Sample records for ultimate biochemical oxygen

  1. Ultimate biochemical oxygen demand in semi-intensively managed shrimp pond waters

    USDA-ARS?s Scientific Manuscript database

    Three independent studies were conducted to quantified ultimate biochemical oxygen demand (UBOD) and the corresponding decomposition rate constant for production pond (average 21.5 ha each) waters and effluents on six semi-intensively managed marine shrimp (Litopenaeus vannamei) farms in Honduras. S...

  2. Measurement of biochemical oxygen demand of the leachates.

    PubMed

    Fulazzaky, Mohamad Ali

    2013-06-01

    Biochemical oxygen demand (BOD) of the leachates originally from the different types of landfill sites was studied based on the data measured using the two manometric methods. The measurements of BOD using the dilution method were carried out to assess the typical physicochemical and biological characteristics of the leachates together with some other parameters. The linear regression analysis was used to predict rate constants for biochemical reactions and ultimate BOD values of the different leachates. The rate of a biochemical reaction implicated in microbial biodegradation of pollutants depends on the leachate characteristics, mass of contaminant in the leachate, and nature of the leachate. Character of leachate samples for BOD analysis of using the different methods may differ significantly during the experimental period, resulting in different BOD values. This work intends to verify effect of the different dilutions for the manometric method tests on the BOD concentrations of the leachate samples to contribute to the assessment of reaction rate and microbial consumption of oxygen.

  3. PROPOSED MODIFICATIONS OF K2-TEMPERATURE RELATION AND LEAST SQUARES ESTIMATES OF BOD (BIOCHEMICAL OXYGEN DEMAND) PARAMETERS

    EPA Science Inventory

    A technique is presented for finding the least squares estimates for the ultimate biochemical oxygen demand (BOD) and rate coefficient for the BOD reaction without resorting to complicated computer algorithms or subjective graphical methods. This may be used in stream water quali...

  4. Biochemical Oxygen Demand and Dissolved Oxygen. Training Module 5.105.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the azide modification of the Winkler dissolved oxygen test and the electronic dissolved oxygen meter test procedures for determining the dissolved oxygen and the biochemical oxygen demand of a wastewater sample. Included are…

  5. Chapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand

    USGS Publications Warehouse

    Delzer, Gregory C.; McKenzie, Stuart W.

    1999-01-01

    The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determinng how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. This report describes the field protocols used by U.S. Geological Survey (USGS) personnel to determine the five-day test for biochemical oxygen demand.

  6. Controls on biochemical oxygen demand in the upper Klamath River, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Snyder, Dean M.; Rounds, Stewart A.

    2010-01-01

    A series of 30-day biochemical oxygen demand (BOD) experiments were conducted on water column samples from a reach of the upper Klamath River that experiences hypoxia and anoxia in summer. Samples were incubated with added nitrification inhibitor to measure carbonaceous BOD (CBOD), untreated to measure total BOD, which included demand from nitrogenous BOD (NBOD), and coarse-filtered to examine the effect of removing large particulate matter. All BOD data were fit well with a two-group model, so named because it considered contributions from both labile and refractory pools of carbon: BODt = a1(1 − e− a0t) + a2t. Site-average labile first-order decay rates a0 ranged from 0.15 to 0.22/day for CBOD and 0.11 to 0.29/day for BOD. Site-average values of refractory zero-order decay rates a2 ranged from 0.13 to 0.25 mg/L/day for CBOD and 0.01 to 0.45 mg/L/day for BOD; the zero-order CBOD decay rate increased from early- to mid-summer. Values of ultimate CBOD for the labile component a1 ranged from 5.5 to 28.8 mg/L for CBOD, and 7.6 to 30.8 mg/L for BOD. Two upstream sites had higher CBOD compared to those downstream. Maximum measured total BOD5 and BOD30 during the study were 26.5 and 55.4 mg/L; minimums were 4.2 and 13.6 mg/L. For most samples, the oxygen demand from the three components considered here were: labile CBOD > NBOD > refractory CBOD, though the relative importance of refractory CBOD to oxygen demand increased over time. Coarse-filtering reduced CBOD for samples with high particulate carbon and high biovolumes of Aphanizomenon flos-aquae. There was a strong positive correlation between BOD, CBOD, and the labile component of CBOD to particulate C and N, with weaker positive correlation to field pH, field dissolved oxygen, and total N. The refractory component of CBOD was not correlated to particulate matter, instead showing weak but statistically significant correlation to dissolved organic carbon, UV absorbance at 254 nm, and

  7. Biochemical, endocrine, and hematological factors in human oxygen tolerance extension: Predictive studies 6

    NASA Technical Reports Server (NTRS)

    Lambertsen, C. J.; Clark, J. M.

    1992-01-01

    The Predictive Studies VI (Biochemical, endocrine, and hematological factors in human oxygen tolerance extension) Program consisted of two related areas of research activity, integrated in design and performance, that were each based on an ongoing analysis of human organ oxygen tolerance data obtained for the continuous oxygen exposures of the prior Predictive Studies V Program. The two research areas effectively blended broad investigation of systematically varied intermittent exposure patterns in animals with very selective evaluation of specific exposure patterns in man.

  8. Determination of Biochemical Oxygen Demand of Area Waters: A Bioassay Procedure for Environmental Monitoring

    ERIC Educational Resources Information Center

    Riehl, Matthew

    2012-01-01

    A graphical method for determining the 5-day biochemical oxygen demand (BOD5) for a body of water is described. In this bioassay, students collect a sample of water from a designated site, transport it to the laboratory, and evaluate the amount of oxygen consumed by naturally occurring bacteria during a 5-day incubation period. An accuracy check,…

  9. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams.

    PubMed

    Corsi, S R; Booth, N L; Hall, D W

    2001-07-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.

  10. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams

    USGS Publications Warehouse

    Corsi, S.R.; Booth, N.L.; Hall, D.W.

    2001-01-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.

  11. High-throughput determination of biochemical oxygen demand (BOD) by a microplate-based biosensor.

    PubMed

    Pang, Hei-Leung; Kwok, Nga-Yan; Chan, Pak-Ho; Yeung, Chi-Hung; Lo, Waihung; Wong, Kwok-Yin

    2007-06-01

    The use of the conventional 5-day biochemical oxygen demand (BOD5) method in BOD determination is greatly hampered by its time-consuming sampling procedure and its technical difficulty in the handling of a large pool of wastewater samples. Thus, it is highly desirable to develop a fast and high-throughput biosensor for BOD measurements. This paper describes the construction of a microplate-based biosensor consisting of an organically modified silica (ORMOSIL) oxygen sensing film for high-throughput determination of BOD in wastewater. The ORMOSIL oxygen sensing film was prepared by reacting tetramethoxysilane with dimethyldimethoxysilane in the presence of the oxygen-sensitive dye tris(4,7-diphenyl-1,10-phenanthroline)ruthenium-(II) chloride. The silica composite formed a homogeneous, crack-free oxygen sensing film on polystyrene microtiter plates with high stability, and the embedded ruthenium dye interacted with the dissolved oxygen in wastewater according to the Stern-Volmer relation. The bacterium Stenotrophomonas maltophilia was loaded into the ORMOSIL/ PVA composite (deposited on the top of the oxygen sensing film) and used to metabolize the organic compounds in wastewater. This BOD biosensor was found to be able to determine the BOD values of wastewater samples within 20 min by monitoring the dissolved oxygen concentrations. Moreover, the BOD values determined by the BOD biosensor were in good agreement with those obtained by the conventional BOD5 method.

  12. A MEMS approach to determine the biochemical oxygen demand (BOD) of wastewaters

    NASA Astrophysics Data System (ADS)

    Recoules, L.; Migaou, A.; Dollat, X.; Thouand, G.; Gue, A. M.; Boukabache, A.

    2017-07-01

    A MEMS approach to obtain an efficient tool for the evaluation of the biochemical oxygen demand (BOD) of wastewaters is introduced. Its operating principle is based on the measurement of oxygen concentration in water samples containing organic pollutants and specific bacteria. The microsystem has been designed to perform multiple and parallel measurements in a poly-wells microfluidic device. The monitoring of the bacterial activity is ensured by optical sensors incorporated in each well of the fluidic network. By using an optode sensor, it is hereby demonstrated that this approach is efficient to measure organic pollutants by testing different Luria Bertani buffer dilutions. These results also show that it is possible to reduce the duration of measurements from 5 d (BOD5) of the standard approach to few hours, typically 3 h-5 h.

  13. Improvement of the analysis of the biochemical oxygen demand (BOD) of Mediterranean seawater by seeding control.

    PubMed

    Simon, F Xavier; Penru, Ywann; Guastalli, Andrea R; Llorens, Joan; Baig, Sylvie

    2011-07-15

    Biochemical oxygen demand (BOD) is a useful parameter for assessing the biodegradability of dissolved organic matter in water. At the same time, this parameter is used to evaluate the efficiency with which certain processes remove biodegradable natural organic matter (NOM). However, the values of BOD in seawater are very low (around 2 mgO(2)L(-1)) and the methods used for its analysis are poorly developed. The increasing attention given to seawater desalination in the Mediterranean environment, and related phenomena such as reverse osmosis membrane biofouling, have stimulated interest in seawater BOD close to the Spanish coast. In this study the BOD analysis protocol was refined by introduction of a new step in which a critical quantity of autochthonous microorganisms, measured as adenosine triphosphate, is added. For the samples analyzed, this improvement allowed us to obtain reliable and replicable BOD measurements, standardized with solutions of glucose-glutamic acid and acetate. After 7 days of analysis duration, more than 80% of ultimate BOD is achieved, which in the case of easily biodegradable compounds represents nearly a 60% of the theoretical oxygen demand. BOD(7) obtained from the Mediterranean Sea found to be 2.0±0.3 mgO(2)L(-1) but this value decreased with seawater storage time due to the rapid consumption of labile compounds. No significant differences were found between two samples points located on the Spanish coast, since their organic matter content was similar. Finally, the determination of seawater BOD without the use of inoculum may lead to an underestimation of BOD. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Alternative aircraft anti-icing formulations with reduced aquatic toxicity and biochemical oxygen demand

    USGS Publications Warehouse

    Gold, Harris; Joback, Kevin; Geis, Steven; Bowman, George; Mericas, Dean; Corsi, Steven R.; Ferguson, Lee

    2010-01-01

    The current research was conducted to identify alternative aircraft and pavement deicer and anti-icer formulations with improved environmental characteristics compared to currently used commercial products (2007). The environmental characteristics of primary concern are the biochemical oxygen demand (BOD) and aquatic toxicity of the fully formulated products. Except when the distinction among products is necessary for clarity, “deicer” will refer to aircraft-deicing fluids (ADFs), aircraft anti-icing fluids (AAFs), and pavementdeicing materials (PDMs).

  15. Watershed modeling of dissolved oxygen and biochemical oxygen demand using a hydrological simulation Fortran program.

    PubMed

    Liu, Zhijun; Kieffer, Janna M; Kingery, William L; Huddleston, David H; Hossain, Faisal

    2007-11-01

    Several inland water bodies in the St. Louis Bay watershed have been identified as being potentially impaired due to low level of dissolved oxygen (DO). In order to calculate the total maximum daily loads (TMDL), a standard watershed model supported by U.S. Environmental Protection Agency, Hydrological Simulation Program Fortran (HSPF), was used to simulate water temperature, DO, and bio-chemical oxygen demand (BOD). Both point and non-point sources of BOD were included in watershed modeling. The developed model was calibrated at two time periods: 1978 to 1986 and 2000 to 2001 with simulated DO closely matched the observed data and captured the seasonal variations. The model represented the general trend and average condition of observed BOD. Water temperature and BOD decay are the major factors that affect DO simulation, whereas nutrient processes, including nitrification, denitrification, and phytoplankton cycle, have slight impacts. The calibrated water quality model provides a representative linkage between the sources of BOD and in-stream DO\\BOD concentrations. The developed input parameters in this research could be extended to similar coastal watersheds for TMDL determination and Best Management Practice (BMP) evaluation.

  16. Effects of dilution on dissolved oxygen depletion and microbial populations in the biochemical oxygen demand determination.

    PubMed

    Seo, Kyo Seong; Chang, Ho Nam; Park, Joong Kon; Choo, Kwang-Ho

    2007-09-01

    The biochemical oxygen demand (BOD) value is still a key parameter that can determine the level of organics, particularly the content of biodegradable organics in water. In this work, the effects of sample dilution, which should be done inevitably to get appropriate dissolved oxygen (DO) depletion, on the measurement of 5-day BOD (BOD(5)), was investigated with and without seeding using natural and synthetic water. The dilution effects were also evaluated for water samples taken in different seasons such as summer and winter because water temperature can cause a change in the types of microbial species, thus leading to different oxygen depletion profiles during BOD testing. The predation phenomenon between microbial cells was found to be dependent on the inorganic nutrients and carbon sources, showing a change in cell populations according to cell size after 5-day incubation. The dilution of water samples for BOD determination was linked to changes in the environment for microbial growth such as nutrition. The predation phenomenon between microbial cells was more important with less dilution. BOD(5) increased with the specific amount of inorganic nutrient per microbial mass when the natural water was diluted. When seeding was done for synthetic water samples, the seed volume also affected BOD due to the rate of organic uptake by microbes. BOD(5) increased with the specific bacterial population per organic source supplied at the beginning of BOD measurement. For more accurate BOD measurements, specific guidelines on dilution should be established.

  17. Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter.

    PubMed

    Cory, Rose M; McNeill, Kristopher; Cotner, James P; Amado, Andre; Purcell, Jeremiah M; Marshall, Alan G

    2010-05-15

    Dissolved organic matter (DOM) is a significant (>700 Pg) global C pool. Transport of terrestrial DOM to the inland waters and coastal zones represents the largest flux of reduced C from land to water (215 Tg yr(-1)) (Meybeck, M. Am. J. Sci. 1983, 282, 401-450). Oxidation of DOM by interdependent photochemical and biochemical processes largely controls the fate of DOM entering surface waters. Reactive oxygen species (ROS) have been hypothesized to play a significant role in the photooxidation of DOM, because they may oxidize the fraction of DOM that is inaccessible to direct photochemical degradation by sunlight. We followed the effects of photochemically produced singlet oxygen ((1)O(2)) on DOM by mass spectrometry with (18)O-labeled oxygen, to understand how (1)O(2)-mediated transformations of DOM may lead to altered DOM bioavailability. The photochemical oxygen uptake by DOM attributed to (1)O(2) increased with DOM concentration, yet it remained a minority contributor to photochemical oxygen uptake even at very high DOM concentrations. When DOM samples were exposed to (1)O(2)-generating conditions (Rose Bengal and visible light), increases were observed in DOM constituents with higher oxygen content and release of H(2)O(2) was detected. Differential effects of H(2)O(2) and (1)O(2)-treated DOM showed that (1)O(2)-treated DOM led to slower bacterial growth rates relative to unmodified DOM. Results of this study suggested that the net effect of the reactions between singlet oxygen and DOM may be production of partially oxidized substrates with correspondingly lower potential biological energy yield.

  18. Development of a biochemical oxygen demand sensor using gold-modified boron doped diamond electrodes.

    PubMed

    Ivandini, Tribidasari A; Saepudin, Endang; Wardah, Habibah; Harmesa; Dewangga, Netra; Einaga, Yasuaki

    2012-11-20

    Gold-modified boron doped diamond (BDD) electrodes were examined for the amperometric detection of oxygen as well as a detector for measuring biochemical oxygen demand (BOD) using Rhodotorula mucilaginosa UICC Y-181. An optimum potential of -0.5 V (vs Ag/AgCl) was applied, and the optimum waiting time was observed to be 20 min. A linear calibration curve for oxygen reduction was achieved with a sensitivity of 1.4 μA mg(-1) L oxygen. Furthermore, a linear calibration curve in the glucose concentration range of 0.1-0.5 mM (equivalent to 10-50 mg L(-1) BOD) was obtained with an estimated detection limit of 4 mg L(-1) BOD. Excellent reproducibility of the BOD sensor was shown with an RSD of 0.9%. Moreover, the BOD sensor showed good tolerance against the presence of copper ions up to a maximum concentration of 0.80 μM (equivalent to 50 ppb). The sensor was applied to BOD measurements of the water from a lake at the University of Indonesia in Jakarta, Indonesia, with results comparable to those made using a standard method for BOD measurement.

  19. Simulation of dissolved oxygen and biochemical oxygen demand, Plantation Canal, Broward County, Florida with an evaluation of the QUAL-I model for use in south Florida

    USGS Publications Warehouse

    Russo, Thomas N.; McQuivey, Raul S.

    1975-01-01

    A mathematical model; QUAL-I, developed by the Texas Water Development Board, was evaluated as a management tool in predicting the spatial and temporal distribution of dissolved oxygen and biochemical oxygen demand in Plantation Canal. Predictions based on the QUAL-I model, which was verified only against midday summer-flow conditions, showed that improvement of quality of inflows from sewage treatment plants and use of at least 130 cubic feet per second of dilution water would improve water quality in the canal significantly. The model was not fully amenable to use on Plantation Canal because: (1) it did not consider photosynthetic production, nitrification, and benthic oxygen demand as sources and sinks of oxygen; (2) the model assumptions of complete mixing, transport, and steady state were not met; and (3) the data base was inadequate because it consisted of only one set of data for each case. However, it was felt that meaningful results could be obtained for some sets of conditions. (Woodard-USGS)

  20. A Course in... Biochemical Engineering.

    ERIC Educational Resources Information Center

    Ng, Terry K-L.; And Others

    1988-01-01

    Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)

  1. Simulation of Temperature, Nutrients, Biochemical Oxygen Demand, and Dissolved Oxygen in the Catawba River, South Carolina, 1996-97

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul; Guimaraes, Wladmir B.; Sanders, Curtis L.; Bales, Jerad D.

    2003-01-01

    Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3

  2. What is the Effect of Case-Based Learning on the Academic Achievement of Students on the Topic of "Biochemical Oxygen Demand?"

    NASA Astrophysics Data System (ADS)

    Günter, Tuğçe; Alpat, Sibel Kılınç

    2017-11-01

    The purpose of this study was to investigate the effect of the case-based learning (CBL) method used in "biochemical oxygen demand (BOD)," which is a topic taught in the environmental chemistry course, at Dokuz Eylul University, on the academic achievement and opinions of students. The research had a quasi-experimental design and the study group consisted of 4th and 5th grade students (N = 18) attending the Chemistry Teaching Program in a university in Izmir. The "Biochemical Oxygen Demand Achievement Test (BODAT)" and the structured interview form were used as data collection tools. The results of BODAT post-test showed the higher increase in the achievement scores of the experimental group may be an indication of the effectiveness of the CBL method in improving academic achievement in the relevant topic. In addition, the experimental and control group students had positive opinions regarding the method, the scenario, and the material. The students found the method, the scenario, and the material to be interesting, understandable/instructional, relatable with everyday life, suitable for the topic, and enhancing active participation.

  3. A novel open-type biosensor for the in-situ monitoring of biochemical oxygen demand in an aerobic environment

    PubMed Central

    Yamashita, Takahiro; Ookawa, Natsuki; Ishida, Mitsuyoshi; Kanamori, Hiroyuki; Sasaki, Harumi; Katayose, Yuichi; Yokoyama, Hiroshi

    2016-01-01

    Biochemical oxygen demand (BOD) is a widely used index of water-quality assessment. Since bioelectrochemical BOD biosensors require anaerobic conditions for anodic reactions, they are not directly used in aerobic environments such as aeration tanks. Normally, the BOD biosensors are closed-type, where the anode is packed inside a closed chamber to avoid exposure to oxygen. In this study, a novel bioelectrochemical open-type biosensor was designed for in-situ monitoring of BOD during intermittent aeration. The open-type anode, without any protection against exposure to oxygen, was directly inserted into an intermittently aerated tank filled with livestock wastewater. Anodic potential was controlled using a potentiostat. Interestingly, this novel biosensor generated similar levels of current under both aerating and non-aerating conditions, and showed a logarithmic correlation (R2 > 0.9) of current with BOD concentrations up to 250 mg/L. Suspended solids in the wastewater attached to and covered the whole anode, presumably leading to the production of anaerobic conditions inside the covered anode via biological oxygen removal. Exoelectrogenic anaerobes (Geobacter spp.) were detected inside the covered anode using the 16S-rRNA gene. This biosensor will have various practical applications, such as the automatic control of aeration intensity and the in-situ monitoring of natural water environments. PMID:27917947

  4. Predicting influent biochemical oxygen demand: Balancing energy demand and risk management.

    PubMed

    Zhu, Jun-Jie; Kang, Lulu; Anderson, Paul R

    2018-01-01

    Ready access to comprehensive influent information can help water reclamation plant (WRP) operators implement better real-time process controls, provide operational reliability and reduce energy consumption. The five-day biochemical oxygen demand (BOD 5 ), a critical parameter for WRP process control, is expensive and difficult to measure using hard-sensors. An alternative approach based on a soft-sensor methodology shows promise, but can be problematic when used to predict high BOD 5 values. Underestimating high BOD 5 concentrations for process control could result in an insufficient amount of aeration, increasing the risk of an effluent violation. To address this issue, we tested a hierarchical hybrid soft-sensor approach involving multiple linear regression, artificial neural networks (ANN), and compromise programming. While this hybrid approach results in a slight decrease in overall prediction accuracy relative to the approach based on ANN only, the underestimation percentage is substantially lower (37% vs. 61%) for predictions of carbonaceous BOD 5 (CBOD 5 ) concentrations higher than the long-term average value. The hybrid approach is also flexible and can be adjusted depending on the relative importance between energy savings and managing the risk of an effluent violation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate

  6. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand.

    PubMed

    Abrevaya, Ximena C; Sacco, Natalia J; Bonetto, Maria C; Hilding-Ohlsson, Astrid; Cortón, Eduardo

    2015-01-15

    Microbial fuel cells (MFCs) are bio-electrochemical devices, where usually the anode (but sometimes the cathode, or both) contains microorganisms able to generate and sustain an electrochemical gradient which is used typically to generate electrical power. In the more studied set-up, the anode contains heterotrophic bacteria in anaerobic conditions, capable to oxidize organic molecules releasing protons and electrons, as well as other by-products. Released protons could reach the cathode (through a membrane or not) whereas electrons travel across an external circuit originating an easily measurable direct current flow. MFCs have been proposed fundamentally as electric power producing devices or more recently as hydrogen producing devices. Here we will review the still incipient development of analytical uses of MFCs or related devices or set-ups, in the light of a non-restrictive MFC definition, as promising tools to asset water quality or other measurable parameters. An introduction to biological based analytical methods, including bioassays and biosensors, as well as MFCs design and operating principles, will also be included. Besides, the use of MFCs as biochemical oxygen demand sensors (perhaps the main analytical application of MFCs) is discussed. In a companion review (Part 2), other new analytical applications are reviewed used for toxicity sensors, metabolic sensors, life detectors, and other proposed applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Biochemical and molecular characterization of rice (Oryza sativa L.) roots forming a barrier to radial oxygen loss.

    PubMed

    Kulichikhin, Konstantin; Yamauchi, Takaki; Watanabe, Kohtaro; Nakazono, Mikio

    2014-10-01

    The formation of a barrier to radial oxygen (O2 ) loss (ROL) in the root is an important adaptation of plants to root flooding, but the biochemical changes in plant roots where the barrier is formed are unclear. In this study, we analysed metabolic profiles and gene expression profiles in roots of rice (Oryza sativa L.) plants grown under stagnant deoxygenated conditions, which induce suberization in the outer cell layers of the roots and formation of barrier to ROL. Under these conditions, two distinctive biochemical features of the roots were the accumulations of malic acid and very long chain fatty acids (VLCFAs). We also showed that the expressions of some genes encoding plastid-localized enzymes, which convert malic acid to acetyl coenzyme A (AcCoA), were simultaneously up-regulated under stagnant conditions. The expression levels of these genes in specific root tissues isolated by laser microdissection suggested that malic acid is converted to AcCoA predominantly in the plastids in the outer cell layers of rice roots. We propose that the physiological role of malic acid accumulation in rice roots grown under stagnant conditions is to provide a substrate for the biosynthesis of fatty acids, which, in turn, are used in the biosynthesis of suberin. © 2014 John Wiley & Sons Ltd.

  8. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  9. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  10. Ultimate evidence for the ultimate regime

    NASA Astrophysics Data System (ADS)

    Smits, Alexander J.

    2018-04-01

    The ultimate regime of turbulence has been observed, more than half a century after its first prediction. Inspiration for achieving this technical feat came from the imperfections of an everyday pipe.

  11. Biochemical changes related to hypoxia during cerebral aneurysm surgery: combined microdialysis and tissue oxygen monitoring: case report.

    PubMed

    Hutchinson, P J; Al-Rawi, P G; O'Connell, M T; Gupta, A K; Pickard, J D; Kirkpatrick, P J

    2000-01-01

    The objective of this study was to monitor brain metabolism on-line during aneurysm surgery, by combining the use of a multiparameter (brain tissue oxygen, brain carbon dioxide, pH, and temperature) sensor with microdialysis (extracellular glucose, lactate, pyruvate, and glutamate). The case illustrates the potential value of these techniques by demonstrating the effects of adverse physiological events on brain metabolism and the ability to assist in both intraoperative and postoperative decision-making. A 41-year-old woman presented with a World Federation of Neurological Surgeons Grade I subarachnoid hemorrhage. Angiography revealed a basilar artery aneurysm that was not amenable to coiling, so the aneurysm was clipped. Before the craniotomy was performed, a multiparameter sensor and a microdialysis catheter were inserted to monitor brain metabolism. During the operation, the brain oxygen level decreased, in relation to biochemical changes, including the reduction of extracellular glucose and pyruvate and the elevation of lactate and glutamate. These changes were reversible. However, when the craniotomy was closed, a second decrease in brain oxygen occurred in association with brain swelling, which immediately prompted a postoperative computed tomographic scan. The scan demonstrated acute hydrocephalus, requiring external ventricular drainage. The patient made a full recovery. The monitoring techniques influenced clinical decision-making in the treatment of this patient. On-line measurement of brain tissue gases and extracellular chemistry has the potential to assist in the perioperative and postoperative management of patients undergoing complex cerebrovascular surgery and to establish the effects of intervention on brain homeostasis.

  12. Oxygen sensing and signaling.

    PubMed

    van Dongen, Joost T; Licausi, Francesco

    2015-01-01

    Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.

  13. Guide for Oxygen Compatibility Assessments on Oxygen Components and Systems

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa R.; Shoffstall, Michael S.; Stoltzfus, Joel M.

    2007-01-01

    Understanding and preventing fire hazards is necessary when designing, maintaining, and operating oxygen systems. Ignition risks can be minimized by controlling heat sources and using materials that will not ignite or will not support burning in the end-use environment. Because certain materials are more susceptible to ignition in oxygen-enriched environments, a compatibility assessment should be performed before the component is introduced into an oxygen system. This document provides an overview of oxygen fire hazards and procedures that are consistent with the latest versions of American Society for Testing and Materials (ASTM) Standards G63 (1999) and G94 (2005) to address fire hazards associated with oxygen systems. This document supersedes the previous edition, NASA Technical Memorandum 104823, Guide for Oxygen Hazards Analyses on Components and Systems (1996). The step-by-step oxygen compatibility assessment method described herein (see Section 4) enables oxygen-system designers, system engineers, and facility managers to determine areas of concern with respect to oxygen compatibility and, ultimately, prevent damage to a system or injury to personnel.

  14. Algal Biomass as an Indicator for Biochemical Oxygen Demand in the San Joaquin River, California.

    NASA Astrophysics Data System (ADS)

    Volkmar, E. C.; Dalhgren, R. A.

    2005-12-01

    Episodes of hypoxia (DO < 2 mg/L) occur in the lower San Joaquin River (SJR), California, and are typically most acute in the late summer and fall. The oxygen deficit can stress and kill aquatic organisms, and often inhibits the upstream migration of fall-run Chinook salmon. Hypoxia is most pronounced downstream from the Stockton Deep Water Ship Channel, which has been dredged from a depth of 2-3 m to about 11 m to allow ocean-going ships to reach the Port of Stockton. To protect aquatic organisms and facilitate the upstream migration of fall-run Chinook salmon, the minimum water quality standard for DO is 6 mg/L during September through November, and 5 mg/L for the remainder of the year. A five year study examined components contributing to biochemical oxygen demand (BOD): ammonia, algal biomass, non-algal particulate organic matter, and dissolved organic carbon. BOD shows a significant increase in loading rates as the SJR flows downstream, which parallels the load of algal biomass due to instream growth. BOD loading rates from tributaries accounts for 28% in a wet year and 39% in a dry year. Regression analysis revealed that chlorophyll-a + pheophyton-a was the only significant (p<0.05) predictor for BOD (r2 = 0.71). Less than 20% of the BOD was found in the dissolved fraction (<0.45 μm). The average BOD decomposition rate of the SJR and tributaries is 0.0841 d-1. We conclude that algal biomass is the primary contributor to BOD loads in the San Joaquin River.

  15. Dissolved-oxygen regime of the Jordan River, Salt Lake County, Utah

    USGS Publications Warehouse

    Stephens, D.W.

    1984-01-01

    Concentrations of dissolved oxygen in the Jordan River in Salt Lake County decrease considerably as the river flows northward. Mean concentrations of dissolved oxygen decreased from 8.1 milligrams per liter at the Jordan Narrows to 4.7 milligrams per liter at 500 North Street during April 1981 to September 1982. Coincident with the decrease, the biochemical-oxygen demand increased from 5 to 7 milligrams per liter. About 50 percent of the dissolved-oxygen concentrations and 90 percent of the 5-day biochemical-oxygen demand measured downstream from 1700 South Street exceeded the State intended-use standards. An estimated 6. million pounds of oxygen-demanding substances as measured by 5-day biochemical-oxygen demand were discharged to the Jordan River during 1981 from point sources downstream from 9000 South Street. Seven wastewater-treatment plants contributed 77 percent of this load, nonstorm base flows contributed 22 percent, and storm flows less than 1 percent. The Surplus Canal diversion at 2100 South Street removed about 70 percent of this load, and travel time of about 1 day also decreased the actual effects of the load on the river. Reaeration rates during September and October were quite high (average K2 at 20 degrees Celsius was about 12 per day) between the Jordan Narrows and 9000 South Street, but they decreased to 2.4 per day in the reach from 1330 South to 1800 North Streets. (USGS)

  16. Biochemical methane potential, biodegradability, alkali treatment and influence of chemical composition on methane yield of yard wastes.

    PubMed

    Gunaseelan, Victor Nallathambi

    2016-03-01

    In this study, the biochemical CH4 potential, rate, biodegradability, NaOH treatment and the influence of chemical composition on CH4 yield of yard wastes generated from seven trees were examined. All the plant parts were sampled for their chemical composition and subjected to the biochemical CH4 potential assay. The component parts exhibited significant variation in biochemical CH4 potential, which was reflected in their ultimate CH4 yields that ranged from 109 to 382 ml g(-1) volatile solids added and their rate constants that ranged from 0.042 to 0.173 d(-1). The biodegradability of the yard wastes ranged from 0.26 to 0.86. Variation in the biochemical CH4 potential of the yard wastes could be attributed to variation in the chemical composition of the different fractions. In the Thespesia yellow withered leaf, Tamarindus fruit pericarp and Albizia pod husk, NaOH treatment enhanced the ultimate CH4 yields by 17%, 77% and 63%, respectively, and biodegradability by 15%, 77% and 61%, respectively, compared with the untreated samples. The effectiveness of NaOH treatment varied for different yard wastes, depending on the amounts of acid detergent fibre content. Gliricidia petals, Prosopis leaf, inflorescence and immature pod, Tamarindus seeds, Albizia seeds, Cassia seeds and Delonix seeds exhibited CH4 yields higher than 300 ml g(-1) volatile solids added. Multiple linear regression models for predicting the ultimate CH4 yield and biodegradability of yard wastes were designed from the results of this work. © The Author(s) 2016.

  17. Noninvasive oxygen monitoring techniques.

    PubMed

    Wahr, J A; Tremper, K K

    1995-01-01

    As this article demonstrates, tremendous progress has been made in the techniques of oxygen measurement and monitoring over the past 50 years. From the early developments during and after World War II, to the most recent applications of solid state and microprocessor technology today, every patient in a critical care situation will have several continuous measurements of oxygenation applied simultaneously. Information therefore is available readily to alert personnel of acute problems and to guide appropriate therapy. The majority of effort to date has been placed on measuring oxygenation of arterial or venous blood. The next generation of devices will attempt to provide information about living tissue. Unlike the devices monitoring arterial or venous oxygen content, no "gold standards" exist for tissue oxygenation, so calibration will be difficult, as will interpretation of the data provided. The application of these devices ultimately may lead to a much better understanding of how disease (and the treatment of disease) alters the utilization of oxygen by the tissues.

  18. Characterization of the Effects of Hyperbaric Oxygen on the Biochemical and Optical Properties of the Bovine Lens.

    PubMed

    Lim, Julie C; Vaghefi, Ehsan; Li, Bo; Nye-Wood, Mitchell G; Donaldson, Paul J

    2016-04-01

    To assess the morphologic, biochemical, and optical properties of bovine lenses treated with hyperbaric oxygen. Lenses were exposed to hyperbaric nitrogen (HBN) or hyperbaric oxygen (HBO) for 5 or 15 hours, lens transparency was assessed using bright field microscopy and lens morphology was visualized using confocal microscopy. Lenses were dissected into the outer cortex, inner cortex, and core, and glutathione (GSH) and malondialdehyde (MDA) measured. Gel electrophoresis and Western blotting were used to detect high molecular weight aggregates (HMW) and glutathione mixed protein disulfides (PSSG). T2-weighted MRI was used to measure lens geometry and map the water/protein ratio to allow gradient refractive index (GRIN) profiles to be calculated. Optical modeling software calculated the change in lens optical power, and an anatomically correct model of the light pathway of the bovine eye was used to determine the effects of HBN and HBO on focal length and overall image quality. Lenses were transparent and lens morphology similar between HBN- and HBO-treated lenses. At 5- and 15-hour HBO exposure, GSH and GSSG were depleted and MDA increased in the core. Glutathione mixed protein disulfides were detected in the outer and inner cortex only with no appearance of HMW. Optical changes were detectable only with 15-hour HBO treatment with a decrease in the refractive index of the core, slightly reduced lens thickness, and an increase in optimal focal length, consistent with a hyperopic shift. This system may serve as a model to study changes that occur with advanced aging rather than nuclear cataract formation per se.

  19. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ward, Lewis M.; Kirschvink, Joseph L.; Fischer, Woodward W.

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis—autotrophic growth by splitting water with sunlight—by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.

  20. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis.

    PubMed

    Ward, Lewis M; Kirschvink, Joseph L; Fischer, Woodward W

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis-autotrophic growth by splitting water with sunlight-by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.

  1. Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992

    USGS Publications Warehouse

    Kelly, V.J.

    1996-01-01

    Throughout the winter period, November through April, wastewater treatment plants in the Tualatin River Basin discharge from 10,000 to 15,000 pounds per day of biochemical oxygen demand to the river. These loads often increase substantially during storms when streamflow is high. During the early winter season, when streamflow is frequently less than the average winter flow, the treatment plants discharge about 2,000 pounds per day of ammonia. This study focused on the capacity of the Tualatin River to assimilat oxygen-demanding loads under winter streamflow conditions during the 1992 water year, with an emphasis on peak-flow conditions in the river, and winter-base-flow conditions during November 1992. Concentrations of dissolved oxygen throughout the main stem of the river during the winter remained generally high relative to the State standard for Oregon of 6 milligrams per liter. The most important factors controlling oxygen consumption during winter-low-flow conditions were carbonaceous biochemical oxygen demand and input of oxygen-depleted waters from tributaries. During peak-flow conditions, reduced travel time and increased dilution associated with the increased streamflow minimized the effect of increased oxygen-demanding loads. During the base-flow period in November 1992, concentrations of dissolved oxygen were consistently below 6 milligrams per liter. A hydrodynamic water-quality model was used to identify the processes depleting dissolved oxygen, including sediment oxygen demand, nitrification, and carbonaceous biochemical oxygen demand. Sediment oxygen demand was the most significant factor; nitrification was also important. Hypothetical scenarios were posed to evaluate the effect of different wastewater treatment plant loads during winter-base-flow conditions. Streamflow and temperature were significant factors governing concentrations of dissolved oxygen in the main-stem river.

  2. A reagent-free tubular biofilm reactor for on-line determination of biochemical oxygen demand.

    PubMed

    Liu, Changyu; Zhao, Huijun; Gao, Shan; Jia, Jianbo; Zhao, Limin; Yong, Daming; Dong, Shaojun

    2013-07-15

    We reported a reagent-free tubular biofilm reactor (BFR) based analytical system for rapid online biochemical oxygen demand (BOD) determination. The BFR was cultivated using microbial seeds from activated sludge. It only needs tap water to operate and does not require any chemical reagent. The analytical performance of this reagent-free BFR system was found to be equal to or better than the BFR system operated using phosphate buffer saline (PBS) and high purity deionized water. The system can readily achieve a limit of detection of 0.25 mg O2 L(-1), possessing superior reproducibility, and long-term operational and storage stability. More importantly, we confirmed for the first time that the BFR system is capable of tolerating common toxicants found in wastewaters, such as 3,5-dichlorophenol and Zn(II), Cr(VI), Cd(II), Cu(II), Pb(II), Mn(II) and Ni(II), enabling the method to be applied to a wide range of wastewaters. The sloughing and clogging are the important attributes affecting the operational stability, hence, the reliability of most online wastewater monitoring systems, which can be effectively avoided, benefiting from the tubular geometry of the reactor and high flow rate conditions. These advantages, coupled with simplicity in device, convenience in operation and minimal maintenance, make such a reagent-free BFR analytical system promising for practical BOD online determination. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Attenuation of Scattered Thermal Energy Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce a.; Seroka, Katelyn T.; McPhate, Jason B.; Miller, Sharon K.

    2011-01-01

    The attenuation of scattered thermal energy atomic oxygen is relevant to the potential damage that can occur within a spacecraft which sweeps through atomic oxygen in low Earth orbit (LEO). Although there can be significant oxidation and resulting degradation of polymers and some metals on the external surfaces of spacecraft, there are often openings on a spacecraft such as telescope apertures, vents, and microwave cavities that can allow atomic oxygen to enter and scatter internally to the spacecraft. Atomic oxygen that enters a spacecraft can thermally accommodate and scatter to ultimately react or recombine on surfaces. The atomic oxygen that does enter a spacecraft can be scavenged by use of high erosion yield polymers to reduce its reaction on critical surfaces and materials. Polyoxymethylene and polyethylene can be used as effective atomic oxygen scavenging polymers.

  4. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor.

    PubMed

    Hsieh, Min-Chi; Cheng, Chiu-Yu; Liu, Man-Hai; Chung, Ying-Chien

    2015-12-28

    The conventional Biochemical Oxygen Demand (BOD) method takes five days to analyze samples. A microbial fuel cell (MFC) may be an alternate tool for rapid BOD determination in water. However, a MFC biosensor for continuous BOD measurements of water samples is still unavailable. In this study, a MFC biosensor inoculated with known mixed cultures was used to determine the BOD concentration. Effects of important parameters on establishing a calibration curve between the BOD concentration and output signal from the MFC were evaluated. The results indicate monosaccharides were good fuel, and methionine, phenylalanine, and ethanol were poor fuels for electricity generation by the MFC. Ions in the influent did not significantly affect the MFC performance. CN(-) in the influent could alleviate the effect of antagonistic electron acceptors on the MFC performance. The regression equation for BOD concentration and current density of the biosensor was y = 0.0145x + 0.3317. It was adopted to measure accurately and continuously the BOD concentration in actual water samples at an acceptable error margin. These results clearly show the developed MFC biosensor has great potential as an alternative BOD sensing device for online measurements of wastewater BOD.

  5. Concussion Prevalence in Competitive Ultimate Frisbee Players

    PubMed Central

    Lazar, Damien J.; Lichtenstein, Jonathan D.; Tybor, David J.

    2018-01-01

    Background: Ultimate Frisbee (ultimate) is a fast-growing, popular sport played nationally by over 4 million athletes. While several studies have examined injury rates in ultimate, no work has investigated the prevalence of concussions specifically or players’ knowledge and management of those injuries. Purpose: To estimate the lifetime prevalence of concussions in ultimate and to assess players’ knowledge of concussions as well as their concussion management behaviors. Study Design: Descriptive epidemiology study. Methods: From June to November 2015, we collected ultimate-related concussion data via an anonymous web-based survey, the Concussion in Ultimate Frisbee Survey, from a convenience sample of 787 male and female ultimate players across the United States. Results: There were 553 male and 234 female respondents included in the analysis; 26.58% of men and 24.79% of women reported that they had sustained at least 1 concussion while playing ultimate, with 45.58% and 43.10% of those men and women, respectively, reporting multiple concussions. A total of 67.81% of men and 78.21% of women stated that they would remove themselves from play after sustaining a given concussion, although 45.99% of men and 37.62% of women indicated that they had returned to play in the same game or practice. Conclusion: Our preliminary data suggest that concussions do commonly occur in competitive ultimate and that better education and management of concussions in ultimate athletes are needed. This study is an important first step in deepening our understanding of these issues. PMID:29552572

  6. Ultimate Realities: Deterministic and Evolutionary

    ERIC Educational Resources Information Center

    Moxley, Roy A.

    2007-01-01

    References to ultimate reality commonly turn up in the behavioral literature as references to determinism. However, this determinism is often difficult to interpret. There are different kinds of determinisms as well as different kinds of ultimate realities for a behaviorist to consider. To clarify some of the issues involved, the views of ultimate…

  7. Steroids, triterpenoids and molecular oxygen

    PubMed Central

    Summons, Roger E; Bradley, Alexander S; Jahnke, Linda L; Waldbauer, Jacob R

    2006-01-01

    , the carbon skeletons are the same as those found in the lipids of extant organisms and no demonstrably extinct structures have been reported. Furthermore, their patterns of occurrence over billion year time-scales correlate strongly with environments of deposition. Accordingly, biomarkers are excellent indicators of environmental conditions even though the taxonomic affinities of all biomarkers cannot be precisely specified. Biomarkers are ultimately tied to biochemicals with very specific functional properties, and interpretations of the biomarker record will benefit from increased understanding of the biological roles of geologically durable molecules. PMID:16754609

  8. The Effects of Direct Oxygen Supply During Static Cold Preservation of Rat Livers: An Experimental Study.

    PubMed

    Zumrutdal, Emin; Karateke, Faruk; Eser, Pınar Eylem; Turan, Umit; Ozyazici, Sefa; Sozutek, Alper; Gulkaya, Mustafa; Kunt, Mevlut

    2016-12-01

    We aimed to determine the biochemical and histopathologic effects of direct oxygen supply to the preservation fluid of static cold storage system with a simple method on rat livers. Sixteen rats were randomly divided into 2 groups: the control group, which contained Ringer's lactate as preservation fluid; and the oxygen group, which contained oxygen and Ringer's lactate for preservation. Each liver was placed in a bag containing 50 mL Ringer's lactate and placed in ice-filled storage containers. One hundred percent oxygen supplies were given via a simple, inexpensive system created in our laboratory, to the livers in oxygen group. We obtained samples for histopathologic evaluation in the 12th hour. In addition, 3 mL of preservation fluid was subjected to biochemical analysis at 0, sixth, and twelfth hours. Aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and pH levels were measured from the preservation fluid. In oxygen-supplemented group, the acceleration speed of increase in alanine aminotransferase and lactate dehydrogenase levels at sixth hour and lactate dehydrogenase, alanine aminotransferase, and lactate dehydrogenase levels at 12th hour were statistically significantly reduced. In histopathologic examination, all parameters except ballooning were statistically significantly better in the oxygen-supplemented group. This simple system for oxygenation of liver tissues during static cold storage was shown to be effective with good results in biochemical and histopathologic assessments. Because this is a simple, inexpensive, and easily available method, larger studies are warranted to evaluate its effects (especially in humans).

  9. Ultraviolet spectrophotometry as an index parameter for estimating the biochemical oxygen demand of domestic wastewater.

    PubMed

    Nataraja, M; Qin, Y; Seagren, E A

    2006-07-01

    The relationship between ultraviolet absorbance at 280 nm (UV280) and the 5-day Biochemical Oxygen Demand (BOD5) test was evaluated using wastewater samples collected during March - December 1998 from the Fort Meade wastewater treatment plant (Maryland, U.S.A.). Three types of samples were collected: raw influent wastewater, primary effluent, and the effluent from the nitrification settling basin. A regression of BOD5 on UV280 was obtained using half of the data, with the other half of the data used to test application of the equation. The presence of NO3 and NO2, did not interfere with the BOD5/UV relationship. However, the relative fraction of organic compounds that absorb at UV280 and are biodegradable did appear to decrease across the treatment plant, thereby reducing the strength of the association between BOD5 and UV280 further along the treatment train. Interestingly, the exclusion of solids > 1 microm from the BOD5 test did not strengthen the association between BOD5 and UV280. These results suggest that simple UV absorbance measurements may be a useful analytical tool for wastewater treatment personnel, allowing them to quickly monitor for changes in the BOD5 during the treatment process and to quickly estimate the BOD5 when determining what dilutions to use in the standard BOD5 test. However, such relationships are likely to be wastewater and treatment plant specific and variable with time and treatment.

  10. Oxygen toxicity.

    PubMed

    Stogner, S W; Payne, D K

    1992-12-01

    The objective of this article is to provide an overview of the biochemistry of oxygen metabolism, including the formation of free radicals and the role of endogenous antioxidants. Pathophysiologic correlates underlying the clinical manifestations of oxygen toxicity are reviewed and management strategies are outlined. References from basic science and clinical journals were selected from the authors' files and from a search of a computerized database of the biomedical literature. Articles selected for review included both historical and current literature concerning the biochemistry and pathophysiology of oxygen toxicity in animals and humans. The benefits of oxygen therapy have been known for many years; however, its potential toxicity has not been recognized until the last two decades. The lungs, the eyes, and, under certain conditions, the central nervous system are the organs most affected by prolonged exposure to hyperoxic environments. Free radical formation during cellular metabolism under hyperoxic conditions is recognized as the biochemical basis of oxygen injury to cells and organs. Endogenous antioxidants are a primary means of detoxifying reactive oxygen species and preventing hyperoxia-induced cellular damage. When this defense fails or is overwhelmed by the excessive production of hyperoxia-induced free-radical species, distinctive morphologic changes occur at the cellular level. The amount of hyperoxia required to cause cellular damage and the time course of these changes vary from species to species and from individual to individual within the same species. Age, nutritional status, presence of underlying diseases, and certain drugs may influence the development of oxygen toxicity. There is currently no reliably effective drug for preventing or delaying the development of oxygen toxicity in humans. Use of the lowest effective oxygen concentration, the avoidance of certain drugs, and attention to nutritional and metabolic factors remain the best means

  11. Ultimate Realities: Deterministic and Evolutionary

    PubMed Central

    Moxley, Roy A

    2007-01-01

    References to ultimate reality commonly turn up in the behavioral literature as references to determinism. However, this determinism is often difficult to interpret. There are different kinds of determinisms as well as different kinds of ultimate realities for a behaviorist to consider. To clarify some of the issues involved, the views of ultimate realities are treated as falling along a continuum, with extreme views of complete indeterminism and complete determinism at either end and various mixes in between. Doing so brings into play evolutionary realities and the movement from indeterminism to determinism, as in Peirce's evolutionary cosmology. In addition, this framework helps to show how the views of determinism by B. F. Skinner and other behaviorists have shifted over time. PMID:22478489

  12. Oxygen in wound healing: nutrient, antibiotic, signaling molecule, and therapeutic agent.

    PubMed

    Eisenbud, David E

    2012-07-01

    Disturbances to healing observed under hypoxic conditions have given insights into the roles of oxygen. Wound hypoxia is more prevalent than generally appreciated, and occurs even in patients who are free of arterial occlusive disease. There is a strong scientific basis for oxygen treatment as prophylaxis against infection, to facilitate wound closure, and to prevent amputation in wounded patients. This article reviews extensive data from preclinical and human trials of supplemental inhaled oxygen, hyperbaric oxygen, and topical oxygen treatment. Oxygen supports biochemical metabolism and cellular function, and has roles in combating infection and facilitating the wound healing cascade. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Impact of divergent selection for ultimate pH of pectoralis major muscle on biochemical, histological, and sensorial attributes of broiler meat.

    PubMed

    Alnahhas, N; Le Bihan-Duval, E; Baéza, E; Chabault, M; Chartrin, P; Bordeau, T; Cailleau-Audouin, E; Meteau, K; Berri, C

    2015-09-01

    The impact of divergent selection based on the ultimate pH (pHu) of pectoralis major (P. major) muscle on the chemical, biochemical, and histological profiles of the muscle and sensorial quality of meat was investigated in broiler chickens. The protein, lipid, DM, glycogen and lactate content, glycolytic potential, proteolysis, lipid and protein oxidation index, muscle fiber cross-sectional area, capillary density, and collagen surface were determined on the breast P. major muscle of 6-wk-old broilers issued from the high-pHu (pHu+) and low-pHu (pHu-) lines. Sensory attributes were also evaluated on the breast (roasted or grilled) and thigh (roasted) meat of the 2 lines. Protein, lipid, and DM content of P. major muscle were not affected by selection ( > 0.05). However, the P. major muscle of the pHu+ line was characterized by lower residual glycogen (-16%; ≤ 0.001) and lactate (-14%; ≤ 0.001) content and lower glycolytic potential (-14%; ≤ 0.001) compared with the pHu- line. Although the average cross-sectional area of muscle fibers and surface occupied by collagen were similar ( > 0.05) in both lines, fewer capillaries per fiber (-15%; ≤ 0.05) were observed in the pHu+ line. The pHu+ line was also characterized by lower lipid oxidation (thiobarbituric acid reactive substance index: -23%; ≤ 0.05) but protein oxidation and proteolysis index were not different ( > 0.05) between the 2 lines. At the sensory level, selection on breast muscle pHu mainly affected the texture of grilled and roast breast meat, which was judged significantly more tender ( ≤ 0.001) in the pHu+ line, and the acid taste, which was less pronounced in the roasted breast meat of the pHu+ line ( ≤ 0.002). This study highlighted that selection based on pHu does not affect the chemical composition and structure of breast meat. However, by modifying muscle blood supply and glycogen turnover, it affects meat acidity and oxidant status, both of which are likely to contribute to the large

  14. Magnitudes, nature, and effects of point and nonpoint discharges in the Chattahoochee River Basin, Atlanta to West Point Dam, Georgia

    USGS Publications Warehouse

    Stamer, J.K.; Cherry, Rodney N.; Faye, R.E.; Kleckner, R.L.

    1979-01-01

    During the period April 1975 to June 1978, the U.S. Geological Survey conducted a river-quality assessment of the Upper Chattahoochee River basin in Georgia. One objective of the study was to assess the magnitudes, nature, and effects of point and non-point discharges in the Chattahoochee River basin from Atlanta to the West Point Dam. On an average annual basis and during the storm period of March 1215, 1976, non-point-source loads for most constituents analyzed were larger than point-source loads at the Whitesburg station, located on the Chattahoochee River about 40 river miles downstream of Atlanta. Most of the non-point-source constituent loads in the Atlanta-to-Whitesburg reach were from urban areas. Average annual point-source discharges accounted for about 50 percent of the dissolved nitrogen, total nitrogen, and total phosphorus loads, and about 70 percent of the dissolved phosphorus loads at Whitesburg. During weekends, power generation at the upstream Buford Dam hydroelectric facility is minimal. Streamflow at the Atlanta station during dry-weather weekends is estimated to be about 1,200 ft3/s (cubic feet per second). Average daily dissolved-oxygen concentrations of less than 5.0 mg/L (milligrams per liter) occurred often in the river, about 20 river miles downstream from Atlanta during these periods from May to November. During a low-flow period, June 1-2, 1977, five municipal point sources contributed 63 percent of the ultimate biochemical oxygen demand, 97 percent of the ammonium nitrogen, 78 percent of the total nitrogen, and 90 percent of the total phosphorus loads at the Franklin station, at the upstream end of West Point Lake. Average daily concentrations of 13 mg/L of ultimate biochemical oxygen demand and 1.8 mg/L of ammonium nitrogen were observed about 2 river miles downstream from two of the municipal point sources. Carbonaceous and nitrogenous oxygen demands caused dissolved-oxygen concentrations between 4.1 and 5.0 mg/L to occur in a 22-mile

  15. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for East Fork White River, Bartholomew County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Peters, James G.; Crawford, Charles G.

    1979-01-01

    A digital model calibrated to conditions in East Fork White River, Bartholomew County, IN, was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand and the headwater concentrations of carbonaceous biochemical-oxygen demand, nitrogenous biochemical-oxygen demand, and dissolved oxygen are the most significant factors affecting the dissolved-oxygen concentration of East Fork White River downstream from the Columbus wastewater-treatment facility. The effect of effluent from the facility on the water quality of East Fork White River was minimal. The model also indicates that, with a benthic-oxygen demand of approximately 0.65 gram per square meter per day, the stream has no additional waste-load assimilative capacity during summer low flows. Regardless of the quality of the Columbus wastewater effluent, the minimum 24-hour average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams, would not be met. Ammonia toxicity is not a limiting water-quality criterion during summer and winter low flows. During winter low flows, the current carbonaceous biochemical-oxygen demand limits for the Columbus wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard. (USGS)

  16. Analysis of nitrogenous and algal oxygen demand in effluent from a system of aerated lagoons followed by polishing pond.

    PubMed

    Khorsandi, Hassan; Alizadeh, Rahimeh; Tosinejad, Horiyeh; Porghaffar, Hadi

    2014-01-01

    In this descriptive-analytical study, nitrogenous and algal oxygen demand were assessed for effluent from a system of facultative partially mixed lagoons followed by the polishing pond using 120 grab samples over 1 year. Filtered and non-filtered samples of polishing pond effluent were tested in the presence and absence of a nitrification inhibitor. Effective factors, including 5-day biochemical and chemical oxygen demand (BOD and COD), total suspended solids (TSS), dissolved oxygen, chlorophyll A, and temperature, were measured using standard methods for water and wastewater tests. The results were analyzed using repeated measures analysis of variance with SPSS version 16. Findings show that the annual mean of the total 5-day BOD in the effluent from the polishing pond consisted of 44.92% as the algal carbonaceous biochemical oxygen demand (CBOD), 43.61% as the nitrogenous biochemical oxygen demand (NBOD), and 11.47% as the soluble CBOD. According to this study, the annual mean ratios of algal COD and 5-day algal CBOD to TSS were 0.8 and 0.37, respectively. As the results demonstrate, undertaking quality evaluation of the final effluent from the lagoons without considering nitrogenous and algal oxygen demand would undermine effluent quality assessment and interpretation of the performance of the wastewater treatment plant.

  17. Biochemical Reversal of Aging

    NASA Astrophysics Data System (ADS)

    Ely, John T. A.

    2006-03-01

    We cite our progress on biochemical reversal of aging. However, it may be circa 2 years before we have necessary substances at low cost. Meanwhile, without them, a number of measures can be adopted providing marked improvement for the problems of aging in modern societies. For example, enzymes are needed to excrete toxins that accelerate aging; Hg is the ultimate toxin that disables all enzymes (including those needed to excrete Hg itself). Low Hg level in the urine, due to loss of excretory ability, causes the diagnosis of Hg toxicity to almost always be missed. Hg sources must be removed from the body! Another example is excess sugar; hyperglycemia decreases intracellular ascorbic acid (AA) by competitively inhibiting the insulin- mediated active transport of AA into cells. Thus, immunity is impaired by low leucocyte AA. AA is needed for new proteins in aging tissues. Humans must supplement AA; their need same as in AA-synthesizing mammals.

  18. Large-eddy simulation of oxygen transport and depletion in waterbodies

    NASA Astrophysics Data System (ADS)

    Scalo, Carlo; Piomelli, Ugo; Boegman, Leon

    2010-11-01

    Dissolved oxygen (DO) in water plays an important role in lake and marine ecosystems. Agricultural runoff may spur excessive plant growth on the water surface; when the plants die they sink to the bottom of the water bodies and decompose, consuming oxygen. Significant environmental (and economic) damage may result from the loss of aquatic life caused by the oxygen depletion. The study of DO transport and depletion dynamics in water bodies has, therefore, become increasingly important. We study this phenomenon by large-eddy simulations performed at laboratory scale. The equations governing the transport of momentum and of a scalar (the DO) in the fluid are coupled to a biochemical model for DO depletion in the permeable sediment bed [Higashino et al., Water Res. (38) 1, 2004)], and to an equation for the fluid transpiration in the porous medium. The simulations are in good agreement with previous calculations and experiments. We show that the results are sensitive to the biochemical and fluid dynamical properties of the sediment, which are very difficult to determine experimentally.

  19. Maintenance of Mitochondrial Oxygen Homeostasis by Cosubstrate Compensation

    PubMed Central

    Kueh, Hao Yuan; Niethammer, Philipp; Mitchison, Timothy J.

    2013-01-01

    Mitochondria maintain a constant rate of aerobic respiration over a wide range of oxygen levels. However, the control strategies underlying oxygen homeostasis are still unclear. Using mathematical modeling, we found that the mitochondrial electron transport chain (ETC) responds to oxygen level changes by undergoing compensatory changes in reduced electron carrier levels. This emergent behavior, which we named cosubstrate compensation (CSC), enables the ETC to maintain homeostasis over a wide of oxygen levels. When performing CSC, our ETC models recapitulated a classic scaling relationship discovered by Chance [Chance B (1965) J. Gen. Physiol. 49:163-165] relating the extent of oxygen homeostasis to the kinetics of mitochondrial electron transport. Analysis of an in silico mitochondrial respiratory system further showed evidence that CSC constitutes the dominant control strategy for mitochondrial oxygen homeostasis during active respiration. Our findings indicate that CSC constitutes a robust control strategy for homeostasis and adaptation in cellular biochemical networks. PMID:23528093

  20. Therapeutic effect of forearm low level light treatment on blood flow, oxygenation, and oxygen consumption

    NASA Astrophysics Data System (ADS)

    Wang, Pengbo; Sun, Jiajing; Meng, Lingkang; Li, Zebin; Li, Ting

    2018-02-01

    Low level light/laser therapy (LLLT) is considered as a novel, non-invasive, and potential therapy in a variety of psychological and physical conditions, due to its effective intricate photobiomodulation. The mechanism of LLLT is that when cells are stimulated by photons, mitochondria produce a large quantity of ATP, which accelerates biochemical responses in the cell. It is of great significance to gain a clear insight into the change or interplay of various physiological parameters. In this study, we used functional near-infrared spectroscopy (fNIRS) and venous-occlusion plethysmography to measure the LLLT-induced changes in blood flow, oxygenation, and oxygen consumption in human forearms in vivo. Six healthy human participants (4 males and 2 females) were administered with 810-nm light emitted by LED array in ten minutes and blood flow, oxygenation and oxygen consumption were detected in the entire experiment. We found that LLLT induced an increase of blood flow and oxygen consumption on the treated site. Meanwhile, LLLT took a good role in promoting oxygenation of regional tissue, which was indicated by a significant increase of oxygenated hemoglobin concentration (Δ[HbO2]), a nearly invariable deoxygenated hemoglobin concentration (Δ[Hb]) and a increase of differential hemoglobin concentration (Δ[HbD] = Δ[HbO2] - Δ[Hb]). These results not only demonstrate enormous potential of LLLT, but help to figure out mechanisms of photobiomodulation.

  1. The Nitrogen Cycle Before the Rise of Oxygen

    NASA Astrophysics Data System (ADS)

    Ward, L. M.; Hemp, J.; Fischer, W. W.

