controlling the cell cycle, and virion maturation. Our studies demonstrate that pUL97 also functions by influencing immediate early (IE) gene expression during the initial stages of infection. Inhibition of kinase activity using the antiviral compound maribavir or deletion of the UL97 gene resulted in decreased expression of viral immediate early genes during infection. Expression of pUL97 was sufficient to transactivate IE1 gene expression from the viral genome, which was dependent on viral kinase activity. We observed that pUL97 associates with histone deacetylase 1 (HDAC1). HDAC1 is a transcriptional corepressor that acts to silence expression of viral genes. We observed that inhibition or deletion of pUL97 kinase resulted in increased HDAC1 and decreased histone H3 lysine 9 acetylation associating with the viral major immediate early (MIE) promoter. IE expression during pUL97 inhibition or deletion was rescued following inhibition of deacetylase activity. HDAC1 associates with chromatin by protein-protein interactions. Expression of active but not inactive pUL97 kinase decreased HDAC1 interaction with the transcriptional repressor protein DAXX. Finally, using mass spectrometry, we found that HDAC1 is uniquely phosphorylated upon expression of pUL97. Our results support the conclusion that HCMV pUL97 kinase regulates viral immediate early gene expression by phosphorylation-mediated disruption of HDAC1 binding to the MIE promoter. PMID:23616659

  19. [Sequence analysis of LEAFY homologous gene from Dendrobium moniliforme and application for identification of medicinal Dendrobium].

    PubMed

    Xing, Wen-Rui; Hou, Bei-Wei; Guan, Jing-Jiao; Luo, Jing; Ding, Xiao-Yu

    2013-04-01

    The LEAFY (LFY) homologous gene of Dendrobium moniliforme (L.) Sw. was cloned by new primers which were designed based on the conservative region of known sequences of orchid LEAFY gene. Partial LFY homologous gene was cloned by common PCR, then we got the complete LFY homologous gene Den LFY by Tail-PCR. The complete sequence of DenLFY gene was 3 575 bp which contained three exons and two introns. Using BLAST method, comparison analysis among the exon of LFY homologous gene indicted that the DenLFY gene had high identity with orchids LFY homologous, including the related fragment of PhalLFY (84%) in Phalaenopsis hybrid cultivar, LFY homologous gene in Oncidium (90%) and in other orchid (over 80%). Using MP analysis, Dendrobium is found to be the sister to Oncidium and Phalaenopsis. Homologous analysis demonstrated that the C-terminal amino acids were highly conserved. When the exons and introns were separately considered, exons and the sequence of amino acid were good markers for the function research of DenLFY gene. The second intron can be used in authentication research of Dendrobium based on the length polymorphism between Dendrobium moniliforme and Dendrobium officinale.

  20. Resistance to maribavir is associated with the exclusion of pUL27 from nucleoli during human cytomegalovirus infection

    PubMed Central

    Hakki, Morgan; Drummond, Coyne; Houser, Benjamin; Marousek, Gail; Chou, Sunwen

    2011-01-01

    Select mutations in the human cytomegalovirus (HCMV) gene UL27 confer low-grade resistance to the HCMV UL97 kinase inhibitor maribavir (MBV). It has been reported that the 608-amino acid UL27 gene product (pUL27) normally localizes to cell nuclei and nucleoli, whereas its truncation at codon 415, as found in a MBV-resistant mutant, results in cytoplasmic localization. We now show that in the context of full-length pUL27, diverse single amino acid substitutions associated with MBV resistance result in loss of its nucleolar localization when visualized after transient transfection, whereas substitutions representing normal interstrain polymorphism had no such effect. The same differences in localization were observed during a complete infection cycle with recombinant HCMV strains over-expressing full-length fluorescent pUL27 variants. Nested UL27 C-terminal truncation expression plasmids showed that amino acids 596–599 were required for the nucleolar localization of pUL27. These results indicate that the loss of a nucleolar function of pUL27 may contribute to MBV resistance, and that the nucleolar localization of pUL27 during HCMV infection depends not only on a carboxy-terminal domain but also on a property of pUL27 that is affected by MBV-resistant mutations, such as an interaction with component(s) of the nucleolus. PMID:21906628

  1. High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes

    PubMed Central

    Kawai, Mikihiko; Futagami, Taiki; Toyoda, Atsushi; Takaki, Yoshihiro; Nishi, Shinro; Hori, Sayaka; Arai, Wataru; Tsubouchi, Taishi; Morono, Yuki; Uchiyama, Ikuo; Ito, Takehiko; Fujiyama, Asao; Inagaki, Fumio; Takami, Hideto

    2014-01-01

    Marine subsurface sediments on the Pacific margin harbor diverse microbial communities even at depths of several hundreds meters below the seafloor (mbsf) or more. Previous PCR-based molecular analysis showed the presence of diverse reductive dehalogenase gene (rdhA) homologs in marine subsurface sediment, suggesting that anaerobic respiration of organohalides is one of the possible energy-yielding pathways in the organic-rich sedimentary habitat. However, primer-independent molecular characterization of rdhA has remained to be demonstrated. Here, we studied the diversity and frequency of rdhA homologs by metagenomic analysis of five different depth horizons (0.8, 5.1, 18.6, 48.5, and 107.0 mbsf) at Site C9001 off the Shimokita Peninsula of Japan. From all metagenomic pools, remarkably diverse rdhA-homologous sequences, some of which are affiliated with novel clusters, were observed with high frequency. As a comparison, we also examined frequency of dissimilatory sulfite reductase genes (dsrAB), key functional genes for microbial sulfate reduction. The dsrAB were also widely observed in the metagenomic pools whereas the frequency of dsrAB genes was generally smaller than that of rdhA-homologous genes. The phylogenetic composition of rdhA-homologous genes was similar among the five depth horizons. Our metagenomic data revealed that subseafloor rdhA homologs are more diverse than previously identified from PCR-based molecular studies. Spatial distribution of similar rdhA homologs across wide depositional ages indicates that the heterotrophic metabolic processes mediated by the genes can be ecologically important, functioning in the organic-rich subseafloor sedimentary biosphere. PMID:24624126

  2. High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes.

    PubMed

    Kawai, Mikihiko; Futagami, Taiki; Toyoda, Atsushi; Takaki, Yoshihiro; Nishi, Shinro; Hori, Sayaka; Arai, Wataru; Tsubouchi, Taishi; Morono, Yuki; Uchiyama, Ikuo; Ito, Takehiko; Fujiyama, Asao; Inagaki, Fumio; Takami, Hideto

    2014-01-01

    Marine subsurface sediments on the Pacific margin harbor diverse microbial communities even at depths of several hundreds meters below the seafloor (mbsf) or more. Previous PCR-based molecular analysis showed the presence of diverse reductive dehalogenase gene (rdhA) homologs in marine subsurface sediment, suggesting that anaerobic respiration of organohalides is one of the possible energy-yielding pathways in the organic-rich sedimentary habitat. However, primer-independent molecular characterization of rdhA has remained to be demonstrated. Here, we studied the diversity and frequency of rdhA homologs by metagenomic analysis of five different depth horizons (0.8, 5.1, 18.6, 48.5, and 107.0 mbsf) at Site C9001 off the Shimokita Peninsula of Japan. From all metagenomic pools, remarkably diverse rdhA-homologous sequences, some of which are affiliated with novel clusters, were observed with high frequency. As a comparison, we also examined frequency of dissimilatory sulfite reductase genes (dsrAB), key functional genes for microbial sulfate reduction. The dsrAB were also widely observed in the metagenomic pools whereas the frequency of dsrAB genes was generally smaller than that of rdhA-homologous genes. The phylogenetic composition of rdhA-homologous genes was similar among the five depth horizons. Our metagenomic data revealed that subseafloor rdhA homologs are more diverse than previously identified from PCR-based molecular studies. Spatial distribution of similar rdhA homologs across wide depositional ages indicates that the heterotrophic metabolic processes mediated by the genes can be ecologically important, functioning in the organic-rich subseafloor sedimentary biosphere.

  3. UL74 of Human Cytomegalovirus Contributes to Virus Release by Promoting Secondary Envelopment of Virions▿ †

    PubMed Central

    Jiang, Xiao Jing; Adler, Barbara; Sampaio, Kerstin Laib; Digel, Margarete; Jahn, Gerhard; Ettischer, Nicole; Stierhof, York-Dieter; Scrivano, Laura; Koszinowski, Ulrich; Mach, Michael; Sinzger, Christian

    2008-01-01

    The glycoprotein (g) complex gH/gL represents an essential part of the herpesvirus fusion machinery mediating entry of cell-free virions and cell-associated viral spread. In some herpesviruses additional proteins are associated with gH/gL contributing to the cell tropism of the respective virus. Human cytomegalovirus (HCMV) gH/gL forms complexes with either gO (UL74) or proteins of the UL128-131A gene locus. While a contribution of UL128-131A to endothelial cell tropism is known, the role of gO is less clear. We studied the role of gH/gL-associated proteins in HCMV replication in human foreskin fibroblasts (HFF) and human umbilical vein endothelial cells (HUVEC). Deletions of UL74 alone or in combination with mutations of the UL128-131A gene region were introduced into bacterial artificial chromosome vectors derived from the endotheliotropic strain TB40/E. Deletion of UL74 caused a profound defect regarding virus release from infected HFF and HUVEC. Large numbers of capsids accumulated in the cytoplasm of infected HFF but failed to acquire an envelope. Clear cell type differences were observed in the cell-associated spread of the UL74-defective virus. In HFF, focal growth was severely impaired, whereas it was normal in HUVEC. Deletion of UL131A abolished focal growth in endothelial cells. UL74/UL128-131A dual mutants showed severely impaired reconstitution efficiency. Our data suggest that gO plays a critical role in secondary envelopment and release of cell-free virions independent of the cell type but affects cell-associated growth specifically in HFF, whereas UL128-131A contributes to cell-associated spread in HFF and HUVEC. PMID:18184717

  4. The conserved N-terminal domain of herpes simplex virus 1 UL24 protein is sufficient to induce the spatial redistribution of nucleolin.

    PubMed

    Bertrand, Luc; Pearson, Angela

    2008-05-01

    UL24 is widely conserved among herpesviruses but its function during infection is poorly understood. Previously, we discovered a genetic link between UL24 and the herpes simplex virus 1-induced dispersal of the nucleolar protein nucleolin. Here, we report that in the absence of viral infection, transiently expressed UL24 accumulated in both the nucleus and the Golgi apparatus. In the majority of transfected cells, nuclear staining for UL24 was diffuse, but a minor staining pattern, whereby UL24 was present in nuclear foci corresponding to nucleoli, was also observed. Expression of UL24 correlated with the dispersal of nucleolin. This dispersal did not appear to be a consequence of a general disaggregation of nucleoli, as foci of fibrillarin staining persisted in cells expressing UL24. The conserved N-terminal region of UL24 was sufficient to cause this change in subcellular distribution of nucleolin. Interestingly, a bipartite nuclear localization signal predicted within the C terminus of UL24 was dispensable for nuclear localization. None of the five individual UL24 homology domains was required for nuclear or Golgi localization, but deletion of these domains resulted in the loss of nucleolin-dispersal activity. We determined that a nucleolar-targeting signal was contained within the first 60 aa of UL24. Our results show that the conserved N-terminal domain of UL24 is sufficient to specifically induce dispersal of nucleolin in the absence of other viral proteins or virus-induced cellular modifications. These results suggest that UL24 directly targets cellular factors that affect the composition of nucleoli.

  5. Improved Polysaccharide Production by Homologous Co-overexpression of Phosphoglucomutase and UDP Glucose Pyrophosphorylase Genes in the Mushroom Coprinopsis cinerea.

    PubMed

    Zhou, Jiangsheng; Bai, Yang; Dai, Rujuan; Guo, Xiaoli; Liu, Zhong-Hua; Yuan, Sheng

    2018-05-09

    Coprinopsis polysaccharides exhibit hypoglycemic and antioxidant activities. In this report, increases in polysaccharide production by homologous co-overexpression or individual homologous overexpression of phosphoglucomutase and UDP glucose pyrophosphorylase gene in Coprinopsis cinerea, which participate in polysaccharide biosynthesis. The transcription levels of the target genes were upregulated significantly in the oePGM-UGP strain when compared with the oePGM or oeUGP strain. The maximum intracellular polysaccharide content obtained in the oePGM-UGP strain was 1.49-fold higher than that of the WT strain, whereas a slight improvement in polysaccharide production was obtained in the oePGM and oeUGP strains. Extracellular polysaccharide production was enhanced by 75% in the oePGM-UGP strain when compared with that of the WT strain, whereas improvements of 30% and 16% were observed for the oePGM and oeUGP strains, respectively. These results show that multiple interventions in polysaccharide biosynthesis pathways of Basidiomycetes might improve polysaccharide yields when compared with that of single interventions.

  6. The Chromatin Remodeling Factor SMARCB1 Forms a Complex with Human Cytomegalovirus Proteins UL114 and UL44

    PubMed Central

    Ranneberg-Nilsen, Toril; Rollag, Halvor; Slettebakk, Ragnhild; Backe, Paul Hoff; Olsen, Øyvind; Luna, Luisa; Bjørås, Magnar

    2012-01-01

    Background Human cytomegalovirus (HCMV) uracil DNA glycosylase, UL114, is required for efficient viral DNA replication. Presumably, UL114 functions as a structural partner to other factors of the DNA-replication machinery and not as a DNA repair protein. UL114 binds UL44 (HCMV processivity factor) and UL54 (HCMV-DNA-polymerase). In the present study we have searched for cellular partners of UL114. Methodology/Principal Findings In a yeast two-hybrid screen SMARCB1, a factor of the SWI/SNF chromatin remodeling complex, was found to be an interacting partner of UL114. This interaction was confirmed in vitro by co-immunoprecipitation and pull-down. Immunofluorescence microscopy revealed that SMARCB1 along with BRG-1, BAF170 and BAF155, which are the core SWI/SNF components required for efficient chromatin remodeling, were present in virus replication foci 24–48 hours post infection (hpi). Furthermore a direct interaction was also demonstrated for SMARCB1 and UL44. Conclusions/Significance The core SWI/SNF factors required for efficient chromatin remodeling are present in the HCMV replication foci throughout infection. The proteins UL44 and UL114 interact with SMARCB1 and may participate in the recruitment of the SWI/SNF complex to the chromatinized virus DNA. Thus, the presence of the SWI/SNF chromatin remodeling complex in replication foci and its association with UL114 and with UL44 might imply its involvement in different DNA transactions. PMID:22479537

  7. Human cytomegalovirus DNA polymerase catalytic subunit pUL54 possesses independently acting nuclear localization and ppUL44 binding motifs.

    PubMed

    Alvisi, Gualtiero; Ripalti, Alessandro; Ngankeu, Apollinaire; Giannandrea, Maila; Caraffi, Stefano G; Dias, Manisha M; Jans, David A

    2006-10-01

    The catalytic subunit of human cytomegalovirus (HCMV) DNA polymerase pUL54 is a 1242-amino-acid protein, whose function, stimulated by the processivity factor, phosphoprotein UL44 (ppUL44), is essential for viral replication. The C-terminal residues (amino acids 1220-1242) of pUL54 have been reported to be sufficient for ppUL44 binding in vitro. Although believed to be important for functioning in the nuclei of infected cells, no data are available on either the interaction of pUL54 with ppUL44 in living mammalian cells or the mechanism of pUL54 nuclear transport and its relationship with that of ppUL44. The present study examines for the first time the nuclear import pathway of pUL54 and its interaction with ppUL44 using dual color, quantitative confocal laser scanning microscopy on live transfected cells and quantitative gel mobility shift assays. We showed that of two nuclear localization signals (NLSs) located at amino acids 1153-1159 (NLSA) and 1222-1227 (NLSB), NLSA is sufficient to confer nuclear localization on green fluorescent protein (GFP) by mediating interaction with importin alpha/beta. We also showed that pUL54 residues 1213-1242 are sufficient to confer ppUL44 binding abilities on GFP and that pUL54 and ppUL44 can be transported to the nucleus as a complex. Our work thus identified distinct sites within the HCMV DNA polymerase, which represent potential therapeutic targets and establishes the molecular basis of UL54 nuclear import.

  8. Intracellular Distribution of Capsid-Associated pUL77 of Human Cytomegalovirus and Interactions with Packaging Proteins and pUL93.

    PubMed

    Köppen-Rung, Pánja; Dittmer, Alexandra; Bogner, Elke

    2016-07-01

    DNA packaging into procapsids is a common multistep process during viral maturation in herpesviruses. In human cytomegalovirus (HCMV), the proteins involved in this process are terminase subunits pUL56 and pUL89, which are responsible for site-specific cleavage and insertion of the DNA into the procapsid via portal protein pUL104. However, additional viral proteins are required for the DNA packaging process. We have shown previously that the plasmid that encodes capsid-associated pUL77 encodes another potential player during capsid maturation. Pulse-chase experiments revealed that pUL77 is stably expressed during HCMV infection. Time course analysis demonstrated that pUL77 is expressed in the early late part of the infectious cycle. The sequence of pUL77 was analyzed to find nuclear localization sequences (NLSs), revealing monopartite NLSm at the N terminus and bipartite NLSb in the middle of pUL77. The potential NLSs were inserted into plasmid pHM829, which encodes a chimeric protein with β-galactosidase and green fluorescent protein. In contrast to pUL56, neither NLSm nor NLSb was sufficient for nuclear import. Furthermore, we investigated by coimmunoprecipitation whether packaging proteins, as well as pUL93, the homologue protein of herpes simplex virus 1 pUL17, are interaction partners of pUL77. The interactions between pUL77 and packaging proteins, as well as pUL93, were verified. We showed that the capsid-associated pUL77 is another potential player during capsid maturation of HCMV. Protein UL77 (pUL77) is a conserved core protein of HCMV. This study demonstrates for the first time that pUL77 has early-late expression kinetics during the infectious cycle and an intrinsic potential for nuclear translocation. According to its proposed functions in stabilization of the capsid and anchoring of the encapsidated DNA during packaging, interaction with further DNA packaging proteins is required. We identified physical interactions with terminase subunits pUL56 and pUL

  9. Rapid Hypothesis Testing with Candida albicans through Gene Disruption with Short Homology Regions

    PubMed Central

    Wilson, R. Bryce; Davis, Dana; Mitchell, Aaron P.

    1999-01-01

    Disruption of newly identified genes in the pathogen Candida albicans is a vital step in determination of gene function. Several gene disruption methods described previously employ long regions of homology flanking a selectable marker. Here, we describe disruption of C. albicans genes with PCR products that have 50 to 60 bp of homology to a genomic sequence on each end of a selectable marker. We used the method to disrupt two known genes, ARG5 and ADE2, and two sequences newly identified through the Candida genome project, HRM101 and ENX3. HRM101 and ENX3 are homologous to genes in the conserved RIM101 (previously called RIM1) and PacC pathways of Saccharomyces cerevisiae and Aspergillus nidulans. We show that three independent hrm101/hrm101 mutants and two independent enx3/enx3 mutants are defective in filamentation on Spider medium. These observations argue that HRM101 and ENX3 sequences are indeed portions of genes and that the respective gene products have related functions. PMID:10074081

  10. Herpes Simplex Virus 1 Mutant with Point Mutations in UL39 Is Impaired for Acute Viral Replication in Mice, Establishment of Latency, and Explant-Induced Reactivation.

    PubMed

    Mostafa, Heba H; Thompson, Thornton W; Konen, Adam J; Haenchen, Steve D; Hilliard, Joshua G; Macdonald, Stuart J; Morrison, Lynda A; Davido, David J

    2018-04-01

    In the process of generating herpes simplex virus 1 (HSV-1) mutations in the viral regulatory gene encoding infected cell protein 0 (ICP0), we isolated a viral mutant, termed KOS-NA, that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) of mice, defective in establishing a latent infection, and reactivated poorly from explanted TG. To identify the secondary mutation(s) responsible for the impaired phenotypes of this mutant, we sequenced the KOS-NA genome and noted that it contained two nonsynonymous mutations in UL39 , which encodes the large subunit of ribonucleotide reductase, ICP6. These mutations resulted in lysine-to-proline (residue 393) and arginine-to-histidine (residue 950) substitutions in ICP6. To determine whether alteration of these amino acids was responsible for the KOS-NA phenotypes in vivo , we recombined the wild-type UL39 gene into the KOS-NA genome and rescued its acute replication phenotypes in mice. To further establish the role of UL39 in KOS-NA's decreased pathogenicity, the UL39 mutations were recombined into HSV-1 (generating UL39 mut ), and this mutant virus showed reduced ocular and TG replication in mice comparable to that of KOS-NA. Interestingly, ICP6 protein levels were reduced in KOS-NA-infected cells relative to the wild-type protein. Moreover, we observed that KOS-NA does not counteract caspase 8-induced apoptosis, unlike wild-type strain KOS. Based on alignment studies with other HSV-1 ICP6 homologs, our data suggest that amino acid 950 of ICP6 likely plays an important role in ICP6 accumulation and inhibition of apoptosis, consequently impairing HSV-1 pathogenesis in a mouse model of HSV-1 infection. IMPORTANCE HSV-1 is a major human pathogen that infects ∼80% of the human population and can be life threatening to infected neonates or immunocompromised individuals. Effective therapies for treatment of recurrent HSV-1 infections are limited, which emphasizes a critical need to understand in

  11. Members of the Genera Paenibacillus and Rhodococcus Harbor Genes Homologous to Enterococcal Glycopeptide Resistance Genes vanA and vanB

    PubMed Central

    Guardabassi, L.; Christensen, H.; Hasman, H.; Dalsgaard, A.

    2004-01-01

    Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative d-Ala:d-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related to vanA (92 and 87%) and flanked by genes homologous to vanH and vanX in vanA operons. PMID:15561881

  12. Members of the genera Paenibacillus and Rhodococcus harbor genes homologous to enterococcal glycopeptide resistance genes vanA and vanB.

    PubMed

    Guardabassi, L; Christensen, H; Hasman, H; Dalsgaard, A

    2004-12-01

    Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative D-Ala:D-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related to vanA (92 and 87%) and flanked by genes homologous to vanH and vanX in vanA operons.

  13. The structure of cytomegalovirus immune modulator UL141 highlights structural Ig-fold versatility for receptor binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemčovičová, Ivana; Slovak Academy of Sciences, Dúbravská cesta 9, SK 84505 Bratislava; Zajonc, Dirk M., E-mail: dzajonc@liai.org

    2014-03-01

    The crystal structure of Human cytomegalovirus immune modulator UL141 was solved at 3.25 Å resolution. Here, a detailed analysis of its intimate dimerization interface and the biophysical properties of its receptor (TRAIL-R2 and CD155) binding interactions are presented. Natural killer (NK) cells are critical components of the innate immune system as they rapidly detect and destroy infected cells. To avoid immune recognition and to allow long-term persistence in the host, Human cytomegalovirus (HCMV) has evolved a number of genes to evade or inhibit immune effector pathways. In particular, UL141 can inhibit cell-surface expression of both the NK cell-activating ligand CD155more » as well as the TRAIL death receptors (TRAIL-R1 and TRAIL-R2). The crystal structure of unliganded HCMV UL141 refined to 3.25 Å resolution allowed analysis of its head-to-tail dimerization interface. A ‘dimerization-deficient’ mutant of UL141 (ddUL141) was further designed, which retained the ability to bind to TRAIL-R2 or CD155 while losing the ability to cross-link two receptor monomers. Structural comparison of unliganded UL141 with UL141 bound to TRAIL-R2 further identified a mobile loop that makes intimate contacts with TRAIL-R2 upon receptor engagement. Superposition of the Ig-like domain of UL141 on the CD155 ligand T-cell immunoreceptor with Ig and ITIM domains (TIGIT) revealed that UL141 can potentially engage CD155 similar to TIGIT by using the C′C′′ and GF loops. Further mutations in the TIGIT binding site of CD155 (Q63R and F128R) abrogated UL141 binding, suggesting that the Ig-like domain of UL141 is a viral mimic of TIGIT, as it targets the same binding site on CD155 using similar ‘lock-and-key’ interactions. Sequence alignment of the UL141 gene and its orthologues also showed conservation in this highly hydrophobic (L/A)X{sub 6}G ‘lock’ motif for CD155 binding as well as conservation of the TRAIL-R2 binding patches, suggesting that these host

  14. Identification of a short sequence in the HCMV terminase pUL56 essential for interaction with pUL89 subunit.

    PubMed

    Ligat, G; Jacquet, C; Chou, S; Couvreux, A; Alain, S; Hantz, S

    2017-08-18

    The human cytomegalovirus (HCMV) terminase complex consists of several components acting together to cleave viral DNA into unit length genomes and translocate them into capsids, a critical process in the production of infectious virions subsequent to DNA replication. Previous studies suggest that the carboxyl-terminal portion of the pUL56 subunit interacts with the pUL89 subunit. However, the specific interacting residues of pUL56 remain unknown. We identified a conserved sequence in the C-terminal moiety of pUL56 ( 671 WMVVKYMGFF 680 ). Overrepresentation of conserved aromatic amino acids through 20 herpesviruses homologues of pUL56 suggests an involvement of this short peptide into the interaction between the larger pUL56 terminase subunit and the smaller pUL89 subunit. Use of Alpha technology highlighted an interaction between pUL56 and pUL89 driven through the peptide 671 WMVVKYMGFF 680 . A deletion of these residues blocks viral replication. We hypothesize that it is the consequence of the disruption of the pUL56-pUL89 interaction. These results show that this motif is essential for HCMV replication and could be a target for development of new small antiviral drugs or peptidomimetics.

  15. Dual Function of the pUL7-pUL51 Tegument Protein Complex in Herpes Simplex Virus 1 Infection.

    PubMed

    Albecka, Anna; Owen, Danielle J; Ivanova, Lyudmila; Brun, Juliane; Liman, Rukayya; Davies, Laura; Ahmed, M Firoz; Colaco, Susanna; Hollinshead, Michael; Graham, Stephen C; Crump, Colin M

    2017-01-15

    The tegument of herpesviruses is a highly complex structural layer between the nucleocapsid and the envelope of virions. Tegument proteins play both structural and regulatory functions during replication and spread, but the interactions and functions of many of these proteins are poorly understood. Here we focus on two tegument proteins from herpes simplex virus 1 (HSV-1), pUL7 and pUL51, which have homologues in all other herpesviruses. We have now identified that HSV-1 pUL7 and pUL51 form a stable and direct protein-protein interaction, their expression levels rely on the presence of each other, and they function as a complex in infected cells. We demonstrate that expression of the pUL7-pUL51 complex is important for efficient HSV-1 assembly and plaque formation. Furthermore, we also discovered that the pUL7-pUL51 complex localizes to focal adhesions at the plasma membrane in both infected cells and in the absence of other viral proteins. The expression of pUL7-pUL51 is important to stabilize focal adhesions and maintain cell morphology in infected cells and cells infected with viruses lacking pUL7 and/or pUL51 round up more rapidly than cells infected with wild-type HSV-1. Our data suggest that, in addition to the previously reported functions in virus assembly and spread for pUL51, the pUL7-pUL51 complex is important for maintaining the attachment of infected cells to their surroundings through modulating the activity of focal adhesion complexes. Herpesviridae is a large family of highly successful human and animal pathogens. Virions of these viruses are composed of many different proteins, most of which are contained within the tegument, a complex structural layer between the nucleocapsid and the envelope within virus particles. Tegument proteins have important roles in assembling virus particles as well as modifying host cells to promote virus replication and spread. However, little is known about the function of many tegument proteins during virus

  16. Use of RecA protein to enrich for homologous genes in a genomic library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taidi-Laskowski, B.; Grumet, F.C.; Tyan, D.

    1988-08-25

    RecA protein-coated probe has been utilized to enrich genomic digests for desired genes in order to facilitate cloning from genomic libraries. Using a previously cloned HLA-B27 gene as the recA-coated enrichment probe, the authors obtained a mean 108x increase in the ratio of specific to nonspecific plaques in lambda libraries screened for B27 variant alleles of estimated 99% homology to the probe. Class I genes of lesser homology were less enriched. Loss of genomic DNA during the enrichment procedure can, however, restrict application of this technique whenever starting genomic DNA is very limited. Nevertheless, the impressive reduction in cloning effortmore » and material makes recA enrichment a useful new tool for cloning homologous genes from genomic DNA.« less

  17. Mutations in the Putative Zinc-Binding Motif of UL52 Demonstrate a Complex Interdependence between the UL5 and UL52 Subunits of the Human Herpes Simplex Virus Type 1 Helicase/Primase Complex

    PubMed Central

    Chen, Yan; Carrington-Lawrence, Stacy D.; Bai, Ping; Weller, Sandra K.

    2005-01-01

    Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase (UL5/8/52) complex. UL5 contains seven motifs found in helicase superfamily 1, and UL52 contains conserved motifs found in primases. The contributions of each subunit to the biochemical activities of the complex, however, remain unclear. We have previously demonstrated that a mutation in the putative zinc finger at UL52 C terminus abrogates not only primase but also ATPase, helicase, and DNA-binding activities of a UL5/UL52 subcomplex, indicating a complex interdependence between the two subunits. To test this hypothesis and to further investigate the role of the zinc finger in the enzymatic activities of the helicase-primase, a series of mutations were constructed in this motif. They differed in their ability to complement a UL52 null virus: totally defective, partial complementation, and potentiating. In this study, four of these mutants were studied biochemically after expression and purification from insect cells infected with recombinant baculoviruses. All mutants show greatly reduced primase activity. Complementation-defective mutants exhibited severe defects in ATPase, helicase, and DNA-binding activities. Partially complementing mutants displayed intermediate levels of these activities, except that one showed a wild-type level of helicase activity. These data suggest that the UL52 zinc finger motif plays an important role in the activities of the helicase-primase complex. The observation that mutations in UL52 affected helicase, ATPase, and DNA-binding activities indicates that UL52 binding to DNA via the zinc finger may be necessary for loading UL5. Alternatively, UL5 and UL52 may share a DNA-binding interface. PMID:15994803

  18. Mutations in the putative zinc-binding motif of UL52 demonstrate a complex interdependence between the UL5 and UL52 subunits of the human herpes simplex virus type 1 helicase/primase complex.

    PubMed

    Chen, Yan; Carrington-Lawrence, Stacy D; Bai, Ping; Weller, Sandra K

    2005-07-01

    Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase (UL5/8/52) complex. UL5 contains seven motifs found in helicase superfamily 1, and UL52 contains conserved motifs found in primases. The contributions of each subunit to the biochemical activities of the complex, however, remain unclear. We have previously demonstrated that a mutation in the putative zinc finger at UL52 C terminus abrogates not only primase but also ATPase, helicase, and DNA-binding activities of a UL5/UL52 subcomplex, indicating a complex interdependence between the two subunits. To test this hypothesis and to further investigate the role of the zinc finger in the enzymatic activities of the helicase-primase, a series of mutations were constructed in this motif. They differed in their ability to complement a UL52 null virus: totally defective, partial complementation, and potentiating. In this study, four of these mutants were studied biochemically after expression and purification from insect cells infected with recombinant baculoviruses. All mutants show greatly reduced primase activity. Complementation-defective mutants exhibited severe defects in ATPase, helicase, and DNA-binding activities. Partially complementing mutants displayed intermediate levels of these activities, except that one showed a wild-type level of helicase activity. These data suggest that the UL52 zinc finger motif plays an important role in the activities of the helicase-primase complex. The observation that mutations in UL52 affected helicase, ATPase, and DNA-binding activities indicates that UL52 binding to DNA via the zinc finger may be necessary for loading UL5. Alternatively, UL5 and UL52 may share a DNA-binding interface.

  19. Domain Interaction Studies of Herpes Simplex Virus 1 Tegument Protein UL16 Reveal Its Interaction with Mitochondria

    PubMed Central

    Chadha, Pooja; Sarfo, Akua; Zhang, Dan; Abraham, Thomas; Carmichael, Jillian

    2016-01-01

    -infected cells lays a foundational framework for future investigations aimed at deciphering the structure and function of not just UL16 of HSV-1 but also its homologs in other herpesviruses. PMID:27847362

  20. Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing.

    PubMed

    Mandelker, Diana; Schmidt, Ryan J; Ankala, Arunkanth; McDonald Gibson, Kristin; Bowser, Mark; Sharma, Himanshu; Duffy, Elizabeth; Hegde, Madhuri; Santani, Avni; Lebo, Matthew; Funke, Birgit

    2016-12-01

    Next-generation sequencing (NGS) is now routinely used to interrogate large sets of genes in a diagnostic setting. Regions of high sequence homology continue to be a major challenge for short-read technologies and can lead to false-positive and false-negative diagnostic errors. At the scale of whole-exome sequencing (WES), laboratories may be limited in their knowledge of genes and regions that pose technical hurdles due to high homology. We have created an exome-wide resource that catalogs highly homologous regions that is tailored toward diagnostic applications. This resource was developed using a mappability-based approach tailored to current Sanger and NGS protocols. Gene-level and exon-level lists delineate regions that are difficult or impossible to analyze via standard NGS. These regions are ranked by degree of affectedness, annotated for medical relevance, and classified by the type of homology (within-gene, different functional gene, known pseudogene, uncharacterized noncoding region). Additionally, we provide a list of exons that cannot be analyzed by short-amplicon Sanger sequencing. This resource can help guide clinical test design, supplemental assay implementation, and results interpretation in the context of high homology.Genet Med 18 12, 1282-1289.

  1. Genomic variation of the fibropapilloma-associated marine turtle herpes virus across seven geographic areas and three host species

    USGS Publications Warehouse

    Greenblatt, R.J.; Quackenbush, S.L.; Casey, R.N.; Rovnak, J.; Balazs, G.H.; Work, Thierry M.; Casey, J.W.; Sutton, C.A.

    2005-01-01

    Fibropapillomatosis (FP) of marine turtles is an emerging neoplastic disease associated with infection by a novel turtle herpesvirus, fibropapilloma-associated turtle herpesvirus (FPTHV). This report presents 23 kb of the genome of an FPTHV infecting a Hawaiian green turtle (Chelonia mydas). By sequence homology, the open reading frames in this contig correspond to herpes simplex virus genes UL23 through UL36. The order, orientation, and homology of these putative genes indicate that FPTHV is a member of the Alphaherpesvirinae. The UL27-, UL30-, and UL34-homologous open reading frames from FPTHVs infecting nine FP-affected marine turtles from seven geographic areas and three turtle species (C. mydas, Caretta caretta, and Lepidochelys olivacea) were compared. A high degree of nucleotide sequence conservation was found among these virus variants. However, geographic variations were also found: the FPTHVs examined here form four groups, corresponding to the Atlantic Ocean, West pacific, mid-Pacific, and east Pacific. Our results indicate that FPTHV was established in marine turtle populations prior to the emergence of FP as it is currently known.

  2. Genomic Sequencing and Characterization of Cynomolgus Macaque Cytomegalovirus▿

    PubMed Central

    Marsh, Angie K.; Willer, David O.; Ambagala, Aruna P. N.; Dzamba, Misko; Chan, Jacqueline K.; Pilon, Richard; Fournier, Jocelyn; Sandstrom, Paul; Brudno, Michael; MacDonald, Kelly S.

    2011-01-01

    Cytomegalovirus (CMV) infection is the most common opportunistic infection in immunosuppressed individuals, such as transplant recipients or people living with HIV/AIDS, and congenital CMV is the leading viral cause of developmental disabilities in infants. Due to the highly species-specific nature of CMV, animal models that closely recapitulate human CMV (HCMV) are of growing importance for vaccine development. Here we present the genomic sequence of a novel nonhuman primate CMV from cynomolgus macaques (Macaca fascicularis; CyCMV). CyCMV (Ottawa strain) was isolated from the urine of a healthy, captive-bred, 4-year-old cynomolgus macaque of Philippine origin, and the viral genome was sequenced using next-generation Illumina sequencing to an average of 516-fold coverage. The CyCMV genome is 218,041 bp in length, with 49.5% G+C content and 84% protein-coding density. We have identified 262 putative open reading frames (ORFs) with an average coding length of 789 bp. The genomic organization of CyCMV is largely colinear with that of rhesus macaque CMV (RhCMV). Of the 262 CyCMV ORFs, 137 are homologous to HCMV genes, 243 are homologous to RhCMV 68.1, and 200 are homologous to RhCMV 180.92. CyCMV encodes four ORFs that are not present in RhCMV strain 68.1 or 180.92 but have homologies with HCMV (UL30, UL74A, UL126, and UL146). Similar to HCMV, CyCMV does not produce the RhCMV-specific viral homologue of cyclooxygenase-2. This newly characterized CMV may provide a novel model in which to study CMV biology and HCMV vaccine development. PMID:21994460

  3. Bovine herpesvirus type-1 glycoprotein K (gK) interacts with UL20 and is required for infectious virus production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, Muzammel; Stanfield, Brent; Kousoulas, Kons

    We have previously shown that the HSV-1 gK and UL20 proteins interact and function in virion envelopment, membrane fusion, and neuronal entry. Alignment of the predicted secondary structures of gKs encoded by BoHV-1, HSV-1, HSV-2, EHV-1 and VZV indicated a high degree of domain conservation. Two BoHV-1 gK-null mutant viruses were created by either gK gene deletion or stop codon insertion. In addition, a V5 epitope-tag was inserted at the carboxyl terminus of gK gene to detect gK. The engineered gK-null mutant viruses failed to replicate and produce viral plaques. Co-immunoprecipitation of gK and UL20 expressed via different methods revealedmore » that gK and UL20 physically interacted in the presence or absence of other viral proteins. Confocal microscopy showed that gK and UL20 colocalized in infected cells. These results indicate that BoHV-1 gK and UL20 may function in a similar manner to other alphaherpesvirus orthologues specified by HSV-1, PRV and EHV-1. -- Highlights: •Glycoprotein K(gK) is conserved among alphaherpesviruses and serves similar functions. •The bovine herpesvirus-1 gK and UL20 proteins physically interact in a similar manner to herpes simplex virus type 1 and equine herpesvirus-1. •The bovine herpesvirus-1 (BoHV-1) gK interacts with UL20 and is essential for virus replication and spread.« less

  4. The primary structures of two yeast enolase genes. Homology between the 5' noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes.

    PubMed

    Holland, M J; Holland, J P; Thill, G P; Jackson, K A

    1981-02-10

    Segments of yeast genomic DNA containing two enolase structural genes have been isolated by subculture cloning procedures using a cDNA hybridization probe synthesized from purified yeast enolase mRNA. Based on restriction endonuclease and transcriptional maps of these two segments of yeast DNA, each hybrid plasmid contains a region of extensive nucleotide sequence homology which forms hybrids with the cDNA probe. The DNA sequences which flank this homologous region in the two hybrid plasmids are nonhomologous indicating that these sequences are nontandemly repeated in the yeast genome. The complete nucleotide sequence of the coding as well as the flanking noncoding regions of these genes has been determined. The amino acid sequence predicted from one reading frame of both structural genes is extremely similar to that determined for yeast enolase (Chin, C. C. Q., Brewer, J. M., Eckard, E., and Wold, F. (1981) J. Biol. Chem. 256, 1370-1376), confirming that these isolated structural genes encode yeast enolase. The nucleotide sequences of the coding regions of the genes are approximately 95% homologous, and neither gene contains an intervening sequence. Codon utilization in the enolase genes follows the same biased pattern previously described for two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes (Holland, J. P., and Holland, M. J. (1980) J. Biol. Chem. 255, 2596-2605). DNA blotting analysis confirmed that the isolated segments of yeast DNA are colinear with yeast genomic DNA and that there are two nontandemly repeated enolase genes per haploid yeast genome. The noncoding portions of the two enolase genes adjacent to the initiation and termination codons are approximately 70% homologous and contain sequences thought to be involved in the synthesis and processing messenger RNA. Finally there are regions of extensive homology between the two enolase structural genes and two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes within the 5

  5. Bioinformatics analysis and characteristics of VP23 encoded by the newly identified UL18 gene of duck enteritis virus

    NASA Astrophysics Data System (ADS)

    Chen, Xiwen; Cheng, Anchun; Wang, Mingshu; Xiang, Jun

    2011-10-01

    In this study, the predicted information about structures and functions of VP23 encoded by the newly identified DEV UL18 gene through bioinformatics softwares and tools. The DEV UL18 was predicted to encode a polypeptide with 322 amino acids, termed VP23, with a putative molecular mass of 35.250 kDa and a predicted isoelectric point (PI) of 8.37, no signal peptide and transmembrane domain in the polypeptide. The prediction of subcellular localization showed that the DEV-VP23 located at endoplasmic reticulum with 33.3%, mitochondrial with 22.2%, extracellular, including cell wall with 11.1%, vesicles of secretory system with 11.1%, Golgi with 11.1%, and plasma membrane with 11.1%. The acid sequence of analysis showed that the potential antigenic epitopes are situated in 45-47, 53-60, 102-105, 173-180, 185-189, 260-265, 267-271, and 292-299 amino acids. All the consequences inevitably provide some insights for further research about the DEV-VP23 and also provide a fundament for further study on the the new type clinical diagnosis of DEV and can be used for the development of new DEV vaccine.

  6. Expression and distribution of the duck enteritis virus UL51 protein in experimentally infected ducks.

    PubMed

    Shen, Chanjuan; Cheng, Anchun; Wang, Mingshu; Xu, Chao; Jia, Renyong; Chen, Xiaoyue; Zhu, Dekang; Luo, Qihui; Cui, Hengmin; Zhou, Yi; Wang, Yin; Xu, Zhiwen; Chen, Zhengli; Wang, Xiaoyu

    2010-06-01

    To determine the expression and distribution of tegument proteins encoded by duck enteritis virus (DEV) UL51 gene in tissues of experimentally infected ducks, for the first time, an immunoperoxidase staining method to detect UL51 protein (UL51p) in paraffin-embedded tissues is reported. A rabbit anti-UL51 polyclonal serum, raised against a recombinant 6-His-UL51 fusion protein expressed in Escherichia coli, was prepared, purified, and used as primary antibodies. Fifty-eight 30-day-old DEV-free ducks were intramuscularly inoculated with the pathogenic DEV CHv strain as infection group, and two ducks were selected as preinfection group. The tissues were collected at sequential time points between 2 and 480 hr postinoculation (PI) and prepared for immunoperoxidase staining. DEV UL51p was first found in the spleen and liver at 8 hr PI; in the bursa of Fabricius and thymus at 12 hr PI; in the Harders glands, esophagus, small intestine (including the duodenum, jejunum, and ileum), and large intestine (including the caecum and rectum) at 24 hr PI; in the glandularis ventriculus at 48 hr PI; and in the pancreas, cerebrum, kidney, lung, and myocardium at 72 hr PI. Throughout the infection process, the UL51p was not seen in the muscle. Furthermore, the intensity of positive staining of DEV UL51p antigen in various tissues increased sharply from 8 to 96 hr PI, peaked during 120-144 hr PI, and then decreased steadily from 216 to 480 hr PI, suggesting that the expressional levels of DEV UL51p in systemic organs have a close correlation with the progression of duck virus enteritis (DVE) disease. A number of DEV UL51p was distributed in the bursa of Fabricius, thymus, spleen, liver, esophagus, small intestine, and large intestine of DEV-infected ducks, whereas less DEV UL51p was distributed in the Harders glands, glandularis ventriculus, cerebrum, kidney, lung, pancreas, and myocardium of DEV-infected ducks. Moreover, DEV UL51p can be expressed in the cytoplasm of various types

  7. Molecular evolution of an Avirulence Homolog (Avh) gene subfamily in Phytophthora ramorum

    Treesearch

    GossErica M.; Caroline M. Press; Niklaus J. Grünwald

    2008-01-01

    Pathogen effectors can serve a virulence function on behalf of the pathogen or trigger a rapid defense response in resistant hosts. Sequencing of the Phytophthora ramorum genome and subsequent analysis identified a diverse superfamily of approximately 350 genes that are homologous to the four known avirulence genes in plant pathogenic oomycetes and...

  8. Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform

    PubMed Central

    Klarenbeek, Alex; Mazouari, Khalil El; Desmyter, Aline; Blanchetot, Christophe; Hultberg, Anna; de Jonge, Natalie; Roovers, Rob C; Cambillau, Christian; Spinelli, Sylvia; Del-Favero, Jurgen; Verrips, Theo; de Haard, Hans J; Achour, Ikbel

    2015-01-01

    Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; however, the germline V repertoires of camelid heavy and light chains are still incomplete and their therapeutic potential is only beginning to be appreciated. We therefore leveraged the publicly available HTG and WGS databases of Lama pacos and Camelus ferus to retrieve the germline repertoire of V genes using human IGV genes as reference. In addition, we amplified IGKV and IGLV genes to uncover the V germline repertoire of Lama glama and sequenced BAC clones covering part of the Lama pacos IGK and IGL loci. Our in silico analysis showed that camelid counterparts of all human IGKV and IGLV families and most IGHV families could be identified, based on canonical structure and sequence homology. Interestingly, this sequence homology seemed largely restricted to the Ig V genes and was far less apparent in other genes: 6 therapeutically relevant target genes differed significantly from their human orthologs. This contributed to efficient immunization of llamas with the human proteins CD70, MET, interleukin (IL)-1β and IL-6, resulting in large panels of functional antibodies. The in silico predicted human-homologous canonical folds of camelid-derived antibodies were confirmed by X-ray crystallography solving the structure of 2 selected camelid anti-CD70 and anti-MET antibodies. These antibodies showed identical fold combinations as found in the corresponding human germline V families, yielding binding site structures closely similar to those occurring in human antibodies. In conclusion, our results indicate that active immunization of camelids can be a powerful therapeutic antibody platform. PMID:26018625

  9. Horizontal transmission of Marek's disease virus requires US2, the UL13 protein kinase, and gC.

    PubMed

    Jarosinski, Keith W; Margulis, Neil G; Kamil, Jeremy P; Spatz, Stephen J; Nair, Venugopal K; Osterrieder, Nikolaus

    2007-10-01

    Marek's disease virus (MDV) causes a general malaise in chickens that is mostly characterized by the development of lymphoblastoid tumors in multiple organs. The use of bacterial artificial chromosomes (BACs) for cloning and manipulation of the MDV genome has facilitated characterization of specific genes and genomic regions. The development of most MDV BACs, including pRB-1B-5, derived from a very virulent MDV strain, involved replacement of the US2 gene with mini-F vector sequences. However, when reconstituted viruses based on pRB-1B were used in pathogenicity studies, it was discovered that contact chickens housed together with experimentally infected chickens did not contract Marek's disease (MD), indicating a lack of horizontal transmission. Staining of feather follicle epithelial cells in the skins of infected chickens showed that virus was present but was unable to be released and/or infect susceptible chickens. Restoration of US2 and removal of mini-F sequences within viral RB-1B did not alter this characteristic, although in vivo viremia levels were increased significantly. Sequence analyses of pRB-1B revealed that the UL13, UL44, and US6 genes encoding the UL13 serine/threonine protein kinase, glycoprotein C (gC), and gD, respectively, harbored frameshift mutations. These mutations were repaired individually, or in combination, using two-step Red mutagenesis. Reconstituted viruses were tested for replication, MD incidence, and their abilities to horizontally spread to contact chickens. The experiments clearly showed that US2, UL13, and gC in combination are essential for horizontal transmission of MDV and that none of the genes alone is able to restore this phenotype.

  10. A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve.

    PubMed

    Martínez, Noelia; Luque, Roberto; Milani, Christian; Ventura, Marco; Bañuelos, Oscar; Margolles, Abelardo

    2018-05-15

    Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve -sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island. IMPORTANCE Bifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this

  11. Identification and chromosomal localization of Atm, the mouse homolog of the ataxia-telangiectasia gene.

    PubMed

    Pecker, I; Avraham, K B; Gilbert, D J; Savitsky, K; Rotman, G; Harnik, R; Fukao, T; Schröck, E; Hirotsune, S; Tagle, D A; Collins, F S; Wynshaw-Boris, A; Ried, T; Copeland, N G; Jenkins, N A; Shiloh, Y; Ziv, Y

    1996-07-01

    Atm, the mouse homolog of the human ATM gene defective in ataxia-telangiectasia (A-T), has been identified. The entire coding sequence of the Atm transcript was cloned and found to contain an open reading frame encoding a protein of 3066 amino acids with 84% overall identity and 91% similarity to the human ATM protein. Variable levels of expression of Atm were observed in different tissues. Fluorescence in situ hybridization and linkage analysis located the Atm gene on mouse chromosome 9, band 9C, in a region homologous to the ATM region on human chromosome 11q22-q23.

  12. Inactivation of retinoblastoma protein does not overcome the requirement for human cytomegalovirus UL97 in lamina disruption and nuclear egress.

    PubMed

    Reim, Natalia I; Kamil, Jeremy P; Wang, Depeng; Lin, Alison; Sharma, Mayuri; Ericsson, Maria; Pesola, Jean M; Golan, David E; Coen, Donald M

    2013-05-01

    Human cytomegalovirus (HCMV) encodes one conventional protein kinase, UL97. During infection, UL97 phosphorylates the retinoblastoma tumor suppressor protein (pRb) on sites ordinarily phosphorylated by cyclin-dependent kinases (CDK), inactivating the ability of pRb to repress host genes required for cell cycle progression to S phase. UL97 is important for viral DNA synthesis in quiescent cells, but this function can be replaced by human papillomavirus type 16 E7, which targets pRb for degradation. However, viruses in which E7 replaces UL97 are still defective for virus production. UL97 is also required for efficient nuclear egress of viral nucleocapsids, which is associated with disruption of the nuclear lamina during infection, and phosphorylation of lamin A/C on serine 22, which antagonizes lamin polymerization. We investigated whether inactivation of pRb might overcome the requirement of UL97 for these roles, as pRb inactivation induces CDK1, and CDK1 phosphorylates lamin A/C on serine 22. We found that lamin A/C serine 22 phosphorylation during HCMV infection correlated with expression of UL97 and was considerably delayed in UL97-null mutants, even when E7 was expressed. E7 failed to restore gaps in the nuclear lamina seen in wild-type but not UL97-null virus infections. In electron microscopy analyses, a UL97-null virus expressing E7 was as impaired as a UL97-null mutant in cytoplasmic accumulation of viral nucleocapsids. Our results demonstrate that pRb inactivation is insufficient to restore efficient viral nuclear egress of HCMV in the absence of UL97 and instead argue further for a direct role of UL97 in this stage of the infectious cycle.

  13. An aureobasidin A resistance gene isolated from Aspergillus is a homolog of yeast AUR1, a gene responsible for inositol phosphorylceramide (IPC) synthase activity.

    PubMed

    Kuroda, M; Hashida-Okado, T; Yasumoto, R; Gomi, K; Kato, I; Takesako, K

    1999-03-01

    The AUR1 gene of Saccharomyces cerevisiae, mutations in which confer resistance to the antibiotic aureobasidin A, is necessary for inositol phosphorylceramide (IPC) synthase activity. We report the molecular cloning and characterization of the Aspergillus nidulans aurA gene, which is homologous to AUR1. A single point mutation in the aurA gene of A. nidulans confers a high level of resistance to aureobasidin A. The A. nidulans aurA gene was used to identify its homologs in other Aspergillus species, including A. fumigatus, A. niger, and A. oryzae. The deduced amino acid sequence of an aurA homolog from the pathogenic fungus A. fumigatus showed 87% identity to that of A. nidulans. The AurA proteins of A. nidulans and A. fumigatus shared common characteristics in primary structure, including sequence, hydropathy profile, and N-glycosylation sites, with their S. cerevisiae, Schizosaccharomyces pombe, and Candida albicans counterparts. These results suggest that the aureobasidin resistance gene is conserved evolutionarily in various fungi.

  14. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog- dependent

    PubMed Central

    Asselman, Jana; Shaw, Joseph R.; Glaholt, Stephen P.; Colbourne, John K.; De Schamphelaere, Karel AC.

    2013-01-01

    Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species. PMID:24113165

  15. A greedy, graph-based algorithm for the alignment of multiple homologous gene lists.

    PubMed

    Fostier, Jan; Proost, Sebastian; Dhoedt, Bart; Saeys, Yvan; Demeester, Piet; Van de Peer, Yves; Vandepoele, Klaas

    2011-03-15

    Many comparative genomics studies rely on the correct identification of homologous genomic regions using accurate alignment tools. In such case, the alphabet of the input sequences consists of complete genes, rather than nucleotides or amino acids. As optimal multiple sequence alignment is computationally impractical, a progressive alignment strategy is often employed. However, such an approach is susceptible to the propagation of alignment errors in early pairwise alignment steps, especially when dealing with strongly diverged genomic regions. In this article, we present a novel accurate and efficient greedy, graph-based algorithm for the alignment of multiple homologous genomic segments, represented as ordered gene lists. Based on provable properties of the graph structure, several heuristics are developed to resolve local alignment conflicts that occur due to gene duplication and/or rearrangement events on the different genomic segments. The performance of the algorithm is assessed by comparing the alignment results of homologous genomic segments in Arabidopsis thaliana to those obtained by using both a progressive alignment method and an earlier graph-based implementation. Especially for datasets that contain strongly diverged segments, the proposed method achieves a substantially higher alignment accuracy, and proves to be sufficiently fast for large datasets including a few dozens of eukaryotic genomes. http://bioinformatics.psb.ugent.be/software. The algorithm is implemented as a part of the i-ADHoRe 3.0 package.

  16. Alternate promoter selection within a human cytomegalovirus immediate-early and early transcription unit (UL119-115) defines true late transcripts containing open reading frames for putative viral glycoproteins.

    PubMed Central

    Leatham, M P; Witte, P R; Stinski, M F

    1991-01-01

    The human cytomegalovirus open reading frames (ORFs) UL119 through UL115 (UL119-115) are located downstream of the immediate-early 1 and 2 transcription units. The promoter upstream of UL119 is active at all times after infection and drives the synthesis of a spliced 3.1-kb mRNA. The viral mRNA initiates in UL119, contains UL119-117 and UL116, and terminates just downstream of UL115. True late transcripts that are detected only after viral DNA synthesis originate from this transcription unit. True late mRNAs of 2.1 kb, containing ORFs UL116 and UL115, and 1.2 kb, containing ORF UL115 only, are synthesized. The true late viral mRNAs are 3' coterminal with the 3.1-kb mRNA. This transcription unit is an example of late promoters nested within an immediate-early-early transcription unit. The gene products of UL119-117, UL116, and UL115 are predicted to be glycoproteins. Efficient expression of the downstream ORFs at late times after infection may be related to alternate promoter usage and downstream cap site selection. Images PMID:1717716

  17. Comparative analyses of putative toxin gene homologs from an Old World viper, Daboia russelii

    PubMed Central

    Krishnan, Neeraja M.

    2017-01-01

    Availability of snake genome sequences has opened up exciting areas of research on comparative genomics and gene diversity. One of the challenges in studying snake genomes is the acquisition of biological material from live animals, especially from the venomous ones, making the process cumbersome and time-consuming. Here, we report comparative sequence analyses of putative toxin gene homologs from Russell’s viper (Daboia russelii) using whole-genome sequencing data obtained from shed skin. When compared with the major venom proteins in Russell’s viper studied previously, we found 45–100% sequence similarity between the venom proteins and their putative homologs in the skin. Additionally, comparative analyses of 20 putative toxin gene family homologs provided evidence of unique sequence motifs in nerve growth factor (NGF), platelet derived growth factor (PDGF), Kunitz/Bovine pancreatic trypsin inhibitor (Kunitz BPTI), cysteine-rich secretory proteins, antigen 5, andpathogenesis-related1 proteins (CAP) and cysteine-rich secretory protein (CRISP). In those derived proteins, we identified V11 and T35 in the NGF domain; F23 and A29 in the PDGF domain; N69, K2 and A5 in the CAP domain; and Q17 in the CRISP domain to be responsible for differences in the largest pockets across the protein domain structures in crotalines, viperines and elapids from the in silico structure-based analysis. Similarly, residues F10, Y11 and E20 appear to play an important role in the protein structures across the kunitz protein domain of viperids and elapids. Our study highlights the usefulness of shed skin in obtaining good quality high-molecular weight DNA for comparative genomic studies, and provides evidence towards the unique features and evolution of putative venom gene homologs in vipers. PMID:29230357

  18. Herpes simplex virus 2 UL13 protein kinase disrupts nuclear lamins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano-Monreal, Gina L.; Wylie, Kristine M.; Cao, Feng

    2009-09-15

    Herpesviruses must cross the inner nuclear membrane and underlying lamina to exit the nucleus. HSV-1 US3 and PKC can phosphorylate lamins and induce their dispersion but do not elicit all of the phosphorylated lamin species produced during infection. UL13 is a serine threonine protein kinase conserved among many herpesviruses. HSV-1 UL13 phosphorylates US3 and thereby controls UL31 and UL34 nuclear rim localization, indicating a role in nuclear egress. Here, we report that HSV-2 UL13 alone induced conformational changes in lamins A and C and redistributed lamin B1 from the nuclear rim to intranuclear granular structures. HSV-2 UL13 directly phosphorylated laminsmore » A, C, and B1 in vitro, and the lamin A1 tail domain. HSV-2 infection recapitulated the lamin alterations seen upon expression of UL13 alone, and other alterations were also observed, indicating that additional viral and/or cellular proteins cooperate with UL13 to alter lamins during HSV-2 infection to allow nuclear egress.« less

  19. Generating gene knockout rats by homologous recombination in embryonic stem cells

    PubMed Central

    Tong, Chang; Huang, Guanyi; Ashton, Charles; Li, Ping; Ying, Qi-Long

    2013-01-01

    We describe here a detailed protocol for generating gene knockout rats by homologous recombination in embryonic stem (ES) cells. This protocol comprises the following procedures: derivation and expansion of rat ES cells, construction of gene-targeting vectors, generation of gene-targeted rat ES cells and, finally, production of gene-targeted rats. The major differences between this protocol and the classical mouse gene-targeting protocol include ES cell culture methods, drug selection scheme, colony picking and screening strategies. This ES cell–based gene-targeting technique allows sophisticated genetic modifications to be performed in the rat, as many laboratories have been doing in the mouse for the past two decades. Recently we used this protocol to generate Tp53 (also known as p53) gene knockout rats. The entire process requires ~1 year to complete, from derivation of ES cells to generation of knockout rats. PMID:21637202

  20. Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Meili; Wang Shuai; Cai Mingsheng

    2011-09-01

    The pseudorabies virus (PRV) early protein UL54 is a homologue of the herpes simplex virus 1 (HSV-1) immediate-early protein ICP27, which is a multifunctional protein and essential for HSV-1 infection. To determine if UL54 might shuttle between the nucleus and cytoplasm, as has been shown for its homologues in human herpesviruses, the molecular determinants for its nucleocytoplasmic shuttling were investigated. Heterokaryon assays demonstrated that UL54 was a nucleocytoplasmic shuttling protein and this property could not be blocked by leptomycin B, an inhibitor of chromosome region maintenance 1 (CRM1). However, TAP/NXF1 promoted the nuclear export of UL54 and interacted with UL54,more » suggesting that UL54 shuttles between the nucleus and the cytoplasm via a TAP/NXF1, but not CRM1, dependent nuclear export pathway. Furthermore, UL54 was demonstrated to target to the nucleus through a classic Ran-, importin {beta}1- and {alpha}5-dependent nuclear import mechanism.« less

  1. The absence of p53 during Human Cytomegalovirus infection leads to decreased UL53 expression, disrupting UL50 localization to the inner nuclear membrane, and thereby inhibiting capsid nuclear egress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuan, Man I; O’Dowd, John M.; Fortunato, Elizabeth

    Our electron microscopy study (Kuan et al., 2016) found HCMV nuclear capsid egress was significantly reduced in p53 knockout cells (p53KOs), correlating with inhibited formation of infoldings of the inner nuclear membrane (IINMs). Molecular examination of these phenomena has found p53KOs expressed UL97 and phosphorylated lamins, however the lamina failed to remodel. The nuclear egress complex (NEC) protein UL50 was expressed in almost all cells. UL50 re-localized to the inner nuclear membrane (INM) in ~90% of wt cells, but only ~35% of p53KOs. UL53 expression was significantly reduced in p53KOs, and cells lacking UL50 nuclear staining, expressed no UL53. Re-introductionmore » of p53 into p53KOs largely recovered UL53 positivity and UL50 nuclear re-localization. Nuclear rim located UL50/53 puncta, which co-localized with the major capsid protein, were largely absent in p53KOs. We believe these puncta were IINMs. In the absence of p53, UL53 expression was inhibited, disrupting formation of the NEC/IINMs, and reducing functional virion secretion. -- Highlights: •Phosphorylated nuclear lamins were inefficiently remodeled in p53KO cells. •p53KO cells expressed UL50, but it was not efficiently targeted to the nuclear rim. •UL53 was not expressed in the large majority of p53KO cells. •Cells failing to express UL53 did not localize UL50 to the nucleus. •NEC puncta/infoldings of the inner nuclear membrane were scarce in p53KO cells.« less

  2. Cloning and characterization of a Candida albicans gene homologous to fructose-1,6-bisphosphatase genes.

    PubMed

    De la Rosa, J M; Ruíz, T; Rodríguez, L

    2000-12-01

    By sequencing of the DNA adjacent to the Candida albicans SEC61 gene, an open reading frame encoding a polypeptide of 331 amino acids was found. The predicted protein showed a strong homology with the fructose-1,6-bisphosphatase [FbPase] from other organisms, and conserved regions included the catalytic motif found in all known FbPases. Although the cloned gene did not complement the growth failure of a Saccharomyces cerevisiae fbp1 mutant in media with gluconeogenic carbon sources, it was transcribed in the transformants in a fashion that indicates a partial repression by glucose. A similar control on the transcription of this gene and on FbPase activity was found in wild-type C. albicans, where the cloned gene (CaFBP1) was shown to be localized in a single chromosomal locus in the genome.

  3. EUGENE'HOM: A generic similarity-based gene finder using multiple homologous sequences.

    PubMed

    Foissac, Sylvain; Bardou, Philippe; Moisan, Annick; Cros, Marie-Josée; Schiex, Thomas

    2003-07-01

    EUGENE'HOM is a gene prediction software for eukaryotic organisms based on comparative analysis. EUGENE'HOM is able to take into account multiple homologous sequences from more or less closely related organisms. It integrates the results of TBLASTX analysis, splice site and start codon prediction and a robust coding/non-coding probabilistic model which allows EUGENE'HOM to handle sequences from a variety of organisms. The current target of EUGENE'HOM is plant sequences. The EUGENE'HOM web site is available at http://genopole.toulouse.inra.fr/bioinfo/eugene/EuGeneHom/cgi-bin/EuGeneHom.pl.

  4. A proteomic perspective of inbuilt viral protein regulation: pUL46 tegument protein is targeted for degradation by ICP0 during herpes simplex virus type 1 infection.

    PubMed

    Lin, Aaron E; Greco, Todd M; Döhner, Katinka; Sodeik, Beate; Cristea, Ileana M

    2013-11-01

    Much like the host cells they infect, viruses must also regulate their life cycles. Herpes simples virus type 1 (HSV-1), a prominent human pathogen, uses a promoter-rich genome in conjunction with multiple viral trans-activating factors. Following entry into host cells, the virion-associated outer tegument proteins pUL46 and pUL47 act to increase expression of viral immediate-early (α) genes, thereby helping initiate the infection life cycle. Because pUL46 has gone largely unstudied, we employed a hybrid mass spectrometry-based approach to determine how pUL46 exerts its functions during early stages of infection. For a spatio-temporal characterization of pUL46, time-lapse microscopy was performed in live cells to define its dynamic localization from 2 to 24 h postinfection. Next, pUL46-containing protein complexes were immunoaffinity purified during infection of human fibroblasts and analyzed by mass spectrometry to investigate virus-virus and virus-host interactions, as well as post-translational modifications. We demonstrated that pUL46 is heavily phosphorylated in at least 23 sites. One phosphorylation site matched the consensus 14-3-3 phospho-binding motif, consistent with our identification of 14-3-3 proteins and host and viral kinases as specific pUL46 interactions. Moreover, we determined that pUL46 specifically interacts with the viral E3 ubiquitin ligase ICP0. We demonstrated that pUL46 is partially degraded in a proteasome-mediated manner during infection, and that the catalytic activity of ICP0 is responsible for this degradation. This is the first evidence of a viral protein being targeted for degradation by another viral protein during HSV-1 infection. Together, these data indicate that pUL46 levels are tightly controlled and important for the temporal regulation of viral gene expression throughout the virus life cycle. The concept of a structural virion protein, pUL46, performing nonstructural roles is likely to reflect a theme common to many viruses

  5. Linkage and homology analysis divides the eight genes for the small subunit of petunia ribulose 1,5-bisphosphate carboxylase into three gene families

    PubMed Central

    Dean, Caroline; van den Elzen, Peter; Tamaki, Stanley; Dunsmuir, Pamela; Bedbrook, John

    1985-01-01

    Twenty-six λ phage clones with homology to coding sequences of the small subunit (SSU) of ribulose 1,5-bisphosphate carboxylase have been isolated from an EMBL3 λ phage bank of Petunia (Mitchell) DNA. Restriction mapping of the phage inserts shows that the clones were obtained from five nonoverlapping regions of petunia DNA that carry seven SSU genes. Comparison of the HindIII genomic fragments of petunia DNA with the HindIII restriction fragments of the isolated phage indicates that petunia nuclear DNA encodes eight SSU genes, seven of which are present in the phage clones. Two incomplete genes, which contain only the 3′ end of an SSU gene, were also found in the phage clones. We demonstrate that the eight SSU genes of petunia can be divided into three gene families based on homology to three petunia cDNA clones. Two gene families contain single SSU genes and the third contains six genes, four of which are closely linked within petunia nuclear DNA. Images PMID:16593584

  6. Impact of human cytomegalovirus infection UL55-nested polymerase chain reaction method in hematopoietic stem cell transplant donors and recipients.

    PubMed

    Banan, A A; Yaghobi, R; Ramzi, M; Mehrabani, D

    2009-09-01

    Human cytomegalovirus (HCMV) is one of the most important and critical viral causes of graft rejection among hematopoietic stem cell transplant (HSCT) recipients. Monitoring of this viral infection has a critical role in the management of HSCT clinical complications. In this retrospective cohort, blood (plasma and buffy coat) and urine samples were collected from 110 HSCT patients and 95 donors pretransplantation and weekly for 100 days posttransplantation. An HCMV-optimized UL55-nested polymerase chain reaction (PCR) method was used to detect HCMV infection. Genotyping of the HCMV UL55 gene was performed for all UL55-nested, PCR-positive samples. HSCT donor and recipient laboratory and clinical data were statistically analyzed using SPSS version 15 software. UL55-nested, PCR-positive results were obtained in 3540/4950 (71.5%), 3634/4950 (73.4%), and 3292/4950 (66.5%) of these plasma, buffy coat, and urine samples, respectively. Twenty-five percent of transplant donors were infected with HCMV. An increase in HCMV infection was observed from pre- to post-HSCT conditions. Detection of the gB2 UL55 genotype in most transplant patient samples suggested the need to examine the possible impact of HCMV UL55 genotypes and HCMV infections among stem cell transplant recipients.

  7. High conservation of herpes simplex virus UL5/UL52 helicase-primase complex in the era of new antiviral therapies.

    PubMed

    Collot, Marianne; Rouard, Caroline; Brunet, Christel; Agut, Henri; Boutolleau, David; Burrel, Sonia

    2016-04-01

    The emergence of herpes simplex virus (HSV) resistance to current antiviral drugs, that all target the viral DNA polymerase, constitutes a major obstacle to antiviral treatment effectiveness of HSV infections, especially in immunocompromised patients. A novel and promising class of inhibitors of the HSV UL5/UL52 helicase-primase (HP) complex has been reported to hinder viral replication with a high potency. In this study, we describe the low natural polymorphism (interstrain identity >99.1% at both nucleotide and amino acid levels) of HSV HP complex subunits pUL5 and pUL52 among 64 HSV (32 HSV-1 and 32 HSV-2) clinical isolates, and we show that the HSV resistance profile to the first-line antiviral drug acyclovir (ACV) does not impact on the natural polymorphism of HSV HP complex. Genotypic tools and polymorphism data concerning HSV HP complex provided herein will be useful to detect drug resistance mutations in a relevant time frame when HP inhibitors (HPIs), i.e., amenamevir and pritelivir, will be available in medical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Conserved Tryptophan Motifs in the Large Tegument Protein pUL36 Are Required for Efficient Secondary Envelopment of Herpes Simplex Virus Capsids

    PubMed Central

    Ivanova, Lyudmila; Buch, Anna; Döhner, Katinka; Pohlmann, Anja; Binz, Anne; Prank, Ute; Sandbaumhüter, Malte

    2016-01-01

    stages of the herpesvirus life cycle. Here we characterized two conserved tryptophan-acidic motifs in the central region of the large tegument protein pUL36 of herpes simplex virus. When we mutated these motifs, secondary envelopment of cytosolic capsids and the production of infectious particles were severely impaired. Our data suggest that pUL36 and its homologs in other herpesviruses, and in particular such tryptophan-acidic motifs, could provide attractive targets for the development of novel drugs to prevent herpesvirus assembly and spread. PMID:27009950

  9. Identification of multiple sites suitable for insertion of foreign genes in herpes simplex virus genomes.

    PubMed

    Morimoto, Tomomi; Arii, Jun; Akashi, Hiroomi; Kawaguchi, Yasushi

    2009-03-01

    Information on sites in HSV genomes at which foreign gene(s) can be inserted without disrupting viral genes or affecting properties of the parental virus are important for basic research on HSV and development of HSV-based vectors for human therapy. The intergenic region between HSV-1 UL3 and UL4 genes has been reported to satisfy the requirements for such an insertion site. The UL3 and UL4 genes are oriented toward the intergenic region and, therefore, insertion of a foreign gene(s) into the region between the UL3 and UL4 polyadenylation signals should not disrupt any viral genes or transcriptional units. HSV-1 and HSV-2 each have more than 10 additional regions structurally similar to the intergenic region between UL3 and UL4. In the studies reported here, it has been demonstrated that insertion of a reporter gene expression cassette into several of the HSV-1 and HSV-2 intergenic regions has no effect on viral growth in cell culture or virulence in mice, suggesting that these multiple intergenic regions may be suitable HSV sites for insertion of foreign genes.

  10. Involvement of UL24 in herpes-simplex-virus-1-induced dispersal of nucleolin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lymberopoulos, Maria H.; Pearson, Angela

    2007-07-05

    UL24 of herpes simplex virus 1 is important for efficient viral replication, but its function is unknown. We generated a recombinant virus, vHA-UL24, encoding UL24 with an N-terminal hemagglutinin tag. By indirect immunofluorescence at 9 h post-infection (hpi), we detected HA-UL24 in nuclear foci and in cytoplasmic speckles. HA-UL24 partially co-localized with nucleolin, but not with ICP8 or coilin, markers for nucleoli, viral replication compartments, and Cajal bodies respectively. HA-UL24 staining was often juxtaposed to that of another nucleolar protein, fibrillarin. Analysis of HSV-1-induced nucleolar modifications revealed that by 18 hpi, nucleolin staining had dispersed, and fibrillarin staining went frommore » clusters of small spots to a few separate but prominent spots. Fibrillarin redistribution appeared to be independent of UL24. In contrast, cells infected with a UL24-deficient virus retained foci of nucleolin staining. Our results demonstrate involvement of UL24 in dispersal of nucleolin during infection.« less

  11. An Approach for Predicting Essential Genes Using Multiple Homology Mapping and Machine Learning Algorithms.

    PubMed

    Hua, Hong-Li; Zhang, Fa-Zhan; Labena, Abraham Alemayehu; Dong, Chuan; Jin, Yan-Ting; Guo, Feng-Biao

    Investigation of essential genes is significant to comprehend the minimal gene sets of cell and discover potential drug targets. In this study, a novel approach based on multiple homology mapping and machine learning method was introduced to predict essential genes. We focused on 25 bacteria which have characterized essential genes. The predictions yielded the highest area under receiver operating characteristic (ROC) curve (AUC) of 0.9716 through tenfold cross-validation test. Proper features were utilized to construct models to make predictions in distantly related bacteria. The accuracy of predictions was evaluated via the consistency of predictions and known essential genes of target species. The highest AUC of 0.9552 and average AUC of 0.8314 were achieved when making predictions across organisms. An independent dataset from Synechococcus elongatus , which was released recently, was obtained for further assessment of the performance of our model. The AUC score of predictions is 0.7855, which is higher than other methods. This research presents that features obtained by homology mapping uniquely can achieve quite great or even better results than those integrated features. Meanwhile, the work indicates that machine learning-based method can assign more efficient weight coefficients than using empirical formula based on biological knowledge.

  12. Identifying conserved gene clusters in the presence of homology families.

    PubMed

    He, Xin; Goldwasser, Michael H

    2005-01-01

    The study of conserved gene clusters is important for understanding the forces behind genome organization and evolution, as well as the function of individual genes or gene groups. In this paper, we present a new model and algorithm for identifying conserved gene clusters from pairwise genome comparison. This generalizes a recent model called "gene teams." A gene team is a set of genes that appear homologously in two or more species, possibly in a different order yet with the distance of adjacent genes in the team for each chromosome always no more than a certain threshold. We remove the constraint in the original model that each gene must have a unique occurrence in each chromosome and thus allow the analysis on complex prokaryotic or eukaryotic genomes with extensive paralogs. Our algorithm analyzes a pair of chromosomes in O(mn) time and uses O(m+n) space, where m and n are the number of genes in the respective chromosomes. We demonstrate the utility of our methods by studying two bacterial genomes, E. coli K-12 and B. subtilis. Many of the teams identified by our algorithm correlate with documented E. coli operons, while several others match predicted operons, previously suggested by computational techniques. Our implementation and data are publicly available at euler.slu.edu/ approximately goldwasser/homologyteams/.

