Sample records for uldis iljins imants

  1. Bio-inspired Nano-capillary Self-powered Fluid Transport in Nanocomposite (NBIT III)

    DTIC Science & Technology

    2017-02-22

    steel , ceramic axes and ball-bearing turbos exhibit less deformation at contact points and therefore a greater stress under the same load. Combined with...metal wedge, made from stainless steel (SUS310S) or super alloy (HAYNES230), was placed atop the HAP-PEG pellet to provide a pressure gradient that...between our team and Iljin materials, a Korean company, about development and commercialization of hydroxyl apatite bone cement . -We submitted a

  2. Comparative studies of mucilage cells in different organs in some species of Malva, Althaea and Alcea.

    PubMed

    Pakravan, M; Abedinzadeh, H; Safaeepur, J

    2007-08-01

    Distribution of Mucilage Cells (MC) in leaves and petals of two species of Malva L. : Malva neglecta Wallr and M. nicaeensis All, one species of Altheae L.: A. officinalis L. and one species of Alcea L: A. angulata (Freyn and Sint.) Freyn and Sint. ex Iljin, have studied. Except ofA. angulata that mucilage cells observed both in epidermis and mesophyll of leaves, in the others mucilage cells confined to epidermis cells. All of species have mucilage cells in the petals. The area of the mucilaginous elements in the leaves and petals of species determined planimetrically on definite cross-sections was studied as a comparative element to the mucilage content determined by extracting the raw mucilage by Hot Extraction Method (HEM) and then by comparing the dry weight, comparison between species was done. A correlation between the greater area of the mucilaginous elements and the mucilage content measured by methods mentioned was shown, basing on different microscopic examination of cross-sections of the organs fixed and stained with ruthenium red. The results were shown that mucilage content in the leaves of Malva neglecta was more than the others and mucilage content in petals of Malva neglecta was more than the others.

  3. Establishment of Hairy Root Cultures of Rhaponticum carthamoides (Willd.) Iljin for the Production of Biomass and Caffeic Acid Derivatives

    PubMed Central

    Skała, Ewa; Kicel, Agnieszka; Olszewska, Monika A.; Kiss, Anna K.

    2015-01-01

    The aim of the study was to obtain transformed roots of Rhaponticum carthamoides and evaluate their phytochemical profile. Hairy roots were induced from leaf explants by the transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. The best response (43%) was achieved by infection with A4 strain. The effects of different liquid media (WPM, B5, SH) with full and half-strength concentrations of macro- and micronutrients on biomass accumulation of the best grown hairy root line (RC3) at two different lighting conditions (light or dark) were investigated. The highest biomass (93 g L−1 of the fresh weight after 35 days) was obtained in WPM medium under periodic light. UPLC-PDA-ESI-MS3 and HPLC-PDA analyses of 80% aqueous methanol extracts from the obtained hairy roots revealed the presence of eleven caffeoylquinic acids and their derivatives and five flavonoid glycosides. The production of caffeoylquinic acids and their derivatives was elevated in hairy roots grown in the light. Only light-grown hairy roots demonstrated the capability for the biosynthesis of such flavonoid glycosides as quercetagetin, quercetin, luteolin, and patuletin hexosides. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid and a tentatively identified tricaffeoylquinic acid derivative were detected as the major compounds present in the transformed roots. PMID:25811023