    2016-12-01

    The nitrogen cycle on Earth today is driven by a complex network of microbially-mediated transformations. Atmospheric N2 is fixed into biologically available forms that can either be incorporated into biomass or utilized for bioenergetic redox reactions. The cycle is kept in balance by the return of fixed nitrogen to the atmospheric N2 pool by anammox and denitrification. The early evolution and history of the nitrogen cycle is not well resolved, particularly before the evolution of oxygenic photosynthesis and rise of atmospheric oxygen ca. 2.3 Gya. Ammonia oxidation is a biochemically difficult reaction requiring activation of ammonia using O2 or oxidized nitrogen species that are produced using O2. Before the rise of oxygen, when O2 was largely unavailable, nitrification could not proceed, trapping fixed nitrogen in reduced forms such as ammonia and biomass. Without production of nitrite and nitrate, anammox and denitrification could not occur, preventing return of fixed nitrogen to the N2 pool and leaving the nitrogen cycle unclosed. While it has been hypothesized that ammonia oxidation could be driven anaerobically by processes such as phototrophy or iron reduction, these metabolisms have not been recovered in extant microorganisms, and would require complex unknown biochemical mechanisms. Furthermore, phylogenetic data for the key organisms and biochemical pathways involved in denitrification and anammox suggest that these metabolisms postdate the rise of oxygen. This is particularly clear for steps utilizing enzymes in the Heme-Copper Oxidoreductase superfamily, which appear to have originally evolved for O2 reduction at non-negligible substrate concentrations. Together, this suggests that the Archean nitrogen cycle was not closed, and that nitrogen fixed to reduced forms—either through biological nitrogen fixation or abiotic processes—was not easily returned to the atmospheric N2 pool. In principle, this could have stripped the atmosphere of N2 over

  2. HHV Predicting Correlations for Torrefied Biomass Using Proximate and Ultimate Analyses

    PubMed Central

    Nhuchhen, Daya Ram; Afzal, Muhammad T.

    2017-01-01

    Many correlations are available in the literature to predict the higher heating value (HHV) of raw biomass using the proximate and ultimate analyses. Studies on biomass torrefaction are growing tremendously, which suggest that the fuel characteristics, such as HHV, proximate analysis and ultimate analysis, have changed significantly after torrefaction. Such changes may cause high estimation errors if the existing HHV correlations were to be used in predicting the HHV of torrefied biomass. No study has been carried out so far to verify this. Therefore, this study seeks answers to the question: “Can the existing correlations be used to determine the HHV of the torrefied biomass”? To answer this, the existing HHV predicting correlations were tested using torrefied biomass data points. Estimation errors were found to be significantly high for the existing HHV correlations, and thus, they are not suitable for predicting the HHV of the torrefied biomass. New correlations were then developed using data points of torrefied biomass. The ranges of reported data for HHV, volatile matter (VM), fixed carbon (FC), ash (ASH), carbon (C), hydrogen (H) and oxygen (O) contents were 14.90 MJ/kg–33.30 MJ/kg, 13.30%–88.57%, 11.25%–82.74%, 0.08%–47.62%, 35.08%–86.28%, 0.53%–7.46% and 4.31%–44.70%, respectively. Correlations with the minimum mean absolute errors and having all components of proximate and ultimate analyses were selected for future use. The selected new correlations have a good accuracy of prediction when they are validated using another set of data (26 samples). Thus, these new and more accurate correlations can be useful in modeling different thermochemical processes, including combustion, pyrolysis and gasification processes of torrefied biomass. PMID:28952487

  3. The Ultimate Fizz

    ERIC Educational Resources Information Center

    Heckscher, Mary

    2008-01-01

    Many recipes for elementary science activities suggest making carbon dioxide from baking soda and vinegar; however, they often do not give exact measurements of the ingredients. The author was able to turn this "drawback" into a plus by challenging her fifth-grade students to find the "ultimate fizz"--i.,e., "What amount of baking soda added to a…

  4. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve.

    PubMed

    Collins, Julie-Ann; Rudenski, Aram; Gibson, John; Howard, Luke; O'Driscoll, Ronan

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content), saturation (S O2 ) and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin-oxygen dissociation curve, a graphical representation of the relationship between oxygen satur-ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the S O2 in blood from patients with normal pH and S O2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (S pO2 ) is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (S aO2 ) as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable S pO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  5. Oxygen regulates molecular mechanisms of cancer progression and metastasis.

    PubMed

    Gupta, Kartik; Madan, Esha; Sayyid, Muzzammil; Arias-Pulido, Hugo; Moreno, Eduardo; Kuppusamy, Periannan; Gogna, Rajan

    2014-03-01

    Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.

  6. An assessment of the feasibility of employing biochemical acidogenic potential tests for characterizing anaerobic biodegradability of raw and pretreated waste activated sludge.

    PubMed

    Kianmehr, Peiman; Parker, Wayne; Seto, Peter

    2012-04-01

    The potential to use the results of biochemical acid potential (BAP) tests to predict the ultimate digestibility of raw and pretreated waste activated sludge (WAS) was investigated. The ultimate methane production from biochemical methane potential (BMP) tests on raw and pretreated samples which spanned a range of biodegradability proved linearly related to the volatile fatty acid (VFA) and soluble chemical oxygen demand (COD) production in corresponding BAP tests. In addition, a linear relationship between NH4-N production in the BMP and BAP tests was observed. Despite the linear nature of the relationships, the ratio of the production of methane in the BMP tests to the production of VFAs in the BAP tests varied with the biodegradability of the sludge samples. Waste Activated Sludge samples with low digestibility had ultimate yields of CH4 that were greater than the VFA yields in BAP tests, whereas sludge samples with high digestibility had lower yields of CH4 than the corresponding VFA yields. This trend contrasted with the NH4 results, in which the yields in the BAP tests were consistently less than those observed in the BMP tests. It was hypothesized that the varying relationship between CH4 and VFA yields was because of the inhibition of anaerobic oxidation of long-chain fatty acids (LCFAs) in the BAP tests. Long-chain fatty acids would be converted to CH4 in BMP tests but produced as digestion intermediates in the BAP tests and were not measured as part of the VFA yield. Hydrogen and acetate were identified as the two most likely intermediates that would accumulate in the BAP tests (which would cause inhibition). A stoichiometric model to facilitate the development of an improved understanding of the biodegradation processes in the BAP and BMP tests was assembled. When the model was applied to the BAP tests the anaerobic oxidation of LCFAs and propionate and methanogenesis were excluded from the model. The model was employed to estimate the extent of

  7. 29 CFR 18.704 - Opinion on ultimate issue.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Opinion on ultimate issue. 18.704 Section 18.704 Labor... ultimate issue. Testimony in the form of an opinion or inference otherwise admissible is not objectionable because it embraces an ultimate issue to be decided by the judge as trier of fact. ...

  8. Dissolved oxygen and aeration in ictalurid catfish aquaculture

    USDA-ARS?s Scientific Manuscript database

    Feed-based production of ictalurid catfish in ponds is the largest aquaculture sector in the United States. The feed biochemical oxygen demand (FBOD) typically is 1.1-1.2 kg O2/kg feed. Feed also results in a substantial increase of carbon dioxide, ammonia nitrogen, and phosphate to ponds, and this ...

  9. Ultimate justification: Wittgenstein and medical ethics.

    PubMed

    Hughes, J

    1995-02-01

    Decisions must be justified. In medical ethics various grounds are given to justify decisions, but ultimate justification seems illusory and little considered. The philosopher Wittgenstein discusses the problem of ultimate justification in the context of general philosophy. His comments, nevertheless, are pertinent to ethics. From a discussion of Wittgensteinian notions, such as 'bedrock', the idea that 'ultimate' justification is grounded in human nature as such is derived. This discussion is relevant to medical ethics in at least five ways: it shows generally what type of certainty there is in practical ethics; it seems to imply some objective foundation to our ethical judgements; it squares with our experience of making ethical decisions; it shows something of the nature of moral arguments; and, finally, it has implications for teaching medicine and ethics.

  10. Ultimate justification: Wittgenstein and medical ethics.

    PubMed Central

    Hughes, J

    1995-01-01

    Decisions must be justified. In medical ethics various grounds are given to justify decisions, but ultimate justification seems illusory and little considered. The philosopher Wittgenstein discusses the problem of ultimate justification in the context of general philosophy. His comments, nevertheless, are pertinent to ethics. From a discussion of Wittgensteinian notions, such as 'bedrock', the idea that 'ultimate' justification is grounded in human nature as such is derived. This discussion is relevant to medical ethics in at least five ways: it shows generally what type of certainty there is in practical ethics; it seems to imply some objective foundation to our ethical judgements; it squares with our experience of making ethical decisions; it shows something of the nature of moral arguments; and, finally, it has implications for teaching medicine and ethics. PMID:7776343

  11. [Biochemical changes in apoptosis and methods for their determination (review)].

    PubMed

    Sedláková, A; Kohút, A; Kalina, I

    1999-08-01

    Apoptosis or programmed cell death is a physiological process which occurs at different biological states as well as at disease process. Morphologically it is characterized by the chromatine condensation and other changes with preserved integrity of plasmatic membrane. The major and most frequently studied biochemical characteristic of apoptosis is a DNA fragmentation. In our paper attention is directed to the early biochemical changes in cell membranes, i.g., the externalization of phosphatidylserine, hydrolysis of sphingomyeline on the ceramide and activation of phospholipases especially phospholipase A2. In one part we described the changes of cysteine proteases (caspases), which play a key role in the execution of apoptosis. These biochemical changes are associated with ceramide signalization of apoptosis. Briefly are presented also some dates about apoptosis induction with reactive oxygen radicals and the role of the arachidonic acid metabolites in this process. We consider the investigation and determination of these changes as important parameters of apoptosis at some diseases, e.g., cancer or degenerative diseases, and of their treatment.

  12. Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers

    NASA Technical Reports Server (NTRS)

    Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.

    1989-01-01

    Hydrogen-oxygen solid polymer electrolyte (SPE) fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. These solid electrolyte devices have been under continuous development for over 30 years. This experience has resulted in a demonstrated ten-year SPE cell life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluoride loss rates and average expected ultimate cell life. This relationship is shown. Several features have been introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability has been demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density.

  13. Dietary Protection Against Pulmonary Oxygen Poisoning.

    DTIC Science & Technology

    1980-12-31

    hyperoxia produces pathological changes in lung which can be fatal. With an interest in delineating dietary factors which might affect the pulmonary response...by dietary fat type (6,7). This study was conducted to investigate any changes in pulmonary PG synthetic capacity following treatment with diets...at 1 atmosphere in controlled environment chambers (9). In our mc3Rl system oxygen exposure produces discernible pulmonary biochem-cal changes after 24

  14. Reactive oxygen species generation and signaling in plants

    PubMed Central

    Tripathy, Baishnab Charan; Oelmüller, Ralf

    2012-01-01

    The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS. PMID:23072988

  15. Hydrogen peroxide and the evolution of oxygenic photosynthesis

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Hartman, H.

    1991-01-01

    Possible pathways for the evolution of oxygenic photosynthesis in the early reducing atmosphere of the earth are discussed. It is suggested that the abiotic production of atmospheric oxidants could have provided a mechanism by which locally oxidizing conditions were sustained within spatially confined habitats thus removing the available reductants and forcing photosynthetic organisms to utilize water (rather than ferrous or sulfide ions) as the electron donor. It is argued that atmospheric H2O2 played the key role in inducing oxygenic photosynthesis, because, as peroxide concentrations local environments increased, primitive organisms would not only be faced with a loss of a reductant, but would be also forced to develop a biochemical apparatus (such as catalase) that would protect them against the products of oxygenic photosynthesis. This scenario allows for the early evolution of oxygenic photosynthesis at the time when global conditions were still anaerobic.

  16. A reduced-order adaptive neuro-fuzzy inference system model as a software sensor for rapid estimation of five-day biochemical oxygen demand

    NASA Astrophysics Data System (ADS)

    Noori, Roohollah; Safavi, Salman; Nateghi Shahrokni, Seyyed Afshin

    2013-07-01

    The five-day biochemical oxygen demand (BOD5) is one of the key parameters in water quality management. In this study, a novel approach, i.e., reduced-order adaptive neuro-fuzzy inference system (ROANFIS) model was developed for rapid estimation of BOD5. In addition, an uncertainty analysis of adaptive neuro-fuzzy inference system (ANFIS) and ROANFIS models was carried out based on Monte-Carlo simulation. Accuracy analysis of ANFIS and ROANFIS models based on both developed discrepancy ratio and threshold statistics revealed that the selected ROANFIS model was superior. Pearson correlation coefficient (R) and root mean square error for the best fitted ROANFIS model were 0.96 and 7.12, respectively. Furthermore, uncertainty analysis of the developed models indicated that the selected ROANFIS had less uncertainty than the ANFIS model and accurately forecasted BOD5 in the Sefidrood River Basin. Besides, the uncertainty analysis also showed that bracketed predictions by 95% confidence bound and d-factor in the testing steps for the selected ROANFIS model were 94% and 0.83, respectively.

  17. Biochemical Basis of Sestrin Physiological Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Allison; Cho, Chun-Seok; Namkoong, Sim

    Excessive accumulation of reactive oxygen species (ROS) and chronic activation of mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) are well-characterized promoters of aging and age-associated degenerative pathologies. Sestrins, a family of highly conserved stress-inducible proteins, are important negative regulators of both ROS and mTORC1 signaling pathways; however, the mechanistic basis of how Sestrins suppress these pathways remains elusive. In the past couple of years, breakthrough discoveries about Sestrin signaling and its molecular nature have markedly increased our biochemical understanding of Sestrin function. These discoveries have also uncovered new potential therapeutic strategies that may eventually enable us to attenuate agingmore » and age-associated diseases.« less

  18. Dynamics of biochemical processes and redox conditions in geochemically linked landscapes of oligotrophic bogs

    NASA Astrophysics Data System (ADS)

    Inisheva, L. I.; Szajdak, L.; Sergeeva, M. A.

    2016-04-01

    The biological activity in oligotrophic peatlands at the margins of the Vasyugan Mire has been studied. It is shown found that differently directed biochemical processes manifest themselves in the entire peat profile down to the underlying mineral substrate. Their activity is highly variable. It is argued that the notion about active and inert layers in peat soils is only applicable for the description of their water regime. The degree of the biochemical activity is specified by the physical soil properties. As a result of the biochemical processes, a micromosaic aerobic-anaerobic medium is developed under the surface waterlogged layer of peat deposits. This layer contains the gas phase, including oxygen. It is concluded that the organic and mineral parts of peat bogs represent a single functional system of a genetic peat profile with a clear record of the history of its development.

  19. The Ultimate Flag Games.

    ERIC Educational Resources Information Center

    Angel, Kenny; Sutton, Nancy

    This paper describes six Ultimate Flag Games which offer a change from traditional games and sports that are usually geared toward athletically inclined students. These new games, aimed at middle school through college students, allow for success from the least-skilled through the most athletically talented students. Players are ability grouped…

  20. An Inexpensive Electrode and Cell for Measurement of Oxygen Uptake in Chemical and Biochemical Systems.

    ERIC Educational Resources Information Center

    Brunet, Juan E.; And Others

    1983-01-01

    The continuous measurement of oxygen consumption in an enzymatic reaction is a frequent experimental fact and extremely important in the enzymatic activity of oxygenase. An electrochemical system, based on a polarographic method, has been developed to monitor the oxygen uptake. The system developed and electrode used are described. (JN)

  1. Biochemical and Structural Characterisation of DNA Ligases from Bacteria and Archaea.

    PubMed

    Pergolizzi, Giulia; Wagner, Gerd K; Bowater, Richard Peter

    2016-08-31

    DNA ligases are enzymes that seal breaks in the backbones of DNA, leading to them being essential for the survival of all organisms. DNA ligases have been studied from many different types of cells and organisms and shown to have diverse sizes and sequences, with well conserved specific sequences that are required for enzymatic activity. A significant number of DNA ligases have been isolated or prepared in recombinant forms and, here, we review their biochemical and structural characterisation. All DNA ligases contain an essential lysine that transfers an adenylate group from a co-factor to the 5'-phosphate of the DNA end that will ultimately be joined to the 3'-hydroxyl of the neighbouring DNA strand. The essential DNA ligases in bacteria use nicotinamide adenine dinucleotide ( β -NAD + ) as their co-factor whereas those that are essential in other cells use adenosine-5'-triphosphate (ATP) as their co-factor. This observation suggests that the essential bacterial enzyme could be targeted by novel antibiotics and the complex molecular structure of β -NAD + affords multiple opportunities for chemical modification. Several recent studies have synthesised novel derivatives and their biological activity against a range of DNA ligases has been evaluated as inhibitors for drug discovery and/or non-natural substrates for biochemical applications. Here, we review the recent advances that herald new opportunities to alter the biochemical activities of these important enzymes. The recent development of modified derivatives of nucleotides highlights that the continued combination of structural, biochemical and biophysical techniques will be useful in targeting these essential cellular enzymes. ©2016 The Author(s).

  2. Characterizing autism spectrum disorders by key biochemical pathways.

    PubMed

    Subramanian, Megha; Timmerman, Christina K; Schwartz, Joshua L; Pham, Daniel L; Meffert, Mollie K

    2015-01-01

    The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions.

  3. Characterizing autism spectrum disorders by key biochemical pathways

    PubMed Central

    Subramanian, Megha; Timmerman, Christina K.; Schwartz, Joshua L.; Pham, Daniel L.; Meffert, Mollie K.

    2015-01-01

    The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions. PMID:26483618

  4. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    PubMed Central

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  5. Education and Ultimate Meaning

    ERIC Educational Resources Information Center

    Schinkel, Anders

    2015-01-01

    Richard Peters and John White have both argued that education should contribute to the meaning people are able to find in or give to life. Both dismiss the idea of ultimate or profound meaning ("the meaning of life") in favour of ordinary meaning, or "meaning in life". Thus they exemplify the trend visible also in the general…

  6. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for West Fork Blue River, Washington County, Indiana

    USGS Publications Warehouse

    Peters, James G.; Wilber, W.G.; Crawford, Charles G.; Girardi, F.P.

    1979-01-01

    A digital computer model calibrated to observe stream conditions was used to evaluate water quality in West Fork Blue River, Washington County, IN. Instream dissolved-oxygen concentration averaged 96.5% of saturation at selected sites on West Fork Blue River during two 24-hour summer surveys. This high dissolved-oxygen concentration reflects small carbonaceous and nitrogenous waste loads; adequate dilution of waste by the stream; and natural reaeration. Nonpoint source waste loads accounted for an average of 53.2% of the total carbonaceous biochemical-oxygen demand and 90.2% of the nitrogenous biochemical-oxygen demand. Waste-load assimilation was studiedfor critical summer and winter low flows. Natural streamflow for these conditions was zero, so no benefit from dilution was provided. The projected stream reaeration capacity was not sufficient to maintain the minimum daily dissolved-oxygen concentration (5 milligrams per liter) in the stream with current waste-discharge restrictions. During winter low flow, ammonia toxicity, rather than dissolved-oxygen concentration, was the limiting water-quality criterion downstream from the Salem wastewater-treatment facility. (USGS)

  7. Ultimate RHIC Performance Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, H.

    1986-11-10

    The RHIC performance estimates for pp operation given in the Conceptual Design report are intentionally conservative as to energy and luminosity. The ultimate RHIC performance was estimated by an ad-hoc comittee with F.Dell, H. Foelsche, H. Hahn, S.Y. Lee, G. Parzen, E. Raka, S. Tepikian, and P. Thompson as members. The present note summarizes the committee's conclusions.

  8. Reliability of Hull Girder Ultimate Strength of Steel Ships

    NASA Astrophysics Data System (ADS)

    Da-wei, Gao; Gui-jie, Shi

    2018-03-01

    Hull girder ultimate strength is an evaluation index reflecting the true safety margin or structural redundancy about container ships. Especially, after the hull girder fracture accident of the MOL COMFORT, the 8,000TEU class large container ship, on June 17 2013, larger container ship safety has been paid on much more attention. In this paper, different methods of calculating hull girder ultimate strength are firstly discussed and compared with. The bending ultimate strength can be analyzed by nonlinear finite element method (NFEM) and increment-iterative method, and also the shear ultimate strength can be analyzed by NFEM and simple equations. Then, the probability distribution of hull girder wave loads and still water loads of container ship are summarized. At last, the reliability of hull girder ultimate strength under bending moment and shear forces for three container ships is analyzed by using a first order method. The conclusions can be applied to give guidance for ship design and safety evaluation.

  9. Ultimate fate of constrained voters

    NASA Astrophysics Data System (ADS)

    Vazquez, F.; Redner, S.

    2004-09-01

    We examine the ultimate fate of individual opinions in a socially interacting population of leftists, centrists and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (and similarly for a centrist and a rightist). However leftists and rightists do not interact. This interaction step between pairs of agents is applied repeatedly until the system can no longer evolve. In the mean-field limit, we determine the exact probability that the system reaches consensus (either leftist, rightist or centrist) or a frozen mixture of leftists and rightists as a function of the initial composition of the population. We also determine the mean time until the final state is reached. Some implications of our results for the ultimate fate in a limit of the Axelrod model are discussed.

  10. Effect Of Organic Substrate Composition On Microbial Community Structure Of Pilot-Scale Biochemical Reactors Treating Mining Influenced Water

    EPA Science Inventory

    Mining-influenced water (MIW) is acidic, metal rich water formed when sulfide minerals react with oxygen and water. There are various options for the treatment of MIW; however, passive biological systems such as biochemical reactors (BCRs) have shown promise because of their low...

  11. Ultimate Lateral Capacity of Rigid Pile in c- φ Soil

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-min

    2018-03-01

    To date no analytical solution of the pile ultimate lateral capacity for the general c- φ soil has been obtained. In the present study, a new dimensionless embedded ratio was proposed and the analytical solutions of ultimate lateral capacity and rotation center of rigid pile in c- φ soils were obtained. The results showed that both the dimensionless ultimate lateral capacity and dimensionless rotation center were the univariate functions of the embedded ratio. Also, the ultimate lateral capacity in the c- φ soil was the combination of the ultimate lateral capacity ( f c ) in the clay, and the ultimate lateral capacity ( f φ ) in the sand. Therefore, the Broms chart for clay, solution for clay ( φ=0) put forward by Poulos and Davis, solution for sand ( c=0) obtained by Petrasovits and Awad, and Kondner's ultimate bending moment were all proven to be the special cases of the general solution in the present study. A comparison of the field and laboratory tests in 93 cases showed that the average ratios of the theoretical values to the experimental value ranged from 0.85 to 1.15. Also, the theoretical values displayed a good agreement with the test values.

  12. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    PubMed

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Ultimate Educational Aims, Overridingness, and Personal Well-Being

    ERIC Educational Resources Information Center

    Haji, Ishtiyaque; Cuypers, Stefaan E.

    2011-01-01

    Discussion regarding education's aims, especially its ultimate aims, is a key topic in the philosophy of education. These aims or values play a pivotal role in regulating and structuring moral and other types of normative education. We outline two plausible strategies to identify and justify education's ultimate aims. The first associates these…

  14. A spectrophotometric biochemical oxygen demand determination method using 2,6-dichlorophenolindophenol as the redox color indicator and the eukaryote Saccharomyces cerevisiae.

    PubMed

    Nakamura, Hideaki; Kobayashi, Shun; Hirata, Yu; Suzuki, Kyota; Mogi, Yotaro; Karube, Isao

    2007-10-15

    A method to determine the spectrophotometric biochemical oxygen demand (BOD(sp)) was studied with high sensitivity and reproducibility by employing 2,6-dichlorophenolindophenol (DCIP) as a redox color indicator, the yeast Saccharomyces cerevisiae, and a temperature-controlling system providing a three-consecutive-stir unit. The absorbance of DCIP decreased due to the metabolism of organic substances in aqueous samples by S. cerevisiae. Under optimum conditions, a calibration curve for glucose glutamic acid concentration between 1.1 and 22mg O(2) L(-1) (r=0.988, six points, n=3) was obtained when the incubation mixture was incubated for 10min at 30 degrees C. The reproducibility of the optical responses in the calibration curve was 1.77% (average of relative standard deviations; RSD(av)). Subsequently, the characterization of this method was studied. The optical responses to pure organic substances and the influence of chloride ions, artificial seawater, and heavy metal ions on the sensor response were investigated before use with real samples. Measurements of real samples using river water were performed and compared with those obtained using the BOD(5) method. Finally, stable responses were obtained for 36 days when the yeast cell suspension was stored at 4 degrees C (response reduction, 89%; RSD(av) value for 9 testing days, 8.4%).

  15. "Got Disc?" The "Ultimate" Experience in Physical Education

    ERIC Educational Resources Information Center

    Johnson, Tyler G.; Darst, Paul W.; Brusseau, Timothy A.

    2006-01-01

    A quality physical education program is one in which students are exposed to and can participate in a variety of sports and activities. One activity that is increasing in popularity in and outside of physical education is the game of "Ultimate." Opportunities to play Ultimate are increasing rapidly in intramural programs and community and…

  16. Effect of Deep Drying and Torrefaction Temperature on Proximate, Ultimate Composition, and Heating Value of 2-mm Lodgepole Pine (Pinus contorta) Grind

    PubMed Central

    Tumuluru, Jaya Shankar

    2016-01-01

    Deep drying and torrefaction compose a thermal pretreatment method where biomass is heated in the temperature range of 150–300 °C in an inert or reduced environment. The process parameters, like torrefaction temperature and residence time, have a significant impact on the proximate, ultimate, and energy properties. In this study, torrefaction experiments were conducted on 2-mm ground lodgepole pine (Pinus contorta) using a thermogravimetric analyzer. Both deep drying and torrefaction temperature (160–270 °C) and time (15–120 min) were selected. Torrefied samples were analyzed for the proximate, ultimate, and higher heating value. The results indicate that moisture content decreases with increases in torrefaction temperature and time, where at 270 °C and 120 min, the moisture content is found to be 1.15% (w.b.). Volatile content in the lodgepole pine decreased from about 80% to about 45%, and ash content increased from 0.77% to about 1.91% at 270 °C and 120 min. The hydrogen, oxygen, and sulfur content decreased to 3%, 28.24%, and 0.01%, whereas the carbon content and higher heating value increased to 68.86% and 23.67 MJ/kg at 270 °C and 120 min. Elemental ratio of hydrogen to carbon and oxygen to carbon (H/C and O/C) calculated at 270 °C and a 120-min residence time were about 0.56 and 0.47. Based on this study, it can be concluded that higher torrefaction temperatures ≥230 °C and residence time ≥15 min influence the proximate, ultimate, and energy properties of ground lodgepole pine. PMID:28952578

  17. Aspects on the Physiological and Biochemical Foundations of Neurocritical Care

    PubMed Central

    Nordström, Carl-Henrik; Koskinen, Lars-Owe; Olivecrona, Magnus

    2017-01-01

    Neurocritical care (NCC) is a branch of intensive care medicine characterized by specific physiological and biochemical monitoring techniques necessary for identifying cerebral adverse events and for evaluating specific therapies. Information is primarily obtained from physiological variables related to intracranial pressure (ICP) and cerebral blood flow (CBF) and from physiological and biochemical variables related to cerebral energy metabolism. Non-surgical therapies developed for treating increased ICP are based on knowledge regarding transport of water across the intact and injured blood–brain barrier (BBB) and the regulation of CBF. Brain volume is strictly controlled as the BBB permeability to crystalloids is very low restricting net transport of water across the capillary wall. Cerebral pressure autoregulation prevents changes in intracranial blood volume and intracapillary hydrostatic pressure at variations in arterial blood pressure. Information regarding cerebral oxidative metabolism is obtained from measurements of brain tissue oxygen tension (PbtO2) and biochemical data obtained from intracerebral microdialysis. As interstitial lactate/pyruvate (LP) ratio instantaneously reflects shifts in intracellular cytoplasmatic redox state, it is an important indicator of compromised cerebral oxidative metabolism. The combined information obtained from PbtO2, LP ratio, and the pattern of biochemical variables reveals whether impaired oxidative metabolism is due to insufficient perfusion (ischemia) or mitochondrial dysfunction. Intracerebral microdialysis and PbtO2 give information from a very small volume of tissue. Accordingly, clinical interpretation of the data must be based on information of the probe location in relation to focal brain damage. Attempts to evaluate global cerebral energy state from microdialysis of intraventricular fluid and from the LP ratio of the draining venous blood have recently been presented. To be of clinical relevance, the

  18. Effect Of Organic Substrate Composition On Microbial Community Structure Of Pilot-Scale Biochemical Reactors Treating Mining Influenced Water - (Presentation)

    EPA Science Inventory

    Mining-influenced water (MIW) is acidic, metal rich water formed when sulfide minerals react with oxygen and water. There are various options for the treatment of MIW; however, passive biological systems such as biochemical reactors (BCRs) have shown promise because of their low...

  19. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    NASA Astrophysics Data System (ADS)

    Podwin, Agnieszka; Dziuban, Jan A.

    2017-10-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO2—a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells.

  20. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Wildcat Creek, Howard County, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1979-01-01

    The Indiana State Board of Health is developing a water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Wildcat Creek was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand is the most significant factor affecting the dissolved-oxygen concentrations in Wildcat Creek during summer low flows. The Indiana stream dissolved-oxygen standard should not be violated if the Kokomo wastewater-treatment facility meets its current National Pollution Discharge Elimination System permit restrictions (average monthly 5-day biochemical-oxygen demand of 5 milligrams per liter and maximum weekly 5-day biochemical-oxygen demand of 7.5 milligrams per liter) and benthic-oxygen demand becomes negligible. Ammonia-nitrogen toxicity may also be a water-quality limitation in Wildcat Creek. Ammonia-nitrogen waste loads for the Kokomo wastewater-treatment facility, projected by the Indiana State Board of Health, will result in stream ammonia-nitrogen concentrations that exceed the State standard (2.5 milligrams per liter during summer months and 4.0 milligrams per liter during winter months). (Kosco-USGS)

  1. Structure and function of isozymes: Evolutionary aspects and role of oxygen in eucaryotic organisms

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.

    1985-01-01

    Oxygen is not only one of the most abundant elements on the Earth, but it is also one of the most important elements for life. In terms of composition, the feature of the atmosphere that most distinguishes Earth from other planets is the presence of abundant amounts of oxygen. The first forms of life may have been similar to present day anaerobic bacteria such as clostridium. The relationship between prokaryotes and eukaryotes, if any, has been a topic of much speculation. With only a few exceptions eukaryotes are oxygen-utilizing organisms. This research eukaryotes or eukaryotic biochemical processes requiring oxygen, could have arisen quite early in evolution and utilized the small quantities of photocatalytically produced oxygen which are thought to have been present on the Earth prior to the evolution of massive amounts of photosynthetically-produced oxygen.

  2. How did life survive Earth's great oxygenation?

    PubMed

    Fischer, Woodward W; Hemp, James; Valentine, Joan Selverstone

    2016-04-01

    Life on Earth originated and evolved in anoxic environments. Around 2.4 billion-years-ago, ancestors of Cyanobacteria invented oxygenic photosynthesis, producing substantial amounts of O2 as a byproduct of phototrophic water oxidation. The sudden appearance of O2 would have led to significant oxidative stress due to incompatibilities with core cellular biochemical processes. Here we examine this problem through the lens of Cyanobacteria-the first taxa to observe significant fluxes of intracellular dioxygen. These early oxygenic organisms likely adapted to the oxidative stress by co-opting preexisting systems (exaptation) with fortuitous antioxidant properties. Over time more advanced antioxidant systems evolved, allowing Cyanobacteria to adapt to an aerobic lifestyle and become the most important environmental engineers in Earth history. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle; Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50 because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  4. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Muscatello, Anthony C.; Meier, Anne J.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  5. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon, is capable of recovering all the oxygen from carbon dioxide, and it is a promising alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon, and the resulting carbon buildup eventually fouls the catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  6. A step towards on-chip biochemical energy cascade of microorganisms: carbon dioxide generation induced by ethanol fermentation in 3D printed modular lab-on-a-chip

    NASA Astrophysics Data System (ADS)

    Podwin, A.; Kubicki, W.; Adamski, K.; Walczak, R.; Dziuban, J. A.

    2016-11-01

    The concept of biochemical energy cascade of microorganisms towards oxygen generation in 3D printed lab-on-a-chip has been presented. In this work, carbon dioxide - a product of ethanol fermentation of yeasts has been utilized to enable light-initialized photosynthesis of euglenas and as a result of their metabolic transitions produce pure oxygen.

  7. Ultimate Cost of Building Walls.

    ERIC Educational Resources Information Center

    Grimm, Clayford T.; Gross, James G.

    The need for economic analysis of building walls is discussed, and the factors influencing the ultimate cost of exterior walls are studied. The present worth method is used to analyze three types of exterior non-loadbearing panel or curtain walls. Anticipated costs are expressed in terms of their present value per square foot of wall area. The…

  8. Biochemical establishment and characterization of EncM's flavin-N5-oxide cofactor

    PubMed Central

    Teufel, Robin; Stull, Frederick; Meehan, Michael J.; Michaudel, Quentin; Dorrestein, Pieter C.; Palfey, Bruce; Moore, Bradley S.

    2016-01-01

    The ubiquitous flavin-dependent monooxygenases commonly catalyze oxygenation reactions by means of a transient C4a-peroxyflavin. A recent study, however, suggested an unprecedented flavin-oxygenating species - proposed as the flavin-N5-oxide (FlN5[O]) - as key to an oxidative Favorskii-type rearrangement in the biosynthesis of the bacterial polyketide antibiotic enterocin. This stable superoxidized flavin is covalently tethered to the enzyme EncM and converted into FADH2 (Flred) during substrate turnover. Subsequent reaction of Flred with molecular oxygen restores the postulated FlN5[O] via an unknown pathway. Here we provide direct evidence for the FlN5[O] species via isotope labeling, proteolytic digestion, and high-resolution tandem mass spectrometry of EncM. We propose that formation of this species occurs by hydrogen-transfer from Flred to molecular oxygen, allowing radical coupling of the formed protonated superoxide and anionic flavin semiquinone at N5, before elimination of water affords the FlN5[O] cofactor. Further biochemical and spectroscopic investigations reveal important features of the FlN5[O] species and the EncM catalytic mechanism. We speculate that flavin-N5-oxides may be intermediates or catalytically active species in other flavoproteins that form the anionic semiquinone and promote access of oxygen to N5. PMID:26067765

  9. Summary of the river-quality assessment of the upper Chattahoochee River basin, Georgia

    USGS Publications Warehouse

    Cherry, R.N.; Faye, R.E.; Stamer, J.K.; Kleckner, R.L.

    1980-01-01

    The river-quality assessment of the Upper Chattahoochee River Basin included studies of (1) the impact of heat loads on river quality, (2) sediment transport and deposition, (3) magnitude and nature of point and nonpoint discharges, and (4) phytoplankton growth in the river and reservoirs. The combined thermal effects of flow regulation and powerplants effluents resulted in mean daily river temperature downstream of the powerplants about equal to or less than computed natural temperatures. The average annual river temperature in 1976 was 14.0 ? Celsius just upstream of the Atkinson-McDonough thermoelectric powerplants and 16.0 ? Celsius just downstream from the powerplants. During a low-flow period in June 1977 the heat load from the two powerplants caused an increase in river temperatures of about 7 ? Celsius and a subsequent decrease in the dissolved-oxygen concentration of about 0.2 milligrams per liter. During the June low-flow period, point sources contributed 63 percent of the ultimate biochemical oxygen demand and 97 percent of ammonium as nitrogen at the Franklin station. Oxidation of ultimate biochemical demand and ammonium caused dissolved-oxygen concentrations to decrease from about 8.0 milligrams per liter at river mile 299 to about 4.5 milligrams per liter at river mile 271. Dissolved orthophosphate is the nutrient presently limiting phytoplankton growth in the West Point Lake when water temperatures are greater than about 26 ? Celsius.

  10. The ultimate disposition of depleted uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated atmore » the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.« less

  11. Oxygen, the lung and the diver: friends and foes?

    PubMed

    van Ooij, Pieter-Jan A M; Sterk, Peter J; van Hulst, Robert A

    2016-12-01

    Worldwide, the number of professional and sports divers is increasing. Most of them breathe diving gases with a raised partial pressure of oxygen (P O 2 ). However, if the P O 2 is between 50 and 300 kPa (375-2250 mmHg) (hyperoxia), pathological pulmonary changes can develop, known as pulmonary oxygen toxicity (POT). Although in its acute phase, POT is reversible, it can ultimately lead to non-reversible pathological changes. Therefore, it is important to monitor these divers to prevent them from sustaining irreversible lesions.This review summarises the pulmonary pathophysiological effects when breathing oxygen with a P O 2 of 50-300 kPa (375-2250 mmHg). We describe the role and the limitations of lung function testing in monitoring the onset and development of POT, and discuss new techniques in respiratory medicine as potential markers in the early development of POT in divers. Copyright ©ERS 2016.

  12. Integration of oxygen signaling at the consensus HRE.

    PubMed

    Wenger, Roland H; Stiehl, Daniel P; Camenisch, Gieri

    2005-10-18

    The hypoxia-inducible factor 1 (HIF-1) was initially identified as a transcription factor that regulated erythropoietin gene expression in response to a decrease in oxygen availability in kidney tissue. Subsequently, a family of oxygen-dependent protein hydroxylases was found to regulate the abundance and activity of three oxygen-sensitive HIFalpha subunits, which, as part of the HIF heterodimer, regulated the transcription of at least 70 different effector genes. In addition to responding to a decrease in tissue oxygenation, HIF is proactively induced, even under normoxic conditions, in response to stimuli that lead to cell growth, ultimately leading to higher oxygen consumption. The growing cell thus profits from an anticipatory increase in HIF-dependent target gene expression. Growth stimuli-activated signaling pathways that influence the abundance and activity of HIFs include pathways in which kinases are activated and pathways in which reactive oxygen species are liberated. These pathways signal to the HIF protein hydroxylases, as well as to HIF itself, by means of covalent or redox modifications and protein-protein interactions. The final point of integration of all of these pathways is the hypoxia-response element (HRE) of effector genes. Here, we provide comprehensive compilations of the known growth stimuli that promote increases in HIF abundance, of protein-protein interactions involving HIF, and of the known HIF effector genes. The consensus HRE derived from a comparison of the HREs of these HIF effectors will be useful for identification of novel HIF target genes, design of oxygen-regulated gene therapy, and prediction of effects of future drugs targeting the HIF system.

  13. Blood gas and serum biochemical RIs for healthy newborn Murrah buffaloes (Bubalus bubalis).

    PubMed

    Santana, André M; Silva, Daniela G; Clemente, Virna; Pizauro, Lucas J L; Bernardes, Priscila A; Santana, Clarissa H; Eckersall, Peter D; Fagliari, José J

    2018-03-01

    There is a lack of published work on RIs for newborn buffaloes. Establishing blood gas and serum biochemical RIs for newborn buffaloes is important for monitoring health. This study establishes blood gas and serum biochemical RIs of newborn buffaloes. Twenty-eight newborn buffaloes, 10-30 days old, were selected. Thirty blood biochemical variables were analyzed. The Anderson-Darling test was used to assess the normality of the distribution. The Dixon test and the Tukey test were used to identify outliers. The RI and 90% CI were determined using standard and robust methods and the Box-Cox transformation. A total of 30 RIs for healthy buffalo calves have been reported in this study. RIs for blood gas variables were reported for pH, partial pressure of oxygen (pO 2 ), partial pressure of carbon dioxide (pCO 2 ), saturation of O 2 (SO 2 ), bicarbonate (cHCO 3 - ), base excess (BE), total carbon dioxide (ctCO 2 ), and anion gap (AG). RIs for serum biochemical variables were reported for glucose (GLU), direct bilirubin (DB), total bilirubin (TB), AST, ALP, GGT, CK, LDH, creatinine (CREA), urea, cholesterol (CHOL), triglycerides (TG), Ca, P, Mg, Na, K, iCa, Cl, iron, total protein (TP), and albumin (ALB). This is the first reported study covering complete serum chemistry and blood gas RIs for healthy 1-month-old Murrah buffaloes. © 2018 American Society for Veterinary Clinical Pathology.

  14. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects

    PubMed Central

    Taranto, Francesca; Pasqualone, Antonella; Mangini, Giacomo; Tripodi, Pasquale; Miazzi, Monica Marilena; Pavan, Stefano; Montemurro, Cinzia

    2017-01-01

    Enzymatic browning is a colour reaction occurring in plants, including cereals, fruit and horticultural crops, due to oxidation during postharvest processing and storage. This has a negative impact on the colour, flavour, nutritional properties and shelf life of food products. Browning is usually caused by polyphenol oxidases (PPOs), following cell damage caused by senescence, wounding and the attack of pests and pathogens. Several studies indicated that PPOs play a role in plant immunity, and emerging evidence suggested that PPOs might also be involved in other physiological processes. Genomic investigations ultimately led to the isolation of PPO homologs in several crops, which will be possibly characterized at the functional level in the near future. Here, focusing on the botanic families of Poaceae and Solanaceae, we provide an overview on available scientific literature on PPOs, resulting in useful information on biochemical, physiological and genetic aspects. PMID:28208645

  15. Probing the Ultimate Limits of Plasmonic Enhancement

    PubMed Central

    Ciracì, C.; Hill, R. T.; Mock, J. J.; Urzhumov, Y.; Fernández-Domínguez, A. I.; Maier, S. A.; Pendry, J. B.; Chilkoti, A.; Smith, D. R.

    2013-01-01

    Metals support surface plasmons at optical wavelengths and have the ability to localize light to sub-wavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. Here we show that the dominant limiting factor is not the resistive loss of the metal, but the intrinsic nonlocality of its dielectric response. A semi-classical model of the electronic response of a metal places strict bounds on the ultimate field enhancement. We demonstrate the accuracy of this model by studying the optical scattering from gold nanoparticles spaced a few angstroms from a gold film. The bounds derived from the models and experiments impose limitations on all nanophotonic systems. PMID:22936772

  16. Physical Demands in Competitive Ultimate Frisbee.

    PubMed

    Krustrup, Peter; Mohr, Magni

    2015-12-01

    The objective was to study game demands in competitive ultimate Frisbee by performing match analysis during a game. Thirteen moderately trained (Yo-Yo intermittent recovery test levels 1 and 2 [Yo-Yo IR1 and IR2] performance: 1790 ± 382 m and 657 ± 225 m, respectively) competitive male ultimate Frisbee athletes played a game in which activity profile using Global Positioning System (GPS) technology and heart rate (HR) were recorded. Game HRmean and HRpeak were 82 ± 2% and 99 ± 1% of maximum heart rate, respectively. Total game distance was 4.70 ± 0.47 km, of which 0.63 ± 0.14 km was high-intensity running and 0.21 ± 0.11 km was sprinting. In the second half, 10% less (p ≤ 0.05) ground was covered with high-intensity running compared with the first half (0.28 ± 0.08 km vs. 0.31 ± 0.07 km). Less (43-47%; p ≤ 0.05) high-intensity running was performed in the third 9-minute period of each half compared with the first two 9-minute periods of the same half. Players performed 17.4 ± 5.7 sprints during the match. Yo-Yo IR2 performance correlated to the amount of high-intensity running in the last 9 minutes of both halves (r = 0.69, p ≤ 0.05), whereas Yo-Yo IR1 performance correlated with total sprint distance (r = 0.74, p ≤ 0.05). Ultimate Frisbee is an intense intermittent team sport with high cardiovascular loading and clear indications of fatigue toward the end of each half. Yo-Yo IR test performances correlate with physical match performance.

  17. Examination of oxygen release from plants in constructed wetlands in different stages of wetland plant life cycle.

    PubMed

    Zhang, Jian; Wu, Haiming; Hu, Zhen; Liang, Shuang; Fan, Jinlin

    2014-01-01

    The quantification of oxygen release by plants in different stages of wetland plant life cycle was made in this study. Results obtained from 1 year measurement in subsurface wetland microcosms demonstrated that oxygen release from Phragmites australis varied from 108.89 to 404.44 mg O₂/m(2)/d during the different periods from budding to dormancy. Plant species, substrate types, and culture solutions had a significant effect on the capacity of oxygen release of wetland plants. Oxygen supply by wetland plants was estimated to potentially support a removal of 300.37 mg COD/m(2)/d or 55.87 mg NH₄-N/m(2)/d. According to oxygen balance analysis, oxygen release by plants could provide 0.43-1.12% of biochemical oxygen demand in typical subsurface-flow constructed wetlands (CWs). This demonstrates that oxygen release of plants may be a potential source for pollutants removal especially in low-loaded CWs. The results make it possible to quantify the role of plants in wastewater purification.

  18. 15 CFR 748.11 - Statement by Ultimate Consignee and Purchaser.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ultimate consignee, provided the required statements are contained in Block 24 on the license application... copy submitted by the applicant must be of sufficient quality to ensure all assertions made on the...) Form or letter. The ultimate consignee and purchaser must complete either a statement on company...

  19. 15 CFR 748.11 - Statement by Ultimate Consignee and Purchaser.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ultimate consignee, provided the required statements are contained in Block 24 on the license application... copy submitted by the applicant must be of sufficient quality to ensure all assertions made on the...) Form or letter. The ultimate consignee and purchaser must complete either a statement on company...

  20. Autoamplificatory singlet oxygen generation sensitizes tumor cells for intercellular apoptosis-inducing signaling.

    PubMed

    Bauer, Georg

    2018-06-01

    Tumor cells express NADPH oxidase-1 (NOX1) in their membrane and control NOX1-based intercellular reactive oxygen and nitrogen species (ROS/RNS)-dependent apoptosis-inducing signaling through membrane-associated catalase and superoxide dismutase. of tumor cells with high concentrations of H 2 O 2 , peroxnitrite, HOCl, or increasing the concentration of cell-derived NO causes initial generation of singlet oxygen and local inactivation of membrane-associated catalase. As a result, free peroxynitrite and H 2 O 2 interact and generate secondary singlet oxygen. Inactivation of further catalase molecules by secondary singlet oxygen leads to auto-amplification of singlet oxygen generation and catalase inactivation. This allows reactivation of intercellular ROS/RNS-signaling and selective apoptosis induction in tumor cells. The initial singlet oxygen generation seems to be the critical point in this complex biochemical multistep mechanism. Initial singlet oxygen generation requires the interaction between distinct tumor cell-derived ROS and RNS and may also depend on either the induction of NO synthase expression or NOX1 activation through the FAS receptor. FAS receptor activation can be achieved by singlet oxygen. Autoamplificatory generation of singlet oxygen through the interaction between peroxynitrite and hydrogen peroxide inherits a rich potential for the establishment of synergistic effects that may be instrumental for novel approaches of tumor therapy with high selectivity towards malignant cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Timescale analysis of rule-based biochemical reaction networks

    PubMed Central

    Klinke, David J.; Finley, Stacey D.

    2012-01-01

    The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed upon reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of Interleukin-12 (IL-12) signaling in näive CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based upon the available data. The analysis correctly predicted that reactions associated with JAK2 and TYK2 binding to their corresponding receptor exist at a pseudo-equilibrium. In contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. PMID:21954150

  2. Exhaustive Exercise-induced Oxidative Stress Alteration of Erythrocyte Oxygen Release Capacity.

    PubMed

    Xiong, Yanlian; Xiong, Yanlei; Wang, Yueming; Zhao, Yajin; Li, Yaojin; Ren, Yang; Wang, Ruofeng; Zhao, Mingzi; Hao, Yitong; Liu, Haibei; Wang, Xiang

    2018-05-24

    The aim of the present study is to explore the effect of exhaustive running exercise (ERE) in the oxygen release capacity of rat erythrocytes. Rats were divided into sedentary control (C), moderate running exercise (MRE) and exhaustive running exercise groups. The thermodynamics and kinetics properties of the erythrocyte oxygen release process of different groups were tested. We also determined the degree of band-3 oxidative and phosphorylation, anion transport activity and carbonic anhydrase isoform II(CAII) activity. Biochemical studies suggested that exhaustive running significantly increased oxidative injury parameters in TBARS and methaemoglobin levels. Furthermore, exhaustive running significantly decreased anion transport activity and carbonic anhydrase isoform II(CAII) activity. Thermodynamic analysis indicated that erythrocytes oxygen release ability also significantly increased due to elevated 2,3-DPG level after exhaustive running. Kinetic analysis indicated that exhaustive running resulted in significantly decreased T50 value. We presented evidence that exhaustive running remarkably impacted thermodynamics and kinetics properties of RBCs oxygen release. In addition, changes in 2,3-DPG levels and band-3 oxidation and phosphorylation could be the driving force for exhaustive running induced alterations in erythrocytes oxygen release thermodynamics and kinetics properties.

  3. Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers

    NASA Technical Reports Server (NTRS)

    Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.

    1989-01-01

    Hydrogen-oxygen SPE fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. The SPE cells have demonstrated a ten year life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton-exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluroride loss rates and average expected ultimate cell life. Several features were introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability were demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density. The SPE electrolyzers have demonstrated the same at 1000 ASF. Many future extraterrestrial applications for fuel cells require that they be self recharged. To translate the proven SPE cell life and stability into a highly reliable extraterrestrial electrical energy storage system, a simplification of supporting equipment is required. Static phase separation, static fluid transport and static thermal control will be most useful in producting required system reliability. Although some 200,000 SPE fuel cell hours were recorded in earth orbit with static fluid phase separation, no SPE electrolyzer has, as yet, operated in space.

  4. Balanced Biochemical Reactions: A New Approach to Unify Chemical and Biochemical Thermodynamics

    PubMed Central

    Sabatini, Antonio; Vacca, Alberto; Iotti, Stefano

    2012-01-01

    A novel procedure is presented which, by balancing elements and electric charge of biochemical reactions which occur at constant pH and pMg, allows assessing the thermodynamics properties of reaction ΔrG ′0, ΔrH ′0, ΔrS ′0 and the change in binding of hydrogen and magnesium ions of these reactions. This procedure of general applicability avoids the complex calculations required by the use of the Legendre transformed thermodynamic properties of formation ΔfG ′0, ΔfH ′0 and ΔfS ′0 hitherto considered an obligatory prerequisite to deal with the thermodynamics of biochemical reactions. As a consequence, the term “conditional” is proposed in substitution of “Legendre transformed” to indicate these thermodynamics properties. It is also shown that the thermodynamic potential G is fully adequate to give a criterion of spontaneous chemical change for all biochemical reactions and then that the use of the Legendre transformed G′ is unnecessary. The procedure proposed can be applied to any biochemical reaction, making possible to re-unify the two worlds of chemical and biochemical thermodynamics, which so far have been treated separately. PMID:22247780

  5. A Quantitative Study of Oxygen as a Metabolic Regulator

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabrera, Marco E.

    1999-01-01

    ). Sensitivity analysis establishes relationships between model predictions and problem parameters (i.e., initial concentrations, rate coefficients, etc). It helps determine the effects of uncertainties or changes in these input parameters on the predictions, which ultimately are compared with experimental observations in order to validate the model. Sensitivity analysis can identify parameters that must be determined accurately because of their large effect on the model predictions and parameters that need not be known with great precision because they have little or no effect on the solution. This capability may prove to be important in optimizing the design of experiments, thereby reducing the use of animals. This approach can be applied to study the metabolic effects of reduced oxygen delivery to cardiac muscle due to local myocardial ischemia and the effects of acute hypoxia on brain metabolism. Other important applications of sensitivity analysis include identification of quantitatively relevant pathways and biochemical species within an overall mechanism, when examining the effects of a genetic anomaly or pathological state on energetic system components and whole system behavior.

  6. Life style and biochemical adaptation in Antarctic fishes

    NASA Astrophysics Data System (ADS)

    di Prisco, Guido

    2000-12-01

    Respiration and metabolism are under investigation in Antarctic fish, in an effort to understand the interplay between ecology and biochemical and physiological processes. Fish of the dominant suborder Notothenioidei are red-blooded, except Channichthyidae (the most phyletically derived family), whose genomes retain transcriptionally inactive DNA sequences closely related to the α-globin gene of red-blooded notothenioids and have lost the β-globin locus. Our structure/function studies on 38 of the 80 red-blooded species are aimed at correlating sequence, multiplicity and oxygen binding with ecological constraints and at obtaining phylogenetic information on evolution. For comparative purposes, this work has been extended to non-Antarctic notothenioids. All sluggish bottom dwellers have a single major hemoglobin (Hb) and often a minor, functionally similar one. Three species of the family Nototheniidae have different life styles. They have uniquely specialised oxygen-transport systems, adjusted to the mode of life of each species. Artedidraconidae have a single Hb, lacking oxygen-binding cooperativity, similar to the ancestral hemoproteins of primitive organisms. The amino acid sequences are currently used in the molecular modelling approach. The study of several enzymes with key roles in metabolism (e.g. glucose-6-phosphate dehydrogenase, L-glutamate dehydrogenase, phosphorylase b, carbonic anhydrase) indicate that some aspects of the molecular structure (e.g. molecular mass, number of subunits, amino acid sequence, temperature of irreversible heat inactivation) have been conserved during development of cold adaptation. However, high catalytic efficiency, possibly due to subtle molecular changes, is observed at low temperature.

  7. Modeling the oxygen microheterogeneity of tumors for photodynamic therapy dosimetry

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Paulsen, Keith D.; O'Hara, Julia A.; Hoopes, P. Jack; Swartz, Harold

    2000-03-01

    Photodynamic theory of tumors uses optical excitation of a sensitizing drug within tissue to produce large deposits of singlet oxygen, which are thought to ultimately cause the tumor destruction. Predicting dose deposition of singlet oxygen in vivo is challenging because measurement of this species in vivo is not easily achieved. But it is possible to follow the concentration of oxygen in vivo, and so measuring the oxygen concentration transients during PDT may provide a viable method of estimating the delivered dose of singlet oxygen. However modeling the microscopic heterogeneity of the oxygen distribution within a tumor is non-trivial, and predicting the microscopic dose deposition requires further study, but this study present the framework and initial calibration needed or modeling oxygen transport in complex geometries. Computational modeling with finite elements provides a versatile structure within which oxygen diffusion and consumption can be modeled within realistic tissue geometries. This study develops the basic tools required to simulate a tumor region, and examines the role of (i) oxygen supply and consumption rates, (ii) inter- capillary spacing, (iii) photosensitizer distribution, and (iv) differences between simulated tumors and those derived directly from histology. The result of these calculations indicate that realistic tumor tissue capillary networks can be simulated using the finite element method, without excessive computational burden for 2D regions near 1 mm2, and 3D regions near 0.1mm3. These simulations can provide fundamental information about tissue and ways to implement appropriate oxygen measurements. These calculations suggest that photodynamic therapy produces the majority of singlet oxygen in and near the blood vessels, because these are the sites of highest oxygen tension. These calculations support the concept that tumor vascular regions are the major targets for PDT dose deposition.

  8. Thermodynamic model of Mars Oxygen ISRU Experiment (MOXIE)

    NASA Astrophysics Data System (ADS)

    Meyen, Forrest E.; Hecht, Michael H.; Hoffman, Jeffrey A.; MOXIE Team

    2016-12-01

    As humankind expands its footprint in the solar system, it is increasingly important to make use of the resources already in our solar system to make these missions economically feasible and sustainable. In-Situ Resource Utilization (ISRU), the science of using resources at a destination to support exploration missions, unlocks potential destinations by significantly reducing the amount of resources that need to be launched from Earth. Carbon dioxide is an example of an in-situ resource that comprises 96% of the Martian atmosphere and can be used as a source of oxygen for propellant and life support systems. The Mars Oxygen ISRU Experiment (MOXIE) is a payload being developed for NASA's upcoming Mars 2020 rover. MOXIE will produce oxygen from the Martian atmosphere using solid oxide electrolysis (SOXE). MOXIE is on the order of magnitude of a 1% scale model of an oxygen processing plant that might enable a human expedition to Mars in the 2030s through the production of the oxygen needed for the propellant of a Mars ascent vehicle. MOXIE is essentially an energy conversion system that draws energy from the Mars 2020 rover's radioisotope thermoelectric generator and ultimately converts it to stored energy in oxygen and carbon monoxide molecules. A thermodynamic model of this novel system is used to understand this process in order to derive operating parameters for the experiment. This paper specifically describes the model of the SOXE component. Assumptions and idealizations are addressed, including 1D and 2D simplifications. Operating points are discussed as well as impacts of flow rates and production.

  9. Intra-Beam Scattering, Impedance, and Instabilities in Ultimate Storage Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, Karl; /SLAC

    We have investigated collective effects in an ultimate storage ring, i.e. one with diffraction limited emittances in both planes, using PEP-X as an example. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, a 4.5 GeV ring running round beams at 200 mA in 3300 bunches, IBS doubles the emittances to 11.5 pm at the design current. The Touschek lifetime is 11 hours. Impedance driven collective effects tend not to be important since the beam current is relatively low. We have investigated collective effects in PEP-X, an ultimate storage ring, i.e.more » one with diffraction limited emittances (at one angstrom wavelength) in both planes. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, IBS doubles the emittances to 11.5 pm at the design current of 200 mA, assuming round beams. The Touschek lifetime is quite large in PEP-X, 11.6 hours, and - near the operating point - increases with decreasing emittance. It is, however, a very sensitive function of momentum acceptance. In an ultimate ring like PEP-X impedance driven collective effects tend not to be important since the beam current is relatively low. Before ultimate PEP-X can be realized, the question of how to run a machine with round beams needs serious study. For example, in this report we assumed that the vertical emittance is coupling dominated. It may turn out that using vertical dispersion is a preferable way to generate round beams. The choice will affect IBS and the Touschek effect.« less

  10. Oxidizer Selection for the ISTAR Program (Liquid Oxygen versus Hydrogen Peroxide)

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene; Koelbl, Mary E. (Technical Monitor)

    2002-01-01

    This paper discusses a study of two alternate oxidizers, liquid oxygen and hydrogen peroxide, for use in a rocket based combined cycle (RBCC) demonstrator vehicle. The flight vehicle is baselined as an airlaunched self-powered Mach 0.7 to 7 demonstration of an RBCC engine through all or its air breathing propulsion modes. Selection of an alternate oxidizer has the potential to lower overall vehicle size, system complexity/ cost and ultimately the total program risk. This trade study examined the oxidizer selection effects upon the overall vehicle performance, safety and operations. After consideration of all the technical and programmatic details available at this time, 90% hydrogen peroxide was selected over liquid oxygen for use in this program.

  11. Centaur Standard Shroud (CSS) static ultimate load structural tests

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A series of tests were conducted on the jettisonable metallic shroud used on the Titan/Centaur launch vehicle to verify its structural capabilities and to evaluate its structural interaction with the Centaur stage. A flight configured shroud and the interfacing Titan/Centaur structural assemblies were subjected to tests consisting of combinations of applied axial and shear loads to design ultimate values, including a set of tests on thermal conditions and two dynamic response tests to verify the analytical stiffness model. The strength capabilities were demonstrated at ultimate (125 percent of design limit) loads. It was also verified that the spring rate of the flight configured shroud-to-Centaur forward structural deflections of the specimen became nonlinear, as expected, above limit load values. This test series qualification program verified that the Titan/Centaur shroud and the Centaur and Titan interface components are qualified structurally at design ultimate loads.

  12. Manipulation of Microenvironment with a Built-in Electrochemical Actuator in Proximity of a Dissolved Oxygen Microsensor

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Lee, Cae-Hyang; Fiering, Jason O.; Ufer, Stefan; Scarantino, Charles W.; Nagle, H. Troy; Fiering, Jason O.; Ufer, Stefan; Nagle, H. Troy; Scarantino, Charles W.

