Sample records for ultimate detection limit

  1. Probing the Ultimate Limits of Plasmonic Enhancement

    PubMed Central

    Ciracì, C.; Hill, R. T.; Mock, J. J.; Urzhumov, Y.; Fernández-Domínguez, A. I.; Maier, S. A.; Pendry, J. B.; Chilkoti, A.; Smith, D. R.

    2013-01-01

    Metals support surface plasmons at optical wavelengths and have the ability to localize light to sub-wavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. Here we show that the dominant limiting factor is not the resistive loss of the metal, but the intrinsic nonlocality of its dielectric response. A semi-classical model of the electronic response of a metal places strict bounds on the ultimate field enhancement. We demonstrate the accuracy of this model by studying the optical scattering from gold nanoparticles spaced a few angstroms from a gold film. The bounds derived from the models and experiments impose limitations on all nanophotonic systems. PMID:22936772

  2. Material limitations on the detection limit in refractometry.

    PubMed

    Skafte-Pedersen, Peder; Nunes, Pedro S; Xiao, Sanshui; Mortensen, Niels Asger

    2009-01-01

    We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly.

  3. Material Limitations on the Detection Limit in Refractometry

    PubMed Central

    Skafte-Pedersen, Peder; Nunes, Pedro S.; Xiao, Sanshui; Mortensen, Niels Asger

    2009-01-01

    We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly. PMID:22291513

  4. Ultimate Limit to the Spatial Resolution in Magnetic Imaging

    NASA Astrophysics Data System (ADS)

    Matthews, John; Wellstood, Frederick C.; Chatraphorn, Sojiphong

    2003-03-01

    Motivated by the continual improvement in the spatial resolution of source currents detected by magnetic field imaging, in particular scanning SQUID microscopy, we have determined a theoretical limit to the spatial resolution for a given set of parameters. The guiding principle here is that by adding known information (e.g. CAD diagram) about the source currents into the inversion algorithm, we reduce the number of unknown parameters and hence lower the uncertainty in the remaining parameters. We consider the ultimate limit to be the case where all the information about the system is known, except for a single parameter, e.g. the separation w of two long, straight wires each carrying a current I/2. For this particular example we find that for a current I=100;μA, with magnetic field noise Δ B=10 pT, at a standoff z=100;μm, the minimum resolvable separation is 2;μm, about an order of magnitude less than the present limit.

  5. Ultimate Limit State Assessment of Timber Bolt Connection Subjected to Double Unequal Shears

    NASA Astrophysics Data System (ADS)

    Musilek, Josef; Plachy, Jan

    2017-10-01

    Nowadays the problems occur when a structure engineer need to assess the ultimate limit state of timber bolt connection which is subjected to double unequal shears. This assessment of ultimate limit state shows the reliability of these connections. In assessing the reliability of this connection in ultimate limit state is a problem, because the formulas and equations that are currently available in design standards and available literature, describing only connections loaded symmetrically - this mean that they describe the timber bolt connection subjected to double equal shears. This fact causes problems because structural engineers have no available support, according to which they could assess reliability of the connection in terms of the ultimate limit state. They must therefore often report following an asymmetrically loaded connections carry about using formulas, which are primarily designed for checking connections loaded symmetrically. This leads logically to the fact that it is not respected by the actual behaviour of the connection in the ultimate limit state. Formulas derived in this paper provide the possibility to assess the ultimate limit state for such connection. The formulas derived in this article allow to carry out a reliability assessment of the ultimate limit state of timber bolt connection subjected to double shear. The using of the formulas derived in this paper leads to better description of the behaviour of this type of connection and also to the more economic design. An example of using these derived formulas is shown. There is shown in this example, how to assess the reliability of timber bolt connection subjected to double unequal shears in terms of ultimate limit states.

  6. Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, Mattia; Grassellino, Anna; Martinello, Martina

    2016-06-01

    The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q 0 at high gradients.

  7. The ultimate quantum limits on the accuracy of measurements

    NASA Technical Reports Server (NTRS)

    Yuen, Horace P.

    1992-01-01

    A quantum generalization of rate-distortion theory from standard communication and information theory is developed for application to determining the ultimate performance limit of measurement systems in physics. For the estimation of a real or a phase parameter, it is shown that the root-mean-square error obtained in a measurement with a single-mode photon level N cannot do better than approximately N exp -1, while approximately exp(-N) may be obtained for multi-mode fields with the same photon level N. Possible ways to achieve the remarkable exponential performance are indicated.

  8. Ultimate detectability of volatile organic compounds: how much further can we reduce their ambient air sample volumes for analysis?