  13. Recombinant antibodies encoded by IGHV1-69 react with pUL32, a phosphoprotein of cytomegalovirus and B-cell superantigen

    PubMed Central

    Steininger, Christoph; Widhopf, George F.; Ghia, Emanuela M.; Morello, Christopher S.; Vanura, Katrina; Sanders, Rebecca; Spector, Deborah; Guiney, Don; Jäger, Ulrich

    2012-01-01

    Leukemia cells from patients with chronic lymphocytic leukemia (CLL) express a highly restricted immunoglobulin heavy variable chain (IGHV) repertoire, suggesting that a limited set of antigens reacts with leukemic cells. Here, we evaluated the reactivity of a panel of different CLL recombinant antibodies (rAbs) encoded by the most commonly expressed IGHV genes with a panel of selected viral and bacterial pathogens. Six different CLL rAbs encoded by IGHV1-69 or IGHV3-21, but not a CLL rAb encoded by IGHV4-39 genes, reacted with a single protein of human cytomegalovirus (CMV). The CMV protein was identified as the large structural phosphoprotein pUL32. In contrast, none of the CLL rAbs bound to any other structure of CMV, adenovirus serotype 2, Salmonella enterica serovar Typhimurium, or of cells used for propagation of these microorganisms. Monoclonal antibodies or humanized rAbs of irrelevant specificity to pUL32 did not react with any of the proteins present in the different lysates. Still, rAbs encoded by a germ line IGHV1-69 51p1 allele from CMV-seropositive and -negative adults also reacted with pUL32. The observed reactivity of multiple different CLL rAbs and natural antibodies from CMV-seronegative adults with pUL32 is consistent with the properties of a superantigen. PMID:22234695

  14. Bloom DNA Helicase Facilitates Homologous Recombination between Diverged Homologous Sequences*

    PubMed Central

    Kikuchi, Koji; Abdel-Aziz, H. Ismail; Taniguchi, Yoshihito; Yamazoe, Mitsuyoshi; Takeda, Shunichi; Hirota, Kouji

    2009-01-01

    Bloom syndrome caused by inactivation of the Bloom DNA helicase (Blm) is characterized by increases in the level of sister chromatid exchange, homologous recombination (HR) associated with cross-over. It is therefore believed that Blm works as an anti-recombinase. Meanwhile, in Drosophila, DmBlm is required specifically to promote the synthesis-dependent strand anneal (SDSA), a type of HR not associating with cross-over. However, conservation of Blm function in SDSA through higher eukaryotes has been a matter of debate. Here, we demonstrate the function of Blm in SDSA type HR in chicken DT40 B lymphocyte line, where Ig gene conversion diversifies the immunoglobulin V gene through intragenic HR between diverged homologous segments. This reaction is initiated by the activation-induced cytidine deaminase enzyme-mediated uracil formation at the V gene, which in turn converts into abasic site, presumably leading to a single strand gap. Ig gene conversion frequency was drastically reduced in BLM−/− cells. In addition, BLM−/− cells used limited donor segments harboring higher identity compared with other segments in Ig gene conversion event, suggesting that Blm can promote HR between diverged sequences. To further understand the role of Blm in HR between diverged homologous sequences, we measured the frequency of gene targeting induced by an I-SceI-endonuclease-mediated double-strand break. BLM−/− cells showed a severer defect in the gene targeting frequency as the number of heterologous sequences increased at the double-strand break site. Conversely, the overexpression of Blm, even an ATPase-defective mutant, strongly stimulated gene targeting. In summary, Blm promotes HR between diverged sequences through a novel ATPase-independent mechanism. PMID:19661064

  15. The Pseudorabies Virus DNA Polymerase Accessory Subunit UL42 Directs Nuclear Transport of the Holoenzyme

    PubMed Central

    Wang, Yi-Ping; Du, Wen-Juan; Huang, Li-Ping; Wei, Yan-Wu; Wu, Hong-Li; Feng, Li; Liu, Chang-Ming

    2016-01-01

    Pseudorabies virus (PRV) DNA replication occurs in the nuclei of infected cells and requires the viral DNA polymerase. The PRV DNA polymerase comprises a catalytic subunit, UL30, and an accessory subunit, UL42, that confers processivity to the enzyme. Its nuclear localization is a prerequisite for its enzymatic function in the initiation of viral DNA replication. However, the mechanisms by which the PRV DNA polymerase holoenzyme enters the nucleus have not been determined. In this study, we characterized the nuclear import pathways of the PRV DNA polymerase catalytic and accessory subunits. Immunofluorescence analysis showed that UL42 localizes independently in the nucleus, whereas UL30 alone predominantly localizes in the cytoplasm. Intriguingly, the localization of UL30 was completely shifted to the nucleus when it was coexpressed with UL42, demonstrating that nuclear transport of UL30 occurs in an UL42-dependent manner. Deletion analysis and site-directed mutagenesis of the two proteins showed that UL42 contains a functional and transferable bipartite nuclear localization signal (NLS) at amino acids 354–370 and that K354, R355, and K367 are important for the NLS function, whereas UL30 has no NLS. Coimmunoprecipitation assays verified that UL42 interacts with importins α3 and α4 through its NLS. In vitro nuclear import assays demonstrated that nuclear accumulation of UL42 is a temperature- and energy-dependent process and requires both importins α and β, confirming that UL42 utilizes the importin α/β-mediated pathway for nuclear entry. In an UL42 NLS-null mutant, the UL42/UL30 heterodimer was completely confined to the cytoplasm when UL42 was coexpressed with UL30, indicating that UL30 utilizes the NLS function of UL42 for its translocation into the nucleus. Collectively, these findings suggest that UL42 contains an importin α/β-mediated bipartite NLS that transports the viral DNA polymerase holoenzyme into the nucleus in an in vitro expression system

  16. Genomic cloning and chromosomal localization of HRY, the human homolog to the Drosophila segmentation gene, hairy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feder, J.N.; Jan, L.Y.; Jan, Y.N.

    The Drosophila hairy gene encodes a basic helix- loop-helix protein that functions in at least two steps during Drosophila development: (1) during embryogenesis, when it partakes in the establishment of segments, and (2) during the larval stage, when it functions negatively in determining the pattern of sensory bristles on the adult fly. In the rat, a structurally homologous gene (RHL) behaves as an immediate-early gene in its response to growth factors and can, like that in Drosophila, suppress neuronal differentiation events. Here, the authors report the genomic cloning of the human hairy gene homolog (HRY). The coding region of themore » gene is contained within four exons. The predicted amino acid sequence reveals only four amino acid differences between the human and rat genes. Analysis of the DNA sequence 5[prime] to the coding region reveals a putatitve untranslated exon. To increase the value of the HRY gene as a genetic marker and to assess its potential involvement in genetic disorders, they sublocalized the locus to chromosome 3q28-q29 by fluorescence in situ hybridization. 34 refs., 4 figs., 1 tab.« less

  17. Identification of interaction domains within the UL37 tegument protein of herpes simplex virus type 1.

    PubMed

    Bucks, Michelle A; Murphy, Michael A; O'Regan, Kevin J; Courtney, Richard J

    2011-07-20

    Herpes simplex virus type 1 (HSV-1) UL37 is a 1123 amino acid tegument protein that self-associates and binds to the tegument protein UL36 (VP1/2). Studies were undertaken to identify regions of UL37 involved in these protein-protein interactions. Coimmunoprecipitation assays showed that residues within the carboxy-terminal half of UL37, amino acids 568-1123, are important for interaction with UL36. Coimmunoprecipitation assays also revealed that amino acids 1-300 and 568-1123 of UL37 are capable of self-association. UL37 appears to self-associate only under conditions when UL36 is not present or is present in low amounts, suggesting UL36 and UL37 may compete for binding. Transfection-infection experiments were performed to identify domains of UL37 that complement the UL37 deletion virus, K∆UL37. The carboxy-terminal region of UL37 (residues 568-1123) partially rescues the K∆UL37 infection. These results suggest the C-terminus of UL37 may contribute to its essential functional role within the virus-infected cell. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Homologous recombination between overlapping thymidine kinase gene fragments stably inserted into a mouse cell genome.

    PubMed

    Lin, F L; Sternberg, N

    1984-05-01

    We have constructed a substrate to study homologous recombination between adjacent segments of chromosomal DNA. This substrate, designated lambda tk2 , consists of one completely defective and one partially defective herpes simplex virus thymidine kinase (tk) gene cloned in bacteriophage lambda DNA. The two genes have homologous 984-base-pair sequences and are separated by 3 kilobases of largely vector DNA. When lambda tk2 DNA was transferred into mouse LMtk- cells by the calcium phosphate method, rare TK+ transformants were obtained that contained many (greater than 40) copies of the unrecombined DNA. Tk- revertants, which had lost most of the copies of unrecombined DNA, were isolated from these TK+-transformed lines. Two of these Tk- lines were further studied by analysis of their reversion back to the Tk+ phenotype. They generated ca. 200 Tk+ revertants per 10(8) cells after growth in nonselecting medium for 5 days. All of these Tk+ revertants have an intact tk gene reconstructed by homologous recombination; they also retain various amounts of unrecombined lambda tk2 DNA. Southern blot analysis suggested that at least some of the recombination events involve unequal sister chromatid exchanges. We also tested three agents, mitomycin C, 12-O-tetradecanoyl-phorbol-13-acetate, and mezerein, that are thought to stimulate recombination to determine whether they affect the reversion from Tk- to Tk+. Only mitomycin C increased the number of Tk+ revertants.

  19. Escherichia coli Competence Gene Homologs Are Essential for Competitive Fitness and the Use of DNA as a Nutrient

    PubMed Central

    Palchevskiy, Vyacheslav; Finkel, Steven E.

    2006-01-01

    Natural genetic competence is the ability of cells to take up extracellular DNA and is an important mechanism for horizontal gene transfer. Another potential benefit of natural competence is that exogenous DNA can serve as a nutrient source for starving bacteria because the ability to “eat” DNA is necessary for competitive survival in environments containing limited nutrients. We show here that eight Escherichia coli genes, identified as homologs of com genes in Haemophilus influenzae and Neisseria gonorrhoeae, are necessary for the use of extracellular DNA as the sole source of carbon and energy. These genes also confer a competitive advantage to E. coli during long-term stationary-phase incubation. We also show that homologs of these genes are found throughout the proteobacteria, suggesting that the use of DNA as a nutrient may be a widespread phenomenon. PMID:16707682

  20. Ly49 Receptors: Innate and Adaptive Immune Paradigms

    PubMed Central

    Rahim, Mir Munir A.; Tu, Megan M.; Mahmoud, Ahmad Bakur; Wight, Andrew; Abou-Samra, Elias; Lima, Patricia D. A.; Makrigiannis, Andrew P.

    2014-01-01

    The Ly49 receptors are type II C-type lectin-like membrane glycoproteins encoded by a family of highly polymorphic and polygenic genes within the mouse natural killer (NK) gene complex. This gene family is designated Klra, and includes genes that encode both inhibitory and activating Ly49 receptors in mice. Ly49 receptors recognize class I major histocompatibility complex-I (MHC-I) and MHC-I-like proteins on normal as well as altered cells. Their functional homologs in humans are the killer cell immunoglobulin-like receptors, which recognize HLA class I molecules as ligands. Classically, Ly49 receptors are described as being expressed on both the developing and mature NK cells. The inhibitory Ly49 receptors are involved in NK cell education, a process in which NK cells acquire function and tolerance toward cells that express “self-MHC-I.” On the other hand, the activating Ly49 receptors recognize altered cells expressing activating ligands. New evidence shows a broader Ly49 expression pattern on both innate and adaptive immune cells. Ly49 receptors have been described on multiple NK cell subsets, such as uterine NK and memory NK cells, as well as NKT cells, dendritic cells, plasmacytoid dendritic cells, macrophages, neutrophils, and cells of the adaptive immune system, such as activated T cells and regulatory CD8+ T cells. In this review, we discuss the expression pattern and proposed functions of Ly49 receptors on various immune cells and their contribution to immunity. PMID:24765094

  1. Recovery of an HMWP/hmwBP (pUL48/pUL47) complex from virions of human cytomegalovirus: subunit interactions, oligomer composition, and deubiquitylase activity.

    PubMed

    Tullman, Jennifer A; Harmon, Mary-Elizabeth; Delannoy, Michael; Gibson, Wade

    2014-08-01

    We report that the human cytomegalovirus (HCMV) high-molecular-weight tegument protein (HMWP, pUL48; 253 kDa) and the HMWP-binding protein (hmwBP, pUL47; 110 kDa) can be recovered as a complex from virions disrupted by treatment with 50 mM Tris (pH 7.5), 0.5 M NaCl, 0.5% NP-40, and 10 mM dithiothreitol [DTT]. The subunit ratio of the complex approximates 1:1, with a shape and structure consistent with an elongated heterodimer. The HMWP/hmwBP complex was corroborated by reciprocal coimmunoprecipitation experiments using antipeptide antibodies and lysates from both infected cells and disrupted virus particles. An interaction of the amino end of pUL48 (amino acids [aa] 322 to 754) with the carboxyl end of pUL47 (aa 693 to 982) was identified by fragment coimmunoprecipitation experiments, and a head-to-tail self-interaction of hmwBP was also observed. The deubiquitylating activity of pUL48 is retained in the isolated complex, which cleaves K11, K48, and K63 ubiquitin isopeptide linkages. Human cytomegalovirus (HCMV, or human herpesvirus 5 [HHV-5]) is a large DNA-containing virus that belongs to the betaherpesvirus subfamily and is a clinically important pathogen. Defining the constituent elements of its mature form, their organization within the particle, and the assembly process by which it is produced are fundamental to understanding the mechanisms of herpesvirus infection and developing drugs and vaccines against them. In this study, we report isolating a complex of two large proteins encoded by HCMV open reading frames (ORFs) UL47 and UL48 and identifying the binding domains responsible for their interaction with each other and of pUL47 with itself. Our calculations indicate that the complex is a rod-shaped heterodimer. Additionally, we determined that the ubiquitin-specific protease activity of the ORF UL48 protein was functional in the complex, cleaving K11-, K48-, and K63-linked ubiquitin dimers. This information builds on and extends our understanding of the

  2. Analysis of Ly49 gene transcripts in mature NK cells supports a role for the Pro1 element in gene activation, not gene expression.

    PubMed

    McCullen, M V; Li, H; Cam, M; Sen, S K; McVicar, D W; Anderson, S K

    2016-09-01

    The variegated expression of murine Ly49 loci has been associated with the probabilistic behavior of an upstream promoter active in immature cells, the Pro1 element. However, recent data suggest that Pro1 may be active in mature natural killer (NK) cells and function as an enhancer element. To assess directly if Pro1 transcripts are present in mature Ly49-expressing NK cells, RNA-sequencing of the total transcript pool was performed on freshly isolated splenic NK cells sorted for expression of either Ly49G or Ly49I. No Pro1 transcripts were detected from the Ly49a, Ly49c or Ly49i genes in mature Ly49(+) NK cells that contained high levels of Pro2 transcripts. Low levels of Ly49g Pro1 transcripts were found in both Ly49G(+) and Ly49G(-) populations, consistent with the presence of a small population of mature NK cells undergoing Ly49g gene activation, as previously demonstrated by culture of splenic NK cells in interleukin-2. Ly49 gene reporter constructs containing Pro1 failed to show any enhancer activity of Pro1 on Pro2 in a mature Ly49-expressing cell line. Taken together, the results are consistent with Pro1 transcription having a role in gene activation in developing NK, and argue against a role for Pro1 in Ly49 gene transcription by mature NK cells.

  3. Expression of an Atriplex nummularia gene encoding a protein homologous to the bacterial molecular chaperone DnaJ.

    PubMed Central

    Zhu, J K; Shi, J; Bressan, R A; Hasegawa, P M

    1993-01-01

    DnaJ is a 36-kD heat shock protein that functions together with Dnak (Hsp70) as a molecular chaperone in Escherichia coli. We have obtained a cDNA clone from the higher plant Atriplex nummularia that encodes a 46.6-kD polypeptide (ANJ1) with an overall 35.2% amino acid sequence identity with the E. coli DnaJ. ANJ1 has 43.4% overall sequence identity with the Saccharomyces cerevisiae cytoplasmic DnaJ homolog YDJ1/MAS5. Complementation of the yeast mas5 mutation indicated that ANJ1 is a functional homolog of YDJ1/MAS5. The presence of other DnaJ homologs in A. nummularia was demonstrated by the detection of proteins that are antigenically related to the yeast mitochondrial DnaJ homolog SCJ1 and the yeast DnaJ-related protein Sec63. Expression of the ANJ1 gene was compared with that of an A. nummularia Hsp70 gene. Expression of both ANJ1 and Hsp70 transcripts was coordinately induced by heat shock. However, noncoordinate accumulation of ANJ1 and Hsp70 mRNAs occurred during the cell growth cycle and in response to NaCl stress. PMID:8467224

  4. Expression of an Atriplex nummularia gene encoding a protein homologous to the bacterial molecular chaperone DnaJ.

    PubMed

    Zhu, J K; Shi, J; Bressan, R A; Hasegawa, P M

    1993-03-01

    DnaJ is a 36-kD heat shock protein that functions together with Dnak (Hsp70) as a molecular chaperone in Escherichia coli. We have obtained a cDNA clone from the higher plant Atriplex nummularia that encodes a 46.6-kD polypeptide (ANJ1) with an overall 35.2% amino acid sequence identity with the E. coli DnaJ. ANJ1 has 43.4% overall sequence identity with the Saccharomyces cerevisiae cytoplasmic DnaJ homolog YDJ1/MAS5. Complementation of the yeast mas5 mutation indicated that ANJ1 is a functional homolog of YDJ1/MAS5. The presence of other DnaJ homologs in A. nummularia was demonstrated by the detection of proteins that are antigenically related to the yeast mitochondrial DnaJ homolog SCJ1 and the yeast DnaJ-related protein Sec63. Expression of the ANJ1 gene was compared with that of an A. nummularia Hsp70 gene. Expression of both ANJ1 and Hsp70 transcripts was coordinately induced by heat shock. However, noncoordinate accumulation of ANJ1 and Hsp70 mRNAs occurred during the cell growth cycle and in response to NaCl stress.

  5. Polymorphism in Human Cytomegalovirus UL40 Impacts on Recognition of Human Leukocyte Antigen-E (HLA-E) by Natural Killer Cells*

    PubMed Central

    Heatley, Susan L.; Pietra, Gabriella; Lin, Jie; Widjaja, Jacqueline M. L.; Harpur, Christopher M.; Lester, Sue; Rossjohn, Jamie; Szer, Jeff; Schwarer, Anthony; Bradstock, Kenneth; Bardy, Peter G.; Mingari, Maria Cristina; Moretta, Lorenzo; Sullivan, Lucy C.; Brooks, Andrew G.

    2013-01-01

    Natural killer (NK) cell recognition of the nonclassical human leukocyte antigen (HLA) molecule HLA-E is dependent on the presentation of a nonamer peptide derived from the leader sequence of other HLA molecules to CD94-NKG2 receptors. However, human cytomegalovirus can manipulate this central innate interaction through the provision of a “mimic” of the HLA-encoded peptide derived from the immunomodulatory glycoprotein UL40. Here, we analyzed UL40 sequences isolated from 32 hematopoietic stem cell transplantation recipients experiencing cytomegalovirus reactivation. The UL40 protein showed a “polymorphic hot spot” within the region that encodes the HLA leader sequence mimic. Although all sequences that were identical to those encoded within HLA-I genes permitted the interaction between HLA-E and CD94-NKG2 receptors, other UL40 polymorphisms reduced the affinity of the interaction between HLA-E and CD94-NKG2 receptors. Furthermore, functional studies using NK cell clones expressing either the inhibitory receptor CD94-NKG2A or the activating receptor CD94-NKG2C identified UL40-encoded peptides that were capable of inhibiting target cell lysis via interaction with CD94-NKG2A, yet had little capacity to activate NK cells through CD94-NKG2C. The data suggest that UL40 polymorphisms may aid evasion of NK cell immunosurveillance by modulating the affinity of the interaction with CD94-NKG2 receptors. PMID:23335510

  6. Polymorphism in human cytomegalovirus UL40 impacts on recognition of human leukocyte antigen-E (HLA-E) by natural killer cells.

    PubMed

    Heatley, Susan L; Pietra, Gabriella; Lin, Jie; Widjaja, Jacqueline M L; Harpur, Christopher M; Lester, Sue; Rossjohn, Jamie; Szer, Jeff; Schwarer, Anthony; Bradstock, Kenneth; Bardy, Peter G; Mingari, Maria Cristina; Moretta, Lorenzo; Sullivan, Lucy C; Brooks, Andrew G

    2013-03-22

    Natural killer (NK) cell recognition of the nonclassical human leukocyte antigen (HLA) molecule HLA-E is dependent on the presentation of a nonamer peptide derived from the leader sequence of other HLA molecules to CD94-NKG2 receptors. However, human cytomegalovirus can manipulate this central innate interaction through the provision of a "mimic" of the HLA-encoded peptide derived from the immunomodulatory glycoprotein UL40. Here, we analyzed UL40 sequences isolated from 32 hematopoietic stem cell transplantation recipients experiencing cytomegalovirus reactivation. The UL40 protein showed a "polymorphic hot spot" within the region that encodes the HLA leader sequence mimic. Although all sequences that were identical to those encoded within HLA-I genes permitted the interaction between HLA-E and CD94-NKG2 receptors, other UL40 polymorphisms reduced the affinity of the interaction between HLA-E and CD94-NKG2 receptors. Furthermore, functional studies using NK cell clones expressing either the inhibitory receptor CD94-NKG2A or the activating receptor CD94-NKG2C identified UL40-encoded peptides that were capable of inhibiting target cell lysis via interaction with CD94-NKG2A, yet had little capacity to activate NK cells through CD94-NKG2C. The data suggest that UL40 polymorphisms may aid evasion of NK cell immunosurveillance by modulating the affinity of the interaction with CD94-NKG2 receptors.

  7. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom.

    PubMed

    Reyes-Velasco, Jacobo; Card, Daren C; Andrew, Audra L; Shaney, Kyle J; Adams, Richard H; Schield, Drew R; Casewell, Nicholas R; Mackessy, Stephen P; Castoe, Todd A

    2015-01-01

    Snake venom gene evolution has been studied intensively over the past several decades, yet most previous studies have lacked the context of complete snake genomes and the full context of gene expression across diverse snake tissues. We took a novel approach to studying snake venom evolution by leveraging the complete genome of the Burmese python, including information from tissue-specific patterns of gene expression. We identified the orthologs of snake venom genes in the python genome, and conducted detailed analysis of gene expression of these venom homologs to identify patterns that differ between snake venom gene families and all other genes. We found that venom gene homologs in the python are expressed in many different tissues outside of oral glands, which illustrates the pitfalls of using transcriptomic data alone to define "venom toxins." We hypothesize that the python may represent an ancestral state prior to major venom development, which is supported by our finding that the expansion of venom gene families is largely restricted to highly venomous caenophidian snakes. Therefore, the python provides insight into biases in which genes were recruited for snake venom systems. Python venom homologs are generally expressed at lower levels, have higher variance among tissues, and are expressed in fewer organs compared with all other python genes. We propose a model for the evolution of snake venoms in which venom genes are recruited preferentially from genes with particular expression profile characteristics, which facilitate a nearly neutral transition toward specialized venom system expression. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. EUGÈNE'HOM: a generic similarity-based gene finder using multiple homologous sequences

    PubMed Central

    Foissac, Sylvain; Bardou, Philippe; Moisan, Annick; Cros, Marie-Josée; Schiex, Thomas

    2003-01-01

    EUGÈNE'HOM is a gene prediction software for eukaryotic organisms based on comparative analysis. EUGÈNE'HOM is able to take into account multiple homologous sequences from more or less closely related organisms. It integrates the results of TBLASTX analysis, splice site and start codon prediction and a robust coding/non-coding probabilistic model which allows EUGÈNE'HOM to handle sequences from a variety of organisms. The current target of EUGÈNE'HOM is plant sequences. The EUGÈNE'HOM web site is available at http://genopole.toulouse.inra.fr/bioinfo/eugene/EuGeneHom/cgi-bin/EuGeneHom.pl. PMID:12824408

  9. The Complete Genome Sequence of Herpesvirus Papio 2 (Cercopithecine Herpesvirus 16) Shows Evidence of Recombination Events among Various Progenitor Herpesviruses†

    PubMed Central

    Tyler, Shaun D.; Severini, Alberto

    2006-01-01

    We have sequenced the entire genome of herpesvirus papio 2 (HVP-2; Cercopithecine herpesvirus 16) strain X313, a baboon herpesvirus with close homology to other primate alphaherpesviruses, such as SA8, monkey B virus, and herpes simplex virus (HSV) type 1 and type 2. The genome of HVP-2 is 156,487 bp in length, with an overall GC content of 76.5%. The genome organization is identical to that of the other members of the genus Simplexvirus, with a long and a short unique region, each bordered by inverted repeats which end with an “a” sequence. All of the open reading frames detected in this genome were homologous and colinear with those of SA8 and B virus. The HSV gene RL1 (γ134.5; neurovirulence factor) is not present in HVP-2, as is the case for SA8 and B virus. The HVP-2 genome is 85% homologous to its closest relative, SA8. However, segment-by-segment bootstrap analysis of the genome revealed at least two regions that display closer homology to the corresponding sequences of B virus. The first region comprises the UL41 to UL44 genes, and the second region is located within the UL36 gene. We hypothesize that this localized and defined shift in homology is due to recombination events between an SA8-like progenitor of HVP-2 and a herpesvirus species more closely related to the B virus. Since some of the genes involved in these putative recombination events are determinants of virulence, a comparative analysis of their function may provide insight into the pathogenic mechanism of simplexviruses. PMID:16414998

  10. The complete genome sequence of herpesvirus papio 2 (Cercopithecine herpesvirus 16) shows evidence of recombination events among various progenitor herpesviruses.

    PubMed

    Tyler, Shaun D; Severini, Alberto

    2006-02-01

    We have sequenced the entire genome of herpesvirus papio 2 (HVP-2; Cercopithecine herpesvirus 16) strain X313, a baboon herpesvirus with close homology to other primate alphaherpesviruses, such as SA8, monkey B virus, and herpes simplex virus (HSV) type 1 and type 2. The genome of HVP-2 is 156,487 bp in length, with an overall GC content of 76.5%. The genome organization is identical to that of the other members of the genus Simplexvirus, with a long and a short unique region, each bordered by inverted repeats which end with an "a" sequence. All of the open reading frames detected in this genome were homologous and colinear with those of SA8 and B virus. The HSV gene RL1 (gamma(1)34.5; neurovirulence factor) is not present in HVP-2, as is the case for SA8 and B virus. The HVP-2 genome is 85% homologous to its closest relative, SA8. However, segment-by-segment bootstrap analysis of the genome revealed at least two regions that display closer homology to the corresponding sequences of B virus. The first region comprises the UL41 to UL44 genes, and the second region is located within the UL36 gene. We hypothesize that this localized and defined shift in homology is due to recombination events between an SA8-like progenitor of HVP-2 and a herpesvirus species more closely related to the B virus. Since some of the genes involved in these putative recombination events are determinants of virulence, a comparative analysis of their function may provide insight into the pathogenic mechanism of simplexviruses.

  11. Identification of the homolog of cell-counting factor in the cellular slime mold Dictyostelium discoideum.

    PubMed

    Okuwa, Takako; Katayama, Takahiro; Takano, Akinori; Yasukawa, Hiroo

    2002-10-01

    Genes for the cell-counting factors in Dictyostelium discoideum, countin and countin2, are considered to control the size of the multicellular structure of this organism. A novel gene, countin3, that is homologous to countin and countin2 genes (49 and 39% identity in amino acid sequence, respectively) was identified in the D. discoideum genome. The expression of countin3 was observed in the vegetatively growing cells, decreased in the aggregating stage, increased in the mid-developmental stage and decreased again in subsequent stages. This expression pattern is different from that of countin and countin2. The distinct expression kinetics of three genes suggests that they would have unique roles in size control of D. discoideum.

  12. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.

    PubMed

    Overlack, Nora; Goldmann, Tobias; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-06-26

    Human Usher syndrome (USH) is the most frequent cause of inherited deaf-blindness. It is clinically and genetically heterogeneous, assigned to three clinical types of which the most severe type is USH1. No effective treatment for the ophthalmic component of USH exists. Gene augmentation is an attractive strategy for hereditary retinal diseases. However, several USH genes, like USH1C, are expressed in various isoforms, hampering gene augmentation. As an alternative treatment strategy, we applied the zinc-finger nuclease (ZFN) technology for targeted gene repair of an USH1C, causing mutation by homologous recombination. We designed ZFNs customized for the p.R31X nonsense mutation in Ush1c. We evaluated ZFNs for DNA cleavage capability and analyzed ZFNs biocompatibilities by XTT assays. We demonstrated ZFNs mediated gene repair on genomic level by digestion assays and DNA sequencing, and on protein level by indirect immunofluorescence and Western blot analyses. The specifically designed ZFNs did not show cytotoxic effects in a p.R31X cell line. We demonstrated that ZFN induced cleavage of their target sequence. We showed that simultaneous application of ZFN and rescue DNA induced gene repair of the disease-causing mutation on the genomic level, resulting in recovery of protein expression. In our present study, we analyzed for the first time ZFN-activated gene repair of an USH gene. The data highlight the ability of ZFNs to induce targeted homologous recombination and mediate gene repair in USH. We provide further evidence that the ZFN technology holds great potential to recover disease-causing mutations in inherited retinal disorders.

  13. Homologous recombination between overlapping thymidine kinase gene fragments stably inserted into a mouse cell genome.

    PubMed Central

    Lin, F L; Sternberg, N

    1984-01-01

    We have constructed a substrate to study homologous recombination between adjacent segments of chromosomal DNA. This substrate, designated lambda tk2 , consists of one completely defective and one partially defective herpes simplex virus thymidine kinase (tk) gene cloned in bacteriophage lambda DNA. The two genes have homologous 984-base-pair sequences and are separated by 3 kilobases of largely vector DNA. When lambda tk2 DNA was transferred into mouse LMtk- cells by the calcium phosphate method, rare TK+ transformants were obtained that contained many (greater than 40) copies of the unrecombined DNA. Tk- revertants, which had lost most of the copies of unrecombined DNA, were isolated from these TK+-transformed lines. Two of these Tk- lines were further studied by analysis of their reversion back to the Tk+ phenotype. They generated ca. 200 Tk+ revertants per 10(8) cells after growth in nonselecting medium for 5 days. All of these Tk+ revertants have an intact tk gene reconstructed by homologous recombination; they also retain various amounts of unrecombined lambda tk2 DNA. Southern blot analysis suggested that at least some of the recombination events involve unequal sister chromatid exchanges. We also tested three agents, mitomycin C, 12-O-tetradecanoyl-phorbol-13-acetate, and mezerein, that are thought to stimulate recombination to determine whether they affect the reversion from Tk- to Tk+. Only mitomycin C increased the number of Tk+ revertants. Images PMID:6328272

  14. Homologous recombination within the capsid gene of porcine circovirus type 2 subgroup viruses via natural co-infection

    USDA-ARS?s Scientific Manuscript database

    Several studies had reported homologous recombination between porcine circovirus type 2 (PCV2)-group 1 (Gp1) and -group 2 (Gp2) viruses. Interestingly, the recombination events described thus far mapped either within the Rep gene sequences or the sequences flanking the Rep gene region. Previously, ...

  15. Vaccination with a HSV-2 UL24 mutant induces a protective immune response in murine and guinea pig vaginal infection models.

    PubMed

    Visalli, Robert J; Natuk, Robert J; Kowalski, Jacek; Guo, Min; Blakeney, Susan; Gangolli, Seema; Cooper, David

    2014-03-10

    The rational design and development of genetically attenuated HSV-2 mutant viruses represent an attractive approach for developing both prophylactic and therapeutic vaccines for genital herpes. Previously, HSV-2 UL24 was shown to be a virulence determinant in both murine and guinea pig vaginal infection models. An UL24-βgluc insertion mutant produced syncytial plaques and replicated to nearly wild type levels in tissue culture, but induced little or no pathological effects in recipient mice or guinea pigs following vaginal infection. Here we report that immunization of mice or guinea pigs with high or low doses of UL24-βgluc elicited a highly protective immune response. UL24-βgluc immunization via the vaginal or intramuscular routes was demonstrated to protect mice from a lethal vaginal challenge with wild type HSV-2. Moreover, antigen re-stimulated splenic lymphocytes harvested from immunized mice exhibited both HSV-2 specific CTL activity and IFN-γ expression. Humoral anti-HSV-2 responses in serum were Th1-polarized (IgG2a>IgG1) and contained high-titer anti-HSV-2 neutralizing activity. Guinea pigs vaccinated subcutaneously with UL24-βgluc or the more virulent parental strain (186) were challenged with a heterologous HSV-2 strain (MS). Acute disease scores were nearly indistinguishable in guinea pigs immunized with either virus. Recurrent disease scores were reduced in UL24-βgluc immunized animals but not to the same extent as those immunized with strain 186. In addition, challenge virus was not detected in 75% of guinea pigs subcutaneously immunized with UL24-βgluc. In conclusion, disruption of the UL24 gene is a prime target for the development of a genetically attenuated live HSV-2 vaccine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The C Terminus of the Large Tegument Protein pUL36 Contains Multiple Capsid Binding Sites That Function Differently during Assembly and Cell Entry of Herpes Simplex Virus

    PubMed Central

    Schipke, Julia; Pohlmann, Anja; Diestel, Randi; Binz, Anne; Rudolph, Kathrin; Nagel, Claus-Henning; Bauerfeind, Rudolf

    2012-01-01

    The largest tegument protein of herpes simplex virus type 1 (HSV1), pUL36, is a multivalent cross-linker between the viral capsids and the tegument and associated membrane proteins during assembly that upon subsequent cell entry releases the incoming capsids from the outer tegument and viral envelope. Here we show that pUL36 was recruited to cytosolic progeny capsids that later colocalized with membrane proteins of herpes simplex virus type 1 (HSV1) and the trans-Golgi network. During cell entry, pUL36 dissociated from viral membrane proteins but remained associated with cytosolic capsids until arrival at the nucleus. HSV1 UL36 mutants lacking C-terminal portions of increasing size expressed truncated pUL36 but could not form plaques. Cytosolic capsids of mutants lacking the C-terminal 735 of the 3,164 amino acid residues accumulated in the cytosol but did not recruit pUL36 or associate with membranes. In contrast, pUL36 lacking only the 167 C-terminal residues bound to cytosolic capsids and subsequently colocalized with viral and host membrane proteins. Progeny virions fused with neighboring cells, but incoming capsids did not retain pUL36, nor could they target the nucleus or initiate HSV1 gene expression. Our data suggest that residues 2430 to 2893 of HSV1 pUL36, containing one binding site for the capsid protein pUL25, are sufficient to recruit pUL36 onto cytosolic capsids during assembly for secondary envelopment, whereas the 167 residues of the very C terminus with the second pUL25 binding site are crucial to maintain pUL36 on incoming capsids during cell entry. Capsids lacking pUL36 are targeted neither to membranes for virus assembly nor to nuclear pores for genome uncoating. PMID:22258258

  17. Elucidating the role of highly homologous Nicotiana benthamiana ubiquitin E2 gene family members in plant immunity through an improved virus-induced gene silencing approach.

    PubMed

    Zhou, Bangjun; Zeng, Lirong

    2017-01-01

    Virus-induced gene silencing (VIGS) has been used in many plant species as an attractive post transcriptional gene silencing (PTGS) method for studying gene function either individually or at large-scale in a high-throughput manner. However, the specificity and efficiency for knocking down members of a highly homologous gene family have remained to date a significant challenge in VIGS due to silencing of off-targets. Here we present an improved method for the selection and evaluation of gene fragments used for VIGS to specifically and efficiently knock down members of a highly homologous gene family. Using this method, we knocked down twelve and four members, respectively of group III of the gene family encoding ubiquitin-conjugating enzymes (E2) in Nicotiana benthamiana . Assays using these VIGS-treated plants revealed that the group III E2s are essential for plant development, plant immunity-associated reactive oxygen species (ROS) production, expression of the gene NbRbohB that is required for ROS production, and suppression of immunity-associated programmed cell death (PCD) by AvrPtoB, an effector protein of the bacterial pathogen Pseudomons syringae . Moreover, functional redundancy for plant development and ROS production was found to exist among members of group III E2s. We have found that employment of a gene fragment as short as approximately 70 base pairs (bp) that contains at least three mismatched nucleotides to other genes within any 21-bp sequences prevents silencing of off-target(s) in VIGS. This improved approach in the selection and evaluation of gene fragments allows for specific and efficient knocking down of highly homologous members of a gene family. Using this approach, we implicated N. benthamiana group III E2s in plant development, immunity-associated ROS production, and suppression of multiple immunity-associated PCD by AvrPtoB. We also unraveled functional redundancy among group III members in their requirement for plant development and

  18. High-coverage methylation data of a gene model before and after DNA damage and homologous repair.

    PubMed

    Pezone, Antonio; Russo, Giusi; Tramontano, Alfonso; Florio, Ermanno; Scala, Giovanni; Landi, Rosaria; Zuchegna, Candida; Romano, Antonella; Chiariotti, Lorenzo; Muller, Mark T; Gottesman, Max E; Porcellini, Antonio; Avvedimento, Enrico V

    2017-04-11

    Genome-wide methylation analysis is limited by its low coverage and the inability to detect single variants below 10%. Quantitative analysis provides accurate information on the extent of methylation of single CpG dinucleotide, but it does not measure the actual polymorphism of the methylation profiles of single molecules. To understand the polymorphism of DNA methylation and to decode the methylation signatures before and after DNA damage and repair, we have deep sequenced in bisulfite-treated DNA a reporter gene undergoing site-specific DNA damage and homologous repair. In this paper, we provide information on the data generation, the rationale for the experiments and the type of assays used, such as cytofluorimetry and immunoblot data derived during a previous work published in Scientific Reports, describing the methylation and expression changes of a model gene (GFP) before and after formation of a double-strand break and repair by homologous-recombination or non-homologous-end-joining. These data provide: 1) a reference for the analysis of methylation polymorphism at selected loci in complex cell populations; 2) a platform and the tools to compare transcription and methylation profiles.

  19. High-coverage methylation data of a gene model before and after DNA damage and homologous repair

    PubMed Central

    Pezone, Antonio; Russo, Giusi; Tramontano, Alfonso; Florio, Ermanno; Scala, Giovanni; Landi, Rosaria; Zuchegna, Candida; Romano, Antonella; Chiariotti, Lorenzo; Muller, Mark T.; Gottesman, Max E.; Porcellini, Antonio; Avvedimento, Enrico V.

    2017-01-01

    Genome-wide methylation analysis is limited by its low coverage and the inability to detect single variants below 10%. Quantitative analysis provides accurate information on the extent of methylation of single CpG dinucleotide, but it does not measure the actual polymorphism of the methylation profiles of single molecules. To understand the polymorphism of DNA methylation and to decode the methylation signatures before and after DNA damage and repair, we have deep sequenced in bisulfite-treated DNA a reporter gene undergoing site-specific DNA damage and homologous repair. In this paper, we provide information on the data generation, the rationale for the experiments and the type of assays used, such as cytofluorimetry and immunoblot data derived during a previous work published in Scientific Reports, describing the methylation and expression changes of a model gene (GFP) before and after formation of a double-strand break and repair by homologous-recombination or non-homologous-end-joining. These data provide: 1) a reference for the analysis of methylation polymorphism at selected loci in complex cell populations; 2) a platform and the tools to compare transcription and methylation profiles. PMID:28398335

  20. Gene Regulatory Networks, Homology, and the Early Panarthropod Fossil Record.

    PubMed

    Tweedt, Sarah M

    2017-09-01

    The arthropod body plan is widely believed to have derived from an ancestral form resembling Cambrian-aged fossil lobopodians, and interpretations of morphological and molecular data have long favored this hypothesis. It is possible, however, that appendages and other morphologies observed in extinct and living panarthropods evolved independently. The key to distinguishing between morphological homology and homoplasy lies in the study of developmental gene regulatory networks (GRNs), and specifically, in determining the unique genetic circuits that construct characters. In this study, I discuss character identity and panarthropod appendage evolution within a developmental GRN framework, with a specific focus on potential limb character identity networks ("ChINs"). I summarize recent molecular studies, and argue that current data do not rule out the possibility of independent panarthropod limb evolution. The link between character identity and GRN architecture has broad implications for homology assessment, and this genetic framework offers alternative approaches to fossil character coding, phylogenetic analyses, and future research into the origin of the arthropod body plan. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Interaction and interdependent packaging of tegument protein UL11 and glycoprotein e of herpes simplex virus.

    PubMed

    Han, Jun; Chadha, Pooja; Meckes, David G; Baird, Nicholas L; Wills, John W

    2011-09-01

    The UL11 tegument protein of herpes simplex virus plays a critical role in the secondary envelopment; however, the mechanistic details remain elusive. Here, we report a new function of UL11 in the budding process in which it directs efficient acquisition of glycoprotein E (gE) via a direct interaction. In vitro binding assays showed that the interaction required only the first 28, membrane-proximal residues of the cytoplasmic tail of gE, and the C-terminal 26 residues of UL11. A second, weaker binding site was also found in the N-terminal half of UL11. The significance of the gE-UL11 interaction was subsequently investigated with viral deletion mutants. In the absence of the gE tail, virion packaging of UL11, but not other tegument proteins such as VP22 and VP16, was reduced by at least 80%. Reciprocally, wild-type gE packaging was also drastically reduced by about 87% in the absence of UL11, and this defect could be rescued in trans by expressing U(L)11 at the U(L)35 locus. Surprisingly, a mutant that lacks the C-terminal gE-binding site of UL11 packaged nearly normal amounts of gE despite its strong interaction with the gE tail in vitro, indicating that the interaction with the UL11 N terminus may be important. Mutagenesis studies of the UL11 N terminus revealed that the association of UL11 with membrane was not required for this function. In contrast, the UL11 acidic cluster motif was found to be critical for gE packaging and was not replaceable with foreign acidic clusters. Together, these results highlight an important role of UL11 in the acquisition of glycoprotein-enriched lipid bilayers, and the findings may also have important implications for the role of UL11 in gE-mediated cell-to-cell spread.

  2. Analysis of four achaete-scute homologs in Bombyx mori reveals new viewpoints of the evolution and functions of this gene family.

    PubMed

    Zhou, Qingxiang; Zhang, Tianyi; Xu, Weihua; Yu, Linlin; Yi, Yongzhu; Zhang, Zhifang

    2008-03-06

    achaete-scute complexe (AS-C) has been widely studied at genetic, developmental and evolutional levels. Genes of this family encode proteins containing a highly conserved bHLH domain, which take part in the regulation of the development of central nervous system and peripheral nervous system. Many AS-C homologs have been isolated from various vertebrates and invertebrates. Also, AS-C genes are duplicated during the evolution of Diptera. Functions besides neural development controlling have also been found in Drosophila AS-C genes. We cloned four achaete-scute homologs (ASH) from the lepidopteran model organism Bombyx mori, including three proneural genes and one neural precursor gene. Proteins encoded by them contained the characteristic bHLH domain and the three proneural ones were also found to have the C-terminal conserved motif. These genes regulated promoter activity through the Class A E-boxes in vitro. Though both Bm-ASH and Drosophila AS-C have four members, they are not in one by one corresponding relationships. Results of RT-PCR and real-time PCR showed that Bm-ASH genes were expressed in different larval tissues, and had well-regulated expressional profiles during the development of embryo and wing/wing disc. There are four achaete-scute homologs in Bombyx mori, the second insect having four AS-C genes so far, and these genes have multiple functions in silkworm life cycle. AS-C gene duplication in insects occurs after or parallel to, but not before the taxonomic order formation during evolution.

  3. Genomic and Resistance Gene Homolog Diversity of the Dominant Tallgrass Prairie Species across the U.S. Great Plains Precipitation Gradient

    PubMed Central

    Rouse, Matthew N.; Saleh, Amgad A.; Seck, Amadou; Keeler, Kathleen H.; Travers, Steven E.; Hulbert, Scot H.; Garrett, Karen A.

    2011-01-01

    Background Environmental variables such as moisture availability are often important in determining species prevalence and intraspecific diversity. The population genetic structure of dominant plant species in response to a cline of these variables has rarely been addressed. We evaluated the spatial genetic structure and diversity of Andropogon gerardii populations across the U.S. Great Plains precipitation gradient, ranging from approximately 48 cm/year to 105 cm/year. Methodology/Principal Findings Genomic diversity was evaluated with AFLP markers and diversity of a disease resistance gene homolog was evaluated by PCR-amplification and digestion with restriction enzymes. We determined the degree of spatial genetic structure using Mantel tests. Genomic and resistance gene homolog diversity were evaluated across prairies using Shannon's index and by averaging haplotype dissimilarity. Trends in diversity across prairies were determined using linear regression of diversity on average precipitation for each prairie. We identified significant spatial genetic structure, with genomic similarity decreasing as a function of distance between samples. However, our data indicated that genome-wide diversity did not vary consistently across the precipitation gradient. In contrast, we found that disease resistance gene homolog diversity was positively correlated with precipitation. Significance Prairie remnants differ in the genetic resources they maintain. Selection and evolution in this disease resistance homolog is environmentally dependent. Overall, we found that, though this environmental gradient may not predict genomic diversity, individual traits such as disease resistance genes may vary significantly. PMID:21532756

  4. The Cyclin-Dependent Kinase Ortholog pUL97 of Human Cytomegalovirus Interacts with Cyclins

    PubMed Central

    Graf, Laura; Webel, Rike; Wagner, Sabrina; Hamilton, Stuart T.; Rawlinson, William D.; Sticht, Heinrich; Marschall, Manfred

    2013-01-01

    The human cytomegalovirus (HCMV)-encoded protein kinase, pUL97, is considered a cyclin-dependent kinase (CDK) ortholog, due to shared structural and functional characteristics. The primary mechanism of CDK activation is binding to corresponding cyclins, including cyclin T1, which is the usual regulatory cofactor of CDK9. This study provides evidence of direct interaction between pUL97 and cyclin T1 using yeast two-hybrid and co-immunoprecipitation analyses. Confocal immunofluorescence revealed partial colocalization of pUL97 with cyclin T1 in subnuclear compartments, most pronounced in viral replication centres. The distribution patterns of pUL97 and cyclin T1 were independent of HCMV strain and host cell type. The sequence domain of pUL97 responsible for the interaction with cyclin T1 was between amino acids 231–280. Additional co-immunoprecipitation analyses showed cyclin B1 and cyclin A as further pUL97 interaction partners. Investigation of the pUL97-cyclin T1 interaction in an ATP consumption assay strongly suggested phosphorylation of pUL97 by the CDK9/cyclin T1 complex in a substrate concentration-dependent manner. This is the first demonstration of interaction between a herpesviral CDK ortholog and cellular cyclins. PMID:24351800

  5. Phosphatase and tensin homolog (PTEN) gene mutations and autism: literature review and a case report of a patient with Cowden syndrome, autistic disorder, and epilepsy.

    PubMed

    Conti, Sara; Condò, Maria; Posar, Annio; Mari, Francesca; Resta, Nicoletta; Renieri, Alessandra; Neri, Iria; Patrizi, Annalisa; Parmeggiani, Antonia

    2012-03-01

    Phosphatase and tensin homolog (PTEN) gene mutations are associated with a spectrum of clinical disorders characterized by skin lesions, macrocephaly, hamartomatous overgrowth of tissues, and an increased risk of cancers. Autism has rarely been described in association with these variable clinical features. At present, 24 patients with phosphatase and tensin homolog gene mutation, autism, macrocephaly, and some clinical findings described in phosphatase and tensin homolog syndromes have been reported in the literature. We describe a 14-year-old boy with autistic disorder, focal epilepsy, severe and progressive macrocephaly, and multiple papular skin lesions and palmoplantar punctate keratoses, characteristic of Cowden syndrome. The boy has a de novo phosphatase and tensin homolog gene mutation. Our patient is the first case described to present a typical Cowden syndrome and autism associated with epilepsy.

  6. The Cytomegalovirus protein pUL37×1 targets mitochondria to mediate neuroprotection

    PubMed Central

    Hong, Chien Tai; Chau, Kai-Yin; Schapira, Anthony H. V.

    2016-01-01

    There is substantial evidence that mitochondrial dysfunction plays a significant role in the pathogenesis of Parkinson disease (PD). This contribution probably encompasses defects of oxidative phosphorylation, mitochondrial turnover (mitophagy), mitochondrial derived oxidative stress, and apoptotic signalling. Human cytomegalovirus immediate-early protein pUL37 × 1 induces Bax mitochondrial translocation and inactivation to prevent apoptosis. Over-expressing pUL37 × 1 in neuronal cells protects against staurosporin and 6-hydroxydopamine induced apoptosis and cell death. Protection is not enhanced by bax silencing in pUL37 × 1 over-expressing cells, suggesting a bax-dependent mechanism of action. pUL37 × 1 increases glycolysis and induces mitochondrial hyperpolarization, a bax independent anti-apoptotic action. pUL37 × 1 increases glycolysis through activation of phosphofructokinase by a calcium-dependent pathway. The dual anti-apoptotic mechanism of pUL37 × 1 may be considered a novel neuroprotective strategy in diseases where mitochondrial dysfunction and apoptotic pathways are involved. PMID:27562039

  7. Targeted gene knock-in by homology-directed genome editing using Cas9 ribonucleoprotein and AAV donor delivery.

    PubMed

    Gaj, Thomas; Staahl, Brett T; Rodrigues, Gonçalo M C; Limsirichai, Prajit; Ekman, Freja K; Doudna, Jennifer A; Schaffer, David V

    2017-06-20

    Realizing the full potential of genome editing requires the development of efficient and broadly applicable methods for delivering programmable nucleases and donor templates for homology-directed repair (HDR). The RNA-guided Cas9 endonuclease can be introduced into cells as a purified protein in complex with a single guide RNA (sgRNA). Such ribonucleoproteins (RNPs) can facilitate the high-fidelity introduction of single-base substitutions via HDR following co-delivery with a single-stranded DNA oligonucleotide. However, combining RNPs with transgene-containing donor templates for targeted gene addition has proven challenging, which in turn has limited the capabilities of the RNP-mediated genome editing toolbox. Here, we demonstrate that combining RNP delivery with naturally recombinogenic adeno-associated virus (AAV) donor vectors enables site-specific gene insertion by homology-directed genome editing. Compared to conventional plasmid-based expression vectors and donor templates, we show that combining RNP and AAV donor delivery increases the efficiency of gene addition by up to 12-fold, enabling the creation of lineage reporters that can be used to track the conversion of striatal neurons from human fibroblasts in real time. These results thus illustrate the potential for unifying nuclease protein delivery with AAV donor vectors for homology-directed genome editing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral.

    PubMed

    Smith-Keune, C; Dove, S

    2008-01-01

    Recent incidences of mass coral bleaching indicate that major reef building corals are increasingly suffering thermal stress associated with climate-related temperature increases. The development of pulse amplitude modulated (PAM) fluorometry has enabled rapid detection of the onset of thermal stress within coral algal symbionts, but sensitive biomarkers of thermal stress specific to the host coral have been slower to emerge. Differential display reverse transcription polymerase chain reaction (DDRT-PCR) was used to produce fingerprints of gene expression for the reef-building coral Acropora millepora exposed to 33 degrees C. Changes in the expression of 23 out of 399 putative genes occurred within 144 h. Down-regulation of one host-specific gene (AmA1a) occurred within just 6 h. Full-length sequencing revealed the product of this gene to be an all-protein chromatophore (green fluorescent protein [GFP]-homolog). RT-PCR revealed consistent down-regulation of this GFP-homolog for three replicate colonies within 6 h at both 32 degrees C and 33 degrees C but not at lower temperatures. Down-regulation of this host gene preceded significant decreases in the photosynthetic activity of photosystem II (dark-adapted F (v)/F (m)) of algal symbionts as measured by PAM fluorometry. Gene expression of host-specific genes such as GFP-homologs may therefore prove to be highly sensitive indicators for the onset of thermal stress within host coral cells.

  9. Nucleotide sequence of the L1 ribosomal protein gene of Xenopus laevis: remarkable sequence homology among introns.

    PubMed Central

    Loreni, F; Ruberti, I; Bozzoni, I; Pierandrei-Amaldi, P; Amaldi, F

    1985-01-01

    Ribosomal protein L1 is encoded by two genes in Xenopus laevis. The comparison of two cDNA sequences shows that the two L1 gene copies (L1a and L1b) have diverged in many silent sites and very few substitution sites; moreover a small duplication occurred at the very end of the coding region of the L1b gene which thus codes for a product five amino acids longer than that coded by L1a. Quantitatively the divergence between the two L1 genes confirms that a whole genome duplication took place in Xenopus laevis approximately 30 million years ago. A genomic fragment containing one of the two L1 gene copies (L1a), with its nine introns and flanking regions, has been completely sequenced. The 5' end of this gene has been mapped within a 20-pyridimine stretch as already found for other vertebrate ribosomal protein genes. Four of the nine introns have a 60-nucleotide sequence with 80% homology; within this region some boxes, one of which is 16 nucleotides long, are 100% homologous among the four introns. This feature of L1a gene introns is interesting since we have previously shown that the activity of this gene is regulated at a post-transcriptional level and it involves the block of the normal splicing of some intron sequences. Images Fig. 3. Fig. 5. PMID:3841512

  10. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system.

    PubMed

    Katoh, Yohei; Michisaka, Saki; Nozaki, Shohei; Funabashi, Teruki; Hirano, Tomoaki; Takei, Ryota; Nakayama, Kazuhisa

    2017-04-01

    The CRISPR/Cas9 system has revolutionized genome editing in virtually all organisms. Although the CRISPR/Cas9 system enables the targeted cleavage of genomic DNA, its use for gene knock-in remains challenging because levels of homologous recombination activity vary among various cells. In contrast, the efficiency of homology-independent DNA repair is relatively high in most cell types. Therefore the use of a homology-independent repair mechanism is a possible alternative for efficient genome editing. Here we constructed a donor knock-in vector optimized for the CRISPR/Cas9 system and developed a practical system that enables efficient disruption of target genes by exploiting homology-independent repair. Using this practical knock-in system, we successfully disrupted genes encoding proteins involved in ciliary protein trafficking, including IFT88 and IFT20, in hTERT-RPE1 cells, which have low homologous recombination activity. The most critical concern using the CRISPR/Cas9 system is off-target cleavage. To reduce the off-target cleavage frequency and increase the versatility of our knock-in system, we constructed a universal donor vector and an expression vector containing Cas9 with enhanced specificity and tandem sgRNA expression cassettes. We demonstrated that the second version of our system has improved usability. © 2017 Katoh et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Analysis of four achaete-scute homologs in Bombyx mori reveals new viewpoints of the evolution and functions of this gene family

    PubMed Central

    Zhou, Qingxiang; Zhang, Tianyi; Xu, Weihua; Yu, Linlin; Yi, Yongzhu; Zhang, Zhifang

    2008-01-01

    Background achaete-scute complexe (AS-C) has been widely studied at genetic, developmental and evolutional levels. Genes of this family encode proteins containing a highly conserved bHLH domain, which take part in the regulation of the development of central nervous system and peripheral nervous system. Many AS-C homologs have been isolated from various vertebrates and invertebrates. Also, AS-C genes are duplicated during the evolution of Diptera. Functions besides neural development controlling have also been found in Drosophila AS-C genes. Results We cloned four achaete-scute homologs (ASH) from the lepidopteran model organism Bombyx mori, including three proneural genes and one neural precursor gene. Proteins encoded by them contained the characteristic bHLH domain and the three proneural ones were also found to have the C-terminal conserved motif. These genes regulated promoter activity through the Class A E-boxes in vitro. Though both Bm-ASH and Drosophila AS-C have four members, they are not in one by one corresponding relationships. Results of RT-PCR and real-time PCR showed that Bm-ASH genes were expressed in different larval tissues, and had well-regulated expressional profiles during the development of embryo and wing/wing disc. Conclusion There are four achaete-scute homologs in Bombyx mori, the second insect having four AS-C genes so far, and these genes have multiple functions in silkworm life cycle. AS-C gene duplication in insects occurs after or parallel to, but not before the taxonomic order formation during evolution. PMID:18321391

  12. Molecular study of a squalene cyclase homolog gene in Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Bosak, T.; Pearson, A.; Losick, R.

    2005-12-01

    Polycyclic triterpenoids such as hopanes and steranes are formed by enzymatic cyclization of linear isoprenoid precursors by squalene cyclases and oxidosqualene cyclases. Due to their amazing preservation potential, polycyclic triterpenoids have been used to indicate the source of organic matter in oils and sediments for decades, although many cannot be attributed to known organisms and genes. To bridge the gap between the genomic database and the geochemical record, we are using molecular tools to study the expression, intracellular localization, and products of a squalene cyclase homolog found in Bacillus subtilis, a Gram-positive soil bacterium. We find that the gene is expressed during sporulation and is localized to the spore coat. Our results may help to understand the source of some previously unassigned natural products, and they may also provide clues to the physiological role of triterpenoids in the Bacillales.

  13. Role of nitric oxide and flavohemoglobin homolog genes in Aspergillus nidulans sexual development and mycotoxin production

    USDA-ARS?s Scientific Manuscript database

    Flavohemoglobins are widely distributed proteins in both prokaryotic and eukaryotic organisms, conferring resistance against nitrosative stress. In the present study we investigated the role of two flavohemoglobin homologous genes, fhbA and fhbB, in morphogenesis and in the production of the mycotox...

  14. Cloning and characterization of the Drosophila homolog of the xeroderma pigmentosum complementation-group B correcting gene, ERCC3.

    PubMed Central

    Koken, M H; Vreeken, C; Bol, S A; Cheng, N C; Jaspers-Dekker, I; Hoeijmakers, J H; Eeken, J C; Weeda, G; Pastink, A

    1992-01-01

    Previously the human nucleotide excision repair gene ERCC3 was shown to be responsible for a rare combination of the autosomal recessive DNA repair disorders xeroderma pigmentosum (complementation group B) and Cockayne's syndrome (complementation group C). The human and mouse ERCC3 proteins contain several sequence motifs suggesting that it is a nucleic acid or chromatin binding helicase. To study the significance of these domains and the overall evolutionary conservation of the gene, the homolog from Drosophila melanogaster was isolated by low stringency hybridizations using two flanking probes of the human ERCC3 cDNA. The flanking probe strategy selects for long stretches of nucleotide sequence homology, and avoids isolation of small regions with fortuitous homology. In situ hybridization localized the gene onto chromosome III 67E3/4, a region devoid of known D.melanogaster mutagen sensitive mutants. Northern blot analysis showed that the gene is continuously expressed in all stages of fly development. A slight increase (2-3 times) of ERCC3Dm transcript was observed in the later stages. Two almost full length cDNAs were isolated, which have different 5' untranslated regions (UTR). The SD4 cDNA harbours only one long open reading frame (ORF) coding for ERCC3Dm. Another clone (SD2), however, has the potential to encode two proteins: a 170 amino acids polypeptide starting at the optimal first ATG has no detectable homology with any other proteins currently in the data bases, and another ORF beginning at the suboptimal second startcodon which is identical to that of SD4. Comparison of the encoded ERCC3Dm protein with the homologous proteins of mouse and man shows a strong amino acid conservation (71% identity), especially in the postulated DNA binding region and seven 'helicase' domains. The ERCC3Dm sequence is fully consistent with the presumed functions and the high conservation of these regions strengthens their functional significance. Microinjection and DNA

  15. Porcine MYF6 gene: sequence, homology analysis, and variation in the promoter region.

    PubMed

    Wyszyńska-Koko, J; Kurył, J

    2004-01-01

    MYF6 gene codes for the bHLH transcription factor belonging to MyoD family. Its expression accompanies the processes of differentiation and maturation of myotubes during embriogenesis and continues on a relatively high level after birth, affecting the muscle phenotype. The porcine MYF6 gene was amplified and sequenced and compared with MYF6 gene sequences of other species. The amino acid sequence was deduced and an interspecies homology analysis was performed. Myf-6 protein shows a high conservation among species of 99 and 97% identity when comparing pig with cow and human, respectively, and of 93% when comparing pig with mouse and rat. The single nucleotide polymorphism (SNP) was revealed within the promoter region, which appeared to be T --> C transition recognized by a MspI restriction enzyme.

  16. Functional conservation and diversification of the soybean maturity gene E1 and its homologs in legumes.

    PubMed

    Zhang, Xingzheng; Zhai, Hong; Wang, Yaying; Tian, Xiaojie; Zhang, Yupeng; Wu, Hongyan; Lü, Shixiang; Yang, Guang; Li, Yuqiu; Wang, Lu; Hu, Bo; Bu, Qingyun; Xia, Zhengjun

    2016-07-13

    Gene regulatory networks involved in flowering time and photoperiodic responses in legumes remain unknown. Although the major maturity gene E1 has been successfully deciphered in soybean, knowledge on the functional conservation of this gene is limited to a certain extent to E1 homologs in legumes. The ectopic expression of Phvul.009G204600 (PvE1L), an E1 homolog from common bean, delayed the onset of flowering in soybean. By contrast, the ectopic expression of Medtr2g058520 (MtE1L) from Medicago truncatula did not affect the flowering of soybean. Characterization of the late-flowering mte1l mutant indicated that MtE1L promoted flowering in Medicago truncatula. Moreover, all transgenic E1, PvE1L and MtE1L soybean lines exhibited phenotypic changes in terms of plant height. Transgenic E1 or PvE1L plants were taller than the wild-type, whereas transgenic MtE1L plants produced dwarf phenotype with few nodes and short internode. Thus, functional conservation and diversification of E1 family genes from legumes in the regulation of flowering and plant growth may be associated with lineage specification and genomic duplication.

  17. Detecting false positive sequence homology: a machine learning approach.

    PubMed

    Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Bybee, Seth M

    2016-02-24

    Accurate detection of homologous relationships of biological sequences (DNA or amino acid) amongst organisms is an important and often difficult task that is essential to various evolutionary studies, ranging from building phylogenies to predicting functional gene annotations. There are many existing heuristic tools, most commonly based on bidirectional BLAST searches that are used to identify homologous genes and combine them into two fundamentally distinct classes: orthologs and paralogs. Due to only using heuristic filtering based on significance score cutoffs and having no cluster post-processing tools available, these methods can often produce multiple clusters constituting unrelated (non-homologous) sequences. Therefore sequencing data extracted from incomplete genome/transcriptome assemblies originated from low coverage sequencing or produced by de novo processes without a reference genome are susceptible to high false positive rates of homology detection. In this paper we develop biologically informative features that can be extracted from multiple sequence alignments of putative homologous genes (orthologs and paralogs) and further utilized in context of guided experimentation to verify false positive outcomes. We demonstrate that our machine learning method trained on both known homology clusters obtained from OrthoDB and randomly generated sequence alignments (non-homologs), successfully determines apparent false positives inferred by heuristic algorithms especially among proteomes recovered from low-coverage RNA-seq data. Almost ~42 % and ~25 % of predicted putative homologies by InParanoid and HaMStR respectively were classified as false positives on experimental data set. Our process increases the quality of output from other clustering algorithms by providing a novel post-processing method that is both fast and efficient at removing low quality clusters of putative homologous genes recovered by heuristic-based approaches.

  18. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila.

    PubMed Central

    Weill, Mylène; Fort, Philippe; Berthomieu, Arnaud; Dubois, Marie Pierre; Pasteur, Nicole; Raymond, Michel

    2002-01-01

    Acetylcholinesterase (AChE) is the target of two major insecticide families, organophosphates (OPs) and carbamates. AChE insensitivity is a frequent resistance mechanism in insects and responsible mutations in the ace gene were identified in two Diptera, Drosophila melanogaster and Musca domestica. However, for other insects, the ace gene cloned by homology with Drosophila does not code for the insensitive AChE in resistant individuals, indicating the existence of a second ace locus. We identified two AChE loci in the genome of Anopheles gambiae, one (ace-1) being a new locus and the other (ace-2) being homologous to the gene previously described in Drosophila. The gene ace-1 has no obvious homologue in the Drosophila genome and was found in 15 mosquito species investigated. In An. gambiae, ace-1 and ace-2 display 53% similarity at the amino acid level and an overall phylogeny indicates that they probably diverged before the differentiation of insects. Thus, both genes are likely to be present in the majority of insects and the absence of ace-1 in Drosophila is probably due to a secondary loss. In one mosquito (Culex pipiens), ace-1 was found to be tightly linked with insecticide resistance and probably encodes the AChE OP target. These results have important implications for the design of new insecticides, as the target AChE is thus encoded by distinct genes in different insect groups, even within the Diptera: ace-2 in at least the Drosophilidae and Muscidae and ace-1 in at least the Culicidae. Evolutionary scenarios leading to such a peculiar situation are discussed. PMID:12396499

  19. Chimeric mitochondrial minichromosomes of the human body louse, Pediculus humanus: evidence for homologous and non-homologous recombination.

    PubMed

    Shao, Renfu; Barker, Stephen C

    2011-02-15

    The mitochondrial (mt) genome of the human body louse, Pediculus humanus, consists of 18 minichromosomes. Each minichromosome is 3 to 4 kb long and has 1 to 3 genes. There is unequivocal evidence for recombination between different mt minichromosomes in P. humanus. It is not known, however, how these minichromosomes recombine. Here, we report the discovery of eight chimeric mt minichromosomes in P. humanus. We classify these chimeric mt minichromosomes into two groups: Group I and Group II. Group I chimeric minichromosomes contain parts of two different protein-coding genes that are from different minichromosomes. The two parts of protein-coding genes in each Group I chimeric minichromosome are joined at a microhomologous nucleotide sequence; microhomologous nucleotide sequences are hallmarks of non-homologous recombination. Group II chimeric minichromosomes contain all of the genes and the non-coding regions of two different minichromosomes. The conserved sequence blocks in the non-coding regions of Group II chimeric minichromosomes resemble the "recombination repeats" in the non-coding regions of the mt genomes of higher plants. These repeats are essential to homologous recombination in higher plants. Our analyses of the nucleotide sequences of chimeric mt minichromosomes indicate both homologous and non-homologous recombination between minichromosomes in the mitochondria of the human body louse. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. ICP22 and the UL13 Protein Kinase Are both Required for Herpes Simplex Virus-Induced Modification of the Large Subunit of RNA Polymerase II

    PubMed Central

    Long, Melissa C.; Leong, Vivian; Schaffer, Priscilla A.; Spencer, Charlotte A.; Rice, Stephen A.

    1999-01-01

    Herpes simplex virus type 1 (HSV-1) infection alters the phosphorylation of the large subunit of RNA polymerase II (RNAP II), resulting in the depletion of the hypophosphorylated and hyperphosphorylated forms of this polypeptide (known as IIa and IIo, respectively) and induction of a novel, alternatively phosphorylated form (designated IIi). We previously showed that the HSV-1 immediate-early protein ICP22 is involved in this phenomenon, since induction of IIi and depletion of IIa are deficient in cells infected with 22/n199, an HSV-1 ICP22 nonsense mutant (S. A. Rice, M. C. Long, V. Lam, P. A. Schaffer, and C. A. Spencer, J. Virol. 69:5550–5559, 1995). However, depletion of IIo still occurs in 22/n199-infected cells. This suggests either that another viral gene product affects the RNAP II large subunit or that the truncated ICP22 polypeptide encoded by 22/n199 retains residual activity which leads to IIo depletion. To distinguish between these possibilities, we engineered an HSV-1 ICP22 null mutant, d22-lacZ, and compared it to 22/n199. The two mutants are indistinguishable in their effects on the RNAP II large subunit, suggesting that an additional viral gene product is involved in altering RNAP II. Two candidates are UL13, a protein kinase which has been implicated in ICP22 phosphorylation, and the virion host shutoff (Vhs) factor, the expression of which is positively regulated by ICP22 and UL13. To test whether UL13 is involved, a UL13-deficient viral mutant, d13-lacZ, was engineered. This mutant was defective in IIi induction and IIa depletion, displaying a phenotype very similar to that of d22-lacZ. In contrast, a Vhs mutant had effects that were indistinguishable from wild-type HSV-1. Therefore, UL13 but not the Vhs function plays a role in modifying the RNAP II large subunit. To study the potential role of UL13 in viral transcription, we carried out nuclear run-on transcription analyses in infected human embryonic lung cells. Infections with either UL13

  1. Three genes in the human MHC class III region near the junction with the class II: Gene for receptor of advanced glycosylation end products, PBX2 homeobox gene and a notch homolog, human counterpart of mouse mammary tumor gene int-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugaya, K.; Fukagawa, T.; Matsumoto, K.

    Cosmid walking of about 250 kb from MHC class III gene CYP21 to class II was conducted. The gene for receptor of advanced glycosylation end products of proteins (RAGE, a member of immunoglobulin super-family molecules), the PBX2 homeobox gene designated HOX12, and the human counterpart of the mouse mammary tumor gene int-3 were found. The contiguous RAGE and HOX12 genes were completely sequenced, and the human int-3 counterpart was partially sequenced and assigned to a Notch homolog. This human Notch homolog, designated NOTCH3, showed both the intracellular portion present in the mouse int-3 sequence and the extracellular portion absent inmore » the int-3. It thus corresponds to the intact form of a Notch-type transmembrane protein. About 20 kb of dense Alu clustering was found just centromeric to the NOTCH3. 48 refs., 9 figs., 2 tabs.« less

  2. The UL21 Tegument Protein of Herpes Simplex Virus 1 Is Differentially Required for the Syncytial Phenotype

    PubMed Central

    Starkey, Jason; Mellinger, Erica; Zhang, Dan; Chadha, Pooja; Carmichael, Jillian

    2017-01-01

    ABSTRACT The initial goal of this study was to reexamine the requirement of UL21 for herpes simplex virus 1 (HSV-1) replication. Previous studies suggested that UL21 is dispensable for replication in cell cultures, but a recent report on HSV-2 challenges those findings. As was done for the HSV-2 study, a UL21-null virus was made and propagated on complementing cells to discourage selection of compensating mutations. This HSV-1 mutant was able to replicate in noncomplementing cells, even at a low multiplicity of infection (MOI), though a reduction in titer was observed. Also, increased proportions of empty capsids were observed in the cytoplasm, suggesting a role for UL21 in preventing their exit from the nucleus. Surprisingly, passage of the null mutant resulted in rapid outgrowth of syncytial (Syn) variants. This was unexpected because UL21 has been shown to be required for the Syn phenotype. However, earlier experiments made use of only the A855V syncytial mutant of glycoprotein B (gB), and the Syn phenotype can also be produced by substitutions in glycoprotein K (gK), UL20, and UL24. Sequencing of the syncytial variants revealed mutations in the gK locus, but UL21 was shown to be dispensable for UL20Syn and UL24Syn. To test whether UL21 is needed only for the A855V mutant, additional gBSyn derivatives were examined in the context of the null virus, and all produced lytic rather than syncytial sites of infection. Thus, UL21 is required only for the gBSyn phenotype. This is the first example of a differential requirement for a viral protein across the four syn loci. IMPORTANCE UL21 is conserved among alphaherpesviruses, but its role is poorly understood. This study shows that HSV-1 can replicate without UL21, although the virus titers are greatly reduced. The null virus had greater proportions of empty (DNA-less) capsids in the cytoplasm of infected cells, suggesting that UL21 may play a role in retaining them in the nucleus. This is consistent with reports

  3. RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, E.; Prakash, L.; Guzder, S.N.

    1992-12-01

    Xeroderma pigmentosum (XP) patients are extremely sensitive to ultraviolet (UV) light and suffer from a high incidence of skin cancers, due to a defect in nucleotide excision repair. The disease is genetically heterogeneous, and seven complementation groups, A-G, have been identified. Homologs of human excision repair genes ERCC1, XPDC/ERCC2, and XPAC have been identified in the yeast Saccharomyces cerevisiae. Since no homolog of human XPBC/ERCC3 existed among the known yeast genes, we cloned the yeast homolog by using XPBC cDNA as a hybridization probe. The yeast homolog, RAD25 (SSL2), encodes a protein of 843 amino acids (M[sub r] 95,356). Themore » RAD25 (SSL2)- and XPCX-encoded proteins share 55% identical and 72% conserved amino acid residues, and the two proteins resemble one another in containing the conserved DNA helicase sequence motifs. A nonsense mutation at codon 799 that deletes the 45 C-terminal amino acid residues in RAD25 (SSL2) confers UV sensitivity. This mutation shows epistasis with genes in the excision repair group, whereas a synergistic increase in UN sensitivity occurs when it is combined with mutations in genes in other DNA repair pathways, indicating that RAD25 (SSL2) functions in excision repair but not in other repair pathways. We also show that RAD25 (SSL2) is an essential gene. A mutation of the Lys[sup 392] residue to arginine in the conserved Walker type A nucleotide-binding motif is lethal, suggesting an essential role of the putative RAD 25 (SSL2) ATPase/DNA helicase activity in viability. 40 refs., 3 figs., 1 tab.« less

  4. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  5. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    PubMed Central

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  6. Multi-Homologous Recombination-Based Gene Manipulation in the Rice Pathogen Fusarium fujikuroi

    PubMed Central

    Hwang, In Sun; Ahn, Il-Pyung

    2016-01-01

    Gene disruption by homologous recombination is widely used to investigate and analyze the function of genes in Fusarium fujikuroi, a fungus that causes bakanae disease and root rot symptoms in rice. To generate gene deletion constructs, the use of conventional cloning methods, which rely on restriction enzymes and ligases, has had limited success due to a lack of unique restriction enzyme sites. Although strategies that avoid the use of restriction enzymes have been employed to overcome this issue, these methods require complicated PCR steps or are frequently inefficient. Here, we introduce a cloning system that utilizes multi-fragment assembly by In-Fusion to generate a gene disruption construct. This method utilizes DNA fragment fusion and requires only one PCR step and one reaction for construction. Using this strategy, a gene disruption construct for Fusarium cyclin C1 (FCC1 ), which is associated with fumonisin B1 biosynthesis, was successfully created and used for fungal transformation. In vivo and in vitro experiments using confirmed fcc1 mutants suggest that fumonisin production is closely related to disease symptoms exhibited by F. fujikuroi strain B14. Taken together, this multi-fragment assembly method represents a simpler and a more convenient process for targeted gene disruption in fungi. PMID:27298592

  7. Molecular identification of aiiA homologous gene from endophytic Enterobacter species and in silico analysis of putative tertiary structure of AHL-lactonase.

    PubMed

    Rajesh, P S; Rai, V Ravishankar

    2014-01-03

    The aiiA homologous gene known to encode AHL- lactonase enzyme which hydrolyze the N-acylhomoserine lactone (AHL) quorum sensing signaling molecules produced by Gram negative bacteria. In this study, the degradation of AHL molecules was determined by cell-free lysate of endophytic Enterobacter species. The percentage of quorum quenching was confirmed and quantified by HPLC method (p<0.0001). Amplification and sequence BLAST analysis showed the presence of aiiA homologous gene in endophytic Enterobacter asburiae VT65, Enterobacter aerogenes VT66 and Enterobacter ludwigii VT70 strains. Sequence alignment analysis revealed the presence of two zinc binding sites, "HXHXDH" motif as well as tyrosine residue at the position 194. Based on known template available at Swiss-Model, putative tertiary structure of AHL-lactonase was constructed. The result showed that novel endophytic strains of Enterobacter genera encode the novel aiiA homologous gene and its structural importance for future study. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Structural and transcription analysis of two homologous genes for the P700 chlorophyll a-apoproteins in Chlamydomonas reinhardii: evidence for in vivo trans-splicing

    PubMed Central

    Kück, Ulrich; Choquet, Yves; Schneider, Michel; Dron, Michel; Bennoun, Pierre

    1987-01-01

    The two homologous genes for the P700 chlorophyll a-apoproteins (ps1A1 and ps1A2) are encoded by the plastom in the green alga Chlamydomonas reinhardii. The structure and organization of the two genes were determined by comparison with the homologous genes from maize using data from heterologous hybridizations as well as from DNA and RNA sequencing. While the ps1A2 (736 codons) gene shows a continuous gene organization, the ps1A1 (754 codons) gene possesses some unusual features. The discontinuous gene is split into three separate exons which are scattered around the circular chloroplast genome. Exon 1 (86 bp) is separated by ∼50 kb from exon 2 (198 bp), which is located ∼ 90 kb apart from exon 3 (1984 bp). All exons are flanked by intronic sequences of group II. Transcription analysis reveals that the ps1A2 gene hybridizes with a 2.8-kb transcript, while all exon regions of the ps1A1 gene are homologous to a mature mRNA of 2.7 kb. From our data we conclude that the three distantly separated exonic sequences of the ps1A1 gene constitute a functional gene which probably operates by a trans-splicing mechanism. ImagesFig. 3.Fig. 5.Fig. 6. PMID:16453785

  9. Gene encoding the human. beta. -hexosaminidase. beta. chain: Extensive homology of intron placement in the. alpha. - and. beta. -chain genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proia, R.L.