    2004-01-01

    Abstract - Biochemical sensors for continuous monitoring require dependable periodic self- diagnosis with acceptable simplicity to check its functionality during operation. An in situ self- diagnostic technique for a dissolved oxygen microsensor is proposed in an effort to devise an intelligent microsensor system with an integrated electrochemical actuation electrode. With a built- in platinum microelectrode that surrounds the microsensor, two kinds of microenvironments, called the oxygen-saturated or oxygen-depleted phases, can be created by water electrolysis depending on the polarity. The functionality of the microsensor can be checked during these microenvironment phases. The polarographic oxygen microsensor is fabricated on a flexible polyimide substrate (Kapton) and the feasibility of the proposed concept is demonstrated in a physiological solution. The sensor responds properly during the oxygen-generating and oxygen- depleting phases. The use of these microenvironments for in situ self-calibration is discussed to achieve functional integration as well as structural integration of the microsensor system.

  13. Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials

    DOE PAGES

    Mu, Linqin; Lin, Ruoqian; Xu, Rong; ...

    2018-04-18

    Chemical and mechanical properties interplay on the nanometric scale and collectively govern the functionalities of battery materials. Understanding the relationship between the two can inform the design of battery materials with optimal chemomechanical properties for long-life lithium batteries. Herein, we report a mechanism of nanoscale mechanical breakdown in layered oxide cathode materials, originating from oxygen release at high states of charge under thermal abuse conditions. Here, we observe that the mechanical breakdown of charged Li 1-xNi 0.4Mn 0.4Co 0.2O 2 materials proceeds via a two-step pathway involving intergranular and intragranular crack formation. Owing to the oxygen release, sporadic phase transformationsmore » from the layered structure to the spinel and/or rocksalt structures introduce local stress, which initiates microcracks along grain boundaries and ultimately leads to the detachment of primary particles; i.e., intergranular crack formation. Furthermore, intragranular cracks (pores and exfoliations) form, likely due to the accumulation of oxygen vacancies and continuous phase transformations at the surfaces of primary particles. Finally, finite element modeling confirms our experimental observation that the crack formation is attributable to formation of oxygen vacancies, oxygen release, and phase transformations. This study is designed to directly observe the chemomechanical behavior of layered oxide cathode materials and provides a chemical basis for strengthening primary and secondary particles by stabilizing the oxygen anions in the lattice.« less

  14. Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Linqin; Lin, Ruoqian; Xu, Rong

    Chemical and mechanical properties interplay on the nanometric scale and collectively govern the functionalities of battery materials. Understanding the relationship between the two can inform the design of battery materials with optimal chemomechanical properties for long-life lithium batteries. Herein, we report a mechanism of nanoscale mechanical breakdown in layered oxide cathode materials, originating from oxygen release at high states of charge under thermal abuse conditions. Here, we observe that the mechanical breakdown of charged Li 1-xNi 0.4Mn 0.4Co 0.2O 2 materials proceeds via a two-step pathway involving intergranular and intragranular crack formation. Owing to the oxygen release, sporadic phase transformationsmore » from the layered structure to the spinel and/or rocksalt structures introduce local stress, which initiates microcracks along grain boundaries and ultimately leads to the detachment of primary particles; i.e., intergranular crack formation. Furthermore, intragranular cracks (pores and exfoliations) form, likely due to the accumulation of oxygen vacancies and continuous phase transformations at the surfaces of primary particles. Finally, finite element modeling confirms our experimental observation that the crack formation is attributable to formation of oxygen vacancies, oxygen release, and phase transformations. This study is designed to directly observe the chemomechanical behavior of layered oxide cathode materials and provides a chemical basis for strengthening primary and secondary particles by stabilizing the oxygen anions in the lattice.« less

  15. Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy.

    PubMed

    Tyagi, Ritu; Rana, Poonam; Khan, Ahmad Raza; Bhatnagar, Deepak; Devi, M Memita; Chaturvedi, Shubhra; Tripathi, Rajendra P; Khushu, Subash

    2011-10-01

    Thallium (Tl) is a toxic heavy metal and its exposure to the human body causes physiological and biochemical changes due to its interference with potassium-dependent biological reactions. A high-resolution (1)H NMR spectroscopy based metabonomic approach has been applied for investigating acute biochemical effects caused by thallium sulfate (Tl(2)SO(4)). Male strain A mice were divided in three groups and received three doses of Tl(2)SO(4) (5, 10 and 20 mg kg(-1) b.w., i.p.). Urine samples collected at 3, 24, 72 and 96 h post-dose time points were analyzed by (1)H NMR spectroscopy. NMR spectral data were processed and analyzed using principal components analysis to represent biochemical variations induced by Tl(2)SO(4). Results showed Tl-exposed mice urine to have distinct metabonomic phenotypes and revealed dose- and time-dependent clustering of treated groups. The metabolic signature of urine analysis from Tl(2)SO(4)-treated animals exhibited an increase in the levels of creatinine, taurine, hippurate and β-hydroxybutyrate along with a decrease in energy metabolites trimethylamine and choline. These findings revealed Tl-induced disturbed gut flora, membrane metabolite, energy and protein metabolism, representing physiological dysfunction of vital organs. The present study indicates the great potential of NMR-based metabonomics in mapping metabolic response for toxicology, which could ultimately lead to identification of potential markers for Tl toxicity. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Clinical importance of achieving biochemical control with medical therapy in adult patients with acromegaly

    PubMed Central

    Christofides, Elena A

    2016-01-01

    In acromegaly, achieving biochemical control (growth hormone [GH] level <1.0 ng/mL and age- and sex-normalized levels of insulin-like growth factor 1 [IGF-1]) through timely diagnosis and appropriate treatment provides an opportunity to improve patient outcomes. Diagnosis of acromegaly is challenging because it is rooted in observing subtle clinical manifestations, and it is typical for acromegaly to evolve for up to 10 years before it is recognized. This results in chronic exposure to elevated levels of GH and IGF-1 and delay in patients receiving appropriate treatment, which consequently increases mortality risk. In this review, the clinical impact of elevated GH and IGF-1 levels, the effectiveness of current therapies, and the potential role of novel treatments for acromegaly will be discussed. Clinical burden of acromegaly and benefits associated with management of GH and IGF-1 levels will be reviewed. Major treatment paradigms in acromegaly include surgery, medical therapy, and radiotherapy. With medical therapies, such as somatostatin analogs, dopamine agonists, and GH receptor antagonists, a substantial proportion of patients achieve reduced GH and normalized IGF-1 levels. In addition, signs and symptoms, quality of life, and comorbidities have also been reported to improve to varying degrees in patients who achieve biochemical control. Currently, there are several innovative therapies in development to improve patient outcomes, patient use, and access. Timely biochemical control of acromegaly ensures that the patient can ultimately improve morbidity and mortality from this disease and its extensive consequences. PMID:27471378

  17. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Planavsky, Noah J.; Asael, Dan; Hofmann, Axel; Reinhard, Christopher T.; Lalonde, Stefan V.; Knudsen, Andrew; Wang, Xiangli; Ossa Ossa, Frantz; Pecoits, Ernesto; Smith, Albertus J. B.; Beukes, Nicolas J.; Bekker, Andrey; Johnson, Thomas M.; Konhauser, Kurt O.; Lyons, Timothy W.; Rouxel, Olivier J.

    2014-04-01

    The early Earth was characterized by the absence of oxygen in the ocean-atmosphere system, in contrast to the well-oxygenated conditions that prevail today. Atmospheric concentrations first rose to appreciable levels during the Great Oxidation Event, roughly 2.5-2.3 Gyr ago. The evolution of oxygenic photosynthesis is generally accepted to have been the ultimate cause of this rise, but it has proved difficult to constrain the timing of this evolutionary innovation. The oxidation of manganese in the water column requires substantial free oxygen concentrations, and thus any indication that Mn oxides were present in ancient environments would imply that oxygenic photosynthesis was ongoing. Mn oxides are not commonly preserved in ancient rocks, but there is a large fractionation of molybdenum isotopes associated with the sorption of Mo onto the Mn oxides that would be retained. Here we report Mo isotopes from rocks of the Sinqeni Formation, Pongola Supergroup, South Africa. These rocks formed no less than 2.95 Gyr ago in a nearshore setting. The Mo isotopic signature is consistent with interaction with Mn oxides. We therefore infer that oxygen produced through oxygenic photosynthesis began to accumulate in shallow marine settings at least half a billion years before the accumulation of significant levels of atmospheric oxygen.

  18. Acute oxygen therapy: a review of prescribing and delivery practices

    PubMed Central

    Cousins, Joyce L; Wark, Peter AB; McDonald, Vanessa M

    2016-01-01

    Oxygen is a commonly used drug in the clinical setting and like other drugs its use must be considered carefully. This is particularly true for those patients who are at risk of type II respiratory failure in whom the risk of hypercapnia is well established. In recent times, several international bodies have advocated for the prescription of oxygen therapy in an attempt to reduce this risk in vulnerable patient groups. Despite this guidance, published data have demonstrated that there has been poor uptake of these recommendations. Multiple interventions have been tested to improve concordance, and while some of these interventions show promise, the sustainability of these interventions are less convincing. In this review, we summarize data that have been published on the prevalence of oxygen prescription and the accurate and appropriate administration of this drug therapy. We also identify strategies that have shown promise in facilitating changes to oxygen prescription and delivery practice. There is a clear need to investigate the barriers, facilitators, and attitudes of clinicians in relation to the prescription of oxygen therapy in acute care. Interventions based on these findings then need to be designed and tested to facilitate the application of evidence-based guidelines to support sustained changes in practice, and ultimately improve patient care. PMID:27307722

  19. Atomic Oxygen Lamp Cleaning Facility Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Stueber, Thomas J.

    1999-01-01

    NASA Lewis Research Center's Atomic Oxygen Lamp Cleaning Facility was designed to produce an atomic oxygen plasma within a metal halide lamp to remove carbon-based contamination. It is believed that these contaminants contribute to the high failure rate realized during the production of these lamps. The facility is designed to evacuate a metal halide lamp and produce a radio frequency generated atomic oxygen plasma within it. Oxygen gas, with a purity of 0.9999 percent and in the pressure range of 150 to 250 mtorr, is used in the lamp for plasma generation while the lamp is being cleaned. After cleaning is complete, the lamp can be backfilled with 0.9999-percent pure nitrogen and torch sealed. The facility comprises various vacuum components connected to a radiation-shielded box that encloses the bulb during operation. Radiofrequency power is applied to the two parallel plates of a capacitor, which are on either side of the lamp. The vacuum pump used, a Leybold Trivac Type D4B, has a pumping speed of 4-m3/hr, has an ultimate pressure of <8x10-4, and is specially adapted for pure oxygen service. The electronic power supply, matching network, and controller (500-W, 13.56-MHz) used to supply the radiofrequency power were purchased from RF Power Products Inc. Initial test results revealed that this facility could remove the carbon-based contamination from within bulbs.

  20. Temperature, oxygen, and vegetation controls on decomposition in a James Bay peatland

    NASA Astrophysics Data System (ADS)

    Philben, Michael; Holmquist, James; MacDonald, Glen; Duan, Dandan; Kaiser, Karl; Benner, Ronald

    2015-06-01

    The biochemical composition of a peat core from James Bay Lowland, Canada, was used to assess the extent of peat decomposition and diagenetic alteration. Our goal was to identify environmental controls on peat decomposition, particularly its sensitivity to naturally occurring changes in temperature, oxygen exposure time, and vegetation. All three varied substantially during the last 7000 years, providing a natural experiment for evaluating their effects on decomposition. The bottom 50 cm of the core formed during the Holocene Climatic Optimum (~7000-4000 years B.P.), when mean annual air temperature was likely 1-2°C warmer than present. A reconstruction of the water table level using testate amoebae indicated oxygen exposure time was highest in the subsequent upper portion of the core between 150 and 225 cm depth (from ~2560 to 4210 years B.P.) and the plant community shifted from mostly Sphagnum to vascular plant dominance. Several independent biochemical indices indicated that decomposition was greatest in this interval. Hydrolysable amino acid yields, hydroxyproline yields, and acid:aldehyde ratios of syringyl lignin phenols were higher, while hydrolysable neutral sugar yields and carbon:nitrogen ratios were lower in this zone of both vascular plant vegetation and elevated oxygen exposure time. Thus, peat formed during the Holocene Climatic Optimum did not appear to be more extensively decomposed than peat formed during subsequent cooler periods. Comparison with a core from the West Siberian Lowland, Russia, indicates that oxygen exposure time and vegetation are both important controls on decomposition, while temperature appears to be of secondary importance. The low apparent sensitivity of decomposition to temperature is consistent with recent observations of a positive correlation between peat accumulation rates and mean annual temperature, suggesting that contemporary warming could enhance peatland carbon sequestration, although this could be offset by an

  1. Silicon wafer-based tandem cells: The ultimate photovoltaic solution?

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2014-03-01

    Recent large price reductions with wafer-based cells have increased the difficulty of dislodging silicon solar cell technology from its dominant market position. With market leaders expected to be manufacturing modules above 16% efficiency at 0.36/Watt by 2017, even the cost per unit area (60-70/m2) will be difficult for any thin-film photovoltaic technology to significantly undercut. This may make dislodgement likely only by appreciably higher energy conversion efficiency approaches. A silicon wafer-based cell able to capitalize on on-going cost reductions within the mainstream industry, but with an appreciably higher than present efficiency, might therefore provide the ultimate PV solution. With average selling prices of 156 mm quasi-square monocrystalline Si photovoltaic wafers recently approaching 1 (per wafer), wafers now provide clean, low cost templates for overgrowth of thin, wider bandgap high performance cells, nearly doubling silicon's ultimate efficiency potential. The range of possible Si-based tandem approaches is reviewed together with recent results and ultimate prospects.

  2. Effect of hemodialysis on factors influencing oxygen transport.

    PubMed

    Hirszel, P; Maher, J F; Tempel, G E; Mengel, C E

    1975-06-01

    Ten patients underwent 4 study hemodialyses, one with standard dialysis conditions, one with an isophosphate dialysate, one with simultaneous ammonium chloride loading, and other, after pretreatment, with sodium bicarbonate. Measurement of hemoglobin oxygen affinity (P-50), erythrocyte 2,3-DPG, blood-gasses, and serum chemistries revealed biochemically effective hemodialyses and slight changes in oxygen transport parameters. The P-50 (in vivo) values decreased slightly but significantly (p greater than 0.05) with dialysis. When corrected to pH 7.4, eliminating the Bohr effect, P-50 increased (p greater than 0.05). With unmodified dialysis elevated values of 2,3-DPG (in comparison to normal) decreased, a change that did not correlate with delta-p-50, delta-serum phosphate, or delta-serum creatinine. With standard and isophosphate dialyses Po-2 decreased significantly. The decrease correlated with delta-hydrogen ion concentration and did not occur with dialyses designed to maintain pH constant. Thus, hemodialysis influences many factors that affect oxygen transport in different and counterbalancing directions. These changes are not totally explained by alterations in 2,3-DPG, pH or serum phosphate. Maintenance of acidosis or hyperphosphatemia during dialysis is not recommended.

  3. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; hide

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  4. Controllable positive exchange bias via redox-driven oxygen migration

    DOE PAGES

    Gilbert, Dustin A.; Olamit, Justin; Dumas, Randy K.; ...

    2016-03-21

    We report that ionic transport in metal/oxide heterostructures offers a highly effective means to tailor material properties via modification of the interfacial characteristics. However, direct observation of ionic motion under buried interfaces and demonstration of its correlation with physical properties has been challenging. Using the strong oxygen affinity of gadolinium, we design a model system of Gd xFe 1-x/NiCoO bilayer films, where the oxygen migration is observed and manifested in a controlled positive exchange bias over a relatively small cooling field range. The exchange bias characteristics are shown to be the result of an interfacial layer of elemental nickel andmore » cobalt, a few nanometres in thickness, whose moments are larger than expected from uncompensated NiCoO moments. This interface layer is attributed to a redox-driven oxygen migration from NiCoO to the gadolinium, during growth or soon after. Ultimately, these results demonstrate an effective path to tailoring the interfacial characteristics and interlayer exchange coupling in metal/oxide heterostructures.« less

  5. Joseph Priestley, oxygen, and the enlightenment.

    PubMed

    West, John B

    2014-01-01

    Joseph Priestley (1733–1804) was the first person to report the discovery of oxygen and describe some of its extraordinary properties. As such he merits a special place in the history of respiratory physiology. In addition his descriptions in elegant 18th-century English were particularly arresting, and rereading them never fails to give a special pleasure. The gas was actually first prepared by Scheele (1742–1786) but his report was delayed. Lavoisier (1743–1794) repeated Priestley's initial experiment and went on to describe the true nature of oxygen that had eluded Priestley, who never abandoned the erroneous phlogiston theory. In addition to oxygen, Priestley isolated and characterized seven other gases. However, most of his writings were in theology because he was a conscientious clergyman all his life. Priestley was a product of the Enlightenment and argued that all beliefs should be able to stand the scientific scrutiny of experimental investigations. As a result his extreme liberal views were severely criticized by the established Church of England. In addition he was a supporter of both the French and American Revolutions. Ultimately his political and religious attitudes provoked a riot during which his home and his scientific equipment were destroyed. He therefore emigrated to America in 1794 where his friends included Thomas Jefferson and Benjamin Franklin. He settled in Northumberland, Pennsylvania although his scientific work never recovered from his forced departure. But the descriptions of his experiments with oxygen will always remain a high point in the history of respiratory physiology.

  6. Production of dihydrodaidzein and dihydrogenistein by a novel oxygen-tolerant bovine rumen bacterium in the presence of atmospheric oxygen.

    PubMed

    Zhao, Hui; Wang, Xiu-Ling; Zhang, Hong-Lei; Li, Chao-Dong; Wang, Shi-Ying

    2011-11-01

    The original bovine rumen bacterial strain Niu-O16, capable of anaerobically bioconverting isoflavones daidzein and genistein to dihydrodaidzein (DHD) and dihydrogenistein (DHG), respectively, is a rod-shaped obligate anaerobic bacterium. After a long-term domestication, an oxygen-tolerant bacterium, which we named Aeroto-Niu-O16 was obtained. Strain Aeroto-Niu-O16, which can grow in the presence of atmospheric oxygen, differed from the original obligate anaerobic bacterium Niu-O16 by various characteristics, including a change in bacterial shape (from rod to filament), in biochemical traits (from indole negative to indole positive and from amylohydrolysis positive to negative), and point mutations in 16S rRNA gene (G398A and G438A). We found that strain Aeroto-Niu-O16 not only grew aerobically but also converted isoflavones daidzein and genistein to DHD and DHG in the presence of atmospheric oxygen. The bioconversion rate of daidzein and genistein by strain Aeroto-Niu-O16 was 60.3% and 74.1%, respectively. And the maximum bioconversion capacity for daidzein was 1.2 and 1.6 mM for genistein. Furthermore, when we added ascorbic acid (0.15%, m/v) in the cultural medium, the bioconversion rate of daidzein was increased from 60.3% to 71.7%, and that of genistein from 74.1% to 89.2%. This is the first reported oxygen-tolerant isoflavone biotransforming pure culture capable of both growing and executing the reductive activity under aerobic conditions. © Springer-Verlag 2011

  7. Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein

    PubMed Central

    2011-01-01

    Background Reactive oxygen species (ROS) are unavoidable by-products of oxygenic photosynthesis, causing progressive oxidative damage and ultimately cell death. Despite their destructive activity they are also signalling molecules, priming the acclimatory response to stress stimuli. Results To investigate this role further, we exposed wild type Arabidopsis thaliana plants and the double mutant npq1lut2 to excess light. The mutant does not produce the xanthophylls lutein and zeaxanthin, whose key roles include ROS scavenging and prevention of ROS synthesis. Biochemical analysis revealed that singlet oxygen (1O2) accumulated to higher levels in the mutant while other ROS were unaffected, allowing to define the transcriptomic signature of the acclimatory response mediated by 1O2 which is enhanced by the lack of these xanthophylls species. The group of genes differentially regulated in npq1lut2 is enriched in sequences encoding chloroplast proteins involved in cell protection against the damaging effect of ROS. Among the early fine-tuned components, are proteins involved in tetrapyrrole biosynthesis, chlorophyll catabolism, protein import, folding and turnover, synthesis and membrane insertion of photosynthetic subunits. Up to now, the flu mutant was the only biological system adopted to define the regulation of gene expression by 1O2. In this work, we propose the use of mutants accumulating 1O2 by mechanisms different from those activated in flu to better identify ROS signalling. Conclusions We propose that the lack of zeaxanthin and lutein leads to 1O2 accumulation and this represents a signalling pathway in the early stages of stress acclimation, beside the response to ADP/ATP ratio and to the redox state of both plastoquinone pool. Chloroplasts respond to 1O2 accumulation by undergoing a significant change in composition and function towards a fast acclimatory response. The physiological implications of this signalling specificity are discussed. PMID:21481232

  8. [Biochemical characteristics of compensation of posthemorrhagic anemia in patients presenting with nasal bleeding].

    PubMed

    Boĭko, N V; Kolmakova, T S; Bykova, V V

    2010-01-01

    This work was designed to study the development of compensatory processes during posthemorrhagic anemia in 82 patients presenting with nasal bleeding (NB). The patients were allocated to three groups. Group 1 included patients with isolated episodes of NB, group 2 was comprised of patients in a moderately severe condition with recurring NB, group 3 was composed of patients in a severe condition with recurring NB. The general medical examination was supplemented by the evaluation of factors maintaining the oxygen-transporting function of the blood (hemoglobin affinity for oxygen, erythrocyte content of 2.3-diphosphoglyceric (2.3-DPG) acid as the principal modulator of hemoglobin affinity for oxygen) and indicators of energy (carbohydrate) metabolism in plasma and erythrocytes (glucose-6-phosphate dehydrogenase (G-6-PDH) activity, pyruvic acid (PA), lactate and lactate dehydrogenase (LDH) levels). Changes of biochemical parameters in patients presenting with incidental episodes of NB (group 1) suggested a compensatory increase in functional potential of the blood oxygen-transporting system. Patients of group 2 showed evidence of development of the modulation-type adaptive and compensatory mechanisms. Those of group 3 experienced a decrease of the 2.3-DPH level in erythrocytes and enhancement of hemoglobin affinity for oxygen which slowed down its uptake by the tissues. Tissue hypoxia and accompanying acidosis aggravated the impairment of gas-transporting function of the blood. In is concluded that patients of group 3 are at risk of uncompensated hypoxic hypoxia associated with the unfavourable changes in the oxygen-transporting function and the impairment of the functional potential of erythrocytes. Taken together, these untoward factors may be responsible for the severe clinical conditions of these patients.

  9. 26 CFR 48.6427-8 - Diesel fuel and kerosene; claims by ultimate purchasers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; claims by ultimate... kerosene; claims by ultimate purchasers. (a) Overview. This section provides rules under which ultimate purchasers of taxed diesel fuel and kerosene may claim the income tax credits or payments allowed by section...

  10. 26 CFR 48.6427-8 - Diesel fuel and kerosene; claims by ultimate purchasers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Diesel fuel and kerosene; claims by ultimate... kerosene; claims by ultimate purchasers. (a) Overview. This section provides rules under which ultimate purchasers of taxed diesel fuel and kerosene may claim the income tax credits or payments allowed by section...

  11. 26 CFR 48.6427-8 - Diesel fuel and kerosene; claims by ultimate purchasers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Diesel fuel and kerosene; claims by ultimate... kerosene; claims by ultimate purchasers. (a) Overview. This section provides rules under which ultimate purchasers of taxed diesel fuel and kerosene may claim the income tax credits or payments allowed by section...

  12. 26 CFR 48.6427-8 - Diesel fuel and kerosene; claims by ultimate purchasers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Diesel fuel and kerosene; claims by ultimate... kerosene; claims by ultimate purchasers. (a) Overview. This section provides rules under which ultimate purchasers of taxed diesel fuel and kerosene may claim the income tax credits or payments allowed by section...

  13. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    USGS Publications Warehouse

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  14. Ultimate Longitudinal Strength of Composite Ship Hulls

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangming; Huang, Lingkai; Zhu, Libao; Tang, Yuhang; Wang, Anwen

    2017-01-01

    A simple analytical model to estimate the longitudinal strength of ship hulls in composite materials under buckling, material failure and ultimate collapse is presented in this paper. Ship hulls are regarded as assemblies of stiffened panels which idealized as group of plate-stiffener combinations. Ultimate strain of the plate-stiffener combination is predicted under buckling or material failure with composite beam-column theory. The effects of initial imperfection of ship hull and eccentricity of load are included. Corresponding longitudinal strengths of ship hull are derived in a straightforward method. A longitudinally framed ship hull made of symmetrically stacked unidirectional plies under sagging is analyzed. The results indicate that present analytical results have a good agreement with FEM method. The initial deflection of ship hull and eccentricity of load can dramatically reduce the bending capacity of ship hull. The proposed formulations provide a simple but useful tool for the longitudinal strength estimation in practical design.

  15. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age.

    PubMed

    Johnston, D T; Wolfe-Simon, F; Pearson, A; Knoll, A H

    2009-10-06

    Molecular oxygen (O(2)) began to accumulate in the atmosphere and surface ocean ca. 2,400 million years ago (Ma), but the persistent oxygenation of water masses throughout the oceans developed much later, perhaps beginning as recently as 580-550 Ma. For much of the intervening interval, moderately oxic surface waters lay above an oxygen minimum zone (OMZ) that tended toward euxinia (anoxic and sulfidic). Here we illustrate how contributions to primary production by anoxygenic photoautotrophs (including physiologically versatile cyanobacteria) influenced biogeochemical cycling during Earth's middle age, helping to perpetuate our planet's intermediate redox state by tempering O(2) production. Specifically, the ability to generate organic matter (OM) using sulfide as an electron donor enabled a positive biogeochemical feedback that sustained euxinia in the OMZ. On a geologic time scale, pyrite precipitation and burial governed a second feedback that moderated sulfide availability and water column oxygenation. Thus, we argue that the proportional contribution of anoxygenic photosynthesis to overall primary production would have influenced oceanic redox and the Proterozoic O(2) budget. Later Neoproterozoic collapse of widespread euxinia and a concomitant return to ferruginous (anoxic and Fe(2+) rich) subsurface waters set in motion Earth's transition from its prokaryote-dominated middle age, removing a physiological barrier to eukaryotic diversification (sulfide) and establishing, for the first time in Earth's history, complete dominance of oxygenic photosynthesis in the oceans. This paved the way for the further oxygenation of the oceans and atmosphere and, ultimately, the evolution of complex multicellular organisms.

  16. Nanoparticles as biochemical sensors

    PubMed Central

    El-Ansary, Afaf; Faddah, Layla M

    2010-01-01

    There is little doubt that nanoparticles offer real and new opportunities in many fields, such as biomedicine and materials science. Such particles are small enough to enter almost all areas of the body, including cells and organelles, potentially leading to new approaches in nanomedicine. Sensors for small molecules of biochemical interest are of critical importance. This review is an attempt to trace the use of nanomaterials in biochemical sensor design. The possibility of using nanoparticles functionalized with antibodies as markers for proteins will be elucidated. Moreover, capabilities and applications for nanoparticles based on gold, silver, magnetic, and semiconductor materials (quantum dots), used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors will be highlighted. The unique ability of nanosensors to improve the analysis of biochemical fluids is discussed either through considering the use of nanoparticles for in vitro molecular diagnosis, or in the biological/biochemical analysis for in vivo interaction with the human body. PMID:24198472

  17. Misleading biochemical laboratory test results

    PubMed Central

    Nanji, Amin A.

    1984-01-01

    This article reviews the general and specific factors that interfere with the performance of common biochemical laboratory tests and the interpretation of their results. The clinical status of the patient, drug interactions, and in-vivo and in-vitro biochemical interactions and changes may alter the results obtained from biochemical analysis of blood constituents. Failure to recognize invalid laboratory test results may lead to injudicious and dangerous management of patients. PMID:6375845

  18. Combined wind turbine fatigue and ultimate load reduction by individual blade control

    NASA Astrophysics Data System (ADS)

    Han, Y.; Leithead, W. E.

    2014-06-01

    If each blade of the wind turbine has individual pitch actuator, there is possibility of employing the pitch system to mitigate structural loads through advanced control methods. Previously, considerable reduction of blade lifetime equivalent fatigue loads has been achieved by Individual Blade Control (IBC) and in addition, it has also been shown the potential in blade ultimate loads reduction. However, both fatigue and ultimate loads impact on the design and life of wind turbine blades. In this paper, the design and application of IBC that concurrently reduce both blade fatigue and ultimate loads is investigated. The contributions of blade load spectral components, which are 1P, 2P and edgewise mode from blade in-plane and/or out-of-plane bending moments, are firstly explored. Four different control options for reducing various combinations of these load components are compared. In response to the different spectral peaks of both fatigue and ultimate loads, the controller has been designed so that it can act on different frequency components which vary with wind speed. The performance of the IBC controller on fatigue and ultimate load reduction is assessed by simulating a 5MW exemplar wind turbine. Simulation results show that with a proper selection of controlling inputs at different wind speed, the use of a single combined IBC can achieve satisfactory reduction on both fatigue and ultimate loads.

  19. Excess glycogen does not resolve high ultimate pH of oxidative muscle.

    PubMed

    England, Eric M; Matarneh, Sulaiman K; Oliver, Emily M; Apaoblaza, Ariel; Scheffler, Tracy L; Shi, Hao; Gerrard, David E

    2016-04-01

    Skeletal muscle glycogen content can impact the extent of postmortem pH decline. Compared to glycolytic muscles, oxidative muscles contain lower glycogen levels antemortem which may contribute to the higher ultimate pH. In an effort to explore further the participation of glycogen in postmortem metabolism, we postulated that increasing the availability of glycogen would drive additional pH decline in oxidative muscles to equivalent pH values similar to the ultimate pH of glycolytic muscles. Glycolysis and pH declines were compared in porcine longissimus lumborum (glycolytic) and masseter (oxidative) muscles using an in vitro system in the presence of excess glycogen. The ultimate pH of the system containing longissimus lumborum reached a value similar to that observed in intact muscle. The pH decline of the system containing masseter samples stopped prematurely resulting in a higher ultimate pH which was similar to that of intact masseter muscle. To investigate further, we titrated powdered longissimus lumborum and masseter samples in the reaction buffer. As the percentage of glycolytic sample increased, the ultimate pH decreased. These data show that oxidative muscle produces meat with a high ultimate pH regardless of glycogen content and suggest that inherent muscle factors associated with glycolytic muscle control the extent of pH decline in pig muscles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Biochemical transformation of coals

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  1. [The effects of oxygen partial pressure changes on the osteometric markers of the bone tissue in rats].

    PubMed

    Berezovs'kyĭ, V Ia; Zamors'ka, T M; Ianko, R V

    2013-01-01

    Our purpose was to investigate the oxygen partial pressure changes on the osteometric and biochemical markers of bone tissue in rats. It was shown that breathing of altered gas mixture did not change the mass, general length, sagittal diameter and density thigh-bones in 12-month Wistar male-rats. The dosed normobaric hypoxia increased the activity of alkaline phosphatase and decreased the activity of tartrate-resistant acid phosphatase. At the same time normobaric hyperoxia with 40 and 90% oxygen conversely decreased the activity of alkaline phosphatase and increased the activity of tartrate-resistant acid phosphatase.

  2. Biochemical transformation of coals

    DOEpatents

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  3. 75 FR 60133 - Agency Information Collection Activities: Declaration of Ultimate Consignee That Articles Were...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Activities: Declaration of Ultimate Consignee That Articles Were Exported for Temporary Scientific or... the Declaration of Ultimate Consignee That Articles Were Exported for Temporary Scientific or...: Title: Declaration of Ultimate Consignee That Articles Were Exported for Temporary Scientific or...

  4. Ultimate Strength of Ferro-Geopolymer Composite Built-Up I Joist

    NASA Astrophysics Data System (ADS)

    Vipin, K. T.; Ganesan, N.; Indira, P. V.

    2017-07-01

    An experimental study was carried out to study the behaviour of ferro-geopolymer built-up I- joist with different types of mesh reinforcements under flexure. Mesh reinforcements considered in this study are square welded meshes, square woven meshes and hexagonal meshes. First crack load as well as ultimate strength of ferro-geopolymer built-up I-joist in flexure was obtained. An attempt was made to predict the first crack load and ultimate moment capacity of the specimen.

  5. Ultimate Limit State Assessment of Timber Bolt Connection Subjected to Double Unequal Shears

    NASA Astrophysics Data System (ADS)

    Musilek, Josef; Plachy, Jan

    2017-10-01

    Nowadays the problems occur when a structure engineer need to assess the ultimate limit state of timber bolt connection which is subjected to double unequal shears. This assessment of ultimate limit state shows the reliability of these connections. In assessing the reliability of this connection in ultimate limit state is a problem, because the formulas and equations that are currently available in design standards and available literature, describing only connections loaded symmetrically - this mean that they describe the timber bolt connection subjected to double equal shears. This fact causes problems because structural engineers have no available support, according to which they could assess reliability of the connection in terms of the ultimate limit state. They must therefore often report following an asymmetrically loaded connections carry about using formulas, which are primarily designed for checking connections loaded symmetrically. This leads logically to the fact that it is not respected by the actual behaviour of the connection in the ultimate limit state. Formulas derived in this paper provide the possibility to assess the ultimate limit state for such connection. The formulas derived in this article allow to carry out a reliability assessment of the ultimate limit state of timber bolt connection subjected to double shear. The using of the formulas derived in this paper leads to better description of the behaviour of this type of connection and also to the more economic design. An example of using these derived formulas is shown. There is shown in this example, how to assess the reliability of timber bolt connection subjected to double unequal shears in terms of ultimate limit states.

  6. Comparative TEA for Indirect Liquefaction Pathways to Distillate-Range Fuels via Oxygenated Intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric; Snowden-Swan, Lesley J.; Talmadge, Michael

    This paper presents a comparative techno-economic analysis of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates (derived either via thermochemical or biochemical conversion steps). The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass-to-syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates, followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. We show that the emerging pathways via oxygenated intermediatesmore » have the potential to be cost competitive with the conventional Fischer-Tropsch process. The evaluated pathways and the benchmark process generally exhibit similar fuel yields and carbon conversion efficiencies. The resulting minimum fuel selling prices are comparable to the benchmark at approximately $3.60 per gallon-gasoline equivalent, with potential for two new pathways to be more economically competitive. Additionally, the coproduct values can play an important role in the economics of the processes with oxygenated intermediates derived via syngas fermentation. Major cost drivers for the integrated processes are tied to achievable fuel yields and conversion efficiency of the intermediate steps, i.e., the production of oxygenates/alcohols from syngas and the conversion of oxygenates/alcohols to hydrocarbon fuels.« less

  7. Biochemical-Pathway Diversity in Archaebacteria

    DTIC Science & Technology

    1990-08-30

    Classification) (U) Biochemical-pathway diversity in Archaebacteria 12 PERSONAL AUTHOR(S) I Jensen, Roy-A. i3o. TYPE OF REN" RT 12b. Tki~ 0’E D-30-9 4...by block numtb.sj FIEL I ROU I SIGRLJP Archaebacteria , biochemical diversity, prephenate 06 03. 1 dehydratase, aromatic amino acid biosynthesis t...1988 RE10SE: lo assess the extent to which the archaebacteria possess unique biochemical features of aromatic amino acid biosynthesis and regulation and

  8. 78 FR 69101 - Agency Information Collection Activities: Declaration of the Ultimate Consignee That Articles...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... Activities: Declaration of the Ultimate Consignee That Articles Were Exported for Temporary Scientific or... the Declaration of the Ultimate Consignee that Articles were Exported for Temporary Scientific or...: Title: Declaration of the Ultimate Consignee that Articles were Exported for Temporary Scientific or...

  9. Effect of Deep Drying and Torrefaction Temperature on Proximate, Ultimate Composition, and Heating Value of 2-mm Lodgepole Pine (Pinus contorta) Grind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya

    Deep drying and torrefaction is a thermal pretreatment method, where biomass is heated in the temperature range of 150–300°C in an inert or reduced environment. The process parameters like temperature and residence time has a significant impact on proximate, ultimate, and energy properties of the biomass. In the present study, torrrefaction experiments were conducted on 2 mm lodgepole pine grind using a thermogravimetric analyzer. Both deep drying and torrefaction temperature (160–270°C) and time (15–120 min) were selected. Torrefied samples were analyzed for proximate, ultimate and energy properties. Results indicated that moisture content decreased with increases in torrefaction temperature and time,more » where at 270°C and 120 min, the moisture content was found to be 1.15% (w.b.). Volatile content in the biomass decreased from about 80% to about 45%, and ash content increased from 0.77 to about 1.91% at 270°C and 120 min. The hydrogen, oxygen and sulfur content decreased to 3%, 28.24%, and 0.01 whereas carbon content and higher heating value increased to 68.86% and 23.67 MJ/kg at 270°C and 120 min. H/C and O/C ratio calculated at 270°C and 120 min residence time were about 0.56 and 0.47. This study indicated that higher torrefaction temperatures >230°C and residence time >15 min influenced the proximate, ultimate, and energy properties.« less

  10. Biochemical abnormalities in neonatal seizures.

    PubMed

    Sood, Arvind; Grover, Neelam; Sharma, Roshan

    2003-03-01

    The presence of seizure does not constitute a diagnoses but it is a symptom of an underlying central nervous system disorder due to systemic or biochemical disturbances. Biochemical disturbances occur frequently in the neonatal seizures either as an underlying cause or as an associated abnormality. In their presence, it is difficult to control seizure and there is a risk of further brain damage. Early recognition and treatment of biochemical disturbances is essential for optimal management and satisfactory long term outcome. The present study was conducted in the department of pediatrics in IGMC Shimla on 59 neonates. Biochemical abnormalities were detected in 29 (49.15%) of cases. Primary metabolic abnormalities occurred in 10(16.94%) cases of neonatal seizures, most common being hypocalcaemia followed by hypoglycemia, other metabolic abnormalities include hypomagnesaemia and hyponateremia. Biochemical abnormalities were seen in 19(38.77%) cases of non metabolic seizure in neonates. Associated metabolic abnormalities were observed more often with Hypoxic-ischemic-encephalopathy (11 out of 19) cases and hypoglycemia was most common in this group. No infant had hyponateremia, hyperkelemia or low zinc level.

  11. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  12. ULTIMATE: a deployable multiple integral field unit for Subaru

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Zhelem, Ross; Brown, David; Staszak, Nicholas F.; Lidman, Chris; Nataf, David M.; Casey, Andrew R.; Xavier, Pascal; Sheinis, Andrew; Gillingham, Peter; Tims, Julia; Lawrence, Jon; Bryant, Julia; Sharp, Rob

    2016-08-01

    ULTIMATE is an instrument concept under development at the AAO, for the Subaru Telescope, which will have the unique combination of ground layer adaptive optics feeding multiple deployable integral field units. This will allow ULTIMATE to probe unexplored parameter space, enabling science cases such as the evolution of galaxies at z 0:5 to 1.5, and the dark matter content of the inner part of our Galaxy. ULTIMATE will use Starbugs to position between 7 and 13 IFUs over a 14 × 8 arcmin field-of-view, pro- vided by a new wide-field corrector. All Starbugs can be positioned simultaneously, to an accuracy of better than 5 milli-arcsec within the typical slew-time of the telescope, allowing for very efficient re-configuration between observations. The IFUs will feed either the near-infrared nuMOIRCS or the visible/ near-infrared PFS spectrographs, or both. Future possible upgrades include the possibility of purpose built spectrographs and incorporating OH suppression using fibre Bragg gratings. We describe the science case and resulting design requirements, the baseline instrument concept, and the expected performance of the instrument.

  13. Electrons, life and the evolution of Earth's oxygen cycle.

    PubMed

    Falkowski, Paul G; Godfrey, Linda V

    2008-08-27

    The biogeochemical cycles of H, C, N, O and S are coupled via biologically catalysed electron transfer (redox) reactions. The metabolic processes responsible for maintaining these cycles evolved over the first ca 2.3 Ga of Earth's history in prokaryotes and, through a sequence of events, led to the production of oxygen via the photobiologically catalysed oxidation of water. However, geochemical evidence suggests that there was a delay of several hundred million years before oxygen accumulated in Earth's atmosphere related to changes in the burial efficiency of organic matter and fundamental alterations in the nitrogen cycle. In the latter case, the presence of free molecular oxygen allowed ammonium to be oxidized to nitrate and subsequently denitrified. The interaction between the oxygen and nitrogen cycles in particular led to a negative feedback, in which increased production of oxygen led to decreased fixed inorganic nitrogen in the oceans. This feedback, which is supported by isotopic analyses of fixed nitrogen in sedimentary rocks from the Late Archaean, continues to the present. However, once sufficient oxygen accumulated in Earth's atmosphere to allow nitrification to out-compete denitrification, a new stable electron 'market' emerged in which oxygenic photosynthesis and aerobic respiration ultimately spread via endosymbiotic events and massive lateral gene transfer to eukaryotic host cells, allowing the evolution of complex (i.e. animal) life forms. The resulting network of electron transfers led a gas composition of Earth's atmosphere that is far from thermodynamic equilibrium (i.e. it is an emergent property), yet is relatively stable on geological time scales. The early coevolution of the C, N and O cycles, and the resulting non-equilibrium gaseous by-products can be used as a guide to search for the presence of life on terrestrial planets outside of our Solar System.

  14. Estimates of Nitrogen, Phosphorus, Biochemical Oxygen Demand, and Fecal Coliforms Entering the Environment Due to Inadequate Sanitation Treatment Technologies in 108 Low and Middle Income Countries.

    PubMed

    Fuhrmeister, Erica R; Schwab, Kellogg J; Julian, Timothy R

    2015-10-06

    Understanding the excretion and treatment of human waste (feces and urine) in low and middle income countries (LMICs) is necessary to design appropriate waste management strategies. However, excretion and treatment are often difficult to quantify due to decentralization of excreta management. We address this gap by developing a mechanistic, stochastic model to characterize phosphorus, nitrogen, biochemical oxygen demand (BOD), and fecal coliform pollution from human excreta for 108 LMICs. The model estimates excretion and treatment given three scenarios: (1) use of existing sanitation systems, (2) use of World Health Organization-defined "improved sanitation", and (3) use of best available technologies. Our model estimates that more than 10(9) kg/yr each of phosphorus, nitrogen and BOD are produced. Of this, 22(19-27)%, 11(7-15)%, 17(10-23)%, and 35 (23-47)% (mean and 95% range) BOD, nitrogen, phosphorus, and fecal coliforms, respectively, are removed by existing sanitation systems. Our model estimates that upgrading to "improved sanitation" increases mean removal slightly to between 17 and 53%. Under the best available technology scenario, only approximately 60-80% of pollutants are treated. To reduce impact of nutrient and microbial pollution on human and environmental health, improvements in both access to adequate sanitation and sanitation treatment efficiency are needed.

  15. High Precision Continuous and Real-Time Measurement of Atmospheric Oxygen Using Cavity Ring-Down Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Kim-Hak, D.; Hoffnagle, J.; Rella, C.; Sun, M.

    2016-12-01

    Oxygen is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis. Although atmospheric oxygen is not a greenhouse gas, it can be used as a top-down constraint on the carbon cycle. The variation observations of oxygen in the atmosphere are very small, in the order of the few ppm's. This presents the main technical challenge for measurement as a very high level of precision is required and only few methods including mass spectrometry, fuel cell, and paramagnetic are capable of overcoming it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and oxygen isotope. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-20%. We will present supplemental data acquired from our 10m tower measurements in Santa Clara, CA.

  16. Online biochemical oxygen demand monitoring for wastewater process control--full-scale studies at Los Angeles Glendale wastewater plant, California.

    PubMed

    Iranpour, Reza; Zermeno, Miguel

    2008-04-01

    The main objective of this investigation is to determine whether or not it would be feasible to use the measured values of biochemical oxygen demand (BOD) of wastewater obtained by an online instrument at the Los Angeles/Glendale Water Reclamation Plant (California) for controlling its activated sludge process. This investigation is part of a project to develop online BOD monitoring for process control in the City of Los Angeles wastewater treatment plants. Tests studied the Siepmann und Teutscher GmbH (ISCO-STIP Inc., Lincoln, Nebraska) BIOX-1010, which uses a bioreactor containing a culture of microbes from the wastewater to measure soluble BOD in 2 minutes. This rapid approximation to the operation of secondary treatment allows anticipation of system response. Calibration measurements allow the operators to find a conversion factor for the instrument's microprocessor to compute values of BOD that agree well with the standard 5-day BOD (BOD5) measurement, despite the differences in the details of the two testing methods. This instrument has recently been used at other wastewater treatment plants, at a number of airports in Europe and the United States to monitor runway runoff, and is also being used on waste streams at an increasing number of food processing plants. A comparison was made between the plant influent BOD values obtained by the BIOX-1010 online monitor from the end of August, 2000, to late January, 2001, and the individual and average values obtained for the same period using the standard BOD5, 20 degrees C test, to determine the effectiveness of the Biox-1010 to identify shock loads and their duration. Individual BOD estimates and averages over periods of overly high biological loads (shock loads) were compared, and the instrument readings were evaluated for their effectiveness in detecting shock loads. The results were highly satisfactory, so the instrument was used to trigger a shock-load warning alarm since late September, 2000. This allowed flow

  17. Effect of azoxystrobin fungicide on the physiological and biochemical indices and ginsenoside contents of ginseng leaves.

    PubMed

    Liang, Shuang; Xu, Xuanwei; Lu, Zhongbin

    2018-04-01

    The impact of fungicide azoxystrobin, applied as foliar spray, on the physiological and biochemical indices and ginsenoside contents of ginseng was studied in ginseng ( Panax ginseng Mey. cv. "Ermaya") under natural environmental conditions. Different concentrations of 25% azoxystrobin SC (150 g a.i./ha and 225 g a.i./ha) on ginseng plants were sprayed three times, and the changes in physiological and biochemical indices and ginsenoside contents of ginseng leaves were tested. Physiological and biochemical indices were measured using a spectrophotometer (Shimadzu UV-2450). Every index was determined three times per replication. Extracts of ginsenosides were analyzed by HPLC (Shimadzu LC20-AB) utilizing a GL-Wondasil C 18 column. Chlorophyll and soluble protein contents were significantly ( p  = 0.05) increased compared with the control by the application of azoxystrobin. Additionally, activities of superoxide dismutase, catalase, ascorbate peroxidase, peroxidase, and ginsenoside contents in azoxystrobin-treated plants were improved, and malondialdehyde content and O 2 - contents were reduced effectively. Azoxystrobin treatments to ginseng plants at all growth stages suggested that the azoxystrobin-induced delay of senescence was due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species. When the dose of azoxystrobin was 225 g a.i./ha, the effect was more significant. This work suggested that azoxystrobin played a role in delaying senescence by changing physiological and biochemical indices and improving ginsenoside contents in ginseng leaves.

  18. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns.

    PubMed

    Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I

    2011-08-01

    Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to

  19. In Vivo Mitochondrial Oxygen Tension Measured by a Delayed Fluorescence Lifetime Technique

    PubMed Central

    Mik, Egbert G.; Johannes, Tanja; Zuurbier, Coert J.; Heinen, Andre; Houben-Weerts, Judith H. P. M.; Balestra, Gianmarco M.; Stap, Jan; Beek, Johan F.; Ince, Can

    2008-01-01

    Mitochondrial oxygen tension (mitoPO2) is a key parameter for cellular function, which is considered to be affected under various pathophysiological circumstances. Although many techniques for assessing in vivo oxygenation are available, no technique for measuring mitoPO2 in vivo exists. Here we report in vivo measurement of mitoPO2 and the recovery of mitoPO2 histograms in rat liver by a novel optical technique under normal and pathological circumstances. The technique is based on oxygen-dependent quenching of the delayed fluorescence lifetime of protoporphyrin IX. Application of 5-aminolevulinic acid enhanced mitochondrial protoporphyrin IX levels and induced oxygen-dependent delayed fluorescence in various tissues, without affecting mitochondrial respiration. Using fluorescence microscopy, we demonstrate in isolated hepatocytes that the signal is of mitochondrial origin. The delayed fluorescence lifetime was calibrated in isolated hepatocytes and isolated perfused livers. Ultimately, the technique was applied to measure mitoPO2 in rat liver in vivo. The results demonstrate mitoPO2 values of ∼30–40 mmHg. mitoPO2 was highly sensitive to small changes in inspired oxygen concentration around atmospheric oxygen level. Ischemia-reperfusion interventions showed altered mitoPO2 distribution, which flattened overall compared to baseline conditions. The reported technology is scalable from microscopic to macroscopic applications, and its reliance on an endogenous compound greatly enhances its potential field of applications. PMID:18641065

  20. Temporal and Spatial Variability of the Martian Hot Oxygen Corona

    NASA Astrophysics Data System (ADS)

    Deighan, J.; Jain, S.; Chaffin, M.; Chaufray, J. Y.; Schneider, N. M.; Clarke, J. T.; Mayyasi, M.; Lillis, R. J.; Eparvier, F. G.; Thiemann, E.; Chamberlin, P. C.

    2017-12-01

    The dominant loss mechanism of oxygen from Mars to space in the current epoch is thought to be photochemical escape of hot oxygen produced by dissociative recombination of O2+. This ion is ultimately sourced from CO2+, which is the primary product of photoionization. The escaping hot oxygen population is accompanied by a gravitationally bound hot oxygen corona produced by the same mechanism. The MAVEN spacecraft has been at Mars since November 2014, with multiple seasons suitable for the IUVS instrument to observe the dayside hot oxygen corona via fluorescence of the O I 130.4 nm triplet. This provides the opportunity to examine temporal variations associated with changes in the photoionizing solar EUV radiation which produces CO2+ and O2+ ions. We present results based on two seasons: LS = 270 in Mars Year 32 during the maximum of Solar Cycle 24 and LS = 210 in Mars Year 33 late in the declining phase of the same Solar Cycle. The data in both seasons contain multiple solar rotations. We compare the oxygen corona density to the EUV solar flux measured by MAVEN/EUVM and ionization frequencies calculated therefrom. The peak brightness of ionospheric CO2+ UVD emission from IUVS limb scans is also used as a direct indicator of the photoionization frequency. As expected, the result is a strong correlation between solar EUV input, observed ionization frequency, and the density of the hot oxygen corona. In addition, a new observation strategy was employed during the MY 33 season to view the Martian corona near the sub-solar point with anti-parallel lines of sight from opposing hemispheres. These observations reveal a significant hemispherical asymmetry in brightness, providing a constraint on the large scale spatial variability of the dayside oxygen corona.

  1. Atomic Oxygen Durability Evaluation of a UV Curable Ceramer Protective Coating

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Karniotis, Christina A.; Dworak, David; Soucek, Mark

    2004-01-01

    The exposure of most silicones to atomic oxygen in low Earth orbit (LEO) results in the oxidative loss of methyl groups with a gradual conversion to oxides of silicon. Typically there is surface shrinkage of oxidized silicone protective coatings which leads to cracking of the partially oxidized brittle surface. Such cracks widen and branch crack with continued atomic oxygen exposure ultimately allowing atomic oxygen to reach any hydrocarbon polymers under the silicone coating. A need exists for a paintable silicone coating that is free from such surface cracking and can be effectively used for protection of polymers and composites in LEO. A new type of silicone based protective coating holding such potential was evaluated for atomic oxygen durability in an RF atomic oxygen plasma exposure facility. The coating consisted of a UV curable inorganic/organic hybrid coating, known as a ceramer, which was fabricated using a methyl substituted polysiloxane binder and nanophase silicon-oxo-clusters derived from sol-gel precursors. The polysiloxane was functionalized with a cycloaliphatic epoxide in order to be cured at ambient temperature via a cationic UV induced curing mechanism. Alkoxy silane groups were also grafted onto the polysiloxane chain, through hydrosilation, in order to form a network with the incorporated silicon-oxo-clusters. The prepared polymer was characterized by H-1 and Si-29 NMR, FT-IR, and electrospray ionization mass spectroscopy. The paper will present the results of atomic oxygen protection ability of thin ceramer coatings on Kapton H as evaluated over a range of atomic oxygen fluence levels.

  2. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age

    PubMed Central

    Johnston, D. T.; Wolfe-Simon, F.; Pearson, A.; Knoll, A. H.

    2009-01-01

    Molecular oxygen (O2) began to accumulate in the atmosphere and surface ocean ca. 2,400 million years ago (Ma), but the persistent oxygenation of water masses throughout the oceans developed much later, perhaps beginning as recently as 580–550 Ma. For much of the intervening interval, moderately oxic surface waters lay above an oxygen minimum zone (OMZ) that tended toward euxinia (anoxic and sulfidic). Here we illustrate how contributions to primary production by anoxygenic photoautotrophs (including physiologically versatile cyanobacteria) influenced biogeochemical cycling during Earth's middle age, helping to perpetuate our planet's intermediate redox state by tempering O2 production. Specifically, the ability to generate organic matter (OM) using sulfide as an electron donor enabled a positive biogeochemical feedback that sustained euxinia in the OMZ. On a geologic time scale, pyrite precipitation and burial governed a second feedback that moderated sulfide availability and water column oxygenation. Thus, we argue that the proportional contribution of anoxygenic photosynthesis to overall primary production would have influenced oceanic redox and the Proterozoic O2 budget. Later Neoproterozoic collapse of widespread euxinia and a concomitant return to ferruginous (anoxic and Fe2+ rich) subsurface waters set in motion Earth's transition from its prokaryote-dominated middle age, removing a physiological barrier to eukaryotic diversification (sulfide) and establishing, for the first time in Earth's history, complete dominance of oxygenic photosynthesis in the oceans. This paved the way for the further oxygenation of the oceans and atmosphere and, ultimately, the evolution of complex multicellular organisms. PMID:19805080

  3. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects

    PubMed Central

    Abbas, Ghulam; Murtaza, Behzad; Bibi, Irshad; Shahid, Muhammad; Khan, Muhammad Imran; Amjad, Muhammad; Hussain, Munawar; Natasha

    2018-01-01

    Environmental contamination with arsenic (As) is a global environmental, agricultural and health issue due to the highly toxic and carcinogenic nature of As. Exposure of plants to As, even at very low concentration, can cause many morphological, physiological, and biochemical changes. The recent research on As in the soil-plant system indicates that As toxicity to plants varies with its speciation in plants (e.g., arsenite, As(III); arsenate, As(V)), with the type of plant species, and with other soil factors controlling As accumulation in plants. Various plant species have different mechanisms of As(III) or As(V) uptake, toxicity, and detoxification. This review briefly describes the sources and global extent of As contamination and As speciation in soil. We discuss different mechanisms responsible for As(III) and As(V) uptake, toxicity, and detoxification in plants, at physiological, biochemical, and molecular levels. This review highlights the importance of the As-induced generation of reactive oxygen species (ROS), as well as their damaging impacts on plants at biochemical, genetic, and molecular levels. The role of different enzymatic (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (salicylic acid, proline, phytochelatins, glutathione, nitric oxide, and phosphorous) substances under As(III/V) stress have been delineated via conceptual models showing As translocation and toxicity pathways in plant species. Significantly, this review addresses the current, albeit partially understood, emerging aspects on (i) As-induced physiological, biochemical, and genotoxic mechanisms and responses in plants and (ii) the roles of different molecules in modulation of As-induced toxicities in plants. We also provide insight on some important research gaps that need to be filled to advance our scientific understanding in this area of research on As in soil-plant systems. PMID:29301332

  4. Combined coagulation-flocculation and sequencing batch reactor with phosphorus adjustment for the treatment of high-strength landfill leachate: experimental kinetics and chemical oxygen demand fractionation.

    PubMed

    El-Fadel, M; Matar, F; Hashisho, J

    2013-05-01

    The treatability of high-strength landfill leachate is challenging and relatively limited. This study examines the feasibility of treating high-strength landfill leachate (chemical oxygen demand [COD]: 7,760-11,770 mg/L, biochemical oxygen demand [BOD5]: 2,760-3,569 mg/L, total nitrogen [TN] = 980-1,160 mg/L) using a sequencing batch reactor (SBR) preceded by a coagulation-flocculation process with phosphorus nutritional balance under various mixing and aeration patterns. Simulations were also conducted to define kinetic parameters and COD fractionation. Removal efficiencies reached 89% for BOD5, 60% for COD, and 72% for TN, similar to and better than reported studies, albeit with a relatively lower hydraulic retention time (HRT) and solid retention time (SRT). The coupled experimental and simulation results contribute in filling a gap toward managing high-strength landfill leachate and providing guidelines for corresponding SBR applications. The treatability of high-strength landfill leachate, which is challenging and relatively limited, was demonstrated using a combined coagulation-flocculation with SBR technology and nutrient balance adjustment. The most suitable coagulant, kinetic design parameters, and COD fractionation were defined using coupled experimental and simulation results contributing in filling a gap toward managing high-strength leachate by providing guidelines for corresponding SBR applications and anticipating potential constraints related to the non-biodegradable COD fraction. In this context, while the combined coagulation-flocculation and SBR process improved removal efficiencies, posttreatment may be required for high-strength leachate, depending on discharge standards and ultimate usage of the treated leachate.

  5. 26 CFR 48.6427-11 - Kerosene; claims by registered ultimate vendors (blending).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-11 Kerosene... certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments allowed...

  6. 26 CFR 48.6427-11 - Kerosene; claims by registered ultimate vendors (blending).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-11 Kerosene... certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments allowed...

  7. 26 CFR 48.6427-11 - Kerosene; claims by registered ultimate vendors (blending).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-11 Kerosene... certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments allowed...

  8. 26 CFR 48.6427-11 - Kerosene; claims by registered ultimate vendors (blending).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-11 Kerosene... certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments allowed...

  9. Sources and Contributions of Oxygen During Microbial Pyrite Oxidation: the Triple Oxygen Isotopes of Sulfate

    NASA Astrophysics Data System (ADS)

    Ziegler, K.; Coleman, M. L.; Mielke, R. E.; Young, E. D.

    2008-12-01

    complimentary chemistry data (in progress), we interpret our isotope data to indicate that the biotic fractionation factor ɛ18OSO4-O2 of at least ~ -25 to - 35‰ is augmented by microbially induced kinetic fractionation; it is larger than expected based on published equilibrium values [2,3,4]. Our inferred ɛ18OSO4-H2O of at least ~+10‰ is similar to some reported values. These new insights into the close links between microbial life cycle and sources of sulfate oxygen during sulfide oxidation, and their oxygen isotopic expressions, will help elucidate the role of microbial oxidation in natural systems. If microbial populations in natural systems remain in a perpetual lag-phase due to constrains of chemistry, atmospheric oxygen will imprint its isotopic signature onto sulfate deposits. Ultimately, such data could be used as biosignatures on Early Earth or Mars. [1] Brunner and Coleman (2008) EPSL 270, 63-72. [2] Balci et al. (2007) GCA 71, 3796-3811. [3] Pisapia et al. (2007) GCA 71, 2474-2490. [4] Taylor et al. (1984) GCA 48, 2669-2678.

  10. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  11. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  12. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  13. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  14. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  15. Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks.

    PubMed

    Adalsteinsson, David; McMillen, David; Elston, Timothy C

    2004-03-08

    Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA) molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. We have developed the software package Biochemical Network Stochastic Simulator (BioNetS) for efficiently and accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous) for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solves the appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  16. High-Throughput Phenotyping of Maize Leaf Physiological and Biochemical Traits Using Hyperspectral Reflectance1[OPEN

    PubMed Central

    Yendrek, Craig R.; Tomaz, Tiago; Montes, Christopher M.; Cao, Youyuan; Morse, Alison M.; Brown, Patrick J.; McIntyre, Lauren M.; Leakey, Andrew D.B.