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2012-10-02

    To understand the ultimately lowest detection range of volatile organic compounds (VOCs) in air, application of a high sensitivity analytical system was investigated by coupling thermal desorption (TD) technique with gas chromatography (GC) and time-of-flight (TOF) mass spectrometry (MS). The performance of the TD-GC/TOF MS system was evaluated using liquid standards of 19 target VOCs prepared in the range of 35 pg to 2.79 ng per μL. Studies were carried out using both total ion chromatogram (TIC) and extracted ion chromatogram (EIC) mode. EIC mode was used for calibration to reduce background and to improve signal-to-noise. The detectability of 19 target VOCs, if assessed in terms of method detection limit (MDL, per US EPA definition) and limit of detection (LOD), averaged 5.90 pg and 0.122 pg, respectively, with the mean coefficient of correlation (R(2)) of 0.9975. The minimum quantifiable mass of target analytes, when determined using real air samples by the TD-GC/TOF MS, is highly comparable to the detection limits determined experimentally by standard. In fact, volumes for the actual detection of the major aromatic VOCs like benzene, toluene, and xylene (BTX) in ambient air samples were as low as 1.0 mL in the 0.11-2.25 ppb range. It was thus possible to demonstrate that most target compounds including those in low abundance could be reliably quantified at concentrations down to 0.1 ppb at sample volumes of less than 10 mL. The unique sensitivity of this advanced analytical system can ultimately lead to a shift in field sampling strategy with smaller air sample volumes facilitating faster, simpler air sampling (e.g., use of gas syringes rather than the relative complexity of pumps or bags/canisters), with greatly reduced risk of analyte breakthrough and minimal interference, e.g., from atmospheric humidity. The improved detection limits offered by this system can also enhance accuracy and measurement precision.

  9. Absorption spectroscopy at the ultimate quantum limit from single-photon states

    NASA Astrophysics Data System (ADS)

    Whittaker, R.; Erven, C.; Neville, A.; Berry, M.; O'Brien, J. L.; Cable, H.; Matthews, J. C. F.

    2017-02-01

    Absorption spectroscopy is routinely used to characterise chemical and biological samples. For the state-of-the-art in laser absorption spectroscopy, precision is theoretically limited by shot-noise due to the fundamental Poisson-distribution of photon number in laser radiation. In practice, the shot-noise limit can only be achieved when all other sources of noise are eliminated. Here, we use wavelength-correlated and tuneable photon pairs to demonstrate how absorption spectroscopy can be performed with precision beyond the shot-noise limit and near the ultimate quantum limit by using the optimal probe for absorption measurement—single photons. We present a practically realisable scheme, which we characterise both the precision and accuracy of by measuring the response of a control feature. We demonstrate that the technique can successfully probe liquid samples and using two spectrally similar types of haemoglobin we show that obtaining a given precision in resolution requires fewer heralded single probe photons compared to using an idealised laser.

  10. True detection limits in an experimental linearly heteroscedastic system. Part 1

    NASA Astrophysics Data System (ADS)

    Voigtman, Edward; Abraham, Kevin T.

    2011-11-01

    Using a lab-constructed laser-excited filter fluorimeter deliberately designed to exhibit linearly heteroscedastic, additive Gaussian noise, it has been shown that accurate estimates may be made of the true theoretical Currie decision levels ( YC and XC) and true Currie detection limits ( YD and XD) for the detection of rhodamine 6 G tetrafluoroborate in ethanol. The obtained experimental values, for 5% probability of false positives and 5% probability of false negatives, were YC = 56.1 mV, YD = 125. mV, XC = 0.132 μg /mL and XD = 0.294 μg /mL. For 5% probability of false positives and 1% probability of false negatives, the obtained detection limits were YD = 158. mV and XD = 0.372 μg /mL. These decision levels and corresponding detection limits were shown to pass the ultimate test: they resulted in observed probabilities of false positives and false negatives that were statistically equivalent to the a priori specified values.

  11. Quantum Limits of Space-to-Ground Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission

  12. Secondary Moments due to Prestressing with Different Bond at the Ultimate Limit State

    NASA Astrophysics Data System (ADS)

    Halvoník, Jaroslav; Pažma, Peter; Vida, Radoslav

    2018-03-01

    Secondary effects of prestressing develop in statically indeterminate structures (e.g., continuous beams) due to the restraint of deformations imposed by hyperstatic restraints. These effects may significantly influence internal forces and stresses in prestressed structures. Secondary effects are influenced by the redundancy of a structural system, which raises the question of whether they will remain constant after a change in the structural system, e.g., due to the development of plastic hinge(s) in a critical cross-section(s) or after the development of a kinematic mechanism, or if they will disappear when the structure changes into a sequence of simply supported beams. The paper deals with an investigation of the behavior of continuous post-tensioned beams subjected to an ultimate load with significant secondary effects from prestressing. A total of 6 two-span beams prestressed by tendons with different bonds were tested in a laboratory with a load that changed their structural system into a kinematic mechanism. The internal forces and secondary effects of the prestressing were controlled through measurements of the reactions in all the supports. The results revealed that the secondary effects remained as a permanent part of the action on the experimental beams, even after the development of the kinematic mechanism. The results obtained confirmed that secondary effects should be included in all combinations of actions for verifications of ultimate limit states (ULS).

  13. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure.