    1988-03-01

    Lysosomal {beta}-hexosaminidase is composed of two structurally similar chains, {alpha} and {beta}, that are the products of different genes. Mutations in either gene causing {beta}-hexosaminidase deficiency result in the lysosomal storage disease GM2-gangliosidosis. To enable the investigation of the molecular lesions in this disorder and to study the evolutionary relationship between the {alpha} and {beta} chains, the {beta}-chain gene was isolated, and its organization was characterized. The {beta}-chain coding region is divided into 14 exons distributed over {approx}40 kilobases of DNA. Comparison with the {alpha}-chain gene revealed that 12 of the 13 introns interrupt the coding regions at homologous positions.more » This extensive sharing of intron placement demonstrates that the {alpha} and {beta} chains evolved by way of the duplication of a common ancestor.« less

  10. Chromosomal localization of the mouse Src-like adapter protein (Slap) gene and its putative human homolog SLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angrist, M.; Chakravarti, A.; Wells, D.E.

    1995-12-10

    Molecules containing Src-homology 2 (SH2) and Src-homology 3 (SH3) domains are critical components of signal transduction pathways that serve to relay signals originating from the cell surface to the interior of the cell. Src-like adapter protein (SLAP) is a recently described adapter protein that binds activated the Eck receptor protein-tyrosine kinase. Although SLAP bears a striking homology to the SH3 and SH2 domains of the Src family of nonreceptor tyrosine kinases, it does not contain a tyrosine kinase catalytic domain. In this report, the Slap gene was mapped by linkage analysis to mouse chromosome 15, while its putative human homologmore » (SLA) was identified and mapped to human 8q22.3-qter using a panel of somatic cell hybrids. 10 refs., 2 figs.« less

  11. The Tribolium homeotic gene Abdominal is homologous to abdominal-A of the Drosophila bithorax complex

    NASA Technical Reports Server (NTRS)

    Stuart, J. J.; Brown, S. J.; Beeman, R. W.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The Abdominal gene is a member of the single homeotic complex of the beetle, Tribolium castaneum. An integrated developmental genetic and molecular analysis shows that Abdominal is homologous to the abdominal-A gene of the bithorax complex of Drosophila. abdominal-A mutant embryos display strong homeotic transformations of the anterior abdomen (parasegments 7-9) to PS6, whereas developmental commitments in the posterior abdomen depend primarily on Abdominal-B. In beetle embryos lacking Abdominal function, parasegments throughout the abdomen are transformed to PS6. This observation demonstrates the general functional significance of parasegmental expression among insects and shows that the control of determinative decisions in the posterior abdomen by homeotic selector genes has undergone considerable evolutionary modification.

  12. The Tribolium homeotic gene Abdominal is homologous to abdominal-A of the Drosophila bithorax complex.

    PubMed

    Stuart, J J; Brown, S J; Beeman, R W; Denell, R E

    1993-01-01

    The Abdominal gene is a member of the single homeotic complex of the beetle, Tribolium castaneum. An integrated developmental genetic and molecular analysis shows that Abdominal is homologous to the abdominal-A gene of the bithorax complex of Drosophila. abdominal-A mutant embryos display strong homeotic transformations of the anterior abdomen (parasegments 7-9) to PS6, whereas developmental commitments in the posterior abdomen depend primarily on Abdominal-B. In beetle embryos lacking Abdominal function, parasegments throughout the abdomen are transformed to PS6. This observation demonstrates the general functional significance of parasegmental expression among insects and shows that the control of determinative decisions in the posterior abdomen by homeotic selector genes has undergone considerable evolutionary modification.

  13. Homologous and Homeologous Intermolecular Gene Conversion Are Not Differentially Affected by Mutations in the DNA Damage or the Mismatch Repair Genes Rad1, Rad50, Rad51, Rad52, Rad54, Pms1 and Msh2

    PubMed Central

    Porter, G.; Westmoreland, J.; Priebe, S.; Resnick, M. A.

    1996-01-01

    Mismatch repair (MMR) genes or genes involved in both DNA damage repair and homologous recombination might affect homeologous vs. homologous recombination differentially. Spontaneous mitotic gene conversion between a chromosome and a homologous or homeologous donor sequence (14% diverged) on a single copy plasmid was examined in wild-type Saccharomyces cerevisiae strains and in MMR or DNA damage repair mutants. Homologous recombination in rad51, rad52 and rad54 mutants was considerably reduced, while there was little effect of rad1, rad50, pms1 and msh2 null mutations. DNA divergence resulted in no differential effect on recombination rates in the wild type or the mutants; there was only a five- to 10-fold reduction in homeologous relative to homologous recombination regardless of background. Since DNA divergence is known to affect recombination in some systems, we propose that differences in the role of MMR depends on the mode of recombination and/or the level of divergence. Based on analysis of the recombination breakpoints, there is a minimum of three homologous bases required at a recombination junction. A comparison of Rad(+) vs. rad52 strains revealed that while all conversion tracts are continuous, elimination of RAD52 leads to the appearance of a novel class of very short conversion tracts. PMID:8725224

  14. SGP-1: Prediction and Validation of Homologous Genes Based on Sequence Alignments

    PubMed Central

    Wiehe, Thomas; Gebauer-Jung, Steffi; Mitchell-Olds, Thomas; Guigó, Roderic

    2001-01-01

    Conventional methods of gene prediction rely on the recognition of DNA-sequence signals, the coding potential or the comparison of a genomic sequence with a cDNA, EST, or protein database. Reasons for limited accuracy in many circumstances are species-specific training and the incompleteness of reference databases. Lately, comparative genome analysis has attracted increasing attention. Several analysis tools that are based on human/mouse comparisons are already available. Here, we present a program for the prediction of protein-coding genes, termed SGP-1 (Syntenic Gene Prediction), which is based on the similarity of homologous genomic sequences. In contrast to most existing tools, the accuracy of SGP-1 depends little on species-specific properties such as codon usage or the nucleotide distribution. SGP-1 may therefore be applied to nonstandard model organisms in vertebrates as well as in plants, without the need for extensive parameter training. In addition to predicting genes in large-scale genomic sequences, the program may be useful to validate gene structure annotations from databases. To this end, SGP-1 output also contains comparisons between predicted and annotated gene structures in HTML format. The program can be accessed via a Web server at http://soft.ice.mpg.de/sgp-1. The source code, written in ANSI C, is available on request from the authors. PMID:11544202

  15. The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.).

    PubMed Central

    Golubovskaya, Inna N; Harper, Lisa C; Pawlowski, Wojciech P; Schichnes, Denise; Cande, W Zacheus

    2002-01-01

    The clustering of telomeres on the nuclear envelope (NE) during meiotic prophase to form the bouquet arrangement of chromosomes may facilitate homologous chromosome synapsis. The pam1 (plural abnormalities of meiosis 1) gene is the first maize gene that appears to be required for telomere clustering, and homologous synapsis is impaired in pam1. Telomere clustering on the NE is arrested or delayed at an intermediate stage in pam1. Telomeres associate with the NE during the leptotene-zygotene transition but cluster slowly if at all as meiosis proceeds. Intermediate stages in telomere clustering including miniclusters are observed in pam1 but not in wild-type meiocytes. The tight bouquet normally seen at zygotene is a rare event. In contrast, the polarization of centromeres vs. telomeres in the nucleus at the leptotene-zygotene transition is the same in mutant and wild-type cells. Defects in homologous chromosome synapsis include incomplete synapsis, nonhomologous synapsis, and unresolved interlocks. However, the number of RAD51 foci on chromosomes in pam1 is similar to that of wild type. We suggest that the defects in homologous synapsis and the retardation of prophase I arise from the irregularity of telomere clustering and propose that pam1 is involved in the control of bouquet formation and downstream meiotic prophase I events. PMID:12524364

  16. The HSV-1 tegument protein pUL46 associates with cellular membranes and viral capsids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Michael A.; Bucks, Michelle A.; O'Regan, Kevin J.

    2008-07-05

    The molecular mechanisms responsible for the addition of tegument proteins into nascent herpesvirus particles are poorly understood. To better understand the tegumentation process of herpes simplex virus type 1 (HSV-1) virions, we initiated studies that showed the tegument protein pUL46 (VP11/12) has a similar cellular localization to the membrane-associated tegument protein VP22. Using membrane flotation analysis we found that pUL46 associates with membranes in both the presence and absence of other HSV-1 proteins. However, when purified virions were stripped of their envelope, the majority of pUL46 was found to associate with the capsid fraction. This strong affinity of pUL46 formore » capsids was confirmed by an in vitro capsid pull-down assay in which purified pUL46-GST was able to interact specifically with capsids purified from the nuclear fraction of HSV-1 infected cells. These results suggest that pUL46 displays a dynamic interaction between cellular membranes and capsids.« less

  17. Screening and identification of host factors interacting with UL14 of herpes simplex virus 1.

    PubMed

    Wu, Fuqing; Xing, Junji; Wang, Shuai; Li, Meili; Zheng, Chunfu

    2011-08-01

    The UL14 protein of herpes simplex virus type 1 (HSV-1) is highly conserved in herpesvirus family. However, its exact function during the HSV-1 replication cycle is little known. In the present study, a high throughput yeast two-hybrid system was employed to screen the cellular factors interacting with UL14, and five target candidates were yielded: (1) TSC22 domain family protein 3 (TSC22D3); (2) Mediator of RNA polymerase II transcription subunit 8 isoform 1(MED8); (3) Runt-related transcription factor 3 (RUNX3); (4) Arrestin beta-2 (ARRB2); (5) Cereblon (CRBN). Indirect immunofluorescent assay showed that both TSC22D3 and MED8 co-localized with UL14. Co-immunoprecipitation assay demonstrated that UL14 could be immunoprecipitated by TSC22D3, suggesting that UL14 interacted with TSC22D3 under physiological condition. In summary, this study opened up new avenues toward delineating the function and physiological significance of UL14 during the HSV-1 replication cycle.

  18. Induction of homologous recombination in Saccharomyces cerevisiae.

    PubMed

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.

  19. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci

    PubMed Central

    2013-01-01

    Background Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. Results From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. Conclusions Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon

  20. Constitutive expression of two apple (Malus x domestica Borkh.) homolog genes of LIKE HETEROCHROMATIN PROTEIN1 affects flowering time and whole-plant growth in transgenic Arabidopsis.

    PubMed

    Mimida, Naozumi; Kidou, Shin-Ichiro; Kotoda, Nobuhiro

    2007-09-01

    Fruit trees, such as apple (Malus x domestica Borkh.), are woody perennial plants with a long juvenile phase. The biological analysis for the regulation of flowering time provides insights into the reduction of juvenile phase and the acceleration of breeding in fruit trees. In Arabidopsis, LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is involved in epigenetic silencing of the target genes such as flowering genes. We isolated and characterized twin apple LHP1 homolog genes, MdLHP1a and MdLHP1b. These genes may have been generated as a result of ancient genome duplication. Although the putative MdLHP1 proteins showed lower similarity to any other known plant LHP1 homologs, a chromo domain, a chromo shadow domain, and the nuclear localization signal motifs were highly conserved among them. RT-PCR analysis showed that MdLHP1a and MdLHP1b were expressed constantly in developing shoot apices of apple trees throughout the growing season. Constitutive expression of MdLHP1a or MdLHP1b could compensate for the pleiotropic phenotype of lhp1/tfl2 mutant, suggesting that apple LHP1 homolog genes are involved in the regulation of flowering time and whole-plant growth. Based on these results, LHP1 homolog genes might have rapidly evolved among plant species, but the protein functions were conserved, at least between Arabidopsis and apple.

  1. Functional conservation of the human EXT1 tumor suppressor gene and its Drosophila homolog tout velu.

    PubMed

    Dasgupta, Ujjaini; Dixit, Bharat L; Rusch, Melissa; Selleck, Scott; The, Inge

    2007-08-01

    Heparan sulfate proteoglycans play a vital role in signaling of various growth factors in both Drosophila and vertebrates. In Drosophila, mutations in the tout velu (ttv) gene, a homolog of the mammalian EXT1 tumor suppressor gene, leads to abrogation of glycosaminoglycan (GAG) biosynthesis. This impairs distribution and signaling activities of various morphogens such as Hedgehog (Hh), Wingless (Wg), and Decapentaplegic (Dpp). Mutations in members of the exostosin (EXT) gene family lead to hereditary multiple exostosis in humans leading to bone outgrowths and tumors. In this study, we provide genetic and biochemical evidence that the human EXT1 (hEXT1) gene is conserved through species and can functionally complement the ttv mutation in Drosophila. The hEXT1 gene was able to rescue a ttv null mutant to adulthood and restore GAG biosynthesis.

  2. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins

    PubMed Central

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities. PMID:27548200

  3. Identification of three homologous latex-clearing protein (lcp) genes from the genome of Streptomyces sp. strain CFMR 7.

    PubMed

    Nanthini, Jayaram; Ong, Su Yean; Sudesh, Kumar

    2017-09-10

    Rubber materials have greatly contributed to human civilization. However, being a polymeric material does not decompose easily, it has caused huge environmental problems. On the other hand, only few bacteria are known to degrade rubber, with studies pertaining them being intensively focusing on the mechanism involved in microbial rubber degradation. The Streptomyces sp. strain CFMR 7, which was previously confirmed to possess rubber-degrading ability, was subjected to whole genome sequencing using the single molecule sequencing technology of the PacBio® RS II system. The genome was further analyzed and compared with previously reported rubber-degrading bacteria in order to identify the potential genes involved in rubber degradation. This led to the interesting discovery of three homologues of latex-clearing protein (Lcp) on the chromosome of this strain, which are probably responsible for rubber degrading activities. Genes encoding oxidoreductase α-subunit (oxiA) and oxidoreductase β-subunit (oxiB) were also found downstream of two lcp genes which are located adjacent to each other. In silico analysis reveals genes that have been identified to be involved in the microbial degradation of rubber in the Streptomyces sp. strain CFMR 7. This is the first whole genome sequence of a clear-zone-forming natural rubber- degrading Streptomyces sp., which harbours three Lcp homologous genes with the presence of oxiA and oxiB genes compared to the previously reported Gordonia polyisoprenivorans strain VH2 (with two Lcp homologous genes) and Nocardia nova SH22a (with only one Lcp gene). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. 78 FR 28812 - Energy Efficiency Program for Industrial Equipment: Petition of UL Verification Services Inc. for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... are engineers. UL today is comprised of five businesses, Product Safety, Verification Services, Life..., Director--Global Technical Research, UL Verification Services. Subscribed and sworn to before me this 20... (431.447(c)(4)) General Personnel Overview UL is a global independent safety science company with more...

  5. A Gene Encoding a Hevein-Like Protein from Elderberry Fruits Is Homologous to PR-4 and Class V Chitinase Genes1

    PubMed Central

    Van Damme, Els J.M.; Charels, Diana; Roy, Soma; Tierens, Koenraad; Barre, Annick; Martins, José C.; Rougé, Pierre; Van Leuven, Fred; Does, Mirjam; Peumans, Willy J.

    1999-01-01

    We isolated SN-HLPf (Sambucus nigra hevein-like fruit protein), a hevein-like chitin-binding protein, from mature elderberry fruits. Cloning of the corresponding gene demonstrated that SN-HLPf is synthesized as a chimeric precursor consisting of an N-terminal chitin-binding domain corresponding to the mature elderberry protein and an unrelated C-terminal domain. Sequence comparisons indicated that the N-terminal domain of this precursor has high sequence similarity with the N-terminal domain of class I PR-4 (pathogenesis-related) proteins, whereas the C terminus is most closely related to that of class V chitinases. On the basis of these sequence homologies the gene encoding SN-HLPf can be considered a hybrid between a PR-4 and a class V chitinase gene. PMID:10198114

  6. Cloning and characterization of WRKY gene homologs in Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How) and their expression in response to fusaric acid treatment.

    PubMed

    Mao, Yizhou; Jiang, Biao; Peng, Qingwu; Liu, Wenrui; Lin, Yue; Xie, Dasen; He, Xiaoming; Li, Shaoshan

    2017-05-01

    The WRKY transcription factors play an important role in plant resistance for biotic and abiotic stresses. In the present study, we cloned 10 WRKY gene homologs (CqWRKY) in Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua) using the rapid-amplification of cDNA ends (RACE) or homology-based cloning methods. We characterized the structure of these CqWRKY genes. Phylogenetic analysis of these sequences with cucumber homologs suggested possible structural conservation of these genes among cucurbit crops. We examined the expression levels of these genes in response to fusaric acid (FA) treatment between resistant and susceptible Chieh-qua lines with quantitative real-time PCR. All genes could be upregulated upon FA treatment, but four CqWRKY genes exhibited differential expression between resistant and susceptible lines before and after FA application. CqWRKY31 seemed to be a positive regulator while CqWRKY1, CqWRKY23 and CqWRKY53 were negative regulators of fusaric resistance. This is the first report of characterization of WRKY family genes in Chieh-qua. The results may also be useful in breeding Chieh-qua for Fusarium wilt resistance.

  7. Identification of binding domains in the herpes simplex virus type 1 small capsid protein pUL35 (VP26).

    PubMed

    Apcarian, Arin; Cunningham, Anthony L; Diefenbach, Russell J

    2010-11-01

    In this study, fragments of the small capsid protein pUL35 (VP26) from herpes simplex virus type 1 (HSV-1) were generated to identify binding domains for a number of known ligands. Analysis of the binding of dynein light chain subunits, DYNLT1 and DYNLT3, as well the HSV-1 structural proteins pUL19 (VP5) and pUL37 was then undertaken using the LexA yeast two-hybrid assay. The N-terminal half of pUL35, in particular residues 30-43, was identified as a common region for the binding of DYNLT1 and DYNLT3. Additional distinct regions in the C terminus of pUL35 also contribute to the binding of DYNLT1 and DYNLT3. In contrast, only the C-terminal half of pUL35 was found to mediate the binding of pUL19 and pUL37 through distinct regions. The relevance of this information to the role of pUL35 in viral transport and assembly is discussed.

  8. 75 FR 67095 - Charles M. Russell National Wildlife Refuge and UL Bend National Wildlife Refuge, Montana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ...] Charles M. Russell National Wildlife Refuge and UL Bend National Wildlife Refuge, Montana AGENCY: Fish and... conservation plan (CCP) and environmental impact statement (EIS) for Charles M. Russell and UL Bend National... are extending the comment period for review of the draft CCP and EIS for Charles M. Russell NWR and UL...

  9. Dynamic and nucleolin-dependent localization of human cytomegalovirus UL84 to the periphery of viral replication compartments and nucleoli.

    PubMed

    Bender, Brian J; Coen, Donald M; Strang, Blair L

    2014-10-01

    Protein-protein and protein-nucleic acid interactions within subcellular compartments are required for viral genome replication. To understand the localization of the human cytomegalovirus viral replication factor UL84 relative to other proteins involved in viral DNA synthesis and to replicating viral DNA in infected cells, we created a recombinant virus expressing a FLAG-tagged version of UL84 (UL84FLAG) and used this virus in immunofluorescence assays. UL84FLAG localization differed at early and late times of infection, transitioning from diffuse distribution throughout the nucleus to exclusion from the interior of replication compartments, with some concentration at the periphery of replication compartments with newly labeled DNA and the viral DNA polymerase subunit UL44. Early in infection, UL84FLAG colocalized with the viral single-stranded DNA binding protein UL57, but colocalization became less prominent as infection progressed. A portion of UL84FLAG also colocalized with the host nucleolar protein nucleolin at the peripheries of both replication compartments and nucleoli. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a dramatic elimination of UL84FLAG from replication compartments and other parts of the nucleus and its accumulation in the cytoplasm. Reciprocal coimmunoprecipitation of viral proteins from infected cell lysates revealed association of UL84, UL44, and nucleolin. These results indicate that UL84 localization during infection is dynamic, which is likely relevant to its functions, and suggest that its nuclear and subnuclear localization is highly dependent on direct or indirect interactions with nucleolin. Importance: The protein-protein interactions among viral and cellular proteins required for replication of the human cytomegalovirus (HCMV) DNA genome are poorly understood. We sought to understand how an enigmatic HCMV protein critical for virus replication, UL84, localizes relative to other viral and cellular

  10. Differential Properties of Cytomegalovirus pUL97 Kinase Isoforms Affect Viral Replication and Maribavir Susceptibility

    PubMed Central

    Webel, Rike; Hakki, Morgan; Prichard, Mark N.; Rawlinson, William D.; Marschall, Manfred

    2014-01-01

    ABSTRACT The human cytomegalovirus (HCMV)-encoded kinase pUL97 is required for efficient viral replication. Previous studies described two isoforms of pUL97, the full-length isoform (M1) and a smaller isoform likely resulting from translation initiation at codon 74 (M74). Here, we report the detection of a third pUL97 isoform during viral infection resulting from translation initiation at codon 157 (isoform M157). The consistent expression of isoform M157 as a minor component of pUL97 during infection with clinical and laboratory-adapted HCMV strains was suppressed when codon 157 was mutagenized. Viral mutants expressing specific isoforms were generated to compare their growth and drug susceptibility phenotypes, as well as pUL97 intracellular localization patterns and kinase activities. The exclusive expression of isoform M157 resulted in substantially reduced viral growth and resistance to the pUL97 inhibitor maribavir while retaining susceptibility to ganciclovir. Confocal imaging demonstrated reduced nuclear import of amino-terminal deletion isoforms compared to isoform M1. Isoform M157 showed reduced efficiency of various substrate protein interactions and autophosphorylation, whereas Rb phosphorylation was preserved. These results reveal differential properties of pUL97 isoforms that affect viral replication, with implications for the antiviral efficacy of maribavir. IMPORTANCE The HCMV UL97 kinase performs important functions in viral replication that are targeted by the antiviral drug maribavir. Here, we describe a naturally occurring short isoform of the kinase that when expressed by itself in a recombinant virus results in altered intracellular localization, impaired growth, and high-level resistance to maribavir compared to those of the predominant full-length counterpart. This is another factor to consider in explaining why maribavir appears to have variable antiviral activity in cell culture and in vivo. PMID:24522923

  11. Chromosomal localization of three repair genes: The xeroderma pigmentosum group C gene and two human homologs of yeast RAD23

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spek, P.J. van der; Smit, E.M.E.; Beverloo, H.B.

    1994-10-01

    The nucleotide excision repair (NER) disorder xeroderma pigmentosum (XP) is characterized by sun (UV) sensitivity, predisposition to skin cancer, and extensive genetic heterogeneity. Recently, we reported the cloning and analysis of three human NER genes, XPC, HHR23A, and HHR23B. The previously cloned XPC gene is involved in the common XP complementation group C, which is defective in excision repair of nontranscribed sequences in the genome. The XPC protein was found to be complexed with the product of HHR23B, one of the two human homologs of the Saccharomyes cerevisiae NER gene RAD23. Here we present the chromosomal localization by in situmore » hybridization using haptenized probes of all three genes. The HHR23A gene was assigned to chromosome 19p13.2. Interestingly, the HHR23B and XPC genes, the product of which forms a tight complex, were found to colocalize on band 3p25.1. Pulsed-field gel electrophoresis revealed that the HHR23B and XPC genes possibly share a MluI restriction fragment of about 625 kb. Potential involvement of the HHR23 genes in human genetic disorders is discussed. 53 refs., 4 figs., 2 tabs.« less

  12. A C. elegans homolog for the UV-hypersensitivity syndrome disease gene UVSSA.

    PubMed

    Babu, Vipin; Schumacher, Björn

    2016-05-01

    The transcription-coupled repair pathway (TC-NER) plays a vital role in removing transcription-blocking DNA lesions, particularly UV-induced damage. Clinical symptoms of the two TC-NER-deficiency syndromes, Cockayne syndrome (CS) and UV-hypersensitivity syndrome (UVSS) are dissimilar and the underlying molecular mechanism causing this difference in disease pathology is not yet clearly understood. UV-stimulated scaffold protein A (UVSSA) has been identified recently as a new causal gene for UVSS. Here we describe a functional homolog of the human UVSSA gene in the nematode Caenorhabditis elegans, uvs-1 (UVSSA-like-1). Mutations in uvs-1 render the animals hypersensitive to UV-B irradiation and transcription-blocking lesion-inducing illudin-M, similar to mutations in TC-NER deficient mutants. Moreover, we demonstrate that TC-NER factors including UVS-1 are required for the survival of the adult animals after UV-treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Functional characterization of the essential tail anchor of the herpes simplex virus type 1 nuclear egress protein pUL34.

    PubMed

    Ott, Melanie; Tascher, Georg; Hassdenteufel, Sarah; Zimmermann, Richard; Haas, Jürgen; Bailer, Susanne M

    2011-12-01

    Release of herpes simplex virus type 1 (HSV-1) nucleocapsids from the host nucleus relies on the nuclear egress complex consisting of the two essential proteins pUL34 and pUL31. The cytoplasmically exposed N-terminal region of pUL34 interacts with pUL31, while a hydrophobic region followed by a short luminal part mediates membrane association. Based on its domain organization, pUL34 was postulated to be a tail-anchor (TA) protein. We performed a coupled in vitro transcription/translation assay to show that membrane insertion of pUL34 occurs post-translationally. Transient transfection and localization experiments in mammalian cells were combined with HSV-1 bacterial artificial chromosome mutagenesis to reveal the functional properties of the essential pUL34 TA. Our data show that a minimal tail length of 15 residues is sufficient for nuclear envelope targeting and pUL34 function. Permutations of the pUL34 TA with orthologous regions of human cytomegalovirus pUL50 or Epstein-Barr virus pBFRF1 as well as the heterologous HSV-1 TA proteins pUL56 or pUS9 or the cellular TA proteins Bcl-2 and Vamp2 revealed that nuclear egress tolerates TAs varying in sequence and hydrophobicity, while a non-α-helical membrane anchor failed to complement the pUL34 function. In conclusion, this study provides the first mechanistic insights into the particular role of the TA of pUL34 in membrane curving and capsid egress from the host nucleus.

  14. HLS7, a hemopoietic lineage switch gene homologous to the leukemia-inducing gene MLF1.

    PubMed Central

    Williams, J H; Daly, L N; Ingley, E; Beaumont, J G; Tilbrook, P A; Lalonde, J P; Stillitano, J P; Klinken, S P

    1999-01-01

    Hemopoietic lineage switching occurs when leukemic cells, apparently committed to one lineage, change and display the phenotype of another pathway. cDNA representational difference analysis was used to identify myeloid-specific genes that may be associated with an erythroid to myeloid lineage switch involving the murine J2E erythroleukemic cell line. One of the genes isolated (HLS7) is homologous to the novel human oncogene myeloid leukemia factor 1 (MLF1) involved in the t(3;5)(q25.1;q34) translocation associated with acute myeloid leukemia. Enforced expression of HLS7 in J2E cells induced a monoblastoid phenotype, thereby recapitulating the spontaneous erythroid to myeloid lineage switch. HLS7 also inhibited erythropoietin- or chemically-induced differentiation of erythroleukemic cell lines and suppressed development of erythropoietin-responsive colonies in semi-solid culture. However, intracellular signaling activated by erythropoietin was not impeded by ectopic expression of HLS7. In contrast, HLS7 promoted maturation of M1 monoblastoid cells and increased myeloid colony formation in vitro. These data show that HLS7 can influence erythroid/myeloid lineage switching and the development of normal hemopoietic cells. PMID:10523300

  15. HLS7, a hemopoietic lineage switch gene homologous to the leukemia-inducing gene MLF1.

    PubMed

    Williams, J H; Daly, L N; Ingley, E; Beaumont, J G; Tilbrook, P A; Lalonde, J P; Stillitano, J P; Klinken, S P

    1999-10-15

    Hemopoietic lineage switching occurs when leukemic cells, apparently committed to one lineage, change and display the phenotype of another pathway. cDNA representational difference analysis was used to identify myeloid-specific genes that may be associated with an erythroid to myeloid lineage switch involving the murine J2E erythroleukemic cell line. One of the genes isolated (HLS7) is homologous to the novel human oncogene myeloid leukemia factor 1 (MLF1) involved in the t(3;5)(q25.1;q34) translocation associated with acute myeloid leukemia. Enforced expression of HLS7 in J2E cells induced a monoblastoid phenotype, thereby recapitulating the spontaneous erythroid to myeloid lineage switch. HLS7 also inhibited erythropoietin- or chemically-induced differentiation of erythroleukemic cell lines and suppressed development of erythropoietin-responsive colonies in semi-solid culture. However, intracellular signaling activated by erythropoietin was not impeded by ectopic expression of HLS7. In contrast, HLS7 promoted maturation of M1 monoblastoid cells and increased myeloid colony formation in vitro. These data show that HLS7 can influence erythroid/myeloid lineage switching and the development of normal hemopoietic cells.

  16. Human Cytomegalovirus Resistance to Deoxyribosylindole Nucleosides Maps to a Transversion Mutation in the Terminase Subunit-Encoding Gene UL89

    PubMed Central

    Phan, Quang; Hall, Ellie D.; Breitenbach, Julie M.; Borysko, Katherine Z.; Kamil, Jeremy P.; Townsend, Leroy B.; Drach, John C.

    2014-01-01

    Human cytomegalovirus (HCMV) infection can cause severe illnesses, including encephalopathy and mental retardation, in immunocompromised and immunologically immature patients. Current pharmacotherapies for treating systemic HCMV infections include ganciclovir, cidofovir, and foscarnet. However, long-term administration of these agents can result in serious adverse effects (myelosuppression and/or nephrotoxicity) and the development of viral strains with reduced susceptibility to drugs. The deoxyribosylindole (indole) nucleosides demonstrate a 20-fold greater activity in vitro (the drug concentration at which 50% of the number of plaques was reduced with the presence of drug compared to the number in the absence of drug [EC50] = 0.34 μM) than ganciclovir (EC50 = 7.4 μM) without any observed increase in cytotoxicity. Based on structural similarity to the benzimidazole nucleosides, we hypothesize that the indole nucleosides target the HCMV terminase, an enzyme responsible for packaging viral DNA into capsids and cleaving the DNA into genome-length units. To test this hypothesis, an indole nucleoside-resistant HCMV strain was isolated, the open reading frames of the genes that encode the viral terminase were sequenced, and a G766C mutation in exon 1 of UL89 was identified; this mutation resulted in an E256Q change in the amino acid sequence of the corresponding protein. An HCMV wild-type strain, engineered with this mutation to confirm resistance, demonstrated an 18-fold decrease in susceptibility to the indole nucleosides (EC50 = 3.1 ± 0.7 μM) compared to that of wild-type virus (EC50 = 0.17 ± 0.04 μM). Interestingly, this mutation did not confer resistance to the benzimidazole nucleosides (EC50 for wild-type HCMV = 0.25 ± 0.04 μM, EC50 for HCMV pUL89 E256Q = 0.23 ± 0.04 μM). We conclude, therefore, that the G766C mutation that results in the E256Q substitution is unique for indole nucleoside resistance and distinct from previously discovered substitutions

  17. Identification of a novel MLPK homologous gene MLPKn1 and its expression analysis in Brassica oleracea.

    PubMed

    Gao, Qiguo; Shi, Songmei; Liu, Yudong; Pu, Quanming; Liu, Xiaohuan; Zhang, Ying; Zhu, Liquan

    2016-09-01

    M locus protein kinase, one of the SRK-interacting proteins, is a necessary positive regulator for the self-incompatibility response in Brassica. In B. rapa, MLPK is expressed as two different transcripts, MLPKf1 and MLPKf2, and either isoform can complement the mlpk/mlpk mutation. The AtAPK1B gene has been considered to be the ortholog of BrMLPK, and AtAPK1B has no role in self-incompatibility (SI) response in A. thaliana SRK-SCR plants. Until now, what causes the MLPK and APK1B function difference during SI response in Brassica and A. thaliana SRKb-SCRb plants has remained unknown. Here, in addition to the reported MLPKf1/2, we identified the new MLPKf1 homologous gene MLPKn1 from B. oleracea. BoMLPKn1 and BoMLPKf1 shared nucleotide sequence identity as high as 84.3 %, and the most striking difference consisted in two fragment insertions in BoMLPKn1. BoMLPKn1 and BoMLPKf1 had a similar gene structure; both their deduced amino acid sequences contained a typical plant myristoylation consensus sequence and a Ser/Thr protein kinase domain. BoMLPKn1 was widely expressed in petal, sepal, anther, stigma and leaf. Genome-wide survey revealed that the B. oleracea genome contained three MLPK homologous genes: BoMLPKf1/2, BoMLPKn1 and Bol008343n. The B. rapa genome also contained three MLPK homologous genes, BrMLPKf1/2, BraMLPKn1 and Bra040929. Phylogenetic analysis revealed that BoMLPKf1/2 and BrMLPKf1/2 were phylogenetically more distant from AtAPK1A than Bol008343n, Bra040929, BraMLPKn1 and BoMLPKn1, Synteny analysis revealed that the B. oleracea chromosomal region containing BoMLPKn1 displayed high synteny with the A. thaliana chromosomal region containing APK1B, whereas the B. rapa chromosomal region containing BraMLPKn1 showed high synteny with the A. thaliana chromosomal region containing APK1B. Together, these results revealed that BoMLPKn1/BraMLPKn1, and not the formerly reported BoMLPKf1/2 (BrMLPKf1/2), was the orthologous genes of AtAPK1B, and no ortholog of Bo

  18. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans.

    PubMed Central

    Napoli, C; Lemieux, C; Jorgensen, R

    1990-01-01

    We attempted to overexpress chalcone synthase (CHS) in pigmented petunia petals by introducing a chimeric petunia CHS gene. Unexpectedly, the introduced gene created a block in anthocyanin biosynthesis. Forty-two percent of plants with the introduced CHS gene produced totally white flowers and/or patterned flowers with white or pale nonclonal sectors on a wild-type pigmented background; none of hundreds of transgenic control plants exhibited such phenotypes. Progeny testing of one plant demonstrated that the novel color phenotype co-segregated with the introduced CHS gene; progeny without this gene were phenotypically wild type. The somatic and germinal stability of the novel color patterns was variable. RNase protection analysis of petal RNAs isolated from white flowers showed that, although the developmental timing of mRNA expression of the endogenous CHS gene was not altered, the level of the mRNA produced by this gene was reduced 50-fold from wild-type levels. Somatic reversion of plants with white flowers to phenotypically parental violet flowers was associated with a coordinate rise in the steady-state levels of the mRNAs produced by both the endogenous and the introduced CHS genes. Thus, in the altered white flowers, the expression of both genes was coordinately suppressed, indicating that expression of the introduced CHS gene was not alone sufficient for suppression of endogenous CHS transcript levels. The mechanism responsible for the reversible co-suppression of homologous genes in trans is unclear, but the erratic and reversible nature of this phenomenon suggests the possible involvement of methylation. PMID:12354959

  19. Construction of a recombinant duck enteritis virus vaccine expressing hemagglutinin of H9N2 avian influenza virus and evaluation of its efficacy in ducks.

    PubMed

    Sun, Ying; Yang, Chenghuai; Li, Junping; Li, Ling; Cao, Minghui; Li, Qihong; Li, Huijiao

    2017-01-01

    H9 subtype avian influenza viruses (AIVs) remain a significant burden in the poultry industry and are considered to be one of the most likely causes of any new influenza pandemic in humans. As ducks play an important role in the maintenance of H9 viruses in nature, successful control of the spread of H9 AIVs in ducks will have significant beneficial effects on public health. Duck enteritis virus (DEV) may be a promising candidate viral vector for aquatic poultry vaccination. In this study, we constructed a recombinant DEV, rDEV-∆UL2-HA, inserting the hemagglutinin (HA) gene from duck-origin H9N2 AIV into the UL2 gene by homologous recombination. One-step growth analyses showed that the HA gene insertion had no effect on viral replication and suggested that the UL2 gene was nonessential for virus growth in vitro. In vivo tests further showed that the insertion of the HA gene in place of the UL2 gene did not affect the immunogenicity of the virus. Moreover, a single dose of 10 3 TCID 50 of rDEV-∆UL2-HA induced solid protection against lethal DEV challenge and completely prevented H9N2 AIV viral shedding. To our knowledge, this is the first report of a DEV-vectored vaccine providing robust protection against both DEV and H9N2 AIV virus infections in ducks.

  20. Cyclin-dependent Kinases Phosphorylate the Cytomegalovirus RNA Export Protein pUL69 and Modulate Its Nuclear Localization and Activity*S⃞

    PubMed Central

    Rechter, Sabine; Scott, Gillian M.; Eickhoff, Jan; Zielke, Katrin; Auerochs, Sabrina; Müller, Regina; Stamminger, Thomas; Rawlinson, William D.; Marschall, Manfred

    2009-01-01

    Replication of human cytomegalovirus (HCMV) is subject to regulation by cellular protein kinases. Recently, we and others reported that inhibition of cyclin-dependent protein kinases (CDKs) or the viral CDK ortholog pUL97 can induce intranuclear speckled aggregation of the viral mRNA export factor, pUL69. Here we provide the first evidence for a direct regulatory role of CDKs on pUL69 functionality. Although replication of all HCMV strains was dependent on CDK activity, we found strain-specific differences in the amount of CDK inhibitor-induced pUL69 aggregate formation. In all cases analyzed, the inhibitor-induced pUL69 aggregates were clearly localized within viral replication centers but not subnuclear splicing, pore complex, or aggresome structures. The CDK9 and cyclin T1 proteins colocalized with these pUL69 aggregates, whereas other CDKs behaved differently. Phosphorylation analyses in vivo and in vitro demonstrated pUL69 was strongly phosphorylated in HCMV-infected fibroblasts and that CDKs represent a novel class of pUL69-phosphorylating kinases. Moreover, the analysis of CDK inhibitors in a pUL69-dependent nuclear mRNA export assay provided evidence for functional impairment of pUL69 under suppression of CDK activity. Thus, our data underline the crucial importance of CDKs for HCMV replication, and indicate a direct impact of CDK9-cyclin T1 on the nuclear localization and activity of the viral regulator pUL69. PMID:19179338

  1. Morphological "primary homology" and expression of AG-subfamily MADS-box genes in pines, podocarps, and yews.

    PubMed

    Englund, Marie; Carlsbecker, Annelie; Engström, Peter; Vergara-Silva, Francisco

    2011-01-01

    The morphological variation among reproductive organs of extant gymnosperms is remarkable, especially among conifers. Several hypotheses concerning morphological homology between various conifer reproductive organs have been put forward, in particular in relation to the pine ovuliferous scale. Here, we use the expression patterns of orthologs of the ABC-model MADS-box gene AGAMOUS (AG) for testing morphological homology hypotheses related to organs of the conifer female cone. To this end, we first developed a tailored 3'RACE procedure that allows reliable amplification of partial sequences highly similar to gymnosperm-derived members of the AG-subfamily of MADS-box genes. Expression patterns of two novel conifer AG orthologs cloned with this procedure-namely PodAG and TgAG, obtained from the podocarp Podocarpus reichei and the yew Taxus globosa, respectively-are then further characterized in the morphologically divergent female cones of these species. The expression patterns of PodAG and TgAG are compared with those of DAL2, a previously discovered Picea abies (Pinaceae) AG ortholog. By treating the expression patterns of DAL2, PodAG, and TgAG as character states mapped onto currently accepted cladogram topologies, we suggest that the epimatium-that is, the podocarp female cone organ previously postulated as a "modified" ovuliferous scale-and the canonical Pinaceae ovuliferous scale can be legitimally conceptualized as "primary homologs." Character state mapping for TgAG suggests in turn that the aril of Taxaceae should be considered as a different type of organ. This work demonstrates how the interaction between developmental-genetic data and formal cladistic theory could fruitfully contribute to gymnosperm systematics. © 2011 Wiley Periodicals, Inc.

  2. MetaGO: Predicting Gene Ontology of Non-homologous Proteins Through Low-Resolution Protein Structure Prediction and Protein-Protein Network Mapping.

    PubMed

    Zhang, Chengxin; Zheng, Wei; Freddolino, Peter L; Zhang, Yang

    2018-03-10

    Homology-based transferal remains the major approach to computational protein function annotations, but it becomes increasingly unreliable when the sequence identity between query and template decreases below 30%. We propose a novel pipeline, MetaGO, to deduce Gene Ontology attributes of proteins by combining sequence homology-based annotation with low-resolution structure prediction and comparison, and partner's homology-based protein-protein network mapping. The pipeline was tested on a large-scale set of 1000 non-redundant proteins from the CAFA3 experiment. Under the stringent benchmark conditions where templates with >30% sequence identity to the query are excluded, MetaGO achieves average F-measures of 0.487, 0.408, and 0.598, for Molecular Function, Biological Process, and Cellular Component, respectively, which are significantly higher than those achieved by other state-of-the-art function annotations methods. Detailed data analysis shows that the major advantage of the MetaGO lies in the new functional homolog detections from partner's homology-based network mapping and structure-based local and global structure alignments, the confidence scores of which can be optimally combined through logistic regression. These data demonstrate the power of using a hybrid model incorporating protein structure and interaction networks to deduce new functional insights beyond traditional sequence homology-based referrals, especially for proteins that lack homologous function templates. The MetaGO pipeline is available at http://zhanglab.ccmb.med.umich.edu/MetaGO/. Copyright © 2018. Published by Elsevier Ltd.

  3. Botulinum neurotoxin homologs in non-Clostridium species.

    PubMed

    Mansfield, Michael J; Adams, Jeremy B; Doxey, Andrew C

    2015-01-30

    Clostridial neurotoxins (CNTs) are the deadliest toxins known and the causative agents of botulism and tetanus. Despite their structural and functional complexity, no CNT homologs are currently known outside Clostridium. Here, we report the first homologs of Clostridium CNTs within the genome of the rice fermentation organism Weissella oryzae SG25. One gene in W. oryzae S25 encodes a protein with a four-domain architecture and HExxH protease motif common to botulinum neurotoxins (BoNTs). An adjacent gene with partial similarity to CNTs is also present, and both genes seem to have been laterally transferred into the W. oryzae genome from an unknown source. Identification of mobile, CNT-related genes outside of Clostridium has implications for our understanding of the evolution of this important toxin family. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Identification of host cell proteins which interact with herpes simplex virus type 1 tegument protein pUL37.

    PubMed

    Kelly, Barbara J; Diefenbach, Eve; Fraefel, Cornel; Diefenbach, Russell J

    2012-01-20

    The herpes simplex virus type 1 (HSV-1) structural tegument protein pUL37, which is conserved across the Herpesviridae family, is known to be essential for secondary envelopment during the egress of viral particles. To shed light on additional roles of pUL37 during viral replication a yeast two-hybrid screen of a human brain cDNA library was undertaken. This screen identified ten host cell proteins as potential pUL37 interactors. One of the interactors, serine threonine kinase TAOK3, was subsequently confirmed to interact with pUL37 using an in vitro pulldown assay. Such host cell/pUL37 interactions provide further insights into the multifunctional role of this herpesviral tegument protein. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela, E-mail: angela.pearson@iaf.inrs.ca

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs.more » Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.« less

  6. A virus vector based on Canine Herpesvirus for vaccine applications in canids.

    PubMed

    Strive, T; Hardy, C M; Wright, J; Reubel, G H

    2007-01-31

    Canine Herpesvirus (CHV) is being developed as a virus vector for the vaccination of European red foxes. However, initial studies using recombinant CHV vaccines in foxes revealed viral attenuation and lack of antibody response to inserted foreign antigens. These findings were attributed both to inactivation of the thymidine kinase (TK) gene and excess foreign genetic material in the recombinant viral genome. In this study, we report an improved CHV-bacterial artificial chromosome (BAC) vector system designed to overcome attenuation in foxes. A non-essential region was identified in the CHV genome as an alternative insertion site for foreign genes. Replacement of a guanine/cytosine (GC)-rich intergenic region between UL21 and UL22 of CHV with a marker gene did not change growth behaviour in vitro, showing that this region is not essential for virus growth in cell culture. We subsequently produced a CHV-BAC vector with an intact TK gene in which the bacterial genes and the antigen expression cassette were inserted into this GC-rich locus. Unlike earlier constructs, the new CHV-BAC allowed self-excision of the bacterial genes via homologous recombination after transfection of BACs into cell culture. The BAC-CHV system was used to produce a recombinant virus that constitutively expressed porcine zona pellucida subunit C protein between the UL21 and UL22 genes of CHV. Complete self-excision of the bacterial genes from CHV was achieved within one round of replication whilst retaining antigen gene expression.

  7. Health Information in Modern Standard Arabic (al-ʻArabīyat ul-fuṣḥá)

    MedlinePlus

    ... fuṣḥá (Modern Standard Arabic) MP4 Healthy Roads Media Tornadoes - English MP3 Tornadoes - al-ʻArabīyat ul-fuṣḥá (Modern Standard Arabic) MP3 Tornadoes - English MP4 Tornadoes - al-ʻArabīyat ul-fuṣḥá (Modern ...

  8. Homologous recombination and non-homologous end-joining repair pathways in bovine embryos with different developmental competence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henrique Barreta, Marcos; Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS; Garziera Gasperin, Bernardo

    2012-10-01

    This study investigated the expression of genes controlling homologous recombination (HR), and non-homologous end-joining (NHEJ) DNA-repair pathways in bovine embryos of different developmental potential. It also evaluated whether bovine embryos can respond to DNA double-strand breaks (DSBs) induced with ultraviolet irradiation by regulating expression of genes involved in HR and NHEJ repair pathways. Embryos with high, intermediate or low developmental competence were selected based on the cleavage time after in vitro insemination and were removed from in vitro culture before (36 h), during (72 h) and after (96 h) the expected period of embryonic genome activation. All studied genes weremore » expressed before, during and after the genome activation period regardless the developmental competence of the embryos. Higher mRNA expression of 53BP1 and RAD52 was found before genome activation in embryos with low developmental competence. Expression of 53BP1, RAD51 and KU70 was downregulated at 72 h and upregulated at 168 h post-insemination in response to DSBs induced by ultraviolet irradiation. In conclusion, important genes controlling HR and NHEJ DNA-repair pathways are expressed in bovine embryos, however genes participating in these pathways are only regulated after the period of embryo genome activation in response to ultraviolet-induced DSBs.« less

  9. The Tegument Protein UL71 of Human Cytomegalovirus Is Involved in Late Envelopment and Affects Multivesicular Bodies ▿

    PubMed Central

    Schauflinger, Martin; Fischer, Daniela; Schreiber, Andreas; Chevillotte, Meike; Walther, Paul; Mertens, Thomas; von Einem, Jens

    2011-01-01

    Morphogenesis of human cytomegalovirus (HCMV) is still only partially understood. We have characterized the role of HCMV tegument protein pUL71 in viral replication and morphogenesis. By using a rabbit antibody raised against the C terminus of pUL71, we could detect the protein in infected cells, as well as in virions showing a molecular mass of approximately 48 kDa. The expression of pUL71, detected as early as 48 h postinfection, was not blocked by the antiviral drug foscarnet, indicating an early expression. The role of pUL71 during virus replication was investigated by construction and analysis of a UL71 stop mutant (TBstop71). The mutant could be reconstituted on noncomplementing cells proving that pUL71 is nonessential for virus replication in human fibroblasts. However, the inhibition of pUL71 expression resulted in a severe growth defect, as reflected by an up to 16-fold reduced extracellular virus yield after a high-multiplicity infection and a small-plaque phenotype. Ultrastructural analysis of cells infected with TBstop71 virus revealed an increased number of nonenveloped nucleocapsids in the cytoplasm, many of them at different stages of envelopment, indicating that final envelopment of nucleocapsids in the cytoplasm was affected. In addition, enlarged multivesicular bodies (MVBs) were found in close proximity to the viral assembly compartment, suggesting that pUL71 affects MVBs during virus infection. The observation of numerous TBstop71 virus particles attached to MVB membranes and budding processes into MVBs indicated that these membranes can be used for final envelopment of HCMV. PMID:21289123

  10. Nucleotide sequence analysis of the L gene of Newcastle disease virus: homologies with Sendai and vesicular stomatitis viruses.

    PubMed Central

    Yusoff, K; Millar, N S; Chambers, P; Emmerson, P T

    1987-01-01

    The nucleotide sequence of the L gene of the Beaudette C strain of Newcastle disease virus (NDV) has been determined. The L gene is 6704 nucleotides long and encodes a protein of 2204 amino acids with a calculated molecular weight of 248822. Mung bean nuclease mapping of the 5' terminus of the L gene mRNA indicates that the transcription of the L gene is initiated 11 nucleotides upstream of the translational start site. Comparison with the amino acid sequences of the L genes of Sendai virus and vesicular stomatitis virus (VSV) suggests that there are several regions of homology between the sequences. These data provide further evidence for an evolutionary relationship between the Paramyxoviridae and the Rhabdoviridae. A non-coding sequence of 46 nucleotides downstream of the presumed polyadenylation site of the L gene may be part of a negative strand leader RNA. Images PMID:3035486

  11. Validating the Test Procedures Described in UL 1741 SA and IEEE P1547.1: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmud, Rasel; Hoke, Anderson F; Narang, David J

    This paper investigates the test procedures specified in UL 1741 SA and the upcoming revision to IEEE P1547.1. A 550 kVA photovoltaic inverter was chosen for the tests. This research reveals some of key the components to consider while doing certification tests for UL 1741 SA and IEEE P1547.1. This paper also identifies some issues requiring consideration for future releases of the standard, i.e. IEEE P1547.1. This paper investigates the test procedures specified in UL 1741 SA and the upcoming revision to IEEE P1547.1. A 550 kVA photovoltaic inverter was chosen for the tests. This research reveals some of keymore » the components to consider while doing certification tests for UL 1741 SA and IEEE P1547.1. This paper also identifies some issues requiring consideration for future releases of the standard, i.e. IEEE P1547.1.« less

  12. Novel Structure and Unexpected RNA-Binding Ability of the C-Terminal Domain of Herpes Simplex Virus 1 Tegument Protein UL21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metrick, Claire M.; Heldwein, Ekaterina E.; Sandri-Goldin, R. M.

    Proteins forming the tegument layers of herpesviral virions mediate many essential processes in the viral replication cycle, yet few have been characterized in detail. UL21 is one such multifunctional tegument protein and is conserved among alphaherpesviruses. While UL21 has been implicated in many processes in viral replication, ranging from nuclear egress to virion morphogenesis to cell-cell spread, its precise roles remain unclear. Here we report the 2.7-Å crystal structure of the C-terminal domain of herpes simplex virus 1 (HSV-1) UL21 (UL21C), which has a unique α-helical fold resembling a dragonfly. Analysis of evolutionary conservation patterns and surface electrostatics pinpointed fourmore » regions of potential functional importance on the surface of UL21C to be pursued by mutagenesis. In combination with the previously determined structure of the N-terminal domain of UL21, the structure of UL21C provides a 3-dimensional framework for targeted exploration of the multiple roles of UL21 in the replication and pathogenesis of alphaherpesviruses. Additionally, we describe an unanticipated ability of UL21 to bind RNA, which may hint at a yet unexplored function. IMPORTANCEDue to the limited genomic coding capacity of viruses, viral proteins are often multifunctional, which makes them attractive antiviral targets. Such multifunctionality, however, complicates their study, which often involves constructing and characterizing null mutant viruses. Systematic exploration of these multifunctional proteins requires detailed road maps in the form of 3-dimensional structures. In this work, we determined the crystal structure of the C-terminal domain of UL21, a multifunctional tegument protein that is conserved among alphaherpesviruses. Structural analysis pinpointed surface areas of potential functional importance that provide a starting point for mutagenesis. In addition, the unexpected RNA-binding ability of UL21 may expand its functional repertoire. The structure

  13. 75 FR 47674 - In the Matter of the Designation of Harakat-ul Jihad Islami, Also Known as HUJI, Also Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... DEPARTMENT OF STATE [Public Notice 7102] In the Matter of the Designation of Harakat-ul Jihad Islami, Also Known as HUJI, Also Known as Movement of Islamic Holy War, Also Known as Harkat-ul-Jihad-al... Islamic Holy War, also known as Harkat-ul-Jihad-al Islami, also known as Harkat-al-Jihad-ul Islami, also...

  14. 75 FR 47674 - In the Matter of the Designation of Harakat-ul Jihad Islami, Also Known as HUJI, Also Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... DEPARTMENT OF STATE [Public Notice 7101] In the Matter of the Designation of Harakat-ul Jihad Islami, Also Known as HUJI, Also Known as Movement of Islamic Holy War, Also Known as Harkat-ul-Jihad-al... Movement of Islamic Holy War, also known as Harkat-ul-Jihad-al Islami, also known as Harkat-al-Jihad-ul...

  15. Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lymberopoulos, Maria H.; Bourget, Amelie; Abdeljelil, Nawel Ben

    2011-04-10

    UL24 of herpes simplex virus 1 (HSV-1) is widely conserved within the Herpesviridae family. Herein, we tested the hypothesis that UL24, which we have previously shown to induce the redistribution of nucleolin, also affects the localization of the nucleolar protein B23. We found that HSV-1-induced dispersal of B23 was dependent on UL24. The conserved N-terminal portion of UL24 was sufficient to induce the redistribution of B23 in transient transfection assays. Mutational analysis revealed that the endonuclease motif of UL24 was important for B23 dispersal in both transfected and infected cells. Nucleolar protein relocalization during HSV-1 infection was also observed inmore » non-immortalized cells. Analysis of infected cells by electron microscopy revealed a decrease in the ratio of cytoplasmic versus nuclear viral particles in cells infected with a UL24-deficient strain compared to KOS-infected cells. Our results suggest that UL24 promotes nuclear egress of nucleocapsids during HSV-1 infection, possibly though effects on nucleoli.« less

  16. Association of polymorphisms and haplotypes in the cytochrome P450 1B1 gene with uterine leiomyoma: A case control study

    PubMed Central

    SALIMI, SAEEDEH; KHODAMIAN, MARYAM; NAROOIE-NEJAD, MEHRNAZ; HAJIZADEH, AZAM; FAZELI, KIMIA; NAMAZI, LIDA; YAGHMAEI, MINOO

    2015-01-01

    Uterine leiomyoma (UL) is an estrogen-dependent neoplasm of the uterus and estrogen metabolizing enzymes affect its promotion and progression. The aim of the present study was to evaluate the association between four single-nucleotide polymorphisms (SNPs) of the cytochrome P450 1B1 (CYP1B1) gene and UL risk. Four SNPs of the CYP1B1 gene in 105 UL patients and 112 unrelated healthy controls were genotyped using a direct sequencing method. Haplotype analyses were performed with UNPHASED software and linkage disequilibrium (LD) was assessed by Haploview software. There were no associations between Leu432Val (rs1056836), Asp449Asp (rs1056837) and Asn453Ser (rs1800440) polymorphisms of the CYP1B1 gene and UL. Although the genotypic frequencies of the Arg368His (rs79204362) polymorphism did not differ between the two groups, the frequency of A (His) allele was significantly higher in UL females (P=0.02). In addition, the frequency of GTAA haplotype was significantly higher in the controls and played a protective role in UL susceptibility. A strong LD between the three common SNPs (rs1056836, rs1056837 and rs1800440) in the CYP1B1 gene was observed in the population. In conclusion, a higher frequency of the CYP1B1 368His (A) allele was observed in UL females. The frequency of the GTAA haplotype was significantly higher in healthy females and this haplotype played a protective role in UL susceptibility. PMID:26075073

  17. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    PubMed

    Lu, Sha; Yin, Xiaoyan; Spollen, William; Zhang, Ning; Xu, Dong; Schoelz, James; Bilyeu, Kristin; Zhang, Zhanyuan J

    2015-01-01

    In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  18. Discovery of mutations in homologous recombination genes in African-American women with breast cancer.

    PubMed

    Ding, Yuan Chun; Adamson, Aaron W; Steele, Linda; Bailis, Adam M; John, Esther M; Tomlinson, Gail; Neuhausen, Susan L

    2018-04-01

    African-American women are more likely to develop aggressive breast cancer at younger ages and experience poorer cancer prognoses than non-Hispanic Caucasians. Deficiency in repair of DNA by homologous recombination (HR) is associated with cancer development, suggesting that mutations in genes that affect this process may cause breast cancer. Inherited pathogenic mutations have been identified in genes involved in repairing DNA damage, but few studies have focused on African-Americans. We screened for germline mutations in seven HR repair pathway genes in DNA of 181 African-American women with breast cancer, evaluated the potential effects of identified missense variants using in silico prediction software, and functionally characterized a set of missense variants by yeast two-hybrid assays. We identified five likely-damaging variants, including two PALB2 truncating variants (Q151X and W1038X) and three novel missense variants (RAD51C C135R, and XRCC3 L297P and V337E) that abolish protein-protein interactions in yeast two-hybrid assays. Our results add to evidence that HR gene mutations account for a proportion of the genetic risk for developing breast cancer in African-Americans. Identifying additional mutations that diminish HR may provide a tool for better assessing breast cancer risk and improving approaches for targeted treatment.

  19. Molecular cloning and potential function prediction of homologous SOC1 genes in tree peony.

    PubMed

    Wang, Shunli; Beruto, Margherita; Xue, Jingqi; Zhu, Fuyong; Liu, Chuanjiao; Yan, Yueming; Zhang, Xiuxin

    2015-08-01

    The central flower integrator PsSOC1 was isolated and its expression profiles were analyzed; then the potential function of PsSOC1 in tree peony was postulated. The six flowering genes PrSOC1, PdSOC1, PsSOC1, PsSOC1-1, PsSOC1-2, and PsSOC1-3 were isolated from Paeonia rockii, Paeonia delavayi, and Paeonia suffruticosa, respectively. Sequence comparison analysis showed that the six genes were highly conserved and shared 99.41% nucleotide identity. Further investigation suggested PsSOC1 was highly homologous to the floral integrators, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), from Arabidopsis. Phylogenetic analysis showed that the SOC1 protein clustering has family specificity and PsSOC1 has a close relationship with homologous SOC1 from Asteraceae species. The studies of PsSOC1's expression patterns in different buds and flower buds, and vegetative organs indicated that PsSOC1 could express in both vegetative and reproductive organs. While the expression of PsSOC1 in different developmental stages of buds was different; high expression levels of PsSOC1 occurred in the bud at the bud sprouting stage and the type I aborted the flower bud. PsSOC1 expression was also shown to be affected by gibberellins (GA), low temperature, and photoperiod. One of the pathways that regulates tree peony flowering may be the GA-inductive pathway. Ectopic expression of PsSOC1 in tobacco demonstrated that greater PsSOC1 expression in the transgenic tobacco plants not only promoted plant growth, but also advanced the flowering time. Finally, the potential function of PsSOC1 in tree peony was postulated.

  20. Human Cytomegalovirus Protein pUL38 Prevents Premature Cell Death by Binding to Ubiquitin-Specific Protease 24 and Regulating Iron Metabolism.

    PubMed

    Sun, Yamei; Bao, Qunchao; Xuan, Baoqin; Xu, Wenjia; Pan, Deng; Li, Qi; Qian, Zhikang

    2018-07-01

    Human cytomegalovirus (HCMV) protein pUL38 has been shown to prevent premature cell death by antagonizing cellular stress responses; however, the underlying mechanism remains unknown. In this study, we identified the host protein ubiquitin-specific protease 24 (USP24) as an interaction partner of pUL38. Mutagenesis analysis of pUL38 revealed that amino acids TFV at positions 227 to 230 were critical for its interaction with USP24. Mutant pUL38 TFV/AAA protein did not bind to USP24 and failed to prevent cell death induced by pUL38-deficient HCMV infection. Knockdown of USP24 suppressed the cell death during pUL38-deficient HCMV infection, suggesting that pUL38 achieved its function by antagonizing the function of USP24. We investigated the cellular pathways regulated by USP24 that might be involved in the cell death phenotype by testing several small-molecule compounds known to have a protective effect during stress-induced cell death. The iron chelators ciclopirox olamine and Tiron specifically protected cells from pUL38-deficient HCMV infection-induced cell death, thus identifying deregulated iron homeostasis as a potential mechanism. Protein levels of nuclear receptor coactivator 4 (NCOA4) and lysosomal ferritin degradation, a process called ferritinophagy, were also regulated by pUL38 and USP24 during HCMV infection. Knockdown of USP24 decreased NCOA4 protein stability and ferritin heavy chain degradation in lysosomes. Blockage of ferritinophagy by genetic inhibition of NCOA4 or Atg5/Atg7 prevented pUL38-deficient HCMV infection-induced cell death. Overall, these results support the hypothesis that pUL38 binds to USP24 to reduce ferritinophagy, which may then protect cells from lysosome dysfunction-induced cell death. IMPORTANCE Premature cell death is considered a first line of defense against various pathogens. Human cytomegalovirus (HCMV) is a slow-replicating virus that encodes several cell death inhibitors, such as pUL36 and pUL37x1, which allow it to

  1. The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis.

    PubMed

    Hiraoka, Y; Dernburg, A F; Parmelee, S J; Rykowski, M C; Agard, D A; Sedat, J W

    1993-02-01

    We have determined the position within the nucleus of homologous sites of the histone gene cluster in Drosophila melanogaster using in situ hybridization and high-resolution, three-dimensional wide field fluorescence microscopy. A 4.8-kb biotinylated probe for the histone gene repeat, located approximately midway along the short arm of chromosome 2, was hybridized to whole-mount embryos in late syncytial and early cellular blastoderm stages. Our results show that the two homologous histone loci are distinct and separate through all stages of the cell cycle up to nuclear cycle 13. By dramatic contrast, the two homologous clusters were found to colocalize with high frequency during interphase of cycle 14. Concomitant with homolog pairing at cycle 14, both histone loci were also found to move from their position near the midline of the nucleus toward the apical side. This result suggests that coincident with the initiation of zygotic transcription, there is dramatic chromosome and nuclear reorganization between nuclear cycles 13 and 14.

  2. Homology and phylogeny and their automated inference

    NASA Astrophysics Data System (ADS)

    Fuellen, Georg

    2008-06-01

    The analysis of the ever-increasing amount of biological and biomedical data can be pushed forward by comparing the data within and among species. For example, an integrative analysis of data from the genome sequencing projects for various species traces the evolution of the genomes and identifies conserved and innovative parts. Here, I review the foundations and advantages of this “historical” approach and evaluate recent attempts at automating such analyses. Biological data is comparable if a common origin exists (homology), as is the case for members of a gene family originating via duplication of an ancestral gene. If the family has relatives in other species, we can assume that the ancestral gene was present in the ancestral species from which all the other species evolved. In particular, describing the relationships among the duplicated biological sequences found in the various species is often possible by a phylogeny, which is more informative than homology statements. Detecting and elaborating on common origins may answer how certain biological sequences developed, and predict what sequences are in a particular species and what their function is. Such knowledge transfer from sequences in one species to the homologous sequences of the other is based on the principle of ‘my closest relative looks and behaves like I do’, often referred to as ‘guilt by association’. To enable knowledge transfer on a large scale, several automated ‘phylogenomics pipelines’ have been developed in recent years, and seven of these will be described and compared. Overall, the examples in this review demonstrate that homology and phylogeny analyses, done on a large (and automated) scale, can give insights into function in biology and biomedicine.

  3. The OGCleaner: filtering false-positive homology clusters.

    PubMed

    Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Snell, Quinn; Bybee, Seth M

    2017-01-01

    Detecting homologous sequences in organisms is an essential step in protein structure and function prediction, gene annotation and phylogenetic tree construction. Heuristic methods are often employed for quality control of putative homology clusters. These heuristics, however, usually only apply to pairwise sequence comparison and do not examine clusters as a whole. We present the Orthology Group Cleaner (the OGCleaner), a tool designed for filtering putative orthology groups as homology or non-homology clusters by considering all sequences in a cluster. The OGCleaner relies on high-quality orthologous groups identified in OrthoDB to train machine learning algorithms that are able to distinguish between true-positive and false-positive homology groups. This package aims to improve the quality of phylogenetic tree construction especially in instances of lower-quality transcriptome assemblies. https://github.com/byucsl/ogcleaner CONTACT: sfujimoto@gmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Dehalogenation activities and distribution of reductive dehalogenase homologous genes in marine subsurface sediments.

    PubMed

    Futagami, Taiki; Morono, Yuki; Terada, Takeshi; Kaksonen, Anna H; Inagaki, Fumio

    2009-11-01

    Halogenated organic compounds serve as terminal electron acceptors for anaerobic respiration in a diverse range of microorganisms. Here, we report on the widespread distribution and diversity of reductive dehalogenase homologous (rdhA) genes in marine subsurface sediments. A total of 32 putative rdhA phylotypes were detected in sediments from the southeast Pacific off Peru, the eastern equatorial Pacific, the Juan de Fuca Ridge flank off Oregon, and the northwest Pacific off Japan, collected at a maximum depth of 358 m below the seafloor. In addition, significant dehalogenation activity involving 2,4,6-tribromophenol and trichloroethene was observed in sediment slurry from the Nankai Trough Forearc Basin. These results suggest that dehalorespiration is an important energy-yielding pathway in the subseafloor microbial ecosystem.

  5. Maize OXIDATIVE STRESS2 Homologs Enhance Cadmium Tolerance in Arabidopsis through Activation of a Putative SAM-Dependent Methyltransferase Gene.

    PubMed

    He, Lilong; Ma, Xiaoling; Li, Zhenzhen; Jiao, Zhengli; Li, Yongqing; Ow, David W

    2016-07-01

    Previously the Arabidopsis (Arabidopsis thaliana) zinc finger protein OXIDATIVE STRESS2 (AtOXS2) and four OXS2-like (AtO2L) family members were described to play a role in stress tolerance and stress escape. For stress escape, SOC1 was a target of AtOXS2. However, for stress tolerance, the downstream targets were not identified. We cloned two OXS2 homolog genes from sweet corn, ZmOXS2b and ZmO2L1 Both genes are transiently inducible by Cd treatment. When expressed in Arabidopsis, each enhances tolerance against cadmium. Further analysis showed that ZmOXS2b and ZmO2L1 proteins enhance Cd tolerance in Arabidopsis by activating at least one target gene, that encoding a putative S-adenosyl-l-Met-dependent methyltransferase superfamily protein (AT5G37990), which we named CIMT1 This activation involves the in vivo interaction with a segment of the CIMT1 promoter that contains a BOXS2 motif previously identified as the binding element for AtOXS2. More importantly, CIMT1 is induced by Cd treatment, and overexpression of this gene alone was sufficient to enhance Cd tolerance in Arabidopsis. The connection of ZmOXS2b and ZmO2L1 to Arabidopsis CIMT1 suggests a similar network may exist in maize (Zea mays) and may provide a clue to possibly using a CIMT1 maize homolog to engineer stress tolerance in a major crop. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. Homologies in Physics and Astrophysics

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.; Cumalat, J. P.

    2012-01-01

    The genes of humans and chimpanzees are homologs. These genes are - in large measure - identical. From this detailed observation, we naturally suppose that both species evolved from a common ancestor. In particle physics the ordinary observed particles and their superymmetric partners are thought to be homologs, generated by a common "ancestor” , the Higgs particle. Experiments at CERN currently are testing this comfortable analogy of physics with biology. Neither the Higgs boson nor any supersymmetric particle has yet been found. We speculate that a variety of objects are homologs - evidence of an as yet undeveloped quantum theory of gravity to replace Dark Matter. A purely astronomical homology is the Vc - σ o relation which places nearly spherical elliptical galaxies just above well-formed spirals (SA & SB). Here the asymptotically- flat, circular velocity Vc is observed to be between 1 and 2 times the central bulge velocity dispersion σo over the range 60 km/s< σo <400 km/s (Ferrarese 2002, Fig 3). The Vc - σ o relation is difficult to explain with self-consistent equilibrium galaxy models (Courteau et al 2007). Here we give an explanation based on the Sinusoidal Potential, a non-Newtonian potential in which φ =-GM Cos[ko r]/r and ko=2 π /400 pc. We relate the lower limit of 60 km/s to the thermal velocity of protons at the” Broadhurst/Hirano & Hartnett” lookback redshift Z=105.6. This is the redshift where what was 400 pc then expands to 128 h-1 Mpc today. Further, at this Z the temperature of the universe was close to the Hartree Energy of 2 times 13.6 eV, an energy where protons have an rms speed of about 60 km/s.

  7. A Tyrosine-Based Trafficking Motif of the Tegument Protein pUL71 Is Crucial for Human Cytomegalovirus Secondary Envelopment.

    PubMed

    Dietz, Andrea N; Villinger, Clarissa; Becker, Stefan; Frick, Manfred; von Einem, Jens

    2018-01-01

    The human cytomegalovirus (HCMV) tegument protein pUL71 is required for efficient secondary envelopment and accumulates at the Golgi compartment-derived viral assembly complex (vAC) during infection. Analysis of various C-terminally truncated pUL71 proteins fused to enhanced green fluorescent protein (eGFP) identified amino acids 23 to 34 as important determinants for its Golgi complex localization. Sequence analysis and mutational verification revealed the presence of an N-terminal tyrosine-based trafficking motif (YXXΦ) in pUL71. This led us to hypothesize a requirement of the YXXΦ motif for the function of pUL71 in infection. Mutation of both the tyrosine residue and the entire YXXΦ motif resulted in an altered distribution of mutant pUL71 at the plasma membrane and in the cytoplasm during infection. Both YXXΦ mutant viruses exhibited similarly decreased focal growth and reduced virus yields in supernatants. Ultrastructurally, mutant-virus-infected cells exhibited impaired secondary envelopment manifested by accumulations of capsids undergoing an envelopment process. Additionally, clusters of capsid accumulations surrounding the vAC were observed, similar to the ultrastructural phenotype of a UL71-deficient mutant. The importance of endocytosis and thus the YXXΦ motif for targeting pUL71 to the Golgi complex was further demonstrated when clathrin-mediated endocytosis was inhibited either by coexpression of the C-terminal part of cellular AP180 (AP180-C) or by treatment with methyl-β-cyclodextrin. Both conditions resulted in a plasma membrane accumulation of pUL71. Altogether, these data reveal the presence of a functional N-terminal endocytosis motif that is an important determinant for intracellular localization of pUL71 and that is furthermore required for the function of pUL71 during secondary envelopment of HCMV capsids at the vAC. IMPORTANCE Human cytomegalovirus (HCMV) is the leading cause of birth defects among congenital virus infections and can

  8. Homology-dependent Gene Silencing in Paramecium

    PubMed Central

    Ruiz, Françoise; Vayssié, Laurence; Klotz, Catherine; Sperling, Linda; Madeddu, Luisa

    1998-01-01

    Microinjection at high copy number of plasmids containing only the coding region of a gene into the Paramecium somatic macronucleus led to a marked reduction in the expression of the corresponding endogenous gene(s). The silencing effect, which is stably maintained throughout vegetative growth, has been observed for all Paramecium genes examined so far: a single-copy gene (ND7), as well as members of multigene families (centrin genes and trichocyst matrix protein genes) in which all closely related paralogous genes appeared to be affected. This phenomenon may be related to posttranscriptional gene silencing in transgenic plants and quelling in Neurospora and allows the efficient creation of specific mutant phenotypes thus providing a potentially powerful tool to study gene function in Paramecium. For the two multigene families that encode proteins that coassemble to build up complex subcellular structures the analysis presented herein provides the first experimental evidence that the members of these gene families are not functionally redundant. PMID:9529389

  9. A trait stacking system via intra-genomic homologous recombination.

    PubMed

    Kumar, Sandeep; Worden, Andrew; Novak, Stephen; Lee, Ryan; Petolino, Joseph F

    2016-11-01

    A gene targeting method has been developed, which allows the conversion of 'breeding stacks', containing unlinked transgenes into a 'molecular stack' and thereby circumventing the breeding challenges associated with transgene segregation. A gene targeting method has been developed for converting two unlinked trait loci into a single locus transgene stack. The method utilizes intra-genomic homologous recombination (IGHR) between stably integrated target and donor loci which share sequence homology and nuclease cleavage sites whereby the donor contains a promoterless herbicide resistance transgene. Upon crossing with a zinc finger nuclease (ZFN)-expressing plant, double-strand breaks (DSB) are created in both the stably integrated target and donor loci. DSBs flanking the donor locus result in intra-genomic mobilization of a promoterless selectable marker-containing donor sequence, which can be utilized as a template for homology-directed repair of a concomitant DSB at the target locus resulting in a functional selectable marker via nuclease-mediated cassette exchange (NMCE). The method was successfully demonstrated in maize using a glyphosate tolerance gene as a donor whereby up to 3.3 % of the resulting progeny embryos cultured on selection medium regenerated plants with the donor sequence integrated into the target locus. The process could be extended to multiple cycles of trait stacking by virtue of a unique intron sequence homology for NMCE between the target and the donor loci. This is the first report that describes NMCE via IGHR, thereby enabling trait stacking using conventional crossing.