    2017-01-01

    High-throughput, noninvasive field phenotyping has revealed genetic variation in crop morphological, developmental, and agronomic traits, but rapid measurements of the underlying physiological and biochemical traits are needed to fully understand genetic variation in plant-environment interactions. This study tested the application of leaf hyperspectral reflectance (λ = 500–2,400 nm) as a high-throughput phenotyping approach for rapid and accurate assessment of leaf photosynthetic and biochemical traits in maize (Zea mays). Leaf traits were measured with standard wet-laboratory and gas-exchange approaches alongside measurements of leaf reflectance. Partial least-squares regression was used to develop a measure of leaf chlorophyll content, nitrogen content, sucrose content, specific leaf area, maximum rate of phosphoenolpyruvate carboxylation, [CO2]-saturated rate of photosynthesis, and leaf oxygen radical absorbance capacity from leaf reflectance spectra. Partial least-squares regression models accurately predicted five out of seven traits and were more accurate than previously used simple spectral indices for leaf chlorophyll, nitrogen content, and specific leaf area. Correlations among leaf traits and statistical inferences about differences among genotypes and treatments were similar for measured and modeled data. The hyperspectral reflectance approach to phenotyping was dramatically faster than traditional measurements, enabling over 1,000 rows to be phenotyped during midday hours over just 2 to 4 d, and offers a nondestructive method to accurately assess physiological and biochemical trait responses to environmental stress. PMID:28049858

  17. Red cell 2,3-diphosphoglycerate and oxygen affinity.

    PubMed

    MacDonald, R

    1977-06-01

    with steroids has already been carried out. Elucidation of the role of 2,3-DPG in the control of oxygen affinity may ultimately lead to iatrogenic manipulation of oxygen affinity in vivo.

  18. Biochemical responses to dietary α-linolenic acid restriction proceed differently among brain regions in mice.

    PubMed

    Miyazawa, Daisuke; Yasui, Yuko; Yamada, Kazuyo; Ohara, Naoki; Okuyama, Harumi

    2011-08-01

    Previously, we noted that the dietary restriction of α-linolenic acid (ALA, n-3) for 4 weeks after weaning brought about significant decreases in the BDNF content and p38 MAPK activity in the striatum of mice, but not in the other regions of the brain, compared with an ALA- and linoleic acid (LNA, n-6)-adequate diet. In this study, we examined whether a prolonged dietary manipulation induces biochemical changes in other regions of the brain as well. Mice were fed a safflower oil (SAF) diet (ALA-restricted, LNA-adequate) or a perilla oil (PER) diet (containing adequate amounts of ALA and LNA) for 8 weeks from weaning. The docosahexaenoic acid (DHA, 22:6n-3) contents and p38 MAPK activities in the cerebral cortex, striatum and hippocampus were significantly lower in the SAF group. The BDNF contents and protein kinase C (PKC) activities in the cerebral cortex as well as in the striatum, but not in the hippocampus, were significantly lower in the SAF group. These data indicate that the biochemical changes induced by the dietary restriction of ALA have a time lag in the striatum and cortex, suggesting that the signal is transmitted through decreased p38 MAPK activity and BDNF content and ultimately decreased PKC activity.

  19. A Biochemical-Biophysical Study of Hemoglobins from Woolly Mammoth, Asian Elephant, and Humans†

    PubMed Central

    Yuan, Yue; Shen, Tong-Jian; Gupta, Priyamvada; Ho, Nancy T.; Simplaceanu, Virgil; Tam, Tsuey Chyi S.; Hofreiter, Michael; Cooper, Alan; Campbell, Kevin L.; Ho, Chien

    2011-01-01

    This study is aimed at investigating the molecular basis of environmental adaptation of woolly mammoth hemoglobin (Hb) to the harsh thermal conditions of the Pleistocene Ice-ages. To this end, we have carried out a comparative biochemical-biophysical characterization of the structural and functional properties of recombinant hemoglobins (rHb) from woolly mammoth (rHb WM) and Asian elephant (rHb AE) in relation to human hemoglobins Hb A and Hb A2 (a minor component of human Hb). We have obtained oxygen equilibrium curves and calculated O2 affinities, Bohr effects, and the apparent heat of oxygenation (ΔH) in the presence and absence of allosteric effectors [inorganic phosphate and inositol hexaphosphate (IHP)]. Here, we show that the four Hbs exhibit distinct structural properties and respond differently to allosteric effectors. In addition, the apparent heat of oxygenation (ΔH) for rHb WM is less negative than that of rHb AE, especially in phosphate buffer and the presence of IHP, suggesting that the oxygen affinity of mammoth blood was also less sensitive to temperature change. Finally, 1H-NMR spectroscopy data indicates that both α1(β/δ)1 and α1(β/δ)2 interfaces in rHb WM and rHb AE are perturbed, whereas only the α1δ1 interface in Hb A2 is perturbed compared to that in Hb A. The distinct structural and functional features of rHb WM presumably facilitated woolly mammoth survival in the Arctic environment. PMID:21806075

  20. Use of dissolved oxygen modeling results in the management of river quality

    USGS Publications Warehouse

    Rickert, D.A.

    1984-01-01

    In 1973, the U.S. Geological Survey initiated a study of the Willamette River, Oregon, to determine the major causes of dissolved oxygen (DO) depletion, and whether advanced treatment of municipal wastewaters was needed to achieve the DO standards. The study showed that rates of carbonaceous decay were low (kr = 0.03-0.06/day) and that point-source loadings of carbonaceous biochemical oxygen demand (BOD) accounted for less than one-third of the satisfied oxygen demand. Nitrification of industrially discharged ammonia was the dominant cause of DO depletion. The study led to the calibration and verification of a steady-state DO model which was used to examine selected scenarios of BOD loading, ammonia loading, and flow augmentation. In 1976, the modeling projections for the Willamette River were presented to resource managers. A review in 1981 indicated that the State of Oregon had instituted an effluent standard on the major discharger of ammonia, rescinded an order for all municipal wastewaters to receive advanced secondary treatment by 1980, and more fully acknowledged the need for flow augmentation during summer to attain the DO standards.

  1. Method and apparatus for energy efficient self-aeration in chemical, biochemical, and wastewater treatment processes

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-05-28

    The present invention is a pulse spilling self-aerator (PSSA) that has the potential to greatly lower the installation, operation, and maintenance cost associated with aerating and mixing aqueous solutions. Currently, large quantities of low-pressure air are required in aeration systems to support many biochemical production processes and wastewater treatment plants. Oxygen is traditionally supplied and mixed by a compressor or blower and a mechanical agitator. These systems have high-energy requirements and high installation and maintenance costs. The PSSA provides a mixing and aeration capability that can increase operational efficiency and reduce overall cost.

  2. Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways.

    PubMed

    Slesak, Ireneusz; Slesak, Halina; Kruk, Jerzy

    2012-08-01

    In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O(2), reactive oxygen species (ROS), among them hydrogen peroxide (H(2)O(2)), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O(2) appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O(2) and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O(2)-and H(2)O(2)-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O(2)-and H(2)O(2)-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H(2)O(2) and O(2) should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O(2)/H(2)O(2) was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment.

  3. Biochemical process of low level radioactive liquid simulation waste containing detergent

    NASA Astrophysics Data System (ADS)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  4. Biochemical process of low level radioactive liquid simulation waste containing detergent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundari, Noor Anis, E-mail: nooranis@batan.go.id; Putra, Sugili; Mukaromah, Umi

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive elementmore » in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of

  5. Protein and DNA Modifications: Evolutionary Imprints of Bacterial Biochemical Diversification and Geochemistry on the Provenance of Eukaryotic Epigenetics

    PubMed Central

    Aravind, L.; Burroughs, A. Maxwell; Zhang, Dapeng; Iyer, Lakshminarayan M.

    2014-01-01

    Epigenetic information, which plays a major role in eukaryotic biology, is transmitted by covalent modifications of nuclear proteins (e.g., histones) and DNA, along with poorly understood processes involving cytoplasmic/secreted proteins and RNAs. The origin of eukaryotes was accompanied by emergence of a highly developed biochemical apparatus for encoding, resetting, and reading covalent epigenetic marks in proteins such as histones and tubulins. The provenance of this apparatus remained unclear until recently. Developments in comparative genomics show that key components of eukaryotic epigenetics emerged as part of the extensive biochemical innovation of secondary metabolism and intergenomic/interorganismal conflict systems in prokaryotes, particularly bacteria. These supplied not only enzymatic components for encoding and removing epigenetic modifications, but also readers of some of these marks. Diversification of these prokaryotic systems and subsequently eukaryotic epigenetics appear to have been considerably influenced by the great oxygenation event in the Earth’s history. PMID:24984775

  6. Ultimate pier and contraction scour prediction in cohesive soils at selected bridges in Illinois

    USGS Publications Warehouse

    Straub, Timothy D.; Over, Thomas M.; Domanski, Marian M.

    2013-01-01

    The Scour Rate In COhesive Soils-Erosion Function Apparatus (SRICOS-EFA) method includes an ultimate scour prediction that is the equilibrium maximum pier and contraction scour of cohesive soils over time. The purpose of this report is to present the results of testing the ultimate pier and contraction scour methods for cohesive soils on 30 bridge sites in Illinois. Comparison of the ultimate cohesive and noncohesive methods, along with the Illinois Department of Transportation (IDOT) cohesive soil reduction-factor method and measured scour are presented. Also, results of the comparison of historic IDOT laboratory and field values of unconfined compressive strength of soils (Qu) are presented. The unconfined compressive strength is used in both ultimate cohesive and reduction-factor methods, and knowing how the values from field methods compare to the laboratory methods is critical to the informed application of the methods. On average, the non-cohesive method results predict the highest amount of scour, followed by the reduction-factor method results; and the ultimate cohesive method results predict the lowest amount of scour. The 100-year scour predicted for the ultimate cohesive, noncohesive, and reduction-factor methods for each bridge site and soil are always larger than observed scour in this study, except 12% of predicted values that are all within 0.4 ft of the observed scour. The ultimate cohesive scour prediction is smaller than the non-cohesive scour prediction method for 78% of bridge sites and soils. Seventy-six percent of the ultimate cohesive predictions show a 45% or greater reduction from the non-cohesive predictions that are over 10 ft. Comparing the ultimate cohesive and reduction-factor 100-year scour predictions methods for each bridge site and soil, the scour predicted by the ultimate cohesive scour prediction method is less than the reduction-factor 100-year scour prediction method for 51% of bridge sites and soils. Critical shear stress

  7. The underlying pathway structure of biochemical reaction networks

    PubMed Central

    Schilling, Christophe H.; Palsson, Bernhard O.

    1998-01-01

    Bioinformatics is yielding extensive, and in some cases complete, genetic and biochemical information about individual cell types and cellular processes, providing the composition of living cells and the molecular structure of its components. These components together perform integrated cellular functions that now need to be analyzed. In particular, the functional definition of biochemical pathways and their role in the context of the whole cell is lacking. In this study, we show how the mass balance constraints that govern the function of biochemical reaction networks lead to the translation of this problem into the realm of linear algebra. The functional capabilities of biochemical reaction networks, and thus the choices that cells can make, are reflected in the null space of their stoichiometric matrix. The null space is spanned by a finite number of basis vectors. We present an algorithm for the synthesis of a set of basis vectors for spanning the null space of the stoichiometric matrix, in which these basis vectors represent the underlying biochemical pathways that are fundamental to the corresponding biochemical reaction network. In other words, all possible flux distributions achievable by a defined set of biochemical reactions are represented by a linear combination of these basis pathways. These basis pathways thus represent the underlying pathway structure of the defined biochemical reaction network. This development is significant from a fundamental and conceptual standpoint because it yields a holistic definition of biochemical pathways in contrast to definitions that have arisen from the historical development of our knowledge about biochemical processes. Additionally, this new conceptual framework will be important in defining, characterizing, and studying biochemical pathways from the rapidly growing information on cellular function. PMID:9539712

  8. A method for early determination of meat ultimate pH.

    PubMed

    Young, O A; West, J; Hart, A L; van Otterdijk, F F H

    2004-02-01

    A patented method of rapidly determining the ultimate pH from approximate glycolytic potential of muscles of slaughtered animals has been devised. The method is based on the rapid hydrolysis of muscle glycogen to glucose by the enzyme amyloglucosidase and subsequent measurement of the liberated glucose. In acetate buffer at pH 4.5, glucose concentration can be determined in 30 s with domestic meters for diabetes control. The meter response differed from that of glucose in blood, but was linear with concentration. In slurries comprising homogenised meat in acetate buffer and added glucose, a similar linear response was obtained. Amyloglucosidase was capable of rapidly hydrolysing glycogen to glucose in such slurries. In the 24 h following slaughter, a decrease in glycogen, as determined by glucose, occurred in parallel with the decline in pH. At the same time, lactate progressively accumulated as expected. Values for the approximate glycolytic potential and (by calibration) ultimate pH, were obtained on prerigor muscle within 7 min of muscle sampling in an industrial environment. The method is suitable for on-line application in beef abattoirs particularly those employing hot boning where ultimate must be known at the grading point.

  9. Biochemical responses of filamentous algae in different aquatic ecosystems in South East Turkey and associated water quality parameters.

    PubMed

    Çelekli, Abuzer; Arslanargun, Hamdullah; Soysal, Çiğdem; Gültekin, Emine; Bozkurt, Hüseyin

    2016-11-01

    To the best of our knowledge, any study about biochemical response of filamentous algae in the complex freshwater ecosystems has not been found in the literature. This study was designed to explore biochemical response of filamentous algae in different water bodies from May 2013 to October 2014, using multivariate approach in the South East of Turkey. Environmental variables were measured in situ: water temperature, oxygen concentration, saturation, conductivity, salinity, pH, redox potential, and total dissolved solid. Chemical variables of aqueous samples and biochemical compounds of filamentous algae were also measured. It was found that geographic position and anthropogenic activities had strong effect on physico-chemical variables of water bodies. Variation in environmental conditions caused change in algal biomass composition due to the different response of filamentous species, also indicated by FTIR analysis. Biochemical responses not only changed from species to species, but also varied for the same species at different sampling time and sampling stations. Multivariate analyses showed that heavy metals, nutrients, and water hardness were found as the important variables governing the temporal and spatial succession and biochemical compounds. Nutrients, especially nitrate, could stimulate pigment and total protein production, whereas high metal content had adverse effects. Amount of malondialdehyde (MDA), H2O2, total thiol groups, total phenolic compounds, proline, total carbohydrate, and metal bioaccumulation by filamentous algae could be closely related with heavy metals in the ecosystems. Significant increase in MDA, H2O2, total thiol group, total phenolic compounds, and proline productions by filamentous algae and chlorosis phenomenon seemed to be an important strategy for alleviating environmental factors-induced oxidative stress as biomarkers. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Simulated Nitrogen Deposition has Minor Effects on Ecosystem Pools and Fluxes of Energy, Elements, and Biochemicals in a Northern Hardwoods Forest

    NASA Astrophysics Data System (ADS)

    Talhelm, A. F.; Pregitzer, K. S.; Burton, A. J.; Xia, M.; Zak, D. R.

    2017-12-01

    The elemental and biochemical composition of plant tissues is an important influence on primary productivity, decomposition, and other aspects of biogeochemistry. Human activity has greatly altered biogeochemical cycles in ecosystems downwind of industrialized regions through atmospheric nitrogen deposition, but most research on these effects focuses on individual elements or steps in biogeochemical cycles. Here, we quantified pools and fluxes of biomass, the four major organic elements (carbon, oxygen, hydrogen, nitrogen), four biochemical fractions (lignin, structural carbohydrates, cell walls, and soluble material), and energy in a mature northern hardwoods forest in Michigan. We sampled the organic and mineral soil, fine and coarse roots, leaf litter, green leaves, and wood for chemical analyses. We then combined these data with previously published and archival information on pools and fluxes within this forest, which included replicated plots receiving either ambient deposition or simulated nitrogen deposition (3 g N m-2 yr-1 for 18 years). Live wood was the largest pool of energy and all elements and biochemical fractions. However, the production of wood, leaf litter, and fine roots represented similar fluxes of carbon, hydrogen, oxygen, cell wall material, and energy, while nitrogen fluxes were dominated by leaf litter and fine roots. Notably, the flux of lignin via fine roots was 70% higher than any other flux. Experimental nitrogen deposition had relatively few significant effects, increasing foliar nitrogen, increasing the concentration of lignin in the soil organic horizon and decreasing pools of all elements and biochemical fractions in the soil organic horizon except nitrogen, lignin, and structural carbohydrates. Overall, we found that differences in tissue chemistry concentrations were important determinants of ecosystem-level pools and fluxes, but that nitrogen deposition had little effect on concentrations, pools, or fluxes in this mature forest

  11. Spatial Frequency Domain Imaging of Port Wine Stain Biochemical Composition in Response to Laser Therapy: A Pilot Study

    PubMed Central

    Mazhar, Amaan; Sharif, Seyed A.; Cuccia, J. David; Nelson, J. Stuart; Kelly, Kristen M.; Durkin, Anthony J.

    2012-01-01

    Background and Objective Objective methods to assess port wine stain (PWS) response to laser treatment have been the subject of various research efforts for several years. Herein, we present a pilot study using a newly developed, light emitting diode (LED) based spatial frequency domain imaging (SFDI) device to record quantitatively biochemical compositional changes in PWS after laser therapy. Study Design/Patients and Methods A SFDI system was used to image before, and after, five PWS treatment sessions [n = 4 subjects (one subject was imaged before and after two consecutive laser treatments)]. SFDI derived wide-field optical properties (absorption and scattering) and tissue chromophore concentrations including oxy-hemoglobin (ctO2Hb), deoxy-hemoglobin (ctHHb), total hemoglobin (ctTHb), and tissue oxygen saturation (stO2) are presented for skin imaged prior to and immediately after laser treatment. The SFDI derived images were analyzed by comparing the above measurements in PWS to those of normal skin and tracking changes immediately after laser exposure. Results Elevated oxy-hemoglobin (>20%) and tissue oxygen saturation (>5%) were measured in all PWS lesions and compared to values for normal skin prior to treatment. Laser treatment resulted in an increase in deoxy-hemoglobin (>100%), decrease in tissue oxygen saturation (>10%), and reduced scattering (>15%) in all PWS lesions. One subject was followed before and after two consecutive laser treatments and the overall improvement in PWS lesion blanching was quantitatively assessed by measuring a 45% decrease in dermal blood volume. Conclusion SFDI is a rapid non-contact wide-field optical technique that shows potential as an imaging device that can be used to quantify biochemical compositional changes in PWS after laser therapy. Future work will investigate the potential of SFDI to provide intra-operative guidance for laser therapy of PWS lesions on an individual patient basis. PMID:22911574

  12. Serum Biochemical Phenotypes in the Domestic Dog

    PubMed Central

    Chang, Yu-Mei; Hadox, Erin; Szladovits, Balazs; Garden, Oliver A.

    2016-01-01

    The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species. PMID:26919479

  13. Ultimate concerns in late modernity: Archer, Bourdieu and reflexivity.

    PubMed

    Farrugia, David; Woodman, Dan

    2015-12-01

    Through a critique of Margaret Archer's theory of reflexivity, this paper explores the theoretical contribution of a Bourdieusian sociology of the subject for understanding social change. Archer's theory of reflexivity holds that conscious 'internal conversations' are the motor of society, central both to human subjectivity and to the 'reflexive imperative' of late modernity. This is established through critiques of Bourdieu, who is held to erase creativity and meaningful personal investments from subjectivity, and late modernity is depicted as a time when a 'situational logic of opportunity' renders embodied dispositions and the reproduction of symbolic advantages obsolete. Maintaining Archer's focus on 'ultimate concerns' in a context of social change, this paper argues that her theory of reflexivity is established through a narrow misreading and rejection of Bourdieu's work, which ultimately creates problems for her own approach. Archer's rejection of any pre-reflexive dimensions to subjectivity and social action leaves her unable to sociologically explain the genesis of 'ultimate concerns', and creates an empirically dubious narrative of the consequences of social change. Through a focus on Archer's concept of 'fractured reflexivity', the paper explores the theoretical necessity of habitus and illusio for understanding the social changes that Archer is grappling with. In late modernity, reflexivity is valorized just as the conditions for its successful operation are increasingly foreclosed, creating 'fractured reflexivity' emblematic of the complex contemporary interaction between habitus, illusio, and accelerating social change. © London School of Economics and Political Science 2015.

  14. The Ultimate Factor of Safety for Aircraft and Spacecraft Its History, Applications and Misconceptions

    NASA Technical Reports Server (NTRS)

    Zipay, John J.; Modlin, C. Thomas, Jr.; Larsen, Curtis E.

    2016-01-01

    The ultimate factor of safety (FOSULT) concept used in aircraft and spacecraft has evolved over many decades. Currently an FOSULT 1.5 is the FAR-mandated value for aircraft while an FOSULT of 1.4 has been used in various spacecraft. This paper was motivated by the desire to concisely explain the origins, proper interpretation and application of the ultimate factor of safety concept, since the authors have seen throughout their careers many misconceptions and incorrect applications of this concept. The history of the ultimate factor of safety concept is briefly summarized, the proper application of the factor of safety in aircraft design, structural analysis and operations is covered in detail, examples of limit load exceedance in aircraft and spacecraft are discussed, the evolution of the 1.4 FOSULT for spacecraft is described and some misconceptions regarding the ultimate factor of safety concept are addressed. It is hoped that this paper can be a summary resource for engineers to understand the origin, purpose and proper application of the ultimate factor of safety.

  15. Ultimate dynamics of the Kirschner-Panetta model: Tumor eradication and related problems

    NASA Astrophysics Data System (ADS)

    Starkov, Konstantin E.; Krishchenko, Alexander P.

    2017-10-01

    In this paper we consider the ultimate dynamics of the Kirschner-Panetta model which was created for studying the immune response to tumors under special types of immunotherapy. New ultimate upper bounds for compact invariant sets of this model are given, as well as sufficient conditions for the existence of a positively invariant polytope. We establish three types of conditions for the nonexistence of compact invariant sets in the domain of the tumor-cell population. Our main results are two types of conditions for global tumor elimination depending on the ratio between the proliferation rate of the immune cells and their mortality rate. These conditions are described in terms of simple algebraic inequalities imposed on model parameters and treatment parameters. Our theoretical studies of ultimate dynamics are complemented by numerical simulation results.

  16. Revisiting perceptions of quality of hospice care: managing for the ultimate referral.

    PubMed

    Churchman, Richard; York, Grady S; Woodard, Beth; Wainright, Charles; Rau-Foster, Mary

    2014-08-01

    Hospice services provided in the final months of life are delivered through complex interpersonal relationships between caregivers, patients, and families. Often, service value and quality are defined by these interpersonal interactions. This understanding provides hospice leaders with an enormous opportunity to create processes that provide the optimal level of care during the last months of life. The authors argue that the ultimate referral is attained when a family member observes the care of a loved one, and the family member conveys a desire to receive the same quality of services their loved one received at that facility. The point of this article is to provide evidence that supports the methods to ultimately enhance the patient's and family's experience and increase the potential for the ultimate referral. © The Author(s) 2013.

  17. 26 CFR 48.6427-10 - Kerosene; claims by registered ultimate vendors (blocked pumps).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-10 Kerosene... which certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments...

  18. 26 CFR 48.6427-10 - Kerosene; claims by registered ultimate vendors (blocked pumps).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-10 Kerosene... which certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments...

  19. 26 CFR 48.6427-10 - Kerosene; claims by registered ultimate vendors (blocked pumps).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-10 Kerosene... which certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments...

  20. 26 CFR 48.6427-10 - Kerosene; claims by registered ultimate vendors (blocked pumps).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-10 Kerosene... which certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments...

  1. Cisplatin toxicity reduced in human cultured renal tubular cells by oxygen pretreatment.

    PubMed

    Kaeidi, Ayat; Rasoulian, Bahram; Hajializadeh, Zahra; Pourkhodadad, Soheila; Rezaei, Maryam

    2013-01-01

    Cisplatin is an effective and widely used chemotherapy agent and its side effects, particularly nephrotoxicity, limit its usage and related platinum-based drugs. Cisplatin nephrotoxicity is mainly due to extremely increase in reactive oxygen species (ROS) generation leading to kidney tubular cell death. Preconditioning with oxidative stress has been demonstrated to stimulate the cellular adaptation to subsequent severe oxidative stress. Short term oxygen pre-exposure as a mild oxidative stress may enhance some endogenous defense mechanisms, so its effect on Cisplatin induced cell death was investigated in present research. We studied the effects of hyperoxic environment pre-exposure on Cisplatin toxicity in an in-vitro model of cultured human embryonic tubular epithelial cells (AD293). Viability of AD293 cells, as evaluated by MTT-assay, was affected by Cisplatin in a time (1-4 h) dependent model. Biochemical markers of cell apoptosis were evaluated using immunoblotting. Pretreatment with nearly pure oxygen (≥90%) for 2 h significantly reduced the level of cell damage. Activated caspase 3 and Bax/Bcl-2 ratio were significantly increased in Cisplatin-treated cells. Oxygen pretreatment inhibited caspase 3 activation and decreased Bax/Bcl-2 ratio. Oxygen pre-treatment itself not showed any cytotoxicity in exposure times up to 3 h. Our data indicate that hyperoxic preconditioning reduces Cisplatin toxicity in cultured human tubular epithelial cells. The exact mechanism of protection is unclear, though enhancement of some endogenous defense mechanisms and subsequently scavenging of free oxygen radicals may play an important role.

  2. [Impact of exogenous paraquat on enzyme exudation and biochemical changes of lignin degradation fungi].

    PubMed

    Zhao, Yunchen; Li, Jianlong; Chen, Yuru; Huang, Haixia; Yu, Zui

    2009-08-01

    To study the effect of exogenous oxygen, we added water solution of paraquat to 7 d cultures of Coriolus versicolor for the next 148 h. Enzyme exudation and biochemical process were investigated on the addition of paraquat. We found that compared with the control (without paraquat), the addition of 30 micromol/L paraquat stimulated the activity of manganese dependent peroxidase (MnP), lignin peroxidase (LiP), and laccases (Lac) 7, 2.5 and 1.3 times, respectively. Also, addition of paraquat enhanced activity of superoxide dismutase (SOD) and catalase (CAT) in the first 48 h. Impact of paraquat on ligninolytic enzymes was significant than that on antioxidant enzyme. Addition of paraquat enhanced phenolic compounds and formaldehyde of cultures too. And concentration of malondialdehyde was increased in the first 24 h. The results showed that addition of paraquat promoted oxidative stress, but the antioxidant systems of the fungal strain are sufficient to prevent mycelia from oxidative stress. As exogenous oxygen, paraquat might be a useful substrate in degradation of lignocellulose.

  3. 7 CFR 4274.308 - Eligibility requirements-Ultimate recipients.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... making a loan to one of its members. (c) Any delinquent debt to the Federal Government by the ultimate... authority to incur the debt and carry out the purpose of the loan. (b) To be eligible to receive loans from... rates and terms. (4) Must, along with its principal officers (including their immediate family), hold no...

  4. Ultimate computing. Biomolecular consciousness and nano Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hameroff, S.R.

    1987-01-01

    The book advances the premise that the cytoskeleton is the cell's nervous system, the biological controller/computer. If indeed cytoskeletal dynamics in the nanoscale (billionth meter, billionth second) are the texture of intracellular information processing, emerging ''NanoTechnologies'' (scanning tunneling microscopy, Feynman machines, von Neumann replicators, etc.) should enable direct monitoring, decoding and interfacing between biological and technological information devices. This in turn could result in important biomedical applications and perhaps a merger of mind and machine: Ultimate Computing.

  5. Iron and oxygen sensing: a tale of 2 interacting elements?

    PubMed

    Simpson, Robert J; McKie, Andrew T

    2015-02-01

    Iron and oxygen metabolism are intimately linked with one another. A change in the level of either metabolite results in activation of common pathways. At the heart of these responses lies a group of iron and oxygen dependent enzymes called prolyl hydroxylases. Prolyl hydroxylases (PHDs) require both iron and oxygen for optimal activity and their biological activity is to carry out the critical post-translational modification of the addition of a hydroxyl group to specific proline residues within Hypoxia Inducible Factor (HIFs)-well known transcription factors originally thought to regulate responses to hypoxia but which are now known to regulate key iron metabolism proteins too. The addition of the hydroxyl group ultimately leads to the unbiquitylation and destruction of HIFs, thus PHDs control appropriate HIF transcriptional responses depending on cellular oxygen or iron levels. There are two major HIFs; HIF1α and HIF2α. In terms of responses to iron HIF2α is of major importance in key tissues such as the intestine where several iron transporters (Ferroportin, Dcytb) contain HREs within their promoters which bind HIF2α. Furthermore the recent discovery that HIF2α contains a 5' iron responsive element (IRE) has underlined the importance of HIF2α as a major player in iron metabolism. This review brings together recent findings with regard to the HIF2α/IRP network as well as other aspects of iron sensing in cells and tissues.

  6. Protein and DNA modifications: evolutionary imprints of bacterial biochemical diversification and geochemistry on the provenance of eukaryotic epigenetics.

    PubMed

    Aravind, L; Burroughs, A Maxwell; Zhang, Dapeng; Iyer, Lakshminarayan M

    2014-07-01

    Epigenetic information, which plays a major role in eukaryotic biology, is transmitted by covalent modifications of nuclear proteins (e.g., histones) and DNA, along with poorly understood processes involving cytoplasmic/secreted proteins and RNAs. The origin of eukaryotes was accompanied by emergence of a highly developed biochemical apparatus for encoding, resetting, and reading covalent epigenetic marks in proteins such as histones and tubulins. The provenance of this apparatus remained unclear until recently. Developments in comparative genomics show that key components of eukaryotic epigenetics emerged as part of the extensive biochemical innovation of secondary metabolism and intergenomic/interorganismal conflict systems in prokaryotes, particularly bacteria. These supplied not only enzymatic components for encoding and removing epigenetic modifications, but also readers of some of these marks. Diversification of these prokaryotic systems and subsequently eukaryotic epigenetics appear to have been considerably influenced by the great oxygenation event in the Earth's history. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Hypoxic Induced Decrease in Oxygen Consumption in Cuttlefish (Sepia officinalis) Is Associated with Minor Increases in Mantle Octopine but No Changes in Markers of Protein Turnover

    PubMed Central

    Capaz, Juan C.; Tunnah, Louise; MacCormack, Tyson J.; Lamarre, Simon G.; Sykes, Antonio V.; Driedzic, William R.

    2017-01-01

    The common cuttlefish (Sepia officinalis), a dominant species in the north-east Atlantic ocean and Mediterranean Sea, is potentially subject to hypoxic conditions due to eutrophication of coastal waters and intensive aquaculture. Here we initiate studies on the biochemical response to an anticipated level of hypoxia. Cuttlefish challenged for 1 h at an oxygen level of 50% dissolved oxygen saturation showed a decrease in oxygen consumption of 37% associated with an 85% increase in ventilation rate. Octopine levels were increased to a small but significant level in mantle, whereas there was no change in gill or heart. There were no changes in mantle free glucose or glycogen levels. Similarly, the hypoxic period did not result in changes in HSP70 or polyubiquinated protein levels in mantle, gill, or heart. As such, it appears that although there was a decrease in metabolic rate there was only a minor increase in anaerobic metabolism as evidenced by octopine accumulation and no biochemical changes that are hallmarks of alterations in protein trafficking. Experiments with isolated preparations of mantle, gill, and heart revealed that pharmacological inhibition of protein synthesis could decrease oxygen consumption by 32 to 42% or Na+/K+ ATPase activity by 24 to 54% dependent upon tissue type. We propose that the decrease in whole animal oxygen consumption was potentially the result of controlled decreases in the energy demanding processes of both protein synthesis and Na+/K+ ATPase activity. PMID:28603503

  8. [Biochemical and biophysical investigation of liposome action in artificially induced ARDS in rabbit lungs].

    PubMed

    Petkova, D; Steneva, I; Iordanova, A; Khristova, E; Lalchev, Z

    2007-01-01

    The aim of this study is to evaluate the application of phospholipid liposomes in HCl--induced RDS in rabbits. Acute respiratory distress syndrome was induced by administration of 0.2 N HCl via intratracheal instillation for 45 min. After induced ARDS animals under artificial lung ventilation were retreated with liposomes for 60 min. Arterial blood gas analysis was performed at 30, 45 and 60 min after liposome application. Untreated animals were ventilated for the same time. Rabbits were killed with thiopental and bronhoalveolar lavage fluid biochemical and biophysical parameters were investigated. HCl- lung injury caused decrease of arterial oxygen pressure/ fraction of inspired oxygen ratio more than 50% compared to the control. We obtained high respiratory acidosis as well. The instillation of liposomes led to reversion of gas exchange at 60 min. after application almost to the control value. In order to characterize the rabbit lung tissue changes after HCl-treatment histological and ultra thin slices were obtained. Electron microscopic preparations demonstrate disappearance of surface active film in treated animals. Application of liposomes led to visualization of osmophilic material forming lamellae in lamellar bodies. On the basis of the results obtained we may assume that it is likely that the liposomes assessed in this study might be used for in vivo improvement of oxygenation in acid aspiration induced ARDS.

  9. [The biochemical carcinogenesis of selected heavy metals in bladder cancer].

    PubMed

    Rorbach-Dolata, Anna; Marchewka, Zofia; Piwowar, Agnieszka

    2015-01-01

    Bladder cancer takes the second place in the classification of morbidity of urinary system cancers. Many chemical factors take part in cancerogenesis. It is suggested that exposure to heavy metals such as arsenic, chromium, nickel and cadmium as well as its metabolites may trigger the bladder cancer through inducing excessive reactive oxygen species production and oxidative stress formation which are responsible for DNA damage. In patients with bladder cancer is observed the disorder of processes regulated by p-53, including apoptosis. There are many patients with bladder cancer with confirmed absence of retinoblastoma protein, which is responsible of holding on the process of coming up the cells with mutation into synthesis, where the replication process undergoes. It is mentioned that excessive expression of proto-oncogenes may also cause the bladder cancer. The article concerns biochemical effects of exposure to chosen heavy metals and their potential role in bladder cancer progression.

  10. The ultimate efficiency of photosensitive systems

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.; Smith, B. T.

    1981-01-01

    These systems have in common two important but not independent features: they can produce a storable fuel, and they are sensitive only to radiant energy with a characteristic absorption spectrum. General analyses of the conversion efficiencies were made using the operational characteristics of each particular system. An efficiency analysis of a generalized system consisting of a blackbody source, a radiant energy converter having a threshold energy and operating temperature, and a reservoir is reported. This analysis is based upon the first and second laws of thermodynamics, and leads to a determination of the limiting or ultimate efficiency for an energy conversion system having a characteristic threshold.

  11. Determinants of oxygen and carbon dioxide transfer during extracorporeal membrane oxygenation in an experimental model of multiple organ dysfunction syndrome.

    PubMed

    Park, Marcelo; Costa, Eduardo Leite Vieira; Maciel, Alexandre Toledo; Silva, Débora Prudêncio E; Friedrich, Natalia; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Schettino, Guilherme; Azevedo, Luciano Cesar Pontes

    2013-01-01

    Extracorporeal membrane oxygenation (ECMO) has gained renewed interest in the treatment of respiratory failure since the advent of the modern polymethylpentene membranes. Limited information exists, however, on the performance of these membranes in terms of gas transfers during multiple organ failure (MOF). We investigated determinants of oxygen and carbon dioxide transfer as well as biochemical alterations after the circulation of blood through the circuit in a pig model under ECMO support before and after induction of MOF. A predefined sequence of blood and sweep flows was tested before and after the induction of MOF with fecal peritonitis and saline lavage lung injury. In the multivariate analysis, oxygen transfer had a positive association with blood flow (slope = 66, P<0.001) and a negative association with pre-membrane PaCO(2) (slope = -0.96, P = 0.001) and SatO(2) (slope = -1.7, P<0.001). Carbon dioxide transfer had a positive association with blood flow (slope = 17, P<0.001), gas flow (slope = 33, P<0.001), pre-membrane PaCO(2) (slope = 1.2, P<0.001) and a negative association with the hemoglobin (slope = -3.478, P = 0.042). We found an increase in pH in the baseline from 7.50[7.46,7.54] to 7.60[7.55,7.65] (P<0.001), and during the MOF from 7.19[6.92,7.32] to 7.41[7.13,7.5] (P<0.001). Likewise, the PCO(2) fell in the baseline from 35 [32,39] to 25 [22,27] mmHg (P<0.001), and during the MOF from 59 [47,91] to 34 [28,45] mmHg (P<0.001). In conclusion, both oxygen and carbon dioxide transfers were significantly determined by blood flow. Oxygen transfer was modulated by the pre-membrane SatO(2) and CO(2), while carbon dioxide transfer was affected by the gas flow, pre-membrane CO(2) and hemoglobin.

  12. 75 FR 76746 - Agency Information Collection Activities: Declaration of Ultimate Consignee That Articles Were...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... Activities: Declaration of Ultimate Consignee That Articles Were Exported for Temporary Scientific or... That Articles Were Exported for Temporary Scientific or Educational Purposes. This is a proposed... forms of information. Title: Declaration of Ultimate Consignee That Articles Were Exported for Temporary...

  13. Physiological and lavage fluid cytological and biochemical endpoints of toxicity in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehnert, B.E.

    1992-01-01

    Exposure of the respiratory tract to toxic materials can result in a variety of physiologic disturbances that can serve as endpoints of toxicity. In addition to a brief review of commonly assessed physiologic endpoints, attention is given in the first component of this report to the use of both nose breathing and mouth'' breathing rats in toxicity studies that involve measurements of ventilatory functional changes in response to test atmospheres. Additionally, the usefulness of maximum oxygen consumption, or VO[sub 2max], as a physiologic endpoint of toxicity that uses exercising rats after exposure to test atmospheres is described, along with anmore » introduction to post-exposure exercise as an important behavioral activity that can markedly impact on the severity of acute lung injury caused by pneumoedematogenic materials. The second component of this report focuses on bronchoalveolar lavage and cytological and biochemical endpoints that can be assessed in investigations of the toxicities of test materials. As will be shown herein, some of the biochemical endpoints of toxicity, especially, can sensitively detect subtle injury to the lower respiratory tract that may escape detection by changes in some other conventional endpoints of toxicity, including lung gravimetric increases and histopathological alterations.« less

  14. Physiological and lavage fluid cytological and biochemical endpoints of toxicity in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehnert, B.E.

    1992-12-31

    Exposure of the respiratory tract to toxic materials can result in a variety of physiologic disturbances that can serve as endpoints of toxicity. In addition to a brief review of commonly assessed physiologic endpoints, attention is given in the first component of this report to the use of both nose breathing and ``mouth`` breathing rats in toxicity studies that involve measurements of ventilatory functional changes in response to test atmospheres. Additionally, the usefulness of maximum oxygen consumption, or VO{sub 2max}, as a physiologic endpoint of toxicity that uses exercising rats after exposure to test atmospheres is described, along with anmore » introduction to post-exposure exercise as an important behavioral activity that can markedly impact on the severity of acute lung injury caused by pneumoedematogenic materials. The second component of this report focuses on bronchoalveolar lavage and cytological and biochemical endpoints that can be assessed in investigations of the toxicities of test materials. As will be shown herein, some of the biochemical endpoints of toxicity, especially, can sensitively detect subtle injury to the lower respiratory tract that may escape detection by changes in some other conventional endpoints of toxicity, including lung gravimetric increases and histopathological alterations.« less

  15. Apollo 13 Mission: Cryogenic Oxygen Tank 2 Anomaly Report

    NASA Technical Reports Server (NTRS)

    1970-01-01

    There were two investigative aspects associated with the loss of the cryogenic oxygen tank pressure during the Apollo 13 flight. First, what was the cause of the flight failure of cryogenic oxygen tank 2. Second, what possible contributing factors during the ground history of the tank could have led to the ultimate failure in flight. The first flight indication of a problem occurred when the quantity measurement in the tank went full scale about 9 hours before the incident. This condition in itself could not have contributed to ignition in the tank, since the energy in the circuit is restricted to about 7 milli-joules. Data from the electrical system provided the second indication of a problem when the fans in tank 2 were activated to reduce any stratification which might have been present in the supercritical oxygen in the tank. Several short-circuits were detected and have been isolated to the fan circuits of tank 2. The first short-circuit could have contained as much as 160 joules of energy, which is within the current-protection level of the fan circuits. Tests have shown that two orders of magnitude less energy than this is sufficient to ignite the polytetrafluoroethylene insulation on the fan circuits in the tank. Consequently, the evidence indicates that the insulation on the fan wiring was ignited by the energy in the short-circuit.

  16. Evolution and physiology of neural oxygen sensing

    PubMed Central

    Costa, Kauê M.; Accorsi-Mendonça, Daniela; Moraes, Davi J. A.; Machado, Benedito H.

    2014-01-01

    Major evolutionary trends in animal physiology have been heavily influenced by atmospheric O2 levels. Amongst other important factors, the increase in atmospheric O2 which occurred in the Pre-Cambrian and the development of aerobic respiration beckoned the evolution of animal organ systems that were dedicated to the absorption and transportation of O2, e.g., the respiratory and cardiovascular systems of vertebrates. Global variations of O2 levels in post-Cambrian periods have also been correlated with evolutionary changes in animal physiology, especially cardiorespiratory function. Oxygen transportation systems are, in our view, ultimately controlled by the brain related mechanisms, which senses changes in O2 availability and regulates autonomic and respiratory responses that ensure the survival of the organism in the face of hypoxic challenges. In vertebrates, the major sensorial system for oxygen sensing and responding to hypoxia is the peripheral chemoreflex neuronal pathways, which includes the oxygen chemosensitive glomus cells and several brainstem regions involved in the autonomic regulation of the cardiovascular system and respiratory control. In this review we discuss the concept that regulating O2 homeostasis was one of the primordial roles of the nervous system. We also review the physiology of the peripheral chemoreflex, focusing on the integrative repercussions of chemoreflex activation and the evolutionary importance of this system, which is essential for the survival of complex organisms such as vertebrates. The contribution of hypoxia and peripheral chemoreflex for the development of diseases associated to the cardiovascular and respiratory systems is also discussed in an evolutionary context. PMID:25161625

  17. Deimos Methane-Oxygen Rocket Engine Test Results

    NASA Astrophysics Data System (ADS)

    Engelen, S.; Souverein, L. J.; Twigt, D. J.

    This paper presents the results of the first DEIMOS Liquid Methane/Oxygen rocket engine test campaign. DEIMOS is an acronym for `Delft Experimental Methane Oxygen propulsion System'. It is a project performed by students under the auspices of DARE (Delft Aerospace Rocket Engineering). The engine provides a theoretical design thrust of 1800 N and specific impulse of 287 s at a chamber pressure of 40 bar with a total mass flow of 637 g/s. It has links to sustainable development, as the propellants used are one of the most promising so-called `green propellants'-combinations, currently under scrutiny by the industry, and the engine is designed to be reusable. This paper reports results from the provisional tests, which had the aim of verifying the engine's ability to fire, and confirming some of the design assumptions to give confidence for further engine designs. Measurements before and after the tests are used to determine first estimates on feed pressures, propellant mass flows and achieved thrust. These results were rather disappointing from a performance point of view, with an average thrust of a mere 3.8% of the design thrust, but nonetheless were very helpful. The reliability of ignition and stability of combustion are discussed as well. An initial assessment as to the reusability, the flexibility and the adaptability of the engine was made. The data provides insight into (methane/oxygen) engine designs, leading to new ideas for a subsequent design. The ultimate goal of this project is to have an operational rocket and to attempt to set an amateur altitude record.

  18. Improving Marine Ecosystem Models with Biochemical Tracers

    NASA Astrophysics Data System (ADS)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  19. Biochemical Engineering Fundamentals

    ERIC Educational Resources Information Center

    Bailey, J. E.; Ollis, D. F.

    1976-01-01

    Discusses a biochemical engineering course that is offered as part of a chemical engineering curriculum and includes topics that influence the behavior of man-made or natural microbial or enzyme reactors. (MLH)

  20. Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding.

    PubMed

    Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit

    2015-01-01

    We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10-20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%.

  1. Assessment of water quality and factors affecting dissolved oxygen in the Sangamon River, Decatur to Riverton, Illinois, summer 1982

    USGS Publications Warehouse

    Schmidt, A.R.; Stamer, J.K.

    1987-01-01

    Water quality and processes that affect the dissolved-oxygen concentration in a 45.9 mile reach of the Sangamon River from Decatur to Riverton, Illinois, were determined from data collected during low-flow periods in the summer of 1982. Relations among dissolved oxygen, water discharge, biochemical oxygen demand, ammonia and nitrite plus nitrate concentrations, and photosynthetic-oxygen production were simulated using a one-dimensional, steady-state computer model. Average dissolved oxygen concentrations ranged from 8.0 milligrams per liter at the upstream end of the study reach at Decatur to 5.2 milligrams per liter 12.2 miles downstream. Ammonia concentrations ranged from 45 milligrams per liter at the mouth of Stevens Creek (2.6 miles downstream from Decatur) to 0.03 milligram per liter at the downstream end of the study reach. Un-ionized ammonia concentrations exceeded the maximum concentration specified in the State water quality standard (0.04 milligram per liter) throughout most of the study reach. Model simulations indicated that oxidation of ammonia to form nitrite plus nitrate was the most significant process leading to low dissolved oxygen concentrations in the river. (USGS)

  2. Selenium- and tellurium-containing multifunctional redox agents as biochemical redox modulators with selective cytotoxicity.

    PubMed

    Jamier, Vincent; Ba, Lalla A; Jacob, Claus

    2010-09-24

    Various human diseases, including different types of cancer, are associated with a disturbed intracellular redox balance and oxidative stress (OS). The past decade has witnessed the emergence of redox-modulating compounds able to utilize such pre-existing disturbances in the redox state of sick cells for therapeutic advantage. Selenium- and tellurium-based agents turn the oxidizing redox environment present in certain cancer cells into a lethal cocktail of reactive species that push these cells over a critical redox threshold and ultimately kill them through apoptosis. This kind of toxicity is highly selective: normal, healthy cells remain largely unaffected, since changes to their naturally low levels of oxidizing species produce little effect. To further improve selectivity, multifunctional sensor/effector agents are now required that recognize the biochemical signature of OS in target cells. The synthesis of such compounds provides interesting challenges for chemistry in the future.

  3. Biochemical methane potential (BMP) of agro-food wastes from the Cider Region (Spain).

    PubMed

    Nieto, P P; Hidalgo, D; Irusta, R; Kraut, D

    2012-01-01

    An inventory of agro-food industry organic waste streams with a high potential for biogas transformation was studied in a logistically viable area (Cider Region, Asturias, Spain). Three industries were selected as the most viable ones: livestock, dairy and beverage. The potential for methane production from six wastes (beverage waste, BW; milled apple waste, MA; milk waste, MK; yogurt waste, YG; fats and oils from dairy wastewater treatment, F&O and cattle manure, CM) at five different substrate:inoculum ratios (0.25, 0.50, 0.75, 1.00 and 1.50) was evaluated in laboratory batch assays. Obtained methane yields ranged from 202-549 mL STP CH(4)·g VS waste(-1), and the methane content in biogas ranged from 58-76%. The ultimate practical biochemical methane potentials were slightly affected by the substrate:inoculum ratio. The estimation of the regional fluxes of waste and methane potentials suggests anaerobic digestion as a sustainable solution for the valorization of the organic wastes generated in this Region.

  4. Biochemical and molecular aspects of mammalian susceptibility to aflatoxin B{sub 1} carcinogenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, T.E.; Stewart, R.K.; Daniels, J.M.

    Aflatoxin B{sub 1} (AFB{sub 1}) is a fungal toxin that has been implicated as a causative agent in human hepatic and extrahepatic carcinogenesis. In this review, the mechanisms involved in AFB{sub 1} toxicity are delineated, in order to describe the features that make a specific cell, tissue, or species susceptible to the mycotoxin. Important considerations include: (i) different mechanisms for bioactivation of AFB{sub 1} to its ultimate carcinogenic epoxide metabolite; (ii) the balance between bioactivation to and detoxification of the epoxide; (iii) the interaction of AFB{sub 1} epoxide with DNA and the mutational events leading to neoplastic transformation; (iv) themore » role of cytotoxicity in AFB{sub 1} carcinogenesis; (v) the significance of nonepoxide metabolites in toxicity; and (vi) the contribution of mycotoxin-unrelated disease processes. Although considerable controversy remains about the importance of specific events, a great deal has been learned about biochemical and molecular actions of AFB{sub 1}. 157 refs., 4 figs., 1 tab.« less

  5. Biochemical transformation of solid carbonaceous material

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    2001-09-25

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  6. Simulation studies in biochemical signaling and enzyme reactions

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Vagula, Mary C.

    2014-06-01

    Biochemical pathways characterize various biochemical reaction schemes that involve a set of species and the manner in which they are connected. Determination of schematics that represent these pathways is an important task in understanding metabolism and signal transduction. Examples of these Pathways are: DNA and protein synthesis, and production of several macro-molecules essential for cell survival. A sustained feedback mechanism arises in gene expression and production of mRNA that lead to protein synthesis if the protein so synthesized serves as a transcription factor and becomes a repressor of the gene expression. The cellular regulations are carried out through biochemical networks consisting of reactions and regulatory proteins. Systems biology is a relatively new area that attempts to describe the biochemical pathways analytically and develop reliable mathematical models for the pathways. A complete understanding of chemical reaction kinetics is prohibitively hard thanks to the nonlinear and highly complex mechanisms that regulate protein formation, but attempting to numerically solve some of the governing differential equations seems to offer significant insight about their biochemical picture. To validate these models, one can perform simple experiments in the lab. This paper introduces fundamental ideas in biochemical signaling and attempts to take first steps into the understanding of biochemical oscillations. Initially, the two-pool model of calcium is used to describe the dynamics behind the oscillations. Later we present some elementary results showing biochemical oscillations arising from solving differential equations of Elowitz and Leibler using MATLAB software.

  7. Self-organizing biochemical cycle in dynamic feedback with soil structure

    NASA Astrophysics Data System (ADS)

    Vasilyeva, Nadezda; Vladimirov, Artem; Smirnov, Alexander; Matveev, Sergey; Tyrtyshnikov, Evgeniy; Yudina, Anna; Milanovskiy, Evgeniy; Shein, Evgeniy

    2016-04-01

    In the present study we perform bifurcation analysis of a physically-based mathematical model of self-organized structures in soil (Vasilyeva et al., 2015). The state variables in this model included microbial biomass, two organic matter types, oxygen, carbon dioxide, water content and capillary pore size. According to our previous experimental studies, organic matter affinity to water is an important property affecting soil structure. Therefore, organic matter wettability was taken as principle distinction between organic matter types in this model. It considers general known biological feedbacks with soil physical properties formulated as a system of parabolic type non-linear partial differential equations with elements of discrete modeling for water and pore formation. The model shows complex behavior, involving emergence of temporal and spatial irregular auto-oscillations from initially homogeneous distributions. The energy of external impact on a system was defined by a constant oxygen level on the boundary. Non-linear as opposed to linear oxygen diffusion gives possibility of modeling anaerobic micro-zones formation (organic matter conservation mechanism). For the current study we also introduced population competition of three different types of microorganisms according to their mobility/feeding (diffusive, moving and fungal growth). The strongly non-linear system was solved and parameterized by time-optimized algorithm combining explicit and implicit (matrix form of Thomas algorithm) methods considering the time for execution of the evaluated time-step according to accuracy control. The integral flux of the CO2 state variable was used as a macroscopic parameter to describe system as a whole and validation was carried out on temperature series of moisture dependence for soil heterotrophic respiration data. Thus, soil heterotrophic respiration can be naturally modeled as an integral result of complex dynamics on microscale, arising from biological processes

  8. Reactive oxygen species-activated nanomaterials as theranostic agents.

    PubMed

    Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

    2015-01-01

    Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use.

  9. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment, Prosthetic and Orthotic Devices, and Surgical Dressings § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made...

  10. Sediment oxygen demand in the Saddle River and Salem River watersheds, New Jersey, July-August 2008

    USGS Publications Warehouse

    Heckathorn, Heather A.; Gibs, Jacob

    2010-01-01

    Many factors, such as river depth and velocity, biochemical oxygen demand, and algal productivity, as well as sediment oxygen demand, can affect the concentration of dissolved oxygen in the water column. Measurements of sediment oxygen demand, in conjunction with those of other water-column water-quality constituents, are useful for quantifying the mechanisms that affect in-stream dissolved-oxygen concentrations. Sediment-oxygen-demand rates are also needed to develop and calibrate a water-quality model being developed for the Saddle River and Salem River Basins in New Jersey to predict dissolved-oxygen concentrations. This report documents the methods used to measure sediment oxygen demand in the Saddle River and Salem River watersheds along with the rates of sediment oxygen demand that were obtained during this investigation. In July and August 2008, sediment oxygen demand was measured in situ in the Saddle River and Salem River watersheds. In the Saddle River Basin, sediment oxygen demand was measured twice at two sites and once at a third location; in the Salem River Basin, sediment oxygen demand was measured three times at two sites and once at a third location. In situ measurements of sediment oxygen demand in the Saddle River and Salem River watersheds ranged from 0.8 to 1.4 g/m2d (grams per square meter per day) and from 0.6 to 7.1 g/m2d at 20 degrees Celsius, respectively. Except at one site in this study, rates of sediment oxygen demand generally were low. The highest rate of sediment oxygen demand measured during this investigation, 7.1 g/m2d, which occurred at Courses Landing in the Salem River Basin, may be attributable to the consumption of oxygen by a large amount of organic matter (54 grams per kilogram as organic carbon) in the streambed sediments or to potential error during data collection. In general, sediment oxygen demand increased with the concentration of organic carbon in the streambed sediments. Repeated measurements made 6 to 7 days apart

  11. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule amount...

  12. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule amount...

  13. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee...

  14. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee...

  15. Chemical, biochemical, and environmental fiber sensors III; Proceedings of the Meeting, Boston, MA, Sept. 4, 5, 1991

    NASA Astrophysics Data System (ADS)

    Lieberman, Robert A.

    Various papers on chemical, biochemical, and environmental fiber sensors are presented. Individual topics addressed include: fiber optic pressure sensor for combustion monitoring and control, viologen-based fiber optic oxygen sensors, renewable-reagent fiber optic sensor for ocean pCO2, transition metal complexes as indicators for a fiber optic oxygen sensor, fiber optic pH measurements using azo indicators, simple reversible fiber optic chemical sensors using solvatochromic dyes, totally integrated optical measuring sensors, integrated optic biosensor for environmental monitoring, radiation dosimetry using planar waveguide sensors, optical and piezoelectric analysis of polymer films for chemical sensor characterization, source polarization effects in an optical fiber fluorosensor, lens-type refractometer for on-line chemical analysis, fiber optic hydrocarbon sensor system, chemical sensors for environmental monitoring, optical fibers for liquid-crystal sensing and logic devices, suitability of single-mode fluoride fibers for evanescent-wave sensing, integrated modules for fiber optic sensors, optoelectronic sensors based on narrowband A3B5 alloys, fiber Bragg grating chemical sensor.

  16. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from CO2 Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Muscatello, Anthony

    2015-01-01

    Oxygen recovery from respiratory CO2 is an important aspect of human spaceflight. Methods exist to sequester the CO2, but production of oxygen needs further development. The current ISS Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction is the only real alternative to the Sabatier reaction, but in the last reaction in the cycle (Boudouard) the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling, find a use for this waste product, and increase efficiency, we propose testing various self-cleaning catalyst designs in an existing MSFC Boudouard reaction test bed and to determine which one is the most reliable in conversion and lack of fouling. Challenges include mechanical reliability of the cleaning method and maintaining high conversion efficiency with lower catalyst surface area. The above chemical reactions are well understood, but planned implementations are novel (TRL 2) and haven't been investigated at any level.

  17. An integrated optical oxygen sensor fabricated using rapid-prototyping techniques.

    PubMed

    Chang-Yen, David A; Gale, Bruce K

    2003-11-01

    This paper details the design and fabrication of an integrated optical biochemical sensor using a select oxygen-sensitive fluorescent dye, tris(2,2'-bipyridyl) dichlororuthenium(ii) hexahydrate, combined with polymeric waveguides that are fabricated on a glass substrate. The sensor uses evanescent interaction of light confined within the waveguide with the dye that is immobilized on an SU-8 waveguide surface. Adhesion of the dye to the integrated waveguide surface is accomplished using a unique process of spin-coating/electrostatic layer-by-layer formation. The SU-8 waveguide was chemically modified to allow the deposition process. Exposure of the dye molecules to the analyte and subsequent chemical interaction is achieved by directly coupling the fluid channel to the integrated waveguide. The completed sensor was linear in the dissolved oxygen across a wide range of interest and had a sensitivity of 0.6 ppm. A unique fabrication aspect of this sensor is the inherent simplicity of the design, and the resulting rapidity of fabrication, while maintaining a high degree of functionality and flexibility.

  18. Effect of load eccentricity and substructure deformation on ultimate strength of shuttle orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.

    1981-01-01

    The effect of load eccentricity and substructure deformation on the ultimate strength and stress displacement properties of the shuttle orbiter thermal protection system (TPS) was determined. The LI-900 Reusable Surface Insulation (RSI) tiles mounted on the .41 cm thick Strain Isolator Pad (SIP) were investigated. Substructure deformations reduce the ultimate strength of the SIP/tile TPS and increase the scatter in the ultimate strength data. Substructure deformations that occur unsymmetric to the tile can cause the tile to rotate when subjected to a uniform applied load. Load eccentricity reduces SIP/tile TPS ultimate strength and causes tile rotation.

  19. Biochemical response of hybrid black poplar tissue culture (Populus × canadensis) on water stress.

    PubMed

    Popović, B M; Štajner, D; Ždero-Pavlović, R; Tari, I; Csiszár, J; Gallé, Á; Poór, P; Galović, V; Trudić, B; Orlović, S

    2017-05-01

    In this study, poplar tissue culture (hybrid black poplar, M1 genotype) was subjected to water stress influenced by polyethyleneglycol 6000 (100 and 200 mOsm PEG 6000). The aim of the research was to investigate the biochemical response of poplar tissue culture on water deficit regime. Antioxidant status was analyzed including antioxidant enzymes, superoxide-dismutase (SOD), catalase (CAT), guiacol-peroxidase (GPx), glutathione-peroxidase (GSH-Px), glutathione-reductase, reduced glutathione, total phenol content, Ferric reducing antioxidant power and DPPH radical antioxidant power. Polyphenol oxidase and phenylalanine-ammonium-lyase were determined as enzymatic markers of polyphenol metabolism. Among oxidative stress parameters lipid peroxidation, carbonyl-proteins, hydrogen-peroxide, reactive oxygen species, nitric-oxide and peroxynitrite were determined. Proline, proline-dehydrogenase and glycinebetaine were measured also as parameters of water stress. Cell viability is finally determined as a biological indicator of osmotic stress. It was found that water stress induced reactive oxygen and nitrogen species and lipid peroxidation in leaves of hybrid black poplar and reduced cell viability. Antioxidant enzymes including SOD, GPx, CAT and GSH-Px were induced but total phenol content and antioxidant capacity were reduced by PEG 6000 mediated osmotic stress. The highest biochemical response and adaptive reaction was the increase of proline and GB especially by 200 mOsm PEG. While long term molecular analysis will be necessary to fully address the poplar potentials for water stress adaptation, our results on hybrid black poplar suggest that glycine-betaine, proline and PDH enzyme might be the most important markers of poplar on water stress and that future efforts should be focused on these markers and strategies to enhance their concentration in poplar.