    PubMed

    Alcaraz Iranzo, David; Nanot, Sébastien; Dias, Eduardo J C; Epstein, Itai; Peng, Cheng; Efetov, Dmitri K; Lundeberg, Mark B; Parret, Romain; Osmond, Johann; Hong, Jin-Yong; Kong, Jing; Englund, Dirk R; Peres, Nuno M R; Koppens, Frank H L

    2018-04-20

    The ability to confine light into tiny spatial dimensions is important for applications such as microscopy, sensing, and nanoscale lasers. Although plasmons offer an appealing avenue to confine light, Landau damping in metals imposes a trade-off between optical field confinement and losses. We show that a graphene-insulator-metal heterostructure can overcome that trade-off, and demonstrate plasmon confinement down to the ultimate limit of the length scale of one atom. This is achieved through far-field excitation of plasmon modes squeezed into an atomically thin hexagonal boron nitride dielectric spacer between graphene and metal rods. A theoretical model that takes into account the nonlocal optical response of both graphene and metal is used to describe the results. These ultraconfined plasmonic modes, addressed with far-field light excitation, enable a route to new regimes of ultrastrong light-matter interactions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Ultimate fate of constrained voters

    NASA Astrophysics Data System (ADS)

    Vazquez, F.; Redner, S.

    2004-09-01

    We examine the ultimate fate of individual opinions in a socially interacting population of leftists, centrists and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (and similarly for a centrist and a rightist). However leftists and rightists do not interact. This interaction step between pairs of agents is applied repeatedly until the system can no longer evolve. In the mean-field limit, we determine the exact probability that the system reaches consensus (either leftist, rightist or centrist) or a frozen mixture of leftists and rightists as a function of the initial composition of the population. We also determine the mean time until the final state is reached. Some implications of our results for the ultimate fate in a limit of the Axelrod model are discussed.

  15. Detection limits of organic compounds achievable with intense, short-pulse lasers.

    PubMed

    Miles, Jordan; De Camillis, Simone; Alexander, Grace; Hamilton, Kathryn; Kelly, Thomas J; Costello, John T; Zepf, Matthew; Williams, Ian D; Greenwood, Jason B

    2015-06-21

    Many organic molecules have strong absorption bands which can be accessed by ultraviolet short pulse lasers to produce efficient ionization. This resonant multiphoton ionization scheme has already been exploited as an ionization source in time-of-flight mass spectrometers used for environmental trace analysis. In the present work we quantify the ultimate potential of this technique by measuring absolute ion yields produced from the interaction of 267 nm femtosecond laser pulses with the organic molecules indole and toluene, and gases Xe, N2 and O2. Using multiphoton ionization cross sections extracted from these results, we show that the laser pulse parameters required for real-time detection of aromatic molecules at concentrations of one part per trillion in air and a limit of detection of a few attomoles are achievable with presently available commercial laser systems. The potential applications for the analysis of human breath, blood and tissue samples are discussed.

  16. The ultimate limits of the relativistic rocket equation. The Planck photon rocket

    NASA Astrophysics Data System (ADS)

    Haug, Espen Gaarder

    2017-07-01

    In this paper we look at the ultimate limits of a photon propulsion rocket. The maximum velocity for a photon propulsion rocket is just below the speed of light and is a function of the reduced Compton wavelength of the heaviest subatomic particles in the rocket. We are basically combining the relativistic rocket equation with Haug's new insight on the maximum velocity for anything with rest mass. An interesting new finding is that in order to accelerate any subatomic "fundamental" particle to its maximum velocity, the particle rocket basically needs two Planck masses of initial load. This might sound illogical until one understands that subatomic particles with different masses have different maximum velocities. This can be generalized to large rockets and gives us the maximum theoretical velocity of a fully-efficient and ideal rocket. Further, no additional fuel is needed to accelerate a Planck mass particle to its maximum velocity; this also might sound absurd, but it has a very simple and logical solution that is explained in this paper.

  17. Observation of millimeter-wave oscillations from resonant tunneling diodes and some theoretical considerations of ultimate frequency limits

    NASA Technical Reports Server (NTRS)

    Sollner, T. C. L. G.; Brown, E. R.; Goodhue, W. D.; Le, H. Q.

    1987-01-01

    Recent observations of oscillation frequencies up to 56 GHz in resonant tunneling structures are discussed in relation to calculations by several authors of the ultimate frequency limits of these devices. It is found that calculations relying on the Wentzel-Kramers-Brillouin (WKB) approximation give limits well below the observed oscillation frequencies. Two other techniques for calculating the upper frequency limit were found to give more reasonable results. One method employs the solution of the time-dependent Schroedinger equation obtained by Kundrotas and Dargys (1986); the other uses the energy width of the transmission function for electrons through the double-barrier structure. This last technique is believed to be the most accurate since it is based on general results for the lifetime of any resonant state. It gives frequency limits on the order of 1 THz for two recently fabricated structures. It appears that the primary limitation of the oscillation frequency for double-barrier resonant-tunneling diodes is imposed by intrinsic device circuit parameters and by the transit time of the depletion layer rather than by time delays encountered in the double-barrier region.

  18. Improved detection limits for electrospray ionization on a magnetic sector mass spectrometer by using an array detector.