  10. Identification of Human Cytomegalovirus Genes Important for Biogenesis of the Cytoplasmic Virion Assembly Complex

    PubMed Central

    Das, Subhendu; Ortiz, Daniel A.; Gurczynski, Stephen J.; Khan, Fatin

    2014-01-01

    ABSTRACT Human cytomegalovirus (HCMV) has many effects on cells, including remodeling the cytoplasm to form the cytoplasmic virion assembly complex (cVAC), the site of final virion assembly. Viral tegument, envelope, and some nonstructural proteins localize to the cVAC, and cytoskeletal filaments radiate from a microtubule organizing center in the cVAC. The endoplasmic reticulum (ER)-to-Golgi intermediate compartment, Golgi apparatus, and trans-Golgi network form a ring that outlines the cVAC. The center of the cVAC ring is occupied by numerous vesicles that share properties with recycling endosomes. In prior studies, we described the three-dimensional structure and the extensive remodeling of the cytoplasm and shifts in organelle identity that occur during development of the cVAC. The objective of this work was to identify HCMV proteins that regulate cVAC biogenesis. Because the cVAC does not form in the absence of viral DNA synthesis, we employed HCMV-infected cells transfected with synthetic small interfering RNAs (siRNAs) that targeted 26 candidate early-late and late protein-coding genes required for efficient virus replication. We identified three HCMV genes (UL48, UL94, and UL103) whose silencing had major effects on cVAC development, including failure to form the Golgi ring and dispersal of markers of early and recycling endosomes. To confirm and extend the siRNA results, we constructed recombinant viruses in which pUL48 and pUL103 are fused with a regulatable protein destabilization domain (dd-FKBP). In the presence of a stabilizing ligand (Shield-1), the cVAC appeared to develop normally. In its absence, cVAC development was abrogated, verifying roles for pUL48 and pUL103 in cVAC biogenesis. IMPORTANCE Human cytomegalovirus (HCMV) is an important human pathogen that causes disease and disability in immunocompromised individuals and in children infected before birth. Few drugs are available for treatment of HCMV infections. HCMV remodels the interior of

  11. Homologous and heterologous recombination between adenovirus vector DNA and chromosomal DNA.

    PubMed

    Stephen, Sam Laurel; Sivanandam, Vijayshankar Ganesh; Kochanek, Stefan

    2008-11-01

    Adenovirus vector DNA is perceived to remain as episome following gene transfer. We quantitatively and qualitatively analysed recombination between high capacity adenoviral vector (HC-AdV) and chromosomal DNA following gene transfer in vitro. We studied homologous and heterologous recombination with a single HC-AdV carrying (i) a large genomic HPRT fragment with the HPRT CHICAGO mutation causing translational stop upon homologous recombination with the HPRT locus and (ii) a selection marker to allow for clonal selection in the event of heterologous recombination. We analysed the sequences at the junctions between vector and chromosomal DNA. In primary cells and in cell lines, the frequency of homologous recombination ranged from 2 x 10(-5) to 1.6 x 10(-6). Heterologous recombination occurred at rates between 5.5 x 10(-3) and 1.1 x 10(-4). HC-AdV DNA integrated via the termini mostly as intact molecules. Analysis of the junction sequences indicated vector integration in a relatively random manner without an obvious preference for particular chromosomal regions, but with a preference for integration into genes. Integration into protooncogenes or tumor suppressor genes was not observed. Patchy homologies between vector termini and chromosomal DNA were found at the site of integration. Although the majority of integrations had occurred without causing mutations in the chromosomal DNA, cases of nucleotide substitutions and insertions were observed. In several cases, deletions of even relative large chromosomal regions were likely. These results extend previous information on the integration patterns of adenovirus vector DNA and contribute to a risk-benefit assessment of adenovirus-mediated gene transfer.

  12. The Agrobacterium tumefaciens rnd Homolog Is Required for TraR-Mediated Quorum-Dependent Activation of Ti Plasmid tra Gene Expression

    PubMed Central

    Luo, Zhao-Qing; Farrand, Stephen K.

    2001-01-01

    Conjugal transfer of Agrobacterium tumefaciens Ti plasmids is regulated by quorum sensing via TraR and its cognate autoinducer, N-(3-oxo-octanoyl)-l-homoserine lactone. We isolated four Tn5-induced mutants of A. tumefaciens C58 deficient in TraR-mediated activation of tra genes on pTiC58ΔaccR. These mutations also affected the growth of the bacterium but had no detectable influence on the expression of two tester gene systems that are not regulated by quorum sensing. In all four mutants Tn5 was inserted in a chromosomal open reading frame (ORF) coding for a product showing high similarity to RNase D, coded for by rnd of Escherichia coli, an RNase known to be involved in tRNA processing. The wild-type allele of the rnd homolog cloned from C58 restored the two phenotypes to each mutant. Several ORFs, including a homolog of cya2, surround A. tumefaciens rnd, but none of these genes exerted a detectable effect on the expression of the tra reporter. In the mutant, traR was expressed from the Ti plasmid at a level about twofold lower than that in NT1. The expression of tra, but not the growth rate, was partially restored by increasing the copy number of traR or by disrupting traM, a Ti plasmid gene coding for an antiactivator specific for TraR. The mutation in rnd also slightly reduced expression of two tested vir genes but had no detectable effect on tumor induction by this mutant. Our data suggest that the defect in tra gene induction in the mutants results from lowered levels of TraR. In turn, production of sufficient amounts of TraR apparently is sensitive to a cellular function requiring RNase D. PMID:11395455

  13. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair

    PubMed Central

    He, Xiangjun; Tan, Chunlai; Wang, Feng; Wang, Yaofeng; Zhou, Rui; Cui, Dexuan; You, Wenxing; Zhao, Hui; Ren, Jianwei; Feng, Bo

    2016-01-01

    CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which, however, has focused on HDR-based strategies and was proven inefficient. Here, we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs, and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy, integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells, and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells. PMID:26850641

  14. Human homolog of the mouse sperm receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberlin, M.E.; Dean, J.

    1990-08-01

    The human zona pellucida, composed of three glycoproteins (ZP1, ZP2, and ZP3), forms an extracellular matrix that surrounds ovulated eggs and mediates species-specific fertilization. The genes that code for at least two of the zona proteins (ZP2 and ZP3) cross-hybridize with other mammalian DNA. The recently characterized mouse sperm receptor gene (Zp-3) was used to isolate its human homolog. The human homolog spans {approx}18.3 kilobase pairs (kbp) (compared to 8.6 kbp for the mouse gene) and contains eight exons, the sizes of which are strictly conserved between the two species. Four short (8-15 bp) sequences within the first 250 bpmore » of the 5{prime} flanking region in the human Zp-3 homolog are also present upstream of mouse Zp-3. These elements may modulate oocyte-specific gene expression. By using the polymerase chain reaction, a full-length cDNA of human ZP3 was isolated from human ovarian poly(A){sup +} RNA and used to deduce the structure of human ZP3 mRNA. Certain features of the human and mouse ZP3 transcripts are conserved. Both have unusually short 5{prime} and 3{prime} untranslated regions, both contain a single open reading frame that is 74% identical, and both code for 424 amino acid polypeptides that are 67% the same. The similarity between the two proteins may define domains that are important in maintaining the structural integrity of the zona pellucida, while the differences may play a role in mediating the species-specific events of mammalian fertilization.« less

  15. Occurrence and expression of gene transfer agent genes in marine bacterioplankton.

    PubMed

    Biers, Erin J; Wang, Kui; Pennington, Catherine; Belas, Robert; Chen, Feng; Moran, Mary Ann

    2008-05-01

    Genes with homology to the transduction-like gene transfer agent (GTA) were observed in genome sequences of three cultured members of the marine Roseobacter clade. A broader search for homologs for this host-controlled virus-like gene transfer system identified likely GTA systems in cultured Alphaproteobacteria, and particularly in marine bacterioplankton representatives. Expression of GTA genes and extracellular release of GTA particles ( approximately 50 to 70 nm) was demonstrated experimentally for the Roseobacter clade member Silicibacter pomeroyi DSS-3, and intraspecific gene transfer was documented. GTA homologs are surprisingly infrequent in marine metagenomic sequence data, however, and the role of this lateral gene transfer mechanism in ocean bacterioplankton communities remains unclear.

  16. Cloning and expression of Bartonella henselae sucB gene encoding an immunogenic dihydrolipoamide succinyltransferase homologous protein.

    PubMed

    Kabeya, Hidenori; Maruyama, Soichi; Hirano, Kouji; Mikami, Takeshi

    2003-01-01

    Immunoscreening of a ZAP genomic library of Bartonella henselae strain Houston-1 expressed in Escherichia coli resulted in the isolation of a clone containing 3.5 kb BamHI genomic DNA fragment. This 3.5 kb DNA fragment was found to contain a sequence of a gene encoding a protein with significant homology to the dihydrolipoamide succinyltransferase of Brucella melitensis (sucB). Subsequent cloning and DNA sequence analysis revealed that the deduced amino acid sequence from the cloned gene showed 66.5% identity to SucB protein of B. melitensis, and 43.4 and 47.2% identities to those of Coxiella burnetii and E. coli, respectively. The gene was expressed as a His-Nus A-tagged fusion protein. The recombinant SucB protein (rSucB) was shown to be an immunoreactive protein of about 115 kDa by Western blot analysis with sera from B. henselae-immunized mice. Therefore the rSucB may be a candidate antigen for a specific serological diagnosis of B. henselae infection.

  17. pSLA2-M of Streptomyces rochei is a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L.

    PubMed

    Yang, Yingjie; Kurokawa, Toru; Takahama, Yoshifumi; Nindita, Yosi; Mochizuki, Susumu; Arakawa, Kenji; Endo, Satoru; Kinashi, Haruyasu

    2011-01-01

    The 113,463-bp nucleotide sequence of the linear plasmid pSLA2-M of Streptomyces rochei 7434AN4 was determined. pSLA2-M had a 69.7% overall GC content, 352-bp terminal inverted repeats with 91% (321/352) identity at both ends, and 121 open reading frames. The rightmost 14.6-kb sequence was almost (14,550/14,555) identical to that of the coexisting 211-kb linear plasmid pSLA2-L. Adjacent to this homologous region an 11.8-kb CRISPR cluster was identified, which is known to function against phage infection in prokaryotes. This cluster region as well as another one containing two large membrane protein genes (orf78 and orf79) were flanked by direct repeats of 194 and 566 bp respectively. Hence the insertion of circular DNAs containing each cluster by homologous recombination was suggested. In addition, the orf71 encoded a Ku70/Ku80-like protein, known to function in the repair of double-strand DNA breaks in eukaryotes, but disruption of it did not affect the radiation sensitivity of the mutant. A pair of replication initiation genes (orf1-orf2) were identified at the extreme left end. Thus, pSLA2-M proved to be a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L that might have been generated by multiple recombination events.

  18. Use of lambdagt11 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovskis, E.A.; Timmins, J.G.; Post, L.E.

    1986-10-01

    A library of pseudorabies virus (PRV) DNA fragments was constructed in the expression cloning vector lambdagt11. The library was screened with antisera which reacted with mixtures of PRV proteins to isolate recombinant bacteriophages expressing PRV proteins. By the nature of the lambdagt11 vector, the cloned proteins were expressed in Escherichia coli as ..beta..-galactosidase fusion proteins. The fusion proteins from 35 of these phages were purified and injected into mice to raise antisera. The antisera were screened by several different assays, including immunoprecipitation of (/sup 14/C)glucosamine-labeled PRV proteins. This method identified phages expressing three different PRV glycoproteins: the secreted glycoprotein, gX;more » gI; and a glycoprotein that had not been previously identified, which we designate gp63. The gp63 and gI genes map adjacent to each other in the small unique region of the PRV genome. The DNA sequence was determined for the region of the genome encoding gp63 and gI. It was found that gp63 has a region of homology with a herpes simplex virus type 1 (HSV-1) protein, encoded by US7, and also with varicella-zoster virus (VZV) gpIV. The gI protein sequence has a region of homology with HSV-1 gE and VZV gpI. It is concluded that PRV, HSV, and VZV all have a cluster of homologous glycoprotein genes in the small unique components of their genomes and that the organization of these genes is conserved.« less

  19. [Upper-limb work-related musculoskeletal disorders (UL-WMSDs) and latency of effect].

    PubMed

    Nicoletti, S; Battevi, N

    2008-01-01

    Trends in work-related upper limb musculoskeletal disorders appear to be in constant increase in industrialized countries. In Europe claims and compensation for these disorders have significantly increased. The aim of this study was to investigate the temporal relationship between the beginning of occupational exposure to repetitive movements and exertions of upper limbs, assessed through the OCRA index, and the manifestation of the disorders. Clinical and questionnaire information about 557 cases of UL-WMSDs in the upholstered furniture industry were analyzed in order to investigate the mean latency period of the disorders and to verify to what extent different levels of exposure influence the latency time. The latency of UL-WMSDs is influenced by the level of exposure to risk, measured by means of the OCRA index. Shorter latency times were found for wrist/hand tendonitis, with a mean latency time of 5.4 years and with a greater sensitivity to the level of exposure assessed with the OCRA index value. This might support a sort of predictive value with reference to other UL-WMSDs with longer latency. Probably a latency period of 12 years may be suggested as the cut-off limit to assess a causal relationship between tendon or canalicular WMISDs and occupational exposure to repetitive movements and exertions of upper limbs.

  20. Dehalogenation Activities and Distribution of Reductive Dehalogenase Homologous Genes in Marine Subsurface Sediments▿ †

    PubMed Central

    Futagami, Taiki; Morono, Yuki; Terada, Takeshi; Kaksonen, Anna H.; Inagaki, Fumio

    2009-01-01

    Halogenated organic compounds serve as terminal electron acceptors for anaerobic respiration in a diverse range of microorganisms. Here, we report on the widespread distribution and diversity of reductive dehalogenase homologous (rdhA) genes in marine subsurface sediments. A total of 32 putative rdhA phylotypes were detected in sediments from the southeast Pacific off Peru, the eastern equatorial Pacific, the Juan de Fuca Ridge flank off Oregon, and the northwest Pacific off Japan, collected at a maximum depth of 358 m below the seafloor. In addition, significant dehalogenation activity involving 2,4,6-tribromophenol and trichloroethene was observed in sediment slurry from the Nankai Trough Forearc Basin. These results suggest that dehalorespiration is an important energy-yielding pathway in the subseafloor microbial ecosystem. PMID:19749069

  1. Cftr gene targeting in mouse embryonic stem cells mediated by Small Fragment Homologous Replacement (SFHR).

    PubMed

    Sangiuolo, Federica; Scaldaferri, Maria Lucia; Filareto, Antonio; Spitalieri, Paola; Guerra, Lorenzo; Favia, Maria; Caroppo, Rosa; Mango, Ruggiero; Bruscia, Emanuela; Gruenert, Dieter C; Casavola, Valeria; De Felici, Massimo; Novelli, Giuseppe

    2008-01-01

    Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, "Small Fragment Homologous Replacement (SFHR)", has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely lost any measurable CFTR-dependent chloride efflux. The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.

  2. The novel gene tank, a tumor suppressor homolog, regulates ethanol sensitivity in Drosophila.

    PubMed

    Devineni, Anita V; Eddison, Mark; Heberlein, Ulrike

    2013-05-08

    In both mammalian and insect models of ethanol intoxication, high doses of ethanol induce motor impairment and eventually sedation. Sensitivity to the sedative effects of ethanol is inversely correlated with risk for alcoholism. However, the genes regulating ethanol sensitivity are largely unknown. Based on a previous genetic screen in Drosophila for ethanol sedation mutants, we identified a novel gene, tank (CG15626), the homolog of the mammalian tumor suppressor EI24/PIG8, which has a strong role in regulating ethanol sedation sensitivity. Genetic and behavioral analyses revealed that tank acts in the adult nervous system to promote ethanol sensitivity. We localized the function of tank in regulating ethanol sensitivity to neurons within the pars intercerebralis that have not been implicated previously in ethanol responses. We show that acutely manipulating the activity of all tank-expressing neurons, or of pars intercerebralis neurons in particular, alters ethanol sensitivity in a sexually dimorphic manner, since neuronal activation enhanced ethanol sedation in males, but not females. Finally, we provide anatomical evidence that tank-expressing neurons form likely synaptic connections with neurons expressing the neural sex determination factor fruitless (fru), which have been implicated recently in the regulation of ethanol sensitivity. We suggest that a functional interaction with fru neurons, many of which are sexually dimorphic, may account for the sex-specific effect induced by activating tank neurons. Overall, we have characterized a novel gene and corresponding set of neurons that regulate ethanol sensitivity in Drosophila.

  3. The Novel Gene tank, a Tumor Suppressor Homolog, Regulates Ethanol Sensitivity in Drosophila

    PubMed Central

    Eddison, Mark; Heberlein, Ulrike

    2013-01-01

    In both mammalian and insect models of ethanol intoxication, high doses of ethanol induce motor impairment and eventually sedation. Sensitivity to the sedative effects of ethanol is inversely correlated with risk for alcoholism. However, the genes regulating ethanol sensitivity are largely unknown. Based on a previous genetic screen in Drosophila for ethanol sedation mutants, we identified a novel gene, tank (CG15626), the homolog of the mammalian tumor suppressor EI24/PIG8, which has a strong role in regulating ethanol sedation sensitivity. Genetic and behavioral analyses revealed that tank acts in the adult nervous system to promote ethanol sensitivity. We localized the function of tank in regulating ethanol sensitivity to neurons within the pars intercerebralis that have not been implicated previously in ethanol responses. We show that acutely manipulating the activity of all tank-expressing neurons, or of pars intercerebralis neurons in particular, alters ethanol sensitivity in a sexually dimorphic manner, since neuronal activation enhanced ethanol sedation in males, but not females. Finally, we provide anatomical evidence that tank-expressing neurons form likely synaptic connections with neurons expressing the neural sex determination factor fruitless (fru), which have been implicated recently in the regulation of ethanol sensitivity. We suggest that a functional interaction with fru neurons, many of which are sexually dimorphic, may account for the sex-specific effect induced by activating tank neurons. Overall, we have characterized a novel gene and corresponding set of neurons that regulate ethanol sensitivity in Drosophila. PMID:23658154

  4. Cloning and characterization of a mouse gene with homology to the human von Hippel-Lindau disease tumor suppressor gene: implications for the potential organization of the human von Hippel-Lindau disease gene.

    PubMed

    Gao, J; Naglich, J G; Laidlaw, J; Whaley, J M; Seizinger, B R; Kley, N

    1995-02-15

    The human von Hippel-Lindau disease (VHL) gene has recently been identified and, based on the nucleotide sequence of a partial cDNA clone, has been predicted to encode a novel protein with as yet unknown functions [F. Latif et al., Science (Washington DC), 260: 1317-1320, 1993]. The length of the encoded protein and the characteristics of the cellular expressed protein are as yet unclear. Here we report the cloning and characterization of a mouse gene (mVHLh1) that is widely expressed in different mouse tissues and shares high homology with the human VHL gene. It predicts a protein 181 residues long (and/or 162 amino acids, considering a potential alternative start codon), which across a core region of approximately 140 residues displays a high degree of sequence identity (98%) to the predicted human VHL protein. High stringency DNA and RNA hybridization experiments and protein expression analyses indicate that this gene is the most highly VHL-related mouse gene, suggesting that it represents the mouse VHL gene homologue rather than a related gene sharing a conserved functional domain. These findings provide new insights into the potential organization of the VHL gene and nature of its encoded protein.

  5. Occurrence and Expression of Gene Transfer Agent Genes in Marine Bacterioplankton▿

    PubMed Central

    Biers, Erin J.; Wang, Kui; Pennington, Catherine; Belas, Robert; Chen, Feng; Moran, Mary Ann

    2008-01-01

    Genes with homology to the transduction-like gene transfer agent (GTA) were observed in genome sequences of three cultured members of the marine Roseobacter clade. A broader search for homologs for this host-controlled virus-like gene transfer system identified likely GTA systems in cultured Alphaproteobacteria, and particularly in marine bacterioplankton representatives. Expression of GTA genes and extracellular release of GTA particles (∼50 to 70 nm) was demonstrated experimentally for the Roseobacter clade member Silicibacter pomeroyi DSS-3, and intraspecific gene transfer was documented. GTA homologs are surprisingly infrequent in marine metagenomic sequence data, however, and the role of this lateral gene transfer mechanism in ocean bacterioplankton communities remains unclear. PMID:18359833

  6. Large subunit of the ribonucleotide reductase gene is a virulent factor and plays a critical role in Marek's disease virus pathogenesis

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) encodes a ribonucleotide reductase (RR) gene consisting of two subunits UL39 (RR1) and UL40 (RR2). Both RR1 and RR2 form an active holoenzyme and are necessary for enzyme activity. This gene was indentified by monoclonal antibody T81 in a gt11 MDV expression library and f...

  7. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.

    PubMed

    He, Xiangjun; Tan, Chunlai; Wang, Feng; Wang, Yaofeng; Zhou, Rui; Cui, Dexuan; You, Wenxing; Zhao, Hui; Ren, Jianwei; Feng, Bo

    2016-05-19

    CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which, however, has focused on HDR-based strategies and was proven inefficient. Here, we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs, and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy, integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells, and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Elucidation of the Block to Herpes Simplex Virus Egress in the Absence of Tegument Protein UL16 Reveals a Novel Interaction with VP22

    PubMed Central

    Starkey, Jason L.; Han, Jun; Chadha, Pooja; Marsh, Jacob A.

    2014-01-01

    UL16 is a tegument protein of herpes simplex virus (HSV) that is conserved among all members of the Herpesviridae, but its function is poorly understood. Previous studies revealed that UL16 is associated with capsids in the cytoplasm and interacts with the membrane protein UL11, which suggested a “bridging” function during cytoplasmic envelopment, but this conjecture has not been tested. To gain further insight, cells infected with UL16-null mutants were examined by electron microscopy. No defects in the transport of capsids to cytoplasmic membranes were observed, but the wrapping of capsids with membranes was delayed. Moreover, clusters of cytoplasmic capsids were often observed, but only near membranes, where they were wrapped to produce multiple capsids within a single envelope. Normal virion production was restored when UL16 was expressed either by complementing cells or from a novel position in the HSV genome. When the composition of the UL16-null viruses was analyzed, a reduction in the packaging of glycoprotein E (gE) was observed, which was not surprising, since it has been reported that UL16 interacts with this glycoprotein. However, levels of the tegument protein VP22 were also dramatically reduced in virions, even though this gE-binding protein has been shown not to depend on its membrane partner for packaging. Cotransfection experiments revealed that UL16 and VP22 can interact in the absence of other viral proteins. These results extend the UL16 interaction network beyond its previously identified binding partners to include VP22 and provide evidence that UL16 plays an important function at the membrane during virion production. PMID:24131716

  9. Better understanding of homologous recombination through a 12-week laboratory course for undergraduates majoring in biotechnology.

    PubMed

    Li, Ming; Shen, Xiaodong; Zhao, Yan; Hu, Xiaomei; Hu, Fuquan; Rao, Xiancai

    2017-07-08

    Homologous recombination, a central concept in biology, is defined as the exchange of DNA strands between two similar or identical nucleotide sequences. Unfortunately, undergraduate students majoring in biotechnology often experience difficulties in understanding the molecular basis of homologous recombination. In this study, we developed and implemented a 12-week laboratory course for biotechnology undergraduates in which gene targeting in Streptococcus suis was used to facilitate their understanding of the basic concept and process of homologous recombination. Students worked in teams of two to select a gene of interest to create a knockout mutant using methods that relied on homologous recombination. By integrating abstract knowledge and practice in the process of scientific research, students gained hands-on experience in molecular biology techniques while learning about the principle and process of homologous recombination. The learning outcomes and survey-based assessment demonstrated that students substantially enhanced their understanding of how homologous recombination could be used to study gene function. Overall, the course was very effective for helping biotechnology undergraduates learn the theory and application of homologous recombination, while also yielding positive effects in developing confidence and scientific skills for future work in research. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):329-335, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  10. Immunization with herpes simplex virus 2 (HSV-2) genes plus inactivated HSV-2 is highly protective against acute and recurrent HSV-2 disease.

    PubMed

    Morello, Christopher S; Levinson, Michael S; Kraynyak, Kimberly A; Spector, Deborah H

    2011-04-01

    To date, no vaccine that is safe and effective against herpes simplex virus 2 (HSV-2) disease has been licensed. In this study, we evaluated a DNA prime-formalin-inactivated-HSV-2 (FI-HSV2) boost vaccine approach in the guinea pig model of acute and recurrent HSV-2 genital disease. Five groups of guinea pigs were immunized and intravaginally challenged with HSV-2. Two groups were primed with plasmid DNAs encoding the secreted form of glycoprotein D2 (gD2t) together with two genes required for viral replication, either the helicase (UL5) and DNA polymerase (UL30) genes or the single-stranded DNA binding protein (UL29) and primase (UL52) genes. Both DNA-primed groups were boosted with FI-HSV2 formulated with monophosphoryl lipid A (MPL) and alum adjuvants. Two additional groups were primed with the empty backbone plasmid DNA (pVAX). These two groups were boosted with MPL and alum (MPL-alum) together with either formalin-inactivated mock HSV-2 (FI-Mock) or with FI-HSV2. The final group was immunized with gD2t protein in MPL-alum. After challenge, 0/9 animals in the group primed with UL5, UL30, and gD2t DNAs and all 10 animals in the mock-immunized control group (pVAX-FI-Mock) developed primary lesions. All mock controls developed recurrent lesions through day 100 postchallenge. Only 1 guinea pig in the group primed with pVAX DNA and boosted with FI-HSV2 (pVAX-FI-HSV2 group) and 2 guinea pigs in the group primed with UL5, UL30, and gD2t DNAs and boosted with FI-HSV2 (UL5, UL30, gD2t DNA-FI-HSV2 group) developed recurrent lesions. Strikingly, the UL5, UL30, gD2t DNA-FI-HSV2 group showed a 97% reduction in recurrent lesion days compared with the mock controls, had the highest reduction in days with recurrent disease, and contained the lowest mean HSV-2 DNA load in the dorsal root ganglia.

  11. Differential display RT PCR of total RNA from human foreskin fibroblasts for investigation of androgen-dependent gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitsche, E.M.; Moquin, A.; Adams, P.S.

    1996-05-03

    Male sexual differentiation is a process that involves androgen action via the androgen receptor. Defects in the androgen receptor, many resulting from point mutations in the androgen receptor gene, lead to varying degrees of impaired masculinization in chromosomally male individuals. To date no specific androgen regulated morphogens involved in this process have been identified and no marker genes are known that would help to predict further virilization in infants with partial androgen insensitivity. In the present study we first show data on androgen regulated gene expression investigated by differential display reverse transcription PCR (dd RT PCR) on total RNA frommore » human neonatal genital skin fibroblasts cultured in the presence or absence of 100 nM testosterone. Using three different primer combinations, 54 cDNAs appeared to be regulated by androgens. Most of these sequences show the characteristics of expressed mRNAs but showed no homology to sequences in the database. However 15 clones with significant homology to previously cloned sequences were identified. Seven cDNAs appear to be induced by androgen withdrawal. Of these, five are similar to ETS (expression tagged sequences) from unknown genes; the other two show significant homology to the cDNAs of ubiquitin and human guanylate binding protein 2 (GBP-2). In addition, we have identified 8 cDNA clones which show homologies to other sequences in the database and appear to be upregulated in the presence of testosterone. Three differential expressed sequences show significant homology to the cDNAs of L-plastin and one to the cDNA of testican. This latter gene codes for a proteoglycan involved in cell social behavior and therefore of special interest in this context. The results of this study are of interest in further investigation of normal and disturbed androgen-dependent gene expression. 49 refs., 2 figs., 5 tabs.« less

  12. Combined Satellite - and ULS-Derived Sea-Ice Flux in the Weddell Sea

    NASA Technical Reports Server (NTRS)

    Drinkwater, M.; Liu, X.; Harms, S.

    2000-01-01

    Several years of daily microwave satellite ice-drift are combined with moored Upward Looking Sonar (ULS) ice-drafts into an ice volume flux record at points along a flux gate across the Weddell Sea, Antarctica.

  13. The Human Cytomegalovirus IE2 and UL112-113 Proteins Accumulate in Viral DNA Replication Compartments That Initiate from the Periphery of Promyelocytic Leukemia Protein-Associated Nuclear Bodies (PODs or ND10)

    PubMed Central

    Ahn, Jin-Hyun; Jang, Won-Jong; Hayward, Gary S.

    1999-01-01

    During human cytomegalovirus (HCMV) infection, the periphery of promyelocytic leukemia protein (PML)-associated nuclear bodies (also known as PML oncogenic domains [PODs] or ND10) are sites for both input viral genome deposition and immediate-early (IE) gene transcription. At very early times after infection, the IE1 protein localizes to and subsequently disrupts PODs, whereas the IE2 protein localizes within or adjacent to PODs. This process appears to be required for efficient viral gene expression and DNA replication. We have investigated the initiation of viral DNA replication compartment formation by studying the localization of viral IE proteins, DNA replication proteins, and the PML protein during productive infection. Localization of IE2 adjacent to PODs between 2 and 6 h after infection was confirmed by confocal microscopy of human fibroblasts (HF cells) infected with both wild-type HCMV(Towne) and with an IE1-deletion mutant HCMV(CR208) that fails to disrupt PODs. In HCMV(Towne)-infected HF cells at 24 to 48 h, IE2 also accumulated in newly formed viral DNA replication compartments containing the polymerase processivity factor (UL44), the single-stranded DNA binding protein (SSB; UL57), the UL112-113 accessory protein, and newly incorporated bromodeoxyuridine (BrdU). Double labeling of the HCMV(CR208)-infected HF cells demonstrated that formation of viral DNA replication compartments initiates within granular structures that bud from the periphery of some of the PODs and subsequently coalesce into larger structures that are flanked by PODs. In transient DNA transfection assays, both the N terminus (codons 136 to 290) and the C terminus (codons 379 to 579) of IE2 exon 5, but not the central region between them, were found to be necessary for both the punctate distribution of IE2 and its association with PODs. Like IE2, the UL112-113 accessory replication protein was also distributed in a POD-associated pattern in both DNA-transfected and virus

  14. Spatial sexual dimorphism of X and Y homolog gene expression in the human central nervous system during early male development.

    PubMed

    Johansson, Martin M; Lundin, Elin; Qian, Xiaoyan; Mirzazadeh, Mohammadreza; Halvardson, Jonatan; Darj, Elisabeth; Feuk, Lars; Nilsson, Mats; Jazin, Elena

    2016-01-01

    Renewed attention has been directed to the functions of the Y chromosome in the central nervous system during early human male development, due to the recent proposed involvement in neurodevelopmental diseases. PCDH11Y and NLGN4Y are of special interest because they belong to gene families involved in cell fate determination and formation of dendrites and axon. We used RNA sequencing, immunocytochemistry and a padlock probing and rolling circle amplification strategy, to distinguish the expression of X and Y homologs in situ in the human brain for the first time. To minimize influence of androgens on the sex differences in the brain, we focused our investigation to human embryos at 8-11 weeks post-gestation. We found that the X- and Y-encoded genes are expressed in specific and heterogeneous cellular sub-populations of both glial and neuronal origins. More importantly, we found differential distribution patterns of X and Y homologs in the male developing central nervous system. This study has visualized the spatial distribution of PCDH11X/Y and NLGN4X/Y in human developing nervous tissue. The observed spatial distribution patterns suggest the existence of an additional layer of complexity in the development of the male CNS.

  15. Protection and synergism by recombinant fowl pox vaccines expressing multiple genes from Marek's disease virus.

    PubMed

    Lee, Lucy E; Witter, R L; Reddy, S M; Wu, P; Yanagida, N; Yoshida, S

    2003-01-01

    Recombinant fowl poxviruses (rFPVs) were constructed to express genes from serotype 1 Marek's disease virus (MDV) coding for glycoproteins B, E, I, H, and UL32 (gB1, gE, gI, gH, and UL32). An additional rFPV was constructed to contain four MDV genes (gB1, gE, gI, and UL32). These rFPVs were evaluated for their ability to protect maternal antibody-positive chickens against challenge with highly virulent MDV isolates. The protection induced by a single rFPV/gB1 (42%) confirmed our previous finding. The protection induced by rFPV/gI (43%), rFPV/gB1UL32 (46%), rFPV/gB1gEgI (72%), and rFPV/gB1gEgIUL32 (70%) contributed to additional knowledge on MDV genes involved in protective immunity. In contrast, the rFPV containing gE, gH, or UL32 did not induce significant protection compared with turkey herpesvirus (HVT). Levels of protection by rFPV/gB1 and rFPV/gl were comparable with that of HVT. Only gB1 and gI conferred synergism in rFPV containing these two genes. Protection by both rFPV/gB1gEgI (72%) and rFPV/gB1gEgIUL32(70%) against Marek's disease was significantly enhanced compared with a single gB1 or gI gene (40%). This protective synergism between gB1 and gI in rFPVs may be the basis for better protection when bivalent vaccines between serotypes 2 and 3 were used. When rFPV/gB1gIgEUL32 + HVT were used as vaccine against Md5 challenge, the protection was significantly enhanced (94%). This synergism between rFPV/gB1gIgEUL32 and HVT indicates additional genes yet to be discovered in HVT may be responsible for the enhancement.

  16. Structural and diffusion characterizations of steam-stable mesostructured zeolitic UL-ZSM-5 materials.

    PubMed

    Vinh-Thang, Hoang; Huang, Qinglin; Ungureanu, Adrian; Eić, Mladen; Trong-On, Do; Kaliaguine, Serge

    2006-05-09

    A series of mesoporous UL-ZSM-5 materials (Si/Al = 50) with different micro- and mesoporosity as well as crystallinity was prepared following the procedure proposed in one of our recent studies (Trong-On, D.; Kaliaguine, S. Angew. Chem. Int. Ed. 2001, 40, 3248-3251. Trong-On, D.; Kaliaguine, S. U.S. Patent 6,669,924, B1, 2003). These materials have zeolitic structure in the form of nanoparticles intergrown in the walls of the amorphous wormhole-like aluminosilicate mesopores of Al-Meso-50, which was used as a precursor in the synthesis. The structure, crystallinity, and textural properties of the synthesized materials, as well as a reference ZSM-5 zeolite sample, were determined by X-ray diffraction (XRD), transmission electron microscopy (TEM)/scanning electron microscoy (SEM) analyses, Fourier transform infrared spectroscopy (FTIR), 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption techniques. The acid properties were examined by FTIR of adsorbed pyridine. UL-ZSM-5 materials were shown to be highly hydrothermally stable. The diffusion of two C7 hydrocarbons, i.e., n-heptane and toluene, in four UL-ZSM-5 materials with different microporosities, related acidities, and crystallinities were investigated using the zero-length column (ZLC) method. Furthermore, the wormhole-like mesostructured aluminosilicate precursor (Al-Meso-50) and a reference MFI zeolite sample were also investigated using the same technique. A theoretical model considering a combination of mesopore diffusion (with surface slip in the main channels) with an activated, mainly surface diffusion mechanism in the intrawall biporous structure, was proposed and employed to interpret the experimental ZLC results. A classical Knudsen type of diffusion was replaced by an activated surface slip type of diffusion mechanism in the mesopores. The transport of n-heptane in UL-ZSM-5 materials was found to be mainly controlled by mesopore diffusion in the main

  17. The C Terminus of the Herpes Simplex Virus UL25 Protein Is Required for Release of Viral Genomes from Capsids Bound to Nuclear Pores

    PubMed Central

    Huffman, Jamie B.; Daniel, Gina R.; Falck-Pedersen, Erik; Huet, Alexis

    2017-01-01

    ABSTRACT The herpes simplex virus (HSV) capsid is released into the cytoplasm after fusion of viral and host membranes, whereupon dynein-dependent trafficking along microtubules targets it to the nuclear envelope. Binding of the capsid to the nuclear pore complex (NPC) is mediated by the capsid protein pUL25 and the capsid-tethered tegument protein pUL36. Temperature-sensitive mutants in both pUL25 and pUL36 dock at the NPC but fail to release DNA. The uncoating reaction has been difficult to study due to the rapid release of the genome once the capsid interacts with the nuclear pore. In this study, we describe the isolation and characterization of a truncation mutant of pUL25. Live-cell imaging and immunofluorescence studies demonstrated that the mutant was not impaired in penetration of the host cell or in trafficking of the capsid to the nuclear membrane. However, expression of viral proteins was absent or significantly delayed in cells infected with the pUL25 mutant virus. Transmission electron microscopy revealed capsids accumulated at nuclear pores that retained the viral genome for at least 4 h postinfection. In addition, cryoelectron microscopy (cryo-EM) reconstructions of virion capsids did not detect any obvious differences in the location or structural organization for the pUL25 or pUL36 proteins on the pUL25 mutant capsids. Further, in contrast to wild-type virus, the antiviral response mediated by the viral DNA-sensing cyclic guanine adenine synthase (cGAS) was severely compromised for the pUL25 mutant. These results demonstrate that the pUL25 capsid protein has a critical role in releasing viral DNA from NPC-bound capsids. IMPORTANCE Herpes simplex virus 1 (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. Early steps in infection include release of the capsid into the cytoplasm, docking of the capsid at a nuclear pore, and release of the viral genome into the

  18. Cytomegalovirus Basic Phosphoprotein (pUL32) Binds to Capsids In Vitro through Its Amino One-Third

    PubMed Central

    Baxter, Michael K.; Gibson, Wade

    2001-01-01

    The cytomegalovirus (CMV) basic phosphoprotein (BPP) is a component of the tegument. It remains with the nucleocapsid fraction under conditions that remove most other tegument proteins from the virion, suggesting a direct and perhaps tight interaction with the capsid. As a step toward localizing this protein within the molecular structure of the virion and understanding its function during infection, we have investigated the BPP-capsid interaction. In this report we present evidence that the BPP interacts selectively, through its amino one-third, with CMV capsids. Radiolabeled simian CMV (SCMV) BPP, synthesized in vitro, bound to SCMV B-capsids, and C-capsids to a lesser extent, following incubation with either isolated capsids or lysates of infected cells. Human CMV (HCMV) BPP (pUL32) also bound to SCMV capsids, and SCMV BPP likewise bound to HCMV capsids, indicating that the sequence(s) involved is conserved between the two proteins. Analysis of SCMV BPP truncation mutants localized the capsid-binding region to the amino one-third of the molecule—the portion of BPP showing the greatest sequence conservation between the SCMV and HCMV homologs. This general approach may have utility in studying the interactions of other proteins with conformation-dependent binding sites. PMID:11435566

  19. Recombination–deletion between homologous cassettes in retrovirus is suppressed via a strategy of degenerate codon substitution

    PubMed Central

    Im, Eung Jun; Bais, Anthony J; Yang, Wen; Ma, Qiangzhong; Guo, Xiuyang; Sepe, Steven M; Junghans, Richard P

    2014-01-01

    Transduction and expression procedures in gene therapy protocols may optimally transfer more than a single gene to correct a defect and/or transmit new functions to recipient cells or organisms. This may be accomplished by transduction with two (or more) vectors, or, more efficiently, in a single vector. Occasionally, it may be useful to coexpress homologous genes or chimeric proteins with regions of shared homology. Retroviridae include the dominant vector systems for gene transfer (e.g., gamma-retro and lentiviruses) and are capable of such multigene expression. However, these same viruses are known for efficient recombination–deletion when domains are duplicated within the viral genome. This problem can be averted by resorting to two-vector strategies (two-chain two-vector), but at a penalty to cost, convenience, and efficiency. Employing a chimeric antigen receptor system as an example, we confirm that coexpression of two genes with homologous domains in a single gamma-retroviral vector (two-chain single-vector) leads to recombination–deletion between repeated sequences, excising the equivalent of one of the chimeric antigen receptors. Here, we show that a degenerate codon substitution strategy in the two-chain single-vector format efficiently suppressed intravector deletional loss with rescue of balanced gene coexpression by minimizing sequence homology between repeated domains and preserving the final protein sequence. PMID:25419532

  20. Gene order and recombination rate in homologous chromosome regions of the chicken and a passerine bird.

    PubMed

    Dawson, Deborah A; Akesson, Mikael; Burke, Terry; Pemberton, Josephine M; Slate, Jon; Hansson, Bengt

    2007-07-01

    Genome structure has been found to be highly conserved between distantly related birds and recent data for a limited part of the genome suggest that this is true also for the gene order (synteny) within chromosomes. Here, we confirm that synteny is maintained for large chromosomal regions in chicken and a passerine bird, the great reed warbler Acrocephalus arundinaceus, with few rearrangements, but in contrast show that the recombination-based linkage map distances differ substantially between these species. We assigned a chromosomal location based on sequence similarity to the chicken genome sequence to a set of microsatellite loci mapped in a pedigree of great reed warblers. We detected homologous loci on 14 different chromosomes corresponding to chicken chromosomes Gga1-5, 7-9, 13, 19, 20, 24, 25, and Z. It is known that 2 passerine macrochromosomes correspond to the chicken chromosome Gga1. Homology of 2 different great reed warbler linkage groups (LG13 and LG5) to Gga1 allowed us to locate the split to a position between 20.8 and 84.8 Mb on Gga1. Data from the 5 chromosomal regions (on Gga1, 2, 3, 5, and Z) with 3 or more homologous loci showed that synteny was conserved with the exception of 2 large previously unreported inversions on Gga1/LG5 and Gga2/LG3, respectively. Recombination data from the 9 chromosomal regions in which we identified 2 or more homologous loci (accounting for the inversions) showed that the linkage map distances in great reed warblers were only 6.3% and 13.3% of those in chickens for males and females, respectively. This is likely to reflect the true interspecific difference in recombination rate because our markers were not located in potentially low-recombining regions: several linkage groups covered a substantial part of their corresponding chicken chromosomes and were not restricted to centromeres. We conclude that recombination rates may differ strongly between bird species with highly conserved genome structure and synteny and

  1. Herpes Simplex Virus Processivity Factor UL42 Imparts Increased DNA-Binding Specificity to the Viral DNA Polymerase and Decreased Dissociation from Primer-Template without Reducing the Elongation Rate

    PubMed Central

    Weisshart, Klaus; Chow, Connie S.; Coen, Donald M.

    1999-01-01

    Herpes simplex virus DNA polymerase consists of a catalytic subunit, Pol, and a processivity subunit, UL42, that, unlike other established processivity factors, binds DNA directly. We used gel retardation and filter-binding assays to investigate how UL42 affects the polymerase-DNA interaction. The Pol/UL42 heterodimer bound more tightly to DNA in a primer-template configuration than to single-stranded DNA (ssDNA), while Pol alone bound more tightly to ssDNA than to DNA in a primer-template configuration. The affinity of Pol/UL42 for ssDNA was reduced severalfold relative to that of Pol, while the affinity of Pol/UL42 for primer-template DNA was increased ∼15-fold relative to that of Pol. The affinity of Pol/UL42 for circular double-stranded DNA (dsDNA) was reduced drastically relative to that of UL42, but the affinity of Pol/UL42 for short primer-templates was increased modestly relative to that of UL42. Pol/UL42 associated with primer-template DNA ∼2-fold faster than did Pol and dissociated ∼10-fold more slowly, resulting in a half-life of 2 h and a subnanomolar Kd. Despite such stable binding, rapid-quench analysis revealed that the rates of elongation of Pol/UL42 and Pol were essentially the same, ∼30 nucleotides/s. Taken together, these studies indicate that (i) Pol/UL42 is more likely than its subunits to associate with DNA in a primer-template configuration rather than nonspecifically to either ssDNA or dsDNA, and (ii) UL42 reduces the rate of dissociation from primer-template DNA but not the rate of elongation. Two models of polymerase-DNA interactions during replication that may explain these findings are presented. PMID:9847307

  2. Divergent Roles of RPA Homologs of the Model Archaeon Halobacterium salinarum in Survival of DNA Damage.

    PubMed

    Evans, Jessica J; Gygli, Patrick E; McCaskill, Julienne; DeVeaux, Linda C

    2018-04-20

    The haloarchaea are unusual in possessing genes for multiple homologs to the ubiquitous single-stranded DNA binding protein (SSB or replication protein A, RPA) found in all three domains of life. Halobacterium salinarum contains five homologs: two are eukaryotic in organization, two are prokaryotic and are encoded on the minichromosomes, and one is uniquely euryarchaeal. Radiation-resistant mutants previously isolated show upregulation of one of the eukaryotic-type RPA genes. Here, we have created deletions in the five RPA operons. These deletion mutants were exposed to DNA-damaging conditions: ionizing radiation, UV radiation, and mitomycin C. Deletion of the euryarchaeal homolog, although not lethal as in Haloferax volcanii , causes severe sensitivity to all of these agents. Deletion of the other RPA/SSB homologs imparts a variable sensitivity to these DNA-damaging agents, suggesting that the different RPA homologs have specialized roles depending on the type of genomic insult encountered.

  3. GeneBuilder: interactive in silico prediction of gene structure.

    PubMed

    Milanesi, L; D'Angelo, D; Rogozin, I B

    1999-01-01

    Prediction of gene structure in newly sequenced DNA becomes very important in large genome sequencing projects. This problem is complicated due to the exon-intron structure of eukaryotic genes and because gene expression is regulated by many different short nucleotide domains. In order to be able to analyse the full gene structure in different organisms, it is necessary to combine information about potential functional signals (promoter region, splice sites, start and stop codons, 3' untranslated region) together with the statistical properties of coding sequences (coding potential), information about homologous proteins, ESTs and repeated elements. We have developed the GeneBuilder system which is based on prediction of functional signals and coding regions by different approaches in combination with similarity searches in proteins and EST databases. The potential gene structure models are obtained by using a dynamic programming method. The program permits the use of several parameters for gene structure prediction and refinement. During gene model construction, selecting different exon homology levels with a protein sequence selected from a list of homologous proteins can improve the accuracy of the gene structure prediction. In the case of low homology, GeneBuilder is still able to predict the gene structure. The GeneBuilder system has been tested by using the standard set (Burset and Guigo, Genomics, 34, 353-367, 1996) and the performances are: 0.89 sensitivity and 0.91 specificity at the nucleotide level. The total correlation coefficient is 0.88. The GeneBuilder system is implemented as a part of the WebGene a the URL: http://www.itba.mi. cnr.it/webgene and TRADAT (TRAncription Database and Analysis Tools) launcher URL: http://www.itba.mi.cnr.it/tradat.

  4. pUL69 of Human Cytomegalovirus Recruits the Cellular Protein Arginine Methyltransferase 6 via a Domain That Is Crucial for mRNA Export and Efficient Viral Replication.

    PubMed

    Thomas, Marco; Sonntag, Eric; Müller, Regina; Schmidt, Stefanie; Zielke, Barbara; Fossen, Torgils; Stamminger, Thomas

    2015-09-01

    The regulatory protein pUL69 of human cytomegalovirus acts as a viral mRNA export factor, facilitating the cytoplasmic accumulation of unspliced RNA via interaction with the cellular mRNA export factor UAP56. Here we provide evidence for a posttranslational modification of pUL69 via arginine methylation within the functionally important N terminus. First, we demonstrated a specific immunoprecipitation of full-length pUL69 as well as pUL69aa1-146 by a mono/dimethylarginine-specific antibody. Second, we observed a specific electrophoretic mobility shift upon overexpression of the catalytically active protein arginine methyltransferase 6 (PRMT6). Third, a direct interaction of pUL69 and PRMT6 was confirmed by yeast two-hybrid and coimmunoprecipitation analyses. We mapped the PRMT6 interaction motif to the pUL69 N terminus and identified critical amino acids within the arginine-rich R1 box of pUL69 that were crucial for PRMT6 and/or UAP56 recruitment. In order to test the impact of putative methylation substrates on the functions of pUL69, we constructed various pUL69 derivatives harboring arginine-to-alanine substitutions and tested them for RNA export activity. Thus, we were able to discriminate between arginines within the R1 box of pUL69 that were crucial for UAP56/PRMT6-interaction and/or mRNA export activity. Remarkably, nuclear magnetic resonance (NMR) analyses revealed the same α-helical structures for pUL69 sequences encoding either the wild type R1/R2 boxes or a UAP56/PRMT6 binding-deficient derivative, thereby excluding the possibility that R/A amino acid substitutions within R1 affected the secondary structure of pUL69. We therefore conclude that the pUL69 N terminus is methylated by PRMT6 and that this critically affects the functions of pUL69 for efficient mRNA export and replication of human cytomegalovirus. The UL69 protein of human cytomegalovirus is a multifunctional regulatory protein that acts as a viral RNA export factor with a critical role for

  5. Homologous cloning, characterization and expression of a new halophyte phytochelatin synthase gene in Suaeda salsa

    NASA Astrophysics Data System (ADS)

    Cong, Ming; Zhao, Jianmin; Lü, Jiasen; Ren, Zhiming; Wu, Huifeng

    2016-09-01

    The halophyte Suaeda salsa can grow in heavy metal-polluted areas along intertidal zones having high salinity. Since phytochelatins can eff ectively chelate heavy metals, it was hypothesized that S. salsa possessed a phytochelatin synthase (PCS) gene. In the present study, the cDNA of PCS was obtained from S. salsa (designated as SsPCS) using homologous cloning and the rapid amplification of cDNA ends (RACE). A sequence analysis revealed that SsPCS consisted of 1 916 bp nucleotides, encoding a polypeptide of 492 amino acids with one phytochelatin domain and one phytochelatin C domain. A similarity analysis suggested that SsPCS shared up to a 58.6% identity with other PCS proteins and clustered with PCS proteins from eudicots. There was a new kind of metal ion sensor motif in its C-terminal domain. The SsPCS transcript was more highly expressed in elongated and fibered roots and stems ( P<0.05) than in leaves. Lead and mercury exposure significantly enhanced the mRNA expression of SsPCS ( P<0.05). To the best of our knowledge, SsPCS is the second PCS gene cloned from a halophyte, and it might contain a diff erent metal sensing capability than the first PCS from Thellungiella halophila. This study provided a new view of halophyte PCS genes in heavy metal tolerance.

  6. Further Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and its Interaction with ICP8, the Major DNA-Binding Protein of Herpes Simplex Virus

    DTIC Science & Technology

    1994-01-01

    HSV envelopment and egress . Gross structures of the genomes of tbe buman herpesviruses . Layout of genes in the genome of HSV - 1 ........... . A... HSV - 1 capsid maturation . Seletion of recombinant vaccinia viruses Protein fusion and purification system . Generation of tbe recombinant plasmid...with purified HSV -I virions Effect of detergent treatment on the association of the UL37 protein with purified HSV - 1 vIrIons

  7. Productive Homologous and Non-homologous Recombination of Hepatitis C Virus in Cell Culture

    PubMed Central

    Li, Yi-Ping; Mikkelsen, Lotte S.; Gottwein, Judith M.; Bukh, Jens

    2013-01-01

    Genetic recombination is an important mechanism for increasing diversity of RNA viruses, and constitutes a viral escape mechanism to host immune responses and to treatment with antiviral compounds. Although rare, epidemiologically important hepatitis C virus (HCV) recombinants have been reported. In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13–36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6 sequence from the 5′ end to the NS2–NS3 region followed by JFH1 sequence from Core to the 3′ end. These recombinants carried duplicated sequence of up to 2400 nucleotides. HCV replication was not required for recombination, as recombinants were observed in most experiments even when two replication incompetent genomes were co-transfected. Reverse genetic studies verified the viability of representative recombinants. After serial passage, subsequent recombination events reducing or eliminating the duplicated region were observed for some but not all recombinants. Furthermore, we found that inter-genotypic recombination could occur, but at a lower frequency than intra-genotypic recombination. Productive recombination of attenuated HCV genomes depended on expression of all HCV proteins and tolerated duplicated sequence. In general, no strong site specificity was observed. Non-homologous recombination was observed in most cases, while few homologous events were identified. A better understanding of HCV recombination could help identification of natural recombinants

  8. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae.

    PubMed

    Bao, Zehua; Xiao, Han; Liang, Jing; Zhang, Lu; Xiong, Xiong; Sun, Ning; Si, Tong; Zhao, Huimin

    2015-05-15

    One-step multiple gene disruption in the model organism Saccharomyces cerevisiae is a highly useful tool for both basic and applied research, but it remains a challenge. Here, we report a rapid, efficient, and potentially scalable strategy based on the type II Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated proteins (Cas) system to generate multiple gene disruptions simultaneously in S. cerevisiae. A 100 bp dsDNA mutagenizing homologous recombination donor is inserted between two direct repeats for each target gene in a CRISPR array consisting of multiple donor and guide sequence pairs. An ultrahigh copy number plasmid carrying iCas9, a variant of wild-type Cas9, trans-encoded RNA (tracrRNA), and a homology-integrated crRNA cassette is designed to greatly increase the gene disruption efficiency. As proof of concept, three genes, CAN1, ADE2, and LYP1, were simultaneously disrupted in 4 days with an efficiency ranging from 27 to 87%. Another three genes involved in an artificial hydrocortisone biosynthetic pathway, ATF2, GCY1, and YPR1, were simultaneously disrupted in 6 days with 100% efficiency. This homology-integrated CRISPR (HI-CRISPR) strategy represents a powerful tool for creating yeast strains with multiple gene knockouts.

  9. Human Cytomegalovirus Clinical Strain-Specific microRNA miR-UL148D Targets the Human Chemokine RANTES during Infection

    PubMed Central

    Kim, Sungchul; Kim, Donghyun; Ahn, Jin-Hyun; Ahn, Kwangseog

    2012-01-01

    The human cytomegalovirus (HCMV) clinical strain Toledo and the attenuated strain AD169 exhibit a striking difference in pathogenic potential and cell tropism. The virulent Toledo genome contains a 15-kb segment, which is present in all virulent strains but is absent from the AD169 genome. The pathogenic differences between the 2 strains are thought to be associated with this additional genome segment. Cytokines induced during viral infection play major roles in the regulation of the cellular interactions involving cells of the immune and inflammatory systems and consequently determine the pathogenic outcome of infection. The chemokine RANTES (Regulated on activation, normal T-cell expressed and secreted) attracts immune cells during inflammation and the immune response, indicating a role for RANTES in viral pathogenesis. Here, we show that RANTES was downregulated in human foreskin fibroblast (HFF) cells at a later stage after infection with the Toledo strain but not after infection with the AD169 strain. miR-UL148D, the only miRNA predicted from the UL/b' sequences of the Toledo genome, targeted the 3′-untranslated region of RANTES and induced degradation of RANTES mRNA during infection. While wild-type Toledo inhibited expression of RANTES in HFF cells, Toledo mutant virus in which miR-UL148D is specifically abrogated did not repress RANTES expression. Furthermore, miR-UL148D-mediated downregulation of RANTES was inhibited by treatment with a miR-UL148D-specific inhibitor designed to bind to the miR-UL148D sequence via an antisense mechanism, supporting the potential value of antisense agents as therapeutic tools directed against HCMV. Our findings identify a viral microRNA as a novel negative regulator of the chemokine RANTES and provide clues for understanding the pathogenesis of the clinical strains of HCMV. PMID:22412377

  10. Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation

    PubMed Central

    Zelensky, Alex N.; Sanchez, Humberto; Ristic, Dejan; Vidic, Iztok; van Rossum-Fikkert, Sari E.; Essers, Jeroen; Wyman, Claire; Kanaar, Roland

    2013-01-01

    Caffeine is a widely used inhibitor of the protein kinases that play a central role in the DNA damage response. We used chemical inhibitors and genetically deficient mouse embryonic stem cell lines to study the role of DNA damage response in stable integration of the transfected DNA and found that caffeine rapidly, efficiently and reversibly inhibited homologous integration of the transfected DNA as measured by several homologous recombination-mediated gene-targeting assays. Biochemical and structural biology experiments revealed that caffeine interfered with a pivotal step in homologous recombination, homologous joint molecule formation, through increasing interactions of the RAD51 nucleoprotein filament with non-homologous DNA. Our results suggest that recombination pathways dependent on extensive homology search are caffeine-sensitive and stress the importance of considering direct checkpoint-independent mechanisms in the interpretation of the effects of caffeine on DNA repair. PMID:23666627

  11. The organisation and interviral homologies of genes at the 3' end of tobacco rattle virus RNA1

    PubMed Central

    Boccara, Martine; Hamilton, William D. O.; Baulcombe, David C.

    1986-01-01

    The RNA1 of tobacco rattle virus (TRV) has been cloned as cDNA and the nucleotide sequence determined of 2 kb from the 3'-terminal region. The sequence contains three long open reading frames. One of these starts 5' of the cDNA and probably corresponds to the carboxy-terminal sequence of a 170-K protein encoded on RNA1. The deduced protein sequence from this reading frame shows homology with the putative replicases of tobacco mosaic virus (TMV) and tricornaviruses. The location of the second open reading frame, which encodes a 29-K polypeptide, was shown by Northern blot analysis to coincide with a 1.6-kb subgenomic RNA. The validity of this reading frame was confirmed by showing that the cDNA extending over this region could be transcribed and translated in vitro to produce a polypeptide of the predicted size which co-migrates in electrophoresis with a translation product of authentic viral RNA. The sequence of this 29-K polypeptide showed homology with two regions in the 30-K protein of TMV. This homology includes positions in the TMV 30-K protein where mutations have been identified which affect the transport of virus between cells. The third open reading frame encodes a potential 16-K protein and was shown by Northern blot hybridisation to be contained within the region of a 0.7-kb subgenomic RNA which is found in cellular RNA of infected cells but not virus particles. The many similarities between TRV and TMV in viral morphology, gene organisation and sequence suggest that these two viral groups may share a common viral ancestor. ImagesFig. 2.Fig. 3. PMID:16453668

  12. Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog.

    PubMed

    Lo, Miranda; Murray, Gerald L; Khoo, Chen Ai; Haake, David A; Zuerner, Richard L; Adler, Ben

    2010-11-01

    Leptospirosis is a globally significant zoonosis caused by Leptospira spp. Iron is essential for growth of most bacterial species. Since iron availability is low in the host, pathogens have evolved complex iron acquisition mechanisms to survive and establish infection. In many bacteria, expression of iron uptake and storage proteins is regulated by Fur. L. interrogans encodes four predicted Fur homologs; we have constructed a mutation in one of these, la1857. We conducted microarray analysis to identify iron-responsive genes and to study the effects of la1857 mutation on gene expression. Under iron-limiting conditions, 43 genes were upregulated and 49 genes were downregulated in the wild type. Genes encoding proteins with predicted involvement in inorganic ion transport and metabolism (including TonB-dependent proteins and outer membrane transport proteins) were overrepresented in the upregulated list, while 54% of differentially expressed genes had no known function. There were 16 upregulated genes of unknown function which are absent from the saprophyte L. biflexa and which therefore may encode virulence-associated factors. Expression of iron-responsive genes was not significantly affected by mutagenesis of la1857, indicating that LA1857 is not a global regulator of iron homeostasis. Upregulation of heme biosynthetic genes and a putative catalase in the mutant suggested that LA1857 is more similar to PerR, a regulator of the oxidative stress response. Indeed, the la1857 mutant was more resistant to peroxide stress than the wild type. Our results provide insights into the role of iron in leptospiral metabolism and regulation of the oxidative stress response, including genes likely to be important for virulence.

  13. A LuxR homolog in a cottonwood tree endophyte that activates gene expression in response to a plant signal or specific peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Amy L.; Oda, Yasuhiro; Coutinho, Bruna Goncalves

    Homologs of the LuxR acyl-homoserine lactone (AHL) quorum-sensing signal receptor are prevalent in Proteobacteria isolated from roots of the Eastern cottonwood tree, Populus deltoides. Many of these isolates possess an orphan LuxR homolog, closely related to OryR from the rice pathogen Xanthomonas oryzae. OryR does not respond to AHL signals but, instead, responds to an unknown plant compound. We discovered an OryR homolog, PipR, in the cottonwood endophyte Pseudomonas sp. strain GM79. The genes adjacent to pipR encode a predicted ATP-binding cassette (ABC) peptide transporter and peptidases. We purified the putative peptidases, PipA and AapA, and confirmed their predicted activities.more » A transcriptional pipA-gfp reporter was responsive to PipR in the presence of plant leaf macerates, but it was not influenced by AHLs, similar to findings with OryR. We found that PipR also responded to protein hydrolysates to activate pipA-gfp expression. Among many peptides tested, the tripeptide Ser-His-Ser showed inducer activity but at relatively high concentrations. An ABC peptide transporter mutant failed to respond to leaf macerates, peptone, or Ser-His-Ser, while peptidase mutants expressed higher-than-wild-type levels of pipA-gfp in response to any of these signals. Our studies are consistent with a model where active transport of a peptidelike signal is required for the signal to interact with PipR, which then activates peptidase gene expression. As a result, the identification of a peptide ligand for PipR sets the stage to identify plant-derived signals for the OryR family of orphan LuxR proteins.« less

  14. A LuxR homolog in a cottonwood tree endophyte that activates gene expression in response to a plant signal or specific peptides

    DOE PAGES

    Schaefer, Amy L.; Oda, Yasuhiro; Coutinho, Bruna Goncalves; ...

    2016-08-02

    Homologs of the LuxR acyl-homoserine lactone (AHL) quorum-sensing signal receptor are prevalent in Proteobacteria isolated from roots of the Eastern cottonwood tree, Populus deltoides. Many of these isolates possess an orphan LuxR homolog, closely related to OryR from the rice pathogen Xanthomonas oryzae. OryR does not respond to AHL signals but, instead, responds to an unknown plant compound. We discovered an OryR homolog, PipR, in the cottonwood endophyte Pseudomonas sp. strain GM79. The genes adjacent to pipR encode a predicted ATP-binding cassette (ABC) peptide transporter and peptidases. We purified the putative peptidases, PipA and AapA, and confirmed their predicted activities.more » A transcriptional pipA-gfp reporter was responsive to PipR in the presence of plant leaf macerates, but it was not influenced by AHLs, similar to findings with OryR. We found that PipR also responded to protein hydrolysates to activate pipA-gfp expression. Among many peptides tested, the tripeptide Ser-His-Ser showed inducer activity but at relatively high concentrations. An ABC peptide transporter mutant failed to respond to leaf macerates, peptone, or Ser-His-Ser, while peptidase mutants expressed higher-than-wild-type levels of pipA-gfp in response to any of these signals. Our studies are consistent with a model where active transport of a peptidelike signal is required for the signal to interact with PipR, which then activates peptidase gene expression. As a result, the identification of a peptide ligand for PipR sets the stage to identify plant-derived signals for the OryR family of orphan LuxR proteins.« less

  15. Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes

    PubMed Central

    Mazzoleni, Sofia; Rovatsos, Michail; Schillaci, Odessa; Dumas, Francesca

    2018-01-01

    Abstract We explored the topology of 18S and 28S rDNA units by fluorescence in situ hybridization (FISH) in the karyotypes of thirteen species representatives from major groups of Primates and Tupaia minor (Günther, 1876) (Scandentia), in order to expand our knowledge of Primate genome reshuffling and to identify the possible dispersion mechanisms of rDNA sequences. We documented that rDNA probe signals were identified on one to six pairs of chromosomes, both acrocentric and metacentric ones. In addition, we examined the potential homology of chromosomes bearing rDNA genes across different species and in a wide phylogenetic perspective, based on the DAPI-inverted pattern and their synteny to human. Our analysis revealed an extensive variability in the topology of the rDNA signals across studied species. In some cases, closely related species show signals on homologous chromosomes, thus representing synapomorphies, while in other cases, signal was detected on distinct chromosomes, leading to species specific patterns. These results led us to support the hypothesis that different mechanisms are responsible for the distribution of the ribosomal DNA cluster in Primates. PMID:29416829

  16. PLANT HOMOLOGOUS TO PARAFIBROMIN is a component of the PAF1 complex and assists in regulating expression of genes within H3K27ME3-enriched chromatin.

    PubMed

    Park, Sunchung; Oh, Sookyung; Ek-Ramos, Julissa; van Nocker, Steven

    2010-06-01

    The human Paf1 complex (Paf1C) subunit Parafibromin assists in mediating output from the Wingless/Int signaling pathway, and dysfunction of the encoding gene HRPT2 conditions specific cancer-related disease phenotypes. Here, we characterize the organismal and molecular roles of PLANT HOMOLOGOUS TO PARAFIBROMIN (PHP), the Arabidopsis (Arabidopsis thaliana) homolog of Parafibromin. PHP resides in an approximately 670-kD protein complex in nuclear extracts, and physically interacts with other known Paf1C-related proteins in vivo. In striking contrast to the developmental pleiotropy conferred by mutation in other plant Paf1C component genes in Arabidopsis, loss of PHP specifically conditioned accelerated phase transition from vegetative growth to flowering and resulted in misregulation of a very limited subset of genes that included the flowering repressor FLOWERING LOCUS C. Those genes targeted by PHP were distinguished from the bulk of Arabidopsis genes and other plant Paf1C targets by strong enrichment for trimethylation of lysine-27 on histone H3 (H3K27me3) within chromatin. These findings suggest that PHP is a component of a plant Paf1C protein in Arabidopsis, but has a more specialized role in modulating expression of a subset of Paf1C targets.

  17. GCView: the genomic context viewer for protein homology searches

    PubMed Central

    Grin, Iwan; Linke, Dirk

    2011-01-01

    Genomic neighborhood can provide important insights into evolution and function of a protein or gene. When looking at operons, changes in operon structure and composition can only be revealed by looking at the operon as a whole. To facilitate the analysis of the genomic context of a query in multiple organisms we have developed Genomic Context Viewer (GCView). GCView accepts results from one or multiple protein homology searches such as BLASTp as input. For each hit, the neighboring protein-coding genes are extracted, the regions of homology are labeled for each input and the results are presented as a clear, interactive graphical output. It is also possible to add more searches to iteratively refine the output. GCView groups outputs by the hits for different proteins. This allows for easy comparison of different operon compositions and structures. The tool is embedded in the framework of the Bioinformatics Toolkit of the Max-Planck Institute for Developmental Biology (MPI Toolkit). Job results from the homology search tools inside the MPI Toolkit can be forwarded to GCView and results can be subsequently analyzed by sequence analysis tools. Results are stored online, allowing for later reinspection. GCView is freely available at http://toolkit.tuebingen.mpg.de/gcview. PMID:21609955

  18. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.)

    PubMed Central

    Liang, Danna; Liu, Min; Hu, Qijing; He, Min; Qi, Xiaohua; Xu, Qiang; Zhou, Fucai; Chen, Xuehao

    2015-01-01

    Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphids (Aphis gossypii Glover) are among the most serious pests in cucumber production and often cause severe loss of yield and make fruit quality get worse. Identifying genes that render cucumbers resistant to aphid-induced damage and breeding aphid-resistant cucumber varieties have become the most promising control strategies. In this study, a Illumina Genome Analyzer platform was applied to monitor changes in gene expression in the whole genome of the cucumber cultivar ‘EP6392’ which is resistant to aphids. Nine DGE libraries were constructed from infected and uninfected leaves. In total, 49 differentially expressed genes related to cucumber aphid resistance were screened during the treatment period. These genes are mainly associated with signal transduction, plant-pathogen interactions, flavonoid biosynthesis, amino acid metabolism and sugar metabolism pathways. Eight of the 49 genes may be associated with aphid resistance. Finally, expression of 9 randomly selected genes was evaluated by qRT-PCR to verify the results for the tag-mapped genes. With the exception of 1-aminocyclopropane-1-carboxylate oxidase homolog 6, the expression of the chosen genes was in agreement with the results of the tag-sequencing analysis patterns. PMID:25959296

  19. Correction of mutant Fanconi anemia gene by homologous recombination in human hematopoietic cells using adeno-associated virus vector.

    PubMed

    Paiboonsukwong, Kittiphong; Ohbayashi, Fumi; Shiiba, Haruka; Aizawa, Emi; Yamashita, Takayuki; Mitani, Kohnosuke

    2009-11-01

    Adeno-associated virus (AAV) vectors have been shown to correct a variety of mutations in human cells by homologous recombination (HR) at high rates, which can overcome insertional mutagenesis and transgene silencing, two of the major hurdles in conventional gene addition therapy of inherited diseases. We examined an ability of AAV vectors to repair a mutation in human hematopoietic cells by HR. We infected a human B-lymphoblastoid cell line (BCL) derived from a normal subject with an AAV, which disrupts the hypoxanthine phosphoribosyl transferase1 (HPRT1) locus, to measure the frequency of AAV-mediated HR in BCL cells. We subsequently constructed an AAV vector encoding the normal sequences from the Fanconi anemia group A (FANCA) locus to correct a mutation in the gene in BCL derived from a FANCA patient. Under optimal conditions, approximately 50% of BCL cells were transduced with an AAV serotype 2 (AAV-2) vector. In FANCA BCL cells, up to 0.016% of infected cells were gene-corrected by HR. AAV-mediated restoration of normal genotypic and phenotypic characteristics in FANCA-mutant cells was confirmed at the DNA, protein and functional levels. The results obtained in the present study indicate that AAV vectors may be applicable for gene correction therapy of inherited hematopoietic disorders.

  20. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids

    PubMed Central

    Sakuma, Tetsushi; Takenaga, Mitsumasa; Kawabe, Yoshinori; Nakamura, Takahiro; Kamihira, Masamichi; Yamamoto, Takashi

    2015-01-01

    Gene knock-in techniques have rapidly evolved in recent years, along with the development and maturation of genome editing technology using programmable nucleases. We recently reported a novel strategy for microhomology-mediated end-joining-dependent integration of donor DNA by using TALEN or CRISPR/Cas9 and optimized targeting vectors, named PITCh (Precise Integration into Target Chromosome) vectors. Here we describe TALEN and PITCh vector-mediated integration of long gene cassettes, including a single-chain Fv-Fc (scFv-Fc) gene, in Chinese hamster ovary (CHO) cells, with comparison of targeting and cloning efficiency among several donor design and culture conditions. We achieved 9.6-kb whole plasmid integration and 7.6-kb backbone-free integration into a defined genomic locus in CHO cells. Furthermore, we confirmed the reasonable productivity of recombinant scFv-Fc protein of the knock-in cells. Using our protocol, the knock-in cell clones could be obtained by a single transfection and a single limiting dilution using a 96-well plate, without constructing targeting vectors containing long homology arms. Thus, the study described herein provides a highly practical strategy for gene knock-in of large DNA in CHO cells, which accelerates high-throughput generation of cell lines stably producing any desired biopharmaceuticals, including huge antibody proteins. PMID:26473830

  1. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids.

    PubMed

    Sakuma, Tetsushi; Takenaga, Mitsumasa; Kawabe, Yoshinori; Nakamura, Takahiro; Kamihira, Masamichi; Yamamoto, Takashi

    2015-10-09

    Gene knock-in techniques have rapidly evolved in recent years, along with the development and maturation of genome editing technology using programmable nucleases. We recently reported a novel strategy for microhomology-mediated end-joining-dependent integration of donor DNA by using TALEN or CRISPR/Cas9 and optimized targeting vectors, named PITCh (Precise Integration into Target Chromosome) vectors. Here we describe TALEN and PITCh vector-mediated integration of long gene cassettes, including a single-chain Fv-Fc (scFv-Fc) gene, in Chinese hamster ovary (CHO) cells, with comparison of targeting and cloning efficiency among several donor design and culture conditions. We achieved 9.6-kb whole plasmid integration and 7.6-kb backbone-free integration into a defined genomic locus in CHO cells. Furthermore, we confirmed the reasonable productivity of recombinant scFv-Fc protein of the knock-in cells. Using our protocol, the knock-in cell clones could be obtained by a single transfection and a single limiting dilution using a 96-well plate, without constructing targeting vectors containing long homology arms. Thus, the study described herein provides a highly practical strategy for gene knock-in of large DNA in CHO cells, which accelerates high-throughput generation of cell lines stably producing any desired biopharmaceuticals, including huge antibody proteins.

  2. A Mutation in UL15 of Herpes Simplex Virus 1 That Reduces Packaging of Cleaved Genomes▿

    PubMed Central

    Yang, Kui; Wills, Elizabeth G.; Baines, Joel D.

    2011-01-01

    Herpesvirus genomic DNA is cleaved from concatemers that accumulate in infected cell nuclei. Genomic DNA is inserted into preassembled capsids through a unique portal vertex. Extensive analyses of viral mutants have indicated that intact capsids, the portal vertex, and all components of a tripartite terminase enzyme are required to both cleave and package viral DNA, suggesting that DNA cleavage and packaging are inextricably linked. Because the processes have not been functionally separable, it has been difficult to parse the roles of individual proteins in the DNA cleavage/packaging reaction. In the present study, a virus bearing the deletion of codons 400 to 420 of UL15, encoding a terminase component, was analyzed. This virus, designated vJB27, failed to replicate on noncomplementing cells but cleaved concatemeric DNA to ca. 35 to 98% of wild-type levels. No DNA cleavage was detected in cells infected with a UL15-null virus or a virus lacking UL15 codons 383 to 385, comprising a motif proposed to couple ATP hydrolysis to DNA translocation. The amount of vJB27 DNA protected from DNase I digestion was reduced compared to the wild-type virus by 6.5- to 200-fold, depending on the DNA fragment analyzed, thus indicating a profound defect in DNA packaging. Capsids containing viral DNA were not detected in vJB27-infected cells, as determined by electron microscopy. These data suggest that pUL15 plays an essential role in DNA translocation into the capsid and indicate that this function is separable from its role in DNA cleavage. PMID:21880766

  3. A concerted action of a paired-type homeobox gene, aristaless, and a homolog of Hox11/tlx homeobox gene, clawless, is essential for the distal tip development of the Drosophila leg.

    PubMed

    Kojima, Tetsuya; Tsuji, Takuya; Saigo, Kaoru

    2005-03-15

    The subdivision of the developing field by region-specific expression of genes encoding transcription factors is an essential step during appendage development in arthropod and vertebrates. In Drosophila leg development, the distal-most region (pretarsus) is specified by the expression of homeobox genes, aristaless and Lim1, and its immediate neighbor (distal tarsus) is specified by the expression of a pair of Bar homeobox genes. Here, we show that one additional gene, clawless, which is a homolog of vertebrate Hox11/tlx homeobox gene family and formerly known as C15, is specifically expressed in the pretarsus and cooperatively acts with aristaless to repress Bar and possibly to activate Lim1. Similar to aristaless, the maximal expression of clawless requires Lim1 and its co-factor, Chip. Bar attenuates aristaless and clawless expression through Lim1 repression. Aristaless and Clawless proteins form a complex capable of binding to specific DNA targets, which cannot be well recognized solely by Aristaless or Clawless.

  4. Ectopic expression of the Coffea canephora SERK1 homolog-induced differential transcription of genes involved in auxin metabolism and in the developmental control of embryogenesis.

    PubMed

    Pérez-Pascual, Daniel; Jiménez-Guillen, Doribet; Villanueva-Alonzo, Hernán; Souza-Perera, Ramón; Godoy-Hernández, Gregorio; Zúñiga-Aguilar, José Juan

    2018-04-01

    Somatic embryogenesis receptor-like kinase 1 (SERK1) is a membrane receptor that might serve as common co-regulator of plant cell differentiation processes by forming heterodimers with specific receptor-like kinases. The Coffea canephora SERK1 homolog (CcSERK1) was cloned in this work, and its early function in the transcription of embryogenesis master genes and of genes encoding proteins involved in auxin metabolism was investigated by externally manipulating its expression in embryogenic leaf explants, before the appearance of embryogenic structures. Overexpression of CcSERK1 early during embryogenesis caused an increase in the number of somatic embryos when the 55-day process was completed. Suppression of CcSERK1 expression by RNA interference almost abolished somatic embryogenesis. Real time-PCR experiments revealed that the transcription of the CcAGL15, CcWUS, CcBBM, CcPKL, CcYUC1, CcPIN1 and CcPIN4 homologs was modified in direct proportion to the expression of CcSERK1 and that only CcLEC1 was inversely affected by the expression levels of CcSERK1. The expression of the CcYUC4 homolog was induced to more than 80-fold under CcSERK1 overexpression conditions, but it was also induced when CcSERK1 expression was silenced. The level of CcTIR1 was not affected by CcSERK1 overexpression but was almost abolished during CcSERK1 silencing. These results suggest that CcSERK1 co-regulates the induction of somatic embryogenesis in Coffea canephora by early activation of YUC-dependent auxin biosynthesis, auxin transport mediated by PIN1 and PIN4, and probably auxin perception by the TIR1 receptor, leading to the induction of early-stage homeotic genes (CcAGL15, CcWUS, CcPKL and CcBBM) and repression of late-stage homeotic genes (CcLec1). © 2018 Scandinavian Plant Physiology Society.