  20. A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes.

    PubMed

    Randall, D J; Rummer, J L; Wilson, J M; Wang, S; Brauner, C J

    2014-04-15

    Teleost fishes constitute 95% of extant aquatic vertebrates, and we suggest that this is related in part to their unique mode of tissue oxygenation. We propose the following sequence of events in the evolution of their oxygen delivery system. First, loss of plasma-accessible carbonic anhydrase (CA) in the gill and venous circulations slowed the Jacobs-Stewart cycle and the transfer of acid between the plasma and the red blood cells (RBCs). This ameliorated the effects of a generalised acidosis (associated with an increased capacity for burst swimming) on haemoglobin (Hb)-O2 binding. Because RBC pH was uncoupled from plasma pH, the importance of Hb as a buffer was reduced. The decrease in buffering was mediated by a reduction in the number of histidine residues on the Hb molecule and resulted in enhanced coupling of O2 and CO2 transfer through the RBCs. In the absence of plasma CA, nearly all plasma bicarbonate ultimately dehydrated to CO2 occurred via the RBCs, and chloride/bicarbonate exchange was the rate-limiting step in CO2 excretion. This pattern of CO2 excretion across the gills resulted in disequilibrium states for CO2 hydration/dehydration reactions and thus elevated arterial and venous plasma bicarbonate levels. Plasma-accessible CA embedded in arterial endothelia was retained, which eliminated the localized bicarbonate disequilibrium forming CO2 that then moved into the RBCs. Consequently, RBC pH decreased which, in conjunction with pH-sensitive Bohr/Root Hbs, elevated arterial oxygen tensions and thus enhanced tissue oxygenation. Counter-current arrangement of capillaries (retia) at the eye and later the swim bladder evolved along with the gas gland at the swim bladder. Both arrangements enhanced and magnified CO2 and acid production and, therefore, oxygen secretion to those specialised tissues. The evolution of β-adrenergically stimulated RBC Na(+)/H(+) exchange protected gill O2 uptake during stress and further augmented plasma disequilibrium states

  1. Regions of absolute ultimate boundedness for discrete-time systems.

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Weissenberger, S.

    1972-01-01

    This paper considers discrete-time systems of the Lur'e-Postnikov class where the linear part is not asymptotically stable and the nonlinear characteristic satisfies only partially the usual sector condition. Estimates of the resulting finite regions of absolute ultimate boundedness are calculated by means of a quadratic Liapunov function.

  2. The Ultimate Sampling Dilemma in Experience-Based Decision Making

    ERIC Educational Resources Information Center

    Fiedler, Klaus

    2008-01-01

    Computer simulations and 2 experiments demonstrate the ultimate sampling dilemma, which constitutes a serious obstacle to inductive inferences in a probabilistic world. Participants were asked to take the role of a manager who is to make purchasing decisions based on positive versus negative feedback about 3 providers in 2 different product…

  3. Wilderness education: The ultimate commitment to quality wilderness stewardship

    Treesearch

    Gregory F. Hansen; Tom Carlson

    2007-01-01

    The effective planning, implementation, and monitoring of a wilderness education program will ultimately produce measurable results that can be instrumental in achieving wilderness management goals and objectives. This paper will provide a simple step-by-step overview of how to develop and maintain a successful wilderness education program through planning,...

  4. Oxygen-deficient metabolism and corneal edema

    PubMed Central

    Leung, B.K.; Bonanno, J.A.; Radke, C.J.

    2014-01-01

    Wear of low-oxygen-transmissible soft contact lenses swells the cornea significantly, even during open eye. Although oxygen-deficient corneal edema is well-documented, a self-consistent quantitative prediction based on the underlying metabolic reactions is not available. We present a biochemical description of the human cornea that quantifies hypoxic swelling through the coupled transport of water, salt, and respiratory metabolites. Aerobic and anaerobic consumption of glucose, as well as acidosis and pH buffering, are incorporated in a seven-layer corneal model (anterior chamber, endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film). Corneal swelling is predicted from coupled transport of water, dissolved salts, and especially metabolites, along with membrane-transport resistances at the endothelium and epithelium. At the endothelium, the Na+/K+ - ATPase electrogenic channel actively transports bicarbonate ion from the stroma into the anterior chamber. As captured by the Kedem–Katchalsky membrane-transport formalism, the active bicarbonate-ion flux provides the driving force for corneal fluid pump-out needed to match the leak-in tendency of the stroma. Increased lactate-ion production during hypoxia osmotically lowers the pump-out rate requiring the stroma to swell to higher water content. Concentration profiles are predicted for glucose, water, oxygen, carbon dioxide, and hydronium, lactate, bicarbonate, sodium, and chloride ions, along with electrostatic potential and pressure profiles. Although the active bicarbonate-ion pump at the endothelium drives bicarbonate into the aqueous humor, we find a net flux of bicarbonate ion into the cornea that safeguards against acidosis. For the first time, we predict corneal swelling upon soft-contact-lens wear from fundamental biophysico-chemical principles. We also successfully predict that hypertonic tear alleviates contact-lens-induced edema. PMID:21820076

  5. Oxygen-deficient metabolism and corneal edema.

    PubMed

    Leung, B K; Bonanno, J A; Radke, C J

    2011-11-01

    Wear of low-oxygen-transmissible soft contact lenses swells the cornea significantly, even during open eye. Although oxygen-deficient corneal edema is well-documented, a self-consistent quantitative prediction based on the underlying metabolic reactions is not available. We present a biochemical description of the human cornea that quantifies hypoxic swelling through the coupled transport of water, salt, and respiratory metabolites. Aerobic and anaerobic consumption of glucose, as well as acidosis and pH buffering, are incorporated in a seven-layer corneal model (anterior chamber, endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film). Corneal swelling is predicted from coupled transport of water, dissolved salts, and especially metabolites, along with membrane-transport resistances at the endothelium and epithelium. At the endothelium, the Na+/K+ - ATPase electrogenic channel actively transports bicarbonate ion from the stroma into the anterior chamber. As captured by the Kedem-Katchalsky membrane-transport formalism, the active bicarbonate-ion flux provides the driving force for corneal fluid pump-out needed to match the leak-in tendency of the stroma. Increased lactate-ion production during hypoxia osmotically lowers the pump-out rate requiring the stroma to swell to higher water content. Concentration profiles are predicted for glucose, water, oxygen, carbon dioxide, and hydronium, lactate, bicarbonate, sodium, and chloride ions, along with electrostatic potential and pressure profiles. Although the active bicarbonate-ion pump at the endothelium drives bicarbonate into the aqueous humor, we find a net flux of bicarbonate ion into the cornea that safeguards against acidosis. For the first time, we predict corneal swelling upon soft-contact-lens wear from fundamental biophysico-chemical principles. We also successfully predict that hypertonic tear alleviates contact-lens-induced edema. Copyright © 2011 Elsevier Ltd. All rights

  6. Biochemical methane potential (BMP) of artichoke waste: the inoculum effect.

    PubMed

    Fabbri, Andrea; Serranti, Silvia; Bonifazi, Giuseppe

    2014-03-01

    The aim of this work was to investigate anaerobic digestibility of artichoke waste resulting from industrial transformation. A series of batch anaerobic digestion tests was performed in order to evaluate the biochemical methane potential of the matrix in respect of the process. A comparison of the different performances of the laboratory-scale reactors operating in mesophilic conditions and utilizing three different values of the inoculum/substrate ratio was carried out. The best performance was achieved with an inoculum/substrate ratio of 2. Artichoke-processing byproducts showed a classical organic waste decomposition behaviour: a fast start-up phase, an acclimation stage, and a final stabilization phase. Following this approach, artichoke waste reached chemical oxygen demand removal of about 90% in 40 days. The high methane yield (average 408.62 mL CH4 gvs (-1) voltatile solids), makes artichoke waste a good product to be utilized in anaerobic digestion plants for biogas production.

  7. Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms.

    PubMed

    Verberk, Wilco C E P; Durance, Isabelle; Vaughan, Ian P; Ormerod, Steve J

    2016-05-01

    Aquatic ecological responses to climatic warming are complicated by interactions between thermal effects and other environmental stressors such as organic pollution and hypoxia. Laboratory experiments have demonstrated how oxygen limitation can set heat tolerance for some aquatic ectotherms, but only at unrealistic lethal temperatures and without field data to assess whether oxygen shortages might also underlie sublethal warming effects. Here, we test whether oxygen availability affects both lethal and nonlethal impacts of warming on two widespread Eurasian mayflies, Ephemera danica, Müller 1764 and Serratella ignita (Poda 1761). Mayfly nymphs are often a dominant component of the invertebrate assemblage in streams, and play a vital role in aquatic and riparian food webs. In the laboratory, lethal impacts of warming were assessed under three oxygen conditions. In the field, effects of oxygen availability on nonlethal impacts of warming were assessed from mayfly occurrence in 42 293 UK stream samples where water temperature and biochemical oxygen demand were measured. Oxygen limitation affected both lethal and sublethal impacts of warming in each species. Hypoxia lowered lethal limits by 5.5 °C (±2.13) and 8.2 °C (±0.62) for E. danica and S. ignita respectively. Field data confirmed the importance of oxygen limitation in warmer waters; poor oxygenation drastically reduced site occupancy, and reductions were especially pronounced under warm water conditions. Consequently, poor oxygenation lowered optimal stream temperatures for both species. The broad concordance shown here between laboratory results and extensive field data suggests that oxygen limitation not only impairs survival at thermal extremes but also restricts species abundance in the field at temperatures well below upper lethal limits. Stream oxygenation could thus control the vulnerability of aquatic ectotherms to global warming. Improving water oxygenation and reducing pollution can provide

  8. Blood biochemical and cellular changes during a decompression procedure involving eight hours of oxygen prebreathing

    NASA Technical Reports Server (NTRS)

    Jauchem, J. R.

    1989-01-01

    Chemical and cellular parameters were measured in human subjects before and after exposure to a decompression schedule involving 8 h of oxygen prebreathing. The exposure was designed to simulate space-flight extravehicular activity (EVA) for 6 h. Several statistically significant changes in blood parameters were observed following the exposure: increases in calcium, magnesium, osmolality, low-density lipoprotein cholesterol, monocytes, and prothrombin time, and decreases in chloride, creatine phosphokinase and eosinophils. The changes, however, were small in magnitude and blood factor levels remained within normal clinical ranges. Thus, the decompression profile used in this study is not likely to result in blood changes that would pose a threat to astronauts during EVA.

  9. Fuelling the palaeoatmospheric oxygen debate: how much atmospheric oxygen is required for ignition and propagation of smouldering fires?

    NASA Astrophysics Data System (ADS)

    Belcher, Claire M.; Hadden, Rory; McElwain, Jennifer C.; Rein, Guillermo

    2010-05-01

    Fire is a natural process integral to ecosystems at a wide range of temporal and spatial scales and is a key driver of change in the Earth system. Fire has been a major influence on Earth's systems since the Carboniferous. Whilst, climate is considered the ultimate control on global vegetation, fire is now known to play a key role in determining vegetation structure and composition, such that many of the world's ecosystems can be considered fire-dependant. Products of fire include chars, soots and aromatic hydrocarbon species all of which can be traced in ancient through to modern sediments. Atmospheric oxygen has played a key role in the development of life on Earth, with the rise of oxygen in the Precambrian being closely linked to biological evolution. Variations in the concentration of atmospheric oxygen throughout the Phanerozoic are predicted from models based on geochemical cycling of carbon and sulphur. Such models predict that low atmospheric oxygen concentrations prevailed in the Mesozoic (251-65ma) and have been hypothesised to be the primary driver of at least two of the ‘big five' mass extinction events in the Phanerozoic. Here we assess the levels of atmospheric oxygen required to ignite a fire and infer the likely levels of atmospheric oxygen to support smouldering combustion. Smouldering fire dynamics and its effects on ecosystems are very different from flaming fires. Smouldering fires propagate slowly, are usually low in temperature and represent a flameless form of combustion. These fires creep through organic layers of forest ground and peat lands and are responsible for a large fraction of the total biomass consumed in wildfires globally and are also a major contributor of carbon dioxide to the atmosphere. Once ignited, they can persist for long periods of time (months, years) spreading over very extensive areas of forest and deep into soil. Smouldering fires are therefore, the oldest continuously burning fires on Earth. We have combined

  10. Uranium Stable Isotopes: A Proxy For Productivity Or Ocean Oxygenation?

    NASA Astrophysics Data System (ADS)

    Severmann, S.

    2015-12-01

    Uranium elemental abundances in sediments have traditionally been used to reconstruct primary productivity and carbon flux in the ocean. 238U/235U isotope compositions, in contrast, are currently understood to reflect the extent of bottom water anoxia in the ocean. A review of our current understanding of authigenic U enrichment mechanism into reducing sediments suggests that a revision of this interpretation is warranted. Specifically, the current interpretation of U isotope effects in suboxic vs. anoxic deposits has not taken into account the well-documented linear relationship with organic C burial rates. Although organic C rain rates (i.e., surface productivity) and bottom water oxygenation are clearly related, distinction between these two environmental controls is conceptually important as it relates to the mechanism of enhanced C burial and ultimately the strength of the biological pump. Here we will review new and existing data to test the hypothesis that the isotope composition of authigenic U in reducing sediments are best described by their relationship with parameters related to organic carbon delivery and burial, rather than bottom water oxygen concentration.

  11. Xeroderma pigmentosum: biochemical and genetic characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.; Bootsma, D.

    1975-01-01

    Biochemical and genetic studies on xeroderma pigmentosum are reviewed under the following headings: clinical features of xeroderma pigmentosum; karyotype; cell killing and host cell reactivation after irradiation or exposure to chemical carcinogens; SV40 transformation of xeroderma pigmentosum cells; biochemical defects in the common and de Sanctis-Cacchione forms of xeroderma pigmentosum; cell hybridization and complementation groups; biochemical defects in the xeroderma pigmentosum variant and the role of caffeine in DNA repair; DNA repair in xeroderma pigmentosum heterozygotes; response of xeroderma pigmentosum cells to various mutagens and chemical carcinogens; other high and low repair diseases; and possible significance of DNA repair inmore » theories of aging and carcinogenesis. (HLW)« less

  12. Photon energy upconverting nanopaper: a bioinspired oxygen protection strategy.

    PubMed

    Svagan, Anna J; Busko, Dmitry; Avlasevich, Yuri; Glasser, Gunnar; Baluschev, Stanislav; Landfester, Katharina

    2014-08-26

    The development of solid materials which are able to upconvert optical radiation into photons of higher energy is attractive for many applications such as photocatalytic cells and photovoltaic devices. However, to fully exploit triplet-triplet annihilation photon energy upconversion (TTA-UC), oxygen protection is imperative because molecular oxygen is an ultimate quencher of the photon upconversion process. So far, reported solid TTA-UC materials have focused mainly on elastomeric matrices with low barrier properties because the TTA-UC efficiency generally drops significantly in glassy and semicrystalline matrices. To overcome this limit, for example, combine effective and sustainable annihilation upconversion with exhaustive oxygen protection of dyes, we prepare a sustainable solid-state-like material based on nanocellulose. Inspired by the structural buildup of leaves in Nature, we compartmentalize the dyes in the liquid core of nanocellulose-based capsules which are then further embedded in a cellulose nanofibers (NFC) matrix. Using pristine cellulose nanofibers, a sustainable and environmentally friendly functional nanomaterial with ultrahigh barrier properties is achieved. Also, an ensemble of sensitizers and emitter compounds are encapsulated, which allow harvesting of the energy of the whole deep-red sunlight region. The films demonstrate excellent lifetime in synthetic air (20.5/79.5, O2/N2)-even after 1 h operation, the intensity of the TTA-UC signal decreased only 7.8% for the film with 8.8 μm thick NFC coating. The lifetime can be further modulated by the thickness of the protective NFC coating. For comparison, the lifetime of TTA-UC in liquids exposed to air is on the level of seconds to minutes due to fast oxygen quenching.

  13. Reduced Design Load Basis for Ultimate Blade Loads Estimation in Multidisciplinary Design Optimization Frameworks

    NASA Astrophysics Data System (ADS)

    Pavese, Christian; Tibaldi, Carlo; Larsen, Torben J.; Kim, Taeseong; Thomsen, Kenneth

    2016-09-01

    The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar to the one computed using the full DLB. This observation is used to propose a scheme that is computationally cheap, and that can be integrated inside an MDO framework, providing a sufficiently reliable estimation of the blade ultimate loading. The latter aspect is of key importance when design variables implementing passive control methodologies are included in the formulation of the optimization problem. An MDO of a 10 MW wind turbine blade is presented as an applied case study to show the efficacy of the reduced DLB concept.

  14. Ultimate Load Behaviour of Reinforced Concrete Beam with Corroded Reinforcement

    NASA Astrophysics Data System (ADS)

    Kanchana Devi, A.; Ramajaneyulu, K.; Sundarkumar, S.; Ramesh, G.; Bharat Kumar, B. H.; Krishna Moorthy, T. S.

    2017-12-01

    Corrosion of reinforcement reduces the load carrying capacity, energy dissipation and ductility of Reinforced Concrete (RC) members. In the present study, reinforcements of RC beam are subjected to 10, 25, and 30% corrosion and the respective RC beams are tested to evaluate their ultimate load behaviour. A huge drop in energy dissipation capacity of the RC beam is observed beyond the corrosion level of 10%. Further, nonlinear finite element analysis is employed to assess the load-displacement behaviour and ultimate load of RC beam. The corrosion induced damage to the reinforcement is represented in the finite element model by modifying its mechanical properties based on the results reported in the literature. The resultant load versus displacement curves of reinforced concrete beams are obtained. Good correlation is observed between the finite element analysis results and that obtained from experimental investigation on the control beam. The experimental results are also compared with the finite element analysis results for RC beams with corroded reinforcement. In order to understand the effect of corrosion on the mechanical properties of reinforcement, the corroded reinforcements are modelled in nonlinear finite element analysis by (i) reducing the area of reinforcement alone (ii) by reducing both area and mechanical properties and (iii) reducing the mechanical properties without reducing the area of steel as reported in literature. The results obtained for the beam with corroded reinforcement confirms reduction in yield stress and ultimate stress of the reinforcement steel.

  15. Effect of propofol on hypoxia re-oxygenation induced neuronal cell damage in vitro*.

    PubMed

    Huang, Y; Zitta, K; Bein, B; Scholz, J; Steinfath, M; Albrecht, M

    2013-01-01

    Propofol may protect neuronal cells from hypoxia re-oxygenation injury, possibly via an antioxidant actions under hypoxic conditions. This study investigated the molecular effects of propofol on hypoxia-induced cell damage using a neuronal cell line. Cultured human IMR-32 cells were exposed to propofol (30 μm) and biochemical and molecular approaches were used to assess cellular effects. Propofol significantly reduced hypoxia-mediated increases in lactate dehydrogenase, a marker of cell damage (mean (SD) for normoxia: 0.39 (0.07) a.u.; hypoxia: 0.78 (0.21) a.u.; hypoxia+propofol: 0.44 (0.17) a.u.; normoxia vs hypoxia, p<0.05; hypoxia vs hypoxia+propofol, p<0.05), reactive oxygen species and hydrogen peroxide. Propofol also diminished the morphological signs of cell damage. Increased amounts of catalase, which degrades hydrogen peroxide, were detected under hypoxic conditions. Propofol decreased the amount of catalase produced, but increased its enzymatic activity. Propofol protects neuronal cells from hypoxia re-oxygenation injury, possibly via a combined direct antioxidant effect along with induced cellular antioxidant mechanisms. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.

  16. High Precision Continuous and Real-Time Measurement of Atmospheric Oxygen Using Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim-Hak, David; Leuenberger, Markus; Berhanu, Tesfaye; Nyfeler, Peter; Hoffnagle, John; Sun, Minghua

    2017-04-01

    Oxygen (O2) is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis and can be used as a top-down constraint on the carbon cycle. The observed variations of oxygen in the atmosphere are relatively small, in the order of a few ppm's. This presents the main technical challenge for the measurement since a very high level of precision on a large background is required. Only few analytical methods including mass spectrometry, fuel, ultraviolet[1] and paramagnetic cells are capable of achieving it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and its oxygen isotope ratio 18O/16O. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-50%. We will present comparative test results of this instrument against the incumbent technologies such as the mass spectrometer and the paramagnetic cell. In addition, we will demonstrate its long-term stability from a field deployment in Switzerland.

  17. 49 Stories That Make an Ultimate STEM Lesson Plan

    ERIC Educational Resources Information Center

    Mehta, Swati; Mehta, Rohit; Berzina-Pitcher, Inese; Seals, Christopher; Mishra, Punya

    2016-01-01

    In this paper we reviewed what 49 large urban public school district STEM teachers enrolled in a year-long graduate certificate and fellowship program at a large Midwestern university considered as their amazing teaching moments. They were asked to share their amazing teaching moments that would make an Ultimate Lesson Plan in STEM. In smaller…

  18. Optically based quantification of absolute cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution in rodents

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Sakadžić, Sava; Vinogradov, Sergei A.; Boas, David A.

    2010-02-01

    Measuring oxygen delivery in brain tissue is important for identifying the pathophysiological changes associated with brain injury and various diseases such as cancer, stroke, and Alzheimer's disease. We have developed a multi-modal imaging system for minimally invasive measurement of cerebral oxygenation and blood flow in small animals with high spatial resolution. The system allows for simultaneous measurement of blood flow using Fourier-domain optical coherence tomography, and oxygen partial pressure (pO2) using either confocal or multiphoton phosphorescence lifetime imaging with exogenous porphyrin-based dyes sensitive to dissolved oxygen. Here we present the changes in pO2 and blood flow in superficial cortical vessels of Sprague Dawley rats in response to conditions such as hypoxia, hyperoxia, and functional stimulation. pO2 measurements display considerable heterogeneity over distances that cannot be resolved with more widely used oxygen-monitoring techniques such as BOLD-fMRI. Large increases in blood flow are observed in response to functional stimulation and hypoxia. Our system allows for quantification of cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution, providing a better understanding of metabolic dynamics during functional stimulation and under various neuropathologies. Ultimately, better insight into the underlying mechanisms of neuropathologies will facilitate the development of improved therapeutic strategies to minimize damage to brain tissue.

  19. Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, Mattia; Grassellino, Anna; Martinello, Martina

    2016-06-01

    The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q 0 at high gradients.

  20. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts.

    PubMed

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei; Cleemann, Lars N; Xing, Wei; Bjerrum, Niels J; Li, Qingfeng

    2014-04-01

    Nonprecious metal catalysts for the oxygen reduction reaction are the ultimate materials and the foremost subject for low-temperature fuel cells. A novel type of catalysts prepared by high-pressure pyrolysis is reported. The catalyst is featured by hollow spherical morphologies consisting of uniform iron carbide (Fe3 C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR). As a result the catalyst is highly active and stable in both acid and alkaline electrolytes. The synthetic approach, the carbide-based catalyst, the structure of the catalysts, and the proposed mechanism open new avenues for the development of ORR catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Interplay between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway.

    PubMed

    Boyd, Eric S; Thomas, Khaleh M; Dai, Yuyuan; Boyd, Jeff M; Outten, F Wayne

    2014-09-23

    Iron-sulfur (Fe-S) cluster metalloproteins conduct essential functions in nearly all contemporary forms of life. The nearly ubiquitous presence of Fe-S clusters and the fundamental requirement for Fe-S clusters in both aerobic and anaerobic Archaea, Bacteria, and Eukarya suggest that these clusters were likely integrated into central metabolic pathways early in the evolution of life prior to the widespread oxidation of Earth's atmosphere. Intriguingly, Fe-S cluster-dependent metabolism is sensitive to disruption by oxygen because of the decreased bioavailability of ferric iron as well as direct oxidation of sulfur trafficking intermediates and Fe-S clusters by reactive oxygen species. This fact, coupled with the ubiquity of Fe-S clusters in aerobic organisms, suggests that organisms evolved with mechanisms that facilitate the biogenesis and use of these essential cofactors in the presence of oxygen, which gradually began to accumulate around 2.5 billion years ago as oxygenic photosynthesis proliferated and reduced minerals that buffered against oxidation were depleted. This review highlights the most ancient of the Fe-S cluster biogenesis pathways, the Suf system, which likely was present in early anaerobic forms of life. Herein, we use the evolution of the Suf pathway to assess the relationships between the biochemical functions and physiological roles of Suf proteins, with an emphasis on the selective pressure of oxygen toxicity. Our analysis suggests that diversification into oxygen-containing environments disrupted iron and sulfur metabolism and was a main driving force in the acquisition of accessory Suf proteins (such as SufD, SufE, and SufS) by the core SufB-SufC scaffold complex. This analysis provides a new framework for the study of Fe-S cluster biogenesis pathways and Fe-S cluster-containing metalloenzymes and their complicated patterns of divergence in response to oxygen.

  2. Interplay between Oxygen and Fe–S Cluster Biogenesis: Insights from the Suf Pathway

    PubMed Central

    2015-01-01

    Iron–sulfur (Fe–S) cluster metalloproteins conduct essential functions in nearly all contemporary forms of life. The nearly ubiquitous presence of Fe–S clusters and the fundamental requirement for Fe–S clusters in both aerobic and anaerobic Archaea, Bacteria, and Eukarya suggest that these clusters were likely integrated into central metabolic pathways early in the evolution of life prior to the widespread oxidation of Earth’s atmosphere. Intriguingly, Fe–S cluster-dependent metabolism is sensitive to disruption by oxygen because of the decreased bioavailability of ferric iron as well as direct oxidation of sulfur trafficking intermediates and Fe–S clusters by reactive oxygen species. This fact, coupled with the ubiquity of Fe–S clusters in aerobic organisms, suggests that organisms evolved with mechanisms that facilitate the biogenesis and use of these essential cofactors in the presence of oxygen, which gradually began to accumulate around 2.5 billion years ago as oxygenic photosynthesis proliferated and reduced minerals that buffered against oxidation were depleted. This review highlights the most ancient of the Fe–S cluster biogenesis pathways, the Suf system, which likely was present in early anaerobic forms of life. Herein, we use the evolution of the Suf pathway to assess the relationships between the biochemical functions and physiological roles of Suf proteins, with an emphasis on the selective pressure of oxygen toxicity. Our analysis suggests that diversification into oxygen-containing environments disrupted iron and sulfur metabolism and was a main driving force in the acquisition of accessory Suf proteins (such as SufD, SufE, and SufS) by the core SufB–SufC scaffold complex. This analysis provides a new framework for the study of Fe–S cluster biogenesis pathways and Fe–S cluster-containing metalloenzymes and their complicated patterns of divergence in response to oxygen. PMID:25153801

  3. Biochemical mechanisms of cisplatin cytotoxicity.

    PubMed

    Cepeda, Victoria; Fuertes, Miguel A; Castilla, Josefina; Alonso, Carlos; Quevedo, Celia; Pérez, Jose M

    2007-01-01

    Since the discovery by Rosenberg and collaborators of the antitumor activity of cisplatin 35 years ago, three platinum antitumor drugs (cisplatin, carboplatin and oxaliplatin) have enjoyed a huge clinical and commercial hit. Ever since the initial discovery of the anticancer activity of cisplatin, major efforts have been devoted to elucidate the biochemical mechanisms of antitumor activity of cisplatin in order to be able to rationally design novel platinum based drugs with superior pharmacological profiles. In this report we attempt to provide a current picture of the known facts pertaining to the mechanism of action of the drug, including those involved in drug uptake, DNA damage signals transduction, and cell death through apoptosis or necrosis. A deep knowledge of the biochemical mechanisms, which are triggered in the tumor cell in response to cisplatin injury not only may lead to the design of more efficient platinum antitumor drugs but also may provide new therapeutic strategies based on the biochemical modulation of cisplatin activity.

  4. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers

    PubMed Central

    Koehler, Raymond C.; Fronticelli, Clara; Bucci, Enrico

    2008-01-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4–34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery. PMID:18230370

  5. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers.

    PubMed

    Koehler, Raymond C; Fronticelli, Clara; Bucci, Enrico

    2008-10-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4-34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery.

  6. Biochemical effects of three chlorinated phenols in rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitchin, K.T.; Brown, J.L.

    1988-01-01

    The hepatic biochemical effects of four chlorinated oxygen containing environmental contaminants were determined. Two oral doses of 1/5 the LD50 of 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol and 2,3,4,6-tetrachlorophenol were given 21 and 4 hours before sacrifice to adult female rats. Although 2,4,6-trichlorophenol is a carcinogen in lifetime rodent studies, no evidence was found for DNA damage in rat liver or the white cells of rat blood. Similiarly no compound related changes were found in serum alanine aminotransferase, hepatic glutathione or cytochrome P-450 content. A dose of 193 mg/kg/day (slightly over the published rat LD50) of 2,3,4,6-tetrachlorophenol increased 5-fold the activity ofmore » hepatic ornithine decarboxylase. As 2,4,6-trichlorophenol did not damage DNA or induce hepatic ornithine decarboxylase (a marker of carcinogenic promotion) in the study, no explanation is apparent why this molecule is a carcinogen in rodent lifetime exposures and structurally related congeners are not.« less

  7. Mercury-induced biochemical and proteomic changes in rice roots.

    PubMed

    Chen, Yun-An; Chi, Wen-Chang; Huang, Tsai-Lien; Lin, Chung-Yi; Quynh Nguyeh, Thi Thuy; Hsiung, Yu-Chywan; Chia, Li-Chiao; Huang, Hao-Jen

    2012-06-01

    Mercury (Hg) is a serious environmental pollution threats to the planet. Accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. We investigated cellular, biochemical and proteomic changes in rice roots under Hg stress. Root growth rate was decreased and Hg, reactive oxygen species (ROS), and malondialdehyde (MDA) content and lipoxygenase activity were increased significantly with increasing Hg concentration in roots. We revealed a time-dependent alteration in total glutathione content and enzymatic activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) during Hg stress. 2-D electrophoresis revealed differential expression of 25 spots with Hg treatment of roots: 14 spots were upregulated and 11 spots downregulated. These differentially expressed proteins were identified by ESI-MS/MS to be involved in cellular functions including redox and hormone homeostasis, chaperone activity, metabolism, and transcription regulation. These results may provide new insights into the molecular basis of the Hg stress response in plants. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Multiple proximate and ultimate causes of natal dispersal in white-tailed deer

    USGS Publications Warehouse

    Long, E.S.; Diefenbach, D.R.; Rosenberry, C.S.; Wallingford, B.D.

    2008-01-01

    Proximate and ultimate causes of dispersal in vertebrates vary, and relative importance of these causes is poorly understood. Among populations, inter- and intrasexual social cues for dispersal are thought to reduce inbreeding and local mate competition, respectively, and specific emigration cue may affect dispersal distance, such that inbreeding avoidance dispersal tends to be farther than dispersal to reduce local competition. To investigate potential occurrence of multiple proximate and ultimate causes of dispersal within populations, we radio-marked 363 juvenile male white-tailed deer (Odocoileus virginianus) in 2 study areas in Pennsylvania. Natal dispersal probability and distance were monitored over a 3-year period when large-scale management changes reduced density of adult females and increased density of adult males. Most dispersal (95-97%) occurred during two 12-week periods: spring, when yearling males still closely associate with related females, and prior to fall breeding season, when yearling males closely associate with other breeding-age males. Following changes to sex and age structure that reduced potential for inbreeding and increased potential for mate competition, annual dispersal probability did not change; however, probability of spring dispersal decreased, whereas probability of fall dispersal increased. Spring dispersal distances were greater than fall dispersal distances, suggesting that adaptive inbreeding avoidance dispersal requires greater distance than mate competition dispersal where opposite-sex relatives are philopatric and populations are not patchily distributed. Both inbreeding avoidance and mate competition are important ultimate causes of dispersal of white-tailed deer, but ultimate motivations for dispersal are proximately cued by different social mechanisms and elicit different responses in dispersers.

  9. HEMOXCell, a New Oxygen Carrier Usable as an Additive for Mesenchymal Stem Cell Culture in Platelet Lysate-Supplemented Media.

    PubMed

    Le Pape, Fiona; Cosnuau-Kemmat, Lucie; Richard, Gaëlle; Dubrana, Frédéric; Férec, Claude; Zal, Franck; Leize, Elisabeth; Delépine, Pascal

    2017-04-01

    Human mesenchymal stem cells (MSCs) are promising candidates for therapeutic applications such as tissue engineering. However, one of the main challenges is to improve oxygen supply to hypoxic areas to reduce oxygen gradient formation while preserving MSC differentiation potential and viability. For this purpose, a marine hemoglobin, HEMOXCell, was evaluated as an oxygen carrier for culturing human bone marrow MSCs in vitro for future three-dimensional culture applications. Impact of HEMOXCell on cell growth and viability was assessed in human platelet lysate (hPL)-supplemented media. Maintenance of MSC features, such as multipotency and expression of MSC specific markers, was further investigated by biochemical assays and flow cytometry analysis. Our experimental results highlight its oxygenator potential and indicate that an optimal concentration of 0.025 g/L HEMOXCell induces a 25%-increase of the cell growth rate, preserves MSC phenotype, and maintains MSC differentiation properties; a two-fold higher concentration induces cell detachment without altering cell viability. Our data suggest the potential interest of HEMOXCell as a natural oxygen carrier for tissue engineering applications to oxygenate hypoxic areas and to maintain cell viability, functions and "stemness." These features will be further tested within three-dimensional scaffolds. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  10. How to investigate neuro-biochemical relationships on a regional level in humans? Methodological considerations for combining functional with biochemical imaging.

    PubMed

    Duncan, Niall W; Wiebking, Christine; Muñoz-Torres, Zeidy; Northoff, Georg

    2014-01-15

    There is an increasing interest in combining different imaging modalities to investigate the relationship between neural and biochemical activity. More specifically, imaging techniques like MRS and PET that allow for biochemical measurement are combined with techniques like fMRI and EEG that measure neural activity in different states. Such combination of neural and biochemical measures raises not only technical issues, such as merging the different data sets, but also several methodological issues. These methodological issues – ranging from hypothesis generation and hypothesis-guided use of technical facilities to target measures and experimental measures – are the focus of this paper. We discuss the various methodological problems and issues raised by the combination of different imaging methodologies in order to investigate neuro-biochemical relationships on a regional level in humans. For example, the choice of transmitter and scan type is discussed, along with approaches to allow the establishment of particular specificities (such as regional or biochemical) to in turn make results fully interpretable. An algorithm that can be used as a form of checklist for designing such multimodal studies is presented. The paper concludes that while several methodological and technical caveats needs to be overcome and addressed, multimodal imaging of the neuro-biochemical relationship provides an important tool to better understand the physiological mechanisms of the human brain.

  11. How to investigate neuro-biochemical relationships on a regional level in humans? Methodological considerations for combining functional with biochemical imaging.

    PubMed

    Duncan, Niall W; Wiebking, Christine; Munoz-Torres, Zeidy; Northoff, Georg

    2013-10-25

    There is an increasing interest in combining different imaging modalities to investigate the relationship between neural and biochemical activity. More specifically, imaging techniques like MRS and PET that allow for biochemical measurement are combined with techniques like fMRI and EEG that measure neural activity in different states. Such combination of neural and biochemical measures raises not only technical issues, such as merging the different data sets, but also several methodological issues. These methodological issues - ranging from hypothesis generation and hypothesis-guided use of technical facilities to target measures and experimental measures - are the focus of this paper. We discuss the various methodological problems and issues raised by the combination of different imaging methodologies in order to investigate neuro-biochemical relationships on a regional level in humans. For example, the choice of transmitter and scan type is discussed, along with approaches to allow the establishment of particular specificities (such as regional or biochemical) to in turn make results fully interpretable. An algorithm that can be used as a form of checklist for designing such multimodal studies is presented. The paper concludes that while several methodological and technical caveats needs to be overcome and addressed, multimodal imaging of the neuro-biochemical relationship provides an important tool to better understand the physiological mechanisms of the human brain. Copyright © 2013. Published by Elsevier B.V.

  12. Getting “Just Deserts” or Seeing the “Silver Lining”: The Relation between Judgments of Immanent and Ultimate Justice

    PubMed Central

    Harvey, Annelie J.; Callan, Mitchell J.

    2014-01-01

    People can perceive misfortunes as caused by previous bad deeds (immanent justice reasoning) or resulting in ultimate compensation (ultimate justice reasoning). Across two studies, we investigated the relation between these types of justice reasoning and identified the processes (perceptions of deservingness) that underlie them for both others (Study 1) and the self (Study 2). Study 1 demonstrated that observers engaged in more ultimate (vs. immanent) justice reasoning for a “good” victim and greater immanent (vs. ultimate) justice reasoning for a “bad” victim. In Study 2, participants' construals of their bad breaks varied as a function of their self-worth, with greater ultimate (immanent) justice reasoning for participants with higher (lower) self-esteem. Across both studies, perceived deservingness of bad breaks or perceived deservingness of ultimate compensation mediated immanent and ultimate justice reasoning respectively. PMID:25036011

  13. Transcending matter: physics and ultimate meaning.

    PubMed

    Paulson, Steve; Frank, Adam; Kaiser, David; Maudlin, Tim; Natarajan, Priyamvada

    2015-12-01

    From the discovery of new galaxies and nearly undetectable dark energy to the quantum entanglement of particles across the universe, new findings in physics naturally elicit a sense of awe and wonder. For the founders of modern physics-from Einstein and Bohr to Heisenberg, Pauli, and Bohm-a fascination with deeper questions of meaning and ultimate reality led some of them to explore esoteric traditions and metaphysics. More recently, however, physicists have largely shunned such philosophical and spiritual associations. What can contemporary physics offer us in the quest to understand our place in the universe? Has physics in some ways become a religion unto itself that rejects the search for existential meaning? Discussion of these and related questions is presented in this paper. © 2015 New York Academy of Sciences.

  14. One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois

    USGS Publications Warehouse

    Robertson, Dale M.

    2000-01-01

    As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.

  15. 37. ALTERNATE DESIGN, SIMILAR TO THAT ULTIMATELY SELECTED, BUT USING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. ALTERNATE DESIGN, SIMILAR TO THAT ULTIMATELY SELECTED, BUT USING STEPPED TOWERS, AND WITH PYLONS CAPPED BY LANTERNS Pen-and-ink drawing by project architect Alfred Eichler, ca. 1934. - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  16. Effect of sleep-wake reversal and sleep deprivation on the circadian rhythm of oxygen toxicity seizure susceptibility.

    NASA Technical Reports Server (NTRS)

    Dexter, J. D.; Hof, D. G.; Mengel, C. E.

    1972-01-01

    Albino Sprague-Dawley rats were exposed in a previously O2 flushed, CO2 free chamber. The exposure began with attainment of 60 psi (gauge) and the end point was the first generalized oxygen toxicity seizure. Animals were exposed to reversal diurnal conditions since weanlings until their sleep-wake cycles had completely reversed, and then divided into four groups of 20 based on the time of day exposed. The time of exposure to oxygen at high pressure prior to seizure was now significantly longer in the group exposed from 1900 to 2000 hr and a reversal of the circadian rhythm of oxygen toxicity seizure susceptibility was noted. Animals maintained on normal diurnal conditions were deprived of sleep on the day of exposure for the 12 hours prior to exposure at 1900 hr, while controls were allowed to sleep. There was no significant differences in the time prior to seizure between the deprived animals and the controls with an n = 40. Thus the inherent threshold in susceptibility to high-pressure oxygen seizures seems not to be a function of sleep itself, but of some biochemical/physiologic event which manifests a circadian rhythm.

  17. biochem4j: Integrated and extensible biochemical knowledge through graph databases.

    PubMed

    Swainston, Neil; Batista-Navarro, Riza; Carbonell, Pablo; Dobson, Paul D; Dunstan, Mark; Jervis, Adrian J; Vinaixa, Maria; Williams, Alan R; Ananiadou, Sophia; Faulon, Jean-Loup; Mendes, Pedro; Kell, Douglas B; Scrutton, Nigel S; Breitling, Rainer

    2017-01-01

    Biologists and biochemists have at their disposal a number of excellent, publicly available data resources such as UniProt, KEGG, and NCBI Taxonomy, which catalogue biological entities. Despite the usefulness of these resources, they remain fundamentally unconnected. While links may appear between entries across these databases, users are typically only able to follow such links by manual browsing or through specialised workflows. Although many of the resources provide web-service interfaces for computational access, performing federated queries across databases remains a non-trivial but essential activity in interdisciplinary systems and synthetic biology programmes. What is needed are integrated repositories to catalogue both biological entities and-crucially-the relationships between them. Such a resource should be extensible, such that newly discovered relationships-for example, those between novel, synthetic enzymes and non-natural products-can be added over time. With the introduction of graph databases, the barrier to the rapid generation, extension and querying of such a resource has been lowered considerably. With a particular focus on metabolic engineering as an illustrative application domain, biochem4j, freely available at http://biochem4j.org, is introduced to provide an integrated, queryable database that warehouses chemical, reaction, enzyme and taxonomic data from a range of reliable resources. The biochem4j framework establishes a starting point for the flexible integration and exploitation of an ever-wider range of biological data sources, from public databases to laboratory-specific experimental datasets, for the benefit of systems biologists, biosystems engineers and the wider community of molecular biologists and biological chemists.

  18. biochem4j: Integrated and extensible biochemical knowledge through graph databases

    PubMed Central

    Batista-Navarro, Riza; Dunstan, Mark; Jervis, Adrian J.; Vinaixa, Maria; Ananiadou, Sophia; Faulon, Jean-Loup; Kell, Douglas B.

    2017-01-01

    Biologists and biochemists have at their disposal a number of excellent, publicly available data resources such as UniProt, KEGG, and NCBI Taxonomy, which catalogue biological entities. Despite the usefulness of these resources, they remain fundamentally unconnected. While links may appear between entries across these databases, users are typically only able to follow such links by manual browsing or through specialised workflows. Although many of the resources provide web-service interfaces for computational access, performing federated queries across databases remains a non-trivial but essential activity in interdisciplinary systems and synthetic biology programmes. What is needed are integrated repositories to catalogue both biological entities and–crucially–the relationships between them. Such a resource should be extensible, such that newly discovered relationships–for example, those between novel, synthetic enzymes and non-natural products–can be added over time. With the introduction of graph databases, the barrier to the rapid generation, extension and querying of such a resource has been lowered considerably. With a particular focus on metabolic engineering as an illustrative application domain, biochem4j, freely available at http://biochem4j.org, is introduced to provide an integrated, queryable database that warehouses chemical, reaction, enzyme and taxonomic data from a range of reliable resources. The biochem4j framework establishes a starting point for the flexible integration and exploitation of an ever-wider range of biological data sources, from public databases to laboratory-specific experimental datasets, for the benefit of systems biologists, biosystems engineers and the wider community of molecular biologists and biological chemists. PMID:28708831

  19. S-nitrosylation of GAD65 is implicated in decreased GAD activity and oxygen-induced seizures.

    PubMed

    Gasier, Heath G; Demchenko, Ivan T; Tatro, Lynn G; Piantadosi, Claude A

    2017-07-13

    Breathing oxygen at partial pressures ≥2.5 atmospheres absolute, which can occur in diving and hyperbaric oxygen (HBO 2 ) therapy, can rapidly become toxic to the central nervous system (CNS). This neurotoxicity culminates in generalized EEG epileptiform discharges, tonic-clonic convulsions and ultimately death. Increased production of neuronal nitric oxide (NO) has been implicated in eliciting hyperoxic seizures by altering the equilibrium between glutamatergic and GABAergic synaptic transmission. Inhibition of glutamic acid decarboxylase (GAD) activity in HBO 2 promotes this imbalance; however, the mechanisms by which this occurs is unknown. Therefore, we conducted a series of experiments using mice, a species that is highly susceptible to CNS oxygen toxicity, to explore the possibility that NO modulates GABA metabolism. Mice were exposed to 100% oxygen at 4 ATA for various durations, and brain GAD and GABA transaminase (GABA-T) activity, as well as S-nitrosylation of GAD65 and GAD67 were determined. HBO 2 inhibited GAD activity by 50% and this was negatively correlated with S-nitrosylation of GAD65, whereas GABA-T activity and S-nitrosylation of GAD67 were unaltered. These results suggest a new mechanism by which NO alters GABA metabolism, leading to neuroexcitation and seizures in HBO 2 . Published by Elsevier B.V.

  20. Complexity and performance of on-chip biochemical assays

    NASA Astrophysics Data System (ADS)

    Kopf-Sill, Anne R.; Nikiforov, Theo; Bousse, Luc J.; Nagle, Rob; Parce, J. W.

    1997-03-01

    The use of microchips for performing biochemical processes has the potential to reduce reagent use and thus assay costs, increase throughput, and automate complex processes. We are building a multifunctional platform that provides sensing and actuation functions for a variety of microchip- based biochemical and analytical processes. Here we describe recent experiments that include on-chip dilution, reagent mixing, reaction, separation, and detection for important classes of biochemical assays. Issues in chip design and control are discussed.

  1. Ultimate explanations and suboptimal choice.

    PubMed

    Vasconcelos, Marco; Machado, Armando; Pandeirada, Josefa N S

    2018-07-01

    Researchers have unraveled multiple cases in which behavior deviates from rationality principles. We propose that such deviations are valuable tools to understand the adaptive significance of the underpinning mechanisms. To illustrate, we discuss in detail an experimental protocol in which animals systematically incur substantial foraging losses by preferring a lean but informative option over a rich but non-informative one. To understand how adaptive mechanisms may fail to maximize food intake, we review a model inspired by optimal foraging principles that reconciles sub-optimal choice with the view that current behavioral mechanisms were pruned by the optimizing action of natural selection. To move beyond retrospective speculation, we then review critical tests of the model, regarding both its assumptions and its (sometimes counterintuitive) predictions, all of which have been upheld. The overall contention is that (a) known mechanisms can be used to develop better ultimate accounts and that (b) to understand why mechanisms that generate suboptimal behavior evolved, we need to consider their adaptive value in the animal's characteristic ecology. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Lego bricks and the octet rule: Molecular models for biochemical pathways with plastic, interlocking toy bricks.

    PubMed

    Lin, Henry J; Lehoang, Jennifer; Kwan, Isabel; Baghaee, Anita; Prasad, Priya; Ha-Chen, Stephanie J; Moss, Tanesha; Woods, Jeremy D

    2018-01-01

    The 8 studs on a 2 × 4 Lego brick conveniently represent the outer shell of electrons for carbon, nitrogen, and oxygen atoms. We used Lego bricks to model these atoms, which are then joined together to form molecules by following the Lewis octet rule. A variety of small biological molecules can be modeled in this way, such as most amino acids, fatty acids, glucose, and various intermediate metabolites. Model building with these familiar toys can be a helpful, hands-on exercise for learning-or re-learning-biochemical pathways. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):54-57, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  3. Blood biochemical and cellular changes during decompression and simulated extravehicular activity

    NASA Technical Reports Server (NTRS)

    Jauchem, J. R.; Waligora, J. M.; Johnson, P. C. Jr

    1990-01-01

    Blood biochemical and cellular parameters were measured in human subjects before and after exposure to a decompression schedule involving 6 h of oxygen prebreathing. The exposure was designed to simulate extravehicular activity for 6 h (subjects performed exercise while exposed to 29.6 kPa). There were no significant differences between blood samples from subjects who were susceptible (n = 11) versus those who were resistant (n = 27) to formation of venous gas emboli. Although several statistically significant (P less than 0.05) changes in blood parameters were observed following the exposure (increases in white blood cell count, prothrombin time, and total bilirubin, and decreases in triglycerides, very-low-density lipoprotein cholesterol, and blood urea nitrogen), the changes were small in magnitude and blood factor levels remained within normal clinical ranges. Thus, the decompression schedule used in this study is not likely to result in blood changes that would pose a threat to astronauts during extravehicular activity.

  4. Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli

    PubMed Central

    Ihssen, Julian; Reiss, Renate; Luchsinger, Ronny; Thöny-Meyer, Linda; Richter, Michael

    2015-01-01

    Laccases are multi-copper oxidases that oxidize a broad range of substrates at the expense of molecular oxygen, without any need for co-factor regeneration. These enzymes bear high potential for the sustainable synthesis of fine chemicals and the modification of (bio)polymers. Here we describe cloning and expression of five novel bacterial laccase-like multi copper oxidases (LMCOs) of diverse origin which were identified by homology searches in online databases. Activity yields under different expression conditions and temperature stabilities were compared to three previously described enzymes from Bacillus subtilis, Bacillus pumilus and Bacillus clausii. In almost all cases, a switch to oxygen-limited growth conditions after induction increased volumetric activity considerably. For proteins with predicted signal peptides for secretion, recombinant expression with and without signal sequence was investigated. Bacillus CotA-type LMCOs outperformed enzymes from Streptomyces and Gram-negative bacteria with respect to activity yields in Escherichia coli and application relevant biochemical properties. The novel Bacillus coagulans LMCO combined high activity yields in E. coli with unprecedented activity at strong alkaline pH and high storage stability, making it a promising candidate for further development. PMID:26068013

  5. Cytotoxic, biochemical and genotoxic effects of biodiesel produced by different routes on ZFL cell line.

    PubMed

    Cavalcante, Dalita G S M; da Silva, Natara D G; Marcarini, Juliana Cristina; Mantovani, Mário Sérgio; Marin-Morales, Maria A; Martinez, Cláudia B R

    2014-09-01

    Transesterification has proved to be the best option for obtaining biodiesel and, depending on the type of alcohol used in the reaction, the type of biodiesel may be methyl ester or ethyl ester. Leaking biodiesel can reach water bodies, contaminating aquatic organisms, particularly fish. The objective of this study was to determine whether the soluble fraction of biodiesel (Bd), produced by both the ethylic (BdEt) and methylic (BdMt) routes, can cause cytotoxic, biochemical and genotoxic alterations in the hepatocyte cell line of Danio rerio (ZFL). The metabolic activity of the cell was quantified by the MTT reduction method, while genotoxic damage was analyzed by the comet assay with the addition of specific endonucleases. The production of reactive oxygen species (ROS) and antioxidant/biotransformation enzymes activity also were determined. The results indicate that both Bd increased ROS production, glutathione S-transferase activity and the occurrence of DNA damage. BdMt showed higher cytotoxicity than BdEt, and also caused oxidative damage to the DNA. In general, both Bd appear to be stressors for the cells, causing cytotoxic, biochemical and genetic alterations in ZFL cells, but the type and intensity of the changes found appear to be dependent on the biodiesel production route. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  7. Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.

    PubMed

    Planavsky, Noah J; Reinhard, Christopher T; Wang, Xiangli; Thomson, Danielle; McGoldrick, Peter; Rainbird, Robert H; Johnson, Thomas; Fischer, Woodward W; Lyons, Timothy W

    2014-10-31

    The oxygenation of Earth's surface fundamentally altered global biogeochemical cycles and ultimately paved the way for the rise of metazoans at the end of the Proterozoic. However, current estimates for atmospheric oxygen (O2) levels during the billion years leading up to this time vary widely. On the basis of chromium (Cr) isotope data from a suite of Proterozoic sediments from China, Australia, and North America, interpreted in the context of data from similar depositional environments from Phanerozoic time, we find evidence for inhibited oxidation of Cr at Earth's surface in the mid-Proterozoic (1.8 to 0.8 billion years ago). These data suggest that atmospheric O2 levels were at most 0.1% of present atmospheric levels. Direct evidence for such low O2 concentrations in the Proterozoic helps explain the late emergence and diversification of metazoans. Copyright © 2014, American Association for the Advancement of Science.

  8. The adsorption and dissociation of oxygen on Ag (111) supported χ3 borophene

    NASA Astrophysics Data System (ADS)

    Luo, W. W.; Liu, G.; Wang, X.; Lei, X. L.; Ouyang, C. Y.; Liu, S. Q.

    2018-05-01

    The superstructure of χ3 borophene on Ag (111) has recently been synthesized in experiment. In this work, we investigate its structural, electronic properties and the oxidation mechanism through first-principles calculations. We find the superstructure of χ3 borophene on Ag (111) maintain the planar characteristics, like its free-standing form, owing to the weakly interaction between adsorbate and substrate. Moreover, oxygen molecule can be spontaneously adsorbed on its superstructure in a manner of chemical adsorption. Importantly, the energy barrier of ∼0.35 eV for oxygen dissociation indicates its relative stability in ambient conditions compared with the active silicene. Furthermore, the mobility of O2-dissociation-induced O atom is poor at room temperature, implying the difficult migration of O atom on borophene surface. On the other hand, due to the strong Bsbnd O bonding, desorption of O2-dissociation-induced O atoms on superstructure of χ3 borophene becomes impossible, ultimately leading to form the boron oxides.

  9. The Cloud Paradigm: Geostable molecules as proxies for surface oxygenation

    NASA Astrophysics Data System (ADS)

    Summons, R. E.; Hallmann, C.

    2011-12-01

    Geoscientists continue to puzzle over when and by which means Earth's surface environment became oxygenated. One of the prevailing scenarios, articulated by Cloud, Holland and Walker, proposes an initially anoxic or very low O2 atmosphere. Although photosystem II is thought to have appeared early, there was an extended period of imbalance between sources & sinks of O2 due to pervasive feedback between biosphere, atmosphere, hydrosphere & lithosphere. Ultimately O2 accumulated in the atmosphere to such levels that it left geochemical and physical evidence for mobilization of redox-sensitive elements in what is currently referred to as the 'Great Oxidation Event' or GOE at c. 2.45 Ga. While some researchers hold that the GOE marks the advent of oxygenic photosynthesis (e.g. Kopp et al., 2005), a wealth of geochemical and paleontological data is consistent with the presence of both cyanobacteria (e.g. Bosak et al., 2009) and traces of environmental oxygen (e.g. Anbar et al., 2007) several hundred million years prior. Further, molecular fossils present in 2.7-2.5 Ga rocks from the Transvaal Supergroup of the Kaapvaal Craton include steroids and other molecules indicative of oxygen-dependent biosynthesis and oxygen-respiring methanotrophic bacteria (Waldbauer et al., 2008). New molecular data for samples from the Mount McRae Formation in the Mt Bruce Supergroup, Pilbara Craton, identifies a diverse array of hydrocarbons including steroids and carotenoid residues diagnostic of phototrophic green sulfur bacteria. Co-variance of biomarker ratios with inorganic proxies-each leading to similar environmental reconstructions- confirm the authenticity of this signal. The carotenoid biomarkers indicate that the surface waters of the Hamersley Basin provided a sustained supply of hydrogen sulfide for anoxygenic photosynthesis and, indirectly, suggest the presence of precursor sulfate derived from the oxidative weathering of metal sulfides. Anbar A.D. et al. A whiff of oxygen

  10. Biochemical Characterization of Prions.

    PubMed

    Fiorini, Michele; Bongianni, Matilde; Monaco, Salvatore; Zanusso, Gianluigi

    2017-01-01

    Prion disease or transmissible spongiform encephalopathies are characterized by the presence of the abnormal form of the prion protein (PrP Sc ). The pathological and transmissible properties of PrP Sc are enciphered in its secondary and tertiary structures. Since it's well established that different strains of prions are linked to different conformations of PrP Sc , biochemical characterization of prions seems a preliminary but reliable approach to detect, analyze, and compare prion strains. Experimental biochemical procedures might be helpful in distinguishing PrP Sc physicochemical properties and include resistance to proteinase K (PK) digestion, insolubility in nonionic detergents, PK-resistance under denaturing conditions and sedimentation properties in sucrose gradients. This biochemical approach has been extensively applied in human prion disorders and subsequently expanded for PrP Sc characterization in animals. In particular, in sporadic Creutzfedlt-Jakob disease (sCJD) PrP Sc is characterized by two main glycotypes conventionally named Type 1 and Type 2, based on the apparent gel migration at 21 and 19kDa of the PrP Sc PK-resistant fragment. An additional PrP Sc type was identified in sCJD characterized by an unglycosylated dominant glycoform pattern and in 2010 a variably protease-sensitive prionopathy (VPSPr) was reported showing a PrP Sc with an electrophoretic ladder like pattern. Additionally, the presence of PrP Sc truncated fragments completes the electrophoretic characterization of different prion strains. By two-dimensional (2D) electrophoretic analysis additional PrP Sc pattern was identified, since this procedure provides information about the isoelectric point and the different peptides length related to PK cleavage, as well as to glycosylation extent or GPI anchor presence. We here provide and extensive review on PrP Sc biochemical analysis in human and animal prion disorders. Further, we show that PrP Sc glycotypes observed in CJD share

  11. Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: a pilot study.

    PubMed

    Jiang, Lan; Weatherall, Paul T; McColl, Roderick W; Tripathy, Debu; Mason, Ralph P

    2013-05-01

    To determine whether a simple noninvasive method of assessing tumor oxygenation is feasible in the clinical setting and can provide useful, potentially predictive information. Tumor microcirculation and oxygenation play critical roles in tumor growth and responsiveness to cytotoxic treatment and may provide prognostic indicators for cancer therapy. Deoxyhemoglobin is paramagnetic and can serve as an endogenous contrast agent causing signal loss in echo planar magnetic resonance imaging (MRI) (blood oxygenation level-dependent [BOLD]-MRI). We used BOLD-MRI to provide early evaluation of response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. MRI was performed on 11 patients with biopsy-proven malignancy. MRI exams were scheduled before, during, and after chemotherapy. The BOLD study applied a 6-minute oxygen breathing challenge. Seven patients successfully completed the exams. Before chemotherapy, BOLD contrast enhancement was observed in all tumors, but the patients, who ultimately had complete pathological response, exhibited a significantly higher BOLD response to oxygen breathing. We have successfully implemented an oxygen-breathing challenge BOLD contrast technique as part of the standard breast MRI exam in patients with locally advanced breast cancer. The preliminary observation that a large BOLD response correlated with better treatment response suggests a predictive capability for BOLD MRI. Copyright © 2012 Wiley Periodicals, Inc.

  12. Adjudicating pathological criminal incapacity within a climate of ultimate issue barriers: a comparative perspective.

    PubMed

    Stevens, Geert Philip

    2015-01-01

    Mental health experts are increasingly being utilised by the criminal justice system to provide assistance to courts during the assessment of issues falling beyond the knowledge and/or experience of the courts. A particular domain where the assistance of qualified psychiatrists and psychologists is becoming essential is where the defence of pathological criminal incapacity falls to be assessed. Mental health professionals testifying during trials where the defence of pathological criminal incapacity is raised will present opinion evidence which is one of the exceptions to the rule of inadmissibility of opinion evidence. Mental health professionals providing their opinion evidence are, however, prohibited from expressing opinions on so-called "ultimate issues" upon which only the court may ultimately rule upon. The latter rule is also commonly known in practice as the "ultimate issue" rule which presents multifaceted challenges in respect of the application of the defence of pathological criminal incapacity. In this article, the author assesses the application of the ultimate issue rule with reference to the defence of pathological criminal incapacity as it operates within the South African criminal law context. A comparative analysis is also provided with reference to the rule as it operates in the United States of America and more specifically Federal Rule 704. It is concluded that the ultimate issue rule unnecessarily restricts testimony provided by mental health professionals as such placing a barrier on such evidence. As such, it is argued that the rule is superfluous as it remains within the discretion of the trier of fact to decide as to what weight to attach to such evidence. Copyright © 2015. Published by Elsevier Ltd.

  13. Hypomagnesemia predicts postoperative biochemical hypocalcemia after thyroidectomy.

    PubMed

    Luo, Han; Yang, Hongliu; Zhao, Wanjun; Wei, Tao; Su, Anping; Wang, Bin; Zhu, Jingqiang

    2017-05-25

    To investigate the role of magnesium in biochemical and symptomatic hypocalcemia, a retrospective study was conducted. Less-than-total thyroidectomy patients were excluded from the final analysis. Identified the risk factors of biochemical and symptomatic hypocalcemia, and investigated the correlation by logistic regression and correlation test respectively. A total of 304 patients were included in the final analysis. General incidence of hypomagnesemia was 23.36%. Logistic regression showed that gender (female) (OR = 2.238, p = 0.015) and postoperative hypomagnesemia (OR = 2.010, p = 0.017) were independent risk factors for biochemical hypocalcemia. Both Pearson and partial correlation tests indicated there was indeed significant relation between calcium and magnesium. However, relative decreasing of iPTH (>70%) (6.691, p < 0.001) and hypocalcemia (2.222, p = 0.046) were identified as risk factors of symptomatic hypocalcemia. The difference remained significant even in normoparathyroidism patients. Postoperative hypomagnesemia was independent risk factor of biochemical hypocalcemia. Relative decline of iPTH was predominating in predicting symptomatic hypocalcemia.