    PubMed

    Cody, R B; Tamura, J; Finch, J W; Musselman, B D

    1994-03-01

    Array detection was compared with point detection for solutions of hen egg-white lysozyme, equine myoglobin, and ubiquitin analyzed by electrospray ionization with a magnetic sector mass spectrometer. The detection limits for samples analyzed by using the array detector system were at least 10 times lower than could be achieved by using a point detector on the same mass spectrometer. The minimum detectable quantity of protein corresponded to a signal-to-background ratio of approximately 2∶1 for a 500 amol/μL solution of hen egg-white lysozyme. However, the ultimate practical sample concentrations appeared to be in the 10-100 fmol/μL range for the analysis of dilute solutions of relatively pure proteins or simple mixtures.

  19. Ultimate limits for quantum magnetometry via time-continuous measurements

    NASA Astrophysics Data System (ADS)

    Albarelli, Francesco; Rossi, Matteo A. C.; Paris, Matteo G. A.; Genoni, Marco G.

    2017-12-01

    We address the estimation of the magnetic field B acting on an ensemble of atoms with total spin J subjected to collective transverse noise. By preparing an initial spin coherent state, for any measurement performed after the evolution, the mean-square error of the estimate is known to scale as 1/J, i.e. no quantum enhancement is obtained. Here, we consider the possibility of continuously monitoring the atomic environment, and conclusively show that strategies based on time-continuous non-demolition measurements followed by a final strong measurement may achieve Heisenberg-limited scaling 1/{J}2 and also a monitoring-enhanced scaling in terms of the interrogation time. We also find that time-continuous schemes are robust against detection losses, as we prove that the quantum enhancement can be recovered also for finite measurement efficiency. Finally, we analytically prove the optimality of our strategy.

  20. Limits of detection and decision. Part 4

    NASA Astrophysics Data System (ADS)

    Voigtman, E.

    2008-02-01

    Probability density functions (PDFs) have been derived for a number of commonly used limit of detection definitions, including several variants of the Relative Standard Deviation of the Background-Background Equivalent Concentration (RSDB-BEC) method, for a simple linear chemical measurement system (CMS) having homoscedastic, Gaussian measurement noise and using ordinary least squares (OLS) processing. All of these detection limit definitions serve as both decision and detection limits, thereby implicitly resulting in 50% rates of Type 2 errors. It has been demonstrated that these are closely related to Currie decision limits, if the coverage factor, k, is properly defined, and that all of the PDFs are scaled reciprocals of noncentral t variates. All of the detection limits have well-defined upper and lower limits, thereby resulting in finite moments and confidence limits, and the problem of estimating the noncentrality parameter has been addressed. As in Parts 1-3, extensive Monte Carlo simulations were performed and all the simulation results were found to be in excellent agreement with the derived theoretical expressions. Specific recommendations for harmonization of detection limit methodology have also been made.

  1. Intra-Beam Scattering, Impedance, and Instabilities in Ultimate Storage Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, Karl; /SLAC

    We have investigated collective effects in an ultimate storage ring, i.e. one with diffraction limited emittances in both planes, using PEP-X as an example. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, a 4.5 GeV ring running round beams at 200 mA in 3300 bunches, IBS doubles the emittances to 11.5 pm at the design current. The Touschek lifetime is 11 hours. Impedance driven collective effects tend not to be important since the beam current is relatively low. We have investigated collective effects in PEP-X, an ultimate storage ring, i.e.more » one with diffraction limited emittances (at one angstrom wavelength) in both planes. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, IBS doubles the emittances to 11.5 pm at the design current of 200 mA, assuming round beams. The Touschek lifetime is quite large in PEP-X, 11.6 hours, and - near the operating point - increases with decreasing emittance. It is, however, a very sensitive function of momentum acceptance. In an ultimate ring like PEP-X impedance driven collective effects tend not to be important since the beam current is relatively low. Before ultimate PEP-X can be realized, the question of how to run a machine with round beams needs serious study. For example, in this report we assumed that the vertical emittance is coupling dominated. It may turn out that using vertical dispersion is a preferable way to generate round beams. The choice will affect IBS and the Touschek effect.« less

  2. Centaur Standard Shroud (CSS) static ultimate load structural tests

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A series of tests were conducted on the jettisonable metallic shroud used on the Titan/Centaur launch vehicle to verify its structural capabilities and to evaluate its structural interaction with the Centaur stage. A flight configured shroud and the interfacing Titan/Centaur structural assemblies were subjected to tests consisting of combinations of applied axial and shear loads to design ultimate values, including a set of tests on thermal conditions and two dynamic response tests to verify the analytical stiffness model. The strength capabilities were demonstrated at ultimate (125 percent of design limit) loads. It was also verified that the spring rate of the flight configured shroud-to-Centaur forward structural deflections of the specimen became nonlinear, as expected, above limit load values. This test series qualification program verified that the Titan/Centaur shroud and the Centaur and Titan interface components are qualified structurally at design ultimate loads.

  3. Ultimate evidence for the ultimate regime

    NASA Astrophysics Data System (ADS)

    Smits, Alexander J.

    2018-04-01

    The ultimate regime of turbulence has been observed, more than half a century after its first prediction. Inspiration for achieving this technical feat came from the imperfections of an everyday pipe.