  5. Reevaluation of the Reliability and Usefulness of the Somatic Homologous Recombination Reporter Lines

    PubMed Central

    Ülker, Bekir; Hommelsheim, Carl Maximilian; Berson, Tobias; Thomas, Stefan; Chandrasekar, Balakumaran; Olcay, Ahmet Can; Berendzen, Kenneth Wayne; Frantzeskakis, Lamprinos

    2012-01-01

    A widely used approach for assessing genome instability in plants makes use of somatic homologous recombination (SHR) reporter lines. Here, we review the published characteristics and uses of SHR lines. We found a lack of detailed information on these lines and a lack of sufficient evidence that they report only homologous recombination. We postulate that instead of SHR, these lines might be reporting a number of alternative stress-induced stochastic events known to occur at transcriptional, posttranscriptional, and posttranslational levels. We conclude that the reliability and usefulness of the somatic homologous recombination reporter lines requires revision. Thus, more detailed information about these reporter lines is needed before they can be used with confidence to measure genome instability, including the complete sequences of SHR constructs, the genomic location of reporter genes and, importantly, molecular evidence that reconstituted gene expression in these lines is indeed a result of somatic recombination. PMID:23144181

  6. Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor.

    PubMed

    Kim, K S; Farrand, S K

    1996-06-01

    Agrobacterium tumefaciens NT1 harboring pSaB4, which contains the 14-kb BamHI fragment 4 from the octopine/mannityl opine-type Ti plasmid pTi15955, grew well with agropine (AGR) but slowly with mannopine (MOP) as the sole carbon source. When a second plasmid encoding a dedicated transport system for MOP was introduced, these cells grew well with both AGR and MOP. Transposon insertion mutagenesis and subcloning identified a 5.7-kb region of BamHI fragment 4 that encodes functions required for the degradation of MOP. DNA sequence analysis revealed seven putative genes in this region: mocD (moc for mannityl opine catabolism) and mocE, oriented from right to left, and mocRCBAS, oriented from left to right. Significant identities exist at the nucleotide and derived amino acid sequence levels between these moc genes and the mas genes that are responsible for opine biosynthesis in crown gall tumors. MocD is a homolog of Mas2, the anabolic conjugase encoded by mas2'. MocE and MocC are related to the amino half and the carboxyl half, respectively, of Mas1 (MOP reductase), the second enzyme for MOP biosynthesis. These results indicate that the moc and mas genes evolved from a common origin. MocR and MocS are related to each other and to a putative repressor for the AGR degradation system encoded by the rhizogenic plasmid pRiA4. MocB and MocA are homologs of 6-phosphogluconate dehydratase and glucose-6-phosphate dehydrogenase, respectively. Mutations in mocD and mocE, but not mocC, are suppressed by functions encoded by the chromosome or the 450-kb megaplasmid present in many Agrobacterium isolates. We propose that moc genes derived from genes located elsewhere in the bacterial genome and that the tumor-expressed mas genes evolved from the bacterial moc genes.

  7. Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor.

    PubMed Central

    Kim, K S; Farrand, S K

    1996-01-01

    Agrobacterium tumefaciens NT1 harboring pSaB4, which contains the 14-kb BamHI fragment 4 from the octopine/mannityl opine-type Ti plasmid pTi15955, grew well with agropine (AGR) but slowly with mannopine (MOP) as the sole carbon source. When a second plasmid encoding a dedicated transport system for MOP was introduced, these cells grew well with both AGR and MOP. Transposon insertion mutagenesis and subcloning identified a 5.7-kb region of BamHI fragment 4 that encodes functions required for the degradation of MOP. DNA sequence analysis revealed seven putative genes in this region: mocD (moc for mannityl opine catabolism) and mocE, oriented from right to left, and mocRCBAS, oriented from left to right. Significant identities exist at the nucleotide and derived amino acid sequence levels between these moc genes and the mas genes that are responsible for opine biosynthesis in crown gall tumors. MocD is a homolog of Mas2, the anabolic conjugase encoded by mas2'. MocE and MocC are related to the amino half and the carboxyl half, respectively, of Mas1 (MOP reductase), the second enzyme for MOP biosynthesis. These results indicate that the moc and mas genes evolved from a common origin. MocR and MocS are related to each other and to a putative repressor for the AGR degradation system encoded by the rhizogenic plasmid pRiA4. MocB and MocA are homologs of 6-phosphogluconate dehydratase and glucose-6-phosphate dehydrogenase, respectively. Mutations in mocD and mocE, but not mocC, are suppressed by functions encoded by the chromosome or the 450-kb megaplasmid present in many Agrobacterium isolates. We propose that moc genes derived from genes located elsewhere in the bacterial genome and that the tumor-expressed mas genes evolved from the bacterial moc genes. PMID:8655509

  8. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk

    PubMed Central

    Cui, Chenchen; Song, Yujie; Liu, Jun; Ge, Hengtao; Li, Qian; Huang, Hui; Hu, Linyong; Zhu, Hongmei; Jin, Yaping; Zhang, Yong

    2015-01-01

    β-Lactoglobulin (BLG) is a major goat’s milk allergen that is absent in human milk. Engineered endonucleases, including transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases, enable targeted genetic modification in livestock. In this study, TALEN-mediated gene knockout followed by gene knock-in were used to generate BLG knockout goats as mammary gland bioreactors for large-scale production of human lactoferrin (hLF). We introduced precise genetic modifications in the goat genome at frequencies of approximately 13.6% and 6.09% for the first and second sequential targeting, respectively, by using targeting vectors that underwent TALEN-induced homologous recombination (HR). Analysis of milk from the cloned goats revealed large-scale hLF expression or/and decreased BLG levels in milk from heterozygous goats as well as the absence of BLG in milk from homozygous goats. Furthermore, the TALEN-mediated targeting events in somatic cells can be transmitted through the germline after SCNT. Our result suggests that gene targeting via TALEN-induced HR may expedite the production of genetically engineered livestock for agriculture and biomedicine. PMID:25994151

  9. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk.

    PubMed

    Cui, Chenchen; Song, Yujie; Liu, Jun; Ge, Hengtao; Li, Qian; Huang, Hui; Hu, Linyong; Zhu, Hongmei; Jin, Yaping; Zhang, Yong

    2015-05-21

    β-Lactoglobulin (BLG) is a major goat's milk allergen that is absent in human milk. Engineered endonucleases, including transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases, enable targeted genetic modification in livestock. In this study, TALEN-mediated gene knockout followed by gene knock-in were used to generate BLG knockout goats as mammary gland bioreactors for large-scale production of human lactoferrin (hLF). We introduced precise genetic modifications in the goat genome at frequencies of approximately 13.6% and 6.09% for the first and second sequential targeting, respectively, by using targeting vectors that underwent TALEN-induced homologous recombination (HR). Analysis of milk from the cloned goats revealed large-scale hLF expression or/and decreased BLG levels in milk from heterozygous goats as well as the absence of BLG in milk from homozygous goats. Furthermore, the TALEN-mediated targeting events in somatic cells can be transmitted through the germline after SCNT. Our result suggests that gene targeting via TALEN-induced HR may expedite the production of genetically engineered livestock for agriculture and biomedicine.

  10. Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes

    PubMed Central

    Chakraborty, Anirban; Tapryal, Nisha; Venkova, Tatiana; Horikoshi, Nobuo; Pandita, Raj K.; Sarker, Altaf H.; Sarkar, Partha S.; Pandita, Tej K.; Hazra, Tapas K.

    2016-01-01

    DNA double-strand breaks (DSBs) leading to loss of nucleotides in the transcribed region can be lethal. Classical non-homologous end-joining (C-NHEJ) is the dominant pathway for DSB repair (DSBR) in adult mammalian cells. Here we report that during such DSBR, mammalian C-NHEJ proteins form a multiprotein complex with RNA polymerase II and preferentially associate with the transcribed genes after DSB induction. Depletion of C-NHEJ factors significantly abrogates DSBR in transcribed but not in non-transcribed genes. We hypothesized that nascent RNA can serve as a template for restoring the missing sequences, thus allowing error-free DSBR. We indeed found pre-mRNA in the C-NHEJ complex. Finally, when a DSB-containing plasmid with several nucleotides deleted within the E. coli lacZ gene was allowed time to repair in lacZ-expressing mammalian cells, a functional lacZ plasmid could be recovered from control but not C-NHEJ factor-depleted cells, providing important mechanistic insights into C-NHEJ-mediated error-free DSBR of the transcribed genome. PMID:27703167

  11. Overexpression of the homologous lanosterol synthase gene in ganoderic acid biosynthesis in Ganoderma lingzhi.

    PubMed

    Zhang, De-Huai; Li, Na; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2017-02-01

    Ganoderic acids (GAs) in Ganoderma lingzhi exhibit anticancer and antimetastatic activities. GA yields can be potentially improved by manipulating G. lingzhi through genetic engineering. In this study, a putative lanosterol synthase (LS) gene was cloned and overexpressed in G. lingzhi. Results showed that its overexpression (OE) increased the ganoderic acid (GA) content and the accumulation of lanosterol and ergosterol in a submerged G. lingzhi culture. The maximum contents of GA-O, GA-Mk, GA-T, GA-S, GA-Mf, and GA-Me in transgenic strains were 46.6 ± 4.8, 24.3 ± 3.5, 69.8 ± 8.2, 28.9 ± 1.4, 15.4 ± 1.2, and 26.7 ± 3.1 μg/100 mg dry weight, respectively, these values being 6.1-, 2.2-, 3.2-, 4.8-, 2.0-, and 1.9-times higher than those in wild-type strains. In addition, accumulated amounts of lanosterol and ergosterol in transgenic strains were 2.3 and 1.4-fold higher than those in the control strains, respectively. The transcription level of LS was also increased by more than five times in the presence of the G. lingzhi glyceraldehyde-3-phosphate dehydrogenase gene promoter, whereas transcription levels of 3-hydroxy-3-methylglutaryl coenzyme A enzyme and squalene synthase did not change significantly in transgenic strains. This study demonstrated that OE of the homologous LS gene can enhance lanosterol accumulation. A large precursor supply promotes GA biosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ankrd6 is a mammalian functional homolog of Drosophila planar cell polarity gene diego and regulates coordinated cellular orientation in the mouse inner ear.

    PubMed

    Jones, Chonnettia; Qian, Dong; Kim, Sun Myoung; Li, Shuangding; Ren, Dongdong; Knapp, Lindsey; Sprinzak, David; Avraham, Karen B; Matsuzaki, Fumio; Chi, Fanglu; Chen, Ping

    2014-11-01

    The coordinated polarization of neighboring cells within the plane of the tissue, known as planar cell polarity (PCP), is a recurring theme in biology. It is required for numerous developmental processes for the form and function of many tissues and organs across species. The genetic pathway regulating PCP was first discovered in Drosophila, and an analogous but distinct pathway is emerging in vertebrates. It consists of membrane protein complexes known as core PCP proteins that are conserved across species. Here we report that the over-expression of the murine Ankrd6 (mAnkrd6) gene that shares homology with Drosophila core PCP gene diego causes a typical PCP phenotype in Drosophila, and mAnkrd6 can rescue the loss of function of diego in Drosophila. In mice, mAnkrd6 protein is asymmetrically localized in cells of the inner ear sensory organs, characteristic of components of conserved core PCP complexes. The loss of mAnkrd6 causes PCP defects in the inner ear sensory organs. Moreover, canonical Wnt signaling is significantly increased in mouse embryonic fibroblasts from mAnkrd6 knockout mice in comparison to wild type controls. Together, these results indicated that mAnkrd6 is a functional homolog of the Drosophila diego gene for mammalian PCP regulation and act to suppress canonical Wnt signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum.

    PubMed Central

    Gupta, R S; Aitken, K; Falah, M; Singh, B

    1994-01-01

    The genes for two different 70-kDa heat shock protein (HSP70) homologs have been cloned and sequenced from the protozoan Giardia lamblia. On the basis of their sequence features, one of these genes corresponds to the cytoplasmic form of HSP70. The second gene, on the basis of its characteristic N-terminal hydrophobic signal sequence and C-terminal endoplasmic reticulum (ER) retention sequence (Lys-Asp-Glu-Leu), is the equivalent of ER-resident GRP78 or the Bip family of proteins. Phylogenetic trees based on HSP70 sequences show that G. lamblia homologs show the deepest divergence among eukaryotic species. The identification of a GRP78 or Bip homolog in G. lamblia strongly suggests the existence of ER in this ancient eukaryote. Detailed phylogenetic analyses of HSP70 sequences by boot-strap neighbor-joining and maximum-parsimony methods show that the cytoplasmic and ER homologs form distinct subfamilies that evolved from a common eukaryotic ancestor by gene duplication that occurred very early in the evolution of eukaryotic cells. It is postulated that because of the essential "molecular chaperone" function of these proteins in translocation of other proteins across membranes, duplication of their genes accompanied the evolution of ER or nucleus in the eukaryotic cell ancestor. The presence in all eukaryotic cytoplasmic HSP70 homologs (including the cognate, heat-induced, and ER forms) of a number of autapomorphic sequence signatures that are not present in any prokaryotic or organellar homologs provides strong evidence regarding the monophyletic nature of eukaryotic lineage. Further, all eukaryotic HSP70 homologs share in common with the Gram-negative group of eubacteria a number of sequence features that are not present in any archaebacterium or Gram-positive bacterium, indicating their evolution from this group of organisms. Some implications of these findings regarding the evolution of eukaryotic cells and ER are discussed. Images PMID:8159675

  14. Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling.

    PubMed

    Oviedo, Néstor J; Pearson, Bret J; Levin, Michael; Sánchez Alvarado, Alejandro

    2008-01-01

    We have identified two genes, Smed-PTEN-1 and Smed-PTEN-2, capable of regulating stem cell function in the planarian Schmidtea mediterranea. Both genes encode proteins homologous to the mammalian tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Inactivation of Smed-PTEN-1 and -2 by RNA interference (RNAi) in planarians disrupts regeneration, and leads to abnormal outgrowths in both cut and uncut animals followed soon after by death (lysis). The resulting phenotype is characterized by hyperproliferation of neoblasts (planarian stem cells), tissue disorganization and a significant accumulation of postmitotic cells with impaired differentiation capacity. Further analyses revealed that rapamycin selectively prevented such accumulation without affecting the normal neoblast proliferation associated with physiological turnover and regeneration. In animals in which PTEN function is abrogated, we also detected a significant increase in the number of cells expressing the planarian Akt gene homolog (Smed-Akt). However, functional abrogation of Smed-Akt in Smed-PTEN RNAi-treated animals does not prevent cell overproliferation and lethality, indicating that functional abrogation of Smed-PTEN is sufficient to induce abnormal outgrowths. Altogether, our data reveal roles for PTEN in the regulation of planarian stem cells that are strikingly conserved to mammalian models. In addition, our results implicate this protein in the control of stem cell maintenance during the regeneration of complex structures in planarians.

  15. Inactivation of Mre11 does not affect VSG gene duplication mediated by homologous recombination in Trypanosoma brucei.

    PubMed

    Robinson, Nicholas P; McCulloch, Richard; Conway, Colin; Browitt, Alison; Barry, J David

    2002-07-19

    We demonstrate, by gene deletion analysis, that Mre11 has a critical role in maintaining genomic integrity in Trypanosoma brucei. mre11(-/-) null mutant strains exhibited retarded growth but no delay or disruption of cell cycle progression. They showed also a weak hyporecombination phenotype and the accumulation of gross chromosomal rearrangements, which did not involve sequence translocation, telomere loss, or formation of new telomeres. The trypanosome mre11(-/-) strains were hypersensitive to phleomycin, a mutagen causing DNA double strand breaks (DSBs) but, in contrast to mre11(-/-) null mutants in other organisms and T. brucei rad51(-/-) null mutants, displayed no hypersensitivity to methyl methanesulfonate, which causes point mutations and DSBs. Mre11 therefore is important for the repair of chromosomal damage and DSBs in trypanosomes, although in this organism the intersection of repair pathways appears to differ from that in other organisms. Mre11 inactivation appears not to affect VSG gene switching during antigenic variation of a laboratory strain, which is perhaps surprising given the importance of homologous recombination during this process.

  16. Hox genes and study of Hox genes in crustacean

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Chen, Zhijuan; Xu, Mingyu; Lin, Shengguo; Wang, Lu

    2004-12-01

    Homeobox genes have been discovered in many species. These genes are known to play a major role in specifying regional identity along the anterior-posterior axis of animals from a wide range of phyla. The products of the homeotic genes are a set of evolutionarily conserved transcription factors that control elaborate developmental processes and specify cell fates in metazoans. Crustacean, presenting a variety of body plans not encountered in any other class or phylum of the Metazoa, has been shown to possess a single set of homologous Hox genes like insect. The ancestral crustacean Hox gene complex comprised ten genes: eight homologous to the hometic Hox genes and two related to nonhomeotic genes presented within the insect Hox complexes. The crustacean in particular exhibits an abundant diversity segment specialization and tagmosis. This morphological diversity relates to the Hox genes. In crustacean body plan, different Hox genes control different segments and tagmosis.

  17. Next generation sequencing identifies mutations in Atonal homolog 7 (ATOH7) in families with global eye developmental defects

    PubMed Central

    Khan, Kamron; Logan, Clare V.; McKibbin, Martin; Sheridan, Eamonn; Elçioglu, Nursel H.; Yenice, Ozlem; Parry, David A.; Fernandez-Fuentes, Narcis; Abdelhamed, Zakia I.A.; Al-Maskari, Ahmed; Poulter, James A.; Mohamed, Moin D.; Carr, Ian M.; Morgan, Joanne E.; Jafri, Hussain; Raashid, Yasmin; Taylor, Graham R.; Johnson, Colin A.; Inglehearn, Chris F.; Toomes, Carmel; Ali, Manir

    2012-01-01

    The atonal homolog 7 (ATOH7) gene encodes a transcription factor involved in determining the fate of retinal progenitor cells and is particularly required for optic nerve and ganglion cell development. Using a combination of autozygosity mapping and next generation sequencing, we have identified homozygous mutations in this gene, p.E49V and p.P18RfsX69, in two consanguineous families diagnosed with multiple ocular developmental defects, including severe vitreoretinal dysplasia, optic nerve hypoplasia, persistent fetal vasculature, microphthalmia, congenital cataracts, microcornea, corneal opacity and nystagmus. Most of these clinical features overlap with defects in the Norrin/β-catenin signalling pathway that is characterized by dysgenesis of the retinal and hyaloid vasculature. Our findings document Mendelian mutations within ATOH7 and imply a role for this molecule in the development of structures at the front as well as the back of the eye. This work also provides further insights into the function of ATOH7, especially its importance in retinal vascular development and hyaloid regression. PMID:22068589

  18. SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models

    PubMed Central

    2014-01-01

    Background Locating the protein-coding genes in novel genomes is essential to understanding and exploiting the genomic information but it is still difficult to accurately predict all the genes. The recent availability of detailed information about transcript structure from high-throughput sequencing of messenger RNA (RNA-Seq) delineates many expressed genes and promises increased accuracy in gene prediction. Computational gene predictors have been intensively developed for and tested in well-studied animal genomes. Hundreds of fungal genomes are now or will soon be sequenced. The differences of fungal genomes from animal genomes and the phylogenetic sparsity of well-studied fungi call for gene-prediction tools tailored to them. Results SnowyOwl is a new gene prediction pipeline that uses RNA-Seq data to train and provide hints for the generation of Hidden Markov Model (HMM)-based gene predictions and to evaluate the resulting models. The pipeline has been developed and streamlined by comparing its predictions to manually curated gene models in three fungal genomes and validated against the high-quality gene annotation of Neurospora crassa; SnowyOwl predicted N. crassa genes with 83% sensitivity and 65% specificity. SnowyOwl gains sensitivity by repeatedly running the HMM gene predictor Augustus with varied input parameters and selectivity by choosing the models with best homology to known proteins and best agreement with the RNA-Seq data. Conclusions SnowyOwl efficiently uses RNA-Seq data to produce accurate gene models in both well-studied and novel fungal genomes. The source code for the SnowyOwl pipeline (in Python) and a web interface (in PHP) is freely available from http://sourceforge.net/projects/snowyowl/. PMID:24980894

  19. Human Cytomegalovirus UL99-Encoded pp28 Is Required for the Cytoplasmic Envelopment of Tegument-Associated Capsids

    PubMed Central

    Silva, Maria C.; Yu, Qian-Chun; Enquist, Lynn; Shenk, Thomas

    2003-01-01

    The human cytomegalovirus UL99-encoded pp28 is a myristylated phosphoprotein that is a constituent of the virion. The pp28 protein is positioned within the tegument of the virus particle, a protein structure that resides between the capsid and envelope. In the infected cell, pp28 is found in a cytoplasmic compartment derived from the Golgi apparatus, where the virus buds into vesicles to acquire its final membrane. We have constructed two mutants of human cytomegalovirus that fail to produce the pp28 protein, a substitution mutant (BADsubUL99) and a point mutant (BADpmUL99), and we have propagated them by complementation in pp28-expressing fibroblasts. Both mutant viruses are profoundly defective for growth in normal fibroblasts; no infectious virus could be detected after infection. Whereas normal levels of viral DNA and late proteins were observed in mutant virus-infected cells, large numbers of tegument-associated capsids accumulated in the cytoplasm that failed to acquire an envelope. We conclude that pp28 is required for the final envelopment of the human cytomegalovirus virion in the cytoplasm. PMID:12970444

  20. The ZW sex microchromosomes of an Australian dragon lizard share no homology with those of other reptiles or birds.

    PubMed

    Ezaz, Tariq; Moritz, Benjamin; Waters, Paul; Marshall Graves, Jennifer A; Georges, Arthur; Sarre, Stephen D

    2009-01-01

    Reptiles show a diverse array of sex chromosomal systems but, remarkably, the Z sex chromosomes of chicken are homologous to the ZW sex chromosomes of a species of gecko, Gekko hokouensis, suggesting an ancient but common origin. This is in contrast to the ZW sex chromosomes of snakes and a species of soft-shelled turtle, Pelodiscus sinensis, which are nonhomologous to those of chicken or each other and appear to have been independently derived. In this paper, we determine what homology, if any, the sex chromosomes of the Australian dragon lizard Pogona vitticeps shares with those of snake and chicken by mapping the dragon homologs of five snake Z chromosome genes (WAC, KLF6, TAX1BP1, RAB5A, and CTNNB1) and five chicken Z chromosome genes (ATP5A1, GHR, DMRT1, CHD1, and APTX) to chromosomes in the dragon. The dragon homologs of snake and chicken sex chromosome genes map to chromosomes 6 and chromosome 2, respectively, in the dragon and that DMRT1, the bird sex-determining gene, is not located on the sex chromosomes of P. vitticeps. Indeed, our data show that the dragon homolog to the chicken Z chromosome is likely to be wholly contained within chromosome 2 in P. vitticeps, which suggests that the sex-determining factor in P. vitticeps is not the sex-determining gene of chicken. Homology between chicken Z chromosome and G. hokouensis ZW chromosome pairs has been interpreted as retention of ancient ZW sex chromosomes in which case the nonhomologous sex chromosomes of snake and dragons would be independently derived. Our data add another case of independently derived sex chromosomes in a squamate reptile, which makes retention of ancient sex chromosome homology in the squamates less plausible. Alternatively, the conservation between the bird Z chromosome and the G. hokouensis ZW chromosomes pairs is coincidental, may be an example of convergent evolution, its status as the Z chromosome having been independently derived in birds and G. hokouensis.

  1. Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts.

    PubMed

    Huang, Chao-Li; Pu, Pei-Hua; Huang, Hao-Jen; Sung, Huang-Mo; Liaw, Hung-Jiun; Chen, Yi-Min; Chen, Chien-Ming; Huang, Ming-Ban; Osada, Naoki; Gojobori, Takashi; Pai, Tun-Wen; Chen, Yu-Tin; Hwang, Chi-Chuan; Chiang, Tzen-Yuh

    2015-03-15

    Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification.

  2. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  3. Biochemistry of homologous recombination in Escherichia coli.

    PubMed Central

    Kowalczykowski, S C; Dixon, D A; Eggleston, A K; Lauder, S D; Rehrauer, W M

    1994-01-01

    Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination. Images PMID:7968921

  4. Sequences homologous to the human x- and y-borne zinc finger protein genes (ZFX/Y) are autosomal in monotreme mannals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.M.; Frost, C.; Graves, M.J.A.

    1993-02-01

    The human zinc finger protein genes (ZFX/Y) were identified as a result of a systematic search for the testis-determining factor gene on the human Y chromosome. Although they play no direct role in sex determination, they are of particular interest because they are highly conserved among mammals, birds, and amphibians and because, in eutherian mammals at least, they have active alleles on both the X and the Y chromosomes outside the pseudoautosomal region. We used in situ hybridization to localize the homologues of the zinc finger protein gene to chromosome 1 of the Australian echidna and to an equivalent positionmore » on chromosomes 1 and 2 of the playtpus. The localization to platypus chromosome 1 was confirmed by Southern analysis of a Chinese hamster [times] platypus cell hybrid retaining most of platypus chromosome 1. This localization is consistent with the cytological homology of chromosome 1 between the two species. The zinc finger protein gene homologues were localized to regions of platypus chromosomes 1 and 2 that included a number of other genes situated near ZFX on the short arm of the human X chromosome. These results support the hypothesis that many of the genes located on the short arm of the human X were originally autosomal and have been translocated to the X chromosome since the eutherian-metatherian divergence. 34 refs., 3 figs., 2 tabs.« less

  5. Developmental rearrangement of cyanobacterial nif genes: nucleotide sequence, open reading frames, and cytochrome P-450 homology of the Anabaena sp. strain PCC 7120 nifD element.

    PubMed Central

    Lammers, P J; McLaughlin, S; Papin, S; Trujillo-Provencio, C; Ryncarz, A J

    1990-01-01

    An 11-kbp DNA element of unknown function interrupts the nifD gene in vegetative cells of Anabaena sp. strain PCC 7120. In developing heterocysts the nifD element excises from the chromosome via site-specific recombination between short repeat sequences that flank the element. The nucleotide sequence of the nifH-proximal half of the element was determined to elucidate the genetic potential of the element. Four open reading frames with the same relative orientation as the nifD element-encoded xisA gene were identified in the sequenced region. Each of the open reading frames was preceded by a reasonable ribosome-binding site and had biased codon utilization preferences consistent with low levels of expression. Open reading frame 3 was highly homologous with three cytochrome P-450 omega-hydroxylase proteins and showed regional homology to functionally significant domains common to the cytochrome P-450 superfamily. The sequence encoding open reading frame 2 was the most highly conserved portion of the sequenced region based on heterologous hybridization experiments with three genera of heterocystous cyanobacteria. Images PMID:2123860

  6. Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene.

    PubMed

    Gergen, Janina; Coulon, Flora; Creneguy, Alison; Elain-Duret, Nathan; Gutierrez, Alejandra; Pinkenburg, Olaf; Verhoeyen, Els; Anegon, Ignacio; Nguyen, Tuan Huy; Halary, Franck Albert; Haspot, Fabienne

    2018-01-01

    Anti-HCMV treatments used in immunosuppressed patients reduce viral replication, but resistant viral strains can emerge. Moreover, these drugs do not target latently infected cells. We designed two anti-viral CRISPR/Cas9 strategies to target the UL122/123 gene, a key regulator of lytic replication and reactivation from latency. The singleplex strategy contains one gRNA to target the start codon. The multiplex strategy contains three gRNAs to excise the complete UL122/123 gene. Primary fibroblasts and U-251 MG cells were transduced with lentiviral vectors encoding Cas9 and one or three gRNAs. Both strategies induced mutations in the target gene and a concomitant reduction of immediate early (IE) protein expression in primary fibroblasts. Further detailed analysis in U-251 MG cells showed that the singleplex strategy induced 50% of indels in the viral genome, leading to a reduction in IE protein expression. The multiplex strategy excised the IE gene in 90% of all viral genomes and thus led to the inhibition of IE protein expression. Consequently, viral genome replication and late protein expression were reduced by 90%. Finally, the production of new viral particles was nearly abrogated. In conclusion, the multiplex anti-UL122/123 CRISPR/Cas9 system can target the viral genome efficiently enough to significantly prevent viral replication.

  7. A zinc finger domain gene in the lizard, Calotes versicolor, shows extensive homology with the mammalian ZFX and is expressed embryonically.

    PubMed

    Ganesh, S; Choudhary, B; Raman, R

    1998-01-01

    A 590-bp long zinc finger domain DNA fragment has been isolated by polymerase chain reaction from the lizard, Calotes versicolor, employing the primers used for amplifying the zinc finger domain of the human Y-chromosomal gene, ZFY. Cloned in pUC18, the fragment, called CvZfa, was sequenced and its expression during development was studied. At the nucleotide and amino acid level CvZfa shows respectively 83% and 90% identity with the human ZFY, but its extent of homology is greater with the ZFX of human (86% at nucleotide and 92% at amino acid level) and the ZFY-like genes of turtle and chick. Similarly its homology with the mouse Zfx and Zfa is much greater than that with Zfy-1 and Zfy-2. It appears that the mammalian ZFX (Zfx) evolved from reptilian ancestors with a considerable degree of conservation, but the ZFX to ZFY divergence within the class mammalia was more rapid. The CvZfa transcripts were seen in all the embryonic stages from which RNA was analysed. The whole mount in situ hybridization with the posteriorly placed mesonephros and the gonadal primordia of 10 to 25 day old embryos showed signal selectively in mesonephros of the 20 and 25 day embryos. There was no signal in the genital ridge. Thus CvZfa may not have a direct role in gonadogenesis of C. versicolor, but the possibility of its inductive role in the formation of adreno-gonadal axis through mesonephros cannot be discounted.

  8. Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes1[OPEN

    PubMed Central

    Tang, Ning; Yang, Jun; Peng, Lei; Ma, Siqi; Xu, Yan; Li, Guoliang

    2016-01-01

    The OsbZIP23 transcription factor has been characterized for its essential role in drought resistance in rice (Oryza sativa), but the mechanism is unknown. In this study, we first investigated the transcriptional activation of OsbZIP23. A homolog of SnRK2 protein kinase (SAPK2) was found to interact with and phosphorylate OsbZIP23 for its transcriptional activation. SAPK2 also interacted with OsPP2C49, an ABI1 homolog, which deactivated the SAPK2 to inhibit the transcriptional activation activity of OsbZIP23. Next, we performed genome-wide identification of OsbZIP23 targets by immunoprecipitation sequencing and RNA sequencing analyses in the OsbZIP23-overexpression, osbzip23 mutant, and wild-type rice under normal and drought stress conditions. OsbZIP23 directly regulates a large number of reported genes that function in stress response, hormone signaling, and developmental processes. Among these targets, we found that OsbZIP23 could positively regulate OsPP2C49, and overexpression of OsPP2C49 in rice resulted in significantly decreased sensitivity of the abscisic acid (ABA) response and rapid dehydration. Moreover, OsNCED4 (9-cis-epoxycarotenoid dioxygenase4), a key gene in ABA biosynthesis, was also positively regulated by OsbZIP23. Together, our results suggest that OsbZIP23 acts as a central regulator in ABA signaling and biosynthesis, and drought resistance in rice. PMID:27325665

  9. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97

    PubMed Central

    Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Schlötzer-Schrehardt, Ursula; Marschall, Manfred

    2018-01-01

    The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction. PMID:29342872

  10. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97.

    PubMed

    Milbradt, Jens; Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Sticht, Heinrich; Britt, William J; Schlötzer-Schrehardt, Ursula; Marschall, Manfred

    2018-01-13

    The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  11. Complete sequence of a plasmid from a bovine methicillin-resistant Staphylococcus aureus harbouring a novel ica-like gene cluster in addition to antimicrobial and heavy metal resistance genes.

    PubMed

    Feßler, Andrea T; Zhao, Qin; Schoenfelder, Sonja; Kadlec, Kristina; Brenner Michael, Geovana; Wang, Yang; Ziebuhr, Wilma; Shen, Jianzhong; Schwarz, Stefan

    2017-02-01

    The multiresistance plasmid pAFS11, obtained from a bovine methicillin-resistant Staphylococcus aureus (MRSA) isolate, was completely sequenced and analysed for its structure and organisation. Moreover, the susceptibility to the heavy metals cadmium and copper was determined by broth macrodilution. The 49,189-bp plasmid harboured the apramycin resistance gene apmA, two copies of the macrolide/lincosamide/streptogramin B resistance gene erm(B) (both located on remnants of a truncated transposon Tn917), the kanamycin/neomycin resistance gene aadD, the tetracycline resistance gene tet(L) and the trimethoprim resistance gene dfrK. The latter three genes were part of a 7,284-bp segment which was bracketed by two copies of IS431. In addition, the cadmium resistance operon cadDX as well as the copper resistance genes copA and mco were located on the plasmid and mediated a reduced susceptibility to cadmium and copper. Moreover, a complete novel ica-like gene cluster of so far unknown genetic origin was detected on this plasmid. The ica-like gene cluster comprised four different genes whose products showed 64.4-76.9% homology to the Ica proteins known to be involved in biofilm formation of the S. aureus strains Mu50, Mu3 and N315. However, 96.2-99.4% homology was seen to proteins from S. sciuri NS1 indicating an S. sciuri origin. The finding of five different antibiotic resistance genes co-located on a plasmid with heavy metal resistance genes and an ica-like gene cluster is alarming. With the acquisition of this plasmid, antimicrobial multiresistance, heavy metal resistances and potential virulence properties may be co-selected and spread via a single horizontal gene transfer event. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Isolation of a Novel Human Gene, MARKL1, Homologous to MARK3 and Its Involvement in Hepatocellular Carcinogenesis1

    PubMed Central

    Kato, Tatsushi; Satoh, Seiji; Okabe, Hiroshi; Kitahara, Osamu; Ono, Kenji; Kihara, Chikashi; Tanaka, Toshihiro; Tsunoda, Tatsuhiko; Yamaoka, Yoshio; Nakamura, Yusuke; Furukawa, Yoichi

    2001-01-01

    Abstract Activation of the Wnt-signaling pathway is known to play a crucial role in carcinogenesis of various human organs including the colon, liver, prostate, and endometrium. To investigate the mechanisms underlying hepatocellular carcinogenesis, we attempted to identify genes regulated by β-catenin/Tcf complex in a human hepatoma cell line, HepG2, in which an activated form of β-catenin is expressed. By means of cDNA microarray, we isolated a novel human gene, termed MARKL1 (MAP/microtubule affinity-regulating kinase-like 1), whose expression was downregulated in response to decreased Tcf/LEF1 activity. The transcript expressed in liver consisted of 3529 nucleotides that contained an open reading frame of 2256 nucleotides, encoding 752 amino acids homologous to human MARK3 (MAP/microtubule affinity-regulating kinase 3). Expression levels of MARKL1 were markedly elevated in eight of nine HCCs in which nuclear accumulation of β-catenin was observed, which may suggest that MARKL1 plays some role in hepatocellular carcinogenesis. PMID:11326310

  13. Antibodies against human cytomegalovirus late protein UL94 in the pathogenesis of scleroderma-like skin lesions in chronic graft-versus-host disease.

    PubMed

    Pastano, Rocco; Dell'Agnola, Chiara; Bason, Caterina; Gigli, Federica; Rabascio, Cristina; Puccetti, Antonio; Tinazzi, Elisa; Cetto, Gianluigi; Peccatori, Fedro; Martinelli, Giovanni; Lunardi, Claudio

    2012-09-01

    Human cytomegalovirus (hCMV) infection and its reactivation correlate both with the increased risk and with the worsening of graft-versus-host disease (GVHD). Because scleroderma-like skin lesions can occur in chronic GVHD (cGVHD) in allogeneic stem-cell transplant (HCT) patients and hCMV is relevant in the pathogenesis of systemic sclerosis (SSc), we evaluated the possible pathogenetic link between hCMV and skin cGVHD. Plasma from 18 HCT patients was tested for anti-UL94 and/or anti-NAG-2 antibodies, identified in SSc patients, by direct ELISA assays. Both donors and recipients were anti-hCMV IgG positive, without autoimmune diseases. Patients' purified anti-UL94 and anti-NAG-2 IgG binding to human umbilical endothelial cells (HUVECs) and fibroblasts was performed by FACS analysis and ELISA test. HUVECs apoptosis and fibroblasts proliferation induced by patients' anti-NAG-2 antibodies were measured by DNA fragmentation and cell viability, respectively. About 11/18 patients developed cGVHD and all of them showed skin involvement, ranging from diffuse SSc-like lesions to limited erythema. Eight of eleven cGVHD patients were positive for anti-UL94 and/or anti-NAG-2 antibodies. Remarkably, 4/5 patients who developed diffuse or limited SSc-like lesions had antibodies directed against both UL94 and NAG-2; their anti-NAG-2 IgG-bound HUVECs and fibroblasts induce both endothelial cell apoptosis and fibroblasts proliferation, similar to that induced by purified anti-UL94 and anti-NAG-2 antibodies obtained from SSc patients. In conclusion, our data suggest a pathogenetic link between hCMV infection and scleroderma-like skin cGVHD in HCT patients through a mechanism of molecular mimicry between UL94 viral protein and NAG-2 molecule, as observed in patients with SSc.

  14. Evaluation of recombinant adenovirus vaccines based on glycoprotein D and truncated UL25 against herpes simplex virus type 2 in mice.

    PubMed

    Liu, Wei; Zhou, Yan; Wang, Ziyan; Zhang, Zeqiang; Wang, Qizhi; Su, Weiheng; Chen, Yan; Zhang, Yan; Gao, Feng; Jiang, Chunlai; Kong, Wei

    2017-05-01

    The high prevalence of herpes simplex virus 2 (HSV-2) infections in humans necessitates the development of a safe and effective vaccine that will need to induce vigorous T-cell responses to control viral infection and transmission. We designed rAd-gD2, rAd-gD2ΔUL25, and rAd-ΔUL25 to investigate whether recombinant replication-defective adenoviruses vaccine could induce specific T-cell responses and protect mice against intravaginal HSV-2 challenge compared with FI-HSV-2. In the present study, recombinant adenovirus-based HSV-2 showed higher reductions in mortality and stronger antigen-specific T-cell responses compared with FI-HSV-2 and the severity of genital lesions in mice immunized with rAd-gD2ΔUL25 was significantly decreased by eliciting IFN-γ-secreting T-cell responses compared with rAd-gD2 and rAd-ΔUL25 groups. Our results demonstrated the immunogenicity and protective efficacy of recombinant adenovirus vaccines in acute HSV-2 infection following intravaginal challenge in mice. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  15. Unequal homologous recombination between tandemly arranged sequences stably incorporated into cultured rat cells.

    PubMed Central

    Stringer, J R; Kuhn, R M; Newman, J L; Meade, J C

    1985-01-01

    Cultured rat cells deficient in endogenous thymidine kinase activity (tk) were stably transformed with a recombination-indicator DNA substrate constructed in vitro by rearrangement of the herpes simplex virus tk gene sequences into a partially redundant permutation of the functional gene. The recombination-indicator DNA did not express tk, but was designed to allow formation of a functional tk gene via homologous recombination. A clonal cell line (519) was isolated that harbored several permuted herpes simplex virus tk genes. 519 cells spontaneously produced progeny that survived in medium containing hypoxanthine, aminopterin, and thymidine. Acquisition of resistance to hypoxanthine, aminopterin, and thymidine was accompanied by the rearrangement of the defective tk gene to functional configuration. The rearrangement apparently occurred by unequal exchange between one permuted tk gene and a replicated copy of itself. Recombination was between 500-base-pair tracts of DNA sequence homology that were separated by 3.4 kilobases. Exchanges occurred spontaneously at a frequency of approximately 5 X 10(-6) events per cell per generation. Recombination also mediated reversion to the tk- phenotype; however, the predominant mechanism by which cells escaped death in the presence of drugs rendered toxic by thymidine kinase was not recombination, but rather inactivation of the intact tk gene. Images PMID:3016511

  16. Changing partners: moving from non-homologous to homologous centromere pairing in meiosis

    PubMed Central

    Stewart, Mara N.; Dawson, Dean S.

    2010-01-01

    Reports of centromere pairing in early meiotic cells have appeared sporadically over the past thirty years. Recent experiments demonstrate that early centromere pairing occurs between non-homologous centromeres. As meiosis proceeds, centromeres change partners, becoming arranged in homologous pairs. Investigations of these later centromere pairs indicate that paired homologous centromeres are actively associated rather than positioned passively, side-by-side. Meiotic centromere pairing has been observed in organisms as diverse as mice, wheat and yeast, indicating that non-homologous centromere pairing in early meiosis and active homologous centromere pairing in later meiosis might be themes in meiotic chromosome behavior. Moreover, such pairing could have previously unrecognized roles in mediating chromosome organization or architecture that impact meiotic segregation fidelity. PMID:18804891

  17. Antagonistic potential of Pseudomonas graminis 49M against Erwinia amylovora, the causal agent of fire blight.

    PubMed

    Mikiciński, Artur; Sobiczewski, Piotr; Puławska, Joanna; Malusa, Eligio

    2016-08-01

    In a previous study (Mikiciński et al. in Eur J Plant Pathol, doi: 10.1007/s10658-015-0837-y , 2015), we described the characterization of novel strain 49M of Pseudomonas graminis, isolated from the phyllosphere of apple trees in Poland showing a good protective activity against fire blight on different organs of host plants. We now report investigations to clarify the basis for this activity. Strain 49M was found to produce siderophores on a medium containing complex CAS-Fe(3+) and HDTMA, but was not able to produce N-acyl homoserine lactones (AHLs). Moreover, it formed a biofilm on polystyrene and polyvinyl chloride (PVC) surfaces. Strain 49M gave a positive reaction in PCR with primers complementary to gacA, the regulatory gene influencing the production of several secondary metabolites including antibiotics. The genes prnD (encoding pyrrolnitrin), pltC, pltB (pyoluteorin), phlD (2,4-diacetyl-phloroglucinol) and phzC as well as phzD (and their homologs phzF and phzA encoding phenazine), described for antagonistic fluorescent pseudomonads, however, were not detected. Research into the biotic relationship between strain 49M and Erwinia amylovora strain Ea659 on five microbiological media showed that this strain clearly inhibited the growth of the pathogen on King's B and nutrient agar with glycerol media, to a very small extent on nutrient agar with sucrose, and not at all on Luria-Bertani agar. On medium 925, strain 49M even stimulated E. amylovora growth. The addition of ferric chloride to King's B resulted in the loss of its inhibitory ability. Testing the survival of 49M in vitro showed its resistance to drought, greater than that of E. amylovora.

  18. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.

    PubMed

    Petrucco, S; Bolchi, A; Foroni, C; Percudani, R; Rossi, G L; Ottonello, S

    1996-01-01

    we isolated a novel gene that is selectively induced both in roots and shoots in response to sulfur starvation. This gene encodes a cytosolic, monomeric protein of 33 kD that selectively binds NADPH. The predicted polypeptide is highly homologous ( > 70%) to leguminous isoflavone reductases (IFRs), but the maize protein (IRL for isoflavone reductase-like) belongs to a novel family of proteins present in a variety of plants. Anti-IRL antibodies specifically recognize IFR polypeptides, yet the maize protein is unable to use various isoflavonoids as substrates. IRL expression is correlated closely to glutathione availability: it is persistently induced in seedlings whose glutathione content is about fourfold lower than controls, and it is down-regulated rapidly when control levels of glutathione are restored. This glutathione-dependent regulation indicates that maize IRL may play a crucial role in the establishment of a thiol-independent response to oxidative stress under glutathione shortage conditions.

  19. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas.

    PubMed

    Li, Chaoqiong; Luo, Li; Fu, Qiantang; Niu, Longjian; Xu, Zeng-Fu

    2014-05-08

    Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) -like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha.

  20. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas

    PubMed Central

    2014-01-01

    Background Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) –like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. Results To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. Conclusions JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha. PMID:24886195

  1. I-SceI-mediated double-strand break does not increase the frequency of homologous recombination at the Dct locus in mouse embryonic stem cells.

    PubMed

    Fenina, Myriam; Simon-Chazottes, Dominique; Vandormael-Pournin, Sandrine; Soueid, Jihane; Langa, Francina; Cohen-Tannoudji, Michel; Bernard, Bruno A; Panthier, Jean-Jacques

    2012-01-01

    Targeted induction of double-strand breaks (DSBs) at natural endogenous loci was shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The gene encoding dopachrome tautomerase (Dct) is specifically expressed in melanocytes and their precursors. To construct a genetic tool allowing the replacement of Dct gene by any gene of interest, we generated an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in the Dct genomic segment. The embryonic stem cell line was electroporated with an I-SceI expression plasmid, and a template for the DSB-repair process that carried sequence homologies to the Dct target. The I-SceI meganuclease was indeed able to introduce a DSB at the Dct locus in live embryonic stem cells. However, the level of gene targeting was not improved by the DSB induction, indicating a limited capacity of I-SceI to mediate homologous recombination at the Dct locus. These data suggest that homologous recombination by meganuclease-induced DSB may be locus dependent in mammalian cells.

  2. Homologous expression of a mutated beta-tubulin gene does not confer benomyl resistance on Trichoderma virens.

    PubMed

    Mukherjee, M; Hadar, R; Mukherjee, P K; Horwitz, B A

    2003-01-01

    To clone the beta-tubulins and to induce resistance to benzimidazoles in the biocontrol fungus Trichoderma virens through site-directed mutagenesis. Two beta-tubulin genes have been cloned using PCR amplification followed by the screening of a T. virens cDNA library. The full-length cDNA clones, coding for 445 and 446 amino acids, have been designated as T. virens tub1 and T. virens tub2. A sequence alignment of these two tubulins with tubulins from other filamentous fungi has shown the presence of some unique amino acid sequences not found in those positions in other beta-tubulins. Constitutive expression of the tub2 gene with a histidine to tyrosine substitution at position 6 (known to impart benomyl/methyl benzimadazol-2-yl carbamate resistance in other fungi), under the Pgpd promoter of Aspergillus nidulans, did not impart resistance to benomyl. The homologous expression of tub2 gene with a histidine to tyrosine mutation at position +6, which is known to impart benomyl tolerance in other fungi, does not impart resistance in T. virens. Unlike other Trichoderma spp., T. virens, has been difficult to mutate for benomyl tolerance. The present study, through site-directed mutagenesis, shows that a mutation known to impart benomyl tolerance in T. viride and other fungi does not impart resistance in this fungus. Understanding the mechanisms of this phenomenon will have a profound impact in plant-disease management, as many plant pathogenic fungi develop resistance to this group of fungicides forcing its withdrawal after a short period of use.

  3. Induction of homologous recombination following in utero exposure to DNA-damaging agents.

    PubMed

    Karia, Bijal; Martinez, Jo Ann; Bishop, Alexander J R

    2013-11-01

    Much of our understanding of homologous recombination, as well as the development of the working models for these processes, has been derived from extensive work in model organisms, such as yeast and fruit flies, and mammalian systems by studying the repair of induced double strand breaks or repair following exposure to genotoxic agents in vitro. We therefore set out to expand this in vitro work to ask whether DNA-damaging agents with varying modes of action could induce somatic change in an in vivo mouse model of homologous recombination. We exposed pregnant dams to DNA-damaging agents, conferring a variety of lesions at a specific time in embryo development. To monitor homologous recombination frequency, we used the well-established retinal pigment epithelium pink-eyed unstable assay. Homologous recombination resulting in the deletion of a duplicated 70 kb fragment in the coding region of the Oca2 gene renders this gene functional and can be visualized as a pigmented eyespot in the retinal pigment epithelium. We observed an increased frequency of pigmented eyespots in resultant litters following exposure to cisplatin, methyl methanesulfonate, ethyl methanesulfonate, 3-aminobenzamide, bleomycin, and etoposide with a contrasting decrease in the frequency of detectable reversion events following camptothecin and hydroxyurea exposure. The somatic genomic rearrangements that result from such a wide variety of differently acting damaging agents implies long-term potential effects from even short-term in utero exposures. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Homologous and Homologous like Microwave Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Trevisan, R. H.; Sawant, H. S.; Kalman, B.; Gesztelyi, L.

    1990-11-01

    ABSTRACT. Solar radio observations at 1.6 GHz were carried out in the month of July, 1985 by using 13.7 m diameter Itapetinga antenna with time resolution of 3 ms. Homologous Bursts, with total duration of about couple of seconds and repeated by some seconds were observed associated with Homologous H- flares. These H- flares were having periodicities of about 40 min. Observed long periodicities were attributed to oscillation of prominences, and small periods were attributed to removal of plasma from the field interaction zone. Also observed are "Homologous-Like" bursts. These bursts are double peak bursts with same time profile repeating in time. In addition to this, the ratio of the total duration of the bursts to time difference in the peaks of bursts remain constant. Morphological studies of these bursts have been presented. Keq tuoit : SUN-BURSTS - SUN-FLARE

  5. Deletion of the Clostridium thermocellum recA gene reveals that it is required for thermophilic plasmid replication but not plasmid integration at homologous DNA sequences.

    PubMed

    Groom, Joseph; Chung, Daehwan; Kim, Sun-Ki; Guss, Adam; Westpheling, Janet

    2018-05-28

    A limitation to the engineering of cellulolytic thermophiles is the availability of functional, thermostable (≥ 60 °C) replicating plasmid vectors for rapid expression and testing of genes that provide improved or novel fuel molecule production pathways. A series of plasmid vectors for genetic manipulation of the cellulolytic thermophile Caldicellulosiruptor bescii has recently been extended to Clostridium thermocellum, another cellulolytic thermophile that very efficiently solubilizes plant biomass and produces ethanol. While the C. bescii pBAS2 replicon on these plasmids is thermostable, the use of homologous promoters, signal sequences and genes led to undesired integration into the bacterial chromosome, a result also observed with less thermostable replicating vectors. In an attempt to overcome undesired plasmid integration in C. thermocellum, a deletion of recA was constructed. As expected, C. thermocellum ∆recA showed impaired growth in chemically defined medium and an increased susceptibility to UV damage. Interestingly, we also found that recA is required for replication of the C. bescii thermophilic plasmid pBAS2 in C. thermocellum, but it is not required for replication of plasmid pNW33N. In addition, the C. thermocellum recA mutant retained the ability to integrate homologous DNA into the C. thermocellum chromosome. These data indicate that recA can be required for replication of certain plasmids, and that a recA-independent mechanism exists for the integration of homologous DNA into the C. thermocellum chromosome. Understanding thermophilic plasmid replication is not only important for engineering of these cellulolytic thermophiles, but also for developing genetic systems in similar new potentially useful non-model organisms.

  6. Deletion of the Clostridium thermocellum recA Gene Reveals that it is Required for Thermophilic Plasmid Replication but not Plasmid Integration at Homologous DNA Sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Daehwan; Groom, Joseph; Kim, Sun-Ki

    A limitation to the engineering of cellulolytic thermophiles is the availability of functional, thermostable (>/= 60 degrees C) replicating plasmid vectors for rapid expression and testing of genes that provide improved or novel fuel molecule production pathways. A series of plasmid vectors for genetic manipulation of the cellulolytic thermophile Caldicellulosiruptor bescii has recently been extended to Clostridium thermocellum, another cellulolytic thermophile that very efficiently solubilizes plant biomass and produces ethanol. While the C. bescii pBAS2 replicon on these plasmids is thermostable, the use of homologous promoters, signal sequences and genes led to undesired integration into the bacterial chromosome, a resultmore » also observed with less thermostable replicating vectors. In an attempt to overcome undesired plasmid integration in C. thermocellum, a deletion of recA was constructed. As expected, C. thermocellum ..delta..recA showed impaired growth in chemically defined medium and an increased susceptibility to UV damage. Interestingly, we also found that recA is required for replication of the C. bescii thermophilic plasmid pBAS2 in C. thermocellum, but it is not required for replication of plasmid pNW33N. In addition, the C. thermocellum recA mutant retained the ability to integrate homologous DNA into the C. thermocellum chromosome. These data indicate that recA can be required for replication of certain plasmids, and that a recA-independent mechanism exists for the integration of homologous DNA into the C. thermocellum chromosome. Understanding thermophilic plasmid replication is not only important for engineering of these cellulolytic thermophiles, but also for developing genetic systems in similar new potentially useful non-model organisms.« less

  7. Oligo/Polynucleotide-Based Gene Modification: Strategies and Therapeutic Potential

    PubMed Central

    Sargent, R. Geoffrey; Kim, Soya

    2011-01-01

    Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential. PMID:21417933

  8. [Prevalence of upper limb work-related musculoskeletal disorders (UL-WMSDs) in workers of the upholstered furniture industry].

    PubMed

    Nicoletti, S; Carino, M; Di Leone, G; Trani, G; Carella, F; Rubino, G; Leone, E; Popolizio, R; Colafiglio, S; Ambrosi, L

    2008-01-01

    The upholstered furniture industry, the so-called "triangle of the sofa industry", is a geographic area of national and strategic economic importance in southern Italy. The single tasks are carried out mostly manually, with the characteristics of a handicraft approach. The aim of the survey was to assess the prevalence of upper limb work-related musculoskeletal disorders (UL-WMSDs) in 30 factories of the sofa industry located in a large geographic area of the Puglia and Basilicata Regions. In the period 1 January-31 December 2003 a network of occupational physicians investigated a population of 5.477 subjects (exposed n=3481, controls n=1996, M=3865, F=1612) in 30 different factories of the area. More than 60 percent of the total workforce studied was employed in large-sized companies (>500 employees). The following work tasks were considered: filling preparation workers, leather-cutting operators, sewing and upholstery-assembly workers. Case-definition was assessed through standardized procedures: symptoms by questionnaire plus physical and laboratory/imaging findings. Cumulative prevalence rates of UL-WMSDs as at 31 December 2003 reached values of up to 30% in high risk groups. Prevalence rates showed good correlation with the concise OCRA index used for assessment of exposure to repetitive strain and movements of the upper limb. The most frequently occurring disorders were tendon-related cysts and wrist tendonitis. Shoulder disorders were more frequent in male and female leather-cutting operators. This survey showed a significantly high prevalence of UL-WMSDs in sofa industry workers. It did not seem to be confirmed in this study that there was a greater female susceptibility to UL-WMSDs with the exception of carpal tunnel syndrome: gender difference seems to be less relevant at increasing levels of occupational exposure to repetitive movements and exertion of the upper limbs.

  9. A Comprehensive Strategy for Accurate Mutation Detection of the Highly Homologous PMS2.

    PubMed

    Li, Jianli; Dai, Hongzheng; Feng, Yanming; Tang, Jia; Chen, Stella; Tian, Xia; Gorman, Elizabeth; Schmitt, Eric S; Hansen, Terah A A; Wang, Jing; Plon, Sharon E; Zhang, Victor Wei; Wong, Lee-Jun C

    2015-09-01

    Germline mutations in the DNA mismatch repair gene PMS2 underlie the cancer susceptibility syndrome, Lynch syndrome. However, accurate molecular testing of PMS2 is complicated by a large number of highly homologous sequences. To establish a comprehensive approach for mutation detection of PMS2, we have designed a strategy combining targeted capture next-generation sequencing (NGS), multiplex ligation-dependent probe amplification, and long-range PCR followed by NGS to simultaneously detect point mutations and copy number changes of PMS2. Exonic deletions (E2 to E9, E5 to E9, E8, E10, E14, and E1 to E15), duplications (E11 to E12), and a nonsense mutation, p.S22*, were identified. Traditional multiplex ligation-dependent probe amplification and Sanger sequencing approaches cannot differentiate the origin of the exonic deletions in the 3' region when PMS2 and PMS2CL share identical sequences as a result of gene conversion. Our approach allows unambiguous identification of mutations in the active gene with a straightforward long-range-PCR/NGS method. Breakpoint analysis of multiple samples revealed that recurrent exon 14 deletions are mediated by homologous Alu sequences. Our comprehensive approach provides a reliable tool for accurate molecular analysis of genes containing multiple copies of highly homologous sequences and should improve PMS2 molecular analysis for patients with Lynch syndrome. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  10. Transcriptional Regulation of Fruit Ripening by Tomato FRUITFULL Homologs and Associated MADS Box Proteins[W

    PubMed Central

    Fujisawa, Masaki; Shima, Yoko; Nakagawa, Hiroyuki; Kitagawa, Mamiko; Kimbara, Junji; Nakano, Toshitsugu; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening. PMID:24415769

  11. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.

    PubMed Central

    Petrucco, S; Bolchi, A; Foroni, C; Percudani, R; Rossi, G L; Ottonello, S

    1996-01-01

    we isolated a novel gene that is selectively induced both in roots and shoots in response to sulfur starvation. This gene encodes a cytosolic, monomeric protein of 33 kD that selectively binds NADPH. The predicted polypeptide is highly homologous ( > 70%) to leguminous isoflavone reductases (IFRs), but the maize protein (IRL for isoflavone reductase-like) belongs to a novel family of proteins present in a variety of plants. Anti-IRL antibodies specifically recognize IFR polypeptides, yet the maize protein is unable to use various isoflavonoids as substrates. IRL expression is correlated closely to glutathione availability: it is persistently induced in seedlings whose glutathione content is about fourfold lower than controls, and it is down-regulated rapidly when control levels of glutathione are restored. This glutathione-dependent regulation indicates that maize IRL may play a crucial role in the establishment of a thiol-independent response to oxidative stress under glutathione shortage conditions. PMID:8597660

  12. Glutamate Receptor Homologs in Plants: Functions and Evolutionary Origins

    PubMed Central

    Price, Michelle Beth; Jelesko, John; Okumoto, Sakiko

    2012-01-01

    The plant glutamate-like receptor homologs (GLRs) are homologs of mammalian ionotropic glutamate receptors (iGluRs) which were discovered more than 10 years ago, and are hypothesized to be potential amino acid sensors in plants. Although initial progress on this gene family has been hampered by gene redundancy and technical issues such as gene toxicity; genetic, pharmacological, and electrophysiological approaches are starting to uncover the functions of this protein family. In parallel, there has been tremendous progress in elucidating the structure of animal glutamate receptors (iGluRs), which in turn will help understanding of the molecular mechanisms of plant GLR functions. In this review, we will summarize recent progress on the plant GLRs. Emerging evidence implicates plant GLRs in various biological processes in and beyond N sensing, and implies that there is some overlap in the signaling mechanisms of amino acids between plants and animals. Phylogenetic analysis using iGluRs from metazoans, plants, and bacteria showed that the plant GLRs are no more closely related to metazoan iGluRs as they are to bacterial iGluRs, indicating the separation of plant, other eukaryotic, and bacterial GLRs might have happened as early on as the last universal common ancestor. Structural similarities and differences with animal iGluRs, and the implication thereof, are also discussed. PMID:23115559

  13. Incorrectly predicted genes in rice?

    PubMed

    Cruveiller, Stéphane; Jabbari, Kamel; Clay, Oliver; Bernardi, Giorgio

    2004-05-26

    Between one third and one half of the proposed rice genes appear to have no homologs in other species, including Arabidopsis. Compositional considerations, and a comparison of curated rice sequences with ex novo predictions, suggest that many or most of the putative genes without homologs may be false positive predictions, i.e., sequences that are never translated into functional proteins in vivo.

  14. Overexpression of the cucumber LEAFY homolog CFL and hormone treatments alter flower development in gloxinia (Sinningia speciosa).

    PubMed

    Zhang, Ming-Zhe; Ye, Dan; Wang, Li-Lin; Pang, Ji-Liang; Zhang, Yu-Hong; Zheng, Ke; Bian, Hong-Wu; Han, Ning; Pan, Jian-Wei; Wang, Jun-Hui; Zhu, Mu-Yuan

    2008-07-01

    Leafy (LFY) and LFY-like genes control the initiation of floral meristems and regulate MADS-box genes in higher plants. The Cucumber-FLO-LFY (CFL) gene, a LFY homolog in Cucumis sativus L. is expressed in the primordia, floral primordia, and each whirl of floral organs during the early stage of flower development. In this study, functions of CFL in flower development were investigated by overexpressing the CFL gene in gloxinia (Sinningia speciosa). Our results show that constitutive CFL overexpression significantly promote early flowering without gibberellin (GA(3)) supplement, suggesting that CFL can serve functionally as a LFY homolog in gloxinia. Moreover, GA(3) and abscisic acid (ABA) treatments could modulate the expression of MADS-box genes in opposite directions. GA(3) resembles the overexpression of CFL in the expression of MADS-box genes and the regeneration of floral buds, but ABA inhibits the expression of MADS-box genes and flower development. These results suggest that CFL and downstream MADS-box genes involved in flower development are regulated by GA(3) and ABA.

  15. i-ADHoRe 2.0: an improved tool to detect degenerated genomic homology using genomic profiles.

    PubMed

    Simillion, Cedric; Janssens, Koen; Sterck, Lieven; Van de Peer, Yves

    2008-01-01

    i-ADHoRe is a software tool that combines gene content and gene order information of homologous genomic segments into profiles to detect highly degenerated homology relations within and between genomes. The new version offers, besides a significant increase in performance, several optimizations to the algorithm, most importantly to the profile alignment routine. As a result, the annotations of multiple genomes, or parts thereof, can be fed simultaneously into the program, after which it will report all regions of homology, both within and between genomes. The i-ADHoRe 2.0 package contains the C++ source code for the main program as well as various Perl scripts and a fully documented Perl API to facilitate post-processing. The software runs on any Linux- or -UNIX based platform. The package is freely available for academic users and can be downloaded from http://bioinformatics.psb.ugent.be/

  16. Molecular characterization of DnaJ 5 homologs in silkworm Bombyx mori and its expression during egg diapause.

    PubMed

    Sirigineedi, Sasibhushan; Vijayagowri, Esvaran; Murthy, Geetha N; Rao, Guruprasada; Ponnuvel, Kangayam M

    2014-12-01

    A comparison of the cDNA sequences (1 056 bp) of Bombyx mori DnaJ 5 homolog with B. mori genome revealed that unlike in other Hsps, it has an intron of 234 bp. The DnaJ 5 homolog contains 351 amino acids, of which 70 contain the conserved DnaJ domain at the N-terminal end. This homolog of B. mori has all desirable functional domains similar to other insects, and the 13 different DnaJ homologs identified in B. mori genome were distributed on different chromosomes. The expressed sequence tag database analysis of Hsp40 gene expression revealed higher expression in wing disc followed by diapause-induced eggs. Microarray analysis revealed higher expression of DnaJ 5 homolog at 18th h after oviposition in diapause-induced eggs. Further validation of DnaJ 5 expression through qPCR in diapause-induced and nondiapause eggs at different time intervals revealed higher expression in diapause eggs at 18 and 24 h after oviposition, which coincided with the expression of Hsp70 as the Hsp 40 is its co-chaperone. This study thus provides an outline of the genome organization of Hsp40 gene, and its role in egg diapause induction in B. mori. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  17. Homology of vanadium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasyutinskii, N.A.

    1987-05-01

    The authors examine the homology of vanadium oxide and note that data on the existence of phases and homogeneity limits in the V-O system are very contradictory. A graphical illustration shows the homologous series of vanadium oxides. The predominant part of the discrete formations in the system V-O is characterized by integral stoichiometry and forms six homologous series. It is found that homologous series of vanadium oxides are not only a basis for systematization of such oxides, but also may serve as a means for predicting the composition of new phases, limits of homogeneity, their structure, and properties.

  18. Loss of the homologous recombination gene rad51 leads to Fanconi anemia-like symptoms in zebrafish.

    PubMed

    Botthof, Jan Gregor; Bielczyk-Maczyńska, Ewa; Ferreira, Lauren; Cvejic, Ana

    2017-05-30

    RAD51 is an indispensable homologous recombination protein, necessary for strand invasion and crossing over. It has recently been designated as a Fanconi anemia (FA) gene, following the discovery of two patients carrying dominant-negative mutations. FA is a hereditary DNA-repair disorder characterized by various congenital abnormalities, progressive bone marrow failure, and cancer predisposition. In this report, we describe a viable vertebrate model of RAD51 loss. Zebrafish rad51 loss-of-function mutants developed key features of FA, including hypocellular kidney marrow, sensitivity to cross-linking agents, and decreased size. We show that some of these symptoms stem from both decreased proliferation and increased apoptosis of embryonic hematopoietic stem and progenitor cells. Comutation of p53 was able to rescue the hematopoietic defects seen in the single mutants, but led to tumor development. We further demonstrate that prolonged inflammatory stress can exacerbate the hematological impairment, leading to an additional decrease in kidney marrow cell numbers. These findings strengthen the assignment of RAD51 as a Fanconi gene and provide more evidence for the notion that aberrant p53 signaling during embryogenesis leads to the hematological defects seen later in life in FA. Further research on this zebrafish FA model will lead to a deeper understanding of the molecular basis of bone marrow failure in FA and the cellular role of RAD51.

  19. X-linked hypophosphataemia: a homologous disorder in humans and mice.

    PubMed

    Tenenhouse, H S

    1999-02-01

    X-linked hypophosphatemia is an inherited disorder of phosphate (Pi) homeostasis characterized by growth retardation, rickets and osteomalacia, hypophosphataemia, and aberrant renal Pi reabsorption and vitamin D metabolism. Studies in murine Hyp and Gy homologues have identified a specific defect in Na+-Pi cotransport at the brush border membrane, abnormal regulation of 1,25-dihydroxyvitamin D3 (1,25(OH)2D) synthesis and degradation, and an intrinsic defect in bone mineralization. The mutant gene has been identified in XLH patients, by positional cloning, and in Hyp and Gy mice, and was designated PHEX/Phex to signify a PHosphate-regulating gene with homology to Endopeptidases on the X chromosome. PHEX/Phex is expressed in bones and teeth but not in kidney and efforts are under way to elucidate how loss of PHEX/Phex function elicits the mutant phenotype. Based on its homology to endopeptidases, it is postulated that PHEX/Phex is involved in the activation or inactivation of a peptide hormone(s) which plays a key role in the regulation of bone mineralization, renal Pi handling and vitamin D metabolism.

  20. Intron loss from the NADH dehydrogenase subunit 4 gene of lettuce mitochondrial DNA: evidence for homologous recombination of a cDNA intermediate.

    PubMed

    Geiss, K T; Abbas, G M; Makaroff, C A

    1994-04-01

    The mitochondrial gene coding for subunit 4 of the NADH dehydrogenase complex I (nad4) has been isolated and characterized from lettuce, Lactuca sativa. Analysis of nad4 genes in a number of plants by Southern hybridization had previously suggested that the intron content varied between species. Characterization of the lettuce gene confirms this observation. Lettuce nad4 contains two exons and one group IIA intron, whereas previously sequenced nad4 genes from turnip and wheat contain three group IIA introns. Northern analysis identified a transcript of 1600 nucleotides, which represents the mature nad4 mRNA and a primary transcript of 3200 nucleotides. Sequence analysis of lettuce and turnip nad4 cDNAs was used to confirm the intron/exon border sequences and to examine RNA editing patterns. Editing is observed at the 5' and 3' ends of the lettuce transcript, but is absent from sequences that correspond to exons two, three and the 5' end of exon four in turnip and wheat. In contrast, turnip transcripts are highly edited in this region, suggesting that homologous recombination of an edited and spliced cDNA intermediate was involved in the loss of introns two and three from an ancestral lettuce nad4 gene.

  1. The wheat homolog of putative nucleotide-binding site-leucine-rich repeat resistance gene TaRGA contributes to resistance against powdery mildew.

    PubMed

    Wang, Defu; Wang, Xiaobing; Mei, Yu; Dong, Hansong

    2016-03-01

    Powdery mildew, one of the most destructive wheat diseases worldwide, is caused by Blumeria graminis f. sp. tritici (Bgt), a fungal species with a consistently high mutation rate that makes individual resistance (R) genes ineffective. Therefore, effective resistance-related gene cloning is vital for breeding and studying the resistance mechanisms of the disease. In this study, a putative nucleotide-binding site-leucine-rich repeat (NBS-LRR) R gene (TaRGA) was cloned using a homology-based cloning strategy and analyzed for its effect on powdery mildew disease and wheat defense responses. Real-time reverse transcription-PCR (RT-PCR) analyses revealed that a Bgt isolate 15 and salicylic acid stimulation significantly induced TaRGA in the resistant variety. Furthermore, the silencing of TaRGA in powdery mildew-resistant plants increased susceptibility to Bgt15 and prompted conidia propagation at the infection site. However, the expression of TaRGA in leaf segments after single-cell transient expression assay highly increased the defense responses to Bgt15 by enhancing callose deposition and phenolic autofluorogen accumulation at the pathogen invading sites. Meanwhile, the expression of pathogenesis-related genes decreased in the TaRGA-silenced plants and increased in the TaRGA-transient-overexpressing leaf segments. These results implied that the TaRGA gene positively regulates the defense response to powdery mildew disease in wheat.

  2. Computational Analysis and Low-Scale Constitutive Expression of Laccases Synthetic Genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris

    PubMed Central

    Reyes-Guzmán, Edwin Alfredo; Poutou-Piñales, Raúl A.; Reyes-Montaño, Edgar Antonio; Pedroza-Rodríguez, Aura Marina; Rodríguez-Vázquez, Refugio; Cardozo-Bernal, Ángela M.

    2015-01-01

    Lacasses are multicopper oxidases that can catalyze aromatic and non-aromatic compounds concomitantly with reduction of molecular oxygen to water. Fungal laccases have generated a growing interest due to their biotechnological potential applications, such as lignocellulosic material delignification, biopulping and biobleaching, wastewater treatment, and transformation of toxic organic pollutants. In this work we selected fungal genes encoding for laccase enzymes GlLCC1 in Ganoderma lucidum and POXA 1B in Pleurotus ostreatus. These genes were optimized for codon use, GC content, and regions generating secondary structures. Laccase proposed computational models, and their interaction with ABTS [2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] substrate was evaluated by molecular docking. Synthetic genes were cloned under the control of Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase (GAP) constitutive promoter. P. pastoris X-33 was transformed with pGAPZαA-LaccGluc-Stop and pGAPZαA-LaccPost-Stop constructs. Optimization reduced GC content by 47 and 49% for LaccGluc-Stop and LaccPost-Stop genes, respectively. A codon adaptation index of 0.84 was obtained for both genes. 3D structure analysis using SuperPose revealed LaccGluc-Stop is similar to the laccase crystallographic structure 1GYC of Trametes versicolor. Interaction analysis of the 3D models validated through ABTS, demonstrated higher substrate affinity for LaccPost-Stop, in agreement with our experimental results with enzymatic activities of 451.08 ± 6.46 UL-1 compared to activities of 0.13 ± 0.028 UL-1 for LaccGluc-Stop. This study demonstrated that G. lucidum GlLCC1 and P. ostreatus POXA 1B gene optimization resulted in constitutive gene expression under GAP promoter and α-factor leader in P. pastoris. These are important findings in light of recombinant enzyme expression system utility for environmentally friendly designed expression systems, because of the wide range of substrates

  3. Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris.

    PubMed

    Rivera-Hoyos, Claudia M; Morales-Álvarez, Edwin David; Poveda-Cuevas, Sergio Alejandro; Reyes-Guzmán, Edwin Alfredo; Poutou-Piñales, Raúl A; Reyes-Montaño, Edgar Antonio; Pedroza-Rodríguez, Aura Marina; Rodríguez-Vázquez, Refugio; Cardozo-Bernal, Ángela M

    2015-01-01

    Lacasses are multicopper oxidases that can catalyze aromatic and non-aromatic compounds concomitantly with reduction of molecular oxygen to water. Fungal laccases have generated a growing interest due to their biotechnological potential applications, such as lignocellulosic material delignification, biopulping and biobleaching, wastewater treatment, and transformation of toxic organic pollutants. In this work we selected fungal genes encoding for laccase enzymes GlLCC1 in Ganoderma lucidum and POXA 1B in Pleurotus ostreatus. These genes were optimized for codon use, GC content, and regions generating secondary structures. Laccase proposed computational models, and their interaction with ABTS [2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] substrate was evaluated by molecular docking. Synthetic genes were cloned under the control of Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase (GAP) constitutive promoter. P. pastoris X-33 was transformed with pGAPZαA-LaccGluc-Stop and pGAPZαA-LaccPost-Stop constructs. Optimization reduced GC content by 47 and 49% for LaccGluc-Stop and LaccPost-Stop genes, respectively. A codon adaptation index of 0.84 was obtained for both genes. 3D structure analysis using SuperPose revealed LaccGluc-Stop is similar to the laccase crystallographic structure 1GYC of Trametes versicolor. Interaction analysis of the 3D models validated through ABTS, demonstrated higher substrate affinity for LaccPost-Stop, in agreement with our experimental results with enzymatic activities of 451.08 ± 6.46 UL-1 compared to activities of 0.13 ± 0.028 UL-1 for LaccGluc-Stop. This study demonstrated that G. lucidum GlLCC1 and P. ostreatus POXA 1B gene optimization resulted in constitutive gene expression under GAP promoter and α-factor leader in P. pastoris. These are important findings in light of recombinant enzyme expression system utility for environmentally friendly designed expression systems, because of the wide range of substrates

  4. The genome of Chelonid herpesvirus 5 harbors atypical genes

    USGS Publications Warehouse

    Ackermann, Mathias; Koriabine, Maxim; Hartmann-Fritsch, Fabienne; de Jong, Pieter J.; Lewis, Teresa D.; Schetle, Nelli; Work, Thierry M.; Dagenais, Julie; Balazs, George H.; Leong, Jo-Ann C.

    2012-01-01

    The Chelonid fibropapilloma-associated herpesvirus (CFPHV; ChHV5) is believed to be the causative agent of fibropapillomatosis (FP), a neoplastic disease of marine turtles. While clinical signs and pathology of FP are well known, research on ChHV5 has been impeded because no cell culture system for its propagation exists. We have cloned a BAC containing ChHV5 in pTARBAC2.1 and determined its nucleotide sequence. Accordingly, ChHV5 has a type D genome and its predominant gene order is typical for the varicellovirus genus within thealphaherpesvirinae. However, at least four genes that are atypical for an alphaherpesvirus genome were also detected, i.e. two members of the C-type lectin-like domain superfamily (F-lec1, F-lec2), an orthologue to the mouse cytomegalovirus M04 (F-M04) and a viral sialyltransferase (F-sial). Four lines of evidence suggest that these atypical genes are truly part of the ChHV5 genome: (1) the pTARBAC insertion interrupted the UL52 ORF, leaving parts of the gene to either side of the insertion and suggesting that an intact molecule had been cloned. (2) Using FP-associated UL52 (F-UL52) as an anchor and the BAC-derived sequences as a means to generate primers, overlapping PCR was performed with tumor-derived DNA as template, which confirmed the presence of the same stretch of “atypical” DNA in independent FP cases. (3) Pyrosequencing of DNA from independent tumors did not reveal previously undetected viral sequences, suggesting that no apparent loss of viral sequence had happened due to the cloning strategy. (4) The simultaneous presence of previously known ChHV5 sequences and F-sial as well as F-M04 sequences was also confirmed in geographically distinct Australian cases of FP. Finally, transcripts of F-sial and F-M04 but not transcripts of lytic viral genes were detected in tumors from Hawaiian FP-cases. Therefore, we suggest that F-sial and F-M04 may play a role in FP pathogenesis

  5. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization.