  14. Oxygen and Oxygen Toxicity: The Birth of Concepts

    PubMed Central

    Zhu, Hong; Traore, Kassim; Santo, Arben; Trush, Michael A.; Li, Y. Robert

    2018-01-01

    Molecular dioxygen (O2) is an essential element of aerobic life, yet incomplete reduction or excitation of O2 during aerobic metabolisms generates diverse oxygen-containing reactive species, commonly known as reactive oxygen species (ROS). On the one hand, ROS pose a serious threat to aerobic organisms via inducing oxidative damage to cellular constituents. On the other hand, these reactive species, when their generation is under homeostatic control, also play important physiological roles (e.g., constituting an important component of immunity and participating in redox signaling). This article defines oxygen and the key facts about oxygen, and discusses the relationship between oxygen and the emergence of early animals on Earth. The article then describes the discovery of oxygen by three historical figures and examines the birth of the concepts of oxygen toxicity and the underlying free radical mechanisms. The article ends with a brief introduction to the emerging field of ROS-mediated redox signaling and physiological responses. PMID:29707642

  15. Risk assessment, cross-resistance potential, and biochemical mechanism of resistance to emamectin benzoate in a field strain of house fly (Musca domestica Linnaeus).

    PubMed

    Khan, Hafiz Azhar Ali; Akram, Waseem; Khan, Tiyyabah; Haider, Muhammad Saleem; Iqbal, Naeem; Zubair, Muhammad

    2016-05-01

    Reduced sensitivity to insecticides in insect pests often results in control failures and increases in the dose and frequency of applications, ultimately polluting the environment. Reduced sensitivity to emamectin benzoate, a broad-spectrum agrochemical belonging to the avermectin group of pesticides, was reported in house flies (Musca domestica L.) collected from Punjab, Pakistan, in 2013. The aim of the present study was to investigate the risk for resistance development, biochemical mechanism, and cross-resistance potential to other insecticides in an emamectin benzoate selected (EB-SEL) strain of house flies. A field-collected strain showing reduced sensitivity to emamectin was re-selected in the laboratory for five consecutive generations and compared with a laboratory susceptible (Lab-Susceptible) reference strain, using bioassays. The field strain showed rapid development of resistance to emamectin (resistance ratio (RR) increased from 35.15 to 149.26-fold) as a result of selection experiments; however, resistance declined when the selection pressure uplifted. The EB-SEL strain showed reduction in resistance to abamectin, indoxacarb, and thiamethoxam. The results of synergism experiments using piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) enzyme inhibitors and biochemical analyses revealed that the metabolic resistance mechanism was not responsible in developing emamectin resistance in the EB-SEL strain. In conclusion, the risk for the rapid development of emamectin resistance under continuous selection pressure suggests using a multifaceted integrated pest management approach for house flies. Moreover, the instable nature of emamectin resistance in the EB-SEL strain and lack of cross-resistance to other insecticides provide windows for the rotational use of insecticides with different modes of action. This will ultimately reduce emamectin selection pressure and help improving management programs for house flies without polluting the

  16. A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific

    NASA Astrophysics Data System (ADS)

    Hawco, Nicholas J.; Ohnemus, Daniel C.; Resing, Joseph A.; Twining, Benjamin S.; Saito, Mak A.

    2016-10-01

    Cobalt is a nutrient to phytoplankton, but knowledge about its biogeochemical cycling is limited, especially in the Pacific Ocean. Here, we report sections of dissolved cobalt and labile dissolved cobalt from the US GEOTRACES GP16 transect in the South Pacific. The cobalt distribution is closely tied to the extent and intensity of the oxygen minimum zone in the eastern South Pacific with highest concentrations measured at the oxycline near the Peru margin. Below 200 m, remineralization and circulation produce an inverse relationship between cobalt and dissolved oxygen that extends throughout the basin. Within the oxygen minimum zone, elevated concentrations of labile cobalt are generated by input from coastal sources and reduced scavenging at low O2. As these high cobalt waters are upwelled and advected offshore, phytoplankton export returns cobalt to low-oxygen water masses underneath. West of the Peru upwelling region, dissolved cobalt is less than 10 pM in the euphotic zone and strongly bound by organic ligands. Because the cobalt nutricline within the South Pacific gyre is deeper than in oligotrophic regions in the North and South Atlantic, cobalt involved in sustaining phytoplankton productivity in the gyre is heavily recycled and ultimately arrives from lateral transport of upwelled waters from the eastern margin. In contrast to large coastal inputs, atmospheric deposition and hydrothermal vents along the East Pacific Rise appear to be minor sources of cobalt. Overall, these results demonstrate that oxygen biogeochemistry exerts a strong influence on cobalt cycling.

  17. Phaeochromocytoma: diagnostic challenges for biochemical screening and diagnosis.

    PubMed

    Barron, Jeffrey

    2010-08-01

    The aim of this article is to provide knowledge of the origin of catecholamines and metabolites so that there can be an informed approach to the methods for biochemical screening for a possible phaeochromocytoma; The article includes a review of catecholamine and metadrenaline metabolism, with methods used in biochemical screening. In the adrenal medulla and a phaeochromocytoma, catecholamines continuously leak from chromaffin granules into the cytoplasm and are converted to metadrenalines. For a phaeochromocytoma to become biochemically detectable, metnoradrenaline secretion needs to rise fourfold, whereas noradrenaline secretion needs to rise 15-fold. The prevalence of a sporadic phaeochromocytoma is low; therefore false-positive results exceed true-positive results. Assay sensitivity is high because it is important not to miss a possible phaeochromocytoma. The use of urine or plasma fractionated metadrenalines as the first-line test has been recommended due to improved sensitivity. A negative result excludes a phaeochromocytoma. Only after a sporadic phaeochromocytoma has been diagnosed biochemically is it cost effective to request imaging. Sensitivities and specificities of the assays differ according to pre-test probabilities of the presence of a phaeochromocytoma, with hereditary and incidentalomas having a higher pre-test probability than sporadic phaeochromocytoma. In conclusion, in screening for a possible phaeochromocytoma, biochemical investigations should be completed first to exclude or establish the diagnosis. The preferred biochemical screening test is fractionated metadrenalines, including methoxytyramine so as not to miss dopamine-secreting tumours.

  18. eQuilibrator--the biochemical thermodynamics calculator.

    PubMed

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  19. eQuilibrator—the biochemical thermodynamics calculator

    PubMed Central

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852

  20. A Systems Model of Parkinson's Disease Using Biochemical Systems Theory.

    PubMed

    Sasidharakurup, Hemalatha; Melethadathil, Nidheesh; Nair, Bipin; Diwakar, Shyam

    2017-08-01

    Parkinson's disease (PD), a neurodegenerative disorder, affects millions of people and has gained attention because of its clinical roles affecting behaviors related to motor and nonmotor symptoms. Although studies on PD from various aspects are becoming popular, few rely on predictive systems modeling approaches. Using Biochemical Systems Theory (BST), this article attempts to model and characterize dopaminergic cell death and understand pathophysiology of progression of PD. PD pathways were modeled using stochastic differential equations incorporating law of mass action, and initial concentrations for the modeled proteins were obtained from literature. Simulations suggest that dopamine levels were reduced significantly due to an increase in dopaminergic quinones and 3,4-dihydroxyphenylacetaldehyde (DOPAL) relating to imbalances compared to control during PD progression. Associating to clinically observed PD-related cell death, simulations show abnormal parkin and reactive oxygen species levels with an increase in neurofibrillary tangles. While relating molecular mechanistic roles, the BST modeling helps predicting dopaminergic cell death processes involved in the progression of PD and provides a predictive understanding of neuronal dysfunction for translational neuroscience.

  1. The Ultimate Challenge: Prove B. F. Skinner Wrong

    PubMed Central

    Chance, Paul

    2007-01-01

    For much of his career, B. F. Skinner displayed the optimism that is often attributed to behaviorists. With time, however, he became less and less sanguine about the power of behavior science to solve the major problems facing humanity. Near the end of his life he concluded that a fair consideration of principles revealed by the scientific analysis of behavior leads to pessimism about our species. In this article I discuss the case for Skinner's pessimism and suggest that the ultimate challenge for behavior analysts today is to prove Skinner wrong. PMID:22478494

  2. Oxygen analyzer

    DOEpatents

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  3. Biochemical adaptation to ocean acidification.

    PubMed

    Stillman, Jonathon H; Paganini, Adam W

    2015-06-01

    The change in oceanic carbonate chemistry due to increased atmospheric PCO2  has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2 . From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid-base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the

  4. Aerobic Microbial Respiration in Oceanic Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Schunck, Harald; Loescher, Carolin; Desai, Dhwani K.; LaRoche, Julie; Schmitz-Streit, Ruth; Kuypers, Marcel M. M.

    2014-05-01

    In the oxygen minimum zones (OMZs) of the tropical oceans, sluggish ventilation combined with strong microbial respiration of sinking organic matter results in the depletion of oxygen (O2). When O2 concentrations drop below ~5 µmol/L, organic matter is generally assumed to be respired with nitrate, ultimately leading to the loss of fixed inorganic nitrogen via anammox and denitrification. However, direct measurements of microbial O2 consumption at low O2 levels are - apart from a single experiment conducted in the OMZ off Peru - so far lacking. At the same time, consistently observed active aerobic ammonium and nitrite oxidation at non-detectable O2 concentrations (<1 µmol/L) in all major OMZs, suggests aerobic microorganisms, likely including heterotrophs, to be well adapted to near-anoxic conditions. Consequently, microaerobic (≤5 µmol/L) remineralization of organic matter, and thus release of ammonium, in low- O2 environments might be significantly underestimated at present. Here we present extensive measurements of microbial O2 consumption in OMZ waters, combined with highly sensitive O2 (STOX) measurements and meta-omic functional gene analyses. Short-term incubation experiments with labelled O2 (18-18O2) carried out in the Namibian and Peruvian OMZ, revealed persistent aerobic microbial activity at depths with non-detectable concentrations of O2 (≤50 nmol/L). In accordance, examination of metagenomes and metatranscriptomes from Chilean and Peruvian OMZ waters identified genes encoding for terminal respiratory oxidases with high O2 affinities as well as their expression by diverse microbial communities. Oxygen consumption was particularly enhanced near the upper OMZ boundaries and could mostly (~80%) be assigned to heterotrophic microbial activity. Compared to previously identified anaerobic microbial processes, microaerobic organic matter respiration was the dominant remineralization pathway and source of ammonium (~90%) in the upper Namibian and

  5. Effects of metal contamination in situ on osmoregulation and oxygen consumption in the mudflat fiddler crab Uca rapax (Ocypodidae, Brachyura).

    PubMed

    Capparelli, Mariana V; Abessa, Denis M; McNamara, John C

    2016-01-01

    The contamination of estuaries by metals can impose additional stresses on estuarine species, which may exhibit a limited capability to adjust their regulatory processes and maintain physiological homeostasis. The mudflat fiddler crab Uca rapax is a typical estuarine crab, abundant in both pristine and contaminated areas along the Atlantic coast of Brazil. This study evaluates osmotic and ionic regulatory ability and gill Na(+)/K(+)-ATPase activity in different salinities (<0.5, 25 and 60‰ S) and oxygen consumption rates at different temperatures (15, 25 and 35°C) in U. rapax collected from localities along the coast of São Paulo State showing different histories of metal contamination (most contaminated Ilha Diana, Santos>Rio Itapanhaú, Bertioga>Picinguaba, Ubatuba [pristine reference site]). Our findings show that the contamination of U. rapax by metals in situ leads to bioaccumulation and induces biochemical and physiological changes compared to crabs from the pristine locality. U. rapax from the contaminated sites exhibit stronger hyper- and hypo-osmotic regulatory abilities and show greater gill Na(+)/K(+)-ATPase activities than crabs from the pristine site, revealing that the underlying biochemical machinery can maintain systemic physiological processes functioning well. However, oxygen consumption, particularly at elevated temperatures, decreases in crabs showing high bioaccumulation titers but increases in crabs with low/moderate bioaccumulation levels. These data show that U. rapax chronically contaminated in situ exhibits compensatory biochemical and physiological adjustments, and reveal the importance of studies on organisms exposed to metals in situ, particularly estuarine invertebrates subject to frequent changes in natural environmental parameters like salinity and temperature. Copyright © 2016. Published by Elsevier Inc.

  6. Transition to the Ultimate Regime in Two-Dimensional Rayleigh-Bénard Convection

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaojue; Mathai, Varghese; Stevens, Richard J. A. M.; Verzicco, Roberto; Lohse, Detlef

    2018-04-01

    The possible transition to the so-called ultimate regime, wherein both the bulk and the boundary layers are turbulent, has been an outstanding issue in thermal convection, since the seminal work by Kraichnan [Phys. Fluids 5, 1374 (1962), 10.1063/1.1706533]. Yet, when this transition takes place and how the local flow induces it is not fully understood. Here, by performing two-dimensional simulations of Rayleigh-Bénard turbulence covering six decades in Rayleigh number Ra up to 1 014 for Prandtl number Pr =1 , for the first time in numerical simulations we find the transition to the ultimate regime, namely, at Ra*=1013 . We reveal how the emission of thermal plumes enhances the global heat transport, leading to a steeper increase of the Nusselt number than the classical Malkus scaling Nu ˜Ra1 /3 [Proc. R. Soc. A 225, 196 (1954), 10.1098/rspa.1954.0197]. Beyond the transition, the mean velocity profiles are logarithmic throughout, indicating turbulent boundary layers. In contrast, the temperature profiles are only locally logarithmic, namely, within the regions where plumes are emitted, and where the local Nusselt number has an effective scaling Nu ˜Ra0.38 , corresponding to the effective scaling in the ultimate regime.

  7. Hybrid configurations via percutaneous access for extracorporeal membrane oxygenation: a single-center experience.

    PubMed

    Biscotti, Mauer; Lee, Alison; Basner, Robert C; Agerstrand, Cara; Abrams, Darryl; Brodie, Daniel; Bacchetta, Matthew

    2014-01-01

    Use of extracorporeal membrane oxygenation (ECMO) in adults has surged in recent years. Typical configurations are venovenous (VV), which provides respiratory support, or venoarterial (VA), which provides both respiratory and circulatory support. In patients supported with VV ECMO who develop hemodynamic compromise, an arterial limb can be added (venovenous-arterial ECMO) to provide additional circulatory support. For patients on VA ECMO who develop concomitant respiratory failure in the setting of some residual cardiac function, an oxygenated reinfusion limb can be added to the internal jugular vein (venoarterial-venous ECMO) to improve oxygen delivery to the cerebral and coronary circulation. Such hybrid configurations can provide differential support for various forms of cardiopulmonary failure. We describe 21 patients who ultimately received a hybrid configuration at our institution between 2012 and 2013. Eight patients (38.1%) died during ECMO support, four patients (19.0%) died after decannulation but before hospital discharge, and nine patients (42.9%) survived to hospital discharge. Our modest survival rate is likely related to the complexity and severity of illness of these patients, and this relative success suggests that hybrid configurations can be effective. It serves patients well to maintain a flexible and adaptable approach to ECMO configurations for their variable cardiopulmonary needs.

  8. Biochemical Testing in Thyroid Disorders.

    PubMed

    Esfandiari, Nazanene H; Papaleontiou, Maria

    2017-09-01

    This article summarizes the main principles for the appropriate use of laboratory testing in the diagnosis and management of thyroid disorders, as well as controversies that have arisen in association with some of these biochemical tests. To place a test in perspective, its sensitivity and accuracy should be taken into account. Ordering the correct laboratory tests facilitates the early diagnosis of a thyroid disorder and allows for timely and appropriate treatment. This article focuses on a comprehensive update regarding thyroid-stimulating hormone, thyroxine/triiodothyronine, thyroid autoantibodies, thyroglobulin, and calcitonin. Clinical uses of these biochemical tests are outlined. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Ultimate Success Rates on National Board Examinations: A Research Brief.

    ERIC Educational Resources Information Center

    Gross, Leon J.; Wallis, Norman E.; Present, Richard K.

    1999-01-01

    A study investigated the percentage of optometry students successfully completing the four-component National Board of Examiners in Optometry examination at graduation between 1995 to 1997. Ultimate pass rates for all four components ranged from 87.0% to 90.9%. Results are discussed in relation to the 1993 test-sequence expansion and to the number…

  10. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    PubMed Central

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  11. Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste.

    PubMed

    Pecorini, Isabella; Baldi, Francesco; Carnevale, Ennio Antonio; Corti, Andrea

    2016-10-01

    The aim of this research was to enhance the anaerobic biodegradability and methane production of two synthetic Organic Fractions of Municipal Solid Waste with different lignocellulosic contents by assessing microwave and autoclave pre-treatments. Biochemical Methane Potential assays were performed for 21days. Changes in the soluble fractions of the organic matter (measured by soluble chemical oxygen demand, carbohydrates and proteins), the first order hydrolysis constant kh and the cumulated methane production at 21days were used to evaluate the efficiency of microwaving and autoclaving pretreatments on substrates solubilization and anaerobic digestion. Microwave treatment led to a methane production increase of 8.5% for both the tested organic fractions while autoclave treatment had an increase ranging from 1.0% to 4.4%. Results showed an increase of the soluble fraction after pre-treatments for both the synthetic organic fractions. Soluble chemical oxygen demand observed significant increases for pretreated substrates (up to 219.8%). In this regard, the mediocre results of methane's production led to the conclusion that autoclaving and microwaving resulted in the hydrolysis of a significant fraction of non-biodegradable organic substances recalcitrant to anaerobic digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Three-dimensional three-phase model for simulation of hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification in an oxidation ditch.

    PubMed

    Lei, Li; Ni, Jinren

    2014-04-15

    A three-dimensional three-phase fluid model, supplemented by laboratory data, was developed to simulate the hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification processes in an oxidation ditch. The model provided detailed phase information on the liquid flow field, gas hold-up distribution and sludge sedimentation. The three-phase model described water-gas, water-sludge and gas-sludge interactions. Activated sludge was taken to be in a pseudo-solid phase, comprising an initially separated solid phase that was transported and later underwent biological reactions with the surrounding liquidmedia. Floc parameters were modified to improve the sludge viscosity, sludge density, oxygen mass transfer rate, and carbon substrate uptake due to adsorption onto the activated sludge. The validation test results were in very satisfactory agreement with laboratory data on the behavior of activated sludge in an oxidation ditch. By coupling species transport and biological process models, reasonable predictions are made of: (1) the biochemical kinetics of dissolved oxygen, chemical oxygen demand (COD) and nitrogen variation, and (2) the physical kinematics of sludge sedimentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Consequences of Atomic Oxygen Interaction With Silicone and Silicone Contamination on Surfaces in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Rutledge, Sharon K.; Haytas, Christy A.

    1999-01-01

    The exposure of silicones to atomic oxygen in low Earth orbit causes oxidation of the surface, resulting in conversion of silicone to silica. This chemical conversion increases the elastic modulus of the surface and initiates the development of a tensile strain. Ultimately, with sufficient exposure, tensile strain leads to cracking of the surface enabling the underlying unexposed silicone to be converted to silica resulting in additional depth and extent of cracking. The use of silicone coatings for the protection of materials from atomic oxygen attack is limited because of the eventual exposure of underlying unprotected polymeric material due to deep tensile stress cracking of the oxidized silicone. The use of moderate to high volatility silicones in low Earth orbit has resulted in a silicone contamination arrival at surfaces which are simultaneously being bombarded with atomic oxygen, thus leading to conversion of the silicone contaminant to silica. As a result of these processes, a gradual accumulation of contamination occurs leading to deposits which at times have been up to several microns thick (as in the case of a Mir solar array after 10 years in space). The contamination species typically consist of silicon, oxygen and carbon. which in the synergistic environment of atomic oxygen and UV radiation leads to increased solar absorptance and reduced solar transmittance. A comparison of the results of atomic oxygen interaction with silicones and silicone contamination will be presented based on the LDEF, EOIM-111, Offeq-3 spacecraft and Mir solar array in-space results. The design of a contamination pin-hole camera space experiment which uses atomic oxygen to produce an image of the sources of silicone contamination will also be presented.

  14. Biochemical methane potential of two-phase olive mill solid waste: influence of thermal pretreatment on the process kinetics.

    PubMed

    Rincón, B; Bujalance, L; Fermoso, F G; Martín, A; Borja, R

    2013-07-01

    The effect of thermal pretreatment on two-phase olive mill solid waste was evaluated by chemical oxygen demand solubilisation and biochemical methane potential (BMP) tests. Temperatures of 100, 120, 160 and 180°C were applied during 60, 120 and 180 min for each temperature studied. The highest chemical oxygen demand solubilisation after pretreatment (42%) was found for 120 and 180°C during 180 min in both cases. These two conditions were selected for the BMP tests. BMP tests showed two different stages: a first exponential stage and a sigmoidal zone after a lag period. No influence of the pretreatment was observed on the kinetic constant of the first-stage. Clear difference was observed in the maximum methane production rate of the second stage, 76.8 mL CH4/(g VS day) was achieved after pretreatment at 180°C (180 min), value 22% and 40% higher than that obtained for the untreated and pretreated OMSW at 120°C, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. An introduction to UGRS: the ultimate grading and remanufacturing system

    Treesearch

    John Moody; Charles J. Gatchell; Elizabeth S. Walker; Powsiri Klinkhachorn

    1998-01-01

    The Ultimate Grading and Remanufactming System (UGRS) is an advanced computer program for grading and remanufacturing lumber. It is an interactive program that will both grade lumber according to NHLA rules and remanufacture it for maximum value. UGRS is written to run under Microsoft Windows 3.0 or later updates and provides a sophisticated graphical user interface....

  16. Why did Nature choose manganese to make oxygen?

    PubMed Central

    Armstrong, Fraser A

    2007-01-01

    This paper discusses the suitability of manganese for its function in catalysing the formation of molecular oxygen from water. Manganese is an abundant element. In terms of its inherent properties, Mn has a particularly rich redox chemistry compared with other d-block elements, with several oxidizing states accessible. The most stable-state Mn2+ behaves like a Group 2 element—it is mobile, weakly complexing, easily taken up by cells and redox-inactive in simple aqueous media. Only in the presence of suitable ligands does Mn2+ become oxidized, so it provides an uncomplicated building unit for the oxygen-evolving centre (OEC). The intermediate oxidation states Mn(III) and Mn(IV) are strongly complexed by O2− and form robust mixed-valence poly-oxo clusters in which the Mn(IV)/Mn(III) ratio can be elevated, one electron at a time, accumulating oxidizing potential and capacity. The OEC is a Mn4CaOx cluster that undergoes sequential oxidations by P680+ at potentials above 1 V, ultimately to a super-oxidized level that includes one Mn(V) or a Mn(IV)-oxyl radical. The latter is powerfully oxidizing and provides the crucial ‘power stroke’ necessary to generate an O–O bond. This leaves a centre still rich in Mn(IV), ensuring a rapid follow-through to O2. PMID:17971329

  17. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    PubMed

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Descriptors of Oxygen-Evolution Activity for Oxides: A Statistical Evaluation

    DOE PAGES

    Hong, Wesley T.; Welsch, Roy E.; Shao-Horn, Yang

    2015-12-16

    Catalysts for oxygen electrochemical processes are critical for the commercial viability of renewable energy storage and conversion devices such as fuel cells, artificial photosynthesis, and metal-air batteries. Transition metal oxides are an excellent system for developing scalable, non-noble-metal-based catalysts, especially for the oxygen evolution reaction (OER). Central to the rational design of novel catalysts is the development of quantitative structure-activity relation-ships, which correlate the desired catalytic behavior to structural and/or elemental descriptors of materials. The ultimate goal is to use these relationships to guide materials design. In this study, 101 intrinsic OER activities of 51 perovskites were compiled from fivemore » studies in literature and additional measurements made for this work. We explored the behavior and performance of 14 descriptors of the metal-oxygen bond strength using a number of statistical approaches, including factor analysis and linear regression models. We found that these descriptors can be classified into five descriptor families and identify electron occupancy and metal-oxygen covalency as the dominant influences on the OER activity. However, multiple descriptors still need to be considered in order to develop strong predictive relationships, largely outperforming the use of only one or two descriptors (as conventionally done in the field). Here, we confirmed that the number of d electrons, charge-transfer energy (covalency), and optimality of eg occupancy play the important roles, but found that structural factors such as M-O-M bond angle and tolerance factor are relevant as well. With these tools, we demonstrate how statistical learning can be used to draw novel physical insights and combined with data mining to rapidly screen OER electrocatalysts across a wide chemical space.« less

  19. Estimation of Ultimate Tensile Strength of dentin Using Finite Element Analysis from Endodontically Treated Tooth

    NASA Astrophysics Data System (ADS)

    Sinthaworn, S.; Puengpaiboon, U.; Warasetrattana, N.; Wanapaisarn, S.

    2018-01-01

    Endodontically treated teeth were simulated by finite element analysis in order to estimate ultimate tensile strength of dentin. Structures of the endodontically treated tooth cases are flared root canal, restored with different number of fiber posts {i.e. resin composite core without fiber post (group 1), fiber post No.3 with resin composite core (group 2) and fiber post No.3 accessory 2 fiber posts No.0 with resin composite core (group 3)}. Elastic modulus and Poisson’s ratio of materials were selected from literatures. The models were loaded by the average fracture resistances load of each groups (group 1: 361.80 N, group 2: 559.46 N, group 3: 468.48 N) at 135 degree angulation in respect to the longitudinal axis of the teeth. The stress analysis and experimental confirm that fracture zone is at dentin area. To estimate ultimate tensile strength of dentin, trial and error of ultimate tensile strength were tested to obtain factor of safety (FOS) equal to 1.00. The result reveals that ultimate tensile strength of dentin of group 1, 2, 3 are 38.89, 30.96, 37.19 MPa, respectively.

  20. Very low doses of heavy oxygen ion radiation induce premature ovarian failure.

    PubMed

    Mishra, Birendra; Ripperdan, Ryan; Ortiz, Laura; Luderer, Ulrike

    2017-08-01

    Astronauts are exposed to charged particles during space travel, and charged particles are also used for cancer radiotherapy. Premature ovarian failure is a well-known side effect of conventional, low linear energy transfer (LET) cancer radiotherapy, but little is known about the effects of high LET charged particles on the ovary. We hypothesized that lower LET (16.5 keV/µm) oxygen particles would be less damaging to the ovary than we previously found for iron (LET = 179 keV/µm). Adult female mice were irradiated with 0, 5, 30 or 50 cGy oxygen ions or 50 cGy oxygen plus dietary supplementation with the antioxidant alpha lipoic acid (ALA). Six-hour after irradiation, percentages of ovarian follicles immunopositive for γH2AX, a marker of DNA double strand breaks, 4-HNE, a marker of oxidative lipid damage and BBC3 (PUMA), a proapoptotic BCL-2 family protein, were dose dependently increased in irradiated mice compared to controls. One week after irradiation, numbers of primordial, primary and secondary follicles per ovary were dose dependently decreased, with complete absence of follicles in the 50 cGy groups. The ED 50 for primordial follicle destruction was 4.6 cGy for oxygen compared to 27.5 cGy for iron in our previous study. Serum FSH and LH concentrations were significantly elevated in 50 cGy groups at 8 week. Supplementation with ALA mitigated the early effects, but not the ultimate depletion of ovarian follicles. In conclusion, oxygen charged particles are even more potent inducers of ovarian follicle depletion than charged iron particles, raising concern for premature ovarian failure in astronauts exposed to both particles during space travel. © 2017 Society for Reproduction and Fertility.

  1. 15 CFR Supplement No. 3 to Part 748 - BIS-711, Statement by Ultimate Consignee and Purchaser Instructions

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... this form. Block 6: Ultimate Consignee. Enter the requested information and sign the statement in ink... must be signed in ink by the Purchaser, if the Purchaser is not the same as the Ultimate Consignee...

  2. 15 CFR Supplement No. 3 to Part 748 - BIS-711, Statement by Ultimate Consignee and Purchaser Instructions

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... this form. Block 6: Ultimate Consignee. Enter the requested information and sign the statement in ink... must be signed in ink by the Purchaser, if the Purchaser is not the same as the Ultimate Consignee...

  3. 15 CFR Supplement No. 3 to Part 748 - BIS-711, Statement by Ultimate Consignee and Purchaser Instructions

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... this form. Block 6: Ultimate Consignee. Enter the requested information and sign the statement in ink... must be signed in ink by the Purchaser, if the Purchaser is not the same as the Ultimate Consignee...

  4. 15 CFR Supplement No. 3 to Part 748 - BIS-711, Statement by Ultimate Consignee and Purchaser Instructions

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... this form. Block 6: Ultimate Consignee. Enter the requested information and sign the statement in ink... must be signed in ink by the Purchaser, if the Purchaser is not the same as the Ultimate Consignee...

  5. The cost benefit and efficiency of waste water treatment using domestic ponds—the ultimate solution in Southern Africa

    NASA Astrophysics Data System (ADS)

    Ntengwe, F. W.

    Wastewater treatment has become a challenge to most countries in Southern Africa because of the fluctuating economies that have been hit by high levels of debts. The treatment of domestic wastewater using ponds, if carefully utilized, as has been observed in most countries in the world, is the most cost effective means of handling wastewaters. When compared to the conventional use of treatment plants, the ponds have been observed to be the ultimate solution for the countries in Southern Africa especially those that are classified as Highly Indebted Poor Countries (HIPC) because of little or no operating costs associated with the treatment. The study conducted on Kitwe Waste Water Treatment Ponds to evaluate the cost benefit and efficiencies has revealed low levels of operating cost and high removal efficiencies of oxygen demanding wastes (BOD removal of 86% and TSS removal of 75%), pH values ranged from 7 to 8 indicating an increasing alkalinity from facultative to maturation ponds while other parameters such as nitrates, phosphates and temperature were found to be within acceptable levels thereby releasing effluent that makes the environment sustainable. The overall social benefit was found to be much higher than the operating costs.

  6. Biochemical identification of residues that discriminate between 3,4-dihydroxyphenylalanine decarboxylase and 3,4-dihydroxyphenylacetaldehyde synthase-mediated reactions.

    PubMed

    Liang, Jing; Han, Qian; Ding, Haizhen; Li, Jianyong

    2017-12-01

    In available insect genomes, there are several L-3,4-dihydroxyphenylalanine (L-dopa) decarboxylase (DDC)-like or aromatic amino acid decarboxylase (AAAD) sequences. This contrasts to those of mammals whose genomes contain only one DDC. Our previous experiments established that two DDC-like proteins from Drosophila actually mediate a complicated decarboxylation-oxidative deamination process of dopa in the presence of oxygen, leading to the formation of 3,4-dihydroxyphenylacetaldehyde (DHPA), CO 2 , NH 3, and H 2 O 2 . This contrasts to the typical DDC-catalyzed reaction, which produces CO 2 and dopamine. These DDC-like proteins were arbitrarily named DHPA synthases based on their critical role in insect soft cuticle formation. Establishment of reactions catalyzed by these AAAD-like proteins solved a puzzle that perplexed researchers for years, but to tell a true DHPA synthase from a DDC in the insect AAAD family remains problematic due to high sequence similarity. In this study, we performed extensive structural and biochemical comparisons between DHPA synthase and DDC. These comparisons identified several target residues potentially dictating DDC-catalyzed and DHPA synthase-catalyzed reactions, respectively. Comparison of DHPA synthase homology models with crystal structures of typical DDC proteins, particularly residues in the active sites, provided further insights for the roles these identified target residues play. Subsequent site-directed mutagenesis of the tentative target residues and activity evaluations of their corresponding mutants determined that active site His192 and Asn192 are essential signature residues for DDC- and DHPA synthase-catalyzed reactions, respectively. Oxygen is required in DHPA synthase-mediated process and this oxidizing agent is reduced to H 2 O 2 in the process. Biochemical assessment established that H 2 O 2 , formed in DHPA synthase-mediated process, can be reused as oxidizing agent and this active oxygen species is reduced to H 2

  7. Oxygen-Concentrating Cell

    NASA Technical Reports Server (NTRS)

    Buehler, K.

    1986-01-01

    High-purity oxygen produced from breathing air or from propellantgrade oxygen in oxygen-concentrating cell. Operating economics of concentrator attractive: Energy consumption about 4 Wh per liter of oxygen, slightly lower than conventional electrochemical oxygen extractors.

  8. Oxygen analyzer

    DOEpatents

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  9. Wall roughness induces asymptotic ultimate turbulence

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef

    2018-04-01

    Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.

  10. Influence of headspace flushing on methane production in Biochemical Methane Potential (BMP) tests.

    PubMed

    Koch, Konrad; Bajón Fernández, Yadira; Drewes, Jörg E

    2015-06-01

    The influence of headspace flushing on the specific methane (CH4) production of blank samples with just inoculum in Biochemical Methane Potential (BMP) tests was studied. The three most common ways were applied: flushing with nitrogen (N2) gas, flushing with a mixture of N2 and CO2 (80/20 v/v), and no flushing. The results revealed that removing the oxygen is crucial to avoid aerobic respiration, which caused both hindered activity of methanogens and loss of methane potential. Furthermore it was demonstrated that 20% of CO2 in the flush gas increased significantly the methane production by over 20% compared to the flushing with pure N2. In order to mimic the same headspace conditions as in full-scale treatment plants, using a flush gas with a similar CO2 concentration as the expected biogas is suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Biochemical phenotypes to discriminate microbial subpopulations and improve outbreak detection.

    PubMed

    Galar, Alicia; Kulldorff, Martin; Rudnick, Wallis; O'Brien, Thomas F; Stelling, John

    2013-01-01

    Clinical microbiology laboratories worldwide constitute an invaluable resource for monitoring emerging threats and the spread of antimicrobial resistance. We studied the growing number of biochemical tests routinely performed on clinical isolates to explore their value as epidemiological markers. Microbiology laboratory results from January 2009 through December 2011 from a 793-bed hospital stored in WHONET were examined. Variables included patient location, collection date, organism, and 47 biochemical and 17 antimicrobial susceptibility test results reported by Vitek 2. To identify biochemical tests that were particularly valuable (stable with repeat testing, but good variability across the species) or problematic (inconsistent results with repeat testing), three types of variance analyses were performed on isolates of K. pneumonia: descriptive analysis of discordant biochemical results in same-day isolates, an average within-patient variance index, and generalized linear mixed model variance component analysis. 4,200 isolates of K. pneumoniae were identified from 2,485 patients, 32% of whom had multiple isolates. The first two variance analyses highlighted SUCT, TyrA, GlyA, and GGT as "nuisance" biochemicals for which discordant within-patient test results impacted a high proportion of patient results, while dTAG had relatively good within-patient stability with good heterogeneity across the species. Variance component analyses confirmed the relative stability of dTAG, and identified additional biochemicals such as PHOS with a large between patient to within patient variance ratio. A reduced subset of biochemicals improved the robustness of strain definition for carbapenem-resistant K. pneumoniae. Surveillance analyses suggest that the reduced biochemical profile could improve the timeliness and specificity of outbreak detection algorithms. The statistical approaches explored can improve the robust recognition of microbial subpopulations with routinely available

  12. Biochemical Phenotypes to Discriminate Microbial Subpopulations and Improve Outbreak Detection

    PubMed Central

    Galar, Alicia; Kulldorff, Martin; Rudnick, Wallis; O'Brien, Thomas F.; Stelling, John

    2013-01-01

    Background Clinical microbiology laboratories worldwide constitute an invaluable resource for monitoring emerging threats and the spread of antimicrobial resistance. We studied the growing number of biochemical tests routinely performed on clinical isolates to explore their value as epidemiological markers. Methodology/Principal Findings Microbiology laboratory results from January 2009 through December 2011 from a 793-bed hospital stored in WHONET were examined. Variables included patient location, collection date, organism, and 47 biochemical and 17 antimicrobial susceptibility test results reported by Vitek 2. To identify biochemical tests that were particularly valuable (stable with repeat testing, but good variability across the species) or problematic (inconsistent results with repeat testing), three types of variance analyses were performed on isolates of K. pneumonia: descriptive analysis of discordant biochemical results in same-day isolates, an average within-patient variance index, and generalized linear mixed model variance component analysis. Results: 4,200 isolates of K. pneumoniae were identified from 2,485 patients, 32% of whom had multiple isolates. The first two variance analyses highlighted SUCT, TyrA, GlyA, and GGT as “nuisance” biochemicals for which discordant within-patient test results impacted a high proportion of patient results, while dTAG had relatively good within-patient stability with good heterogeneity across the species. Variance component analyses confirmed the relative stability of dTAG, and identified additional biochemicals such as PHOS with a large between patient to within patient variance ratio. A reduced subset of biochemicals improved the robustness of strain definition for carbapenem-resistant K. pneumoniae. Surveillance analyses suggest that the reduced biochemical profile could improve the timeliness and specificity of outbreak detection algorithms. Conclusions The statistical approaches explored can improve the

  13. Correlations between female breast density and biochemical markers.

    PubMed

    Kim, Ji-Hye; Lee, Hae-Kag; Cho, Jae-Hwan; Park, Hyong-Keun; Yang, Han-Jun

    2015-07-01

    [Purpose] The aim of this study was to identify biochemical markers related to breast density. The study was performed with 200 patients who received mammography and biochemical marker testing between March 1, 2014 to October 1, 2014. [Subjects and Methods] Following the American College of Radiology, Breast Imaging Reporting and Data System (ACR BI-RADS), breast parenchymal pattern density from mammography was categorized into four grades: grade 1, almost entirely fat; grade 2, fibroglandular densities; grade 3, heterogeneously dense; and grade 4, extremely dense. Regarding biochemical markers, subjects underwent blood and urine tests after a 12-h fast. We analyzed correlations among breast density, general characteristics, and biochemical markers. [Results] Breast density-related factors were age, height, weight, body mass index (BMI), hematocrit, MCH, RDW, AST, ALT, ALP, uric acid, γGT, triglycerides, total cholesterol, HDL-cholesterol, and LDL-cholesterol. [Conclusion] The results can be used as basic and comparative data for the prevention and early control of breast cancer.

  14. Stochastic hybrid systems for studying biochemical processes.

    PubMed

    Singh, Abhyudai; Hespanha, João P

    2010-11-13

    Many protein and mRNA species occur at low molecular counts within cells, and hence are subject to large stochastic fluctuations in copy numbers over time. Development of computationally tractable frameworks for modelling stochastic fluctuations in population counts is essential to understand how noise at the cellular level affects biological function and phenotype. We show that stochastic hybrid systems (SHSs) provide a convenient framework for modelling the time evolution of population counts of different chemical species involved in a set of biochemical reactions. We illustrate recently developed techniques that allow fast computations of the statistical moments of the population count, without having to run computationally expensive Monte Carlo simulations of the biochemical reactions. Finally, we review different examples from the literature that illustrate the benefits of using SHSs for modelling biochemical processes.

  15. Effect of dissolved oxygen on two bacterial pathogens examined using ATR-FTIR spectroscopy, microelectrophoresis, and potentiometric titration.

    PubMed

    Castro, Felipe D; Sedman, Jacqueline; Ismail, Ashraf A; Asadishad, Bahareh; Tufenkji, Nathalie

    2010-06-01

    The effects of dissolved oxygen tension during bacterial growth and acclimation on the cell surface properties and biochemical composition of the bacterial pathogens Escherichia coli O157:H7 and Yersinia enterocolitica are characterized. Three experimental techniques are used in an effort to understand the influence of bacterial growth and acclimation conditions on cell surface charge and the composition of the bacterial cell: (i) electrophoretic mobility measurements; (ii) potentiometric titration; and (iii) ATR-FTIR spectroscopy. Potentiometric titration data analyzed using chemical speciation software are related to measured electrophoretic mobilities at the pH of interest. Titration of bacterial cells is used to identify the major proton-active functional groups and the overall concentration of these cell surface ligands at the cell membrane. Analysis of titration data shows notable differences between strains and conditions, confirming the appropriateness of this tool for an overall charge characterization. ATR-FTIR spectroscopy of whole cells is used to further characterize the bacterial biochemical composition and macromolecular structures that might be involved in the development of the net surficial charge of the organisms examined. The evaluation of the integrated intensities of HPO(2)(-) and carbohydrate absorption bands in the IR spectra reveals clear differences between growth protocols. Taken together, the three techniques seem to indicate that the dissolved oxygen tension during cell growth or acclimation can noticeably influence the expression of cell surface molecules and the measurable cell surface charge, though in a strain-dependent fashion.

  16. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections 158.2081...

  17. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections 158.2081...

  18. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections 158.2081...

  19. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections 158.2081...

  20. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections 158.2081...

  1. The psychiatrist's guide to right and wrong: Part IV: The insanity defense and the Ultimate Issue Rule.

    PubMed

    Goldstein, R L

    1989-01-01

    In the wake of Hinckley, widespread public dissatisfaction with the role of psychiatrists in insanity defense litigation prompted Congress in 1984 to amend the Federal Rules of Evidence to prohibit psychiatric testimony on the ultimate legal issue of whether or not a defendant is insane. APA's Statement on the Insanity Defense served as the ably articulated premise for this evidentiary amendment. APA argued that in going beyond their psychiatric expertise by answering ultimate issue questions as to whether defendants are legally insane, experts are likely to confuse the jury and undermine public confidence in psychiatry. APA also asserted that there was an impermissible logical leap between scientific psychiatric inquiry and moral-legal conclusions on the ultimate issue of insanity. This article reviews the origins, history, and vicissitudes of the Ultimate Issue Rule and analyzes the Statement on the Insanity Defense from both a legal and psychiatric perspective on the issue of whether psychiatrists should answer the ultimate question in insanity cases. The analysis suggests that APA's conclusions are not supported on scientific or evidentiary grounds, but may be warranted as a policy consideration to safeguard the public image of psychiatry.

  2. From the selfish gene to selfish metabolism: revisiting the central dogma.

    PubMed

    de Lorenzo, Víctor

    2014-03-01

    The standard representation of the Central Dogma (CD) of Molecular Biology conspicuously ignores metabolism. However, both the metabolites and the biochemical fluxes behind any biological phenomenon are encrypted in the DNA sequence. Metabolism constrains and even changes the information flow when the DNA-encoded instructions conflict with the homeostasis of the biochemical network. Inspection of adaptive virulence programs and emergence of xenobiotic-biodegradation pathways in environmental bacteria suggest that their main evolutionary drive is the expansion of their metabolic networks towards new chemical landscapes rather than perpetuation and spreading of their DNA sequences. Faulty enzymatic reactions on suboptimal substrates often produce reactive oxygen species (ROS), a process that fosters DNA diversification and ultimately couples catabolism of the new chemicals to growth. All this calls for a revision of the CD in which metabolism (rather than DNA) has the leading role. © 2014 WILEY Periodicals, Inc.

  3. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice

    PubMed Central

    Mostofa, Mohammad Golam; Rahman, Anisur; Ansary, Md. Mesbah Uddin; Watanabe, Ayaka; Fujita, Masayuki; Phan Tran, Lam-Son

    2015-01-01

    We investigated the physiological and biochemical mechanisms by which H2S mitigates the cadmium stress in rice. Results revealed that cadmium exposure resulted in growth inhibition and biomass reduction, which is correlated with the increased uptake of cadmium and depletion of the photosynthetic pigments, leaf water contents, essential minerals, water-soluble proteins, and enzymatic and non-enzymatic antioxidants. Excessive cadmium also potentiated its toxicity by inducing oxidative stress, as evidenced by increased levels of superoxide, hydrogen peroxide, methylglyoxal and malondialdehyde. However, elevating endogenous H2S level improved physiological and biochemical attributes, which was clearly observed in the growth and phenotypes of H2S-treated rice plants under cadmium stress. H2S reduced cadmium-induced oxidative stress, particularly by enhancing redox status and the activities of reactive oxygen species and methylglyoxal detoxifying enzymes. Notably, H2S maintained cadmium and mineral homeostases in roots and leaves of cadmium-stressed plants. By contrast, adding H2S-scavenger hypotaurine abolished the beneficial effect of H2S, further strengthening the clear role of H2S in alleviating cadmium toxicity in rice. Collectively, our findings provide an insight into H2S-induced protective mechanisms of rice exposed to cadmium stress, thus proposing H2S as a potential candidate for managing toxicity of cadmium, and perhaps other heavy metals, in rice and other crops. PMID:26361343

  4. Prisoner Fasting as Symbolic Speech: The Ultimate Speech-Action Test.

    ERIC Educational Resources Information Center

    Sneed, Don; Stonecipher, Harry W.

    The ultimate test of the speech-action dichotomy, as it relates to symbolic speech to be considered by the courts, may be the fasting of prison inmates who use hunger strikes to protest the conditions of their confinement or to make political statements. While hunger strikes have been utilized by prisoners for years as a means of protest, it was…

  5. [Biochemical evaluation of metabolic disorders in the tissues of the locomotor system in patients with occupational diseases caused by physical stress].

    PubMed

    Shatskaia, N N; Tarasova, A A; Fedorova, V I; Shardakova, E F; Selezneva, A I; Fedosova, N F

    1991-01-01

    A group of patients with occupational disease and female sewing-machine operators were medically examined with a broad set of biochemical techniques aimed at the detection of metabolic disorders in the locomotor system tissues. Noninflammatory dystrophic changes were found. The muscular component was dominating in comparison with the osseous one in the genesis of the degenerative dystrophic processes, which manifested in the clinical course. Laboratory manifestations were revealed related to the lowered energy supply and oxygenation of the skeleton muscles in patients with neuromuscular and osteo-muscular++ syndromes. The metabolic disorders were diagnosed at the early stages of myalgia.

  6. Augmented reality experimentation on oxygen gas generation from hydrogen peroxide and bleach reaction.

    PubMed

    Gan, Hong Seng; Tee, Nicholas Yee Kwang; Bin Mamtaz, Mohammad Raziun; Xiao, Kevin; Cheong, Brandon Huey-Ping; Liew, Oi Wah; Ng, Tuck Wah

    2018-05-01

    The appreciation and understanding of gas generation through processes is vital in biochemical education. In this work, an augmented reality tool is reported to depict the redox reaction between hydrogen peroxide and sodium hypochlorite solutions, two ubiquitous oxidizing agents, to create oxygen, a combustible gas. As it operates out of smartphones or tablets, students are able to conduct the exercise collaboratively, respond in a manner similar to an actual physical experiment, and able to depict the oxygen volume changes in relation to the volume of hydrogen peroxide of different concentrations used. The tool offers to help students acquire bench skills by limiting handing risks and to mitigate possible student anxiety on handling chemical materials and implements in the laboratory. The feedback received from Year 11 and 12 high school student participants in an outreach exercise indicate the overall effectiveness of this tool. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):245-252, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  7. Incidence of Abnormal Liver Biochemical Tests in Hyperthyroidism

    PubMed Central

    Lin, Tiffany Y.; Shekar, Anshula O.; Li, Ning; Yeh, Michael W.; Saab, Sammy; Wilson, Mark; Leung, Angela M.

    2017-01-01

    Objective Abnormal serum liver function tests are common in patients with untreated thyrotoxicosis, even prior to the initiation of antithyroidal medications that may worsen their severity. There is a wide range of the incidence of these abnormalities in the published literature. The aim of this study was to assess the risks factors and threshold of thyrotoxicosis severity for developing an abnormal liver biochemical test upon the diagnosis of new thyrotoxicosis. Design Single-institution retrospective cohort study. Patients Patients ≥18 years old receiving medical care at a large, academic, urban U.S. medical center between 2002–2016. Measurements Inclusion criteria were a serum thyroid stimulating hormone [TSH] concentration < 0.3 mIU/L or ICD-9 code for thyrotoxicosis, with thyrotoxicosis confirmed by either a concurrent elevated serum triiodothyronine (T3) and/or thyroxine (T4) concentration [total or free] within 3 months), and an available liver biochemical test(s) within 6 months of thyrotoxicosis. The biochemical liver tests assessed were serum aspartate transaminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), gamma-glutamyltransferase (GGT), total bilirubin, and conjugated bilirubin concentrations. Results In this cohort of 1,514 subjects, the overall incidence of any biochemical liver test abnormality within 6 months of thyrotoxicosis was 39%. An initial serum TSH concentration <0.02 mIU/L, male gender, and African-American race were significant predictors of an abnormal serum liver biochemical test within 6 months of the diagnosis of new-onset untreated thyrotoxicosis. Conclusions This study identifies risk factors for patients who develop an abnormal serum liver biochemical test result within 6 months of a diagnosis of untreated thyrotoxicosis. PMID:28199740

  8. Incidence of abnormal liver biochemical tests in hyperthyroidism.

    PubMed

    Lin, Tiffany Y; Shekar, Anshula O; Li, Ning; Yeh, Michael W; Saab, Sammy; Wilson, Mark; Leung, Angela M

    2017-05-01

    Abnormal serum liver function tests are common in patients with untreated thyrotoxicosis, even prior to the initiation of antithyroidal medications that may worsen the severity of the abnormal serum liver biochemistries. There is a wide range of the incidence of these abnormalities in the published literature. The aim of this study was to assess the risks factors and threshold of thyrotoxicosis severity for developing an abnormal liver biochemical test upon the diagnosis of new thyrotoxicosis. Single-institution retrospective cohort study. Patients of ≥18 years old receiving medical care at a large, academic, urban US medical centre between 2002-2016. Inclusion criteria were a serum thyroid stimulating hormone (TSH) concentration of <0·3 mIU/l or ICD-9 code for thyrotoxicosis, with thyrotoxicosis confirmed by either a concurrent elevated serum triiodothyronine (T3) or thyroxine (T4) concentration ([total or free] within 3 months), and an available liver biochemical test(s) within 6 months of thyrotoxicosis. The biochemical liver tests assessed were serum aspartate transaminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), gamma-glutamyltransferase (GGT), total bilirubin, and conjugated bilirubin concentrations. In this cohort of 1514 subjects, the overall incidence of any biochemical liver test abnormality within 6 months of thyrotoxicosis was 39%. An initial serum TSH concentration <0·02 mIU/l, male gender, and African-American race were significant predictors of an abnormal serum liver biochemical test within 6 months of the diagnosis of new-onset untreated thyrotoxicosis. This study identifies risk factors for patients who develop an abnormal serum liver biochemical test result within 6 months of a diagnosis of untreated thyrotoxicosis. © 2017 John Wiley & Sons Ltd.

  9. Biotinidase deficiency: Genotype-biochemical phenotype association in Brazilian patients

    PubMed Central

    Borsatto, Taciane; Sperb-Ludwig, Fernanda; Lima, Samyra E.; S. Carvalho, Maria R.; S. Fonseca, Pablo A.; S. Camelo, José; M. Ribeiro, Erlane; F. V. de Medeiros, Paula; M. Lourenço, Charles; F. M. de Souza, Carolina; Boy, Raquel; Félix, Têmis M.; M. Bittar, Camila; L. C. Pinto, Louise; C. Neto, Eurico; J. Blom, Henk; D. Schwartz, Ida V.

    2017-01-01

    Introduction The association between the BTD genotype and biochemical phenotype [profound biotinidase deficiency (BD), partial BD or heterozygous activity] is not always consistent. This study aimed to investigate the genotype-biochemical phenotype association in patients with low biotinidase activity. Methods All exons, the 5'UTR and the promoter of the BTD gene were sequenced in 72 Brazilian individuals who exhibited low biotinidase activity. For each patient, the expected biochemical phenotype based on the known genotype was compared with the observed biochemical phenotype. Additional non-genetic factors that could affect the biotinidase activity were also analysed. Results Most individuals were identified by neonatal screening (n = 66/72). When consecutive results for the same patient were compared, age, prematurity and neonatal jaundice appeared to affect the level of biotinidase activity. The biochemical phenotype at the time of the second blood collection changed in 11/22 patients compared to results from the first sample. Three novel variants were found: c.1337T>C (p.L446P), c.1466A>G (p.N489S) and c.962G>A (p.W321*). Some patients with the same genotype presented different biochemical phenotypes. The expected and observed biochemical phenotypes agreed in 68.5% of cases (concordant patients). The non-coding variants c.-183G>A, c.-315A>G and c.-514C>T were present in heterozygosis in 5/17 discordant patients. In addition, c.-183G>A and c.-514C>T were also present in 10/37 concordant patients. Conclusions The variants found in the promoter region do not appear to have a strong impact on biotinidase activity. Since there is a disparity between the BTD genotype and biochemical phenotype, and biotinidase activity may be affected by both genetic and non-genetic factors, we suggest that the diagnosis of BD should be based on more than one measurement of plasma biotinidase activity. DNA analysis can be of additional relevance to differentiate between partial BD and

  10. Effects of Mitochondrial Antioxidant SkQ1 on Biochemical and Behavioral Parameters in a Parkinsonism Model in Mice.

    PubMed

    Pavshintsev, V V; Podshivalova, L S; Frolova, O Y; Belopolskaya, M V; Averina, O A; Kushnir, E A; Marmiy, N V; Lovat, M L

    2017-12-01

    According to one hypothesis, Parkinson's disease pathogenesis is largely caused by dopamine catabolism that is catalyzed on mitochondrial membranes by monoamine oxidase. Reactive oxygen species are formed as a byproduct of these reactions, which can lead to mitochondrial damage followed by cell degeneration and death. In this study, we investigated the effects of administration of the mitochondrial antioxidant SkQ1 on biochemical, immunohistochemical, and behavioral parameters in a Parkinson-like condition caused by protoxin MPTP injections in C57BL/6 mice. SkQ1 administration increased dopamine quantity and decreased signs of sensory-motor deficiency as well as destruction of dopaminergic neurons in the substantia nigra and ventral tegmental area in mice with the Parkinson-like condition.

  11. Influence of low oxygen tensions and sorption to sediment black carbon on biodegradation of pyrene.

    PubMed

    Ortega-Calvo, José-Julio; Gschwend, Philip M

    2010-07-01

    Sorption to sediment black carbon (BC) may limit the aerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in resuspension events and intact sediment beds. We examined this hypothesis experimentally under conditions that were realistic in terms of oxygen concentrations and BC content. A new method, based on synchronous fluorescence observations of (14)C-pyrene, was developed for continuously measuring the uptake of dissolved pyrene by Mycobacterium gilvum VM552, a representative degrader of PAHs. The effect of oxygen and pyrene concentrations on pyrene uptake followed Michaelis-Menten kinetics, resulting in a dissolved oxygen half-saturation constant (K(om)) of 14.1 microM and a dissolved pyrene half-saturation constant (K(pm)) of 6 nM. The fluorescence of (14)C-pyrene in air-saturated suspensions of sediments and induced cells followed time courses that reflected simultaneous desorption and biodegradation of pyrene, ultimately causing a quasi-steady-state concentration of dissolved pyrene balancing desorptive inputs and biodegradation removals. The increasing concentrations of (14)CO(2) in these suspensions, as determined with liquid scintillation, evidenced the strong impact of sorption to BC-rich sediments on the biodegradation rate. Using the best-fit parameter values, we integrated oxygen and sorption effects and showed that oxygen tensions far below saturation levels in water are sufficient to enable significant decreases in the steady-state concentrations of aqueous-phase pyrene. These findings may be relevant for bioaccumulation scenarios that consider the effect of sediment resuspension events on exposure to water column and sediment pore water, as well as the direct uptake of PAHs from sediments.

  12. Cerebral oxygenation and hemodynamic changes during infant cardiac surgery: measurements by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    du Plessis, Adre J.; Volpe, Joseph J.

    1996-10-01

    Despite dramatic advances in the survival rate among infants undergoing cardiac surgery for congenital heart disease, the incidence of brain injury suffered by survivors remains unacceptably high. This is largely due to our limited understanding of the complex changes in cerebral oxygen utilization and supply occurring during the intraoperative period as a result of hypothermia, neuroactive drugs, and profound circulatory changes. Current techniques for monitoring the adequacy of cerebral oxygen supply and utilization during hypothermic cardiac surgery are inadequate to address this complex problem and consequently to identify the infant at risk for such brain injury. Furthermore, this inability to detect imminent hypoxic- ischemic brain injury is likely to become all the more conspicuous as new neuroprotective strategies, capable of salvaging 'insulated' neuronal tissue form cell death, enter the clinical arena. Near infrared spectroscopy is a relatively new, noninvasive, and portable technique capable of interrogating the oxygenation and hemodynamics of tissue in vivo. These characteristics of the technique have generated enormous interest among clinicians in the ability of near infrared spectroscopy to elucidate the mechanisms of intraoperative brain injury and ultimately to identify infants oat risk for such injury. This paper reviews the experience with this technique to date during infant cardiac surgery.

  13. Accurate atom-mapping computation for biochemical reactions.

    PubMed

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  14. LRFD software for design and actual ultimate capacity of confined rectangular columns.

    DOT National Transportation Integrated Search

    2013-04-01

    The analysis of concrete columns using unconfined concrete models is a well established practice. On the : other hand, prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear : analysis. Modern codes and...

  15. Biochemical studies in patients with hyperinsulinaemic hypoglycaemia.

    PubMed

    Al-Otaibi, Hessah; Senniappan, Senthil; Alam, Syeda; Hussain, Khalid

    2013-11-01

    Hyperinsulinaemic hypoglycaemia (HH) is characterised by the dysregulated secretion of insulin from the pancreatic β-cell. It is a major cause of severe and persistent hypoglycaemia in the newborn period. There have been no previous studies assessing the various biochemical alterations at the time of hypoglycaemia in relation to the severity of the hypoglycaemia. Biochemical and clinical data were collected on 90 neonates (gestational age range, 32-42 weeks) with a diagnosis of HH [(based on glucose requirement  > 8 mg/kg/min) and the biochemical profile of insulin action (low beta-hydroxybutyrate and fatty acid concentrations)] who had undergone fasting studies. The results showed that (a) the serum insulin level measured at the time of hypoglycaemia had no correlation with the severity of hypoglycaemia, (b) the serum insulin level was undetectable despite severe hypoglycaemia in a significant proportion of patients, (c) there was no correlation between the birth weight and the insulin level at the time of hypoglycaemia, (d) the suppression of ketogenesis was more marked than that of the non-esterified fatty acids. This study suggests that the diagnosis of HH should not rely solely on a raised serum insulin level at the time of hypoglycaemia but on the constellation of clinical and biochemical findings.

  16. Biochemical characteristics among Mycobacterium bovis BCG substrains.

    PubMed

    Hayashi, Daisuke; Takii, Takemasa; Mukai, Tetsu; Makino, Masahiko; Yasuda, Emi; Horita, Yasuhiro; Yamamoto, Ryuji; Fujiwara, Akiko; Kanai, Keita; Kondo, Maki; Kawarazaki, Aya; Yano, Ikuya; Yamamoto, Saburo; Onozaki, Kikuo

    2010-05-01

    In order to evaluate the biochemical characteristics of 14 substrains of Mycobacterium bovis bacillus Calmette Guérin (BCG) - Russia, Moreau, Japan, Sweden, Birkhaug, Danish, Glaxo, Mexico, Tice, Connaught, Montreal, Phipps, Australia and Pasteur - we performed eight different biochemical tests, including those for nitrate reduction, catalase, niacin accumulation, urease, Tween 80 hydrolysis, pyrazinamidase, p-amino salicylate degradation and resistance to thiophene 2-carboxylic acid hydrazide. Catalase activities of the substrains were all low. Data for nitrate reduction, niacin accumulation, Tween 80 hydrolysis, susceptibility to hydrogen peroxide and nitrate, and optimal pH for growth were all variable among these substrains. These findings suggest that the heterogeneities of biochemical characteristics are relevant to the differences in resistance of BCG substrains to environmental stress. The study also contributes to the re-evaluation of BCG substrains for use as vaccines.