  4. Optical and tunneling microscopy and spectroscopy at the ultimate spatial limit

    NASA Astrophysics Data System (ADS)

    Chen, Chi

    2009-12-01

    The combination of optical detection system with a scanning tunneling microscope (STM) leads to the possibility of resolving radiative transition probability with the ultrahigh spatial resolution of STM in real space. This opens an innovative approach toward revealing the correlation between molecular structure, electronic characteristics, and optical properties. This thesis describes a series of experiments that manifests this correlation, including atomic silver chains and single porphine molecules. In atomic silver chains, the number and positions of the emission maxima in the photon images match the nodes in the dI/d V images of "particle-in-a-box" states. This surprising correlation between the emission maxima and nodes in the density of states is a manifestation of Fermi's golden rule in real space for radiative transitions, which provides an understanding of the mechanism of STM induced light emission. From single porphine molecules, orthogonal spatial contrast of two types of vibronic coupling is resolved by both photon spectroscopy and vibronic-mode-selected photon images. Intramolecular transitions from the two orthogonal LUMOs individually couple to different molecular normal modes. This is the first demonstration of the photon emission probability of a single molecule and its direct correlations with the molecular orbitals. This also provides the first real space experimental evidence to separate the tangled effects of molecular conformations and nano-environments on the inhomogeneity of molecular emission. DSB molecules are found to have two conformational isomers and one of them shows surface chirality. All these conformers and enantiomers can be switched to each other by electron injection. Different DSB conformers present distinct manipulation dynamics, which demonstrate how different conformations and their preferred adsorption geometries can have pronounced influence on the molecular mechanics on the surface. Overall, this thesis studies the very

  5. Statistical behavior of ten million experimental detection limits

    NASA Astrophysics Data System (ADS)

    Voigtman, Edward; Abraham, Kevin T.

    2011-02-01

    Using a lab-constructed laser-excited fluorimeter, together with bootstrapping methodology, the authors have generated many millions of experimental linear calibration curves for the detection of rhodamine 6G tetrafluoroborate in ethanol solutions. The detection limits computed from them are in excellent agreement with both previously published theory and with comprehensive Monte Carlo computer simulations. Currie decision levels and Currie detection limits, each in the theoretical, chemical content domain, were found to be simply scaled reciprocals of the non-centrality parameter of the non-central t distribution that characterizes univariate linear calibration curves that have homoscedastic, additive Gaussian white noise. Accurate and precise estimates of the theoretical, content domain Currie detection limit for the experimental system, with 5% (each) probabilities of false positives and false negatives, are presented.

  6. Automatic rectum limit detection by anatomical markers correlation.

    PubMed

    Namías, R; D'Amato, J P; del Fresno, M; Vénere, M

    2014-06-01

    Several diseases take place at the end of the digestive system. Many of them can be diagnosed by means of different medical imaging modalities together with computer aided detection (CAD) systems. These CAD systems mainly focus on the complete segmentation of the digestive tube. However, the detection of limits between different sections could provide important information to these systems. In this paper we present an automatic method for detecting the rectum and sigmoid colon limit using a novel global curvature analysis over the centerline of the segmented digestive tube in different imaging modalities. The results are compared with the gold standard rectum upper limit through a validation scheme comprising two different anatomical markers: the third sacral vertebra and the average rectum length. Experimental results in both magnetic resonance imaging (MRI) and computed tomography colonography (CTC) acquisitions show the efficacy of the proposed strategy in automatic detection of rectum limits. The method is intended for application to the rectum segmentation in MRI for geometrical modeling and as contextual information source in virtual colonoscopies and CAD systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Quantum-limited evanescent single molecule sensing.

    NASA Astrophysics Data System (ADS)

    Bowen, Warwick; Mauranyapin, Nicolas; Madsen, Lars; Taylor, Michael; Waleed, Muhammad

    Sensors that are able to detect and track single unlabeled biomolecules are an important tool both to understand biomolecular dynamics and interactions, and for medical diagnostics operating at their ultimate detection limits. Recently, exceptional sensitivity has been achieved using the strongly enhanced evanescent fields provided by optical microcavities and plasmonic resonators. However, at high field intensities photodamage to the biological specimen becomes increasingly problematic. Here, we introduce a new approach that combines dark field illumination and heterodyne detection in an optical nanofibre. This allows operation at the fundamental precision limit introduced by quantisation of light. We achieve state-of-the-art sensitivity with a four order-of-magnitude reduction in optical intensity. This enables quantum noise limited tracking of single biomolecules as small as 3.5 nm and surface-molecule interactions to be montored over extended periods. By achieving quantum noise limited precision, our approach provides a pathway towards quantum-enhanced single-molecule biosensors. We acknkowledge financial support from AFOSR and AOARD.