    PubMed

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca; Caligo, Maria Adelaide; Galli, Alvaro

    2015-04-01

    The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The Saccharomyces cerevisiae ETH1 Gene, an Inducible Homolog of Exonuclease III That Provides Resistance to DNA-Damaging Agents and Limits Spontaneous Mutagenesis

    PubMed Central

    Bennett, Richard A. O.

    1999-01-01

    The recently sequenced Saccharomyces cerevisiae genome was searched for a gene with homology to the gene encoding the major human AP endonuclease, a component of the highly conserved DNA base excision repair pathway. An open reading frame was found to encode a putative protein (34% identical to the Schizosaccharomyces pombe eth1+ [open reading frame SPBC3D6.10] gene product) with a 347-residue segment homologous to the exonuclease III family of AP endonucleases. Synthesis of mRNA from ETH1 in wild-type cells was induced sixfold relative to that in untreated cells after exposure to the alkylating agent methyl methanesulfonate (MMS). To investigate the function of ETH1, deletions of the open reading frame were made in a wild-type strain and a strain deficient in the known yeast AP endonuclease encoded by APN1. eth1 strains were not more sensitive to killing by MMS, hydrogen peroxide, or phleomycin D1, whereas apn1 strains were ∼3-fold more sensitive to MMS and ∼10-fold more sensitive to hydrogen peroxide than was the wild type. Double-mutant strains (apn1 eth1) were ∼15-fold more sensitive to MMS and ∼2- to 3-fold more sensitive to hydrogen peroxide and phleomycin D1 than were apn1 strains. Elimination of ETH1 in apn1 strains also increased spontaneous mutation rates 9- or 31-fold compared to the wild type as determined by reversion to adenine or lysine prototrophy, respectively. Transformation of apn1 eth1 cells with an expression vector containing ETH1 reversed the hypersensitivity to MMS and limited the rate of spontaneous mutagenesis. Expression of ETH1 in a dut-1 xthA3 Escherichia coli strain demonstrated that the gene product functionally complements the missing AP endonuclease activity. Thus, in apn1 cells where the major AP endonuclease activity is missing, ETH1 offers an alternate capacity for repair of spontaneous or induced damage to DNA that is normally repaired by Apn1 protein. PMID:10022867

  7. Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprong, Debbie; Janssen, Hilde L.; Vens, Conchita

    2006-02-01

    Purpose: To determine the role of DNA repair in hypoxic radioresistance. Methods and Materials: Chinese hamster cell lines with mutations in homologous recombination (XRCC2, XRCC3, BRAC2, RAD51C) or nonhomologous end-joining (DNA-PKcs) genes were irradiated under normoxic (20% oxygen) and hypoxic (<0.1% oxygen) conditions, and the oxygen enhancement ratio (OER) was calculated. In addition, Fanconi anemia fibroblasts (complementation groups C and G) were compared with fibroblasts from nonsyndrome patients. RAD51 foci were studied using immunofluorescence. Results: All hamster cell lines deficient in homologous recombination showed a decrease in OER (1.5-2.0 vs. 2.6-3.0 for wild-types). In contrast, the OER for the DNA-PKcs-deficientmore » line was comparable to wild-type controls. The two Fanconi anemia cell strains also showed a significant reduction in OER. The OER for RAD51 foci formation at late times after irradiation was considerably lower than that for survival in wild-type cells. Conclusion: Homologous recombination plays an important role in determining hypoxic cell radiosensitivity. Lower OERs have also been reported in cells deficient in XPF and ERCC1, which, similar to homologous recombination genes, are known to play a role in cross-link repair. Because Fanconi anemia cells are also sensitive to cross-linking agents, this strengthens the notion that the capacity to repair cross-links determines hypoxic radiosensitivity.« less

  8. Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm.

    PubMed

    Zhou, Hong; Zhou, Michael; Li, Daisy; Manthey, Joseph; Lioutikova, Ekaterina; Wang, Hong; Zeng, Xiao

    2017-11-17

    The beauty and power of the genome editing mechanism, CRISPR Cas9 endonuclease system, lies in the fact that it is RNA-programmable such that Cas9 can be guided to any genomic loci complementary to a 20-nt RNA, single guide RNA (sgRNA), to cleave double stranded DNA, allowing the introduction of wanted mutations. Unfortunately, it has been reported repeatedly that the sgRNA can also guide Cas9 to off-target sites where the DNA sequence is homologous to sgRNA. Using human genome and Streptococcus pyogenes Cas9 (SpCas9) as an example, this article mathematically analyzed the probabilities of off-target homologies of sgRNAs and discovered that for large genome size such as human genome, potential off-target homologies are inevitable for sgRNA selection. A highly efficient computationl algorithm was developed for whole genome sgRNA design and off-target homology searches. By means of a dynamically constructed sequence-indexed database and a simplified sequence alignment method, this algorithm achieves very high efficiency while guaranteeing the identification of all existing potential off-target homologies. Via this algorithm, 1,876,775 sgRNAs were designed for the 19,153 human mRNA genes and only two sgRNAs were found to be free of off-target homology. By means of the novel and efficient sgRNA homology search algorithm introduced in this article, genome wide sgRNA design and off-target analysis were conducted and the results confirmed the mathematical analysis that for a sgRNA sequence, it is almost impossible to escape potential off-target homologies. Future innovations on the CRISPR Cas9 gene editing technology need to focus on how to eliminate the Cas9 off-target activity.

  9. Recombineering: A Homologous Recombination-Based Method of Genetic Engineering

    PubMed Central

    Sharan, Shyam K.; Thomason, Lynn C.; Kuznetsov, Sergey G.; Court, Donald L.

    2009-01-01

    Recombineering is an efficient method of in vivo genetic engineering applicable to chromosomal as well as episomal replicons in E. coli. This method circumvents the need for most standard in vitro cloning techniques. Recombineering allows construction of DNA molecules with precise junctions without constraints being imposed by restriction enzyme site location. Bacteriophage homologous recombination proteins catalyze these recombineering reactions using double- and single-strand linear DNA substrates, so-called targeting constructs, introduced by electroporation. Gene knockouts, deletions and point mutations are readily made, gene tags can be inserted, and regions of bacterial artificial chromosomes (BACs) or the E. coli genome can be subcloned by gene retrieval using recombineering. Most of these constructs can be made within about a week's time. PMID:19180090

  10. Genes encoding cuticular proteins are components of the Nimrod gene cluster in Drosophila.

    PubMed

    Cinege, Gyöngyi; Zsámboki, János; Vidal-Quadras, Maite; Uv, Anne; Csordás, Gábor; Honti, Viktor; Gábor, Erika; Hegedűs, Zoltán; Varga, Gergely I B; Kovács, Attila L; Juhász, Gábor; Williams, Michael J; Andó, István; Kurucz, Éva

    2017-08-01

    The Nimrod gene cluster, located on the second chromosome of Drosophila melanogaster, is the largest synthenic unit of the Drosophila genome. Nimrod genes show blood cell specific expression and code for phagocytosis receptors that play a major role in fruit fly innate immune functions. We previously identified three homologous genes (vajk-1, vajk-2 and vajk-3) located within the Nimrod cluster, which are unrelated to the Nimrod genes, but are homologous to a fourth gene (vajk-4) located outside the cluster. Here we show that, unlike the Nimrod candidates, the Vajk proteins are expressed in cuticular structures of the late embryo and the late pupa, indicating that they contribute to cuticular barrier functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Association of herpes simplex virus regulatory protein ICP22 with transcriptional complexes containing EAP, ICP4, RNA polymerase II, and viral DNA requires posttranslational modification by the U(L)13 proteinkinase.

    PubMed Central

    Leopardi, R; Ward, P L; Ogle, W O; Roizman, B

    1997-01-01

    The expression of herpes simplex virus 1 gamma (late) genes requires functional alpha proteins (gamma1 genes) and the onset of viral DNA synthesis (gamma2 genes). We report that late in infection after the onset of viral DNA synthesis, cell nuclei exhibit defined structures which contain two viral regulatory proteins (infected cell proteins 4 and 22) required for gamma gene expression, RNA polymerase II, a host nucleolar protein (EAP or L22) known to be associated with ribosomes and to bind small RNAs, including the Epstein-Barr virus small nuclear RNAs, and newly synthesized progeny DNA. The formation of these complexes required the onset of viral DNA synthesis. The association of infected cell protein 22, a highly posttranslationally processed protein, with these structures did not occur in cells infected with a viral mutant deleted in the genes U(L)13 and U(S)3, each of which specifies a protein kinase known to phosphorylate the protein. PMID:8995634

  12. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening.

    PubMed

    Costa, Fabrizio; Alba, Rob; Schouten, Henk; Soglio, Valeria; Gianfranceschi, Luca; Serra, Sara; Musacchi, Stefano; Sansavini, Silviero; Costa, Guglielmo; Fei, Zhangjun; Giovannoni, James

    2010-10-25

    Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-methylcyclopropene. To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated.The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as

  13. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening

    PubMed Central

    2010-01-01

    Background Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-Methylcyclopropene. Results To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated. The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Conclusion Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric

  14. Two Membrane-Associated Tyrosine Phosphatase Homologs Potentiate C. elegans AKT-1/PKB Signaling

    PubMed Central

    Hu, Patrick J; Xu, Jinling; Ruvkun, Gary

    2006-01-01

    Akt/protein kinase B (PKB) functions in conserved signaling cascades that regulate growth and metabolism. In humans, Akt/PKB is dysregulated in diabetes and cancer; in Caenorhabditis elegans, Akt/PKB functions in an insulin-like signaling pathway to regulate larval development. To identify molecules that modulate C. elegans Akt/PKB signaling, we performed a genetic screen for enhancers of the akt-1 mutant phenotype (eak). We report the analysis of three eak genes. eak-6 and eak-5/sdf-9 encode protein tyrosine phosphatase homologs; eak-4 encodes a novel protein with an N-myristoylation signal. All three genes are expressed primarily in the two endocrine XXX cells, and their predicted gene products localize to the plasma membrane. Genetic evidence indicates that these proteins function in parallel to AKT-1 to inhibit the FoxO transcription factor DAF-16. These results define two membrane-associated protein tyrosine phosphatase homologs that may potentiate C. elegans Akt/PKB signaling by cell autonomous and cell nonautonomous mechanisms. Similar molecules may modulate Akt/PKB signaling in human endocrine tissues. PMID:16839187

  15. Extragenic Suppression of a Mutation in Herpes Simplex Virus 1 UL34 That Affects Lamina Disruption and Nuclear Egress

    PubMed Central

    Vu, Amber; Poyzer, Chelsea

    2016-01-01

    ABSTRACT Nuclear egress of herpesviruses is accompanied by changes in the architecture of the nuclear membrane and nuclear lamina that are thought to facilitate capsid access to the inner nuclear membrane (INM) and curvature of patches of the INM around the capsid during budding. Here we report the properties of a point mutant of pUL34 (Q163A) that fails to induce gross changes in nuclear architecture or redistribution of lamin A/C. The UL34(Q163A) mutant shows a roughly 100-fold defect in single-step growth, and it forms small plaques. This mutant has a defect in nuclear egress, and furthermore, it fails to disrupt nuclear shape or cause observable displacement of lamin A/C despite retaining the ability to recruit the pUS3 and PKC protein kinases and to mediate phosphorylation of emerin. Extragenic suppressors of the UL34(Q163A) phenotype were isolated, and all of them carry a single mutation of arginine 229 to leucine in UL31. Surprisingly, although this UL31 mutation largely restores virus replication, it does not correct the lamina disruption defect, suggesting that, in Vero cells, changes in nuclear shape and gross displacements of lamin A/C may facilitate but are unnecessary for nuclear egress. IMPORTANCE Herpesvirus nuclear egress is an essential and conserved process that requires close association of the viral capsid with the inner nuclear membrane and budding of the capsid into that membrane. Access to the nuclear membrane and tight curvature of that membrane are thought to require disruption of the nuclear lamina that underlies the inner nuclear membrane, and consistent with this idea, herpesvirus infection induces biochemical and architectural changes at the nuclear membrane. The significance of the nuclear membrane architectural changes is poorly characterized. The results presented here address that deficiency in our understanding and show that a combination of mutations in two of the viral nuclear egress factors results in a failure to accomplish at

  16. Extragenic Suppression of a Mutation in Herpes Simplex Virus 1 UL34 That Affects Lamina Disruption and Nuclear Egress.

    PubMed

    Vu, Amber; Poyzer, Chelsea; Roller, Richard

    2016-12-01

    Nuclear egress of herpesviruses is accompanied by changes in the architecture of the nuclear membrane and nuclear lamina that are thought to facilitate capsid access to the inner nuclear membrane (INM) and curvature of patches of the INM around the capsid during budding. Here we report the properties of a point mutant of pUL34 (Q163A) that fails to induce gross changes in nuclear architecture or redistribution of lamin A/C. The UL34(Q163A) mutant shows a roughly 100-fold defect in single-step growth, and it forms small plaques. This mutant has a defect in nuclear egress, and furthermore, it fails to disrupt nuclear shape or cause observable displacement of lamin A/C despite retaining the ability to recruit the pUS3 and PKC protein kinases and to mediate phosphorylation of emerin. Extragenic suppressors of the UL34(Q163A) phenotype were isolated, and all of them carry a single mutation of arginine 229 to leucine in UL31. Surprisingly, although this UL31 mutation largely restores virus replication, it does not correct the lamina disruption defect, suggesting that, in Vero cells, changes in nuclear shape and gross displacements of lamin A/C may facilitate but are unnecessary for nuclear egress. Herpesvirus nuclear egress is an essential and conserved process that requires close association of the viral capsid with the inner nuclear membrane and budding of the capsid into that membrane. Access to the nuclear membrane and tight curvature of that membrane are thought to require disruption of the nuclear lamina that underlies the inner nuclear membrane, and consistent with this idea, herpesvirus infection induces biochemical and architectural changes at the nuclear membrane. The significance of the nuclear membrane architectural changes is poorly characterized. The results presented here address that deficiency in our understanding and show that a combination of mutations in two of the viral nuclear egress factors results in a failure to accomplish at least two components

  17. Exploration of new perspectives and limitations in Agrobacterium-mediated gene transfer technology. Final report, June 1, 1992--May 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marton, L.

    1996-02-01

    Genetic manipulation of plants often involves the introduction of homologous or partly homologous genes. Ectropic introduction of homologous sequences into plant genomes may trigger epigenetic changes, making expression of the genes unpredictable. The main project objective was to examine the feasibility of using Agrobacterium-mediated gene transfer for homologous gene targeting in plants.

  18. Object-oriented Persistent Homology

    PubMed Central

    Wang, Bao; Wei, Guo-Wei

    2015-01-01

    Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a

  19. Improve homology search sensitivity of PacBio data by correcting frameshifts.

    PubMed

    Du, Nan; Sun, Yanni

    2016-09-01

    Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than secondary generation sequencing technologies such as Illumina. The long read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and identify gene isoforms with higher accuracy in transcriptomic sequencing. However, PacBio data has high sequencing error rate and most of the errors are insertion or deletion errors. During alignment-based homology search, insertion or deletion errors in genes will cause frameshifts and may only lead to marginal alignment scores and short alignments. As a result, it is hard to distinguish true alignments from random alignments and the ambiguity will incur errors in structural and functional annotation. Existing frameshift correction tools are designed for data with much lower error rate and are not optimized for PacBio data. As an increasing number of groups are using SMRT, there is an urgent need for dedicated homology search tools for PacBio data. In this work, we introduce Frame-Pro, a profile homology search tool for PacBio reads. Our tool corrects sequencing errors and also outputs the profile alignments of the corrected sequences against characterized protein families. We applied our tool to both simulated and real PacBio data. The results showed that our method enables more sensitive homology search, especially for PacBio data sets of low sequencing coverage. In addition, we can correct more errors when comparing with a popular error correction tool that does not rely on hybrid sequencing. The source code is freely available at https://sourceforge.net/projects/frame-pro/ yannisun@msu.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair

    PubMed Central

    Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J.; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D.; Wang, Zhao-Qi; Jasin, Maria

    2005-01-01

    Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca–/– cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice. PMID:15650050

  1. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair.

    PubMed

    Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D; Wang, Zhao-Qi; Jasin, Maria

    2005-01-25

    Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca-/- cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice.

  2. Members of the amylovora group of Erwinia are cellulolytic and possess genes homologous to the type II secretion pathway.

    PubMed

    Riekki, R; Palomäki, T; Virtaharju, O; Kokko, H; Romantschuk, M; Saarilahti, H T

    2000-07-01

    A cellulase-producing clone was isolated from a genomic library of the Erwinia rhapontici (Millard) Burkholder strain NCPPB2989. The corresponding gene, named celA, encodes an endoglucanase (EC 3.2.1.4) with the extremely low pH optimum of 3.4 and a temperature optimum between 40 and 50 degrees C. A single ORF of 999 nt was found to be responsible for the Cel activity. The corresponding protein, named CelA, showed 67% identity to the endoglucanase Y of E. chrysanthemi and 51.5% identity to the endoglucanase of Cellulomonas uda, and thus belongs to the glycosyl hydrolase family 8. The celA gene, or its homologue, was found to be present in all E. rhapontici isolates analysed, in E. chrysanthemi, and in E. amylovora. The presence of plant cell wall-degrading enzymes in the amylovora group of Erwinia spp. had not previously been established. Furthermore, the DNA of both E. rhapontici and E. amylovora was found to exhibit homology to genes encoding the type II (GSP) secretion pathway, which is known to be responsible for extracellular targeting of cellulases and pectinases in Erwinia spp. that cause soft rotting, such as E. carotovora and E. chrysanthemi. Secretion of the CelA protein by E. rhapontici could not be verified. However, the CelA protein itself was found to include the information necessary for heterologous secretion by E. chrysanthemi.

  3. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-04-04

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complexmore » during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.« less

  4. A Conserved Role for p48 Homologs in Protecting Dopaminergic Neurons from Oxidative Stress

    PubMed Central

    Bou Dib, Peter; Gnägi, Bettina; Daly, Fiona; Sabado, Virginie; Tas, Damla; Glauser, Dominique A.; Meister, Peter; Nagoshi, Emi

    2014-01-01

    Parkinson's disease (PD) is the most common neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Both environmental and genetic factors are thought to contribute to the pathogenesis of PD. Although several genes linked to rare familial PD have been identified, endogenous risk factors for sporadic PD, which account for the majority of PD cases, remain largely unknown. Genome-wide association studies have identified many single nucleotide polymorphisms associated with sporadic PD in neurodevelopmental genes including the transcription factor p48/ptf1a. Here we investigate whether p48 plays a role in the survival of DA neurons in Drosophila melanogaster and Caenorhabditis elegans. We show that a Drosophila p48 homolog, 48-related-2 (Fer2), is expressed in and required for the development and survival of DA neurons in the protocerebral anterior medial (PAM) cluster. Loss of Fer2 expression in adulthood causes progressive PAM neuron degeneration in aging flies along with mitochondrial dysfunction and elevated reactive oxygen species (ROS) production, leading to the progressive locomotor deficits. The oxidative stress challenge upregulates Fer2 expression and exacerbates the PAM neuron degeneration in Fer2 loss-of-function mutants. hlh-13, the worm homolog of p48, is also expressed in DA neurons. Unlike the fly counterpart, hlh-13 loss-of-function does not impair development or survival of DA neurons under normal growth conditions. Yet, similar to Fer2, hlh-13 expression is upregulated upon an acute oxidative challenge and is required for the survival of DA neurons under oxidative stress in adult worms. Taken together, our results indicate that p48 homologs share a role in protecting DA neurons from oxidative stress and degeneration, and suggest that loss-of-function of p48 homologs in flies and worms provides novel tools to study gene-environmental interactions affecting DA neuron survival. PMID:25340742

  5. Candida albicans CHT3 encodes the functional homolog of the Cts1 chitinase of Saccharomyces cerevisiae.

    PubMed

    Dünkler, Alexander; Walther, Andrea; Specht, Charles A; Wendland, Jürgen

    2005-11-01

    Chitin synthesis and chitin degradation play an important role in cellular morphogenesis and influence the cell shape of fungal organisms. The Candida albicans genome contains four chitinase genes, CHT1, CHT2, and CHT3, which are homologous to the Saccharomyces cerevisiae CTS1 gene and C. albicans CHT4, which is homologous to S. cerevisiae CTS2. To determine which of the C. albicans CHT genes represents the functional homolog of the S. cerevisiae CTS1 gene we constructed mutants of these genes and characterized the resulting phenotypes using morphological assays such as in vivo time lapse microscopy and enzymatic assays to determine the chitinase activity. Deletion of CaCHT1 and CaCHT2 provided no phenotypic alterations in liquid culture but resulted in increased hyphal growth on solid media. Deletion of CaCHT3 generated chains of unseparated cells in the yeast growth phase strongly resembling the cts1 deletion phenotype of S. cerevisiae cells. Expression of CHT3 under control of the regulatable MAL2-promoter in C. albicans resulted in the reversion of the cell separation defect when cells were grown in maltose. Cht3, but not Cht2 when expressed in S. cerevisiae was also able to reverse the cell separation defect of the S. cerevisiae c ts1 deletion strain. Measurements of chitinase activity from yeast cells of C. albicans showed that Cht2 is bound to cells, consistent with it being GPI-anchored while Cht3 is secreted into growth medium; Cht3 is also the principal, observed activity.

  6. Sequence Exchange between Homologous NB-LRR Genes Converts Virus Resistance into Nematode Resistance, and Vice Versa.

    PubMed

    Slootweg, Erik; Koropacka, Kamila; Roosien, Jan; Dees, Robert; Overmars, Hein; Lankhorst, Rene Klein; van Schaik, Casper; Pomp, Rikus; Bouwman, Liesbeth; Helder, Johannes; Schots, Arjen; Bakker, Jaap; Smant, Geert; Goverse, Aska

    2017-09-01

    Plants have evolved a limited repertoire of NB-LRR disease resistance ( R ) genes to protect themselves against myriad pathogens. This limitation is thought to be counterbalanced by the rapid evolution of NB-LRR proteins, as only a few sequence changes have been shown to be sufficient to alter resistance specificities toward novel strains of a pathogen. However, little is known about the flexibility of NB-LRR R genes to switch resistance specificities between phylogenetically unrelated pathogens. To investigate this, we created domain swaps between the close homologs Gpa2 and Rx1 , which confer resistance in potato ( Solanum tuberosum ) to the cyst nematode Globodera pallida and Potato virus X , respectively. The genetic fusion of the CC-NB-ARC of Gpa2 with the LRR of Rx1 (Gpa2 CN /Rx1 L ) results in autoactivity, but lowering the protein levels restored its specific activation response, including extreme resistance to Potato virus X in potato shoots. The reciprocal chimera (Rx1 CN /Gpa2 L ) shows a loss-of-function phenotype, but exchange of the first three LRRs of Gpa2 by the corresponding region of Rx1 was sufficient to regain a wild-type resistance response to G. pallida in the roots. These data demonstrate that exchanging the recognition moiety in the LRR is sufficient to convert extreme virus resistance in the leaves into mild nematode resistance in the roots, and vice versa. In addition, we show that the CC-NB-ARC can operate independently of the recognition specificities defined by the LRR domain, either aboveground or belowground. These data show the versatility of NB-LRR genes to generate resistance to unrelated pathogens with completely different lifestyles and routes of invasion. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Identification of a human src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew.

    PubMed Central

    Freeman, R M; Plutzky, J; Neel, B G

    1992-01-01

    src homology 2 (SH2) domains direct binding to specific phosphotyrosyl proteins. Recently, SH2-containing protein-tyrosine-phosphatases (PTPs) were identified. Using degenerate oligonucleotides and the PCR, we have cloned a cDNA for an additional PTP, SH-PTP2, which contains two SH2 domains and is expressed ubiquitously. When expressed in Escherichia coli, SH-PTP2 displays tyrosine-specific phosphatase activity. Strong sequence similarity between SH-PTP2 and the Drosophila gene corkscrew (csw) and their similar patterns of expression suggest that SH-PTP2 is the human corkscrew homolog. Sequence comparisons between SH-PTP2, SH-PTP1, corkscrew, and other SH2-containing proteins suggest the existence of a subfamily of SH2 domains found specifically in PTPs, whereas comparison of the PTP domains of the SH2-containing PTPs with other tyrosine phosphatases suggests the existence of a subfamily of PTPs containing SH2 domains. Since corkscrew, a member of the terminal class signal transduction pathway, acts in concert with D-raf to positively transduce the signal generated by the receptor tyrosine kinase torso, these findings suggest several mechanisms by which SH-PTP2 may participate in mammalian signal transduction. Images PMID:1280823

  8. Enhanced Production of Polysaccharide Through the Overexpression of Homologous Uridine Diphosphate Glucose Pyrophosphorylase Gene in a Submerged Culture of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes).

    PubMed

    Ji, Sen-Lin; Liu, Rui; Ren, Meng-Fei; Li, Huan-Jun; Xu, Jun-Wei

    2015-01-01

    This study aimed to improve polysaccharide production by engineering the biosynthetic pathway in Ganoderma lucidum through the overexpression of the homologous UDP glucose pyrophosphorylase (UGP) gene. The effects of UGP gene overexpression on intracellular polysaccharide (IPS) content, extracellular polysaccharide (EPS) production, and transcription levels of 3 genes encoding the enzymes involved in polysaccharide biosynthesis, including phosphoglucomutase (PGM), UGP, and α-1,3-glucan synthase (GLS), were investigated. The maximum IPS content and EPS production in G. lucidum overexpressing the UGP gene were 24.32 mg/100 mg dry weight and 1.66 g/L, respectively, which were higher by 42% and 36% than those of the wild-type strain. The transcription levels of PGM, UGP, and GLS were up-regulated by 1.6, 2.6, and 2.4-fold, respectively, in the engineered strain, suggesting that increased polysaccharide biosynthesis may result from a higher expression of those genes.

  9. Candidate gene association mapping of Sclerotinia stalk rot resistance in sunflower (Helianthus annuus L.) uncovers the importance of COI1 homologs.

    PubMed

    Talukder, Zahirul I; Hulke, Brent S; Qi, Lili; Scheffler, Brian E; Pegadaraju, Venkatramana; McPhee, Kevin; Gulya, Thomas J

    2014-01-01

    Functional markers for Sclerotinia basal stalk rot resistance in sunflower were obtained using gene-level information from the model species Arabidopsis thaliana. Sclerotinia stalk rot, caused by Sclerotinia sclerotiorum, is one of the most destructive diseases of sunflower (Helianthus annuus L.) worldwide. Markers for genes controlling resistance to S. sclerotiorum will enable efficient marker-assisted selection (MAS). We sequenced eight candidate genes homologous to Arabidopsis thaliana defense genes known to be associated with Sclerotinia disease resistance in a sunflower association mapping population evaluated for Sclerotinia stalk rot resistance. The total candidate gene sequence regions covered a concatenated length of 3,791 bp per individual. A total of 187 polymorphic sites were detected for all candidate gene sequences, 149 of which were single nucleotide polymorphisms (SNPs) and 38 were insertions/deletions. Eight SNPs in the coding regions led to changes in amino acid codons. Linkage disequilibrium decay throughout the candidate gene regions declined on average to an r (2) = 0.2 for genetic intervals of 120 bp, but extended up to 350 bp with r (2) = 0.1. A general linear model with modification to account for population structure was found the best fitting model for this population and was used for association mapping. Both HaCOI1-1 and HaCOI1-2 were found to be strongly associated with Sclerotinia stalk rot resistance and explained 7.4 % of phenotypic variation in this population. These SNP markers associated with Sclerotinia stalk rot resistance can potentially be applied to the selection of favorable genotypes, which will significantly improve the efficiency of MAS during the development of stalk rot resistant cultivars.

  10. Gene Discovery through Genomic Sequencing of Brucella abortus

    PubMed Central

    Sánchez, Daniel O.; Zandomeni, Ruben O.; Cravero, Silvio; Verdún, Ramiro E.; Pierrou, Ester; Faccio, Paula; Diaz, Gabriela; Lanzavecchia, Silvia; Agüero, Fernán; Frasch, Alberto C. C.; Andersson, Siv G. E.; Rossetti, Osvaldo L.; Grau, Oscar; Ugalde, Rodolfo A.

    2001-01-01

    Brucella abortus is the etiological agent of brucellosis, a disease that affects bovines and human. We generated DNA random sequences from the genome of B. abortus strain 2308 in order to characterize molecular targets that might be useful for developing immunological or chemotherapeutic strategies against this pathogen. The partial sequencing of 1,899 clones allowed the identification of 1,199 genomic sequence surveys (GSSs) with high homology (BLAST expect value < 10−5) to sequences deposited in the GenBank databases. Among them, 925 represent putative novel genes for the Brucella genus. Out of 925 nonredundant GSSs, 470 were classified in 15 categories based on cellular function. Seven hundred GSSs showed no significant database matches and remain available for further studies in order to identify their function. A high number of GSSs with homology to Agrobacterium tumefaciens and Rhizobium meliloti proteins were observed, thus confirming their close phylogenetic relationship. Among them, several GSSs showed high similarity with genes related to nodule nitrogen fixation, synthesis of nod factors, nodulation protein symbiotic plasmid, and nodule bacteroid differentiation. We have also identified several B. abortus homologs of virulence and pathogenesis genes from other pathogens, including a homolog to both the Shda gene from Salmonella enterica serovar Typhimurium and the AidA-1 gene from Escherichia coli. Other GSSs displayed significant homologies to genes encoding components of the type III and type IV secretion machineries, suggesting that Brucella might also have an active type III secretion machinery. PMID:11159979

  11. Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes.

    PubMed

    Phulara, Suresh Chandra; Chaturvedi, Preeti; Gupta, Pratima

    2016-10-01

    Enthusiasm for mining advanced biofuels from microbial hosts has increased remarkably in recent years. Isoprenoids are one of the highly diverse groups of secondary metabolites and are foreseen as an alternative to petroleum-based fuels. Most of the prokaryotes synthesize their isoprenoid backbone via the deoxyxylulose-5-phosphate pathway from glyceraldehyde-3-phosphate and pyruvate, whereas eukaryotes synthesize isoprenoids via the mevalonate pathway from acetyl coenzyme A (acetyl-CoA). Microorganisms do not accumulate isoprenoids in large quantities naturally, which restricts their application for fuel purposes. Various metabolic engineering efforts have been utilized to overcome the limitations associated with their natural and nonnatural production. The introduction of heterologous pathways/genes and overexpression of endogenous/homologous genes have shown a remarkable increase in isoprenoid yield and substrate utilization in microbial hosts. Such modifications in the hosts' genomes have enabled researchers to develop commercially competent microbial strains for isoprenoid-based biofuel production utilizing a vast array of substrates. The present minireview briefly discusses the recent advancement in metabolic engineering efforts in prokaryotic hosts for the production of isoprenoid-based biofuels, with an emphasis on endogenous, homologous, and heterologous expression strategies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes

    PubMed Central

    Phulara, Suresh Chandra; Chaturvedi, Preeti

    2016-01-01

    Enthusiasm for mining advanced biofuels from microbial hosts has increased remarkably in recent years. Isoprenoids are one of the highly diverse groups of secondary metabolites and are foreseen as an alternative to petroleum-based fuels. Most of the prokaryotes synthesize their isoprenoid backbone via the deoxyxylulose-5-phosphate pathway from glyceraldehyde-3-phosphate and pyruvate, whereas eukaryotes synthesize isoprenoids via the mevalonate pathway from acetyl coenzyme A (acetyl-CoA). Microorganisms do not accumulate isoprenoids in large quantities naturally, which restricts their application for fuel purposes. Various metabolic engineering efforts have been utilized to overcome the limitations associated with their natural and nonnatural production. The introduction of heterologous pathways/genes and overexpression of endogenous/homologous genes have shown a remarkable increase in isoprenoid yield and substrate utilization in microbial hosts. Such modifications in the hosts' genomes have enabled researchers to develop commercially competent microbial strains for isoprenoid-based biofuel production utilizing a vast array of substrates. The present minireview briefly discusses the recent advancement in metabolic engineering efforts in prokaryotic hosts for the production of isoprenoid-based biofuels, with an emphasis on endogenous, homologous, and heterologous expression strategies. PMID:27422837

  13. Normal radial migration and lamination are maintained in dyslexia-susceptibility candidate gene homolog Kiaa0319 knockout mice.

    PubMed

    Martinez-Garay, Isabel; Guidi, Luiz G; Holloway, Zoe G; Bailey, Melissa A G; Lyngholm, Daniel; Schneider, Tomasz; Donnison, Timothy; Butt, Simon J B; Monaco, Anthony P; Molnár, Zoltán; Velayos-Baeza, Antonio

    2017-04-01

    Developmental dyslexia is a common disorder with a strong genetic component, but the underlying molecular mechanisms are still unknown. Several candidate dyslexia-susceptibility genes, including KIAA0319, DYX1C1, and DCDC2, have been identified in humans. RNA interference experiments targeting these genes in rat embryos have shown impairments in neuronal migration, suggesting that defects in radial cortical migration could be involved in the disease mechanism of dyslexia. Here we present the first characterisation of a Kiaa0319 knockout mouse line. Animals lacking KIAA0319 protein do not show anatomical abnormalities in any of the layered structures of the brain. Neurogenesis and radial migration of cortical projection neurons are not altered, and the intrinsic electrophysiological properties of Kiaa0319-deficient neurons do not differ from those of wild-type neurons. Kiaa0319 overexpression in cortex delays radial migration, but does not affect final neuronal position. However, knockout animals show subtle differences suggesting possible alterations in anxiety-related behaviour and in sensorimotor gating. Our results do not reveal a migration disorder in the mouse model, adding to the body of evidence available for Dcdc2 and Dyx1c1 that, unlike in the rat in utero knockdown models, the dyslexia-susceptibility candidate mouse homolog genes do not play an evident role in neuronal migration. However, KIAA0319 protein expression seems to be restricted to the brain, not only in early developmental stages but also in adult mice, indicative of a role of this protein in brain function. The constitutive and conditional knockout lines reported here will be useful tools for further functional analyses of Kiaa0319.

  14. Docetaxel, Carboplatin, and Rucaparib Camsylate in Treating Patients With Metastatic Castration Resistant Prostate Cancer With Homologous Recombination DNA Repair Deficiency

    ClinicalTrials.gov

    2018-02-20

    ATM Gene Mutation; BRCA1 Gene Mutation; BRCA2 Gene Mutation; Castration Levels of Testosterone; Castration-Resistant Prostate Carcinoma; Homologous Recombination Deficiency; Prostate Carcinoma Metastatic in the Bone; PSA Level Greater Than or Equal to Two; PSA Progression; Stage IV Prostate Adenocarcinoma AJCC v7

  15. Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes.

    PubMed

    Hao, Weilong; Palmer, Jeffrey D

    2009-09-29

    The mitochondrial genomes of flowering plants possess a promiscuous proclivity for taking up sequences from the chloroplast genome. All characterized chloroplast integrants exist apart from native mitochondrial genes, and only a few, involving chloroplast tRNA genes that have functionally supplanted their mitochondrial counterparts, appear to be of functional consequence. We developed a novel computational approach to search for homologous recombination (gene conversion) in a large number of sequences and applied it to 22 mitochondrial and chloroplast gene pairs, which last shared common ancestry some 2 billion years ago. We found evidence of recurrent conversion of short patches of mitochondrial genes by chloroplast homologs during angiosperm evolution, but no evidence of gene conversion in the opposite direction. All 9 putative conversion events involve the atp1/atpA gene encoding the alpha subunit of ATP synthase, which is unusually well conserved between the 2 organelles and the only shared gene that is widely sequenced across plant mitochondria. Moreover, all conversions were limited to the 2 regions of greatest nucleotide and amino acid conservation of atp1/atpA. These observations probably reflect constraints operating on both the occurrence and fixation of recombination between ancient homologs. These findings indicate that recombination between anciently related sequences is more frequent than previously appreciated and creates functional mitochondrial genes of chimeric origin. These results also have implications for the widespread use of mitochondrial atp1 in phylogeny reconstruction.

  16. Evolutionary appearance of genes encoding proteins associated with box H/ACA snoRNAs: Cbf5p in Euglena gracilis, an early diverging eukaryote, and candidate Gar1p and Nop10p homologs in archaebacteria

    PubMed Central

    Watanabe, Yoh-ichi; Gray, Michael W.

    2000-01-01

    A reverse transcription–polymerase chain reaction (RT–PCR) approach was used to clone a cDNA encoding the Euglena gracilis homolog of yeast Cbf5p, a protein component of the box H/ACA class of snoRNPs that mediate pseudouridine formation in eukaryotic rRNA. Cbf5p is a putative pseudouridine synthase, and the Euglena homolog is the first full-length Cbf5p sequence to be reported for an early diverging unicellular eukaryote (protist). Phylogenetic analysis of putative pseudouridine synthase sequences confirms that archaebacterial and eukaryotic (including Euglena) Cbf5p proteins are specifically related and are distinct from the TruB/Pus4p clade that is responsible for formation of pseudouridine at position 55 in eubacterial (TruB) and eukaryotic (Pus4p) tRNAs. Using a bioinformatics approach, we also identified archaebacterial genes encoding candidate homologs of yeast Gar1p and Nop10p, two additional proteins known to be associated with eukaryotic box H/ACA snoRNPs. These observations raise the possibility that pseudouridine formation in archaebacterial rRNA may be dependent on analogs of the eukaryotic box H/ACA snoRNPs, whose evolutionary origin may therefore predate the split between Archaea (archaebacteria) and Eucarya (eukaryotes). Database searches further revealed, in archaebacterial and some eukaryotic genomes, two previously unrecognized groups of genes (here designated ‘PsuX’ and ‘PsuY’) distantly related to the Cbf5p/TruB gene family. PMID:10871366

  17. Homology analyses of the protein sequences of fatty acid synthases from chicken liver, rat mammary gland, and yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Soo-Ik; Hammes, G.G.

    1989-11-01

    Homology analyses of the protein sequences of chicken liver and rat mammary gland fatty acid synthases were carried out. The amino acid sequences of the chicken and rat enzymes are 67% identical. If conservative substitutions are allowed, 78% of the amino acids are matched. A region of low homologies exists between the functional domains, in particular around amino acid residues 1059-1264 of the chicken enzyme. Homologies between the active sites of chicken and rat and of chicken and yeast enzymes have been analyzed by an alignment method. A high degree of homology exists between the active sites of the chickenmore » and rat enzymes. However, the chicken and yeast enzymes show a lower degree of homology. The DADPH-binding dinucleotide folds of the {beta}-ketoacyl reductase and the enoyl reductase sites were identified by comparison with a known consensus sequence for the DADP- and FAD-binding dinucleotide folds. The active sites of all of the enzymes are primarily in hydrophobic regions of the protein. This study suggests that the genes for the functional domains of fatty acid synthase were originally separated, and these genes were connected to each other by using different connecting nucleotide sequences in different species. An alternative explanation for the differences in rat and chicken is a common ancestry and mutations in the joining regions during evolution.« less

  18. Analysis of genes involved in biosynthesis of the lantibiotic subtilin.

    PubMed Central

    Klein, C; Kaletta, C; Schnell, N; Entian, K D

    1992-01-01

    Lantibiotics are peptide-derived antibiotics with high antimicrobial activity against pathogenic gram-positive bacteria. They are ribosomally synthesized and posttranslationally modified (N. Schnell, K.-D. Entian, U. Schneider, F. Götz, H. Zähner, R. Kellner, and G. Jung, Nature [London] 333:276-278, 1988). The most important lantibiotics are subtilin and the food preservative nisin, which both have a very similar structure. By using a hybridization probe specific for the structural gene of subtilin, spaS, the DNA region adjacent to spaS was isolated from Bacillus subtilis. Sequence analysis of a 4.9-kb fragment revealed several open reading frames with the same orientation as spaS. Downstream of spaS, no reading frames were present on the isolated XbaI fragment. Upstream of spaS, three reading frames, spaB, spaC, and spaT, were identified which showed strong homology to genes identified near the structural gene of the lantibiotic epidermin. The SpaT protein derived from the spaT sequence was homologous to hemolysin B of Escherichia coli, which indicated its possible function in subtilin transport. Gene deletions within spaB and spaC revealed subtilin-negative mutants, whereas spaT gene disruption mutants still produced subtilin. Remarkably, the spaT mutant colonies revealed a clumpy surface morphology on solid media. After growth on liquid media, spaT mutant cells agglutinated in the mid-logarithmic growth phase, forming longitudinal 3- to 10-fold-enlarged cells which aggregated. Aggregate formation preceded subtilin production and cells lost their viability, possibly as a result of intracellular subtilin accumulation. Our results clearly proved that reading frames spaB and spaC are essential for subtilin biosynthesis whereas spaT mutants are probably deficient in subtilin transport. Images PMID:1539969

  19. A novel homologous model for gene therapy of dwarfism by non-viral transfer of the mouse growth hormone gene into immunocompetent dwarf mice.

    PubMed

    Cecchi, Claudia R; Higuti, Eliza; Oliveira, Nelio A J; Lima, Eliana R; Jakobsen, Maria; Dagnaes-Hansen, Frederick; Gissel, Hanne; Aagaard, Lars; Jensen, Thomas G; Jorge, Alexander A L; Bartolini, Paolo; Peroni, Cibele N

    2014-02-01

    The possibilities for non-viral GH gene therapy are studied in immunocompetent dwarf mice (lit/lit). As expression vector we used a plasmid previously employed in immunodeficient dwarf mice (pUBI-hGH-gDNA) by replacing the human GH gene with the genomic sequence of mouse-GH DNA (pUBI-mGH-gDNA). HEK-293 human cells transfected with pUBI-mGH-gDNA produced 3.0 µg mGH/10(6) cells/day compared to 3.7 µg hGH/10(6) cells/day for pUBIhGH- gDNA transfected cells. The weight of lit/lit mice treated with the same two plasmids (50 µg DNA/mouse) by electrotransfer into the quadriceps muscle was followed for 3 months. The weight increase up to 15 days for mGH, hGH and saline treated mice were 0.130, 0.112 and 0.027 g/mouse/day. Most sera from hGH-treated mice contained anti-hGH antibodies already on day 15, with the highest titers on day 45, while no significant anti-mGH antibodies were observed in mGH-treated mice. At the end of 3 months, the weight increase for mGH-treated mice was 34.3%, while the nose-to-tail and femur lengths increased 9.5% and 24.3%. Mouse-GH and hGH circulating levels were 4-5 ng/mL 15 days after treatment, versus control levels of ~0.7 ng GH/mL (P<0.001). In mGH-treated mice, mIGF-I determined on days 15, 45 and 94 were 1.5- to 3-fold higher than the control and 1.2- to 1.6-fold higher than hGH-treated mice. The described homologous model represents an important progress forming the basis for preclinical testing of non-viral gene therapy for GH deficiency.

  20. Association of a variant in the regulatory region of NADPH oxidase 4 gene and metabolic syndrome in patients with chronic hepatitis C.

    PubMed

    Siqueira, Erika Rabelo Forte de; Pereira, Luciano Beltrao; Stefano, Jose Tadeu; Patente, Thiago; Cavaleiro, Ana Mercedes; Silva Vasconcelos, Luydson Richardson; Carmo, Rodrigo Feliciano; Moreira Beltrao Pereira, Leila Maria; Carrilho, Flair Jose; Corrêa-Giannella, Maria Lucia; Oliveira, Claudia P

    2015-03-28

    Given the important contribution of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system to the generation of reactive oxygen species induced by hepatitis C virus (HCV), we investigated two single nucleotide polymorphisms (SNPs) in the putative regulatory region of the genes encoding NADPH oxidase 4 catalytic subunit (NOX4) and its regulatory subunit p22phox (CYBA) and their relation with metabolic and histological variables in patients with HCV. One hundred seventy eight naïve HCV patients (49.3% male; 65% HCV genotype 1) with positive HCV RNA were genotyped using specific primers and fluorescent-labeled probes for SNPs rs3017887 in NOX4 and -675 T → A in CYBA. No association was found between the genotype frequencies of NOX4 and CYBA SNPs and inflammation scores or fibrosis stages in the overall population. The presence of the CA + AA genotypes of the NOX4 SNP was nominally associated with a lower alanine aminotransferase (ALT) concentration in the male population (CA + AA = 72.23 ± 6.34 U/L versus CC = 100.22 ± 9.85; mean ± SEM; P = 0.05). The TT genotype of the CYBA SNP was also nominally associated with a lower ALT concentration in the male population (TT = 84.01 ± 6.77 U/L versus TA + AA = 109.67 ± 18.37 U/L; mean ± SEM; P = 0.047). The minor A-allele of the NOX4 SNP was inversely associated with the frequency of metabolic syndrome (MS) in the male population (odds ratio (OR): 0.15; 95% confidence interval (CI): 0.03 to 0.79; P = 0.025). The results suggest that the evaluated NOX4 and CYBA SNPs are not direct genetic determinants of fibrosis in HCV patients, but nevertheless NOX4 rs3017887 SNP could indirectly influence fibrosis susceptibility due to its inverse association with MS in male patients.

  1. Gap junction-dependent homolog avoidance in the developing CNS.

    PubMed

    Baker, Michael W; Yazdani, Neema; Macagno, Eduardo R

    2013-10-16

    Oppositely directed projections of some homologous neurons in the developing CNS of the medicinal leech (Hirudo verbana), such as the AP cells, undergo a form of contact-dependent homolog avoidance. Embryonic APs extend axons within the connective nerve toward adjacent ganglia, in which they meet and form gap junctions (GJs) with the oppositely directed axons of their segmental homologs, stop growing, and are later permanently retracted (Wolszon et al., 1994a,b). However, early deletion of an AP neuron leads to resumed growth and permanent maintenance of the projections of neighboring APs. Here we test the hypothesis that a GJ-based signaling mechanism is responsible for this instance of homolog avoidance. We demonstrate that selective knockdown of GJ gene Hve-inx1 expression in single embryonic APs, by expressing a short-hairpin interfering RNA, leads to continued growth of the projections of the cell toward, into, and beyond adjacent ganglia. Moreover, the projections of the APs in adjacent ganglia also resume growth, mimicking their responses to cell deletion. Continued growth was also observed when two different INX1 mutant transgenes that abolish dye coupling between APs were expressed. These include a mutant transgene that effectively downregulates all GJ plaques that include the INX1 protein and a closed channel INX1 mutant that retains the adhesive cellular binding characteristic of INX1 GJs but not the open channel pore function. Our results add GJ intercellular communication to the list of molecular signaling mechanisms that can act as mediators of growth-inhibiting cell-cell interactions that define the topography of neuronal arbors.

  2. Next-Generation Sequence Analysis of the Genome of RFHVMn, the Macaque Homolog of Kaposi's Sarcoma (KS)-Associated Herpesvirus, from a KS-Like Tumor of a Pig-Tailed Macaque

    PubMed Central

    Bruce, A. Gregory; Ryan, Jonathan T.; Thomas, Mathew J.; Peng, Xinxia; Grundhoff, Adam; Tsai, Che-Chung

    2013-01-01

    The complete sequence of retroperitoneal fibromatosis-associated herpesvirus Macaca nemestrina (RFHVMn), the pig-tailed macaque homolog of Kaposi's sarcoma-associated herpesvirus (KSHV), was determined by next-generation sequence analysis of a Kaposi's sarcoma (KS)-like macaque tumor. Colinearity of genes was observed with the KSHV genome, and the core herpesvirus genes had strong sequence homology to the corresponding KSHV genes. RFHVMn lacked homologs of open reading frame 11 (ORF11) and KSHV ORFs K5 and K6, which appear to have been generated by duplication of ORFs K3 and K4 after the divergence of KSHV and RFHV. RFHVMn contained positional homologs of all other unique KSHV genes, although some showed limited sequence similarity. RFHVMn contained a number of candidate microRNA genes. Although there was little sequence similarity with KSHV microRNAs, one candidate contained the same seed sequence as the positional homolog, kshv-miR-K12-10a, suggesting functional overlap. RNA transcript splicing was highly conserved between RFHVMn and KSHV, and strong sequence conservation was noted in specific promoters and putative origins of replication, predicting important functional similarities. Sequence comparisons indicated that RFHVMn and KSHV developed in long-term synchrony with the evolution of their hosts, and both viruses phylogenetically group within the RV1 lineage of Old World primate rhadinoviruses. RFHVMn is the closest homolog of KSHV to be completely sequenced and the first sequenced RV1 rhadinovirus homolog of KSHV from a nonhuman Old World primate. The strong genetic and sequence similarity between RFHVMn and KSHV, coupled with similarities in biology and pathology, demonstrate that RFHVMn infection in macaques offers an important and relevant model for the study of KSHV in humans. PMID:24109218

  3. Mammalian Homologs of Yeast Checkpoint Genes

    DTIC Science & Technology

    2002-07-01

    pathway is sensitive to various forms of DNA damage Developmental Biology throughout the cell cycle . The DNA replication check- Yale University point...components would be ordered into pathways for mammalian checkpoint function, with emphasis on p53 regulation, cell cycle regulation, and complementation...structurally related to the human tumor suppressor ATM. MEC1 and RAD53, two essential genes, play a central role in DNA damage checkpoints at all cell cycle

  4. Isolation and characterization of Xenopus laevis homologs of the mouse inv gene and functional analysis of the conserved calmodulin binding sites.

    PubMed

    Yasuhiko, Yukuto; Shiokawa, Koichiro; Mochizuki, Toshio; Asashima, Makoto; Yokoyama, Takahiko

    2006-04-01

    The homozygous inv (inversion of embryonic turning) mouse mutant shows situs inversus and polycystic kidney disease, both of which result from the lack of the inv gene. Previously, we suggested that inv may be important for the left-right axis formation, not only in mice but also in Xenopus, and that calmodulin regulates this inv protein function. Here, we isolated and characterized two Xenopus laevis homologs (Xinv-1 and Xinv-2) of the mouse inv gene, and performed functional analysis of the conserved IQ motifs that interact with calmodulin. Xinv-1 expresses early in development in the same manner as mouse inv does. Unexpectedly, a full-length Xenopus inv mRNA did not randomize cardiac orientation when injected into Xenopus embryos, which is different from mouse inv mRNA. Contrary to mouse inv mRNA, Xenopus inv mRNA with mutated IQ randomized cardiac orientation. The present study indicates that calmodulin binding sites (IQ motifs) are crucial in controlling the biological activity of both mouse and Xenopus inv proteins. Although mouse and Xenopus inv genes have a quite similar structure, the interaction with calmodulin and IQ motifs of Xenopus inv and mouse inv proteins may regulate their function in different ways.

  5. Developmental evidence for serial homology of the vertebrate jaw and gill arch skeleton

    PubMed Central

    Gillis, J. Andrew; Modrell, Melinda S.; Baker, Clare V. H.

    2013-01-01

    Gegenbaur’s classical hypothesis of jaw-gill arch serial homology is widely cited, but remains unsupported by either paleontological evidence (e.g. a series of fossils reflecting the stepwise transformation of a gill arch into a jaw) or developmental genetic data (e.g. shared molecular mechanisms underlying segment identity in the mandibular, hyoid and gill arch endoskeletons). Here we show that nested expression of Dlx genes – the “Dlx code” that specifies upper and lower jaw identity in mammals and teleosts – is a primitive feature of the mandibular, hyoid and gill arches of jawed vertebrates. Using fate-mapping techniques, we demonstrate that the principal dorsal and ventral endoskeletal segments of the jaw, hyoid and gill arches of the skate Leucoraja erinacea derive from molecularly equivalent mesenchymal domains of combinatorial Dlx gene expression. Our data suggest that vertebrate jaw, hyoid and gill arch cartilages are serially homologous, and were primitively patterned dorsoventrally by a common Dlx blueprint. PMID:23385581

  6. A Biallelic Mutation in the Homologous Recombination Repair Gene SPIDR Is Associated With Human Gonadal Dysgenesis.

    PubMed

    Smirin-Yosef, Pola; Zuckerman-Levin, Nehama; Tzur, Shay; Granot, Yaron; Cohen, Lior; Sachsenweger, Juliane; Borck, Guntram; Lagovsky, Irina; Salmon-Divon, Mali; Wiesmüller, Lisa; Basel-Vanagaite, Lina

    2017-02-01

    Primary ovarian insufficiency (POI) is caused by ovarian follicle depletion or follicle dysfunction, characterized by amenorrhea with elevated gonadotropin levels. The disorder presents as absence of normal progression of puberty. To elucidate the cause of ovarian dysfunction in a family with POI. We performed whole-exome sequencing in 2 affected individuals. To evaluate whether DNA double-strand break (DSB) repair activities are altered in biallelic mutation carriers, we applied an enhanced green fluorescent protein-based assay for the detection of specific DSB repair pathways in blood-derived cells. Diagnoses were made at the Pediatric Endocrine Clinic, Clalit Health Services, Sharon-Shomron District, Israel. Genetic counseling and sample collection were performed at the Pediatric Genetics Unit, Schneider Children's Medical Center Israel, Petah Tikva, Israel. Two sisters born to consanguineous parents of Israeli Muslim Arab ancestry presented with a lack of normal progression of puberty, high gonadotropin levels, and hypoplastic or absent ovaries on ultrasound. Blood samples for DNA extraction were obtained from all family members. Exome analysis to elucidate the cause of POI in 2 affected sisters. Analysis revealed a stop-gain homozygous mutation in the SPIDR gene (KIAA0146) c.839G>A, p.W280*. This mutation altered SPIDR activity in homologous recombination, resulting in the accumulation of 53BP1-labeled DSBs postionizing radiation and γH2AX-labeled damage during unperturbed growth. SPIDR is important for ovarian function in humans. A biallelic mutation in this gene may be associated with ovarian dysgenesis in cases of autosomal recessive inheritance. Copyright © 2017 by the Endocrine Society

  7. Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae.

    PubMed

    Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji

    2013-12-01

    The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Mammalian Homologs of Yeast Checkpoint Genes

    DTIC Science & Technology

    2001-07-01

    previous cycle we developed systems and reagents for expression and analysis of all of the pertinent proteins, and are made headway on association of Chk2...function, with emphasis on p53 regulation, cell cycle regulation, and complementation of ATM defects. Saccharomyces Schizosaceharomy Homo sapiens...RAD53, two essential genes, play a central role in DNA damage checkpoints at all cell cycle stages. Our lab showed that Rad9 is a regulator coupling DNA

  9. Cloning of the cDNA for a human homologue of the Drosophila white gene and mapping to chromosome 21q22.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haiming Chen; Lalioti, M.D.; Perrin, G.

    1996-07-01

    In an effort to contribute to the transcript map of human chromosome 21 and the understanding of the pathophysiology of trisomy 21, we have used exon trapping to identify fragments of chromosome 21 genes. Two trapped exons, from pools of chromosome 21-specific cosmids, showed homology to the Drosophila white (w) gene. We subsequently cloned the corresponding cDNA for a human homologue of the Drosophila w gene (hW) from human retina and fetal brain cDNA libraries. The gene belongs to the ATP-binding cassette transporter gene family and is homologous to Drosophila w (and to 2 genes from other species) and tomore » a lesser extent to Drosophila brown (bw) and scarlet (st) genes that are all involved in the transport of eye pigment precursor molecules. A DNA polymorphism with 62% heterozygosity due to variation of a poly (T) region in the 3{prime} UTR of the hW has been identified and used for the incorporation of this gene to the genetic map of chromosome 21. The hW is located at 21q22.3 between DNA markers D21S212 and D21S49 in a P1 clone that also contains marker BCEI. The gene is expressed at various levels in many human tissues. The contributions of this gene to the Down syndrome phenotypes, to human eye color, and to the resulting phenotypes of null or missense mutations are presently unknown. 56 refs., 8 figs., 1 tab.« less

  10. The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle.

    PubMed

    Warnatz, Hans-Jörg; Schmidt, Dominic; Manke, Thomas; Piccini, Ilaria; Sultan, Marc; Borodina, Tatiana; Balzereit, Daniela; Wruck, Wasco; Soldatov, Alexey; Vingron, Martin; Lehrach, Hans; Yaspo, Marie-Laure

    2011-07-01

    The regulation of gene expression in response to environmental signals and metabolic imbalances is a key step in maintaining cellular homeostasis. BTB and CNC homology 1 (BACH1) is a heme-binding transcription factor repressing the transcription from a subset of MAF recognition elements at low intracellular heme levels. Upon heme binding, BACH1 is released from the MAF recognition elements, resulting in increased expression of antioxidant response genes. To systematically address the gene regulatory networks involving BACH1, we combined chromatin immunoprecipitation sequencing analysis of BACH1 target genes in HEK 293 cells with knockdown of BACH1 using three independent types of small interfering RNAs followed by transcriptome profiling using microarrays. The 59 BACH1 target genes identified by chromatin immunoprecipitation sequencing were found highly enriched in genes showing expression changes after BACH1 knockdown, demonstrating the impact of BACH1 repression on transcription. In addition to known and new BACH1 targets involved in heme degradation (HMOX1, FTL, FTH1, ME1, and SLC48A1) and redox regulation (GCLC, GCLM, and SLC7A11), we also discovered BACH1 target genes affecting cell cycle and apoptosis pathways (ITPR2, CALM1, SQSTM1, TFE3, EWSR1, CDK6, BCL2L11, and MAFG) as well as subcellular transport processes (CLSTN1, PSAP, MAPT, and vault RNA). The newly identified impact of BACH1 on genes involved in neurodegenerative processes and proliferation provides an interesting basis for future dissection of BACH1-mediated gene repression in neurodegeneration and virus-induced cancerogenesis.

  11. 75 FR 54381 - Charles M. Russell National Wildlife Refuge and UL Bend National Wildlife Refuge, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R6-R-2010-N078; 60138-1261-6CCP-S3] Charles M. Russell National Wildlife Refuge and UL Bend National Wildlife Refuge, MT AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of availability: Draft comprehensive conservation plan and draft...

  12. Molecular cloning of the transcription factor TFIIB homolog from Sulfolobus shibatae.

    PubMed Central

    Qureshi, S A; Khoo, B; Baumann, P; Jackson, S P

    1995-01-01

    The Archaea (archaebacteria) constitute a group of prokaryotes that are phylogenetically distinct from Eucarya (eukaryotes) and Bacteria (eubacteria). Although Archaea possess only one RNA polymerase, evidence suggests that their transcriptional apparatus is similar to that of Eucarya. For example, Archaea contain a homolog of the TATA-binding protein which interacts with the TATA-box like A-box sequence upstream of many archaeal genes. Here, we report the cloning of a Sulfolobus shibatae gene that encodes a protein (transcription factor TFB) with striking homology to the eukaryotic basal transcription factor TFIIB. We show by primer extension analysis that transcription of the S. shibatae TFB gene initiates 27 bp downstream from a consensus A-box element. Significantly, S. shibatae TFB contains an N-terminal putative metal-binding region and two imperfect direct repeats--structural features that are well conserved in eukaryotic TFIIBs. This suggests that TFB may perform analogous functions in Archaea and Eucarya. Consistent with this, we demonstrate that S. shibatae TFB promotes the binding of S. shibatae TBP to the A-box element of the Sulfolobus 16S/23S rRNA gene. Finally, we show that S. shibatae TFB is significantly more related to TFB of the archaeon Pyrococcus woesei than it is to eukaryotic TFIIBs. These data suggest that TFB arose in the common archaeal/eukaryotic ancestor and that the lineages leading to P. woesei and S. shibatae separated after the divergence of the archaeal and eukaryotic lines of descent. Images Fig. 2 Fig. 3 PMID:7597084

  13. The light gene of Drosophila melanogaster encodes a homologue of VPS41, a yeast gene involved in cellular-protein trafficking.

    PubMed

    Warner, T S; Sinclair, D A; Fitzpatrick, K A; Singh, M; Devlin, R H; Honda, B M

    1998-04-01

    Mutations in a number of genes affect eye colour in Drosophila melanogaster; some of these "eye-colour" genes have been shown to be involved in various aspects of cellular transport processes. In addition, combinations of viable mutant alleles of some of these genes, such as carnation (car) combined with either light (lt) or deep-orange (dor) mutants, show lethal interactions. Recently, dor was shown to be homologous to the yeast gene PEP3 (VPS18), which is known to be involved in intracellular trafficking. We have undertaken to extend our earlier work on the lt gene, in order to examine in more detail its expression pattern and to characterize its gene product via sequencing of a cloned cDNA. The gene appears to be expressed at relatively high levels in all stages and tissues examined, and shows strong homology to VPS41, a gene involved in cellular-protein trafficking in yeast and higher eukaryotes. Further genetic experiments also point to a role for lt in transport processes: we describe lethal interactions between viable alleles of lt and dor, as well as phenotypic interactions (reductions in eye pigment) between allels of lt and another eye-colour gene, garnet (g), whose gene product has close homology to a subunit of the human adaptor complex, AP-3.

  14. Isolation and functional analysis of a homolog of flavonoid 3',5'-hydroxylase gene from Pericallis × hybrida.

    PubMed

    Sun, Yi; Huang, He; Meng, Li; Hu, Ke; Dai, Si-Lan

    2013-10-01

    As the key enzyme in the biosynthesis of blue flower color pigments, flavonoid 3',5'-hydroxylase (F3'5'H) can catalyze the conversion of its major substrates, 2-S naringenin and dihydrokaempferol, into 3',4',5'-hydroxylated pentahydroxyflavanone and dihydromyricetin, respectively. Unlike other F3'5'Hs belonging to the CYP75A subfamily, Asteraceae-specific F3'5'Hs belong to the CYP75B subfamily. Furthermore, cineraria F3'5'H expressed in yeast exhibited not only F3'H (flavonoid 3'-hydroxylase) activity but also F3'5'H activity in vitro. In this study, Southern blotting showed that there was only one copy of a homolog of the F3'5'H gene PCFH in the Pericallis × hybrida genome. This gene could be detected by Northern blot in the primary developmental stages of ligulate florets of the purple- and blue-flowered cultivars, and its transcripts also accumulated in the leaves. Heterologous expression of PCFH could produce new delphinidin derivatives in the corollas of transgenic tobacco plants, increased the content of cyanidin derivatives and lead to the blue- and red-shifting of flower color in T₀ generation plants. These results indicate that cineraria F3'5'H exhibited both F3'5'H- and F3'H-activity in vivo. The types and contents of anthocyanins and flower color phenotypes of the T₁ generation were similar to those of T₀ generation plants. PCFH exhibited stable inheritance and normal functions between generations. This study supplies new evidence to understand Asteraceae-specific F3'5'Hs and provides important references for the further study of molecular breeding of blue-flowered chrysanthemums using the PCFH gene. © 2013 Scandinavian Plant Physiology Society.

  15. Discovery, characterization and expression of a novel zebrafish gene, znfr, important for notochord formation.

    PubMed

    Xu, Yan; Zou, Peng; Liu, Yao; Deng, Fengjiao

    2010-06-01

    Genes specifically expressed in the notochord may be crucial for proper notochord development. Using the digital differential display program offered by the National Center for Biotechnology Information, we identified a novel EST sequence from a zebrafish ovary library (No. XM_701450). The full-length cDNA of this transcript was cloned by performing 3' and 5'-RACE and was further confirmed by PCR and sequencing. The resulting 614 bp gene was found to encode a novel 94 amino acid protein that did not share significant homology with any other known protein. Characterization of the genomic sequence revealed that the gene spanned 4.9 kb and was composed of four exons and three introns. RT-PCR gene expression analysis revealed that our gene of interest was expressed in ovary, kidney, brain, mature oocytes and during the early stages of embryogenesis. During embryonic development, znfr mRNA was found to be expressed in the embryonic shield, chordamesoderm and the vacuolated notochord cells by in situ hybridization. Based on this information, we hypothesize that this novel gene is an important maternal factor required for zebrafish notochord formation during early embryonic development. We have thus named this gene znfr (zebrafish notochord formation related).

  16. 77 FR 67829 - Charles M. Russell National Wildlife Refuge and UL Bend National Wildlife Refuge, MT...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ...-FXRS1266066CCP0S3-123] Charles M. Russell National Wildlife Refuge and UL Bend National Wildlife Refuge, MT... final comprehensive conservation plan (CCP) and final environmental impact statement (EIS) for Charles M....gov . Include ``Request copy of Charles M. Russell NWR ROD'' in the subject line of the message. U.S...

  17. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level

    PubMed Central

    Abascal, Federico; Ezkurdia, Iakes; Rodriguez-Rivas, Juan; Rodriguez, Jose Manuel; del Pozo, Angela; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L.

    2015-01-01

    Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved—all the homologous exons we identified evolved over 460 million years ago—and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles. PMID:26061177

  18. Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia.

    PubMed

    Souer, Erik; Rebocho, Alexandra B; Bliek, Mattijs; Kusters, Elske; de Bruin, Robert A M; Koes, Ronald

    2008-08-01

    Angiosperms display a wide variety of inflorescence architectures differing in the positions where flowers or branches arise. The expression of floral meristem identity (FMI) genes determines when and where flowers are formed. In Arabidopsis thaliana, this is regulated via transcription of LEAFY (LFY), which encodes a transcription factor that promotes FMI. We found that this is regulated in petunia (Petunia hybrida) via transcription of a distinct gene, DOUBLE TOP (DOT), a homolog of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Mutation of DOT or its tomato (Solanum lycopersicum) homolog ANANTHA abolishes FMI. Ubiquitous expression of DOT or UFO in petunia causes very early flowering and transforms the inflorescence into a solitary flower and leaves into petals. Ectopic expression of DOT or UFO together with LFY or its homolog ABERRANT LEAF AND FLOWER (ALF) in petunia seedlings activates genes required for identity or outgrowth of organ primordia. DOT interacts physically with ALF, suggesting that it activates ALF by a posttranslational mechanism. Our findings suggest a wider role than previously thought for DOT and UFO in the patterning of flowers and indicate that the different roles of LFY and UFO homologs in the spatiotemporal control of floral identity in distinct species result from their divergent expression patterns.

  19. Analyses of interactions among pair-rule genes and the gap gene Krüppel in Bombyx segmentation.

    PubMed

    Nakao, Hajime

    2015-09-01

    In the short-germ insect Tribolium, a pair-rule gene circuit consisting of the Tribolium homologs of even-skipped, runt, and odd-skipped (Tc-eve, Tc-run and Tc-odd, respectively) has been implicated in segment formation. To examine the application of the model to other taxa, I studied the expression and function of pair-rule genes in Bombyx mori, together with a Bombyx homolog of Krüppel (Bm-Kr), a known gap gene. Knockdown embryos of Bombyx homologs of eve, run and odd (Bm-eve, Bm-run and Bm-odd) exhibited asegmental phenotypes similar to those of Tribolium knockdowns. However, pair-rule gene interactions were similar to those of both Tribolium and Drosophila, which, different from Tribolium, shows a hierarchical segmentation mode. Additionally, the Bm-odd expression pattern shares characteristics with those of Drosophila pair-rule genes that receive upstream regulatory input. On the other hand, Bm-Kr knockdowns exhibited a large posterior segment deletion as observed in short-germ insects. However, a detailed analysis of these embryos indicated that Bm-Kr modulates expression of pair-rule genes like in Drosophila, although the mechanisms appear to be different. This suggested hierarchical interactions between Bm-Kr and pair-rule genes. Based on these results, I concluded that the pair-rule gene circuit model that describes Tribolium development is not applicable to Bombyx. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Mesodermal expression of the C. elegans HMX homolog mls-2 requires the PBC homolog CEH-20

    PubMed Central

    Jiang, Yuan; Shi, Herong; Amin, Nirav M.; Sultan, Ibrahim; Liu, Jun

    2008-01-01

    Metazoan development proceeds primarily through the regulated expression of genes encoding transcription factors and components of cell signaling pathways. One way to decipher the complex developmental programs is to assemble the underlying gene regulatory networks by dissecting the cis-regulatory modules that direct temporal-spatial expression of developmental genes and identify corresponding trans-regulatory factors. Here, we focus on the regulation of a HMX homoebox gene called mls-2, which functions at the intersection of a network that regulates cleavage orientation, cell proliferation and fate specification in the C. elegans postembryonic mesoderm. In addition to its transient expression in the postembryonic mesodermal lineage, the M lineage, mls-2 expression is detected in a subset of embryonic cells, in three pairs of head neurons and transiently in the somatic gonad. Through mutational analysis of the mls-2 promoter, we identified two elements (E1 and E2) involved in regulating the temporal-spatial expression of mls-2. In particular, we showed that one of the elements (E1) required for mls-2 expression in the M lineage contains two critical putative PBC-Hox binding sites that are evolutionarily conserved in C. briggsae and C. remanei. Furthermore, the C. elegans PBC homolog CEH-20 is required for mls-2 expression in the M lineage. Our data suggests that mls-2 might be a direct target of CEH-20 in the M lineage and that the regulation of CEH-20 on mls-2 is likely Hox-independent. PMID:18316179

  1. The evolution of function within the Nudix homology clan

    PubMed Central

    Srouji, John R.; Xu, Anting; Park, Annsea; Kirsch, Jack F.

    2017-01-01

    ABSTRACT The Nudix homology clan encompasses over 80,000 protein domains from all three domains of life, defined by homology to each other. Proteins with a domain from this clan fall into four general functional classes: pyrophosphohydrolases, isopentenyl diphosphate isomerases (IDIs), adenine/guanine mismatch‐specific adenine glycosylases (A/G‐specific adenine glycosylases), and nonenzymatic activities such as protein/protein interaction and transcriptional regulation. The largest group, pyrophosphohydrolases, encompasses more than 100 distinct hydrolase specificities. To understand the evolution of this vast number of activities, we assembled and analyzed experimental and structural data for 205 Nudix proteins collected from the literature. We corrected erroneous functions or provided more appropriate descriptions for 53 annotations described in the Gene Ontology Annotation database in this family, and propose 275 new experimentally‐based annotations. We manually constructed a structure‐guided sequence alignment of 78 Nudix proteins. Using the structural alignment as a seed, we then made an alignment of 347 “select” Nudix homology domains, curated from structurally determined, functionally characterized, or phylogenetically important Nudix domains. Based on our review of Nudix pyrophosphohydrolase structures and specificities, we further analyzed a loop region downstream of the Nudix hydrolase motif previously shown to contact the substrate molecule and possess known functional motifs. This loop region provides a potential structural basis for the functional radiation and evolution of substrate specificity within the hydrolase family. Finally, phylogenetic analyses of the 347 select protein domains and of the complete Nudix homology clan revealed general monophyly with regard to function and a few instances of probable homoplasy. Proteins 2017; 85:775–811. © 2016 Wiley Periodicals, Inc. PMID:27936487

  2. Cell-cycle-dependent localization of human cytomegalovirus UL83 phosphoprotein in the nucleolus and modulation of viral gene expression in human embryo fibroblasts in vitro.

    PubMed

    Arcangeletti, Maria-Cristina; Rodighiero, Isabella; Mirandola, Prisco; De Conto, Flora; Covan, Silvia; Germini, Diego; Razin, Sergey; Dettori, Giuseppe; Chezzi, Carlo

    2011-01-01

    The nucleolus is a multifunctional nuclear compartment widely known to be involved in several cellular processes, including mRNA maturation and shuttling to cytoplasmic sites, control of the cell cycle, cell proliferation, and apoptosis; thus, it is logical that many viruses, including herpesvirus, target the nucleolus in order to exploit at least one of the above-mentioned functions. Recent studies from our group demonstrated the early accumulation of the incoming ppUL83 (pp65), the major tegument protein of human cytomegalovirus (HCMV), in the nucleolus. The obtained results also suggested that a functional relationship might exist between the nucleolar localization of pp65, rRNA synthesis, and the development of the lytic program of viral gene expression. Here we present new data which support the hypothesis of a potentially relevant role of HCMV pp65 and its nucleolar localization for the control of the cell cycle by HCMV (arrest of cell proliferation in G1-G1/S), and for the promotion of viral infection. We demonstrated that, although the incoming pp65 amount in the infected cells appears to be constant irrespective of the cell-cycle phase, its nucleolar accumulation is prominent in G1 and G1/S, but very poor in S or G2/M. This correlates with the observation that only cells in G1 and G1/S support an efficient development of the HCMV lytic cycle. We propose that HCMV pp65 might be involved in regulatory/signaling pathways related to nucleolar functions, such as the cell-cycle control. Co-immunoprecipitation experiments have permitted to identify nucleolin as one of the nucleolar partners of pp65.

  3. Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus.

    PubMed

    Li, Qin; Li, Jing; Sun, Jin-Long; Ma, Xian-Feng; Wang, Ting-Ting; Berkey, Robert; Yang, Hui; Niu, Ying-Ze; Fan, Jing; Li, Yan; Xiao, Shunyuan; Wang, Wen-Ming

    2016-01-01

    The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  4. A draft sequence of the rice genome (Oryza sativa L. ssp. indica).

    PubMed

    Yu, Jun; Hu, Songnian; Wang, Jun; Wong, Gane Ka-Shu; Li, Songgang; Liu, Bin; Deng, Yajun; Dai, Li; Zhou, Yan; Zhang, Xiuqing; Cao, Mengliang; Liu, Jing; Sun, Jiandong; Tang, Jiabin; Chen, Yanjiong; Huang, Xiaobing; Lin, Wei; Ye, Chen; Tong, Wei; Cong, Lijuan; Geng, Jianing; Han, Yujun; Li, Lin; Li, Wei; Hu, Guangqiang; Huang, Xiangang; Li, Wenjie; Li, Jian; Liu, Zhanwei; Li, Long; Liu, Jianping; Qi, Qiuhui; Liu, Jinsong; Li, Li; Li, Tao; Wang, Xuegang; Lu, Hong; Wu, Tingting; Zhu, Miao; Ni, Peixiang; Han, Hua; Dong, Wei; Ren, Xiaoyu; Feng, Xiaoli; Cui, Peng; Li, Xianran; Wang, Hao; Xu, Xin; Zhai, Wenxue; Xu, Zhao; Zhang, Jinsong; He, Sijie; Zhang, Jianguo; Xu, Jichen; Zhang, Kunlin; Zheng, Xianwu; Dong, Jianhai; Zeng, Wanyong; Tao, Lin; Ye, Jia; Tan, Jun; Ren, Xide; Chen, Xuewei; He, Jun; Liu, Daofeng; Tian, Wei; Tian, Chaoguang; Xia, Hongai; Bao, Qiyu; Li, Gang; Gao, Hui; Cao, Ting; Wang, Juan; Zhao, Wenming; Li, Ping; Chen, Wei; Wang, Xudong; Zhang, Yong; Hu, Jianfei; Wang, Jing; Liu, Song; Yang, Jian; Zhang, Guangyu; Xiong, Yuqing; Li, Zhijie; Mao, Long; Zhou, Chengshu; Zhu, Zhen; Chen, Runsheng; Hao, Bailin; Zheng, Weimou; Chen, Shouyi; Guo, Wei; Li, Guojie; Liu, Siqi; Tao, Ming; Wang, Jian; Zhu, Lihuang; Yuan, Longping; Yang, Huanming

    2002-04-05

    We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana. The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC content of rice coding sequences.