  17. Changes in quality and biochemical parameters in 'Idared' apples during prolonged shelf life and 1-MCP treatment.

    PubMed

    Bizjak, Jan; Slatnar, Ana; Stampar, Franci; Veberic, Robert

    2012-12-01

    In this study, changes in quality and various biochemical parameters of 'Idared' apples during prolonged shelf life period after ultra-low oxygen (ULO) storage were investigated. Additionally, the impact of the postharvest application of 1-methylcyclopropene (1-MCP) on different parameters was evaluated. After the harvest, apples were stored in the ULO storage for 6 months and then exposed to room temperature. Fruit firmness, peel color, and changes in sugars, organic acids and phenolics were monitored during the 3 weeks of shelf life. Malic acid, sugars and firmness decreased at room temperature. However, the color of the apples remained unchanged. The level of citric and ascorbic acid remained constant. Levels of phenolics in the peel increased significantly, whereas remained constant in the pulp of apples. 1-MCP treatment resulted in higher amounts of fructose and glucose, malic acid and greater firmness of apples. However, 1-MCP did not influence the phenolic content, ascorbic acid or color. The results obtained indicate that the content of different health-promoting compounds of apples does not change dramatically at room temperature. At the same time these results suggest that 1-MCP could be useful for maintaining certain quality and biochemical parameters and might extend the shelf life of apples.

  18. Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids.

    PubMed

    Lee, GeonHui; Jun, Yesl; Jang, HeeYeong; Yoon, Junghyo; Lee, JaeSeo; Hong, MinHyung; Chung, Seok; Kim, Dong-Hwee; Lee, SangHoon

    2018-01-01

    Oxygen availability is a critical factor in regulating cell viability that ultimately contributes to the normal morphogenesis and functionality of human tissues. Among various cell culture platforms, construction of 3D multicellular spheroids based on microwell arrays has been extensively applied to reconstitute in vitro human tissue models due to its precise control of tissue culture conditions as well as simple fabrication processes. However, an adequate supply of oxygen into the spheroidal cellular aggregation still remains one of the main challenges to producing healthy in vitro spheroidal tissue models. Here, we present a novel design for controlling the oxygen distribution in concave microwell arrays. We show that oxygen permeability into the microwell is tightly regulated by varying the poly-dimethylsiloxane (PDMS) bottom thickness of the concave microwells. Moreover, we validate the enhanced performance of the engineered microwell arrays by culturing non-proliferated primary rat pancreatic islet spheroids on varying bottom thickness from 10 μm to 1050 μm. Morphological and functional analyses performed on the pancreatic islet spheroids grown for 14 days prove the long-term stability, enhanced viability, and increased hormone secretion under the sufficient oxygen delivery conditions. We expect our results could provide knowledge on oxygen distribution in 3-dimensional spheroidal cell structures and critical design concept for tissue engineering applications. In this study, we present a noble design to control the oxygen distribution in concave microwell arrays for the formation of highly functional pancreatic islet spheroids by engineering the bottom of the microwells. Our new platform significantly enhanced oxygen permeability that turned out to improve cell viability and spheroidal functionality compared to the conventional thick-bottomed 3-D culture system. Therefore, we believe that this could be a promising medical biotechnology platform to

  19. Rapid population growth and environmental degradation: ultimate versus proximate factors.

    PubMed

    Shaw, R P

    1989-01-01

    This philosophical review of 2 arguments about responsibility for and solutions to environmental degradation concludes that both sides are correct: the ultimate and the proximal causes. Ultimate causes of pollution are defined as the technology responsible for a given type of pollution, such as burning fossil fuel; proximate causes are defined as situation-specific factors confounding the problem, such as population density or rate of growth. Commoner and others argue that developed countries with low or negative population growth rates are responsible for 80% of world pollution, primarily in polluting technologies such as automobiles, power generation, plastics, pesticides, toxic wastes, garbage, warfaring, and nuclear weapons wastes. Distortionary policies also contribute; examples are agricultural trade protection, land mismanagement, urban bias in expenditures, and institutional rigidity., Poor nations are responsible for very little pollution because poverty allows little waste or expenditures for polluting, synthetic technologies. The proximal causes of pollution include numbers and rate of growth of populations responsible for the pollution. Since change in the ultimate cause of pollution remains out of reach, altering the numbers of polluters can make a difference. Predictions are made for proportions of the world's total waste production, assuming current 1.6 tons/capita for developed countries and 0.17 tons/capita for developing countries. If developing countries grow at current rates and become more wealthy, they will be emitting half the world's waste by 2025. ON the other hand, unsustainable population growth goes along with inadequate investment in human capital: education, health, employment, infrastructure. The solution is to improve farming technologies in the 117 non-self-sufficient countries, fund development in the most unsustainable enclaves of growing countries, break institutionalized socio-political rigidity in these enclaves, and focus on

  20. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones.

    PubMed

    Seibel, Brad A

    2011-01-15

    The survival of oceanic organisms in oxygen minimum zones (OMZs) depends on their total oxygen demand and the capacities for oxygen extraction and transport, anaerobic ATP production and metabolic suppression. Anaerobic metabolism and metabolic suppression are required for daytime forays into the most extreme OMZs. Critical oxygen partial pressures are, within a range, evolved to match the minimum oxygen level to which a species is exposed. This fact demands that low oxygen habitats be defined by the biological response to low oxygen rather than by some arbitrary oxygen concentration. A broad comparative analysis of oxygen tolerance facilitates the identification of two oxygen thresholds that may prove useful for policy makers as OMZs expand due to climate change. Between these thresholds, specific physiological adaptations to low oxygen are required of virtually all species. The lower threshold represents a limit to evolved oxygen extraction capacity. Climate change that pushes oxygen concentrations below the lower threshold (~0.8 kPa) will certainly result in a transition from an ecosystem dominated by a diverse midwater fauna to one dominated by diel migrant biota that must return to surface waters at night. Animal physiology and, in particular, the response of animals to expanding hypoxia, is a critical, but understudied, component of biogeochemical cycles and oceanic ecology. Here, I discuss the definition of hypoxia and critical oxygen levels, review adaptations of animals to OMZs and discuss the capacity for, and prevalence of, metabolic suppression as a response to temporary residence in OMZs and the possible consequences of climate change on OMZ ecology.

  1. Closed Loop Control of Oxygen Delivery and Oxygen Generation

    DTIC Science & Technology

    2017-08-01

    AFRL-SA-WP-SR-2017-0024 Closed Loop Control of Oxygen Delivery and Oxygen Generation Dr. Jay Johannigman1, Richard Branson1...for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO...TITLE AND SUBTITLE Closed Loop Control of Oxygen Delivery and Oxygen Generation 5a. CONTRACT NUMBER FA8650-10-2-6140 5b. GRANT NUMBER

  2. Biochemical Characterization of Prion Strains in Bank Voles

    PubMed Central

    Pirisinu, Laura; Marcon, Stefano; Di Bari, Michele Angelo; D’Agostino, Claudia; Agrimi, Umberto; Nonno, Romolo

    2013-01-01

    Prions exist as different strains exhibiting distinct disease phenotypes. Currently, the identification of prion strains is still based on biological strain typing in rodents. However, it has been shown that prion strains may be associated with distinct PrPSc biochemical types. Taking advantage of the availability of several prion strains adapted to a novel rodent model, the bank vole, we investigated if any prion strain was actually associated with distinctive PrPSc biochemical characteristics and if it was possible to univocally identify strains through PrPSc biochemical phenotypes. We selected six different vole-adapted strains (three human-derived and three animal-derived) and analyzed PrPSc from individual voles by epitope mapping of protease resistant core of PrPSc (PrPres) and by conformational stability and solubility assay. Overall, we discriminated five out of six prion strains, while two different scrapie strains showed identical PrPSc types. Our results suggest that the biochemical strain typing approach here proposed was highly discriminative, although by itself it did not allow us to identify all prion strains analyzed. PMID:25437201

  3. Age and Ultimate Attainment in the Pronunciation of a Foreign Language.

    ERIC Educational Resources Information Center

    Bongaerts, Theo; van Summeren, Chantal; Planken, Brigette; Schils, Erik

    1997-01-01

    Reports on two studies addressing the issue of ultimate attainment of pronunciation by late second-language learners. Findings indicate that it is not impossible to achieve an authentic, nativelike pronunciation of a second language after a specified biological time. The article argues that certain learner characteristics and learning contexts may…

  4. Craniometaphyseal dysplasia with obvious biochemical abnormality and rickets-like features.

    PubMed

    Wu, Bo; Jiang, Yan; Wang, Ou; Li, Mei; Xing, Xiao-Ping; Xia, Wei-Bo

    2016-05-01

    Craniometaphyseal dysplasia (CMD) is a rare genetic disorder that is characterized by progressive sclerosis of the craniofacial bones and metaphyseal widening of long bones, and biochemical indexes were mostly normal. To further the understanding of the disease from a biochemical perspective, we reported a CMD case with obviously abnormal biochemical indexes. A 1-year-old boy was referred to our clinic. Biochemical test showed obviously increased alkaline phosphatase (ALP) and parathyroid hormone (PTH), mild hypocalcemia and hypophosphatemia. Moreover, significant elevated receptor activator of nuclear factor kappa-B ligand (RANKL) level, but normal β-C-terminal telopeptide of type I collagen (β-CTX) concentration were revealed. He was initially suspected of rickets, because the radiological examination also showed broadened epiphysis in his long bones. Supplementation with calcium and calcitriol alleviated biochemical abnormality. However, the patient gradually developed osteosclerosis which was inconformity with rickets. Considering that he was also presented with facial paralysis and nasal obstruction symptom, the diagnosis of craniometaphyseal dysplasia was suspected, and then was confirmed by the mutation analysis of ANKH of the proband and his family, which showed a de novo heterozygous mutation (C1124-1126delCCT) on exon 9. Our study revealed that obvious biochemical abnormality and rickets-like features might present as uncommon characteristics in CMD patients, and the calcium and calcitriol supplementation could alleviate biochemical abnormalities. Furthermore, although early osteoclast differentiation factor was excited in CMD patient, activity of osteoclast was still inert. Copyright © 2016. Published by Elsevier B.V.

  5. Phosphofructokinase and mitochondria partially explain the high ultimate pH of broiler pectoralis major muscle.

    PubMed

    Matarneh, Sulaiman K; Yen, Con-Ning; Elgin, Jennifer M; Beline, Mariane; da Luz E Silva, Saulo; Wicks, Jordan C; England, Eric M; Dalloul, Rami A; Persia, Michael E; Omara, Islam I; Shi, Hao; Gerrard, David E

    2018-05-01

    During postmortem metabolism, muscle pH gradually declines to reach an ultimate pH near 5.6 across most meat species. Yet, broiler pectoralis major (P. major) muscle generates meat with high ultimate pH (pH ∼ 5.9). For better understanding of the underlying mechanism responsible for this phenomenon, we evaluated the involvement of breast muscle chilling on the extent of postmortem metabolism. Broiler breast muscles were either subjected to chilling treatment (control) or left at room temperature (RT) for 120 min. P. major muscle from the RT treatment had lower ultimate pH, greater glycogen degradation and lactate accumulation. While these findings suggest that carcass chilling can contribute to the premature termination of postmortem metabolism, chilling did not fully explain the high ultimate pH of P. major muscle. Our results also revealed that glucose-6-phosphate (G6P) was very low at 24 h, and therefore we hypothesized that G6P was limiting. To test this hypothesis, muscle samples from P. major and porcine longissimus lumborum (LL) muscle were homogenized into a reaction buffer that mimics postmortem glycolysis with or without 0.5 mg/mL isolated mitochondria. While samples containing porcine LL muscle reached the normal level of ultimate pH, P. major muscle samples reached a value similar to that observed in vivo even in the presence of excess G6P, indicating that G6P was not limiting. Mitochondria enhanced the glycolytic flux and pH decline in systems containing muscle from both species. More importantly, however, was that in vitro system containing chicken with mitochondria reached pH value similar to that of samples containing LL muscle without mitochondria. To investigate further, phosphofructokinase (PFK) activity was compared in broiler P. major and porcine LL muscle at different pH values. PFK activity was lower in P. major muscle at pH 7, 6.5, and 6.2 than LL muscle. In conclusion, carcass chilling can partially contribute to the high ultimate p

  6. A Biochemical Approach to the Problem of Dyslexia.

    ERIC Educational Resources Information Center

    Baker, Sidney McDonald

    1985-01-01

    The paper presents the case of a sixth-grade boy, labeled dyslexic, who responded positively to a biochemical approach. Remedy of iron, zinc, and Vitamin B-6 deficiencies as well as an imbalance of fatty acids resulted in improvements in hair and skin and also in reading. A biochemical approach to behavior problems is proposed. (Author/CL)

  7. Developments in commercially produced microbials at Biochem Products

    Treesearch

    John Lublinkhof; Douglas H. Ross

    1985-01-01

    Biochem Products is part of a large industrial and scientific family - the Solvay Group. Solvay, headquartered in Brussels, Belgium is a multinational company with 46,000 employees worldwide. In the U.S., our working partners include a large polymer manufacturer, a peroxygen producer and a leading poultry and animal health products company. Biochem Products is a...

  8. METHYLATED ASIII COMPOUNDS AS POTENTIAL PROXIMATE/ULTIMATE GENOTOXIC METABOLITES OF INORGANIC ARSENIC

    EPA Science Inventory

    METHYLATED Asm COMPOUNDS AS POTENTIAL PROXIMATE/ULTIMATE GENOTOXIC METABOLITES OF INORGANIC ARSENIC.

    The methylation of inorganic arsenic has typically been viewed as a detoxification process. Genotoxicity tests have generally shown that arsenite has greater mutagenic p...

  9. Management Options for Biochemically Recurrent Prostate Cancer.

    PubMed

    Fakhrejahani, Farhad; Madan, Ravi A; Dahut, William L

    2017-05-01

    Prostate cancer is the most common solid tumor malignancy in men worldwide. Treatment with surgery and radiation can be curative in organ-confined disease. Unfortunately, about one third of men develop biochemically recurrent disease based only on rising prostate-specific antigen (PSA) in the absence of visible disease on conventional imaging. For these patients with biochemical recurrent prostate cancer, there is no uniform guideline for subsequent management. Based on available data, it seems prudent that biochemical recurrent prostate cancer should initially be evaluated for salvage radiation or prostatectomy, with curative intent. In selected cases, high-intensity focused ultrasound and cryotherapy may be considered in patients that meet very narrow criteria as defined by non-randomized trials. If salvage options are not practical or unsuccessful, androgen deprivation therapy (ADT) is a standard option for disease control. While some patients prefer ADT to manage the disease immediately, others defer treatment because of the associated toxicity. In the absence of definitive randomized data, patients may be followed using PSA doubling time as a trigger to initiate ADT. Based on retrospective data, a PSA doubling time of less than 3-6 months has been associated with near-term development of metastasis and thus could be used signal to initiate ADT. Once treatment is begun, patients and their providers can choose between an intermittent and continuous ADT strategy. The intermittent approach may limit side effects but in patients with metastatic disease studies could not exclude a 20% greater risk of death. In men with biochemical recurrence, large studies have shown that intermittent therapy is non-inferior to continuous therapy, thus making this a reasonable option. Since biochemically recurrent prostate cancer is defined by technological limitations of radiographic detection, as new imaging (i.e., PSMA) strategies are developed, it may alter how the disease is

  10. Kombucha tea fermentation: Microbial and biochemical dynamics.

    PubMed

    Chakravorty, Somnath; Bhattacharya, Semantee; Chatzinotas, Antonis; Chakraborty, Writachit; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-03-02

    Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies. This, however, may prevent understanding the causal links between the microbial communities and the beneficial properties of Kombucha tea. Moreover, an extensive study into the microbial and biochemical dynamics has also been missing. In this study, we thus explored the structure and dynamics of the microbial community along with the biochemical properties of Kombucha tea at different time points up to 21 days of fermentation. We hypothesized that several biochemical properties will change during the course of fermentation along with the shifts in the yeast and bacterial communities. The yeast community of the biofilm did not show much variation over time and was dominated by Candida sp. (73.5-83%). The soup however, showed a significant shift in dominance from Candida sp. to Lachancea sp. on the 7th day of fermentation. This is the first report showing Candida as the most dominating yeast genus during Kombucha fermentation. Komagateibacter was identified as the single largest bacterial genus present in both the biofilm and the soup (~50%). The bacterial diversity was higher in the soup than in the biofilm with a peak on the seventh day of fermentation. The biochemical properties changed with the progression of the fermentation, i.e., beneficial properties of the beverage such as the radical scavenging ability increased significantly with a maximum increase at day 7. We further observed a significantly higher D-saccharic acid-1,4-lactone content and caffeine degradation property compared to previously described Kombucha tea fermentations. Our

  11. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Wabash River, Huntington County, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1980-01-01

    A digital model calibrated to conditions in the Wabash River in Huntington County, Ind., was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditons, summer and winter low flows. The major point-source waste load affecting the Wabash River in Huntington County is the Huntington wastewater-treatment facility. The most significnt factor potentially affecting the dissolved-oxygen concentration during summer low flows is nitrification. However, nitrification should not be a limiting factor on the allowable nitrogenous and carbonaceous waste loads for the Huntington wastewater-treatment facility during summer low flows if the ammonia-nitrogen toxicity standard for Indiana streams is met. The disolved-oxygen standard for Indiana stream, an average of 5.0 milligrams per liter, should be met during summer and winter low flows if the National Pollution Discharge Elimination System 's 5-day, carbonaceous biochemical-oxygen demands of a monthly average concentration of 30 milligrams per liter and a maximum weekly average of 45 milligrams per liter are not exceeded. 

  12. Non-invasive MRI measurements of venous oxygenation, oxygen extraction fraction and oxygen consumption in neonates.

    PubMed

    De Vis, J B; Petersen, E T; Alderliesten, T; Groenendaal, F; de Vries, L S; van Bel, F; Benders, M J N L; Hendrikse, J

    2014-07-15

    Brain oxygen consumption reflects neuronal activity and can therefore be used to investigate brain development or neuronal injury in neonates. In this paper we present the first results of a non-invasive MRI method to evaluate whole brain oxygen consumption in neonates. For this study 51 neonates were included. The T1 and T2 of blood in the sagittal sinus were fitted using the 'T2 prepared tissue relaxation inversion recovery' pulse sequence (T2-TRIR). From the T1 and the T2 of blood, the venous oxygenation and the oxygen extraction fraction (OEF) were calculated. The cerebral metabolic rate of oxygen (CMRO2) was the resultant of the venous oxygenation and arterial spin labeling whole brain cerebral blood flow (CBF) measurements. Venous oxygenation was 59±14% (mean±sd), OEF was 40±14%, CBF was 14±5ml/100g/min and CMRO2 was 30±12μmol/100g/min. The OEF in preterms at term-equivalent age was higher than in the preterms and in the infants with hypoxic-ischemic encephalopathy (p<0.01). The OEF, CBF and CMRO2 increased (p<0.01, <0.05 and <0.01, respectively) with postnatal age. We presented an MRI technique to evaluate whole-brain oxygen consumption in neonates non-invasively. The measured values are in line with reference values found by invasive measurement techniques. Preterms and infants with HIE demonstrated significant lower oxygen extraction fraction than the preterms at term-equivalent age. This could be due to decreased neuronal activity as a reflection of brain development or as a result of tissue damage, increased cerebral blood flow due to immature or impaired autoregulation, or could be caused by differences in postnatal age. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Maximizing the Biochemical Resolving Power of Fluorescence Microscopy

    PubMed Central

    Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R.

    2013-01-01

    Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821

  14. Structural and biochemical analyses of a Clostridium perfringens sortase D transpeptidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryadinata, Randy, E-mail: randy.suryadinata@csiro.au; Seabrook, Shane A.; Adams, Timothy E.

    The structure of C. perfringens sortase D was determined at 1.99 Å resolution. Comparative biochemical and structural analyses revealed that this transpeptidase may represent a new subclass of the sortase D family. The assembly and anchorage of various pathogenic proteins on the surface of Gram-positive bacteria is mediated by the sortase family of enzymes. These cysteine transpeptidases catalyze a unique sorting signal motif located at the C-terminus of their target substrate and promote the covalent attachment of these proteins onto an amino nucleophile located on another protein or on the bacterial cell wall. Each of the six distinct classes ofmore » sortases displays a unique biological role, with sequential activation of multiple sortases often observed in many Gram-positive bacteria to decorate their peptidoglycans. Less is known about the members of the class D family of sortases (SrtD), but they have a suggested role in spore formation in an oxygen-limiting environment. Here, the crystal structure of the SrtD enzyme from Clostridium perfringens was determined at 1.99 Å resolution. Comparative analysis of the C. perfringens SrtD structure reveals the typical eight-stranded β-barrel fold observed in all other known sortases, along with the conserved catalytic triad consisting of cysteine, histidine and arginine residues. Biochemical approaches further reveal the specifics of the SrtD catalytic activity in vitro, with a significant preference for the LPQTGS sorting motif. Additionally, the catalytic activity of SrtD is most efficient at 316 K and can be further improved in the presence of magnesium cations. Since C. perfringens spores are heat-resistant and lead to foodborne illnesses, characterization of the spore-promoting sortase SrtD may lead to the development of new antimicrobial agents.« less

  15. Dispersible oxygen microsensors map oxygen gradients in three-dimensional cell cultures.

    PubMed

    Lesher-Pérez, Sasha Cai; Kim, Ge-Ah; Kuo, Chuan-Hsien; Leung, Brendan M; Mong, Sanda; Kojima, Taisuke; Moraes, Christopher; Thouless, M D; Luker, Gary D; Takayama, Shuichi

    2017-09-26

    Phase fluorimetry, unlike the more commonly used intensity-based measurement, is not affected by differences in light paths from culture vessels or by optical attenuation through dense 3D cell cultures and hydrogels thereby minimizing dependence on signal intensity for accurate measurements. This work describes the use of phase fluorimetry on oxygen-sensor microbeads to perform oxygen measurements in different microtissue culture environments. In one example, cell spheroids were observed to deplete oxygen from the cell-culture medium filling the bottom of conventional microwells within minutes, whereas oxygen concentrations remained close to ambient levels for several days in hanging-drop cultures. By dispersing multiple oxygen microsensors in cell-laden hydrogels, we also mapped cell-generated oxygen gradients. The spatial oxygen mapping was sufficiently precise to enable the use of computational models of oxygen diffusion and uptake to give estimates of the cellular oxygen uptake rate and the half-saturation constant. The results show the importance of integrated design and analysis of 3D cell cultures from both biomaterial and oxygen supply aspects. While this paper specifically tests spheroids and cell-laden gel cultures, the described methods should be useful for measuring pericellular oxygen concentrations in a variety of biomaterials and culture formats.

  16. Low oxygen tension increased fibronectin fragment induced catabolic activities--response prevented with biomechanical signals.

    PubMed

    Parker, Eleanor; Vessillier, Sandrine; Pingguan-Murphy, Belinda; Abas, Wan; Bader, Dan L; Chowdhury, Tina T

    2013-10-25

    The inherent low oxygen tension in normal cartilage has implications on inflammatory conditions associated with osteoarthritis (OA). Biomechanical signals will additionally contribute to changes in tissue remodelling and influence the inflammatory response. In this study, we investigated the combined effects of oxygen tension and fibronectin fragment (FN-f) on the inflammatory response of chondrocytes subjected to biomechanical signals. Chondrocytes were cultured under free-swelling conditions at 1%, 5% and 21% oxygen tension or subjected to dynamic compression in an ex vivo 3D/bioreactor model with 29 kDa FN-f, interleukin-1beta (IL-1β) and/or the nitric oxide synthase (NOS) inhibitor for 6 and 48 hours. Markers for catabolic activity (NO, PGE2), tissue remodelling (GAG, MMPs) and cytokines (IL-1β, IL-6 and TNFα) were quantified by biochemical assay. Aggrecan, collagen type II, iNOS and COX-2 gene expression were examined by real-time quantitative PCR. Two-way ANOVA and a post hoc Bonferroni-corrected t-test were used to analyse data. Both FN-fs and IL-1β increased NO, PGE2 and MMP production (all P< 0.001). FN-f was more active than IL-1β with greater levels of NO observed at 5% than 1% or 21% oxygen tension (P < 0.001). Whilst FN-f reduced GAG synthesis at all oxygen tension, the effect of IL-1β was significant at 1% oxygen tension. In unstrained constructs, treatment with FN-f or IL-1β increased iNOS and COX-2 expression and reduced aggrecan and collagen type II (all P < 0.001). In unstrained constructs, FN-f was more effective than IL-1β at 5% oxygen tension and increased production of NO, PGE2, MMP, IL-1β, IL-6 and TNFα. At 5% and 21% oxygen tension, co-stimulation with compression and the NOS inhibitor abolished fragment or cytokine-induced catabolic activities and restored anabolic response. The present findings revealed that FN-fs are more potent than IL-1β in exerting catabolic effects dependent on oxygen tension via iNOS and COX-2 upregulation

  17. Measures of Biochemical Sociology

    ERIC Educational Resources Information Center

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  18. Biochemical Education in Brazil.

    ERIC Educational Resources Information Center

    Vella, F.

    1988-01-01

    Described are discussions held concerning the problems of biochemical education in Brazil at a meeting of the Sociedade Brazileira de Bioquimica in April 1988. Also discussed are other visits that were made to universities in Brazil. Three major recommendations to improve the state of biochemistry education in Brazil are presented. (CW)

  19. Ultimate Spectrum of Solar/Stellar Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Struminsky, Alexei

    2015-08-01

    We reconstruct an ultimate spectrum of solar/stellar cosmic rays (SCR) in a given point in the heliosphere (stellar sphere) basing on maximal value of magnetic field strenght in active region and its characteristic linear dimension. An accelerator of given dimensions and magnetic field strengh may accelarate to a finite energy for a given time (a maximal energy of SCR). We will use spectrum of SCR proposed by Syrovatsky (1961) for relativistic and non-relativistic energies normaliszing it to galactic cosmic ray (GCR) intensity at maximal SCR energy. Maximal values of SCR flux propagating in the heliosphere are determined by equilibrium between pressure of interplanetary magnrtic field and dynamic pressure of SCR (Frier&Webber, 1963). The obtained spectra would be applied to explain the extreme solar particle event occurred in about 775 AD basing on the tree-ring chronology (Miyake et al., 2012).

  20. Effects of carprofen on renal function and results of serum biochemical and hematologic analyses in anesthetized dogs that had low blood pressure during anesthesia.

    PubMed

    Boström, Ingrid M; Nyman, Görel C; Lord, Peter E; Häggström, Jens; Jones, Bernt E V; Bohlin, Henrik P

    2002-05-01

    To investigate effects of IV administered carprofen on indices of renal function and results of serum biochemical and hematologic analyses in dogs anesthetized with acepromazine-thiopentone-isoflurane that had low blood pressure during anesthesia. 6 healthy Beagles. A randomized crossover study was conducted, using the following treatments: saline (0.9% NaCl solution)-saline, saline-carprofen, and carprofen-saline. Saline (0.08 ml/kg) and carprofen (4 mg/kg) were administered IV. The first treatment was administered 30 minutes before induction of anesthesia and immediately before administration of acepromazine (0.1 mg/kg, IM). Anesthesia was induced with thiopentone (25 mg/ml, IV) and maintained with inspired isoflurane (2% in oxygen). The second treatment was administered 30 minutes after onset of inhalation anesthesia. Blood gases, circulation, and ventilation were monitored. Renal function was assessed by glomerular filtration rate (GFR), using scintigraphy, serum biochemical analyses, and urinalysis. Hematologic analysis was performed. Statistical analysis was conducted, using ANOVA or Friedman ANOVA. Values did not differ significantly among the 3 treatments. For all treatments, sedation and anesthesia caused changes in results of serum biochemical and hematologic analyses, a decrease in mean arterial blood pressure to 65 mm Hg, an increase of 115 pmol/L in angiotensin II concentration, and an increase of 100 seconds in time required to reach maximum activity counts during scintigraphy. Carprofen administered IV before or during anesthesia did not cause detectable significant adverse effects on renal function or results of serum biochemical and hematologic analyses in healthy Beagles with low blood pressure during anesthesia.

  1. Retinal Vessel Oxygen Saturation during 100% Oxygen Breathing in Healthy Individuals

    PubMed Central

    Olafsdottir, Olof Birna; Eliasdottir, Thorunn Scheving; Kristjansdottir, Jona Valgerdur; Hardarson, Sveinn Hakon; Stefánsson, Einar

    2015-01-01

    Purpose To detect how systemic hyperoxia affects oxygen saturation in retinal arterioles and venules in healthy individuals. Methods Retinal vessel oxygen saturation was measured in 30 healthy individuals with a spectrophotometric retinal oximeter (Oxymap T1). Oximetry was performed during breathing of room air, 100% oxygen (10 minutes, 6L/min) and then again room air (10 minutes recovery). Results Mean oxygen saturation rises modestly in retinal arterioles during 100% oxygen breathing (94.5%±3.8 vs. 92.0%±3.7% at baseline, p<0.0001) and dramatically in retinal venules (76.2%±8.0% vs. 51.3%±5.6%, p<0.0001). The arteriovenous difference decreased during 100% oxygen breathing (18.3%±9.0% vs. 40.7%±5.7%, p<0.0001). The mean diameter of arterioles decreased during 100% oxygen breathing compared to baseline (9.7±1.4 pixels vs. 10.3±1.3 pixels, p<0.0001) and the same applies to the mean venular diameter (11.4±1.2 pixels vs. 13.3±1.5 pixels, p<0.0001). Conclusions Breathing 100% oxygen increases oxygen saturation in retinal arterioles and more so in venules and constricts them compared to baseline levels. The dramatic increase in oxygen saturation in venules reflects oxygen flow from the choroid and the unusual vascular anatomy and oxygen physiology of the eye. PMID:26042732

  2. Weak Perturbations of Biochemical Oscillators

    NASA Astrophysics Data System (ADS)

    Gailey, Paul

    2001-03-01

    Biochemical oscillators may play important roles in gene regulation, circadian rhythms, physiological signaling, and sensory processes. These oscillations typically occur inside cells where the small numbers of reacting molecules result in fluctuations in the oscillation period. Some oscillation mechanisms have been reported that resist fluctuations and produce more stable oscillations. In this paper, we consider the use of biochemical oscillators as sensors by comparing inherent fluctuations with the effects of weak perturbations to one of the reactants. Such systems could be used to produce graded responses to weak stimuli. For example, a leading hypothesis to explain geomagnetic navigation in migrating birds and other animals is based on magnetochemical reactions. Because the magnitude of magnetochemical effects is small at geomagnetic field strengths, a sensitive, noise resistant detection scheme would be required.

  3. Discovering Reliable Sources of Biochemical Thermodynamic Data to Aid Students' Understanding

    ERIC Educational Resources Information Center

    Me´ndez, Eduardo; Cerda´, María F.

    2016-01-01

    Students of physical chemistry in biochemical disciplines need biochemical examples to capture the need, not always understood, of a difficult area in their studies. The use of thermodynamic data in the chemical reference state may lead to incorrect interpretations in the analysis of biochemical examples when the analysis does not include relevant…

  4. The ultimate quantum limits on the accuracy of measurements

    NASA Technical Reports Server (NTRS)

    Yuen, Horace P.

    1992-01-01

    A quantum generalization of rate-distortion theory from standard communication and information theory is developed for application to determining the ultimate performance limit of measurement systems in physics. For the estimation of a real or a phase parameter, it is shown that the root-mean-square error obtained in a measurement with a single-mode photon level N cannot do better than approximately N exp -1, while approximately exp(-N) may be obtained for multi-mode fields with the same photon level N. Possible ways to achieve the remarkable exponential performance are indicated.

  5. [Biochemical failure after curative treatment for localized prostate cancer].

    PubMed

    Zouhair, Abderrahim; Jichlinski, Patrice; Mirimanoff, René-Olivier

    2005-12-07

    Biochemical failure after curative treatment for localized prostate cancer is frequent. The diagnosis of biochemical failure is clear when PSA levels rise after radical prostatectomy, but may be more difficult after external beam radiation therapy. The main difficulty once biochemical failure is diagnosed is to distinguish between local and distant failure, given the low sensitivity of standard work-up exams. Metabolic imaging techniques currently under evaluation may in the future help us to localize the site of failures. There are several therapeutic options depending on the initial curative treatment, each with morbidity risks that should be considered in multidisciplinary decision-making.

  6. Effects of increased inspired oxygen concentration on tissue oxygenation: theoretical considerations.

    PubMed

    Lumb, Andrew B; Nair, Sindhu

    2010-03-01

    Breathing increased fractional oxygen concentration (FiO2) is recommended for the treatment of tissue ischaemia. The theoretical benefits of increasing FiO2 on tissue oxygenation were evaluated using standard physiological equations. Assuming constant oxygen consumption by tissues throughout the length of a capillary, the oxygen content at 20 arbitrary points along a capillary was calculated. Using mathematical representations of the haemoglobin dissociation curve and an iterative approach to include the dissolved oxygen component of oxygen content, the oxygen partial pressure (PO2) profile along a capillary was estimated. High FiO2 concentrations cause large increases in PO2 at the arteriolar end of capillaries but these large PO2 values, caused by the extra dissolved oxygen, rapidly decline along the capillary. At the venular end of the capillary (the area of tissue most likely to be hypoxic), breathing oxygen causes only a modest improvement in PO2. Increasing FiO2 to treat tissue hypoxia has clear benefits, but a multimodal approach to management is required.

  7. Boron and oxygen-codoped porous carbon as efficient oxygen reduction catalysts

    NASA Astrophysics Data System (ADS)

    Lei, Zhidan; Chen, Hongbiao; Yang, Mei; Yang, Duanguang; Li, Huaming

    2017-12-01

    A low-cost boron- and oxygen-codoped porous carbon electrocatalyst towards oxygen reduction reaction (ORR) has been fabricated by a facile one-step pyrolysis approach, while a boron- and oxygen-rich polymer network was used as precursor. The boron- and oxygen-codoped carbon catalyst with high ORR electrocatalytic activity is comparable to that of Pt/C and is superior to that of catalysts doped solely with boron atoms or with oxygen atoms. Furthermore, the optimized boron- and oxygen-codoped carbon catalyst possesses excellent methanol tolerance and long-term durability in alkaline media. The high electrocatalytic activity of the dual-doped carbon catalysts can be attributed to the synergistic effects of high surface area, predominant mesostructure, abundant active oxygen-containing groups, and effective boron doping. The present results show that this boron- and oxygen-codoping strategy could be as a promising way for the preparation of highly efficient ORR catalysts.

  8. A mechanistic investigation of the oxygen fixation hypothesis and oxygen enhancement ratio.

    PubMed

    Grimes, David Robert; Partridge, Mike

    2015-12-04

    The presence of oxygen in tumours has substantial impact on treatment outcome; relative to anoxic regions, well-oxygenated cells respond better to radiotherapy by a factor 2.5-3. This increased radio-response is known as the oxygen enhancement ratio. The oxygen effect is most commonly explained by the oxygen fixation hypothesis, which postulates that radical-induced DNA damage can be permanently 'fixed' by molecular oxygen, rendering DNA damage irreparable. While this oxygen effect is important in both existing therapy and for future modalities such a radiation dose-painting, the majority of existing mathematical models for oxygen enhancement are empirical rather than based on the underlying physics and radiochemistry. Here we propose a model of oxygen-enhanced damage from physical first principles, investigating factors that might influence the cell kill. This is fitted to a range of experimental oxygen curves from literature and shown to describe them well, yielding a single robust term for oxygen interaction obtained. The model also reveals a small thermal dependency exists but that this is unlikely to be exploitable.

  9. Know-how and know-why in biochemical engineering.

    PubMed

    von Stockar, U; Valentinotti, S; Marison, I; Cannizzaro, C; Herwig, C

    2003-08-01

    This contribution analyzes the position of biochemical engineering in general and bioprocess engineering particularly in the force fields between fundamental science and applications, and between academia and industry. By using culture technology as an example, it can be shown that bioprocess engineering has moved slowly but steadily from an empirical art concerned with mainly know-how to a science elucidating the know-why of culture behavior. Highly powerful monitoring tools enable biochemical engineers to understand and explain quantitatively the activity of cellular culture on a metabolic basis. Among these monitoring tools are not just semi-online analyses of culture broth by HPLC, GC and FIA, but, increasingly, also noninvasive methods such as midrange IR, Raman and capacitance spectroscopy, as well as online calorimetry. The detailed and quantitative insight into the metabolome and the fluxome that bioprocess engineers are establishing offers an unprecedented opportunity for building bridges between molecular biology and engineering biosciences. Thus, one of the major tasks of biochemical engineering sciences is not developing new know-how for industrial applications, but elucidating the know-why in biochemical engineering by conducting research on the underlying scientific fundamentals.

  10. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury.

    PubMed

    Rosenthal, Guy; Hemphill, J Claude; Sorani, Marco; Martin, Christine; Morabito, Diane; Obrist, Walter D; Manley, Geoffrey T

    2008-06-01

    Despite the growing clinical use of brain tissue oxygen monitoring, the specific determinants of low brain tissue oxygen tension (P(bt)O2) following severe traumatic brain injury (TBI) remain poorly defined. The objective of this study was to evaluate whether P(bt)O2 more closely reflects variables related to cerebral oxygen diffusion or reflects cerebral oxygen delivery and metabolism. Prospective observational study. Level I trauma center. Fourteen TBI patients with advanced neuromonitoring underwent an oxygen challenge (increase in FiO2 to 1.0) to assess tissue oxygen reactivity, pressure challenge (increase in mean arterial pressure) to assess autoregulation, and CO2 challenge (hyperventilation) to assess cerebral vasoreactivity. None. P(bt)O2 was measured directly with a parenchymal probe in the least-injured hemisphere. Local cerebral blood flow (CBF) was measured with a parenchymal thermal diffusion probe. Cerebral venous blood gases were drawn from a jugular bulb venous catheter. We performed 119 measurements of PaO2, arterial oxygen content (CaO2), jugular bulb venous oxygen tension (PVO2), venous oxygen content (CVO2), arteriovenous oxygen content difference (AVDO2), and local cerebral metabolic rate of oxygen (locCMRO2). In multivariable analysis adjusting for various variables of cerebral oxygen delivery and metabolism, the only statistically significant relationship was that between P(bt)O2 and the product of CBF and cerebral arteriovenous oxygen tension difference (AVTO2), suggesting a strong association between brain tissue oxygen tension and diffusion of dissolved plasma oxygen across the blood-brain barrier. Measurements of P(bt)O2 represent the product of CBF and the cerebral AVTO2 rather than a direct measurement of total oxygen delivery or cerebral oxygen metabolism. This improved understanding of the cerebral physiology of P(bt)O2 should enhance the clinical utility of brain tissue oxygen monitoring in patients with TBI.

  11. Fluorinated methacrylamide chitosan hydrogels enhance collagen synthesis in wound healing through increased oxygen availability.

    PubMed

    Patil, Pritam S; Fountas-Davis, Natalie; Huang, He; Michelle Evancho-Chapman, M; Fulton, Judith A; Shriver, Leah P; Leipzig, Nic D

    2016-05-01

    In this study, methacrylamide chitosan modified with perfluorocarbon chains (MACF) is used as the base material to construct hydrogel dressings for treating dermal wounds. MACF hydrogels saturated with oxygen (+O2) are examined for their ability to deliver and sustain oxygen, degrade in a biological environment, and promote wound healing in an animal model. The emerging technique of metabolomics is used to understand how MACF+O2 hydrogel dressings improve wound healing. Results indicate that MACF treatment facilitates oxygen transport rate that is two orders of magnitude greater than base MAC hydrogels. MACF hydrogel dressings are next tested in an in vivo splinted rat excisional wound healing model. Histological analysis reveals that MACF+O2 dressings improve re-epithelialization (p<0.0001) and synthesis of collagen over controls (p<0.01). Analysis of endogenous metabolites in the wounds using global metabolomics demonstrates that MACF+O2 dressings promotes a regenerative metabolic process directed toward hydroxyproline and collagen synthesis, with confirmation of metabolite levels within this pathway. The results of this study confirm that increased oxygen delivery through the application of MACF+O2 hydrogels enhances wound healing and metabolomics analyses provides a powerful tool to assess wound healing physiology. This work presents the first application of a novel class of oxygen delivering biomaterials (methacrylamide chitosan modified with perfluorocarbon chains (MACF)) as a hydrogel wound dressing. This manuscript also contains strong focus on the biochemical benefits of MACF dressings on underlying mechanisms vital to successful wound healing. In this vein, this manuscript presents the application of applied metabolomics (tandem mass spectroscopy) to uncover biomaterial interactions with wound healing mechanisms. We believe the approaches described in this manuscript will be of great interest to biomedical scientists and particularly to researchers

  12. 78 FR 72972 - Application of Ultimate JETCHARTERS, LLC for Commuter Air Carrier Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... all interested persons to show cause why it should not issue an order finding Ultimate JETCHARTERS, LLC, fit, willing, and able, and awarding it commuter air carrier authority to conduct scheduled...

  13. Lemna minor exposed to fluoranthene: growth, biochemical, physiological and histochemical changes.

    PubMed

    Zezulka, Stěpán; Kummerová, Marie; Babula, Petr; Váňová, Lucie

    2013-09-15

    Polycyclic aromatic hydrocarbons (PAHs) represent one of the major groups of organic contaminants in the aquatic environment. Duckweed (Lemna minor L.) is a common aquatic plant widely used in phytotoxicity tests for xenobiotic substances. The goal of this study was to assess the growth and the physiological, biochemical and histochemical changes in duckweed exposed for 4 and 10 days to fluoranthene (FLT, 0.1 and 1 mgL(-1)). Nonsignificant changes in number of plants, biomass production, leaf area size, content of chlorophylls a and b and carotenoids and parameters of chlorophyll fluorescence recorded after 4 and 10 days of exposure to FLT were in contrast with considerable changes at biochemical and histochemical levels. Higher occurrence of reactive oxygen species (ROS) caused by an exposure to FLT after 10 days as compared to control (hydrogen peroxide elevated by 13% in the 0.1 mgL(-1) and by 41% in the 1 mgL(-1) FLT; superoxide anion radical by 52% and 115% respectively) reflected in an increase in the activities of antioxidant enzymes (superoxide dismutase by 3% in both treatments, catalase by 9% and 1% respectively, ascorbate peroxidase by 21% and 5% respectively, guaiacol peroxidase by 12% in the 0.1 mgL(-1) FLT). Even the content of antioxidant compounds like ascorbate (by 20% in the 1 mgL(-1) FLT) or total thiols (reduced forms by 15% in the 0.1 mgL(-1) and 8% in the 1 mgL(-1) FLT, oxidized forms by 36% in the 0.1 mgL(-1) FLT) increased. Increased amount of ROS was followed by an increase in malondialdehyde content (by 33% in the 0.1 mgL(-1) and 79% in the 1 mgL(-1) FLT). Whereas in plants treated by the 0.1 mgL(-1) FLT the contents of total proteins and phenols increased by 15% and 25%, respectively, the 1 mgL(-1) FLT caused decrease of their contents by 32% and 7%. Microscopic observations of duckweed roots also confirmed the presence of ROS and related histochemical changes at the cellular and tissue levels. The assessment of phytotoxicity of organic

  14. Recommendations for terminology and databases for biochemical thermodynamics.

    PubMed

    Alberty, Robert A; Cornish-Bowden, Athel; Goldberg, Robert N; Hammes, Gordon G; Tipton, Keith; Westerhoff, Hans V

    2011-05-01

    Chemical equations are normally written in terms of specific ionic and elemental species and balance atoms of elements and electric charge. However, in a biochemical context it is usually better to write them with ionic reactants expressed as totals of species in equilibrium with each other. This implies that atoms of elements assumed to be at fixed concentrations, such as hydrogen at a specified pH, should not be balanced in a biochemical equation used for thermodynamic analysis. However, both kinds of equations are needed in biochemistry. The apparent equilibrium constant K' for a biochemical reaction is written in terms of such sums of species and can be used to calculate standard transformed Gibbs energies of reaction Δ(r)G'°. This property for a biochemical reaction can be calculated from the standard transformed Gibbs energies of formation Δ(f)G(i)'° of reactants, which can be calculated from the standard Gibbs energies of formation of species Δ(f)G(j)° and measured apparent equilibrium constants of enzyme-catalyzed reactions. Tables of Δ(r)G'° of reactions and Δ(f)G(i)'° of reactants as functions of pH and temperature are available on the web, as are functions for calculating these properties. Biochemical thermodynamics is also important in enzyme kinetics because apparent equilibrium constant K' can be calculated from experimentally determined kinetic parameters when initial velocities have been determined for both forward and reverse reactions. Specific recommendations are made for reporting experimental results in the literature. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Conditions for duality between fluxes and concentrations in biochemical networks

    PubMed Central

    Fleming, Ronan M.T.; Vlassis, Nikos; Thiele, Ines; Saunders, Michael A.

    2016-01-01

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes. PMID:27345817

  16. Conditions for duality between fluxes and concentrations in biochemical networks

    DOE PAGES

    Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines; ...

    2016-06-23

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less

  17. Conditions for duality between fluxes and concentrations in biochemical networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less

  18. An aeration control strategy for oxidation ditch processes based on online oxygen requirement estimation.

    PubMed

    Zhan, J X; Ikehata, M; Mayuzumi, M; Koizumi, E; Kawaguchi, Y; Hashimoto, T

    2013-01-01

    A feedforward-feedback aeration control strategy based on online oxygen requirements (OR) estimation is proposed for oxidation ditch (OD) processes, and it is further developed for intermittent aeration OD processes, which are the most popular type in Japan. For calculating OR, concentrations of influent biochemical oxygen demand (BOD) and total Kjeldahl nitrogen (TKN) are estimated online by the measurement of suspended solids (SS) and sometimes TKN is estimated by NH4-N. Mixed liquor suspended solids (MLSS) and temperature are used to estimate the required oxygen for endogenous respiration. A straightforward parameter named aeration coefficient, Ka, is introduced as the only parameter that can be tuned automatically by feedback control or manually by the operators. Simulation with an activated sludge model was performed in comparison to fixed-interval aeration and satisfying result of OR control strategy was obtained. The OR control strategy has been implemented at seven full-scale OD plants and improvements in nitrogen removal are obtained in all these plants. Among them, the results obtained in Yumoto wastewater treatment plant were presented, in which continuous aeration was applied previously. After implementing intermittent OR control, the total nitrogen concentration was reduced from more than 5 mg/L to under 2 mg/L, and the electricity consumption was reduced by 61.2% for aeration or 21.5% for the whole plant.

  19. Modeling, simulation, and control of an extraterrestrial oxygen production plant

    NASA Technical Reports Server (NTRS)

    Schooley, L.; Cellier, F.; Zeigler, B.; Doser, A.; Farrenkopf, G.

    1991-01-01

    The immediate objective is the development of a new methodology for simulation of process plants used to produce oxygen and/or other useful materials from local planetary resources. Computer communication, artificial intelligence, smart sensors, and distributed control algorithms are being developed and implemented so that the simulation or an actual plant can be controlled from a remote location. The ultimate result of this research will provide the capability for teleoperation of such process plants which may be located on Mars, Luna, an asteroid, or other objects in space. A very useful near-term result will be the creation of an interactive design tool, which can be used to create and optimize the process/plant design and the control strategy. This will also provide a vivid, graphic demonstration mechanism to convey the results of other researchers to the sponsor.

  20. Flow-induced Vibration of SSME Main Injector Liquid-oxygen Posts

    NASA Technical Reports Server (NTRS)

    Chen, S. S.; Jendrzejczyk, J. A.; Wambsganss, M. W.

    1985-01-01

    The liquid-oxygen (LOX) posts are exposed to hot hydrogen flowing over the tubes on its way to the combustion chamber. Fatigue cracking of some LOX posts was observed after test firing of the SSMEs. A current design modification consists of attaching impingement shields to the LOX posts in the outer row. The modification improved the vibration/fatigue problem of the LOX posts, but resulted in an increased pressure drop that ultimately shortened the life expectancy of other components. A fundamental study of vibration of the LOX posts was initiated to understand the flow-induced vibration problem and to develop techniques to avoid detrimental vibrational effects with the overall objective of improving engine life. This effort, including an assessment of the problem, scoping calculation and experiment, and a work plan for an integrated theoretical/experimental study of the problem is summarized.

  1. Simulation of oil bioremediation in a tidally influenced beach: Spatiotemporal evolution of nutrient and dissolved oxygen

    NASA Astrophysics Data System (ADS)

    Geng, Xiaolong; Pan, Zhong; Boufadel, Michel C.; Ozgokmen, Tamay; Lee, Kenneth; Zhao, Lin

    2016-04-01

    Numerical experiments of oil bioremediation of tidally influenced beach were simulated using the model BIOMARUN. Nutrient and dissolved oxygen were assumed present in a solution applied on the exposed beach face, and the concentration of these amendments was tracked throughout the beach for up to 6 months. It was found that, in comparison to natural attenuation, bioremediation increased the removal efficiency by 76% and 65% for alkanes and aromatics, respectively. Increasing the nutrient concentration in the applied solution did not always enhance biodegradation as oxygen became limiting even when the beach was originally oxygen-rich. Therefore, replenishment of oxygen to oil-contaminated zone was also essential. Stimulation of oil biodegradation was more evident in the upper and midintertidal zone of the beach, and less in the lower intertidal zone. This was due to reduced nutrient and oxygen replenishment, as very little of the amendment solution reached that zone. It was found that under continual application, most of the oil biodegraded within 2 months, while it persisted for 6 months under natural conditions. While the difference in duration suggests minimal long-term effects, there are situations where the beach would need to be cleaned for major ecological functions, such as temporary nesting or feeding for migratory birds. Biochemical retention time map (BRTM) showed that the duration of solution application was dependent upon the stimulated oil biodegradation rate. By contrast, the application rate of the amendment solution was dependent upon the subsurface extent of the oil-contaminated zone. Delivery of nutrient and oxygen into coastal beach involved complex interaction among amendment solution, groundwater, and seawater. Therefore, approaches that ignore the hydrodynamics due to tide are unlikely to provide the optimal solutions for shoreline bioremediation.

  2. Nanophase Iron Oxides as an Ultraviolet Sunscreen for Ancient Photosynthetic Microbes: A Possible Link Between Early Organisms, Banded-Iron Formations, and the Oxygenation of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Rothschild, Lynn J.; Rothschild, Lynn J.; Rogoff, Dana A.

    2006-01-01

    We propose that nanophase iron oxide-bearing materials provided important niches for ancient photosynthetic microbes on the early Earth that ultimately led to the oxygenation of the Earth s atmosphere and the formation of iron oxide deposits. Atmospheric oxygen and ozone attenuate UV radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose then and played a critical role in subsequent evolution. Of primary importance was protection at approx.250-290 nm, where peak nucleic acid (approx.260 nm) and protein (approx.280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal UV radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Further, they were available in early environments, and are synthesized by many organisms. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlumydomonus reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides. The results of this study are also applicable to other potentially habitable iron-bearing planetary bodies because of the evolutionary pressure to utilize solar radiation when available as an energy source.

  3. Myocardial perfusion and oxidative stress after 21% vs. 100% oxygen ventilation and uninterrupted chest compressions in severely asphyxiated piglets.

    PubMed

    Solevåg, Anne Lee; Schmölzer, Georg M; O'Reilly, Megan; Lu, Min; Lee, Tze-Fun; Hornberger, Lisa K; Nakstad, Britt; Cheung, Po-Yin

    2016-09-01

    Despite the minimal evidence, neonatal resuscitation guidelines recommend using 100% oxygen when chest compressions (CC) are needed. Uninterrupted CC in adult cardiopulmonary resuscitation (CPR) may improve CPR hemodynamics. We aimed to examine 21% oxygen (air) vs. 100% oxygen in 3:1 CC:ventilation (C:V) CPR or continuous CC with asynchronous ventilation (CCaV) in asphyxiated newborn piglets following cardiac arrest. Piglets (1-3 days old) were progressively asphyxiated until cardiac arrest and randomized to 4 experimental groups (n=8 each): air and 3:1 C:V CPR, 100% oxygen and 3:1 C:V CPR, air and CCaV, or 100% oxygen and CCaV. Time to return of spontaneous circulation (ROSC), mortality, and clinical and biochemical parameters were compared between groups. We used echocardiography to measure left ventricular (LV) stroke volume at baseline, at 30min and 4h after ROSC. Left common carotid artery blood pressure was measured continuously. Time to ROSC (heart rate ≥100min(-1)) ranged from 75 to 592s and mortality 50-75%, with no differences between groups. Resuscitation with air was associated with higher LV stroke volume after ROSC and less myocardial oxidative stress compared to 100% oxygen groups. CCaV was associated with lower mean arterial blood pressure after ROSC and higher myocardial lactate than those of 3:1 C:V CPR. In neonatal asphyxia-induced cardiac arrest, using air during CC may reduce myocardial oxidative stress and improve cardiac function compared to 100% oxygen. Although overall recovery may be similar, CCaV may impair tissue perfusion compared to 3:1 C:V CPR. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Oxidative stress and some biochemical alterations due to scorpion (Leiurus quinquestriatus) crude venom in rats.

    PubMed

    Salman, Muhammad M A; Hammad, Seddik

    2017-07-01

    Scorpion envenomation is a common medical problem in many countries; it is an important cause of morbidity and mortality. The venom of Leiurus quinquestriatus (LQ) is responsible for a number of deaths in children and adults. It has been stated that specific pathophysiological conditions such as generation of oxygen free radicals may trigger the onset of multiple organ dysfunction; therefore, the present study aimed to assess the oxidative stress mediated by LQ crude venom and its effect on the biochemical parameters in rats. Adult male Albino rats (250±30g body weight) were divided into three groups (n=5). In control group, rats were intraperitoneally (ip) injected with 50μL saline solution. Groups 2 and 3 were ip injected with 0.1mg/kg and 0.2mg/kg body weight of crude venom, respectively. Blood samples and liver tissues were harvested 1, 2 and 4h post-injection. Serum levels of glucose, cholesterol, creatinine, urea, uric acid and malondialdehyde increased significantly in envenomed animals within 1, 2 and 4h post-injection, compared to controls. However, the levels of total serum protein, albumin, globulin and triglycerides as well as catalase, glutathione peroxidase and super oxide dismutase in envenomed rats were significantly decreased compared to controls. We can conclude that LQ crude venom induces oxidative stress via reduction of antioxidant systems and alters some biochemical parameters of envenomed rats. Copyright © 2017. Published by Elsevier Masson SAS.

  5. 7 CFR 4280.29 - Supplemental financing required for the Ultimate Recipient Project.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Supplemental financing required for the Ultimate Recipient Project. 4280.29 Section 4280.29 Agriculture Regulations of the Department of Agriculture... AND GRANTS Rural Economic Development Loan and Grant Programs § 4280.29 Supplemental financing...

  6. Triple oxygen isotope composition of photosynthetic oxygen

    NASA Astrophysics Data System (ADS)

    van der Meer, Anne; Kaiser, Jan

    2013-04-01

    The measurement of biological production rates is essential for our understanding how marine ecosystems are sustained and how much CO2 is taken up through aquatic photosynthesis. Traditional techniques to measure marine production are laborious and subject to systematic errors. A biogeochemical approach based on triple oxygen isotope measurements in dissolved oxygen (O2) has been developed over the last few years, which allows the derivation of gross productivity integrated over the depth of the mixed layer and the time-scale of O2 gas exchange (Luz and Barkan, 2000). This approach exploits the relative 17O/16O and 18O/16O isotope ratio differences of dissolved O2 compared to atmospheric O2 to work out the rate of biological production. Two parameters are key for this calculation: the isotopic composition of dissolved O2 in equilibrium with air and the isotopic composition of photosynthetic oxygen. Recently, a controversy has emerged in the literature over these parameters (Kaiser, 2011) and one of the goals of this research is to provide additional data to resolve this controversy. In order to obtain more information on the isotopic signature of biological oxygen, laboratory experiments have been conducted to determine the isotopic composition of oxygen produced by different phytoplankton cultures.

  7. Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy.

    PubMed

    McMonnies, Charles

    This review examines the role of oxidative stress in damage to cells of the trabecular meshwork and associated impaired aqueous drainage as well as damage to retinal ganglion cells and associated visual field losses. Consideration is given to the interaction between vascular and mechanical explanations for pathological changes in glaucoma. For example, elevated intraocular pressure (IOP) forces may contribute to ischaemia but there is increasing evidence that altered blood flow in a wider sense is also involved. Both vascular and mechanical theories are involved through fluctuations in intraocular pressure and dysregulation of blood flow. Retinal function is very sensitive to changes in haemoglobin oxygen concentration and the associated variations in the production of reactive oxygen species. Reperfusion injury and production of reactive oxygen species occurs when IOP is elevated or blood pressure is low and beyond the capacity for blood flow autoregulation to maintain appropriate oxygen concentration. Activities such as those associated with postural changes, muscular effort, eye wiping and rubbing which cause IOP fluctuation, may have significant vascular, mechanical, reperfusion and oxidative stress consequences. Hyperbaric oxygen therapy exposes the eye to increased oxygen concentration and the risk of oxidative damage in susceptible individuals. However, oxygen concentration in aqueous humour, and the risk of damage to trabecular meshwork cells may be greater if hyperbaric oxygen is delivered by a hood which exposes the anterior ocular surface to higher than normal oxygen levels. Oronasal mask delivery of hyperbaric oxygen therapy appears to be indicated in these cases. Copyright © 2017 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  8. COPD and air travel: oxygen equipment and preflight titration of supplemental oxygen.

    PubMed

    Akerø, Aina; Edvardsen, Anne; Christensen, Carl C; Owe, Jan O; Ryg, Morten; Skjønsberg, Ole H

    2011-07-01

    Patients with COPD may need supplemental oxygen during air travel to avoid development of severe hypoxemia. The current study evaluated whether the hypoxia-altitude simulation test (HAST), in which patients breathe 15.1% oxygen simulating aircraft conditions, can be used to establish the optimal dose of supplemental oxygen. Also, the various types of oxygen-delivery equipment allowed for air travel were compared. In a randomized crossover trial, 16 patients with COPD were exposed to alveolar hypoxia: in a hypobaric chamber (HC) at 2,438 m (8,000 ft) and with a HAST. During both tests, supplemental oxygen was given by nasal cannula (NC) with (1) continuous flow, (2) an oxygen-conserving device, and (3) a portable oxygen concentrator (POC). PaO(2) kPa (mm Hg) while in the HC and during the HAST with supplemental oxygen at 2 L/min (pulse setting 2) on devices 1 to 3 was (1) 8.6 ± 1.0 (65 ± 8) vs 12.5 ± 2.4 (94 ± 18) (P < .001), (2) 8.6 ± 1.6 (64 ± 12) vs 9.7 ± 1.5 (73 ± 11) (P < .001), and (3) 7.7 ± 0.9 (58 ± 7) vs 8.2 ± 1.1 (62 ± 8) (P= .003), respectively. The HAST may be used to identify patients needing supplemental oxygen during air travel. However, oxygen titration using an NC during a HAST causes accumulation of oxygen within the facemask and underestimates the oxygen dose required. When comparing the various types of oxygen-delivery equipment in an HC at 2,438 m (8,000 ft), compressed gaseous oxygen with continuous flow or with an oxygen-conserving device resulted in the same PaO(2), whereas a POC showed significantly lower PaO(2) values. ClinicalTrials.gov; No.: Identifier: NCT01019538; URL: clinicaltrials.gov.

  9. Thermodynamic approach to oxygen delivery in vivo by natural and artificial oxygen carriers.

    PubMed

    Bucci, Enrico

    2009-06-01

    Oxygen is a toxic gas, still indispensable to aerobic life. This paper explores how normal physiology uses the physico-chemical and thermodynamic characteristics of oxygen for transforming a toxic gas into a non toxic indispensable metabolite. Plasma oxygen concentration is in the range of 10(-5) M, insufficient to sustain metabolism. Oxygen carriers, present in blood, release oxygen into plasma, thereby replacing consumed oxygen and buffering PO(2) near their P(50). They are the natural cell-bound carriers, like hemoglobin inside red cells, myoglobin inside myocytes, and artificial cell-free hemoglobin-based oxygen carriers (HBOC) dissolved in plasma. Metabolic oxygen replacement can be defined as cell-bound and cell-free delivery. Cell-bound delivery is retarded by the slow diffusion of oxygen in plasma and interstitial fluids. The 40% hematocrit of normal blood compensates for the delay, coping with the fast oxygen consumption by mitochondria. Facilitated oxygen diffusion by HBOCs corrects for the slow diffusion, making cell-free delivery relatively independent from P(50). At all oxygen affinities, HBOCs produce hyperoxygenations that are compensated by vasoconstrictions. There is a strict direct correlation between the rate of oxygen replacement and hemoglobin content of blood. The free energy loss of the gradient adds a relevant regulation of tissues oxygenation. Oxygen is retained intravascularly by the limited permeability to gases of vessel walls.