  8. Nitromethane K-9 Detection Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strobel, R; Kury, J

    2003-08-29

    The Bureau of Alcohol, Tobacco and Firearms (ATF) trains canine/handler teams to detect explosives for government and other agencies worldwide. After completing the training program the teams are tested on an array containing explosives and numerous other samples designed to distract a canine. Passing this test results in a team's certification. These teams can be considered as ''detection instruments'' freshly calibrated just before leaving the ''factory''. Using these teams to examine special experimental arrays immediately following certification can lead to a better understanding of a canine's detection capabilities. Forty-one of these ''detection instruments'' were used in four test series withmore » arrays containing dilute nitromethane-in-water solutions. (The canines had been trained on the amount of nitromethane vapor in equilibrium with the undiluted liquid explosive.) By diluting liquid nitromethane with water, the amount of explosive vapor can be reduced many orders of magnitude to test the lower limit of the canine's nitromethane vapor detection response. The results are presented in this paper.« less

  9. Search times and probability of detection in time-limited search

    NASA Astrophysics Data System (ADS)

    Wilson, David; Devitt, Nicole; Maurer, Tana

    2005-05-01

    When modeling the search and target acquisition process, probability of detection as a function of time is important to war games and physical entity simulations. Recent US Army RDECOM CERDEC Night Vision and Electronics Sensor Directorate modeling of search and detection has focused on time-limited search. Developing the relationship between detection probability and time of search as a differential equation is explored. One of the parameters in the current formula for probability of detection in time-limited search corresponds to the mean time to detect in time-unlimited search. However, the mean time to detect in time-limited search is shorter than the mean time to detect in time-unlimited search and the relationship between them is a mathematical relationship between these two mean times. This simple relationship is derived.

  10. Detection limits of intraoperative near infrared imaging for tumor resection.

    PubMed

    Thurber, Greg M; Figueiredo, Jose-Luiz; Weissleder, Ralph

    2010-12-01

    The application of fluorescent molecular imaging to surgical oncology is a developing field with the potential to reduce morbidity and mortality. However, the detection thresholds and other requirements for successful intervention remain poorly understood. Here we modeled and experimentally validated depth and size of detection of tumor deposits, trade-offs in coverage and resolution of areas of interest, and required pharmacokinetics of probes based on differing levels of tumor target presentation. Three orthotopic tumor models were imaged by widefield epifluorescence and confocal microscopes, and the experimental results were compared with pharmacokinetic models and light scattering simulations to determine detection thresholds. Widefield epifluorescence imaging can provide sufficient contrast to visualize tumor margins and detect tumor deposits 3-5  mm deep based on labeled monoclonal antibodies at low objective magnification. At higher magnification, surface tumor deposits at cellular resolution are detectable at TBR ratios achieved with highly expressed antigens. A widefield illumination system with the capability for macroscopic surveying and microscopic imaging provides the greatest utility for varying surgical goals. These results have implications for system and agent designs, which ultimately should aid complete resection in most surgical beds and provide real-time feedback to obtain clean margins. © 2010 Wiley-Liss, Inc.

  11. USE OF METHOD DETECTION LIMITS IN ENVIRONMENTAL MEASUREMENTS

    EPA Science Inventory

    Environmental measurements often produce values below the method detection limit (MDL). Because low or zero values may be used in determining compliance with regulatory limits, in determining emission factors (typical concentrations emitted by a given type of source), or in model...

  12. The ultimate efficiency of photosensitive systems

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.; Smith, B. T.

    1981-01-01

    These systems have in common two important but not independent features: they can produce a storable fuel, and they are sensitive only to radiant energy with a characteristic absorption spectrum. General analyses of the conversion efficiencies were made using the operational characteristics of each particular system. An efficiency analysis of a generalized system consisting of a blackbody source, a radiant energy converter having a threshold energy and operating temperature, and a reservoir is reported. This analysis is based upon the first and second laws of thermodynamics, and leads to a determination of the limiting or ultimate efficiency for an energy conversion system having a characteristic threshold.

  13. Wall roughness induces asymptotic ultimate turbulence

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef

    2018-04-01

    Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.

  14. Concussion Prevalence in Competitive Ultimate Frisbee Players

    PubMed Central

    Lazar, Damien J.; Lichtenstein, Jonathan D.; Tybor, David J.

    2018-01-01

    Background: Ultimate Frisbee (ultimate) is a fast-growing, popular sport played nationally by over 4 million athletes. While several studies have examined injury rates in ultimate, no work has investigated the prevalence of concussions specifically or players’ knowledge and management of those injuries. Purpose: To estimate the lifetime prevalence of concussions in ultimate and to assess players’ knowledge of concussions as well as their concussion management behaviors. Study Design: Descriptive epidemiology study. Methods: From June to November 2015, we collected ultimate-related concussion data via an anonymous web-based survey, the Concussion in Ultimate Frisbee Survey, from a convenience sample of 787 male and female ultimate players across the United States. Results: There were 553 male and 234 female respondents included in the analysis; 26.58% of men and 24.79% of women reported that they had sustained at least 1 concussion while playing ultimate, with 45.58% and 43.10% of those men and women, respectively, reporting multiple concussions. A total of 67.81% of men and 78.21% of women stated that they would remove themselves from play after sustaining a given concussion, although 45.99% of men and 37.62% of women indicated that they had returned to play in the same game or practice. Conclusion: Our preliminary data suggest that concussions do commonly occur in competitive ultimate and that better education and management of concussions in ultimate athletes are needed. This study is an important first step in deepening our understanding of these issues. PMID:29552572