  5. Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity.

    PubMed Central

    Navarro-García, F; Sánchez, M; Pla, J; Nombela, C

    1995-01-01

    Mitogen-activated protein (MAP) kinases represent a group of serine/threonine protein kinases playing a central role in signal transduction processes in eukaryotic cells. Using a strategy based on the complementation of the thermosensitive autolytic phenotype of slt2 null mutants, we have isolated a Candida albicans homolog of Saccharomyces cerevisiae MAP kinase gene SLT2 (MPK1), which is involved in the recently outlined PKC1-controlled signalling pathway. The isolated gene, named MKC1 (MAP kinase from C. albicans), coded for a putative protein, Mkc1p, of 58,320 Da that displayed all the characteristic domains of MAP kinases and was 55% identical to S. cerevisiae Slt2p (Mpk1p). The MKC1 gene was deleted in a diploid Candida strain, and heterozygous and homozygous strains, in both Ura+ and Ura- backgrounds, were obtained to facilitate the analysis of the function of the gene. Deletion of the two alleles of the MKC1 gene gave rise to viable cells that grew at 28 and 37 degrees C but, nevertheless, displayed a variety of phenotypic traits under more stringent conditions. These included a low growth yield and a loss of viability in cultures grown at 42 degrees C, a high sensitivity to thermal shocks at 55 degrees C, an enhanced susceptibility to caffeine that was osmotically remediable, and the formation of a weak cell wall with a very low resistance to complex lytic enzyme preparations. The analysis of the functions downstream of the MKC1 gene should contribute to understanding of the connection of growth and morphogenesis in pathogenic fungi. PMID:7891715

  6. The semaphorontic view of homology.

    PubMed

    Havstad, Joyce C; Assis, Leandro C S; Rieppel, Olivier

    2015-11-01

    The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra-organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter-species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity--ontogenetic (through development) and phylogenetic (via shared evolutionary history)--break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (-state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (-states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc.

  7. Molecular analysis of the split cox1 gene from the Basidiomycota Agrocybe aegerita: relationship of its introns with homologous Ascomycota introns and divergence levels from common ancestral copies.

    PubMed

    Gonzalez, P; Barroso, G; Labarère, J

    1998-10-05

    The Basidiomycota Agrocybe aegerita (Aa) mitochondrial cox1 gene (6790 nucleotides), encoding a protein of 527aa (58377Da), is split by four large subgroup IB introns possessing site-specific endonucleases assumed to be involved in intron mobility. When compared to other fungal COX1 proteins, the Aa protein is closely related to the COX1 one of the Basidiomycota Schizophyllum commune (Sc). This clade reveals a relationship with the studied Ascomycota ones, with the exception of Schizosaccharomyces pombe (Sp) which ranges in an out-group position compared with both higher fungi divisions. When comparison is extended to other kingdoms, fungal COX1 sequences are found to be more related to algae and plant ones (more than 57.5% aa similarity) than to animal sequences (53.6% aa similarity), contrasting with the previously established close relationship between fungi and animals, based on comparisons of nuclear genes. The four Aa cox1 introns are homologous to Ascomycota or algae cox1 introns sharing the same location within the exonic sequences. The percentages of identity of the intronic nucleotide sequences suggest a possible acquisition by lateral transfers of ancestral copies or of their derived sequences. These identities extend over the whole intronic sequences, arguing in favor of a transfer of the complete intron rather than a transfer limited to the encoded ORF. The intron i4 shares 74% of identity, at the nucleotidic level, with the Podospora anserina (Pa) intron i14, and up to 90.5% of aa similarity between the encoded proteins, i.e. the highest values reported to date between introns of two phylogenetically distant species. This low divergence argues for a recent lateral transfer between the two species. On the contrary, the low sequence identities (below 36%) observed between Aa i1 and the homologous Sp i1 or Prototheca wickeramii (Pw) i1 suggest a long evolution time after the separation of these sequences. The introns i2 and i3 possessed intermediate

  8. Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae.

    PubMed

    Kitagaki, Hiroshi; Wu, Hong; Shimoi, Hitoshi; Ito, Kiyoshi

    2002-11-01

    The cell wall of Saccharomyces cerevisiae consists of glucan, chitin and various kinds of mannoproteins. Major parts of mannoproteins are synthesized as glycosylphosphatidylinositol (GPI)-anchored proteins and are then transferred to cell wall beta-1,6-glucan. A glycosyltransferase has been hypothesized to catalyse this transfer reaction. A database search revealed that the products of YKL046c and DFG5 are homologous to bacterial mannosidase. These genes are homologous to each other and have primary structures characteristic of GPI-anchored proteins. Although single disruptants of ykl046c and dfg5 were viable, ykl046cDelta was hypersensitive to a cell wall-digesting enzyme (zymolyase), suggesting that this gene is involved in cell wall biosynthesis. We therefore designated this gene as DCW1 (defective cell wall). A double disruptant of dcw1 and dfg5 was synthetically lethal, indicating that the functions of these gene products are redundant, and at least one of them is required for cell growth. Cells deficient in both Dcw1p and Dfg5p were round and large, had cell walls that contained an increased amount of chitin and secreted a major cell wall protein, Cwp1p, into the medium. Biochemical analyses showed that epitope-tagged Dcw1p is an N-glycosylated, GPI-anchored membrane protein and is localized in the membrane fraction including the cell surface. These results suggest that both Dcw1p and Dfg5p are GPI-anchored membrane proteins and are required for normal biosynthesis of the cell wall.

  9. Fussel-15, a novel Ski/Sno homolog protein, antagonizes BMP signaling.

    PubMed

    Arndt, Stephanie; Poser, Ina; Moser, Markus; Bosserhoff, Anja-Katrin

    2007-04-01

    The Ski family of nuclear oncoproteins represses transforming growth factor-beta (TGF-beta) signaling through inhibition of transcriptional activity of Smad proteins. In this study, we identified a novel gene, fussel-15 (functional smad suppressing element on chromosome 15) with high homology to the recently discovered Fussel-18 protein. Both, Fussel-15 and Fussel-18, share important structural features, significant homology and similar genomic organization with the homolog Ski family members, Ski and SnoN. Unlike Ski and SnoN, which are ubiquitously expressed in human tissues, Fussel-15 expression, like Fussel-18, is much more restricted in its expression and is principally found in the nervous system of mouse and humans. Interestingly, Fussel-15 expression is even more restricted in adulthood to Purkinje cells of human cerebellum. In contrast to Fussel-18 that interacts with Smad 2, Smad3 and Smad4 and has an inhibitory activity on TGF-beta signaling, Fussel-15 interacts with Smad1, Smad2 and Smad3 molecules and suppresses mainly BMP signaling pathway but has only minor effects on TGF-beta signaling. This new protein expands the family of Ski/Sno proto-oncoproteins and represents a novel molecular regulator of BMP signaling.

  10. RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera

    PubMed Central

    Mishra, Bhawana; Sangwan, Rajender Singh; Asha; Jadaun, Jyoti Singh; Sangwan, Neelam S.

    2016-01-01

    Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS) is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s) in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides. PMID:26919744

  11. Developmental variation, homology, and the pharyngula stage.

    PubMed

    Collazo, A

    2000-03-01

    Understanding how development varies both inter- and intraspecifically can be important for systematic and evolutionary studies. This review will explore three different ways such understanding can be applied to evolutionary analyses. First, developmental data can be useful for homology determination. Interspecific variation in development has been thought to make developmental data poor candidates for determining homology. However, an updated developmental criterion that is more broadly comparative and mechanistic augments the available criteria used in homology determination. Second, modern cell and molecular biology are providing a better understanding of the many developmental processes involved in a structure's formation and will augment the number of characters available for phylogenetic analyses. Recent work has revealed that what had been thought to be a highly conserved developmental stage, the pharyngula (the phylotypic and zootypic stage of craniates) is highly variable. This variation can be seen in the development of such tissues as neural crest and placodes. These tissues are particularly interesting from a phylogenetic standpoint because they and the structures they form contribute to key synapomorphies of craniates. Finally, understanding developmental processes and how they form the variety of morphologies seen in nature will help in constructing the transformations that occurred during evolution. One such example involves descriptions of how lateral line development is affected in different mutant lines of zebrafish. The many species of teleost fishes express great variation in the patterns of their lateral lines, and this is often an important systematic character. Understanding the genetic basis of lateral line development would help not only in hypothesizing possible transformational series but also in determining how many genes may have been required for these transformations.

  12. Identification and characterization of human GUKH2 gene in silico.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2004-04-01

    Drosophila Guanylate-kinase holder (Gukh) is an adaptor molecule bridging Discs large (Dlg) and Scribble (Scrib), which are implicated in the establishment and maintenance of epithelial polarity. Here, we searched for human homologs of Drosophila gukh by using bioinformatics, and identified GUKH1 and GUKH2 genes. GUKH1 was identical to Nance-Horan syndrome (NHS) gene, while GUKH2 was a novel gene. FLJ35425 (AK092744.1), DKFZp686P1949 (BX647246.1) and KIAA1357 (AB037778.1) cDNAs were derived from human GUKH2 gene. Nucleotide sequence of GUKH2 cDNA was determined by assembling 5'-part of FLJ35425 cDNA and entire region of DKFZp686P1949 cDNA. Human GUKH2 gene consists of 8 exons. Exon 5 (132 bp) of GUKH2 gene was spliced out in GUKH2 cDNA due to alternative splicing. GUKH2-REPS1 locus at human chromosome 6q24.1 and GUKH1-REPS2 locus at human chromosome Xp22.22-p22.13 are paralogous regions within the human genome. Mouse Gukh2 and zebrafish gukh2 genes were also identified. N-terminal part of human GUKH2, mouse Gukh2 and zebrafish gukh2 proteins were completely divergent from human GUKH1 protein. Human GUKH2 and GUKH1, consisting of eight GUKH homology (GKH1-GKH8) domains and Proline-rich domain, showed 28.5% total-amino-acid identity. GKH1, GKH4, GKH5, GKH7 and GKH8 domains were conserved among human GUKH1, human GUKH2 and Drosophila Gukh. Because human homologs of Drosophila dlg (DLG1-DLG7) as well as human homologs of Drosophila scrib (SCRIB, ERBB2IP and Densin-180) are cancer-associated genes, human homologs of Drosophila gukh (GUKH1 and GUKH2) are predicted cancer-associated genes.

  13. Homologous Recombination—Experimental Systems, Analysis and Significance

    PubMed Central

    Kuzminov, Andrei

    2014-01-01

    Homologous recombination is the most complex of all recombination events that shape genomes and produce material for evolution. Homologous recombination events are exchanges between DNA molecules in the lengthy regions of shared identity, catalyzed by a group of dedicated enzymes. There is a variety of experimental systems in E. coli and Salmonella to detect homologous recombination events of several different kinds. Genetic analysis of homologous recombination reveals three separate phases of this process: pre-synapsis (the early phase), synapsis (homologous strand exchange) and post-synapsis (the late phase). In E. coli, there are at least two independent pathway of the early phase and at least two independent pathways of the late phase. All this complexity is incongruent with the originally ascribed role of homologous recombination as accelerator of genome evolution: there is simply not enough duplication and repetition in enterobacterial genomes for homologous recombination to have a detectable evolutionary role, and therefore not enough selection to maintain such a complexity. At the same time, the mechanisms of homologous recombination are uniquely suited for repair of complex DNA lesions called chromosomal lesions. In fact, the two major classes of chromosomal lesions are recognized and processed by the two individual pathways at the early phase of homologous recombination. It follows, therefore, that homologous recombination events are occasional reflections of the continual recombinational repair, made possible in cases of natural or artificial genome redundancy. PMID:26442506

  14. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus.

    PubMed

    Ye, Ge; Liang, Chai Hong; Hua, Deng Guo; Song, Lei Yong; Xiang, Yang Guo; Guang, Chen; Lan, Chen Hua; Ping, Hua Yu

    2016-01-01

    Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the "harmful" internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs.

  15. A system for the measurement of gene targeting efficiency in human cell lines using an antibiotic resistance-GFP fusion gene.

    PubMed

    Konishi, Yuko; Karnan, Sivasundaram; Takahashi, Miyuki; Ota, Akinobu; Damdindorj, Lkhagvasuren; Hosokawa, Yoshitaka; Konishi, Hiroyuki

    2012-09-01

    Gene targeting in a broad range of human somatic cell lines has been hampered by inefficient homologous recombination. To improve this technology and facilitate its widespread application, it is critical to first have a robust and efficient research system for measuring gene targeting efficiency. Here, using a fusion gene consisting of hygromycin B phosphotransferase and 3'-truncated enhanced GFP (HygR-5' EGFP) as a reporter gene, we created a molecular system monitoring the ratio of homologous to random integration (H/R ratio) of targeting vectors into the genome. Cell clones transduced with a reporter vector containing HygR-5' EGFP were efficiently established from two human somatic cell lines. Established HygR-5' EGFP reporter clones retained their capacity to monitor gene targeting efficiency for a longer duration than a conventional reporter system using an unfused 5' EGFP gene. With the HygR-5' EGFP reporter system, we reproduced previous findings of gene targeting frequency being up-regulated by the use of an adeno-associated viral (AAV) backbone, a promoter-trap system, or a longer homology arm in a targeting vector, suggesting that this system accurately monitors H/R ratio. Thus, our HygR-5' EGFP reporter system will assist in the development of an efficient AAV-based gene targeting technology.

  16. Suppression of polyglutamine toxicity by a Drosophila homolog of myeloid leukemia factor 1.

    PubMed

    Kazemi-Esfarjani, Parsa; Benzer, Seymour

    2002-10-01

    The toxicity of an abnormally long polyglutamine [poly(Q)] tract within specific proteins is the molecular lesion shared by Huntington's disease (HD) and several other hereditary neurodegenerative disorders. By a genetic screen in Drosophila, devised to uncover genes that suppress poly(Q) toxicity, we discovered a Drosophila homolog of human myeloid leukemia factor 1 (MLF1). Expression of the Drosophila homolog (dMLF) ameliorates the toxicity of poly(Q) expressed in the eye and central nervous system. In the retina, whether endogenously or ectopically expressed, dMLF co-localized with aggregates, suggesting that dMLF alone, or through an intermediary molecular partner, may suppress toxicity by sequestering poly(Q) and/or its aggregates.

  17. The semaphorontic view of homology

    PubMed Central

    Assis, Leandro C.S.; Rieppel, Olivier

    2015-01-01

    ABSTRACT The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra‐organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter‐species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity—ontogenetic (through development) and phylogenetic (via shared evolutionary history)—break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (‐state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (‐states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 578–587, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and

  18. Molecular association of Arabidopsis RTH with its homolog RTE1 in regulating ethylene signaling.

    PubMed

    Zheng, Fangfang; Cui, Xiankui; Rivarola, Maximo; Gao, Ting; Chang, Caren; Dong, Chun-Hai

    2017-05-17

    The plant hormone ethylene affects many biological processes during plant growth and development. Ethylene is perceived by ethylene receptors at the endoplasmic reticulum (ER) membrane. The ETR1 ethylene receptor is positively regulated by the transmembrane protein RTE1, which localizes to the ER and Golgi apparatus. The RTE1 gene family is conserved in animals, plants, and lower eukaryotes. In Arabidopsis, RTE1-HOMOLOG (RTH) is the only homolog of the Arabidopsis RTE1 gene family. The regulatory function of the Arabidopsis RTH in ethylene signaling and plant growth is largely unknown. The present study shows Arabidopsis RTH gene expression patterns, protein co-localization with the ER and Golgi apparatus, and the altered ethylene response phenotype when RTH is knocked out or overexpressed in Arabidopsis. Compared with rte1 mutants, rth mutants exhibit less sensitivity to exogenous ethylene, while RTH overexpression confers ethylene hypersensitivity. Genetic analyses indicate that Arabidopsis RTH might not directly regulate the ethylene receptors. RTH can physically interact with RTE1, and evidence supports that RTH might act via RTE1 in regulating ethylene responses and signaling. The present study advances our understanding of the regulatory function of the Arabidopsis RTE1 gene family members in ethylene signaling. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Fivebranes and 3-manifold homology

    NASA Astrophysics Data System (ADS)

    Gukov, Sergei; Putrov, Pavel; Vafa, Cumrun

    2017-07-01

    Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that fivebrane compactifications provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N=2 theory T[ M 3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categorification of Chern-Simons partition function. Some of the new key elements include the explicit form of the S-transform and a novel connection between categorification and a previously mysterious role of Eichler integrals in Chern-Simons theory.

  20. Efficient Generation of Gene-Modified Pigs Harboring Precise Orthologous Human Mutation via CRISPR/Cas9-Induced Homology-Directed Repair in Zygotes.

    PubMed

    Zhou, Xiaoyang; Wang, Lulu; Du, Yinan; Xie, Fei; Li, Liang; Liu, Yu; Liu, Chuanhong; Wang, Shiqiang; Zhang, Shibing; Huang, Xingxu; Wang, Yong; Wei, Hong

    2016-01-01

    Precise genetic mutation of model animals is highly valuable for functional investigation of human mutations. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-induced homology-directed repair (HDR) is usually used for precise genetic mutation, being limited by the relatively low efficiency compared with that of non-homologous end joining (NHEJ). Although inhibition of NHEJ was shown to enhance HDR-derived mutation, in this work, without inhibition of NHEJ, we first generated gene-modified pigs harboring precise orthologous human mutation (Sox10 c.A325>T) via CRISPR/Cas9-induced HDR in zygotes using single-strand oligo DNA (ssODN) as template with an efficiency as high as 80%, indicating that pig zygotes exhibited high activities of HDR relative to NHEJ and were highly amendable to genetic mutation via CIRSPR/Cas9-induced HDR. Besides, we found a higher concentration of ssODN remarkably reduced HDR-derived mutation in pig zygotes, suggesting a possible balance for optimal HDR-derived mutation in zygotes between the excessive accessibility to HDR templates and the activities of HDR relative to NHEJ which appeared to be negatively correlated to ssODN concentration. In addition, the HDR-derived mutation, as well as those from NHEJ, extensively integrated into various tissues including gonad of founder pig without detected off-targeting, suggesting CRISPR/Cas9-induced HDR in zygotes is a reliable approach for precise genetic mutation in pigs. © 2015 WILEY PERIODICALS, INC.

  1. Signaling Lymphocytic Activation Molecule Family Receptor Homologs in New World Monkey Cytomegaloviruses.

    PubMed

    Pérez-Carmona, Natàlia; Farré, Domènec; Martínez-Vicente, Pablo; Terhorst, Cox; Engel, Pablo; Angulo, Ana

    2015-11-01

    Throughout evolution, large DNA viruses have been usurping genes from their hosts to equip themselves with proteins that restrain host immune defenses. Signaling lymphocytic activation molecule (SLAM) family (SLAMF) receptors are involved in the regulation of both innate and adaptive immunity, which occurs upon engagement with their ligands via homotypic or heterotypic interactions. Here we report a total of seven SLAMF genes encoded by the genomes of two cytomegalovirus (CMV) species, squirrel monkey CMV (SMCMV) and owl monkey CMV (OMCMV), that infect New World monkeys. Our results indicate that host genes were captured by retrotranscription at different stages of the CMV-host coevolution. The most recent acquisition led to S1 in SMCMV. S1 is a SLAMF6 homolog with an amino acid sequence identity of 97% to SLAMF6 in its ligand-binding N-terminal Ig domain. We demonstrate that S1 is a cell surface glycoprotein capable of binding to host SLAMF6. Furthermore, the OMCMV genome encodes A33, an LY9 (SLAMF3) homolog, and A43, a CD48 (SLAMF2) homolog, two soluble glycoproteins which recognize their respective cellular counterreceptors and thus are likely to be viral SLAMF decoy receptors. In addition, distinct copies of further divergent CD48 homologs were found to be encoded by both CMV genomes. Remarkably, all these molecules display a number of unique features, including cytoplasmic tails lacking characteristic SLAMF signaling motifs. Taken together, our findings indicate a novel immune evasion mechanism in which incorporation of host SLAMF receptors that retain their ligand-binding properties enables viruses to interfere with SLAMF functions and to supply themselves with convenient structural molds for expanding their immunomodulatory repertoires. The way in which viruses shape their genomes under the continual selective pressure exerted by the host immune system is central for their survival. Here, we report that New World monkey cytomegaloviruses have broadly

  2. Hox genes and chordate evolution.

    PubMed

    Holland, P W; Garcia-Fernàndez, J

    1996-02-01

    Hox genes are implicated in the control of axial patterning during embryonic development of many, perhaps all, animals. Here we review recent data on Hox gene diversity, genomic organization, and embryonic expression in chordates (including tunicates, amphioxus, hagfish, lampreys, teleosts) plus their putative sister group, the hemichordates. We consider the potential of comparative Hox gene data to resolve some outstanding controversies in chordate phylogeny. The use of Hox gene expression patterns to identify homologies between body plans both within the vertebrates and between the chordate subphyla is also discussed. Homology between the vertebrate hindbrain and an extensive region of amphioxus neural tube is suggested by comparison of Hox-3 homologues and strengthened by new data on amphioxus Hox-1 gene expression reported here. Finally, we give two examples of how Hox genes are giving glimpses into chordate developmental evolution. The first relates changes in Hox gene expression to transposition of vertebral of vertebral identities; the second describes a correlation between vertebrate origins and Hox gene cluster duplication. We suggest that the simultaneous duplication of many classes of genes, often interacting in gene networks, allowed the elaboration of new developmental control mechanisms at vertebrate origins.

  3. Sequence Exchange between Homologous NB-LRR Genes Converts Virus Resistance into Nematode Resistance, and Vice Versa1[OPEN

    PubMed Central

    Koropacka, Kamila; Roosien, Jan; Dees, Robert; Overmars, Hein; van Schaik, Casper; Pomp, Rikus; Bouwman, Liesbeth; Helder, Johannes; Bakker, Jaap; Smant, Geert

    2017-01-01

    Plants have evolved a limited repertoire of NB-LRR disease resistance (R) genes to protect themselves against myriad pathogens. This limitation is thought to be counterbalanced by the rapid evolution of NB-LRR proteins, as only a few sequence changes have been shown to be sufficient to alter resistance specificities toward novel strains of a pathogen. However, little is known about the flexibility of NB-LRR R genes to switch resistance specificities between phylogenetically unrelated pathogens. To investigate this, we created domain swaps between the close homologs Gpa2 and Rx1, which confer resistance in potato (Solanum tuberosum) to the cyst nematode Globodera pallida and Potato virus X, respectively. The genetic fusion of the CC-NB-ARC of Gpa2 with the LRR of Rx1 (Gpa2CN/Rx1L) results in autoactivity, but lowering the protein levels restored its specific activation response, including extreme resistance to Potato virus X in potato shoots. The reciprocal chimera (Rx1CN/Gpa2L) shows a loss-of-function phenotype, but exchange of the first three LRRs of Gpa2 by the corresponding region of Rx1 was sufficient to regain a wild-type resistance response to G. pallida in the roots. These data demonstrate that exchanging the recognition moiety in the LRR is sufficient to convert extreme virus resistance in the leaves into mild nematode resistance in the roots, and vice versa. In addition, we show that the CC-NB-ARC can operate independently of the recognition specificities defined by the LRR domain, either aboveground or belowground. These data show the versatility of NB-LRR genes to generate resistance to unrelated pathogens with completely different lifestyles and routes of invasion. PMID:28747428

  4. Streptomyces coelicolor encodes a urate-responsive transcriptional regulator with homology to PecS from plant pathogens.

    PubMed

    Huang, Hao; Mackel, Brian J; Grove, Anne

    2013-11-01

    Many transcriptional regulators control gene activity by responding to specific ligands. Members of the multiple-antibiotic resistance regulator (MarR) family of transcriptional regulators feature prominently in this regard, and they frequently function as repressors in the absence of their cognate ligands. Plant pathogens such as Dickeya dadantii encode a MarR homolog named PecS that controls expression of a gene encoding the efflux pump PecM in addition to other virulence genes. We report here that the soil bacterium Streptomyces coelicolor also encodes a PecS homolog (SCO2647) that regulates a pecM gene (SCO2646). S. coelicolor PecS, which exists as a homodimer, binds the intergenic region between pecS and pecM genes with high affinity. Several potential PecS binding sites were found in this intergenic region. The binding of PecS to its target DNA can be efficiently attenuated by the ligand urate, which also quenches the intrinsic fluorescence of PecS, indicating a direct interaction between urate and PecS. In vivo measurement of gene expression showed that activity of pecS and pecM genes is significantly elevated after exposure of S. coelicolor cultures to urate. These results indicate that S. coelicolor PecS responds to the ligand urate by attenuated DNA binding in vitro and upregulation of gene activity in vivo. Since production of urate is associated with generation of reactive oxygen species by xanthine dehydrogenase, we propose that PecS functions under conditions of oxidative stress.

  5. Streptomyces coelicolor Encodes a Urate-Responsive Transcriptional Regulator with Homology to PecS from Plant Pathogens

    PubMed Central

    Huang, Hao; Mackel, Brian J.

    2013-01-01

    Many transcriptional regulators control gene activity by responding to specific ligands. Members of the multiple-antibiotic resistance regulator (MarR) family of transcriptional regulators feature prominently in this regard, and they frequently function as repressors in the absence of their cognate ligands. Plant pathogens such as Dickeya dadantii encode a MarR homolog named PecS that controls expression of a gene encoding the efflux pump PecM in addition to other virulence genes. We report here that the soil bacterium Streptomyces coelicolor also encodes a PecS homolog (SCO2647) that regulates a pecM gene (SCO2646). S. coelicolor PecS, which exists as a homodimer, binds the intergenic region between pecS and pecM genes with high affinity. Several potential PecS binding sites were found in this intergenic region. The binding of PecS to its target DNA can be efficiently attenuated by the ligand urate, which also quenches the intrinsic fluorescence of PecS, indicating a direct interaction between urate and PecS. In vivo measurement of gene expression showed that activity of pecS and pecM genes is significantly elevated after exposure of S. coelicolor cultures to urate. These results indicate that S. coelicolor PecS responds to the ligand urate by attenuated DNA binding in vitro and upregulation of gene activity in vivo. Since production of urate is associated with generation of reactive oxygen species by xanthine dehydrogenase, we propose that PecS functions under conditions of oxidative stress. PMID:23995633

  6. DNA Repair: The Search for Homology.

    PubMed

    Haber, James E

    2018-05-01

    The repair of chromosomal double-strand breaks (DSBs) by homologous recombination is essential to maintain genome integrity. The key step in DSB repair is the RecA/Rad51-mediated process to match sequences at the broken end to homologous donor sequences that can be used as a template to repair the lesion. Here, in reviewing research about DSB repair, I consider the many factors that appear to play important roles in the successful search for homology by several homologous recombination mechanisms. See also the video abstract here: https://youtu.be/vm7-X5uIzS8. © 2018 WILEY Periodicals, Inc.

  7. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T; Huang, S; Zhao, XF

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs tomore » target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.« less

  8. Fivebranes and 3-manifold homology

    DOE PAGES

    Gukov, Sergei; Putrov, Pavel; Vafa, Cumrun

    2017-07-14

    Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that vebrane compacti cations provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N = 2 theory T[M 3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categori cation of Chern-Simons partition function.more » Finally, some of the new key elements include the explicit form of the S-transform and a novel connection between categori cation and a previously mysterious role of Eichler integrals in Chern-Simons theory.« less

  9. Identification and phylogenetic relationship of Iranian strains of various Leishmania species isolated from cutaneous and visceral cases of leishmaniasis based on N-acetylglucosamine-1-phosphate transferase gene.

    PubMed

    Hajjaran, Homa; Mohebali, Mehdi; Teimouri, Aref; Oshaghi, Mohammad Ali; Mirjalali, Hamed; Kazemi-Rad, Elham; Shiee, Mohammad Reza; Naddaf, Saied Reza

    2014-08-01

    The identity of Iranian Leishmania species has been resolved to some extent by some genetic markers. In this study, based on N-acetylglucosamine-1-phosphate transferase (nagt) gene, we further elucidated the identity and phylogeny of the prevalent species in this country. DNAs of 121 isolates belonging to cutaneous leishmaniasis (CL) patients, canine visceral leishmaniasis (CVL) cases, and Rhombomys opimus rodents were amplified by targeting a partial sequence of nagt gene. All the amplicons were analyzed with restriction fragment length polymorphism (RFLP) using Acc1 enzyme, and 49 amplicons representing different reservoir hosts were sequenced and aligned with similar sequences from GenBank database. The RFLP analysis revealed that 41 CL patients were infected Leishmania tropica and 36 with Leishmania major. Among 10 CVL isolates, 6 were identified as Leishmania infantum and 4 as L. tropica. Amongst 34 rodents' isolates, 11 and 23 isolates exhibited patterns similar to those of L. major, and L. tropica/Leishmania turanica, respectively. The sequencing results from all CL patients, CVL cases, and 4 reservoir rodents were in agreement with RFLP analysis and showed 99-100% homologies with the registered species of L. major, L. tropica, and L. infantum from Turkey, Tunisia, Iraq and Israel. Of the 7 rodent isolates exhibiting RFLP patterns similar to L. tropica/L. turanica, 3 exhibited the highest homologies (99-100%) with L. turanica and 4 with Leishmania gerbilli. The 49 nagt DNA sequences were grouped into five clusters representing L. major, L. tropica, L. infantum, L. turanica and L. gerbilli species, encompassing 19 haplotypes. No correlation was observed between intraspecies divergence and geographic distribution of haplotypes. The L. tropica haplotypes exhibited more homologies with those of L. infantum than L. major (97.2% vs. 96.9%), a probable indication to the potential ability of L. tropica to visceralize. Characterization of Iranian Leishmania isolates

  10. Detection of novel recombinases in bacteriophage genomes unveils Rad52, Rad51 and Gp2.5 remote homologs

    PubMed Central

    Lopes, Anne; Amarir-Bouhram, Jihane; Faure, Guilhem; Petit, Marie-Agnès; Guerois, Raphaël

    2010-01-01

    Homologous recombination is a key in contributing to bacteriophages genome repair, circularization and replication. No less than six kinds of recombinase genes have been reported so far in bacteriophage genomes, two (UvsX and Gp2.5) from virulent, and four (Sak, Redβ, Erf and Sak4) from temperate phages. Using profile–profile comparisons, structure-based modelling and gene-context analyses, we provide new views on the global landscape of recombinases in 465 bacteriophages. We show that Sak, Redβ and Erf belong to a common large superfamily adopting a shortcut Rad52-like fold. Remote homologs of Sak4 are predicted to adopt a shortcut Rad51/RecA fold and are discovered widespread among phage genomes. Unexpectedly, within temperate phages, gene-context analyses also pinpointed the presence of distant Gp2.5 homologs, believed to be restricted to virulent phages. All in all, three major superfamilies of phage recombinases emerged either related to Rad52-like, Rad51-like or Gp2.5-like proteins. For two newly detected recombinases belonging to the Sak4 and Gp2.5 families, we provide experimental evidence of their recombination activity in vivo. Temperate versus virulent lifestyle together with the importance of genome mosaicism is discussed in the light of these novel recombinases. Screening for these recombinases in genomes can be performed at http://biodev.extra.cea.fr/virfam. PMID:20194117

  11. Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucks, Michelle A.; O'Regan, Kevin J.; Murphy, Michael A.

    2007-05-10

    The assembly of the tegument of herpes simplex virus type 1 (HSV-1) is a complex process that involves a number of events at various sites within virus-infected cells. Our studies focused on determining whether tegument proteins, VP1/2 and UL37, are added to capsids located within the nucleus. Capsids were isolated from the nuclear fraction of HSV-1-infected cells and purified by rate-zonal centrifugation to separate B capsids (containing the scaffold proteins and no viral DNA) and C capsids (containing DNA and no scaffold proteins). Western blot analyses of these capsids indicated that VP1/2 associated primarily with C capsids and UL37 associatedmore » with B and C capsids. The results demonstrate that at least two of the tegument proteins of HSV-1 are associated with capsids isolated from the nuclear fraction, and these capsid-tegument protein interactions may represent initial events of the tegumentation process.« less

  12. Methylation Analysis of DNA Mismatch Repair Genes Using DNA Derived from the Peripheral Blood of Patients with Endometrial Cancer: Epimutation in Endometrial Carcinogenesis.

    PubMed

    Takeda, Takashi; Banno, Kouji; Yanokura, Megumi; Adachi, Masataka; Iijima, Moito; Kunitomi, Haruko; Nakamura, Kanako; Iida, Miho; Nogami, Yuya; Umene, Kiyoko; Masuda, Kenta; Kobayashi, Yusuke; Yamagami, Wataru; Hirasawa, Akira; Tominaga, Eiichiro; Susumu, Nobuyuki; Aoki, Daisuke

    2016-10-14

    Germline mutation of DNA mismatch repair (MMR) genes is a cause of Lynch syndrome. Methylation of MutL homolog 1 ( MLH1 ) and MutS homolog 2 ( MSH2 ) has been detected in peripheral blood cells of patients with colorectal cancer. This methylation is referred to as epimutation. Methylation of these genes has not been studied in an unselected series of endometrial cancer cases. Therefore, we examined methylation of MLH1 , MSH2 , and MSH6 promoter regions of peripheral blood cells in 206 patients with endometrial cancer using a methylation-specific polymerase chain reaction (MSP). Germline mutation of MMR genes, microsatellite instability (MSI), and immunohistochemistry (IHC) were also analyzed in each case with epimutation. MLH1 epimutation was detected in a single patient out of a total of 206 (0.49%)-1 out of 58 (1.72%) with an onset age of less than 50 years. The patient with MLH1 epimutation showed high level MSI (MSI-H), loss of MLH1 expression and had developed endometrial cancer at 46 years old, complicated with colorectal cancer. No case had epimutation of MSH2 or MSH6 . The MLH1 epimutation detected in a patient with endometrial cancer may be a cause of endometrial carcinogenesis. This result indicates that it is important to check epimutation in patients with endometrial cancer without a germline mutation of MMR genes.

  13. Production and Its Anti-hyperglycemic Effects of γ-Aminobutyric Acid from the Wild Yeast Strain Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1.

    PubMed

    Han, Sang-Min; Lee, Jong-Soo

    2017-09-01

    This study was done to produce γ-aminobutyric acid (GABA) from wild yeast as well as investigate its anti-hyperglycemic effects. Among ten GABA-producing yeast strains, Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1 produced high GABA concentration of 134.4 µg/mL and 179.2 µg/mL, respectively. P. silvicola UL6-1 showed a maximum GABA yield of 136.5 µg/mL and 200.8 µg/mL from S. carnicolor 402-JB-1 when they were cultured for 30 hr at 30℃ in yeast extract-peptone-dextrose medium. The cell-free extract from P. silvicola UL6-1 and S. carnicolor 402-JB-1 showed very high anti-hyperglycemic α-glucosidase inhibitory activity of 72.3% and 69.9%, respectively. Additionally, their cell-free extract-containing GABA showed the anti-hyperglycemic effect in streptozotocin-induced diabetic Sprague-Dawley rats.

  14. Genetic stability of gene targeted immunoglobulin loci. I. Heavy chain isotype exchange induced by a universal gene replacement vector.

    PubMed Central

    Kardinal, C; Selmayr, M; Mocikat, R

    1996-01-01

    Gene targeting at the immunoglobulin loci of B cells is an efficient tool for studying immunoglobulin expression or generating chimeric antibodies. We have shown that vector integration induced by human immunoglobulin G1 (IgG1) insertion vectors results in subsequent vector excision mediated by the duplicated target sequence, whereas replacement events which could be induced by the same constructs remain stable. We could demonstrate that the distribution of the vector homology strongly influences the genetic stability obtained. To this end we developed a novel type of a heavy chain replacement vector making use of the heavy chain class switch recombination sequence. Despite the presence of a two-sided homology this construct is universally applicable irrespective of the constant gene region utilized by the B cell. In comparison to an integration vector the frequency of stable incorporation was strongly increased, but we still observed vector excision, although at a markedly reduced rate. The latter events even occurred with circular constructs. Linearization of the construct at various sites and the comparison with an integration vector that carries the identical homology sequence, but differs in the distribution of homology, revealed the following features of homologous recombination of immunoglobulin genes: (i) the integration frequency is only determined by the length of the homology flank where the cross-over takes place; (ii) a 5' flank that does not meet the minimum requirement of homology length cannot be complemented by a sufficient 3' flank; (iii) free vector ends play a role for integration as well as for replacement targeting; (iv) truncating recombination events are suppressed in the presence of two flanks. Furthermore, we show that the switch region that was used as 3' flank is non-functional in an inverted orientation. Images Figure 2 PMID:8958041

  15. Genetic stability of gene targeted immunoglobulin loci. I. Heavy chain isotype exchange induced by a universal gene replacement vector.

    PubMed

    Kardinal, C; Selmayr, M; Mocikat, R

    1996-11-01

    Gene targeting at the immunoglobulin loci of B cells is an efficient tool for studying immunoglobulin expression or generating chimeric antibodies. We have shown that vector integration induced by human immunoglobulin G1 (IgG1) insertion vectors results in subsequent vector excision mediated by the duplicated target sequence, whereas replacement events which could be induced by the same constructs remain stable. We could demonstrate that the distribution of the vector homology strongly influences the genetic stability obtained. To this end we developed a novel type of a heavy chain replacement vector making use of the heavy chain class switch recombination sequence. Despite the presence of a two-sided homology this construct is universally applicable irrespective of the constant gene region utilized by the B cell. In comparison to an integration vector the frequency of stable incorporation was strongly increased, but we still observed vector excision, although at a markedly reduced rate. The latter events even occurred with circular constructs. Linearization of the construct at various sites and the comparison with an integration vector that carries the identical homology sequence, but differs in the distribution of homology, revealed the following features of homologous recombination of immunoglobulin genes: (i) the integration frequency is only determined by the length of the homology flank where the cross-over takes place; (ii) a 5' flank that does not meet the minimum requirement of homology length cannot be complemented by a sufficient 3' flank; (iii) free vector ends play a role for integration as well as for replacement targeting; (iv) truncating recombination events are suppressed in the presence of two flanks. Furthermore, we show that the switch region that was used as 3' flank is non-functional in an inverted orientation.

  16. High-efficiency transformation of Pichia stipitis based on its URA3 gene and a homologous autonomous replication sequence, ARS2.

    PubMed Central

    Yang, V W; Marks, J A; Davis, B P; Jeffries, T W

    1994-01-01

    This paper describes the first high-efficiency transformation system for the xylose-fermenting yeast Pichia stipitis. The system includes integrating and autonomously replicating plasmids based on the gene for orotidine-5'-phosphate decarboxylase (URA3) and an autonomous replicating sequence (ARS) element (ARS2) isolated from P. stipitis CBS 6054. Ura- auxotrophs were obtained by selecting for resistance to 5-fluoroorotic acid and were identified as ura3 mutants by transformation with P. stipitis URA3. P. stipitis URA3 was cloned by its homology to Saccharomyces cerevisiae URA3, with which it is 69% identical in the coding region. P. stipitis ARS elements were cloned functionally through plasmid rescue. These sequences confer autonomous replication when cloned into vectors bearing the P. stipitis URA3 gene. P. stipitis ARS2 has features similar to those of the consensus ARS of S. cerevisiae and other ARS elements. Circular plasmids bearing the P. stipitis URA3 gene with various amounts of flanking sequences produced 600 to 8,600 Ura+ transformants per micrograms of DNA by electroporation. Most transformants obtained with circular vectors arose without integration of vector sequences. One vector yielded 5,200 to 12,500 Ura+ transformants per micrograms of DNA after it was linearized at various restriction enzyme sites within the P. stipitis URA3 insert. Transformants arising from linearized vectors produced stable integrants, and integration events were site specific for the genomic ura3 in 20% of the transformants examined. Plasmids bearing the P. stipitis URA3 gene and ARS2 element produced more than 30,000 transformants per micrograms of plasmid DNA. Autonomously replicating plasmids were stable for at least 50 generations in selection medium and were present at an average of 10 copies per nucleus. Images PMID:7811063

  17. Alcohol homologation

    DOEpatents

    Wegman, Richard W.; Moloy, Kenneth G.

    1988-01-01

    A process for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  18. Y chromosome of D. pseudoobscura is not homologous to the ancestral Drosophila Y.

    PubMed

    Carvalho, Antonio Bernardo; Clark, Andrew G

    2005-01-07

    We report a genome-wide search of Y-linked genes in Drosophila pseudoobscura. All six identifiable orthologs of the D. melanogaster Y-linked genes have autosomal inheritance in D. pseudoobscura. Four orthologs were investigated in detail and proved to be Y-linked in D. guanche and D. bifasciata, which shows that less than 18 million years ago the ancestral Drosophila Y chromosome was translocated to an autosome in the D. pseudoobscura lineage. We found 15 genes and pseudogenes in the current Y of D. pseudoobscura, and none are shared with the D. melanogaster Y. Hence, the Y chromosome in the D. pseudoobscura lineage appears to have arisen de novo and is not homologous to the D. melanogaster Y.

  19. Eye evolution at high resolution: the neuron as a unit of homology.

    PubMed

    Erclik, Ted; Hartenstein, Volker; McInnes, Roderick R; Lipshitz, Howard D

    2009-08-01

    Based on differences in morphology, photoreceptor-type usage and lens composition it has been proposed that complex eyes have evolved independently many times. The remarkable observation that different eye types rely on a conserved network of genes (including Pax6/eyeless) for their formation has led to the revised proposal that disparate complex eye types have evolved from a shared and simpler prototype. Did this ancestral eye already contain the neural circuitry required for image processing? And what were the evolutionary events that led to the formation of complex visual systems, such as those found in vertebrates and insects? The recent identification of unexpected cell-type homologies between neurons in the vertebrate and Drosophila visual systems has led to two proposed models for the evolution of complex visual systems from a simple prototype. The first, as an extension of the finding that the neurons of the vertebrate retina share homologies with both insect (rhabdomeric) and vertebrate (ciliary) photoreceptor cell types, suggests that the vertebrate retina is a composite structure, made up of neurons that have evolved from two spatially separate ancestral photoreceptor populations. The second model, based largely on the conserved role for the Vsx homeobox genes in photoreceptor-target neuron development, suggests that the last common ancestor of vertebrates and flies already possessed a relatively sophisticated visual system that contained a mixture of rhabdomeric and ciliary photoreceptors as well as their first- and second-order target neurons. The vertebrate retina and fly visual system would have subsequently evolved by elaborating on this ancestral neural circuit. Here we present evidence for these two cell-type homology-based models and discuss their implications.

  20. Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes.

    PubMed

    De Feyter, R; Yang, Y; Gabriel, D W

    1993-01-01

    Six plasmid-borne avirulence (avr) genes were previously cloned from strain XcmH of the cotton pathogen, Xanthomonas campestris pv. malvacearum. We have now localized all six avr genes on the cloned fragments by subcloning and Tn5-gusA insertional mutagenesis. None of these avr genes appeared to exhibit exclusively gene-for-gene patterns of interactions with cotton R genes, and avrB4 was demonstrated to confer avr gene-for-R genes (plural) avirulence to X. c. pv. malvacearum on congenic cotton lines carrying either of two different resistance loci, B1 or B4. Furthermore, the B1 locus appeared to confer R gene-for-avr genes resistance to cotton against isogenic X. c. pv. malvacearum strains carrying any one of three avr genes: avrB4, avrb6, or avrB102. Restriction enzyme, Southern blot hybridization, and DNA sequence analyses showed that the XcmH avr genes are all highly similar to each other, to avrBs3 and avrBsP from the pepper pathogen X. c. pv. vesicatoria, and to the host-specific virulence gene pthA from the citrus pathogen X. citri. The XcmH avr genes differed primarily in the multiplicity of a tandemly repeated 102-base pair motif within the central portions of the genes, repeated from 14 to 23 times in members of this gene family. The complete nucleotide sequence of avrb6 revealed that it is 97% identical in DNA sequence to avrB4, avrBs3, avrBsP, and pthA and that 62-bp inverted terminal repeats mark the boundaries of homology between avrb6 and all members of this Xanthomonas virulence/avirulence gene family sequenced to date. The terminal 38 bp of both inverted repeats are highly similar to the 38-bp consensus terminal sequence of the Tn3 family of transposons. Up to 11 members of the avr gene family appear to be present in North American strains of X. c. pv. malvacearum, including XcmH. The high level of homology observed among these avr genes and their presence in multiple copies may explain the gene-for-genes interactions and also the observed high

  1. Identification and characterization of amelogenin genes in monotremes, reptiles, and amphibians

    PubMed Central

    Toyosawa, Satoru; O’hUigin, Colm; Figueroa, Felipe; Tichy, Herbert; Klein, Jan

    1998-01-01

    Two features make the tooth an excellent model in the study of evolutionary innovations: the relative simplicity of its structure and the fact that the major tooth-forming genes have been identified in eutherian mammals. To understand the nature of the innovation at the molecular level, it is necessary to identify the homologs of tooth-forming genes in other vertebrates. As a first step toward this goal, homologs of the eutherian amelogenin gene have been cloned and characterized in selected species of monotremes (platypus and echidna), reptiles (caiman), and amphibians (African clawed toad). Comparisons of the homologs reveal that the amelogenin gene evolves quickly in the repeat region, in which numerous insertions and deletions have obliterated any similarity among the genes, and slowly in other regions. The gene organization, the distribution of hydrophobic and hydrophilic segments in the encoded protein, and several other features have been conserved throughout the evolution of the tetrapod amelogenin gene. Clones corresponding to one locus only were found in caiman, whereas the clawed toad possesses at least two amelogenin-encoding loci. PMID:9789040

  2. Alcohol homologation

    DOEpatents

    Wegman, R.W.; Moloy, K.G.

    1988-02-23

    A process is described for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  3. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebrun, Marielle; Thelen, Nicolas; Thiry, Marc

    2014-04-15

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond tomore » capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.« less

  4. Pleckstrin homology domain-interacting protein (PHIP) as a marker and mediator of melanoma metastasis

    PubMed Central

    De Semir, David; Nosrati, Mehdi; Bezrookove, Vladimir; Dar, Altaf A.; Federman, Scot; Bienvenu, Geraldine; Venna, Suraj; Rangel, Javier; Climent, Joan; Meyer Tamgüney, Tanja M.; Thummala, Suresh; Tong, Schuyler; Leong, Stanley P. L.; Haqq, Chris; Billings, Paul; Miller, James R.; Sagebiel, Richard W.; Debs, Robert; Kashani-Sabet, Mohammed

    2012-01-01

    Although melanomas with mutant v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) can now be effectively targeted, there is no molecular target for most melanomas expressing wild-type BRAF. Here, we show that the activation of Pleckstrin homology domain-interacting protein (PHIP), promotes melanoma metastasis, can be used to classify a subset of primary melanomas, and is a prognostic biomarker for melanoma. Systemic, plasmid-based shRNA targeting of Phip inhibited the metastatic progression of melanoma, whereas stable suppression of Phip in melanoma cell lines suppressed metastatic potential and prolonged the survival of tumor-bearing mice. The human PHIP gene resides on 6q14.1, and although 6q loss has been observed in melanoma, the PHIP locus was preserved in melanoma cell lines and patient samples, and its overexpression was an independent adverse predictor of survival in melanoma patients. In addition, a high proportion of PHIP-overexpressing melanomas harbored increased PHIP copy number. PHIP-overexpressing melanomas include tumors with wild-type BRAF, neuroblastoma RAS viral (v-ras) oncogene homolog, and phosphatase and tensin homolog, demonstrating PHIP activation in triple-negative melanoma. These results describe previously unreported roles for PHIP in predicting and promoting melanoma metastasis, and in the molecular classification of melanoma. PMID:22511720

  5. Production and Its Anti-hyperglycemic Effects of γ-Aminobutyric Acid from the Wild Yeast Strain Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1

    PubMed Central

    Han, Sang-Min

    2017-01-01

    This study was done to produce γ-aminobutyric acid (GABA) from wild yeast as well as investigate its anti-hyperglycemic effects. Among ten GABA-producing yeast strains, Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1 produced high GABA concentration of 134.4 µg/mL and 179.2 µg/mL, respectively. P. silvicola UL6-1 showed a maximum GABA yield of 136.5 µg/mL and 200.8 µg/mL from S. carnicolor 402-JB-1 when they were cultured for 30 hr at 30℃ in yeast extract-peptone-dextrose medium. The cell-free extract from P. silvicola UL6-1 and S. carnicolor 402-JB-1 showed very high anti-hyperglycemic α-glucosidase inhibitory activity of 72.3% and 69.9%, respectively. Additionally, their cell-free extract-containing GABA showed the anti-hyperglycemic effect in streptozotocin-induced diabetic Sprague-Dawley rats. PMID:29138625

  6. Downregulation of Homologous Recombination DNA Repair Genes by HDAC Inhibition in Prostate Cancer Is Mediated through the E2F1 Transcription Factor

    PubMed Central

    Kachhap, Sushant K.; Rosmus, Nadine; Collis, Spencer J.; Kortenhorst, Madeleine S. Q.; Wissing, Michel D.; Hedayati, Mohammad; Shabbeer, Shabana; Mendonca, Janet; Deangelis, Justin; Marchionni, Luigi; Lin, Jianqing; Höti, Naseruddin; Nortier, Johan W. R.; DeWeese, Theodore L.; Hammers, Hans; Carducci, Michael A.

    2010-01-01

    Background Histone deacetylase inhibitors (HDACis) re-express silenced tumor suppressor genes and are currently undergoing clinical trials. Although HDACis have been known to induce gene expression, an equal number of genes are downregulated upon HDAC inhibition. The mechanism behind this downregulation remains unclear. Here we provide evidence that several DNA repair genes are downregulated by HDAC inhibition and provide a mechanism involving the E2F1 transcription factor in the process. Methodology/Principal Findings Applying Analysis of Functional Annotation (AFA) on microarray data of prostate cancer cells treated with HDACis, we found a number of genes of the DNA damage response and repair pathways are downregulated by HDACis. AFA revealed enrichment of homologous recombination (HR) DNA repair genes of the BRCA1 pathway, as well as genes regulated by the E2F1 transcription factor. Prostate cancer cells demonstrated a decreased DNA repair capacity and an increased sensitization to chemical- and radio-DNA damaging agents upon HDAC inhibition. Recruitment of key HR repair proteins to the site of DNA damage, as well as HR repair capacity was compromised upon HDACi treatment. Based on our AFA data, we hypothesized that the E2F transcription factors may play a role in the downregulation of key repair genes upon HDAC inhibition in prostate cancer cells. ChIP analysis and luciferase assays reveal that the downregulation of key repair genes is mediated through decreased recruitment of the E2F1 transcription factor and not through active repression by repressive E2Fs. Conclusions/Significance Our study indicates that several genes in the DNA repair pathway are affected upon HDAC inhibition. Downregulation of the repair genes is on account of a decrease in amount and promoter recruitment of the E2F1 transcription factor. Since HDAC inhibition affects several pathways that could potentially have an impact on DNA repair, compromised DNA repair upon HDAC inhibition could

  7. Expression and phylogenetic analysis of the zic gene family in the evolution and development of metazoans

    PubMed Central

    2010-01-01

    Background zic genes are members of the gli/glis/nkl/zic super-family of C2H2 zinc finger (ZF) transcription factors. Homologs of the zic family have been implicated in patterning neural and mesodermal tissues in bilaterians. Prior to this study, the origin of the metazoan zic gene family was unknown and expression of zic gene homologs during the development of early branching metazoans had not been investigated. Results Phylogenetic analyses of novel zic candidate genes identified a definitive zic homolog in the placozoan Trichoplax adhaerens, two gli/glis/nkl-like genes in the ctenophore Mnemiopsis leidyi, confirmed the presence of three gli/glis/nkl-like genes in Porifera, and confirmed the five previously identified zic genes in the cnidarian Nematostella vectensis. In the cnidarian N. vectensis, zic homologs are expressed in ectoderm and the gastrodermis (a bifunctional endomesoderm), in presumptive and developing tentacles, and in oral and sensory apical tuft ectoderm. The Capitella teleta zic homolog (Ct-zic) is detectable in a subset of the developing nervous system, the foregut, and the mesoderm associated with the segmentally repeated chaetae. Lastly, expression of gli and glis homologs in Mnemiopsis. leidyi is detected exclusively in neural cells in floor of the apical organ. Conclusions Based on our analyses, we propose that the zic gene family arose in the common ancestor of the Placozoa, Cnidaria and Bilateria from a gli/glis/nkl-like gene and that both ZOC and ZF-NC domains evolved prior to cnidarian-bilaterian divergence. We also conclude that zic expression in neural ectoderm and developing neurons is pervasive throughout the Metazoa and likely evolved from neural expression of an ancestral gli/glis/nkl/zic gene. zic expression in bilaterian mesoderm may be related to the expression in the gastrodermis of a cnidarian-bilaterian common ancestor. PMID:21054859

  8. Analysis by RNA-RNA hybridization assay of intertypic rotaviruses suggests that gene reassortment occurs in vivo.

    PubMed Central

    Midthun, K; Valdesuso, J; Hoshino, Y; Flores, J; Kapikian, A Z; Chanock, R M

    1987-01-01

    Antigenic characterization of human and animal rotaviruses by the plaque reduction neutralization assay has shown the existence of naturally occurring intertypes. Antiserum to M37, a rotavirus strain isolated from an asymptomatic neonate, neutralizes both Wa and ST3 strains, which are classified as serotype 1 and serotype 4 human rotaviruses, respectively. Likewise, antiserum to SB-1A, a porcine rotavirus, neutralizes rotavirus strains belonging to serotype 4 or 5. Plaque reduction neutralization assay of reassortant rotaviruses produced in vitro from these intertypes indicates that these viruses share one antigenically related outer capsid protein, VP3, with one serotype and another antigenically related outer capsid protein, VP7, with the other serotype. Thus, M37 is related to ST3 on the basis of its fourth-gene product, VP3, and to Wa on the basis of its ninth-gene product, VP7, whereas SB-1A is related to Gottfried (serotype 4 porcine rotavirus) via VP7 and to OSU (serotype 5 porcine rotavirus) via VP3. RNA-RNA hybridization studies revealed a high degree of homology between the VP3 or VP7 gene segments responsible for shared serotype specificity. Thus, the fourth gene segments of M37 and ST3 were highly homologous, while M37 and Wa had homology between their ninth gene segments. SB-1A and Gottfried were homologous not only with respect to the ninth gene but had complete homology in all other genes except the fourth gene. The fourth gene of SB-1A was highly homologous with the fourth gene of OSU. These observations suggested that SB-1A was a naturally occurring reassortant between Gottfried-like and OSU-like porcine rotavirus strains. Our observations also suggested that intertypes may result from genetic reassortment in nature. Images PMID:3029162

  9. Analysis of eight out genes in a cluster required for pectic enzyme secretion by Erwinia chrysanthemi: sequence comparison with secretion genes from other gram-negative bacteria.

    PubMed Central

    Lindeberg, M; Collmer, A

    1992-01-01

    Many extracellular proteins produced by Erwinia chrysanthemi require the out gene products for transport across the outer membrane. In a previous report (S. Y. He, M. Lindeberg, A. K. Chatterjee, and A. Collmer, Proc. Natl. Acad. Sci. USA 88:1079-1083, 1991) cosmid pCPP2006, sufficient for secretion of Erwinia chrysanthemi extracellular proteins by Escherichia coli, was partially sequenced, revealing four out genes sharing high homology with pulH through pulK from Klebsiella oxytoca. The nucleotide sequence of eight additional out genes reveals homology with pulC through pulG, pulL, pulM, pulO, and other genes involved in secretion by various gram-negative bacteria. Although signal sequences and hydrophobic regions are generally conserved between Pul and Out proteins, four out genes contain unique inserts, a pulN homolog is not present, and outO appears to be transcribed separately from outC through outM. The sequenced region was subcloned, and an additional 7.6-kb region upstream was identified as being required for secretion in E. coli. out gene homologs were found on Erwinia carotovora cosmid clone pAKC651 but were not detected in E. coli. The outC-through-outM operon is weakly induced by polygalacturonic acid and strongly expressed in the early stationary phase. The out and pul genes are highly similar in sequence, hydropathic properties, and overall arrangement but differ in both transcriptional organization and the nature of their induction. Images PMID:1429461

  10. Molecular characterization of a novel ovary-specific gene fem-1 homolog from the oriental river prawn, Macrobrachium nipponense.

    PubMed

    Ma, Ke-Yi; Liu, Zhi-Qiang; Lin, Jing-Yun; Li, Jia-Le; Qiu, Gao-Feng

    2016-01-10

    The feminization-1 (fem-1) gene is characterized by one of the most common protein-protein interaction motifs, ankyrin repeat motifs, displays many expression patterns in vertebrates and invertebrates, and plays an essential role in the sex-determination/differentiation pathway in Caenorhabditis elegans. In this study, a fem-1 homolog, designated as Mnfem-1, was first cloned from the oriental river prawn Macrobrachium nipponense. The prawn Mnfem-1 gene consists of six exons and five introns. The full-length cDNA (2603bp) of Mnfem-1 contains an open reading frame (ORF) encoding a protein of 622 amino acids. The Mnfem-1 RNA and protein are exclusively expressed in the ovary in adult prawns as revealed by RT-PCR and immunofluorescence analysis, respectively. In situ hybridization results showed that strong positive signals were concentrated at the edge of the previtellogenic and vitellogenic oocyte. During embryogenesis, Mnfem-1 is highly expressed in both unfertilized eggs and embryos at cleavage stage and thereafter dropped to a low level from blastula to zoea, indicating that the Mnfem-1 in early embryos is maternal. After hatching, the Mnfem-1 expression significantly increased in the larvae at length of 2cm, an important stage of sex differentiation. Yeast two hybridization results showed that the Mnfem-1 protein can be potentially interactive with cathepsin L and proteins containing the domains of insulinase, ankyrin or ubiquitin. Our results suggested that Mnfem-1 could have roles in prawn ovarian development and sex determination/differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Pea VEGETATIVE2 Is an FD Homolog That Is Essential for Flowering and Compound Inflorescence Development

    PubMed Central

    Sussmilch, Frances C.; Berbel, Ana; Hecht, Valérie; Vander Schoor, Jacqueline K.; Ferrándiz, Cristina; Madueño, Francisco; Weller, James L.

    2015-01-01

    As knowledge of the gene networks regulating inflorescence development in Arabidopsis thaliana improves, the current challenge is to characterize this system in different groups of crop species with different inflorescence architecture. Pea (Pisum sativum) has served as a model for development of the compound raceme, characteristic of many legume species, and in this study, we characterize the pea VEGETATIVE2 (VEG2) locus, showing that it is critical for regulation of flowering and inflorescence development and identifying it as a homolog of the bZIP transcription factor FD. Through detailed phenotypic characterizations of veg2 mutants, expression analyses, and the use of protein-protein interaction assays, we find that VEG2 has important roles during each stage of development of the pea compound inflorescence. Our results suggest that VEG2 acts in conjunction with multiple FLOWERING LOCUS T (FT) proteins to regulate expression of downstream target genes, including TERMINAL FLOWER1, LEAFY, and MADS box homologs, and to facilitate cross-regulation within the FT gene family. These findings further extend our understanding of the mechanisms underlying compound inflorescence development in pea and may have wider implications for future manipulation of inflorescence architecture in related legume crop species. PMID:25804541

  12. Evolving the Concept of Homology

    ERIC Educational Resources Information Center

    Naples, Virginia L.; Miller, Jon S.

    2009-01-01

    Understanding homology is fundamental to learning about evolution. The present study shows an exercise that can be varied in complexity, for which students compile research illustrating the fate of homologous fish skull elements, and assemble a mural to serve as a learning aid. The skull of the most primitive living Actinopterygian (bony fish),…

  13. Cloning and characterization of the ddc homolog encoding L-2,4-diaminobutyrate decarboxylase in Enterobacter aerogenes.

    PubMed

    Yamamoto, S; Mutoh, N; Tsuzuki, D; Ikai, H; Nakao, H; Shinoda, S; Narimatsu, S; Miyoshi, S I

    2000-05-01

    L-2,4-diaminobutyrate decarboxylase (DABA DC) catalyzes the formation of 1,3-diaminopropane (DAP) from DABA. In the present study, the ddc gene encoding DABA DC from Enterobacter aerogenes ATCC 13048 was cloned and characterized. Determination of the nucleotide sequence revealed an open reading frame of 1470 bp encoding a 53659-Da protein of 490 amino acids, whose deduced NH2-terminal sequence was identical to that of purified DABA DC from E. aerogenes. The deduced amino acid sequence was highly similar to those of Acinetobacter baumannii and Haemophilus influenzae DABA DCs encoded by the ddc genes. The lysine-307 of the E. aerogenes DABA DC was identified as the pyridoxal 5'-phosphate binding residue by site-directed mutagenesis. Furthermore, PCR analysis revealed the distribution of E. aerogenes ddc homologs in some other species of Enterobacteriaceae. Such a relatively wide occurrence of the ddc homologs implies biological significance of DABA DC and its product DAP.

  14. Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila.

    PubMed

    David, Sophia; Sánchez-Busó, Leonor; Harris, Simon R; Marttinen, Pekka; Rusniok, Christophe; Buchrieser, Carmen; Harrison, Timothy G; Parkhill, Julian

    2017-06-01

    Legionella pneumophila is an environmental bacterium and the causative agent of Legionnaires' disease. Previous genomic studies have shown that recombination accounts for a high proportion (>96%) of diversity within several major disease-associated sequence types (STs) of L. pneumophila. This suggests that recombination represents a potentially important force shaping adaptation and virulence. Despite this, little is known about the biological effects of recombination in L. pneumophila, particularly with regards to homologous recombination (whereby genes are replaced with alternative allelic variants). Using newly available population genomic data, we have disentangled events arising from homologous and non-homologous recombination in six major disease-associated STs of L. pneumophila (subsp. pneumophila), and subsequently performed a detailed characterisation of the dynamics and impact of homologous recombination. We identified genomic "hotspots" of homologous recombination that include regions containing outer membrane proteins, the lipopolysaccharide (LPS) region and Dot/Icm effectors, which provide interesting clues to the selection pressures faced by L. pneumophila. Inference of the origin of the recombined regions showed that isolates have most frequently imported DNA from isolates belonging to their own clade, but also occasionally from other major clades of the same subspecies. This supports the hypothesis that the possibility for horizontal exchange of new adaptations between major clades of the subspecies may have been a critical factor in the recent emergence of several clinically important STs from diverse genomic backgrounds. However, acquisition of recombined regions from another subspecies, L. pneumophila subsp. fraseri, was rarely observed, suggesting the existence of a recombination barrier and/or the possibility of ongoing speciation between the two subspecies. Finally, we suggest that multi-fragment recombination may occur in L. pneumophila

  15. Role of Flightless-I (Drosophila) homolog in the transcription activation of type I collagen gene mediated by transforming growth factor beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Mi-Sun; Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    Highlights: • FLII activates TGFβ-mediated expression of COL1A2 gene. • TGFβ induces the association of FLII with SMAD3 and BRG1 in A549 cells. • FLII is required for the recruitment of SWI/SNF complex and chromatin accessibility to COL1A2 promoter. - Abstract: Flightless-I (Drosophila) homolog (FLII) is a nuclear receptor coactivator that is known to interact with other transcriptional regulators such as the SWI/SNF complex, an ATP-dependent chromatin-remodeling complex, at the promoter or enhancer region of estrogen receptor (ER)-α target genes. However, little is known about the role of FLII during transcription initiation in the transforming growth factor beta (TGFβ)/SMAD-dependent signalingmore » pathway. Here, we demonstrate that FLII functions as a coactivator in the expression of type I collagen gene induced by TGFβ in A549 cells. FLII activates the reporter gene driven by COL1A2 promoter in a dose-dependent manner. Co-expression of GRIP1, CARM1, or p300 did not show any synergistic activation of transcription. Furthermore, the level of COL1A2 expression correlated with the endogenous level of FLII mRNA level. Depletion of FLII resulted in a reduction of TGFβ-induced expression of COL1A2 gene. In contrast, over-expression of FLII caused an increase in the endogenous expression of COL1A2. We also showed that FLII is associated with Brahma-related gene 1 (BRG1) as well as SMAD in A549 cells. Notably, the recruitment of BRG1 to the COL1A2 promoter region was decreased in FLII-depleted A549 cells, suggesting that FLII is required for TGFβ-induced chromatin remodeling, which is carried out by the SWI/SNF complex. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments revealed that depletion of FLII caused a reduction in chromatin accessibility at the COL1A2 promoter. These results suggest that FLII plays a critical role in TGFβ/SMAD-mediated transcription of the COL1A2

  16. Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees.

    PubMed

    Wang, Haihai; Jiang, Chunmei; Wang, Cuiting; Yang, Yang; Yang, Lei; Gao, Xiaoyan; Zhang, Hongxia

    2015-03-01

    Fasciclin-like arabinogalactan proteins (FLAs) play important roles in the growth and development of roots, stems, and seeds in Arabidopsis. However, their biological functions in woody plants are largely unknown. In this work, we investigated the possible function of PtFLA6 in poplar. Quantitative real-time PCR, PtFLA6-yellow fluorescent protein (YFP) fusion protein subcellular localization, Western blotting, and immunohistochemical analyses demonstrated that the PtFLA6 gene was expressed specifically in the xylem of mature stem, and PtFLA6 protein was distributed ubiquitous in plant cells and accumulated predominantly in stem xylem fibres. Antisense expression of PtFLA6 in the aspen hybrid clone Poplar davidiana×Poplar bolleana reduced the transcripts of PtFLA6 and its homologous genes. Transgenic plants that showed a significant reduction in the transcripts of PtFLAs accumulated fewer PtFLA6 and arabinogalactan proteins than did the non-transgenic plants, leading to reduced stem flexural strength and stiffness. Further studies revealed that the altered stem biomechanics of transgenic plants could be attributed to the decreased cellulose and lignin composition in the xylem. In addition expression of some xylem-specific genes involved in cell wall biosynthesis was downregulated in these transgenic plants. All these results suggest that engineering the expression of PtFLA6 and its homologues could modulate stem mechanical properties by affecting cell wall composition in trees. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees

    PubMed Central

    Wang, Haihai; Jiang, Chunmei; Wang, Cuiting; Yang, Yang; Yang, Lei; Gao, Xiaoyan; Zhang, Hongxia

    2015-01-01

    Fasciclin-like arabinogalactan proteins (FLAs) play important roles in the growth and development of roots, stems, and seeds in Arabidopsis. However, their biological functions in woody plants are largely unknown. In this work, we investigated the possible function of PtFLA6 in poplar. Quantitative real-time PCR, PtFLA6–yellow fluorescent protein (YFP) fusion protein subcellular localization, Western blotting, and immunohistochemical analyses demonstrated that the PtFLA6 gene was expressed specifically in the xylem of mature stem, and PtFLA6 protein was distributed ubiquitous in plant cells and accumulated predominantly in stem xylem fibres. Antisense expression of PtFLA6 in the aspen hybrid clone Poplar davidiana×Poplar bolleana reduced the transcripts of PtFLA6 and its homologous genes. Transgenic plants that showed a significant reduction in the transcripts of PtFLAs accumulated fewer PtFLA6 and arabinogalactan proteins than did the non-transgenic plants, leading to reduced stem flexural strength and stiffness. Further studies revealed that the altered stem biomechanics of transgenic plants could be attributed to the decreased cellulose and lignin composition in the xylem. In addition expression of some xylem-specific genes involved in cell wall biosynthesis was downregulated in these transgenic plants. All these results suggest that engineering the expression of PtFLA6 and its homologues could modulate stem mechanical properties by affecting cell wall composition in trees. PMID:25428999

  18. Genome-wide analysis of YY2 versus YY1 target genes

    PubMed Central

    Chen, Li; Shioda, Toshi; Coser, Kathryn R.; Lynch, Mary C.; Yang, Chuanwei; Schmidt, Emmett V.

    2010-01-01

    Yin Yang 1 (YY1) is a critical transcription factor controlling cell proliferation, development and DNA damage responses. Retrotranspositions have independently generated additional YY family members in multiple species. Although Drosophila YY1 [pleiohomeotic (Pho)] and its homolog [pleiohomeotic-like (Phol)] redundantly control homeotic gene expression, the regulatory contributions of YY1-homologs have not yet been examined in other species. Indeed, targets for the mammalian YY1 homolog YY2 are completely unknown. Using gene set enrichment analysis, we found that lentiviral constructs containing short hairpin loop inhibitory RNAs for human YY1 (shYY1) and its homolog YY2 (shYY2) caused significant changes in both shared and distinguishable gene sets in human cells. Ribosomal protein genes were the most significant gene set upregulated by both shYY1 and shYY2, although combined shYY1/2 knock downs were not additive. In contrast, shYY2 reversed the anti-proliferative effects of shYY1, and shYY2 particularly altered UV damage response, platelet-specific and mitochondrial function genes. We found that decreases in YY1 or YY2 caused inverse changes in UV sensitivity, and that their combined loss reversed their respective individual effects. Our studies show that human YY2 is not redundant to YY1, and YY2 is a significant regulator of genes previously identified as uniquely responding to YY1. PMID:20215434

  19. A Symplectic Instanton Homology via Traceless Character Varieties

    NASA Astrophysics Data System (ADS)

    Horton, Henry T.

    Since its inception, Floer homology has been an important tool in low-dimensional topology. Floer theoretic invariants of 3-manifolds tend to be either gauge theoretic or symplecto-geometric in nature, and there is a general philosophy that each gauge theoretic Floer homology should have a corresponding symplectic Floer homology and vice-versa. In this thesis, we construct a Lagrangian Floer invariant for any closed, oriented 3-manifold Y (called the symplectic instanton homology of Y and denoted SI(Y)) which is conjecturally equivalent to a Floer homology defined using a certain variant of Yang-Mills gauge theory. The crucial ingredient for defining SI( Y) is the use of traceless character varieties in the symplectic setting, which allow us to avoid the debilitating technical hurdles present when one attempts to define a symplectic version of instanton Floer homologies. Floer theories are also expected to roughly satisfy the axioms of a topological quantum field theory (TQFT), and furthermore Dehn surgeries on knots should induce exact triangles of Floer homologies. Following a strategy used by Ozsvath and Szabo in the context of Heegaard Floer homology, we prove that our theory is functorial with respect to connected 4-dimensional cobordisms, so that cobordisms induce homomorphisms between symplectic instanton homologies. By studying the effect of Dehn surgeries on traceless character varieties, we establish a surgery exact triangle using work of Seidel that relates the geometry of Lefschetz fibrations with exact triangles in Lagrangian Floer theory. We further prove that Dehn surgeries on a link L in a 3-manifold Y induce a spectral sequence of symplectic instanton homologies - the E2-page is isomorphic to a direct sum of symplectic instanton homologies of all possible combinations of 0- and 1-surgeries on the components of L, and the spectral sequence converges to SI(Y). For the branched double cover Sigma(L) of a link L in S3, we show there is a link surgery

  20. In vivo blunt-end cloning through CRISPR/Cas9-facilitated non-homologous end-joining

    PubMed Central

    Geisinger, Jonathan M.; Turan, Sören; Hernandez, Sophia; Spector, Laura P.; Calos, Michele P.

    2016-01-01

    The CRISPR/Cas9 system facilitates precise DNA modifications by generating RNA-guided blunt-ended double-strand breaks. We demonstrate that guide RNA pairs generate deletions that are repaired with a high level of precision by non-homologous end-joining in mammalian cells. We present a method called knock-in blunt ligation for exploiting these breaks to insert exogenous PCR-generated sequences in a homology-independent manner without loss of additional nucleotides. This method is useful for making precise additions to the genome such as insertions of marker gene cassettes or functional elements, without the need for homology arms. We successfully utilized this method in human and mouse cells to insert fluorescent protein cassettes into various loci, with efficiencies up to 36% in HEK293 cells without selection. We also created versions of Cas9 fused to the FKBP12-L106P destabilization domain in an effort to improve Cas9 performance. Our in vivo blunt-end cloning method and destabilization-domain-fused Cas9 variant increase the repertoire of precision genome engineering approaches. PMID:26762978

  1. Knock down of Whitefly Gut Gene Expression and Mortality by Orally Delivered Gut Gene-Specific dsRNAs.

    PubMed

    Vyas, Meenal; Raza, Amir; Ali, Muhammad Yousaf; Ashraf, Muhammad Aleem; Mansoor, Shahid; Shahid, Ahmad Ali; Brown, Judith K

    2017-01-01

    Control of the whitefly Bemisia tabaci (Genn.) agricultural pest and plant virus vector relies on the use of chemical insecticides. RNA-interference (RNAi) is a homology-dependent innate immune response in eukaryotes, including insects, which results in degradation of the corresponding transcript following its recognition by a double-stranded RNA (dsRNA) that shares 100% sequence homology. In this study, six whitefly 'gut' genes were selected from an in silico-annotated transcriptome library constructed from the whitefly alimentary canal or 'gut' of the B biotype of B. tabaci, and tested for knock down efficacy, post-ingestion of dsRNAs that share 100% sequence homology to each respective gene target. Candidate genes were: Acetylcholine receptor subunit α, Alpha glucosidase 1, Aquaporin 1, Heat shock protein 70, Trehalase1, and Trehalose transporter1. The efficacy of RNAi knock down was further tested in a gene-specific functional bioassay, and mortality was recorded in 24 hr intervals, six days, post-treatment. Based on qPCR analysis, all six genes tested showed significantly reduced gene expression. Moderate-to-high whitefly mortality was associated with the down-regulation of osmoregulation, sugar metabolism and sugar transport-associated genes, demonstrating that whitefly survivability was linked with RNAi results. Silenced Acetylcholine receptor subunit α and Heat shock protein 70 genes showed an initial low whitefly mortality, however, following insecticide or high temperature treatments, respectively, significantly increased knockdown efficacy and death was observed, indicating enhanced post-knockdown sensitivity perhaps related to systemic silencing. The oral delivery of gut-specific dsRNAs, when combined with qPCR analysis of gene expression and a corresponding gene-specific bioassay that relates knockdown and mortality, offers a viable approach for functional genomics analysis and the discovery of prospective dsRNA biopesticide targets. The approach can

  2. Microarray analysis of gene expression profiles in ripening pineapple fruits.

    PubMed

    Koia, Jonni H; Moyle, Richard L; Botella, Jose R

    2012-12-18

    Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit

  3. Microarray analysis of gene expression profiles in ripening pineapple fruits

    PubMed Central

    2012-01-01

    Background Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Results Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. Conclusions This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the

  4. Identification of a novel homolog of the Drosophila staufen protein in the chromosome 8q13-q21.1 region.

    PubMed

    Buchner, G; Bassi, M T; Andolfi, G; Ballabio, A; Franco, B

    1999-11-15

    We report the identification of a new transcript homologous to the Drosophila staufen protein. This transcript, named STAU2 (HGMW-approved gene symbol and name), maps to the chromosome 8q13-q21 region. The full-length STAU2 cDNA is 4058 bp and contains an open reading frame of 479 amino acids. Analysis of the predicted protein product indicated the presence of three double-stranded RNA-binding domains. Best-fit analysis revealed a 48.5% similarity to the Drosophila protein and a 59.9% similarity to the recently described mammalian homolog hStau, indicating that at least two different transcripts with homologies to the fly protein are present in mammals. Copyright 1999 Academic Press.