  10. Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?

    NASA Technical Reports Server (NTRS)

    Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.

    2016-01-01

    NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.

  11. A foundational methodology for determining system static complexity using notional lunar oxygen production processes

    NASA Astrophysics Data System (ADS)

    Long, Nicholas James

    This thesis serves to develop a preliminary foundational methodology for evaluating the static complexity of future lunar oxygen production systems when extensive information is not yet available about the various systems under consideration. Evaluating static complexity, as part of a overall system complexity analysis, is an important consideration in ultimately selecting a process to be used in a lunar base. When system complexity is higher, there is generally an overall increase in risk which could impact the safety of astronauts and the economic performance of the mission. To evaluate static complexity in lunar oxygen production, static complexity is simplified and defined into its essential components. First, three essential dimensions of static complexity are investigated, including interconnective complexity, strength of connections, and complexity in variety. Then a set of methods is developed upon which to separately evaluate each dimension. Q-connectivity analysis is proposed as a means to evaluate interconnective complexity and strength of connections. The law of requisite variety originating from cybernetic theory is suggested to interpret complexity in variety. Secondly, a means to aggregate the results of each analysis is proposed to create holistic measurement for static complexity using the Single Multi-Attribute Ranking Technique (SMART). Each method of static complexity analysis and the aggregation technique is demonstrated using notional data for four lunar oxygen production processes.

  12. 40 CFR 158.2050 - Biochemical pesticides human health assessment data requirements table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Biochemical pesticides human health... § 158.2050 Biochemical pesticides human health assessment data requirements table. (a) General. (1... table shows the data requirements for biochemical pesticides human health assessment. The test notes are...

  13. 40 CFR 158.2050 - Biochemical pesticides human health assessment data requirements table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides human health... § 158.2050 Biochemical pesticides human health assessment data requirements table. (a) General. (1... table shows the data requirements for biochemical pesticides human health assessment. The test notes are...

  14. 40 CFR 158.2050 - Biochemical pesticides human health assessment data requirements table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Biochemical pesticides human health... § 158.2050 Biochemical pesticides human health assessment data requirements table. (a) General. (1... table shows the data requirements for biochemical pesticides human health assessment. The test notes are...

  15. 40 CFR 158.2050 - Biochemical pesticides human health assessment data requirements table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Biochemical pesticides human health... § 158.2050 Biochemical pesticides human health assessment data requirements table. (a) General. (1... table shows the data requirements for biochemical pesticides human health assessment. The test notes are...

  16. 40 CFR 158.2050 - Biochemical pesticides human health assessment data requirements table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Biochemical pesticides human health... § 158.2050 Biochemical pesticides human health assessment data requirements table. (a) General. (1... table shows the data requirements for biochemical pesticides human health assessment. The test notes are...

  17. Assembly of Customized TAL Effectors Through Advanced ULtiMATE System.

    PubMed

    Yang, Junjiao; Guo, Shengjie; Yuan, Pengfei; Wei, Wensheng

    2016-01-01

    Transcription activator-like effectors (TALEs) have been widely applied in gene targeting. Here we describe an advanced ULtiMATE (USER-based Ligation-Mediated Assembly of TAL Effector) system that utilizes USER fusion technique and archive of 512 tetramer templates to achieve highly efficient construction of TALEs, which takes only half a day to accomplish the assembly of any given TALE construct. This system is also suitable for large-scale assembly of TALENs and any other TALE-based constructions.

  18. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    NASA Technical Reports Server (NTRS)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  19. A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase.

    PubMed

    Goris, Tobias; Wait, Annemarie F; Saggu, Miguel; Fritsch, Johannes; Heidary, Nina; Stein, Matthias; Zebger, Ingo; Lendzian, Friedhelm; Armstrong, Fraser A; Friedrich, Bärbel; Lenz, Oliver

    2011-05-01

    Hydrogenases are essential for H(2) cycling in microbial metabolism and serve as valuable blueprints for H(2)-based biotechnological applications. However, most hydrogenases are extremely oxygen sensitive and prone to inactivation by even traces of O(2). The O(2)-tolerant membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha H16 is one of the few examples that can perform H(2) uptake in the presence of ambient O(2). Here we show that O(2) tolerance is crucially related to a modification of the internal electron-transfer chain. The iron-sulfur cluster proximal to the active site is surrounded by six instead of four conserved coordinating cysteines. Removal of the two additional cysteines alters the electronic structure of the proximal iron-sulfur cluster and renders the catalytic activity sensitive to O(2) as shown by physiological, biochemical, spectroscopic and electrochemical studies. The data indicate that the mechanism of O(2) tolerance relies on the reductive removal of oxygenic species guided by the unique architecture of the electron relay rather than a restricted access of O(2) to the active site.

  20. Plug nozzles: The ultimate customer driven propulsion system

    NASA Technical Reports Server (NTRS)

    Aukerman, Carl A.

    1991-01-01

    This paper presents the results of a study applying the plug cluster nozzle concept to the propulsion system for a typical lunar excursion vehicle. Primary attention for the design criteria is given to user defined factors such as reliability, low volume, and ease of propulsion system development. Total thrust and specific impulse are held constant in the study while other parameters are explored to minimize the design chamber pressure. A brief history of the plug nozzle concept is included to point out the advanced level of technology of the concept and the feasibility of exploiting the variables considered in this study. The plug cluster concept looks very promising as a candidate for consideration for the ultimate customer driven propulsion system.

  1. Development of a new first-aid biochemical detector

    NASA Astrophysics Data System (ADS)

    Hu, Jingfei; Liao, Haiyang; Su, Shilin; Ding, Hao; Liu, Suquan

    2016-10-01

    The traditional biochemical detector exhibits poor adaptability, inconvenient carrying and slow detection, which can't meet the needs of first-aid under field condition like natural or man-made disasters etc. Therefore a scheme of first-aid biochemical detector based on MOMES Micro Spectrometer, UV LED and Photodiode was proposed. An optical detection structure combined continuous spectrum sweep with fixed wavelength measurement was designed, which adopted mobile detection optical path consisting of Micro Spectrometer and Halogen Lamp to detect Chloride (Cl-), Creatinine (Cre), Glucose (Glu), Hemoglobin (Hb). The UV LED and Photodiode were designed to detect Potassium (K-), Carbon dioxide (CO2), Sodium (Na+). According to the field diagnosis and treatment requirements, we designed the embedded control hardware circuit and software system, the prototype of first-aid biochemical detector was developed and the clinical trials were conducted. Experimental results show that the sample's absorbance repeatability is less than 2%, the max coefficient of variation (CV) in the batch repeatability test of all 7 biochemical parameters in blood samples is 4.68%, less than the clinical requirements 10%, the correlation coefficient (R2) in the clinical contrast test with AU5800 is almost greater than 0.97. To sum up, the prototype meets the requirements of clinical application.

  2. Ultimate strength performance of tankers associated with industry corrosion addition practices

    NASA Astrophysics Data System (ADS)

    Kim, Do Kyun; Kim, Han Byul; Zhang, Xiaoming; Li, Chen Guang; Paik, Jeom Kee

    2014-09-01

    In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR), Common Structural Rules (CSR), and harmonised Common Structural Rules (CSRH) are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS), and Time-Dependent Corrosion Wastage Model (TDCWM). To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures

  3. Hyperbaric Oxygen Therapy

    MedlinePlus

    ... therapy session. What you can expect During hyperbaric oxygen therapy Hyperbaric oxygen therapy typically is performed as ... the therapy unit throughout your treatment. After hyperbaric oxygen therapy You may feel somewhat tired or hungry ...

  4. Multidimensional biochemical information processing of dynamical patterns

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  5. Stoichiometric network theory for nonequilibrium biochemical systems.

    PubMed

    Qian, Hong; Beard, Daniel A; Liang, Shou-dan

    2003-02-01

    We introduce the basic concepts and develop a theory for nonequilibrium steady-state biochemical systems applicable to analyzing large-scale complex isothermal reaction networks. In terms of the stoichiometric matrix, we demonstrate both Kirchhoff's flux law sigma(l)J(l)=0 over a biochemical species, and potential law sigma(l) mu(l)=0 over a reaction loop. They reflect mass and energy conservation, respectively. For each reaction, its steady-state flux J can be decomposed into forward and backward one-way fluxes J = J+ - J-, with chemical potential difference deltamu = RT ln(J-/J+). The product -Jdeltamu gives the isothermal heat dissipation rate, which is necessarily non-negative according to the second law of thermodynamics. The stoichiometric network theory (SNT) embodies all of the relevant fundamental physics. Knowing J and deltamu of a biochemical reaction, a conductance can be computed which directly reflects the level of gene expression for the particular enzyme. For sufficiently small flux a linear relationship between J and deltamu can be established as the linear flux-force relation in irreversible thermodynamics, analogous to Ohm's law in electrical circuits.

  6. Multidimensional biochemical information processing of dynamical patterns.

    PubMed

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  7. Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium.

    PubMed

    Qian, Hong; Beard, Daniel A

    2005-04-22

    The principles of thermodynamics apply to both equilibrium and nonequilibrium biochemical systems. The mathematical machinery of the classic thermodynamics, however, mainly applies to systems in equilibrium. We introduce a thermodynamic formalism for the study of metabolic biochemical reaction (open, nonlinear) networks in both time-dependent and time-independent nonequilibrium states. Classical concepts in equilibrium thermodynamics-enthalpy, entropy, and Gibbs free energy of biochemical reaction systems-are generalized to nonequilibrium settings. Chemical motive force, heat dissipation rate, and entropy production (creation) rate, key concepts in nonequilibrium systems, are introduced. Dynamic equations for the thermodynamic quantities are presented in terms of the key observables of a biochemical network: stoichiometric matrix Q, reaction fluxes J, and chemical potentials of species mu without evoking empirical rate laws. Energy conservation and the Second Law are established for steady-state and dynamic biochemical networks. The theory provides the physiochemical basis for analyzing large-scale metabolic networks in living organisms.

  8. An Unprecedented NADPH Domain Conformation in Lysine Monooxygenase NbtG Provides Insights into Uncoupling of Oxygen Consumption from Substrate Hydroxylation

    DOE PAGES

    Binda, Claudia; Robinson, Reeder M.; Martin del Campo, Julia S.; ...

    2015-03-23

    N-hydroxylating monooxygenases (NMOs) are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines, such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcinica Lys monooxygenase (NbtG), which has similar biochemical properties to mycobacterial homologs. NbtG is also active on D-Lys although it binds L-Lys with a higher affinity. Differently from the ornithine monooxygenases PvdA, SidA and KtzI, NbtG can use both NADH and NADPH and is highly uncoupled, producingmore » more superoxide and hydrogen peroxide than hydroxylated Lys. The crystal structure of NbtG solved at 2.4 Å resolution revealed an unexpected protein conformation with a 30° rotation of the NAD(P)H domain with respect to the FAD domain that precludes binding of the nicotinamide cofactor. This “occluded” structure may explain the biochemical properties of NbtG, specifically with regard to the substantial uncoupling and limited stabilization of the C4a-hydroperoxyflavin intermediate. We discuss the biological implications of these findings.« less

  9. Time-dependent morphological and biochemical changes following cutaneous thermal burn injury and their modulation by copper nicotinate complex: an animal model.

    PubMed

    Nassar, Muammar A Y; Eldien, Heba M Saad; Tawab, Hanem S Abdel; Saleem, Tahia H; Omar, Hossam M; Nassar, Ahmed Y; Hussein, Mahmoud Rezk Abdelwahed

    2012-10-01

    Thermal tissue injury is partly mediated by reactive oxygen metabolites. Oxygen free radicals are contributory to local tissue damage following thermal injury and accordingly an interventional therapy using antioxidants may be beneficial. Copper nicotinate complex can scavenge reactive oxygen species (i.e., has antioxidant activity). To examine time-related morphological and biochemical changes following skin thermal injury and their modulation by copper nicotinate complex. An animal model composed of 80 albino rats was established. Ten rats (nonburn group) served as a control group. Seventy rats (burn group) were anesthetized, given a 10% total body surface area, full-thickness burn. Ten rats (from the postburn group) were sacrificed after 24 h (without treatment, i.e., untreated-burn group). The remaining rats were divided into three subgroups (20 rats, each) and were treated topically either with soft paraffin, moist exposed burn ointment (MEBO, a standard therapeutic treatment for burns), or copper nicotinate complex. Five animals from each subgroup were sacrificed every week over a period of 4 weeks. The morphological and biochemical changes were evaluated and compared among the different groups. High levels of the plasma and skin nitiric oxide (marker of oxidative stress) were observed in the untreated-burn group. These levels were significantly low following the application of copper nicotinate complex. Low levels of plasma and skin superoxide dismutase (marker of oxidative stress) and plasma ceruloplasmin were observed in the untreated-burn group. These levels were significantly high following copper nicotinate complex treatment. The total and differential leukocyte counts were low following the onset of the thermal injury. They gradually returned to normal levels over a 4-week period following the application of MEBO or copper nicotinate complex. Compared to untreated-burn group, postburn-healing changes (resolution of the inflammatory reaction

  10. Ultimately short ballistic vertical graphene Josephson junctions

    PubMed Central

    Lee, Gil-Ho; Kim, Sol; Jhi, Seung-Hoon; Lee, Hu-Jong

    2015-01-01

    Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale. PMID:25635386

  11. The Assessment of the Ultimate Hull Girder Strength of RO-RO Ship after Damages

    NASA Astrophysics Data System (ADS)

    Zubair Muis Alie, Muhammad; Sitepu, Ganding; Izaak Latumahin, Samuel

    2018-03-01

    Many accidents of Ro-Ro ships happen in Indonesia such as collision and grounding. When the collision or grounding takes place on the Ro-Ro ship, the ultimate strength of hull structure after damage becomes decrease. Car and passenger decks are critical location since collision and/or grounding occur. In the present study, the assessment of the ultimate hull girder strength is conducted. The cross section of Ro-Ro ship is taken to be analyzed. The collision and grounding damages are assumed to be palced on the side and bottom area, respectively. The damages are created by removing the element from the side shell and bottom part. Finally, the result obtained is compared with one another.

  12. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    PubMed

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  13. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials

    PubMed Central

    Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite’s chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface. PMID:28301544

  14. The effect of laparotomy on hydroxyl radicals, singlet oxygen and antioxidants measured by EPR method in the tails of rats.

    PubMed

    Fricova, Jitka; Stopka, Pavel; Krizova, Jana; Yamamotova, Anna; Rokyta, Richard

    2009-01-01

    The aim of the study was to demonstrate that direct measurement of hydroxyl radicals and singlet oxygen in the tail of living rats is possible. The basic level of hydroxyl radicals and singlet oxygen were measured and the effects of antioxidants on their levels were studied in the tail of living anaesthetized rats after acute postoperative pain. Laparotomy was performed as the source of acute abdominal pain. After closure of the abdominal cavity, the animals began to awaken within 30-60 minutes. They were left to recover for 2-3 hours; then they were reanesthetized and the effect of antioxidants was measured on the numbers of hydroxyl radicals and singlet oxygen via blood in the tail. The laparotomy was preformed under general anesthesia (Xylazin and Ketamin) using Wistar rats. After recovery and several hours of consciousness they were reanaesthetized and free radicals and singlet oxygen were measured. An antioxidant mixture (vitamins A, C, D and Selenium) was administered intramuscularly prior to the laparotomy. All measurements were done on the tail of anaesthetized animals. In this particular article, the effect of antioxidants is only reported for hydroxyl radicals. After laparotomy, which represented both somatic and visceral pain, hydroxyl radicals and singlet oxygen were increased. Antioxidant application prior to laparotomy decreased the numbers of hydroxyl radicals. Results are in agreement with our previous finding regarding the increase in hydroxyl free radicals and singlet oxygen following nociceptive stimulation, in this case a combination of both somatic and visceral pain. The administered antioxidants mitigated the increase. This is further confirmation that direct measurement of free radicals and singlet oxygen represents a very useful method for the biochemical evaluation of pain and nociception.

  15. Singlet oxygen generation in gas discharge for oxygen-iodine laser pumping

    NASA Astrophysics Data System (ADS)

    Lopaev, D. V.; Braginsky, O. V.; Klopovsky, K. S.; Kovalev, A. S.; Mankelevich, Yu. A.; Popov, N. A.; Rakhimov, A. T.; Rakhimova, T. V.; Vasilieva, A. N.

    2004-09-01

    The possibility of development of effective discharged singlet oxygen (SO) generator (DSOG) for oxygen-iodine laser (OIL) is studied in detail. Researches of kinetics of oxygen atoms and oxygen molecules in the lowest metastable singlet states have been carried out in the different discharges and its afterglow (DC discharges, E-beam controlled discharge and RF discharges) in both CW and pulsed mode in a wide range of conditions (pressures, gas mixtures, energy deposits etc.). The models developed for all the discharges have allowed us to analyze SO generation and loss mechanisms and to find out the key-parameters controlling the highest SO yield. It is shown that in addition to spatial plasma uniformity at low E/N and high specific energy deposit per oxygen molecule, DSOG must be oxygen atom free to avoid fast three-body quenching of SO by atomic oxygen with increasing pressure and thereby to provide pressure scaling (in tens Torrs) for applying to real OIL systems.

  16. Seed birth to death: dual functions of reactive oxygen species in seed physiology.

    PubMed

    Jeevan Kumar, S P; Rajendra Prasad, S; Banerjee, Rintu; Thammineni, Chakradhar

    2015-09-01

    Reactive oxygen species (ROS) are considered to be detrimental to seed viability. However, recent studies have demonstrated that ROS have key roles in seed germination particularly in the release of seed dormancy and embryogenesis, as well as in protection from pathogens. This review considers the functions of ROS in seed physiology. ROS are present in all cells and at all phases of the seed life cycle. ROS accumulation is important in breaking seed dormancy, and stimulating seed germination and protection from pathogens. However, excessive ROS accumulation can be detrimental. Therefore, knowledge of the mechanisms by which ROS influence seed physiology will provide insights that may not only allow the development of seed quality markers but also help us understand how dormancy can be broken in several recalcitrant species. Reactive oxygen species have a dual role in seed physiology. Understanding the relative importance of beneficial and detrimental effects of ROS provides great scope for the improvement and maintenance of seed vigour and quality, factors that may ultimately increase crop yields. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Non-invasive monitoring of skin inflammation using an oxygen-sensing paint-on bandage

    PubMed Central

    Li, Zongxi; Navarro-Alvarez, Nalu; Keeley, Emily J.; Nowell, Nicholas H.; Goncalves, Beatriz M. M.; Huang, Christene A.; Evans, Conor L.

    2017-01-01

    Inflammation involves a cascade of cellular and molecular mediators that ultimately lead to the infiltration of immune cells into the affected area. This inflammatory process in skin is common to many diseases including acne, infection, and psoriasis, with the presence or absence of immune cells a potential diagnostic marker. Here we show that skin inflammation can be non-invasively measured and mapped using a paint-on oxygen sensing bandage in an in vivo porcine inflammation model. After injection of a known inflammatory agent, the bandage could track the increase, plateau, and decrease in oxygen consumption at the injury site over 7 weeks, as well as discern inflammation resultant from injection at various depths beneath the surface of the skin. Both the initial rate of pO2 change and the change in bandage pO2 at equilibration (CBP20) were found to be directly related to the metabolic oxygen consumption rate of the tissue in contact. Healthy skin demonstrated an initial pO2 decrease rate of 6.5 mmHg⋅min−1, and CBP20 of 84 mmHg. Inflamed skin had a significantly higher initial consumption rate of 55 mmHg⋅min−1, and a larger CBP20 of 140 mmHg. The change in the bandage pO2 before and after equilibration with tissue was found to correlate well with histological evidence of skin inflammation in the animals. PMID:29082091

  18. The C21-formyl group in chlorophyll f originates from molecular oxygen.

    PubMed

    Garg, Harsh; Loughlin, Patrick C; Willows, Robert D; Chen, Min

    2017-11-24

    Chlorophylls (Chls) are the most important cofactors for capturing solar energy to drive photosynthetic reactions. Five spectral types of Chls have been identified to date, with Chl f having the most red-shifted absorption maximum because of a C2 1 -formyl group substitution of Chl f However, the biochemical provenance of this formyl group is unknown. Here, we used a stable isotope labeling technique ( 18 O and 2 H) to determine the origin of the C2 1 -formyl group of Chl f and to verify whether Chl f is synthesized from Chl a in the cyanobacterial species Halomicronema hongdechloris. In the presence of either H 2 18 O or 18 O 2 , the origin of oxygen atoms in the newly synthesized chlorophylls was investigated. The pigments were isolated with HPLC, followed by MS analysis. We found that the oxygen atom of the C2 1 -formyl group originates from molecular oxygen and not from H 2 O. Moreover, we examined the kinetics of the labeling of Chl a and Chl f from H. hongdechloris grown in 50% D 2 O-seawater medium under different light conditions. When cells were shifted from white light D 2 O-seawater medium to far-red light H 2 O-seawater medium, the observed deuteration in Chl f indicated that Chl(ide) a is the precursor of Chl f Taken together, our results advance our understanding of the biosynthesis pathway of the chlorophylls and the formation of the formyl group in Chl f . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes.

    PubMed

    Buckley, C T; Vinardell, T; Kelly, D J

    2010-10-01

    For current tissue engineering or regenerative medicine strategies, chondrocyte (CC)- or mesenchymal stem cell (MSC)-seeded constructs are typically cultured in normoxic conditions (20% oxygen). However, within the knee joint capsule a lower oxygen tension exists. The objective of this study was to investigate how CCs and infrapatellar fad pad derived MSCs will respond to a low oxygen (5%) environment in 3D agarose culture. Our hypothesis was that culture in a low oxygen environment (5%) will enhance the functional properties of cartilaginous tissues engineered using both cell sources. Cell-encapsulated agarose hydrogel constructs (seeded with CCs or infrapatellar fat pad (IFP) derived MSCs) were prepared and cultured in a chemically defined serum-free medium in the presence (CCs and MSCs) or absence (CCs only) of transforming growth factor-beta3 (TGF-β3) in normoxic (20%) or low oxygen (5%) conditions for 42 days. Constructs were assessed at days 0, 21 and 42 in terms of mechanical properties, biochemical content and histologically. Low oxygen tension (5%) was observed to promote extracellular matrix (ECM) production by CCs cultured in the absence of TGF-β3, but was inhibitory in the presence of TGF-β3. In contrast, a low oxygen tension enhanced chondrogenesis of IFP constructs in the presence of TGF-β3, leading to superior mechanical functionality compared to CCs cultured in identical conditions. Extrapolating the results of this study to the in vivo setting, it would appear that joint fat pad derived MSCs may possess a superior potential to generate a functional repair tissue in low oxygen tensions. However, in the context of in vitro cartilage tissue engineering, CCs maintained in normoxic conditions in the presence of TGF-β3 generate the most mechanically functional tissue. Copyright © 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. An Improved Approach for Analyzing the Oxygen Compatibility of Solvents and other Oxygen-Flammable Materials for Use in Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Harper, Susan A.; Juarez, Alfredo; Peralta, Stephen F.; Stoltzfus, Joel; Arpin, Christina Pina; Beeson, Harold D.

    2016-01-01

    Solvents used to clean oxygen system components must be assessed for oxygen compatibility, as incompatible residue or fluid inadvertently left behind within an oxygen system can pose a flammability risk. The most recent approach focused on solvent ignition susceptibility to assess the flammability risk associated with these materials. Previous evaluations included Ambient Pressure Liquid Oxygen (LOX) Mechanical Impact Testing (ASTM G86) and Autogenous Ignition Temperature (AIT) Testing (ASTM G72). The goal in this approach was to identify a solvent material that was not flammable in oxygen. As environmental policies restrict the available options of acceptable solvents, it has proven difficult to identify one that is not flammable in oxygen. A more rigorous oxygen compatibility approach is needed in an effort to select a new solvent for NASA applications. NASA White Sands Test Facility proposed an approach that acknowledges oxygen flammability, yet selects solvent materials based on their relative oxygen compatibility ranking, similar to that described in ASTM G63-99. Solvents are selected based on their ranking with respect to minimal ignition susceptibility, damage and propagation potential, as well as their relative ranking when compared with other solvent materials that are successfully used in oxygen systems. Test methods used in this approach included ASTM G86 (Ambient Pressure LOX Mechanical Impact Testing and Pressurized Gaseous Oxygen (GOX) Mechanical Impact Testing), ASTM G72 (AIT Testing), and ASTM D240 (Heat of Combustion (HOC) Testing). Only four solvents were tested through the full battery of tests for evaluation of oxygen compatibility: AK-225G as a baseline comparison, Solstice PF, L-14780, and Vertrel MCA. Baseline solvent AK-225G exhibited the lowest HOC and highest AIT of solvents tested. Nonetheless, Solstice PF, L-14780, and Vertrel MCA HOCs all fell well within the range of properties that are associated with proven oxygen system materials

  1. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  2. Increased sediment oxygen flux in lakes and reservoirs: The impact of hypolimnetic oxygenation

    NASA Astrophysics Data System (ADS)

    Bierlein, Kevin A.; Rezvani, Maryam; Socolofsky, Scott A.; Bryant, Lee D.; Wüest, Alfred; Little, John C.

    2017-06-01

    Hypolimnetic oxygenation is an increasingly common lake management strategy for mitigating hypoxia/anoxia and associated deleterious effects on water quality. A common effect of oxygenation is increased oxygen consumption in the hypolimnion and predicting the magnitude of this increase is the crux of effective oxygenation system design. Simultaneous measurements of sediment oxygen flux (JO2) and turbulence in the bottom boundary layer of two oxygenated lakes were used to investigate the impact of oxygenation on JO2. Oxygenation increased JO2 in both lakes by increasing the bulk oxygen concentration, which in turn steepens the diffusive gradient across the diffusive boundary layer. At high flow rates, the diffusive boundary layer thickness decreased as well. A transect along one of the lakes showed JO2 to be spatially quite variable, with near-field and far-field JO2 differing by a factor of 4. Using these in situ measurements, physical models of interfacial flux were compared to microprofile-derived JO2 to determine which models adequately predict JO2 in oxygenated lakes. Models based on friction velocity, turbulence dissipation rate, and the integral scale of turbulence agreed with microprofile-derived JO2 in both lakes. These models could potentially be used to predict oxygenation-induced oxygen flux and improve oxygenation system design methods for a broad range of reservoir systems.

  3. Operational Considerations for Oxygen Flammability Risks: Concentrated Oxygen Diffusion and Permeation Behaviors

    NASA Technical Reports Server (NTRS)

    Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David

    2010-01-01

    Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.

  4. Pulverized fuel-oxygen burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Curtis; Patterson, Brad; Perdue, Jayson

    A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through themore » solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.« less

  5. Medical Oxygen Safety

    MedlinePlus

    ... to the air a patient uses to breathe. Fire needs oxygen to burn. If a fire should start in an oxygen-enriched area, the ... Homes where medical oxygen is used need specific fire safety rules to keep people safe from fire ...

  6. Copper transport into the secretory pathway is regulated by oxygen in macrophages

    PubMed Central

    White, Carine; Kambe, Taiho; Fulcher, Yan G.; Sachdev, Sherri W.; Bush, Ashley I.; Fritsche, Kevin; Lee, Jaekwon; Quinn, Thomas P.; Petris, Michael J.

    2009-01-01

    Summary Copper is an essential nutrient for a variety of biochemical processes; however, the redox properties of copper also make it potentially toxic in the free form. Consequently, the uptake and intracellular distribution of this metal is strictly regulated. This raises the issue of whether specific pathophysiological conditions can promote adaptive changes in intracellular copper distribution. In this study, we demonstrate that oxygen limitation promotes a series of striking alterations in copper homeostasis in RAW264.7 macrophage cells. Hypoxia was found to stimulate copper uptake and to increase the expression of the copper importer, CTR1. This resulted in increased copper delivery to the ATP7A copper transporter and copper-dependent trafficking of ATP7A to cytoplasmic vesicles. Significantly, the ATP7A protein was required to deliver copper into the secretory pathway to ceruloplasmin, a secreted copperdependent enzyme, the expression and activity of which were stimulated by hypoxia. However, the activities of the alternative targets of intracellular copper delivery, superoxide dismutase and cytochrome c oxidase, were markedly reduced in response to hypoxia. Collectively, these findings demonstrate that copper delivery into the biosynthetic secretory pathway is regulated by oxygen availability in macrophages by a selective increase in copper transport involving ATP7A. PMID:19351718

  7. Oxygen Pathways and Budget for the Eastern South Pacific Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Llanillo, P. J.; Pelegrí, J. L.; Talley, L. D.; Peña-Izquierdo, J.; Cordero, R. R.

    2018-03-01

    Ventilation of the eastern South Pacific Oxygen Minimum Zone (ESP-OMZ) is quantified using climatological Argo and dissolved oxygen data, combined with reanalysis wind stress data. We (1) estimate all oxygen fluxes (advection and turbulent diffusion) ventilating this OMZ, (2) quantify for the first time the oxygen contribution from the subtropical versus the traditionally studied tropical-equatorial pathway, and (3) derive a refined annual-mean oxygen budget for the ESP-OMZ. In the upper OMZ layer, net oxygen supply is dominated by tropical-equatorial advection, with more than one-third of this supply upwelling into the Ekman layer through previously unevaluated vertical advection, within the overturning component of the regional Subtropical Cell (STC). Below the STC, at the OMZ's core, advection is weak and turbulent diffusion (isoneutral and dianeutral) accounts for 89% of the net oxygen supply, most of it coming from the oxygen-rich subtropical gyre. In the deep OMZ layer, net oxygen supply occurs only through turbulent diffusion and is dominated by the tropical-equatorial pathway. Considering the entire OMZ, net oxygen supply (3.84 ± 0.42 µmol kg-1 yr-1) is dominated by isoneutral turbulent diffusion (56.5%, split into 32.3% of tropical-equatorial origin and 24.2% of subtropical origin), followed by isoneutral advection (32.0%, split into 27.6% of tropical-equatorial origin and 4.4% of subtropical origin) and dianeutral diffusion (11.5%). One-quarter (25.8%) of the net oxygen input escapes through dianeutral advection (most of it upwelling) and, assuming steady state, biological consumption is responsible for most of the oxygen loss (74.2%).

  8. Indicators: Dissolved Oxygen

    EPA Pesticide Factsheets

    Dissolved oxygen (DO) is the amount of oxygen that is present in water. It is an important measure of water quality as it indicates a water body's ability to support aquatic life. Water bodies receive oxygen from the atmosphere and from aquatic plants.

  9. Home Oxygen Therapy

    MedlinePlus

    ... acts like a large thermos. When released, the liquid oxygen immediately converts to a gas and you breathe it in, just like the compressed oxygen in the older steel cylinders. An important advantage of liquid oxygen is you can transfer some of the ...

  10. Relationships between data from Rock-Eval pyrolysis and proximate, ultimate, petrographic, and physical analyses of 142 diverse U.S. coal samples

    USGS Publications Warehouse

    Bostick, N.H.; Daws, T.A.

    1994-01-01

    Basic research on coal and oil shale led to automated pyrolysis analysis of petroleum source rocks; most widely used is the Rock-Eval equipment. In order to interpret Rock-Eval analyses in relation to traditional coal data, we analyzed 142 commercial coals with diverse rank, age, maceral and sulfur contents, for most regions of the United States. We compared the Rock-Eval data with traditional industrial coal data, including volatile matter, calorific value, hydrogen and oxygen content, free swelling index, and vitrinite reflectance. We found: (1) there is a close relationship between Tmax and vitrinite reflectance in the ranges 420-590??C Tmax and 0.4-3%Romax of most coals. (2) A close relationship between Tmax and volatile matter (%VM) extends through the entire sample range, including low-rank samples with 35-70% VM, a range where %VM is not considered to be a useful rank parameter. (3) TOC of medium- and high-rank coals is seriously under-measured by Rock-Eval; TOC of low-rank coals (less than 0.8%Romax) is close to "dry basis" carbon from ultimate analysis. (4) The direct relationships between oxygen index (OI) and %O and between hydrogen index (HI) and %H are clear, though only broadly defined. However, there is virtually no band of concentrated data points on the HI versus OI pseudo-Van Krevelen diagram comparable to the "development line" on the H/C versus O/C diagram. (5) There are systematic relationships between Rock-Eval and industrial coal parameters such as calorific value and FSI, but much standardization would be needed before Rock-Eval could find a place in the coal industry. Tests with blends of coal and quartz sand and with various loads of coal alone showed that the amount of organic matter in the Rock-Eval load greatly influences results. Total load in the crucible, if largely inert, plays a small role, however. Increasing absolute or relative coal content causes under-evaluation of Rock-Eval TOC and over-rating of hydrogen. Blends of several

  11. 40 CFR 158.2070 - Biochemical pesticides product performance data requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... efficacy data unless the pesticide product bears a claim to control public health pests, such as pest... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Biochemical pesticides product... AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2070...

  12. 40 CFR 158.2070 - Biochemical pesticides product performance data requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... efficacy data unless the pesticide product bears a claim to control public health pests, such as pest... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Biochemical pesticides product... AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2070...

  13. 40 CFR 158.2070 - Biochemical pesticides product performance data requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... efficacy data unless the pesticide product bears a claim to control public health pests, such as pest... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Biochemical pesticides product... AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2070...

  14. 40 CFR 158.2070 - Biochemical pesticides product performance data requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... efficacy data unless the pesticide product bears a claim to control public health pests, such as pest... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Biochemical pesticides product... AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2070...

  15. 40 CFR 158.2070 - Biochemical pesticides product performance data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... efficacy data unless the pesticide product bears a claim to control public health pests, such as pest... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides product... AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2070...

  16. Biochemical correlates in an animal model of depression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.O.

    1986-01-01

    A valid animal model of depression was used to explore specific adrenergic receptor differences between rats exhibiting aberrant behavior and control groups. Preliminary experiments revealed a distinct upregulation of hippocampal beta-receptors (as compared to other brain regions) in those animals acquiring a response deficit as a result of exposure to inescapable footshock. Concurrent studies using standard receptor binding techniques showed no large changes in the density of alpha-adrenergic, serotonergic, or dopaminergic receptor densities. This led to the hypothesis that the hippocampal beta-receptor in responses deficient animals could be correlated with the behavioral changes seen after exposure to the aversive stimulus.more » Normalization of the behavior through the administration of antidepressants could be expected to reverse the biochemical changes if these are related to the mechanism of action of antidepressant drugs. This study makes three important points: (1) there is a relevant biochemical change in the hippocampus of response deficient rats which occurs in parallel to a well-defined behavior, (2) the biochemical and behavioral changes are normalized by antidepressant treatments exhibiting both serotonergic and adrenergic mechanisms of action, and (3) the mode of action of antidepressants in this model is probably a combination of serotonergic and adrenergic influences modulating the hippocampal beta-receptor. These results are discussed in relation to anatomical and biochemical aspects of antidepressant action.« less

  17. Oxygen Therapy

    MedlinePlus

    ... 85-95% pure oxygen. The concentrator runs on electricity or a battery. A concentrator for home usually ... systems deliver 100% oxygen, and do not require electricity. A small canister can be filled from the ...

  18. Hypoxic Niche-Mediated Regeneration of Hematopoiesis in the Engraftment Window Is Dominantly Affected by Oxygen Tension in the Milieu

    PubMed Central

    Moirangthem, Ranjita Devi; Singh, Shweta; Adsul, Ashwini; Jalnapurkar, Sapana; Limaye, Lalita

    2015-01-01

    The bone marrow (BM) microenvironment or the hematopoietic stem cell (HSC) niche is normally hypoxic, which maintains HSC quiescence. Paradoxically, transplanted HSCs rapidly proliferate in this niche. Pretransplant myelosuppression results in a substantial rise in oxygen levels in the marrow microenvironment due to reduced cellularity and consequent low oxygen consumption. Therefore, it may be construed that the rapid proliferation of the engrafted HSCs in the BM niche is facilitated by the transiently elevated oxygen tension in this milieu during the “engraftment window.” To determine whether oxygen tension dominantly affects the regeneration of hematopoiesis in the BM niche, we created an “oxygen-independent hypoxic niche” by treating BM-derived mesenchymal stromal cells (BMSCs) with a hypoxia-mimetic compound, cobalt chloride (CoCl2) and cocultured them with BM-derived HSC-enriched cells under normoxic conditions (HSCs; CoCl2-cocultures). Cocultures with untreated BMSCs incubated under normoxia (control- cocultures) or hypoxia (1% O2; hypoxic-cocultures) were used as comparators. Biochemical analyses showed that though, both CoCl2 and hypoxia evoked comparable signals in the BMSCs, the regeneration of hematopoiesis in their respective cocultures was radically different. The CoCl2-BMSCs supported robust hematopoiesis, while the hypoxic-BMSCs exerted strong inhibition. The hematopoiesis-supportive ability of CoCl2-BMSCs was abrogated if the CoCl2-cocultures were incubated under hypoxia, demonstrating that the prevalent oxygen tension in the milieu dominantly affects the outcome of the HSC-BM niche interactions. Our data suggest that pharmacologically delaying the reestablishment of hypoxia in the BM may boost post-transplant regeneration of hematopoiesis. PMID:26107807

  19. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Sand Creek, Decatur County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, James G.

    1979-01-01

    A digital model calibrated to conditions in Sand Creek near Greensburg, Ind., was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The only point-source waste load affecting Sand Creek in the vicinity of Greensburg is the Greensburg wastewater-treatment facility. Non-point, unrecorded waste loads seemed to be significant during three water-quality surveys done by the Indiana State Board of Health. Natural streamflow in Sand Creek during the summer and annual 7-day, 10-year low flow is zero so no benefit from dilution is provided. Effluent ammonia-nitrogen concentrations from the Greensburg wastewater-treatment facility will not meet Indiana water-quality standards during summer and winter low flows. To meet the water-quality standard the wastewater-effluent would be limited to a maximum total ammonia-nitrogen concentration of 2.5 mg/l for summer months (June through August) and 4.0 mg/l for winter months (November through March). Model simulations indicate that benthic-oxygen demand, nitrification, and the dissolved-oxygen concentration of the wastewater effluent are the most significant factors affecting the in-stream dissolved-oxygen concentration during summer low flows. The model predicts that with a benthic-oxygen demand of 1.5 grams per square meter per day at 20C the stream has no additional waste-load assimilative capacity. Present carbonaceous biochemical-oxygen demand loads from the Greensburg wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard (5 mg/l) during winter low flows. (Kosco-USGS)

  20. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  1. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  2. Study on a practical robotic follower to support home oxygen therapy patients--questionnaire-based concept evaluation by the patients-.

    PubMed

    Endo, Gen; Iemura, Yu; Fukushima, Edwardo F; Hirose, Shigeo; Iribe, Masatsugu; Ikeda, Ryota; Onishi, Kohei; Maeda, Naoto; Takubo, Toshio; Ohira, Mineko

    2013-06-01

    Home oxygen therapy (HOT) is a medical treatment for the patients suffering from severe lung diseases. Although walking outdoors is recommended for the patients to maintain physical strength, the patients always have to carry a portable oxygen supplier which is not sufficiently light weight for this purpose. Our ultimate goal is to develop a mobile robot to carry an oxygen tank and follow a patient in an urban outdoor environment. We have proposed a mobile robot with a tether interface to detect the relative position of the foregoing patient. In this paper, we report the questionnaire-based evaluation about the two developed prototypes by the HOT patients. We conduct maneuvering experiments, and then obtained questionnaire-based evaluations from the 20 patients. The results show that the basic following performance is sufficient and the pulling force of the tether is sufficiently small for the patients. Moreover, the patients prefer the small-sized prototype for compactness and light weight to the middle-sized prototype which can carry larger payload. We also obtained detailed requests to improve the robots. Finally the results show the general concept of the robot is favorably received by the patients.

  3. Supplemental Oxygen and Carbon Dioxide Each Increase Subcutaneous and Intestinal Intramural Oxygenation

    PubMed Central

    Ratnaraj, Jebadurai; Kabon, Barbara; Talcott, Michael R.; Sessler, Daniel I.

    2005-01-01

    Oxidative killing by neutrophils, a primary defense against surgical pathogens, is directly related to tissue oxygenation. We tested the hypothesis that supplemental inspired oxygen or mild hypercapnia (end-tidal PCO2 of 50 mmHg) improves intestinal oxygenation. Pigs (25±2.5 kg) were used in two studies in random order: 1) Oxygen Study — 30% vs. 100% inspired oxygen concentration at an end-tidal PCO2 of 40 mmHg, and 2) Carbon Dioxide Study — end-tidal PCO2 of 30 mmHg vs. 50 mmHg with 30% oxygen. Within each study, treatment order was randomized. Treatments were maintained for 1.5 hours; measurements were averaged over the final hour. A tonometer inserted in the subcutaneous tissue of the left upper foreleg measured subcutaneous oxygen tension. Tonometers inserted into the intestinal wall measured intestinal intramural oxygen tension from the small and large intestines. 100% oxygen administration doubled subcutaneous oxygen partial pressure (PO2) (57±10 to 107±48 mmHg, P=0.006) and large intestine intramural PO2 (53±14 to 118±72 mmHg, P=0.014); intramural PO2increased 40% in the small intestine (37±10 to 52±25 mmHg, P=0.004). An end-tidal PCO2 of 50 mmHg increased large intestinal PO2 approximately 16% (49±10 to 57±12 mmHg, P=0.039), while intramural PO2 increased by 45% in the small intestine (31±12 to 44±16 mmHg, P=0.002). Supplemental oxygen and mild hypercapnia each increased subcutaneous and intramural tissue PO2, with supplemental oxygen being most effective. PMID:15281531

  4. Ultimate Osmosis Engineered by the Pore Geometry and Functionalization of Carbon Nanostructures

    PubMed Central

    Song, Zhigong; Xu, Zhiping

    2015-01-01

    Osmosis is the key process in establishing versatile functions of cellular systems and enabling clean-water harvesting technologies. Membranes with single-atom thickness not only hold great promises in approaching the ultimate limit of these functions, but also offer an ideal test-bed to explore the underlying physical mechanisms. In this work, we explore diffusive and osmotic transport of water and ions through carbon nanotube and porous graphene based membranes by performing molecular dynamics simulations. Our comparative study shows that the cylindrical confinement in carbon nanotubes offers much higher salt rejection at similar permeability in osmosis compared to porous graphene. Moreover, chemical functionalization of the pores modulates the membrane performance by its steric and electrostatic nature, especially at small-size pores due to the fact that the optimal transport is achieved by ordered water transport near pore edges. These findings lay the ground for the ultimate design of forward osmosis membranes with optimized performance trade-off, given the capability of nano-engineering nanostructures by their geometry and chemistry. PMID:26037602

  5. Preservation of tumour oxygen after hyperbaric oxygenation monitored by magnetic resonance imaging

    PubMed Central

    Kinoshita, Y; Kohshi, K; Kunugita, N; Tosaki, T; Yokota, A

    1999-01-01

    Hyperbaric oxygen (HBO) has been proposed to reduce tumour hypoxia by increasing the dissolved molecular oxygen in tissue. Using a non-invasive magnetic resonance imaging (MRI) technique, we monitored the changes in MRI signal intensity after HBO exposure because dissolved paramagnetic molecular oxygen itself shortens the T1 relation time. SCCVII tumour cells transplanted in mice were used. The molecular oxygen-enhanced MR images were acquired using an inversion recovery-preparation fast low angle shot (IR-FLASH) sequence sensitizing the paramagnetic effects of molecular oxygen using a 4.7 tesla MR system. MR signal of muscles decreased rapidly and returned to the control level within 40 min after decompression, whereas that of tumours decreased gradually and remained at a high level 60 min after HBO exposure. In contrast, the signal from the tumours in the normobaric oxygen group showed no significant change. Our data suggested that MR signal changes of tumours and muscles represent an alternation of extravascular oxygenation. The preserving tumour oxygen concentration after HBO exposure may be important regarding adjuvant therapy for cancer patients. © 2000 Cancer Research Campaign PMID:10638972

  6. The prospects of transition metal dichalcogenides for ultimately scaled CMOS

    NASA Astrophysics Data System (ADS)

    Thiele, S.; Kinberger, W.; Granzner, R.; Fiori, G.; Schwierz, F.

    2018-05-01

    MOSFET gate length scaling has been a main source of progress in digital electronics for decades. Today, researchers still spend considerable efforts on reducing the gate length and on developing ultimately scaled MOSFETs, thereby exploring both new device architectures and alternative channel materials beyond Silicon such as two-dimensional TMDs (transition metal dichalcogenide). On the other hand, the envisaged scaling scenario for the next 15 years has undergone a significant change recently. While the 2013 ITRS edition required a continuation of aggressive gate length scaling for at least another 15 years, the 2015 edition of the ITRS suggests a deceleration and eventually a levelling off of gate length scaling and puts more emphasis on alternative options such as pitch scaling to keep Moore's Law alive. In the present paper, future CMOS scaling is discussed in the light of emerging two-dimensional MOSFET channel, in particular two-dimensional TMDs. To this end, the scaling scenarios of the 2013 and 2015 ITRS editions are considered and the scaling potential of TMD MOSFETs is investigated by means of quantum-mechanical device simulations. It is shown that for ultimately scaled MOSFETs as required in the 2013 ITRS, the heavy carrier effective masses of the Mo- and W-based TMDs are beneficial for the suppression of direct source-drain tunneling, while to meet the significantly relaxed scaling targets of the 2016 ITRS heavy-effective-mass channels are not needed.

  7. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Cedar Creek, Dekalb and Allen counties, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Peters, J.G.; Ayers, M.A.; Crawford, Charles G.

    1979-01-01

    A digital model calibrated to conditions in Cedar Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that the dissolved-oxygen concentration of the Auburn wastewater effluent and nitrification are the most significant factors affecting the dissolved-oxygen concentration in Cedar Creek during summer low flows. The observed dissolved-oxygen concentration of the Auburn wastewater effluent was low and averaged 30 percent of saturation. Projected nitrogenous biochemical-oxygen demand loads, from the Indiana State Board of Health, for the Auburn and Waterloo wastewater-treatment facilities will result in violations of the current instream dissolved-oxygen standard (5 mg/l), even with an effluent dissolved-oxygen concentration of 80 percent saturation. Natural streamflow for Cedar Creek upstream from the confluence of Willow and Little Cedar Creeks is small compared with the waste discharge, so benefits of dilution for Waterloo and Auburn are minimal. The model also indicates that, during winter low flows, ammonia toxicity, rather than dissolved oxygen, is the limiting water-quality criterion in the reach of Cedar Creek downstream from the wastewater-treatment facility at Auburn and the confluence of Garrett ditch. Ammonia-nitrogen concentrations predicted for 1978 through 2000 downstream from the Waterloo wastewater-treatment facility do not exceed Indiana water-quality standards for streams. Calculations of the stream 's assimilative capacity indicate that future waste discharge in the Cedar Creek basin will be limited to the reaches between the Auburn wastewater-treatment facility and County Road 68. (Kosco-USGS)

  8. Tailoring (bio)chemical activity of semiconducting nanoparticles: critical role of deposition and aggregation.

    PubMed

    Chernyshova, Irina V; Ponnurangam, Sathish; Somasundaran, Ponisseril

    2011-06-22

    The impact of deposition and aggregation on (bio)chemical properties of semiconducting nanoparticles (NPs) is perhaps among the least studied aspects of aquatic chemistry of solids. Employing a combination of in situ FTIR and ex situ X-ray photoelectron spectroscopy (XPS) and using the Mn(II) oxygenation on hematite (α-Fe(2)O(3)) and anatase (TiO(2)) NPs as a model catalytic reaction, we discovered that the catalytic and sorption performance of the semiconducting NPs in the dark can be manipulated by depositing them on different supports or mixing them with other NPs. We introduce the electrochemical concept of the catalytic redox activity to explain the findings and to predict the effects of (co)aggregation and deposition on the catalytic and corrosion properties of ferric (hydr)oxides. These results offer new possibilities for rationally tailoring the technological performance of semiconducting metal oxide NPs, provide a new framework for modeling their fate and transport in the environment and living organisms, and can be helpful in discriminating between weakly and strongly adsorbed species in spectra.

  9. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving anmore » ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic

  10. A model for oxygen conservation associated with titration during pediatric oxygen therapy

    PubMed Central

    Wu, Grace; Wollen, Alec; Himley, Stephen; Austin, Glenn; Delarosa, Jaclyn; Izadnegahdar, Rasa; Ginsburg, Amy Sarah; Zehrung, Darin

    2017-01-01

    Background Continuous oxygen treatment is essential for managing children with hypoxemia, but access to oxygen in low-resource countries remains problematic. Given the high burden of pneumonia in these countries and the fact that flow can be gradually reduced as therapy progresses, oxygen conservation through routine titration warrants exploration. Aim To determine the amount of oxygen saved via titration during oxygen therapy for children with hypoxemic pneumonia. Methods Based on published clinical data, we developed a model of oxygen flow rates needed to manage hypoxemia, assuming recommended flow rate at start of therapy, and comparing total oxygen used with routine titration every 3 minutes or once every 24 hours versus no titration. Results Titration every 3 minutes or every 24 hours provided oxygen savings estimated at 11.7% ± 5.1% and 8.1% ± 5.1% (average ± standard error of the mean, n = 3), respectively. For every 100 patients, 44 or 30 kiloliters would be saved—equivalent to 733 or 500 hours at 1 liter per minute. Conclusions Ongoing titration can conserve oxygen, even performed once-daily. While clinical validation is necessary, these findings could provide incentive for the routine use of pulse oximeters for patient management, as well as further development of automated systems. PMID:28234903

  11. A model for oxygen conservation associated with titration during pediatric oxygen therapy.

    PubMed

    Wu, Grace; Wollen, Alec; Himley, Stephen; Austin, Glenn; Delarosa, Jaclyn; Izadnegahdar, Rasa; Ginsburg, Amy Sarah; Zehrung, Darin

    2017-01-01

    Continuous oxygen treatment is essential for managing children with hypoxemia, but access to oxygen in low-resource countries remains problematic. Given the high burden of pneumonia in these countries and the fact that flow can be gradually reduced as therapy progresses, oxygen conservation through routine titration warrants exploration. To determine the amount of oxygen saved via titration during oxygen therapy for children with hypoxemic pneumonia. Based on published clinical data, we developed a model of oxygen flow rates needed to manage hypoxemia, assuming recommended flow rate at start of therapy, and comparing total oxygen used with routine titration every 3 minutes or once every 24 hours versus no titration. Titration every 3 minutes or every 24 hours provided oxygen savings estimated at 11.7% ± 5.1% and 8.1% ± 5.1% (average ± standard error of the mean, n = 3), respectively. For every 100 patients, 44 or 30 kiloliters would be saved-equivalent to 733 or 500 hours at 1 liter per minute. Ongoing titration can conserve oxygen, even performed once-daily. While clinical validation is necessary, these findings could provide incentive for the routine use of pulse oximeters for patient management, as well as further development of automated systems.

  12. BNDB - the Biochemical Network Database.

    PubMed

    Küntzer, Jan; Backes, Christina; Blum, Torsten; Gerasch, Andreas; Kaufmann, Michael; Kohlbacher, Oliver; Lenhof, Hans-Peter

    2007-10-02

    Technological advances in high-throughput techniques and efficient data acquisition methods have resulted in a massive amount of life science data. The data is stored in numerous databases that have been established over the last decades and are essential resources for scientists nowadays. However, the diversity of the databases and the underlying data models make it difficult to combine this information for solving complex problems in systems biology. Currently, researchers typically have to browse several, often highly focused, databases to obtain the required information. Hence, there is a pressing need for more efficient systems for integrating, analyzing, and interpreting these data. The standardization and virtual consolidation of the databases is a major challenge resulting in a unified access to a variety of data sources. We present the Biochemical Network Database (BNDB), a powerful relational database platform, allowing a complete semantic integration of an extensive collection of external databases. BNDB is built upon a comprehensive and extensible object model called BioCore, which is powerful enough to model most known biochemical processes and at the same time easily extensible to be adapted to new biological concepts. Besides a web interface for the search and curation of the data, a Java-based viewer (BiNA) provides a powerful platform-independent visualization and navigation of the data. BiNA uses sophisticated graph layout algorithms for an interactive visualization and navigation of BNDB. BNDB allows a simple, unified access to a variety of external data sources. Its tight integration with the biochemical network library BN++ offers the possibility for import, integration, analysis, and visualization of the data. BNDB is freely accessible at http://www.bndb.org.

  13. How plasma induced oxidation, oxygenation, and de-oxygenation influences viability of skin cells

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Strudwick, Xanthe; Short, Robert D.; Ogawa, Kotaro; Hatta, Akimitsu; Furuta, Hiroshi; Gaur, Nishtha; Hong, Sung-Ha; Cowin, Allison J.; Fukuhara, Hideo; Inoue, Keiji; Ito, Masafumi; Charles, Christine; Boswell, Roderick W.; Bradley, James W.; Graves, David B.; Szili, Endre J.

    2016-11-01

    The effect of oxidation, oxygenation, and de-oxygenation arising from He gas jet and He plasma jet treatments on the viability of skin cells cultured in vitro has been investigated. He gas jet treatment de-oxygenated cell culture medium in a process referred to as "sparging." He plasma jet treatments oxidized, as well as oxygenated or de-oxygenated cell culture medium depending on the dissolved oxygen concentration at the time of treatment. He gas and plasma jets were shown to have beneficial or deleterious effects on skin cells depending on the concentration of dissolved oxygen and other oxidative molecules at the time of treatment. Different combinations of treatments with He gas and plasma jets can be used to modulate the concentrations of dissolved oxygen and other oxidative molecules to influence cell viability. This study highlights the importance of a priori knowledge of the concentration of dissolved oxygen at the time of plasma jet treatment, given the potential for significant impact on the biological or medical outcome. Monitoring and controlling the dynamic changes in dissolved oxygen is essential in order to develop effective strategies for the use of cold atmospheric plasma jets in biology and medicine.

  14. Oxygen concentrators for the delivery of supplemental oxygen in remote high-altitude areas.

    PubMed

    Litch, J A; Bishop, R A

    2000-01-01

    Oxygen concentrators are a relatively new technology for the delivery of supplemental oxygen. Readily available for domicile use in modern countries, these machines have proved reliable. The application of oxygen concentrators for the supply of medical oxygen in remote high-altitude settings has important cost-saving and supply implications. In our experience at a remote hospital at 3,900 m in the Nepal Himalayas, oxygen concentrators constitute an effective and affordable means to supply medical oxygen. Using an air compressor and 2 zeolite chambers, the machine traps nitrogen from room air compressed to 4 atm, thus concentrating oxygen in the expressed gas. At delivery flow rates of 2 to 5 liters per minute, oxygen concentrations greater than 80% can be maintained. An electric power requirement of less than 400 W can be provided from a variety of sources, including a small gasoline generator, a solar or wind power system with battery store, or a domestic or commercial power source. At our facility, a cost savings of 75% for supplemental oxygen was found in favor of the oxygen concentrator over cylinders (0.17 US cents per liter vs 0.79 US cents per liter).

  15. Monitoring Intracellular Oxygen Concentration: Implications for Hypoxia Studies and Real-Time Oxygen Monitoring.

    PubMed

    Potter, Michelle; Badder, Luned; Hoade, Yvette; Johnston, Iain G; Morten, Karl J

    2016-01-01

    The metabolic properties of cancer cells have been widely accepted as a hallmark of cancer for a number of years and have shown to be of critical importance in tumour development. It is generally accepted that tumour cells exhibit a more glycolytic phenotype than normal cells. In this study, we investigate the bioenergetic phenotype of two widely used cancer cell lines, RD and U87MG, by monitoring intracellular oxygen concentrations using phosphorescent Pt-porphyrin based intracellular probes. Our study demonstrates that cancer cell lines do not always exhibit an exclusively glycolytic phenotype. RD demonstrates a reliance on oxidative phosphorylation whilst U87MG display a more glycolytic phenotype. Using the intracellular oxygen sensing probe we generate an immediate readout of intracellular oxygen levels, with the glycolytic lines reflecting the oxygen concentration of the environment, and cells with an oxidative phenotype having significantly lower levels of intracellular oxygen. Inhibition of oxygen consumption in lines with high oxygen consumption increases intracellular oxygen levels towards environmental levels. We conclude that the use of intracellular oxygen probes provides a quantitative assessment of intracellular oxygen levels, allowing the manipulation of cellular bioenergetics to be studied in real time.

  16. Influence of lightweight ambulatory oxygen on oxygen use and activity patterns of COPD patients receiving long-term oxygen therapy.

    PubMed

    Casaburi, Richard; Porszasz, Janos; Hecht, Ariel; Tiep, Brian; Albert, Richard K; Anthonisen, Nicholas R; Bailey, William C; Connett, John E; Cooper, J Allen; Criner, Gerard J; Curtis, Jeffrey; Dransfield, Mark; Lazarus, Stephen C; Make, Barry; Martinez, Fernando J; McEvoy, Charlene; Niewoehner, Dennis E; Reilly, John J; Scanlon, Paul; Scharf, Steven M; Sciurba, Frank C; Woodruff, Prescott

    2012-02-01

    Lightweight ambulatory oxygen devices are provided on the assumptions that they enhance compliance and increase activity, but data to support these assumptions are lacking. We studied 22 patients with severe chronic obstructive pulmonary disease receiving long-term oxygen therapy (14 men, average age = 66.9 y, FEV(1) = 33.6%pred, PaO(2) at rest = 51.7 torr) who were using E-cylinders as their portable oxygen. Subjects were recruited at 5 sites and studied over a 2-week baseline period and for 6 months after randomizing them to either continuing to use 22-lb E-cylinders towed on a cart or to carrying 3.6-lb aluminum cylinders. Utilizing novel electronic devices, ambulatory and stationary oxygen use was monitored continuously over the 2 weeks prior to and the 6 months following randomization. Subjects wore tri-axial accelerometers to monitor physical activity during waking hours for 2-3 weeks prior to, and at 3 and 6 months after, randomization. Seventeen subjects completed the study. At baseline, subjects used 17.2 hours of stationary and 2.5 hours of ambulatory oxygen daily. At 6 months, ambulatory oxygen use was 1.4 ± 1.0 hrs in those randomized to E-cylinders and 1.9 ± 2.4 hrs in those using lightweight oxygen (P = NS). Activity monitoring revealed low activity levels prior to randomization and no significant increase over time in either group. In this group of severe chronic obstructive pulmonary disease patients, providing lightweight ambulatory oxygen did not increase either oxygen use or activity. Future efforts might focus on strategies to encourage oxygen use and enhance activity in this patient group. This trial is registered at ClinicalTrials.gov (NCT003257540).

  17. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  18. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  19. 40 CFR 158.2040 - Biochemical pesticides residue data requirements table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for biochemical agents in the biochemical human health assessment data requirements, § 158.2050. 2... be available for human or livestock consumption. 13. Data on fish are required for all pesticides... for human consumption. 14. Data are required when a pesticide is to be applied directly to water that...

  20. 40 CFR 158.2040 - Biochemical pesticides residue data requirements table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for biochemical agents in the biochemical human health assessment data requirements, § 158.2050. 2... be available for human or livestock consumption. 13. Data on fish are required for all pesticides... for human consumption. 14. Data are required when a pesticide is to be applied directly to water that...