  15. Exploring Ultimate Water Capillary Evaporation in Nanoscale Conduits.

    PubMed

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Zhao, Yihong; Duan, Chuanhua

    2017-08-09

    Capillary evaporation in nanoscale conduits is an efficient heat/mass transfer strategy that has been widely utilized by both nature and mankind. Despite its broad impact, the ultimate transport limits of capillary evaporation in nanoscale conduits, governed by the evaporation/condensation kinetics at the liquid-vapor interface, have remained poorly understood. Here we report experimental study of the kinetic limits of water capillary evaporation in two dimensional nanochannels using a novel hybrid channel design. Our results show that the kinetic-limited evaporation fluxes break down the limits predicated by the classical Hertz-Knudsen equation by an order of magnitude, reaching values up to 37.5 mm/s with corresponding heat fluxes up to 8500 W/cm 2 . The measured evaporation flux increases with decreasing channel height and relative humidity but decreases as the channel temperature decreases. Our findings have implications for further understanding evaporation at the nanoscale and developing capillary evaporation-based technologies for both energy- and bio-related applications.

  16. Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits

    PubMed Central

    Lubin, Jay H.; Colt, Joanne S.; Camann, David; Davis, Scott; Cerhan, James R.; Severson, Richard K.; Bernstein, Leslie; Hartge, Patricia

    2004-01-01

    Quantitative measurements of environmental factors greatly improve the quality of epidemiologic studies but can pose challenges because of the presence of upper or lower detection limits or interfering compounds, which do not allow for precise measured values. We consider the regression of an environmental measurement (dependent variable) on several covariates (independent variables). Various strategies are commonly employed to impute values for interval-measured data, including assignment of one-half the detection limit to nondetected values or of “fill-in” values randomly selected from an appropriate distribution. On the basis of a limited simulation study, we found that the former approach can be biased unless the percentage of measurements below detection limits is small (5–10%). The fill-in approach generally produces unbiased parameter estimates but may produce biased variance estimates and thereby distort inference when 30% or more of the data are below detection limits. Truncated data methods (e.g., Tobit regression) and multiple imputation offer two unbiased approaches for analyzing measurement data with detection limits. If interest resides solely on regression parameters, then Tobit regression can be used. If individualized values for measurements below detection limits are needed for additional analysis, such as relative risk regression or graphical display, then multiple imputation produces unbiased estimates and nominal confidence intervals unless the proportion of missing data is extreme. We illustrate various approaches using measurements of pesticide residues in carpet dust in control subjects from a case–control study of non-Hodgkin lymphoma. PMID:15579415

  17. Stochastic fluctuations and the detectability limit of network communities.

    PubMed

    Floretta, Lucio; Liechti, Jonas; Flammini, Alessandro; De Los Rios, Paolo

    2013-12-01

    We have analyzed the detectability limits of network communities in the framework of the popular Girvan and Newman benchmark. By carefully taking into account the inevitable stochastic fluctuations that affect the construction of each and every instance of the benchmark, we come to the conclusion that the native, putative partition of the network is completely lost even before the in-degree/out-degree ratio becomes equal to that of a structureless Erdös-Rényi network. We develop a simple iterative scheme, analytically well described by an infinite branching process, to provide an estimate of the true detectability limit. Using various algorithms based on modularity optimization, we show that all of them behave (semiquantitatively) in the same way, with the same functional form of the detectability threshold as a function of the network parameters. Because the same behavior has also been found by further modularity-optimization methods and for methods based on different heuristics implementations, we conclude that indeed a correct definition of the detectability limit must take into account the stochastic fluctuations of the network construction.

  18. Ultimate Realities: Deterministic and Evolutionary

    ERIC Educational Resources Information Center

    Moxley, Roy A.

    2007-01-01

    References to ultimate reality commonly turn up in the behavioral literature as references to determinism. However, this determinism is often difficult to interpret. There are different kinds of determinisms as well as different kinds of ultimate realities for a behaviorist to consider. To clarify some of the issues involved, the views of ultimate…

  19. Proximate and Ultimate Limiting Nutrients in the Mississippi River Plume: Implications for Hypoxia Reduction Through Nutrient Management

    NASA Astrophysics Data System (ADS)

    Fennel, K.; Laurent, A.

    2016-02-01

    A large hypoxic area (15,000 km2 on average) forms every summer over the Texas-Louisiana shelf in the northern Gulf of Mexico due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through nutrient management in the watershed; for example, an interagency Hypoxia Task Force is developing Action Plans with input from various stakeholders that set out targets for hypoxia reduction. An open question is by how much nutrient loads would have to be decreased in order to produce the desired reductions in hypoxia and when these would be measurable over natural variability. We have performed a large number of multi-year nutrient load reduction scenarios with a regional biogeochemical model for the region. The model is based on the Regional Ocean Modeling System (ROMS), explicitly includes nitrogen (N) and phosphorus (P) species as inorganic nutrients, and has been shown to realistically reproduce the key processes responsible for hypoxia generation. We have quantified the effects of differential reductions in river N and P loads on hypoxic extent. An assessment of the effects of N versus P reductions is important because, thus far, nutrient management efforts have focused on N, yet P is known to limit primary production in spring and early summer. A debate is ongoing as to whether targets for P reductions should be set and whether nutrient reduction efforts should focus solely on P, which results primarily from urban and industrial point sources and is uncoupled from agricultural fertilizer application. Our results strongly indicate that N is the `ultimate' limiting nutrient to primary production determining the areal extent and duration of hypoxic conditions in a cumulative sense, while P is temporarily limiting in spring. Although reductions in river P load would decrease hypoxic extent in early summer, they would have a much smaller effect