  5. Construction and applications of exon-trapping gene-targeting vectors with a novel strategy for negative selection.

    PubMed

    Saito, Shinta; Ura, Kiyoe; Kodama, Miho; Adachi, Noritaka

    2015-06-30

    Targeted gene modification by homologous recombination provides a powerful tool for studying gene function in cells and animals. In higher eukaryotes, non-homologous integration of targeting vectors occurs several orders of magnitude more frequently than does targeted integration, making the gene-targeting technology highly inefficient. For this reason, negative-selection strategies have been employed to reduce the number of drug-resistant clones associated with non-homologous vector integration, particularly when artificial nucleases to introduce a DNA break at the target site are unavailable or undesirable. As such, an exon-trap strategy using a promoterless drug-resistance marker gene provides an effective way to counterselect non-homologous integrants. However, constructing exon-trapping targeting vectors has been a time-consuming and complicated process. By virtue of highly efficient att-mediated recombination, we successfully developed a simple and rapid method to construct plasmid-based vectors that allow for exon-trapping gene targeting. These exon-trap vectors were useful in obtaining correctly targeted clones in mouse embryonic stem cells and human HT1080 cells. Most importantly, with the use of a conditionally cytotoxic gene, we further developed a novel strategy for negative selection, thereby enhancing the efficiency of counterselection for non-homologous integration of exon-trap vectors. Our methods will greatly facilitate exon-trapping gene-targeting technologies in mammalian cells, particularly when combined with the novel negative selection strategy.

  6. Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast.

    PubMed Central

    Kuchin, S; Yeghiayan, P; Carlson, M

    1995-01-01

    The SSN3 and SSN8 genes of Saccharomyces cerevisiae were identified by mutations that suppress a defect in SNF1, a protein kinase required for release from glucose repression. Mutations in SSN3 and SSN8 also act synergistically with a mutation of the MIG1 repressor protein to relieve glucose repression. We have cloned the SSN3 and SSN8 genes. SSN3 encodes a cyclin-dependent protein kinase (cdk) homolog and is identical to UME5. SSN8 encodes a cyclin homolog 35% identical to human cyclin C. SSN3 and SSN8 fusion proteins interact in the two-hybrid system and coimmunoprecipitate from yeast cell extracts. Using an immune complex assay, we detected protein kinase activity that depends on both SSN3 and SSN8. Thus, the two SSN proteins are likely to function as a cdk-cyclin pair. Genetic analysis indicates that the SSN3-SSN8 complex contributes to transcriptional repression of diversely regulated genes and also affects induction of the GAL1 promoter. Images Fig. 3 Fig. 4 Fig. 5 PMID:7732022

  7. Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium.

    PubMed Central

    Langin, D; Laurell, H; Holst, L S; Belfrage, P; Holm, C

    1993-01-01

    The human hormone-sensitive lipase (HSL) gene encodes a 786-aa polypeptide (85.5 kDa). It is composed of nine exons spanning approximately 11 kb, with exons 2-5 clustered in a 1.1-kb region. The putative catalytic site (Ser423) and a possible lipid-binding region in the C-terminal part are encoded by exons 6 and 9, respectively. Exon 8 encodes the phosphorylation site (Ser551) that controls cAMP-mediated activity and a second site (Ser553) that is phosphorylated by 5'-AMP-activated protein kinase. Human HSL showed 83% identity with the rat enzyme and contained a 12-aa deletion immediately upstream of the phosphorylation sites with an unknown effect on the activity control. Besides the catalytic site motif (Gly-Xaa-Ser-Xaa-Gly) found in most lipases, HSL shows no homology with other known lipases or proteins, except for a recently reported unexpected homology between the region surrounding its catalytic site and that of the lipase 2 of Moraxella TA144, an antarctic psychrotrophic bacterium. The gene of lipase 2, which catalyses lipolysis below 4 degrees C, was absent in the genomic DNA of five other Moraxella strains living at 37 degrees C. The lipase 2-like sequence in HSL may reflect an evolutionarily conserved cold adaptability that might be of critical survival value when low-temperature-mobilized endogenous lipids are the primary energy source (e.g., in poikilotherms or hibernators). The finding that HSL at 10 degrees C retained 3- to 5-fold more of its 37 degrees C catalytic activity than lipoprotein lipase or carboxyl ester lipase is consistent with this hypothesis. Images Fig. 5 PMID:8506334

  8. Molecular variation and horizontal gene transfer of the homocysteine methyltransferase gene mmuM and its distribution in clinical pathogens.

    PubMed

    Ying, Jianchao; Wang, Huifeng; Bao, Bokan; Zhang, Ying; Zhang, Jinfang; Zhang, Cheng; Li, Aifang; Lu, Junwan; Li, Peizhen; Ying, Jun; Liu, Qi; Xu, Teng; Yi, Huiguang; Li, Jinsong; Zhou, Li; Zhou, Tieli; Xu, Zuyuan; Ni, Liyan; Bao, Qiyu

    2015-01-01

    The homocysteine methyltransferase encoded by mmuM is widely distributed among microbial organisms. It is the key enzyme that catalyzes the last step in methionine biosynthesis and plays an important role in the metabolism process. It also enables the microbial organisms to tolerate high concentrations of selenium in the environment. In this research, 533 mmuM gene sequences covering 70 genera of the bacteria were selected from GenBank database. The distribution frequency of mmuM is different in the investigated genera of bacteria. The mapping results of 160 mmuM reference sequences showed that the mmuM genes were found in 7 species of pathogen genomes sequenced in this work. The polymerase chain reaction products of one mmuM genotype (NC_013951 as the reference) were sequenced and the sequencing results confirmed the mapping results. Furthermore, 144 representative sequences were chosen for phylogenetic analysis and some mmuM genes from totally different genera (such as the genes between Escherichia and Klebsiella and between Enterobacter and Kosakonia) shared closer phylogenetic relationship than those from the same genus. Comparative genomic analysis of the mmuM encoding regions on plasmids and bacterial chromosomes showed that pKF3-140 and pIP1206 plasmids shared a 21 kb homology region and a 4.9 kb fragment in this region was in fact originated from the Escherichia coli chromosome. These results further suggested that mmuM gene did go through the gene horizontal transfer among different species or genera of bacteria. High-throughput sequencing combined with comparative genomics analysis would explore distribution and dissemination of the mmuM gene among bacteria and its evolution at a molecular level.

  9. Widespread interspecies homologous recombination reveals reticulate evolution within the genus Streptomyces.

    PubMed

    Cheng, Kun; Rong, Xiaoying; Huang, Ying

    2016-09-01

    Homologous recombination is increasingly being recognized as a driving force in microbial evolution. However, recombination in streptomycetes, a rich source of diverse secondary metabolites, particularly among different species, remains minimally investigated. In this study, the largest sample of Streptomyces species to date, consisting of 142 type strains spanning the genus, with available sequences of 16S rRNA, atpD, gyrB, recA, rpoB and trpB genes, were collected and subjected to a comprehensive population genetic analysis to generate an overall estimate of the level of Streptomyces interspecies genetic exchange and its effect on the evolution of this genus. The results indicate frequent homologous recombination among Streptomyces species, which occurred three times more frequently and was nearly 14 times more important than point mutation in nucleotide sequence divergence (ρ/θw=3.10, r/m=13.74). As a result, a facilitating effect on the evolutionary process and confusion in phylogenetic relationships were observed, as well as a number of specific transfer events of the six gene fragments. A resultant phylogenetic network depicted extensive horizontal genetic exchange which decays clonality in streptomycetes. Moreover, seven evolutionary lineage groups were identified in the present sample in the Structure analysis, generally consistent with morphological and physiological data, and the contribution of recombination was detected to be varied among them. Our analyses demonstrated a reticulate evolution within Streptomyces due to the high level of interspecies gene exchange, which greatly challenges the traditional tree-shaped phylogeny in this genus and may advance our evolutionary understanding of a genuine Streptomyces species. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Role of a reducing environment in disassembly of the herpesvirus tegument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newcomb, William W.; Jones, Lisa M.; Dee, Alexander

    2012-09-15

    Initiation of infection by herpes family viruses involves a step in which most of the virus tegument becomes detached from the capsid. Detachment takes place in the host cell cytosol near the virus entry site and it is followed by dispersal of tegument proteins and disappearance of the tegument as a distinct entity. Here we describe the results of experiments designed to test the idea that the reducing environment of the cytosol may contribute to tegument detachment and disassembly. Non-ionic detergent was used to remove the membrane of purified herpes simplex virus under control and reducing conditions. The effects onmore » the tegument were then examined by SDS-PAGE and electron microscopy. Protein analysis demonstrated that most major tegument proteins were removed under both oxidizing and reducing conditions except for UL49 which required a reducing environment. It is proposed therefore that the reducing conditions in the cytosol are involved in removal of UL49 protein. Electron microscopic analysis revealed that capsids produced under oxidizing conditions contained a coating of protein that was absent in reduced virions and which correlated uniquely with the presence of UL49. This capsid-associated layer is suggested to be the location of UL49 in the extracted virion.« less

  11. Genome-Wide Identification and Mapping of NBS-Encoding Resistance Genes in Solanum tuberosum Group Phureja

    PubMed Central

    Lozano, Roberto; Ponce, Olga; Ramirez, Manuel; Mostajo, Nelly; Orjeda, Gisella

    2012-01-01

    The majority of disease resistance (R) genes identified to date in plants encode a nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain containing protein. Additional domains such as coiled-coil (CC) and TOLL/interleukin-1 receptor (TIR) domains can also be present. In the recently sequenced Solanum tuberosum group phureja genome we used HMM models and manual curation to annotate 435 NBS-encoding R gene homologs and 142 NBS-derived genes that lack the NBS domain. Highly similar homologs for most previously documented Solanaceae R genes were identified. A surprising ∼41% (179) of the 435 NBS-encoding genes are pseudogenes primarily caused by premature stop codons or frameshift mutations. Alignment of 81.80% of the 577 homologs to S. tuberosum group phureja pseudomolecules revealed non-random distribution of the R-genes; 362 of 470 genes were found in high density clusters on 11 chromosomes. PMID:22493716

  12. Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins

    PubMed Central

    2009-01-01

    Background MicroRNAs (miRNAs) are endogenous single-stranded small RNAs that regulate the expression of specific mRNAs involved in diverse biological processes. In plants, miRNAs are generally encoded as a single species in independent transcriptional units, referred to as MIRNA genes, in contrast to animal miRNAs, which are frequently clustered. Results We performed a comparative genomic analysis in three model plants (rice, poplar and Arabidopsis) and characterized miRNA clusters containing two to eight miRNA species. These clusters usually encode miRNAs of the same family and certain share a common evolutionary origin across monocot and dicot lineages. In addition, we identified miRNA clusters harboring miRNAs with unrelated sequences that are usually not evolutionarily conserved. Strikingly, non-homologous miRNAs from the same cluster were predicted to target transcripts encoding related proteins. At least four Arabidopsis non-homologous clusters were expressed as single transcriptional units. Overexpression of one of these polycistronic precursors, producing Ath-miR859 and Ath-miR774, led to the DCL1-dependent accumulation of both miRNAs and down-regulation of their different mRNA targets encoding F-box proteins. Conclusions In addition to polycistronic precursors carrying related miRNAs, plants also contain precursors allowing coordinated expression of non-homologous miRNAs to co-regulate functionally related target transcripts. This mechanism paves the way for using polycistronic MIRNA precursors as a new molecular tool for plant biologists to simultaneously control the expression of different genes. PMID:19951405

  13. DNA sequences of three beta-1,4-endoglucanase genes from Thermomonospora fusca.

    PubMed Central

    Lao, G; Ghangas, G S; Jung, E D; Wilson, D B

    1991-01-01

    The DNA sequences of the Thermomonospora fusca genes encoding cellulases E2 and E5 and the N-terminal end of E4 were determined. Each sequence contains an identical 14-bp inverted repeat upstream of the initiation codon. There were no significant homologies between the coding regions of the three genes. The E2 gene is 73% identical to the celA gene from Microbispora bispora, but this was the only homology found with other cellulase genes. E2 belongs to a family of cellulases that includes celA from M. bispora, cenA from Cellulomonas fimi, casA from an alkalophilic Streptomyces strain, and cellobiohydrolase II from Trichoderma reesei. E4 shows 44% identity to an avocado cellulase, while E5 belongs to the Bacillus cellulase family. There were strong similarities between the amino acid sequences of the E2 and E5 cellulose binding domains, and these regions also showed homology with C. fimi and Pseudomonas fluorescens cellulose binding domains. PMID:1904434

  14. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance.

    PubMed

    Jones, Robert T; Bakker, Saskia E; Stone, Deborah; Shuttleworth, Sally N; Boundy, Sam; McCart, Caroline; Daborn, Phillip J; ffrench-Constant, Richard H; van den Elsen, Jean M H

    2010-10-01

    Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450-substrate interactions. Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X-ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also 'V'-shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT-CYP6G1 complex and a non-resistant CYP6A2 homology model implies that tight-fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities.

  15. Conferring virus resistance in tomato by independent RNA silencing of three tomato homologs of Arabidopsis TOM1.

    PubMed

    Ali, Md Emran; Ishii, Yuko; Taniguchi, Jyun-Ichi; Waliullah, Sumyya; Kobayashi, Kappei; Yaeno, Takashi; Yamaoka, Naoto; Nishiguchi, Masamichi

    2018-05-01

    The TOM1/TOM3 genes from Arabidopsis are involved in the replication of tobamoviruses. Tomato homologs of these genes, LeTH1, LeTH2 and LeTH3, are known. In this study, we examined transgenic tomato lines where inverted repeats of either LeTH1, LeTH2 or LeTH3 were introduced by Agrobacterium. Endogenous mRNA expression for each gene was detected in non-transgenic control plants, whereas a very low level of each of the three genes was found in the corresponding line. Small interfering RNA was detected in the transgenic lines. Each silenced line showed similar levels of tobamovirus resistance, indicating that each gene is similarly involved in virus replication.

  16. Planar cell polarity pathway genes and risk for spina bifida.

    PubMed

    Wen, Shu; Zhu, Huiping; Lu, Wei; Mitchell, Laura E; Shaw, Gary M; Lammer, Edward J; Finnell, Richard H

    2010-02-01

    Spina bifida, a neural tube closure defect (NTD) involving the posterior portion of what will ultimately give rise to the spinal cord, is one of the most common and serious birth defects. The etiology of spina bifida is thought to be multi-factorial and involve multiple interacting genes and environmental factors. The causes of this congenital malformation remain largely unknown. However, several candidate genes for spina bifida have been identified in lower vertebrates, including the planar cell polarity (PCP) genes. We used data from a case-control study conducted in California to evaluate the association between variation within several key PCP genes and the risk of spina bifida. The PCP genes included in this study were the human homologs of the Xenopus genes Flamingo, Strabismus, Prickle, Dishevelled, and Scrib, two of the homologs of Xenopus Wnt genes, WNT5A and WNT11, and two of the homologs of Xenopus Frizzled, FZD3 and FZD6. None of the 172 SNPs that were evaluated were significantly associated with spina bifida in any racial/ethnic group after correction for multiple testing. However, several SNPs in the PRICKLE2 gene had unadjusted P-value <0.01. In conclusion, our results, though largely negative, suggest that the PRICKLE2 gene may potentially modify the risk of spina bifida and deserves further investigation. Copyright 2010 Wiley-Liss, Inc.

  17. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells.

    PubMed

    Byrne, Susan M; Ortiz, Luis; Mali, Prashant; Aach, John; Church, George M

    2015-02-18

    Sequence-specific nucleases such as TALEN and the CRISPR/Cas9 system have so far been used to disrupt, correct or insert transgenes at precise locations in mammalian genomes. We demonstrate efficient 'knock-in' targeted replacement of multi-kilobase genes in human induced pluripotent stem cells (iPSC). Using a model system replacing endogenous human genes with their mouse counterpart, we performed a comprehensive study of targeting vector design parameters for homologous recombination. A 2.7 kilobase (kb) homozygous gene replacement was achieved in up to 11% of iPSC without selection. The optimal homology arm length was around 2 kb, with homology length being especially critical on the arm not adjacent to the cut site. Homologous sequence inside the cut sites was detrimental to targeting efficiency, consistent with a synthesis-dependent strand annealing (SDSA) mechanism. Using two nuclease sites, we observed a high degree of gene excisions and inversions, which sometimes occurred more frequently than indel mutations. While homozygous deletions of 86 kb were achieved with up to 8% frequency, deletion frequencies were not solely a function of nuclease activity and deletion size. Our results analyzing the optimal parameters for targeting vector design will inform future gene targeting efforts involving multi-kilobase gene segments, particularly in human iPSC. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. A Dual Origin of the Xist Gene from a Protein-Coding Gene and a Set of Transposable Elements

    PubMed Central

    Elisaphenko, Eugeny A.; Kolesnikov, Nikolay N.; Shevchenko, Alexander I.; Rogozin, Igor B.; Nesterova, Tatyana B.; Brockdorff, Neil; Zakian, Suren M.

    2008-01-01

    X-chromosome inactivation, which occurs in female eutherian mammals is controlled by a complex X-linked locus termed the X-inactivation center (XIC). Previously it was proposed that genes of the XIC evolved, at least in part, as a result of pseudogenization of protein-coding genes. In this study we show that the key XIC gene Xist, which displays fragmentary homology to a protein-coding gene Lnx3, emerged de novo in early eutherians by integration of mobile elements which gave rise to simple tandem repeats. The Xist gene promoter region and four out of ten exons found in eutherians retain homology to exons of the Lnx3 gene. The remaining six Xist exons including those with simple tandem repeats detectable in their structure have similarity to different transposable elements. Integration of mobile elements into Xist accompanies the overall evolution of the gene and presumably continues in contemporary eutherian species. Additionally we showed that the combination of remnants of protein-coding sequences and mobile elements is not unique to the Xist gene and is found in other XIC genes producing non-coding nuclear RNA. PMID:18575625

  19. Genetic battle between Helicobacter pylori and humans. The mechanism underlying homologous recombination in bacteria, which can infect human cells.

    PubMed

    Hanada, Katsuhiro; Yamaoka, Yoshio

    2014-10-01

    Helicobacter pylori is a gram-negative pathogenic bacterium that colonises the human stomach. The chronic infection it causes results in peptic ulcers and gastric cancers. H. pylori can easily establish a chronic infection even if the immune system attacks this pathogen with oxidative stress agents and immunoglobulins. This is attributed to bacterial defence mechanisms against these stresses. As a defence mechanism against oxidative stresses, in bacterial genomes, homologous recombination can act as a repair pathway of DNA's double-strand breaks (DSBs). Moreover, homologous recombination is also involved in the antigenic variation in H. pylori. Gene conversion alters genomic structures of babA and babB (encoding outer membrane proteins), resulting in escape from immunoglobulin attacks. Thus, homologous recombination in bacteria plays an important role in the maintenance of a chronic infection. In addition, H. pylori infection causes DSBs in human cells. Homologous recombination is also involved in the repair of DSBs in human cells. In this review, we describe the roles of homologous recombination with an emphasis on the maintenance of a chronic infection. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. The mitochondnal genome of Aspergillus nidulans contains reading frames homologous to the human URFs 1 and 4.

    PubMed Central

    Brown, T A; Davies, R W; Ray, J A; Waring, R B; Scazzocchio, C

    1983-01-01

    A 2830-bp segment of the mitochondrial genome of the fungus Aspergillus nidulans was sequenced and shown to contain two unidentified reading frames (URFs). These reading frames are 352 and 488 codons in length, and would specify unmodified proteins of mol. wts. 39,000 and 54,000, respectively. The derived amino acid sequences indicate that these genes are equivalent to the human mitochondrial URFs 1 and 4, with 39% amino acid homology for URF1 and 26% for URF4. Both URFs were shown by secondary structure predictions to code for predominantly beta-sheeted proteins with strong structural conservation between the fungal and human homologues. Counterparts of mammalian URFs have not previously been identified in non-mammalian genomes, and the discovery that A. nidulans possesses reading frames so closely homologous with URF1 and URF4 shows that these genes are of general functional importance in the mitochondria of diverse species. PMID:11894959

  1. LCR-initiated rearrangements at the IDS locus, completed with Alu-mediated recombination or non-homologous end joining.

    PubMed

    Oshima, Junko; Lee, Jennifer A; Breman, Amy M; Fernandes, Priscilla H; Babovic-Vuksanovic, Dusica; Ward, Patricia A; Wolfe, Lynne A; Eng, Christine M; Del Gaudio, Daniela

    2011-07-01

    Mucopolysaccharidosis type II (MPS II) is caused by mutations in the IDS gene, which encodes the lysosomal enzyme iduronate-2-sulfatase. In ∼20% of MPS II patients the disorder is caused by gross IDS structural rearrangements. We identified two male cases harboring complex rearrangements involving the IDS gene and the nearby pseudogene, IDSP1, which has been annotated as a low-copy repeat (LCR). In both cases the rearrangement included a partial deletion of IDS and an inverted insertion of the neighboring region. In silico analyses revealed the presence of repetitive elements as well as LCRs at the junctions of rearrangements. Our models illustrate two alternative consequences of rearrangements initiated by non-allelic homologous recombination of LCRs: resolution by a second recombination event (that is, Alu-mediated recombination), or resolution by non-homologous end joining repair. These complex rearrangements have the potential to be recurrent and may be present among those MSP II cases with previously uncharacterized aberrations involving IDS.

  2. Identification of cis-acting regulatory elements in the human oxytocin gene promoter.

    PubMed

    Richard, S; Zingg, H H

    1991-12-01

    The expression of hormone-inducible genes is determined by the interaction of trans-acting factors with hormone-inducible elements and elements mediating basal and cell-specific expression. We have shown earlier that the gene encoding the hypothalamic nonapeptide oxytocin (OT) is under the control of an estrogen response element (ERE). The present study was aimed at identifying cis-acting elements mediating basal expression of the OT gene. A construct containing sequences -381 to +36 of the human OT gene was linked to a reporter gene and transiently transfected into a series of neuronal and nonneuronal cell lines. Expression of this construct was cell specific: it was highest in the neuroblastoma-derived cell line, Neuro-2a, and lowest in NIH 3T3 and JEG-3 cells. By 5' deletion analysis, we determined that a segment from -49 to +36 was capable of mediating cells-pecific promoter activity. Within this segment, we identified three proximal promoter elements (PPE-1, PPE-2, and PPE-3) that are each required for promoter activity. Most notably, mutation of a conserved purine-rich element (GAGAGA) contained within PPE-2 leads to a 10-fold decrease in promoter strength. Gel mobility shift analysis with three different double-stranded oligonucleotides demonstrated that each proximal promoter element binds distinct nuclear factors. In each case, only the homologous oligonucleotide, but neither of the oligonucleotides corresponding to adjacent elements, was able to act as a competitor. Thus, a different set of factors appears to bind independently to each element. By reinserting the homologous ERE or a heterologous glucocorticoid response element upstream of intact or altered proximal promoter segments we determined that removal or mutation of proximal promoter elements decreases basal expression, but does not abrogate the hormone responsiveness of the promoter. In conclusion, these results indicate that an important component of the transcriptional activity of the OT

  3. A Plant Gene Up-Regulated at Rust Infection Sites

    PubMed Central

    Ayliffe, Michael A.; Roberts, James K.; Mitchell, Heidi J.; Zhang, Ren; Lawrence, Gregory J.; Ellis, Jeffrey G.; Pryor, Tony J.

    2002-01-01

    Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a β-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%–82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a Δ1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection. PMID:12011348

  4. Identification of genes from pattern formation, tyrosine kinase, and potassium channel families by DNA amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamb, A.; Weir, M.; Rudy, B.

    1989-06-01

    The study of gene family members has been aided by the isolation of related genes on the basis of DNA homology. The authors have adapted the polymerase chain reaction to screen animal genomes very rapidly and reliably for likely gene family members. Using conserved amino acid sequences to design degenerate oligonucleotide primers, they have shown that the genome of the nematode Caenorhabditis elegans contains sequences homologous to many Drosophila genes involved in pattern formation, including the segment polarity gene wingless (vertebrate int-1), and homeobox sequences characteristic of the Antennapedia, engrailed, and paired families. In addition, they have used this methodmore » to show that C. elegans contains at least five different sequences homologous to genes in the tyrosine kinase family. Lastly, they have isolated six potassium channel sequences from humans, a result that validates the utility of the method with large genomes and suggests that human potassium channel gene diversity may be extensive.« less

  5. uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs

    PubMed Central

    Ivanov, Ivaylo P.; Loughran, Gary; Atkins, John F.

    2008-01-01

    In a minority of eukaryotic mRNAs, a small functional upstream ORF (uORF), often performing a regulatory role, precedes the translation start site for the main product(s). Here, conserved uORFs in numerous ornithine decarboxylase homologs are identified from yeast to mammals. Most have noncanonical evolutionarily conserved start codons, the main one being AUU, which has not been known as an initiator for eukaryotic chromosomal genes. The AUG-less uORF present in mouse antizyme inhibitor, one of the ornithine decarboxylase homologs in mammals, mediates polyamine-induced repression of the downstream main ORF. This repression is part of an autoregulatory circuit, and one of its sensors is the AUU codon, which suggests that translation initiation codon identity is likely used for regulation in eukaryotes. PMID:18626014

  6. Open reading frames in a 4556 nucleotide sequence within MDV-1 BamHI-D DNA fragment: evidence for splicing of mRNA from a new viral glycoprotein gene.

    PubMed

    Becker, Y; Asher, Y; Tabor, E; Davidson, I; Malkinson, M

    1994-01-01

    A DNA segment of the MDV-1 BamHI-D fragment was sequenced, and the open reading frames (ORFs) present in the 4556 nucleotide fragment were analyzed by computer programs. Computer analysis identified 19 putative ORFs in the sequence ranging from a coding capacity of 37 amino acids (aa) (ORF-1a) to 684aa (ORF-1). The special properties of four ORFs (1a, 1, 2, and 3) were investigated. Two adjacent ORFs, ORF-1a and ORF-1, were found by computer analysis to have the properties of two introns encoding a glycoprotein: ORF-1a encodes an aa sequence with the properties of a signal peptide, and ORF-1 encodes a polypeptide with a membrane anchor domain and putative N-glycosylation sites in the aa sequence. ORF-1a and ORF-1 were found to be transcribed in MDV-1-infected cells. Two RNA transcripts were detected: a precursor RNA and its spliced form. Both are transcribed from a promoter located 5' to ORF-1a, and splice donor and acceptor sites are used to splice the mRNA after cleavage of a 71-nucleotide sequence. This finding suggest that ORF-1a and ORF-1 are two introns of a new MDV-1 glycoprotein gene. The DNA sequence containing ORF-1 was transiently expressed in COS-1 cells, and the viral protein produced in these cells was found to react with anti-MDV serotype-1 Antigen B-specific monoclonal antibodies. These studies indicate that the protein encoded by ORF-1 has antigenic properties resembling Antigen B of MDV-1. A gene homologous to ORF-1 was detected in the genome of both MDV-2(SB1) and MDV-3(HVT), which serve as commercial vaccine strains. Two additional ORFs were noted in the 4556 nucleotide sequence: ORF-2, which encodes a 333 aa polypeptide initiating in the UL and terminating in the TRL prior to the putative origin of replication, and ORF-3, which encodes a 155 aa polypeptide that is partly homologous to the phosphoprotein pp38 encoded by the BamHI-H sequence. The 65 N-terminal aa of the two gene products are identical, both being derived from the nucleotide

  7. SlgA, encoded by the homolog of the human schizophrenia-associated gene PRODH, acts in clock neurons to regulate Drosophila aggression

    PubMed Central

    Zwarts, Liesbeth; Vulsteke, Veerle; Buhl, Edgar; Hodge, James J. L.

    2017-01-01

    ABSTRACT Mutations in the proline dehydrogenase gene PRODH are linked to behavioral alterations in schizophrenia and as part of DiGeorge and velo-cardio-facial syndromes, but the role of PRODH in their etiology remains unclear. Here, we establish a Drosophila model to study the role of PRODH in behavioral disorders. We determine the distribution of the Drosophila PRODH homolog slgA in the brain and show that knockdown and overexpression of human PRODH and slgA in the lateral neurons ventral (LNv) lead to altered aggressive behavior. SlgA acts in an isoform-specific manner and is regulated by casein kinase II (CkII). Our data suggest that these effects are, at least partially, due to effects on mitochondrial function. We thus show that precise regulation of proline metabolism is essential to drive normal behavior and we identify Drosophila aggression as a model behavior relevant for the study of the mechanisms that are impaired in neuropsychiatric disorders. PMID:28331058

  8. SlgA, encoded by the homolog of the human schizophrenia-associated gene PRODH, acts in clock neurons to regulate Drosophila aggression.

    PubMed

    Zwarts, Liesbeth; Vulsteke, Veerle; Buhl, Edgar; Hodge, James J L; Callaerts, Patrick

    2017-06-01

    Mutations in the proline dehydrogenase gene PRODH are linked to behavioral alterations in schizophrenia and as part of DiGeorge and velo-cardio-facial syndromes, but the role of PRODH in their etiology remains unclear. Here, we establish a Drosophila model to study the role of PRODH in behavioral disorders. We determine the distribution of the Drosophila PRODH homolog slgA in the brain and show that knockdown and overexpression of human PRODH and slgA in the lateral neurons ventral (LNv) lead to altered aggressive behavior. SlgA acts in an isoform-specific manner and is regulated by casein kinase II (CkII). Our data suggest that these effects are, at least partially, due to effects on mitochondrial function. We thus show that precise regulation of proline metabolism is essential to drive normal behavior and we identify Drosophila aggression as a model behavior relevant for the study of the mechanisms that are impaired in neuropsychiatric disorders. © 2017. Published by The Company of Biologists Ltd.

  9. Breakpoint analysis of the pericentric inversion between chimpanzee chromosome 10 and the homologous chromosome 12 in humans.

    PubMed

    Kehrer-Sawatzki, H; Sandig, C A; Goidts, V; Hameister, H

    2005-01-01

    During this study, we analysed the pericentric inversion that distinguishes human chromosome 12 (HSA12) from the homologous chimpanzee chromosome (PTR10). Two large chimpanzee-specific duplications of 86 and 23 kb were observed in the breakpoint regions, which most probably occurred associated with the inversion. The inversion break in PTR10p caused the disruption of the SLCO1B3 gene in exon 11. However, the 86-kb duplication includes the functional SLCO1B3 locus, which is thus retained in the chimpanzee, although inverted to PTR10q. The second duplication spans 23 kb and does not contain expressed sequences. Eleven genes map to a region of about 1 Mb around the breakpoints. Six of these eleven genes are not among the differentially expressed genes as determined previously by comparing the human and chimpanzee transcriptome of fibroblast cell lines, blood leukocytes, liver and brain samples. These findings imply that the inversion did not cause major expression differences of these genes. Comparative FISH analysis with BACs spanning the inversion breakpoints in PTR on metaphase chromosomes of gorilla (GGO) confirmed that the pericentric inversion of the chromosome 12 homologs in GGO and PTR have distinct breakpoints and that humans retain the ancestral arrangement. These findings coincide with the trend observed in hominoid karyotype evolution that humans have a karyotype close to an ancestral one, while African great apes present with more derived chromosome arrangements. Copyright (c) 2005 S. Karger AG, Basel.

  10. Pea VEGETATIVE2 Is an FD Homolog That Is Essential for Flowering and Compound Inflorescence Development.

    PubMed

    Sussmilch, Frances C; Berbel, Ana; Hecht, Valérie; Vander Schoor, Jacqueline K; Ferrándiz, Cristina; Madueño, Francisco; Weller, James L

    2015-04-01

    As knowledge of the gene networks regulating inflorescence development in Arabidopsis thaliana improves, the current challenge is to characterize this system in different groups of crop species with different inflorescence architecture. Pea (Pisum sativum) has served as a model for development of the compound raceme, characteristic of many legume species, and in this study, we characterize the pea VEGETATIVE2 (VEG2) locus, showing that it is critical for regulation of flowering and inflorescence development and identifying it as a homolog of the bZIP transcription factor FD. Through detailed phenotypic characterizations of veg2 mutants, expression analyses, and the use of protein-protein interaction assays, we find that VEG2 has important roles during each stage of development of the pea compound inflorescence. Our results suggest that VEG2 acts in conjunction with multiple FLOWERING LOCUS T (FT) proteins to regulate expression of downstream target genes, including TERMINAL FLOWER1, LEAFY, and MADS box homologs, and to facilitate cross-regulation within the FT gene family. These findings further extend our understanding of the mechanisms underlying compound inflorescence development in pea and may have wider implications for future manipulation of inflorescence architecture in related legume crop species. © 2015 American Society of Plant Biologists. All rights reserved.

  11. Neutralization of Diverse Human Cytomegalovirus Strains Conferred by Antibodies Targeting Viral gH/gL/pUL128-131 Pentameric Complex

    PubMed Central

    Ha, Sha; Li, Fengsheng; Troutman, Matthew C.; Freed, Daniel C.; Tang, Aimin; Loughney, John W.; Wang, I-Ming; Vlasak, Josef; Nickle, David C.; Rustandi, Richard R.; Hamm, Melissa; DePhillips, Pete A.; Zhang, Ningyan; McLellan, Jason S.; Zhu, Hua; Adler, Stuart P.; McVoy, Michael A.; An, Zhiqiang

    2017-01-01

    ABSTRACT Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection, and developing a prophylactic vaccine is of high priority to public health. We recently reported a replication-defective human cytomegalovirus with restored pentameric complex glycoprotein H (gH)/gL/pUL128-131 for prevention of congenital HCMV infection. While the quantity of vaccine-induced antibody responses can be measured in a viral neutralization assay, assessing the quality of such responses, including the ability of vaccine-induced antibodies to cross-neutralize the field strains of HCMV, remains a challenge. In this study, with a panel of neutralizing antibodies from three healthy human donors with natural HCMV infection or a vaccinated animal, we mapped eight sites on the dominant virus-neutralizing antigen—the pentameric complex of glycoprotein H (gH), gL, and pUL128, pUL130, and pUL131. By evaluating the site-specific antibodies in vaccine immune sera, we demonstrated that vaccination elicited functional antiviral antibodies to multiple neutralizing sites in rhesus macaques, with quality attributes comparable to those of CMV hyperimmune globulin. Furthermore, these immune sera showed antiviral activities against a panel of genetically distinct HCMV clinical isolates. These results highlighted the importance of understanding the quality of vaccine-induced antibody responses, which includes not only the neutralizing potency in key cell types but also the ability to protect against the genetically diverse field strains. IMPORTANCE HCMV is the leading cause of congenital viral infection, and development of a preventive vaccine is a high public health priority. To understand the strain coverage of vaccine-induced immune responses in comparison with natural immunity, we used a panel of broadly neutralizing antibodies to identify the immunogenic sites of a dominant viral antigen—the pentameric complex. We further demonstrated that following vaccination of a replication

  12. Cloning and expression of a sorghum gene with homology to maize vp1. Its potential involvement in pre-harvest sprouting resistance.

    PubMed

    Carrari, F; Perez-Flore, L; Lijavetzky, D; Enciso, S; Sanchez, R; Benech-Arnold, R; Iusem, N

    2001-04-01

    Pre-harvest sprouting (PHS) in sorghum is related to the lack of a normal dormancy level during seed development and maturation. Based on previous evidence that seed dormancy in maize is controlled by the vp1 gene, we used a PCR-based approach to isolate two Sorghum bicolor genomic and cDNA clones from two genotypes exhibiting different PHS behaviour and sensitivity to abscisic acid (ABA). The two 699 amino acid predicted protein sequences differ in two residues at positions 341 (Gly or Cys within the repression domain) and 448 (Pro or Ser) and show over 80, 70 and 60% homology to maize, rice and oat VP1 proteins respectively. Expression analysis of the sorghum vp1 gene in the two lines shows a slightly higher level of vp1 mRNA in the embryos susceptible to PHS than in those resistant to PHS during embryogenesis. However, timing of expression was different between these genotypes during this developmental process. Whereas for the former the main peak of expression was observed at 20 days after pollination (DAP), the peak in the latter was found at later developmental stages when seed maturation was almost complete. Under favourable germination conditions and in the presence of fluridone (an inhibitor of ABA biosynthesis), sorghum vp1 mRNA showed to be consistently correlated with sensitivity to ABA but not with ABA content and dormancy.

  13. Venture from the Interior-Herpesvirus pUL31 Escorts Capsids from Nucleoplasmic Replication Compartments to Sites of Primary Envelopment at the Inner Nuclear Membrane.

    PubMed

    Bailer, Susanne M.

    2017-11-25

    Herpesviral capsid assembly is initiated in the nucleoplasm of the infected cell. Size constraints require that newly formed viral nucleocapsids leave the nucleus by an evolutionarily conserved vescular transport mechanism called nuclear egress. Mature capsids released from the nucleoplasm are engaged in a membrane-mediated budding process, composed of primary envelopment at the inner nuclear membrane and de-envelopment at the outer nuclear membrane. Once in the cytoplasm, the capsids receive their secondary envelope for maturation into infectious virions. Two viral proteins conserved throughout the herpesvirus family, the integral membrane protein pUL34 and the phosphoprotein pUL31, form the nuclear egress complex required for capsid transport from the infected nucleus to the cytoplasm. Formation of the nuclear egress complex results in budding of membrane vesicles revealing its function as minimal virus-encoded membrane budding and scission machinery. The recent structural analysis unraveled details of the heterodimeric nuclear egress complex and the hexagonal coat it forms at the inside of budding vesicles to drive primary envelopment. With this review, I would like to present the capsid-escort-model where pUL31 associates with capsids in nucleoplasmic replication compartments for escort to sites of primary envelopment thereby coupling capsid maturation and nuclear egress.

  14. Repertoire, genealogy and genomic organization of cruzipain and homologous genes in Trypanosoma cruzi, T. cruzi-like and other trypanosome species.

    PubMed

    Lima, Luciana; Ortiz, Paola A; da Silva, Flávia Maia; Alves, João Marcelo P; Serrano, Myrna G; Cortez, Alane P; Alfieri, Silvia C; Buck, Gregory A; Teixeira, Marta M G

    2012-01-01

    Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine

  15. Unconventional function of an Achaete-Scute homolog as a terminal selector of nociceptive neuron identity

    PubMed Central

    Masoudi, Neda; Tavazoie, Saeed; Glenwinkel, Lori; Ryu, Leesun; Kim, Kyuhyung

    2018-01-01

    Proneural genes are among the most early-acting genes in nervous system development, instructing blast cells to commit to a neuronal fate. Drosophila Atonal and Achaete-Scute complex (AS-C) genes, as well as their vertebrate orthologs, are basic helix-loop-helix (bHLH) transcription factors with such proneural activity. We show here that a C. elegans AS-C homolog, hlh-4, functions in a fundamentally different manner. In the embryonic, larval, and adult nervous systems, hlh-4 is expressed exclusively in a single nociceptive neuron class, ADL, and its expression in ADL is maintained via transcriptional autoregulation throughout the life of the animal. However, in hlh-4 null mutants, the ADL neuron is generated and still appears neuronal in overall morphology and expression of panneuronal and pansensory features. Rather than acting as a proneural gene, we find that hlh-4 is required for the ADL neuron to function properly, to adopt its correct morphology, to express its unusually large repertoire of olfactory receptor–encoding genes, and to express other known features of terminal ADL identity, including neurotransmitter phenotype, neuropeptides, ion channels, and electrical synapse proteins. hlh-4 is sufficient to induce ADL identity features upon ectopic expression in other neuron types. The expression of ADL terminal identity features is directly controlled by HLH-4 via a phylogenetically conserved E-box motif, which, through bioinformatic analysis, we find to constitute a predictive feature of ADL-expressed terminal identity markers. The lineage that produces the ADL neuron was previously shown to require the conventional, transient proneural activity of another AS-C homolog, hlh-14, demonstrating sequential activities of distinct AS-C-type bHLH genes in neuronal specification. Taken together, we have defined here an unconventional function of an AS-C-type bHLH gene as a terminal selector of neuronal identity and we speculate that such function could be

  16. Targeted Gene Next-Generation Sequencing in Chinese Children with Chronic Pancreatitis and Acute Recurrent Pancreatitis.

    PubMed

    Xiao, Yuan; Yuan, Wentao; Yu, Bo; Guo, Yan; Xu, Xu; Wang, Xinqiong; Yu, Yi; Yu, Yi; Gong, Biao; Xu, Chundi

    2017-12-01

    To identify causal mutations in certain genes in children with acute recurrent pancreatitis (ARP) or chronic pancreatitis (CP). After patients were enrolled (CP, 55; ARP, 14) and their clinical characteristics were investigated, we performed next-generation sequencing to detect nucleotide variations among the following 10 genes: cationic trypsinogen protease serine 1 (PRSS1), serine protease inhibitor, Kazal type 1 (SPINK1), cystic fibrosis transmembrane conductance regulator gene (CFTR), chymotrypsin C (CTRC), calcium-sensing receptor (CASR), cathepsin B (CTSB), keratin 8 (KRT8), CLAUDIN 2 (CLDN2), carboxypeptidase A1 (CPA1), and ATPase type 8B member 1 (ATP8B1). Mutations were searched against online databases to obtain information on the cause of the diseases. Certain novel mutations were analyzed using the SIFT2 and Polyphen-2 to predict the effect on protein function. There were 45 patients with CP and 10 patients with ARP who harbored 1 or more mutations in these genes; 45 patients had at least 1 mutation related to pancreatitis. Mutations were observed in the PRSS1, SPINK1, and CFTR genes in 17 patients, the CASR gene in 5 patients, and the CTSB, CTRC, and KRT8 genes in 1 patient. Mutations were not found in the CLDN, CPA1, or ATP8B1 genes. We found that mutations in SPINK1 may increase the risk of pancreatic duct stones (OR, 11.07; P = .003). The patients with CFTR mutations had a higher level of serum amylase (316.0 U/L vs 92.5 U/L; P = .026). Mutations, especially those in PRSS1, SPINK1, and CFTR, accounted for the major etiologies in Chinese children with CP or ARP. Children presenting mutations in the SPINK1 gene may have a higher risk of developing pancreatic duct stones. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Analysis of the expression level and methylation of tumor protein p53, phosphatase and tensin homolog and mutS homolog 2 in N-methyl-N-nitrosourea-induced thymic lymphoma in C57BL/6 mice.

    PubMed

    Huo, Xueyun; Li, Zhenkun; Zhang, Shuangyue; Li, Changlong; Guo, Meng; Lu, Jing; Lv, Jianyi; Du, Xiaoyan; Chen, Zhenwen

    2017-10-01

    Tumorigenesis is often caused by somatic mutation or epigenetic changes in genes that regulate aspects of cell death, proliferation and survival. Although the functions of multiple tumor suppressor genes have been well studied in isolation, how these genes cooperate during the progression of a single tumor remains unclear in numerous cases. The present study used N-methyl-N-nitrosourea (MNU), one of the most potent mutagenic nitrosourea compounds, to induce thymic lymphoma in C57BL/6J mice. Subsequently, the protein expression levels of phosphatase and tensin homolog (PTEN), transformation protein 53 and mutS homolog 2 (MSH2) were evaluated concomitantly in the thymus, liver, kidney and spleen of MNU-treated mice by western blotting. To determine whether changes in expression level were due to aberrant epigenetic regulation, the present study further examined the methylation status of each gene by MassARRAY analysis. During the tumorigenesis process of an MNU-induced single thymic lymphoma, the expression level of PTEN was revealed to be reduced in thymic lymphoma samples but not in normal or non-tumor thymus tissue samples. Furthermore, a marked reduction of P53 expression levels were demonstrated in thymic lymphomas and spleens with a metastatic tumor. Conversely, MSH2 upregulation was identified only in liver, kidney, and spleen samples that were infiltrated by thymic lymphoma cells. Furthermore, the present study revealed that a number of 5'-C-phosphate-G-3' sites located in the promoter of aberrantly expressed genes had significantly altered methylation statuses. These results improve the understanding of the course of mutagen-induced cancer, and highlight that epigenetic regulation may serve an important function in cancer.

  18. Gentle Masking of Low-Complexity Sequences Improves Homology Search

    PubMed Central

    Frith, Martin C.

    2011-01-01

    Detection of sequences that are homologous, i.e. descended from a common ancestor, is a fundamental task in computational biology. This task is confounded by low-complexity tracts (such as atatatatatat), which arise frequently and independently, causing strong similarities that are not homologies. There has been much research on identifying low-complexity tracts, but little research on how to treat them during homology search. We propose to find homologies by aligning sequences with “gentle” masking of low-complexity tracts. Gentle masking means that the match score involving a masked letter is , where is the unmasked score. Gentle masking slightly but noticeably improves the sensitivity of homology search (compared to “harsh” masking), without harming specificity. We show examples in three useful homology search problems: detection of NUMTs (nuclear copies of mitochondrial DNA), recruitment of metagenomic DNA reads to reference genomes, and pseudogene detection. Gentle masking is currently the best way to treat low-complexity tracts during homology search. PMID:22205972

  19. A member of a new plant gene family encoding a meprin and TRAF homology (MATH) domain-containing protein is involved in restriction of long distance movement of plant viruses

    PubMed Central

    Cosson, Patrick; Sofer, Luc; Schurdi-Levraud, Valérie

    2010-01-01

    Restriction of long distance movement of several potyviruses in Arabidopsis thaliana is controlled by at least three dominant restricted TEV movement (RTM) genes, named RTM1, RTM2 and RTM3 and acts as a non-conventional resistance. RTM1 encodes a protein belonging to the jacalin family and RTM2 encodes a protein which has similarities to small heat shock proteins. The recent cloning of RTM3 which encodes a protein belonging to an unknown protein family of 29 members that has a meprin and TRAF homology (MATH) domain in its N-terminal region and a coiled-coil (CC) domain at its C-terminal end is an important breakthrough for a better understanding of this resistance process. Not only the third gene involved in this resistance has been identified and has allowed revealing a new gene family in plant but the discovery that the RTM3 protein interacts directly with RTM1 strongly suggests that the RTM proteins form a multimeric complex. However, these data also highlight striking similarities of the RTM resistance with the well known R-gene mediated resistance. PMID:20930558

  20. Isolation and characterization of NBS–LRR resistance gene analogues from mango

    PubMed Central

    Lei, Xintao; Yao, Quansheng; Xu, Xuerong; Liu, Yang

    2014-01-01

    The nucleotide-binding site (NBS)–leucine-rich repeat (LRR) gene family is a class of R genes in plants. NBS genes play a very important role in disease defence. To further study the variation and homology of mango NBS–LRR genes, 16 resistance gene analogues (RGAs) (GenBank accession number HM446507-22) were isolated from the polymerase chain reaction fragments and sequenced by using two degenerate primer sets. The total nucleotide diversity index Pi was 0.362, and 236 variation sites were found among 16 RGAs. The degree of homology between the RGAs varied from 44.4% to 98.5%. Sixteen RGAs could be translated into amino sequences. The high level of this homology in the protein sequences of the P-loop and kinase-2 of the NBS domain between the RGAs isolated in this study and previously characterized R genes indicated that these cloned sequences belonged to the NBS–LRR gene family. Moreover, these 16 RGAs could be classified into the non-TIR–NBS–LRR gene family because only tryptophan (W) could be claimed as the final residual of the kinase-2 domain of all RGAs isolated here. From our results, we concluded that our mango NBS–LRR genes possessed a high level of variation from the mango genome, which may allow mango to recognize many different pathogenic virulence factors. PMID:26740762

  1. Gene inactivation in the plant pathogen Glomerella cingulata: three strategies for the disruption of the pectin lyase gene pnlA.

    PubMed

    Bowen, J K; Templeton, M D; Sharrock, K R; Crowhurst, R N; Rikkerink, E H

    1995-01-20

    The feasibility of performing routine transformation-mediated mutagenesis in Glomerella cingulata was analysed by adopting three one-step gene disruption strategies targeted at the pectin lyase gene pnlA. The efficiencies of disruption following transformation with gene replacement- or gene truncation-disruption vectors were compared. To effect replacement-disruption, G. cingulata was transformed with a vector carrying DNA from the pnlA locus in which the majority of the coding sequence had been replaced by the gene for hygromycin B resistance. Two of the five transformants investigated contained an inactivated pnlA gene (pnlA-); both also contained ectopically integrated vector sequences. The efficacy of gene disruption by transformation with two gene truncation-disruption vectors was also assessed. Both vectors carried at 5' and 3' truncated copy of the pnlA coding sequence, adjacent to the gene for hygromycin B resistance. The promoter sequences controlling the selectable marker differed in the two vectors. In one vector the homologous G. cingulata gpdA promoter controlled hygromycin B phosphotransferase expression (homologous truncation vector), whereas in the second vector promoter elements were from the Aspergillus nidulans gpdA gene (heterologous truncation vector). Following transformation with the homologous truncation vector, nine transformants were analysed by Southern hybridisation; no transformants contained a disrupted pnlA gene. Of nineteen heterologous truncation vector transformants, three contained a disrupted pnlA gene; Southern analysis revealed single integrations of vector sequence at pnlA in two of these transformants. pnlA mRNA was not detected by Northern hybridisation in pnlA- transformants. pnlA- transformants failed to produce a PNLA protein with a pI identical to one normally detected in wild-type isolates by silver and activity staining of isoelectric focussing gels. Pathogenesis on Capsicum and apple was unaffected by disruption of

  2. Construction of two vectors for gene expression in Trichoderma reesei.

    PubMed

    Lv, Dandan; Wang, Wei; Wei, Dongzhi

    2012-01-01

    We report the construction of two filamentous fungi Trichoderma reesei expression vectors, pWEF31 and pWEF32. Both vectors possess the hygromycin phosphotransferase B gene expression cassette and the strong promoter and terminator of the cellobiohydrolase 1 gene (cbh1) from T. reesei. The two newly constructed vectors can be efficiently transformed into T. reesei with Agrobacterium-mediated transformation. The difference between pWEF31 and pWEF32 is that pWEF32 has two longer homologous arms. As a result, pWEF32 easily undergoes homologous recombination. On the other hand, pWEF31 undergoes random recombination. The applicability of both vectors was tested by first generating the expression vectors pWEF31-red and pWEF32-red and then detecting the expression of the DsRed2 gene in T. reesei Rut C30. Additionally, we measured the exo-1,4-β-glucanase activity of the recombinant cells. Our work provides an effective transformation system for homologous and heterologous gene expression and gene knockout in T. reesei. It also provides a method for recombination at a specific chromosomal location. Finally, both vectors will be useful for the large-scale gene expression industry. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Thumbs down: a molecular-morphogenetic approach to avian digit homology.

    PubMed

    Capek, Daniel; Metscher, Brian D; Müller, Gerd B

    2014-01-01

    Avian forelimb digit homology remains one of the standard themes in comparative biology and EvoDevo research. In order to resolve the apparent contradictions between embryological and paleontological evidence a variety of hypotheses have been presented in recent years. The proposals range from excluding birds from the dinosaur clade, to assignments of homology by different criteria, or even assuming a hexadactyl tetrapod limb ground state. At present two approaches prevail: the frame shift hypothesis and the pyramid reduction hypothesis. While the former postulates a homeotic shift of digit identities, the latter argues for a gradual bilateral reduction of phalanges and digits. Here we present a new model that integrates elements from both hypotheses with the existing experimental and fossil evidence. We start from the main feature common to both earlier concepts, the initiating ontogenetic event: reduction and loss of the anterior-most digit. It is proposed that a concerted mechanism of molecular regulation and developmental mechanics is capable of shifting the boundaries of hoxD expression in embryonic forelimb buds as well as changing the digit phenotypes. Based on a distinction between positional (topological) and compositional (phenotypic) homology criteria, we argue that the identity of the avian digits is II, III, IV, despite a partially altered phenotype. Finally, we introduce an alternative digit reduction scheme that reconciles the current fossil evidence with the presented molecular-morphogenetic model. Our approach identifies specific experiments that allow to test whether gene expression can be shifted and digit phenotypes can be altered by induced digit loss or digit gain. © 2013 Wiley Periodicals, Inc.

  4. Investigating homology between proteins using energetic profiles.

    PubMed

    Wrabl, James O; Hilser, Vincent J

    2010-03-26

    Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved local stability, may

  5. Comparative Analysis of gO Isoforms Reveals that Strains of Human Cytomegalovirus Differ in the Ratio of gH/gL/gO and gH/gL/UL128-131 in the Virion Envelope

    PubMed Central

    Zhou, Momei; Yu, Qin; Wechsler, Anya

    2013-01-01

    Herpesvirus glycoprotein complex gH/gL provides a core entry function through interactions with the fusion protein gB and can also influence tropism through receptor interactions. The Epstein-Barr virus gH/gL and gH/gL/gp42 serve both functions for entry into epithelial and B cells, respectively. Human cytomegalovirus (HCMV) gH/gL can be bound by the UL128-131 proteins or gO. The phenotypes of gO and UL128-131 mutants suggest that gO-gH/gL interactions are necessary for the core entry function on all cell types, whereas the binding of UL128-131 to gH/gL likely relates to a distinct receptor-binding function for entry into some specific cell types (e.g., epithelial) but not others (e.g., fibroblasts and neurons). There are at least eight isoforms of gO that differ by 10 to 30% of amino acids, and previous analysis of two HCMV strains suggested that some isoforms of gO function like chaperones, disassociating during assembly to leave unbound gH/gL in the virion envelope, while others remain bound to gH/gL. For the current report, we analyzed the gH/gL complexes present in the virion envelope of several HCMV strains, each of which encodes a distinct gO isoform. Results indicate that all strains of HCMV contain stable gH/gL/gO trimers and gH/gL/UL128-131 pentamers and little, if any, unbound gH/gL. TR, TB40/e, AD169, and PH virions contained vastly more gH/gL/gO than gH/gL/UL128-131, whereas Merlin virions contained mostly gH/gL/UL128-131, despite abundant unbound gO remaining in the infected cells. Suppression of UL128-131 expression during Merlin replication dramatically shifted the ratio toward gH/gL/gO. These data suggest that Merlin gO is less efficient than other gO isoforms at competing with UL128-131 for binding to gH/gL. Thus, gO diversity may influence the pathogenesis of HCMV through effects on the assembly of the core versus tropism gH/gL complexes. PMID:23804643

  6. Activating mutations affecting the Dbl homology domain of SOS2 cause Noonan syndrome

    PubMed Central

    Cordeddu, Viviana; Yin, Jiani C.; Gunnarsson, Cecilia; Virtanen, Carl; Drunat, Séverine; Lepri, Francesca; De Luca, Alessandro; Rossi, Cesare; Ciolfi, Andrea; Pugh, Trevor J.; Bruselles, Alessandro; Priest, James R.; Pennacchio, Len A.; Lu, Zhibin; Danesh, Arnavaz; Quevedo, Rene; Hamid, Alaa; Martinelli, Simone; Pantaleoni, Francesca; Gnazzo, Maria; Daniele, Paola; Lissewski, Christina; Bocchinfuso, Gianfranco; Stella, Lorenzo; Odent, Sylvie; Philip, Nicole; Faivre, Laurence; Vlckova, Marketa; Seemanova, Eva; Digilio, Cristina; Zenker, Martin; Zampino, Giuseppe; Verloes, Alain; Dallapiccola, Bruno; Roberts, Amy E.; Cavé, Hélène; Gelb, Bruce D.; Neel, Benjamin G.; Tartaglia, Marco

    2015-01-01

    The RASopathies constitute a family of autosomal dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering son of sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its auto-inhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the Dbl homology domain. PMID:26173643

  7. Molecular evolution of the actin-like MreB protein gene family in wall-less bacteria.

    PubMed

    Ku, Chuan; Lo, Wen-Sui; Kuo, Chih-Horng

    2014-04-18

    The mreB gene family encodes actin-like proteins that determine cell shape by directing cell wall synthesis and often exists in one to three copies in the genomes of non-spherical bacteria. Intriguingly, while most wall-less bacteria do not have this gene, five to seven mreB homologs are found in Spiroplasma and Haloplasma, which are both characterized by cell contractility. To investigate the molecular evolution of this gene family in wall-less bacteria, we sampled the available genome sequences from these two genera and other related lineages for comparative analysis. The gene phylogenies indicated that the mreB homologs in Haloplasma are more closely related to those in Firmicutes, whereas those in Spiroplasma form a separate clade. This finding suggests that the gene family expansions in these two lineages are the results of independent ancient duplications. Moreover, the Spiroplasma mreB homologs can be classified into five clades, of which the genomic positions are largely conserved. The inference of gene gains and losses suggests that there has been an overall trend to retain only one homolog from each of the five mreB clades in the evolutionary history of Spiroplasma. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation.

    PubMed

    Miki, Daisuke; Zhang, Wenxin; Zeng, Wenjie; Feng, Zhengyan; Zhu, Jian-Kang

    2018-05-17

    Homologous recombination-based gene targeting is a powerful tool for precise genome modification and has been widely used in organisms ranging from yeast to higher organisms such as Drosophila and mouse. However, gene targeting in higher plants, including the most widely used model plant Arabidopsis thaliana, remains challenging. Here we report a sequential transformation method for gene targeting in Arabidopsis. We find that parental lines expressing the bacterial endonuclease Cas9 from the egg cell- and early embryo-specific DD45 gene promoter can improve the frequency of single-guide RNA-targeted gene knock-ins and sequence replacements via homologous recombination at several endogenous sites in the Arabidopsis genome. These heritable gene targeting can be identified by regular PCR. Our approach enables routine and fine manipulation of the Arabidopsis genome.

  9. Simple Monitoring of Gene Targeting Efficiency in Human Somatic Cell Lines Using the PIGA Gene

    PubMed Central

    Karnan, Sivasundaram; Konishi, Yuko; Ota, Akinobu; Takahashi, Miyuki; Damdindorj, Lkhagvasuren; Hosokawa, Yoshitaka; Konishi, Hiroyuki

    2012-01-01

    Gene targeting in most of human somatic cell lines has been labor-intensive because of low homologous recombination efficiency. The development of an experimental system that permits a facile evaluation of gene targeting efficiency in human somatic cell lines is the first step towards the improvement of this technology and its application to a broad range of cell lines. In this study, we utilized phosphatidylinositol glycan anchor biosynthesis class A (PIGA), a gene essential for the synthesis of glycosylphosphatidyl inositol (GPI) anchors, as a reporter of gene targeting events in human somatic cell lines. Targeted disruption of PIGA was quantitatively detected with FLAER, a reagent that specifically binds to GPI anchors. Using this PIGA-based reporter system, we successfully detected adeno-associated virus (AAV)-mediated gene targeting events both with and without promoter-trap enrichment of gene-targeted cell population. The PIGA-based reporter system was also capable of reproducing previous findings that an AAV-mediated gene targeting achieves a remarkably higher ratio of homologous versus random integration (H/R ratio) of targeting vectors than a plasmid-mediated gene targeting. The PIGA-based system also detected an approximately 2-fold increase in the H/R ratio achieved by a small negative selection cassette introduced at the end of the AAV-based targeting vector with a promoter-trap system. Thus, our PIGA-based system is useful for monitoring AAV-mediated gene targeting and will assist in improving gene targeting technology in human somatic cell lines. PMID:23056640

  10. Gene trap and gene inversion methods for conditional gene inactivation in the mouse

    PubMed Central

    Xin, Hong-Bo; Deng, Ke-Yu; Shui, Bo; Qu, Shimian; Sun, Qi; Lee, Jane; Greene, Kai Su; Wilson, Jason; Yu, Ying; Feldman, Morris; Kotlikoff, Michael I.

    2005-01-01

    Conditional inactivation of individual genes in mice using site-specific recombinases is an extremely powerful method for determining the complex roles of mammalian genes in developmental and tissue-specific contexts, a major goal of post-genomic research. However, the process of generating mice with recombinase recognition sequences placed at specific locations within a gene, while maintaining a functional allele, is time consuming, expensive and technically challenging. We describe a system that combines gene trap and site-specific DNA inversion to generate mouse embryonic stem (ES) cell clones for the rapid production of conditional knockout mice, and the use of this system in an initial gene trap screen. Gene trapping should allow the selection of thousands of ES cell clones with defined insertions that can be used to generate conditional knockout mice, thereby providing extensive parallelism that eliminates the time-consuming steps of targeting vector construction and homologous recombination for each gene. PMID:15659575

  11. Identification of a mouse synaptic glycoprotein gene in cultured neurons.

    PubMed

    Yu, Albert Cheung-Hoi; Sun, Chun Xiao; Li, Qiang; Liu, Hua Dong; Wang, Chen Ran; Zhao, Guo Ping; Jin, Meilei; Lau, Lok Ting; Fung, Yin-Wan Wendy; Liu, Shuang

    2005-10-01

    Neuronal differentiation and aging are known to involve many genes, which may also be differentially expressed during these developmental processes. From primary cultured cerebral cortical neurons, we have previously identified various differentially expressed gene transcripts from cultured cortical neurons using the technique of arbitrarily primed PCR (RAP-PCR). Among these transcripts, clone 0-2 was found to have high homology to rat and human synaptic glycoprotein. By in silico analysis using an EST database and the FACTURA software, the full-length sequence of 0-2 was assembled and the clone was named as mouse synaptic glycoprotein homolog 2 (mSC2). DNA sequencing revealed transcript size of mSC2 being smaller than the human and rat homologs. RT-PCR indicated that mSC2 was expressed differentially at various culture days. The mSC2 gene was located in various tissues with higher expression in brain, lung, and liver. Functions of mSC2 in neurons and other tissues remain elusive and will require more investigation.

  12. Homological scaffolds of brain functional networks

    PubMed Central

    Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.

    2014-01-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  13. Chromhome: A rich internet application for accessing comparative chromosome homology maps

    PubMed Central

    Nagarajan, Sridevi; Rens, Willem; Stalker, James; Cox, Tony; Ferguson-Smith, Malcolm A

    2008-01-01

    Background Comparative genomics has become a significant research area in recent years, following the availability of a number of sequenced genomes. The comparison of genomes is of great importance in the analysis of functionally important genome regions. It can also be used to understand the phylogenetic relationships of species and the mechanisms leading to rearrangement of karyotypes during evolution. Many species have been studied at the cytogenetic level by cross species chromosome painting. With the large amount of such information, it has become vital to computerize the data and make them accessible worldwide. Chromhome is a comprehensive web application that is designed to provide cytogenetic comparisons among species and to fulfil this need. Results The Chromhome application architecture is multi-tiered with an interactive client layer, business logic and database layers. Enterprise java platform with open source framework OpenLaszlo is used to implement the Rich Internet Chromhome Application. Cross species comparative mapping raw data are collected and the processed information is stored into MySQL Chromhome database. Chromhome Release 1.0 contains 109 homology maps from 51 species. The data cover species from 14 orders and 30 families. The homology map displays all the chromosomes of the compared species as one image, making comparisons among species easier. Inferred data also provides maps of homologous regions that could serve as a guideline for researchers involved in phylogenetic or evolution based studies. Conclusion Chromhome provides a useful resource for comparative genomics, holding graphical homology maps of a wide range of species. It brings together cytogenetic data of many genomes under one roof. Inferred painting can often determine the chromosomal homologous regions between two species, if each has been compared with a common third species. Inferred painting greatly reduces the need to map entire genomes and helps focus only on relevant

  14. Chromhome: a rich internet application for accessing comparative chromosome homology maps.

    PubMed

    Nagarajan, Sridevi; Rens, Willem; Stalker, James; Cox, Tony; Ferguson-Smith, Malcolm A

    2008-03-26

    Comparative genomics has become a significant research area in recent years, following the availability of a number of sequenced genomes. The comparison of genomes is of great importance in the analysis of functionally important genome regions. It can also be used to understand the phylogenetic relationships of species and the mechanisms leading to rearrangement of karyotypes during evolution. Many species have been studied at the cytogenetic level by cross species chromosome painting. With the large amount of such information, it has become vital to computerize the data and make them accessible worldwide. Chromhome http://www.chromhome.org is a comprehensive web application that is designed to provide cytogenetic comparisons among species and to fulfil this need. The Chromhome application architecture is multi-tiered with an interactive client layer, business logic and database layers. Enterprise java platform with open source framework OpenLaszlo is used to implement the Rich Internet Chromhome Application. Cross species comparative mapping raw data are collected and the processed information is stored into MySQL Chromhome database. Chromhome Release 1.0 contains 109 homology maps from 51 species. The data cover species from 14 orders and 30 families. The homology map displays all the chromosomes of the compared species as one image, making comparisons among species easier. Inferred data also provides maps of homologous regions that could serve as a guideline for researchers involved in phylogenetic or evolution based studies. Chromhome provides a useful resource for comparative genomics, holding graphical homology maps of a wide range of species. It brings together cytogenetic data of many genomes under one roof. Inferred painting can often determine the chromosomal homologous regions between two species, if each has been compared with a common third species. Inferred painting greatly reduces the need to map entire genomes and helps focus only on relevant

  15. A murC gene in Porphyromonas gingivalis 381.

    PubMed

    Ansai, T; Yamashita, Y; Awano, S; Shibata, Y; Wachi, M; Nagai, K; Takehara, T

    1995-09-01

    The gene encoding a 51 kDa polypeptide of Porphyromonas gingivalis 381 was isolated by immunoblotting using an antiserum raised against P. gingivalis alkaline phosphatase. DNA sequence analysis of a 2.5 kb DNA fragment containing a gene encoding the 51 kDa protein revealed one complete and two incomplete ORFs. Database searches using the FASTA program revealed significant homology between the P. gingivalis 51 kDa protein and the MurC protein of Escherichia coli, which functions in peptidoglycan synthesis. The cloned 51 kDa protein encoded a functional product that complemented an E. coli murC mutant. Moreover, the ORF just upstream of murC coded for a protein that was 31% homologous with the E. coli MurG protein. The ORF just downstream of murC coded for a protein that was 17% homologous with the Streptococcus pneumoniae penicillin-binding protein 2B (PBP2B), which functions in peptidoglycan synthesis and is responsible for antibiotic resistance. These results suggest that P. gingivalis contains a homologue of the E. coli peptidoglycan synthesis gene murC and indicate the possibility of a cluster of genes responsible for cell division and cell growth, as in the E. coli mra region.

  16. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea.

    PubMed

    Foucher, Fabrice; Morin, Julie; Courtiade, Juliette; Cadioux, Sandrine; Ellis, Noel; Banfield, Mark J; Rameau, Catherine

    2003-11-01

    Genes in the TERMINAL FLOWER1 (TFL1)/CENTRORADIALIS family are important key regulatory genes involved in the control of flowering time and floral architecture in several different plant species. To understand the functions of TFL1 homologs in pea, we isolated three TFL1 homologs, which we have designated PsTFL1a, PsTFL1b, and PsTFL1c. By genetic mapping and sequencing of mutant alleles, we demonstrate that PsTFL1a corresponds to the DETERMINATE (DET) gene and PsTFL1c corresponds to the LATE FLOWERING (LF) gene. DET acts to maintain the indeterminacy of the apical meristem during flowering, and consistent with this role, DET expression is limited to the shoot apex after floral initiation. LF delays the induction of flowering by lengthening the vegetative phase, and allelic variation at the LF locus is an important component of natural variation for flowering time in pea. The most severe class of alleles flowers early and carries either a deletion of the entire PsTFL1c gene or an amino acid substitution. Other natural and induced alleles for LF, with an intermediate flowering time phenotype, present no changes in the PsTFL1c amino acid sequence but affect LF transcript level in the shoot apex: low LF transcript levels are correlated with early flowering, and high LF transcript levels are correlated with late flowering. Thus, different TFL1 homologs control two distinct aspects of plant development in pea, whereas a single gene, TFL1, performs both functions in Arabidopsis. These results show that different species have evolved different strategies to control key developmental transitions and also that the genetic basis for natural variation in flowering time may differ among plant species.

  17. The human oxytocin gene promoter is regulated by estrogens.

    PubMed

    Richard, S; Zingg, H H

    1990-04-15

    Gonadal steroids affect brain function primarily by altering the expression of specific genes, yet the specific mechanisms by which neuronal target genes undergo such regulation are unknown. Recent evidence suggests that the expression of the neuropeptide gene for oxytocin (OT) is modulated by estrogens. We therefore examined the possibility that this regulation occurred via a direct interaction of the estrogen-receptor complex with cis-acting elements flanking the OT gene. DNA-mediated gene transfer experiments were performed using Neuro-2a neuroblastoma cells and chimeric plasmids containing portions of the human OT gene 5'-glanking region linked to the chloramphenicol acetyltransferase gene. We identified a 19-base pair region located at -164 to -146 upstream of the transcription start site which is capable of conferring estrogen responsiveness to the homologous as well as to a heterologous promoter. The hormonal response is strictly dependent on the presence of intracellular estrogen receptors, since estrogen induced stimulation occurred only in Neuro-2a cells co-transfected with an expression vector for the human estrogen receptor. The identified region contains a novel imperfect palindrome (GGTGACCTTGACC) with sequence similarity to other estrogen response elements (EREs). To define cis-acting elements that function in synergism with the ERE, sequences 3' to the ERE were deleted, including the CCAAT box, two additional motifs corresponding to the right half of the ERE palindrome (TGACC), as well as a CTGCTAA heptamer similar to the "elegans box" found in Caenorhabditis elegans. Interestingly, optimal function of the identified ERE was fully independent of these elements and only required a short promoter region (-49 to +36). Our studies define a molecular mechanism by which estrogens can directly modulate OT gene expression. However, only a subset of OT neurons are capable of binding estrogens, therefore, direct action of estrogens on the OT gene may be

  18. Tocopherol and tocotrienol homologs in parenteral lipid emulsions

    PubMed Central

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas M; Zaloga, Gary P; Siddiqui, Rafat A

    2015-01-01

    Parenteral lipid emulsions, which are made of oils from plant and fish sources, contain different types of tocopherols and tocotrienols (vitamin E homologs). The amount and types of vitamin E homologs in various lipid emulsions vary considerably and are not completely known. The objective of this analysis was to develop a quantitative method to determine levels of all vitamin E homologs in various lipid emulsions. An HPLC system was used to measure vitamin E homologs using a Pinnacle DB Silica normal phase column and an isocratic, n-hexane:1,4 dioxane (98:2) mobile phase. An optimized protocol was used to report vitamin E homolog concentrations in soybean oil-based (Intralipid®, Ivelip®, Lipofundin® N, Liposyn® III, and Liposyn® II), medium- and long-chain fatty acid-based (Lipofundin®, MCT and Structolipid®), olive oil-based (ClinOleic®), and fish oil-based (Omegaven®) and mixture of these oils-based (SMOFlipid®, Lipidem®) commercial parenteral lipid emulsions. Total content of all vitamin E homologs varied greatly between different emulsions, ranging from 57.9 to 383.9 µg/mL. Tocopherols (α, β, γ, δ) were the predominant vitamin E homologs for all emulsions, with tocotrienol content < 0.3%. In all of the soybean emulsions, except for Lipofundin® N, the predominant vitamin E homolog was γ-tocopherol, which ranged from 57–156 µg/mL. ClinOleic® predominantly contained α-tocopherol (32 µg/mL), whereas α-tocopherol content in Omegaven® was higher than most of the other lipid emulsions (230 µg/mL). Practical applications The information on the types and quantity of vitamin E homologs in various lipid emulsions will be extremely useful to physicians and healthcare personnel in selecting appropriate lipid emulsions that are exclusively used in patients with inadequate gastrointestinal function, including hospitalized and critically ill patients. Some emulsions may require vitamin E supplementation in order to meet minimal human requirements

  19. Differential Expression of Ecdysone Receptor Leads to Variation in Phenotypic Plasticity across Serial Homologs

    PubMed Central

    Tong, Xiaoling; Bear, Ashley; Liew, Seng Fatt; Bhardwaj, Shivam; Wasik, Bethany R.; Dinwiddie, April; Bastianelli, Carole; Cheong, Wei Fun; Wenk, Markus R.; Cao, Hui

    2015-01-01

    Bodies are often made of repeated units, or serial homologs, that develop using the same core gene regulatory network. Local inputs and modifications to this network allow serial homologs to evolve different morphologies, but currently we do not understand which modifications allow these repeated traits to evolve different levels of phenotypic plasticity. Here we describe variation in phenotypic plasticity across serial homologous eyespots of the butterfly Bicyclus anynana, hypothesized to be under selection for similar or different functions in the wet and dry seasonal forms. Specifically, we document the presence of eyespot size and scale brightness plasticity in hindwing eyespots hypothesized to vary in function across seasons, and reduced size plasticity and absence of brightness plasticity in forewing eyespots hypothesized to have the same function across seasons. By exploring the molecular and physiological causes of this variation in plasticity across fore and hindwing serial homologs we discover that: 1) temperature experienced during the wandering stages of larval development alters titers of an ecdysteroid hormone, 20-hydroxyecdysone (20E), in the hemolymph of wet and dry seasonal forms at that stage; 2) the 20E receptor (EcR) is differentially expressed in the forewing and hindwing eyespot centers of both seasonal forms during this critical developmental stage; and 3) manipulations of EcR signaling disproportionately affected hindwing eyespots relative to forewing eyespots. We propose that differential EcR expression across forewing and hindwing eyespots at a critical stage of development explains the variation in levels of phenotypic plasticity across these serial homologues. This finding provides a novel signaling pathway, 20E, and a novel molecular candidate, EcR, for the regulation of levels of phenotypic plasticity across body parts or serial homologs. PMID:26405828

  20. [Polymorphism among RFL-PPR homologs in sunflower (Helianthus annuus L.) lines with varying ability for the suppression of the cytoplasmic male sterility phenotype].

    PubMed

    Anisimova, I N; Alpatieva, N V; Rozhkova, V T; Kuznetsova, E B; Pinaev, A G; Gavrilova, V A

    2014-07-01

    A complex comparative genetic approach was used for the investigation of the structural and functional diversity of genes for the restoration of sunflower pollen fertility. It includes (i) hybridological analysis; (ii) analysis of polymorphism among EST fragments.homologous to the known Rf genes that contain repeated motives of 35 amino acids (RFL-PPR); (iii) the development of molecular markers. Monogenic segregation in three interline cross combinations and the results of molecular marker analysis confirmed the allelic differences of parental lines in the Mendelian locus for CMS PET1 pollen fertility restoration. Introns were found in two RFL-PPR fragments. Two allelic variants of the QHL12D20 fragment were detected among the sixty lines of the sunflower genetic collection. An intron of QHL12D20 fragment was homologous to an intron of the AHBP-1B gene; the product of this gene-has a similarity with the transcription factor of the bZIP-family of Arabidopsis. A relationship between the QHL12D20 polymorphism and the functional state of the Rfl locus was revealed.