  20. Detection limit used for early warning in public health surveillance.

    PubMed

    Kobari, Tsuyoshi; Iwaki, Kazuo; Nagashima, Tomomi; Ishii, Fumiyoshi; Hayashi, Yuzuru; Yajima, Takehiko

    2009-06-01

    A theory of detection limit, developed in analytical chemistry, is applied to public health surveillance to detect an outbreak of national emergencies such as natural disaster and bioterrorism. In this investigation, the influenza epidemic around the Tokyo area from 2003 to 2006 is taken as a model of normal and large-scale epidemics. The detection limit of the normal epidemic is used as a threshold with a specified level of significance to identify a sign of the abnormal epidemic among the daily variation in anti-influenza drug sales at community pharmacies. While auto-correlation of data is often an obstacle to an unbiased estimator of standard deviation involved in the detection limit, the analytical theory (FUMI) can successfully treat the auto-correlation of the drug sales in the same way as the auto-correlation appearing as 1/f noise in many analytical instruments.

  1. The limit of detection for explosives in spectroscopic differential reflectometry

    NASA Astrophysics Data System (ADS)

    Dubroca, Thierry; Vishwanathan, Karthik; Hummel, Rolf E.

    2011-05-01

    In the wake of recent terrorist attacks, such as the 2008 Mumbai hotel explosion or the December 25th 2009 "underwear bomber", our group has developed a technique (US patent #7368292) to apply differential reflection spectroscopy to detect traces of explosives. Briefly, light (200-500 nm) is shone on a surface such as a piece of luggage at an airport. Upon reflection, the light is collected with a spectrometer combined with a CCD camera. A computer processes the data and produces in turn a differential reflection spectrum involving two adjacent areas of the surface. This differential technique is highly sensitive and provides spectroscopic data of explosives. As an example, 2,4,6, trinitrotoluene (TNT) displays strong and distinct features in differential reflectograms near 420 nm. Similar, but distinctly different features are observed for other explosives. One of the most important criteria for explosive detection techniques is the limit of detection. This limit is defined as the amount of explosive material necessary to produce a signal to noise ratio of three. We present here, a method to evaluate the limit of detection of our technique. Finally, we present our sample preparation method and experimental set-up specifically developed to measure the limit of detection for our technology. This results in a limit ranging from 100 nano-grams to 50 micro-grams depending on the method and the set-up parameters used, such as the detector-sample distance.

  2. Ultimate Realities: Deterministic and Evolutionary

    PubMed Central

    Moxley, Roy A

    2007-01-01

    References to ultimate reality commonly turn up in the behavioral literature as references to determinism. However, this determinism is often difficult to interpret. There are different kinds of determinisms as well as different kinds of ultimate realities for a behaviorist to consider. To clarify some of the issues involved, the views of ultimate realities are treated as falling along a continuum, with extreme views of complete indeterminism and complete determinism at either end and various mixes in between. Doing so brings into play evolutionary realities and the movement from indeterminism to determinism, as in Peirce's evolutionary cosmology. In addition, this framework helps to show how the views of determinism by B. F. Skinner and other behaviorists have shifted over time. PMID:22478489

  3. The Ultimate Factor of Safety for Aircraft and Spacecraft Its History, Applications and Misconceptions

    NASA Technical Reports Server (NTRS)

    Zipay, John J.; Modlin, C. Thomas, Jr.; Larsen, Curtis E.

    2016-01-01

    The ultimate factor of safety (FOSULT) concept used in aircraft and spacecraft has evolved over many decades. Currently an FOSULT 1.5 is the FAR-mandated value for aircraft while an FOSULT of 1.4 has been used in various spacecraft. This paper was motivated by the desire to concisely explain the origins, proper interpretation and application of the ultimate factor of safety concept, since the authors have seen throughout their careers many misconceptions and incorrect applications of this concept. The history of the ultimate factor of safety concept is briefly summarized, the proper application of the factor of safety in aircraft design, structural analysis and operations is covered in detail, examples of limit load exceedance in aircraft and spacecraft are discussed, the evolution of the 1.4 FOSULT for spacecraft is described and some misconceptions regarding the ultimate factor of safety concept are addressed. It is hoped that this paper can be a summary resource for engineers to understand the origin, purpose and proper application of the ultimate factor of safety.

  4. Detection of colloidal silver chloride near solubility limit

    NASA Astrophysics Data System (ADS)

    Putri, K. Y.; Adawiah, R.

    2018-03-01

    Detection of nanoparticles in solution has been made possible by several means; one of them is laser-induced breakdown detection (LIBD). LIBD is able to distinguish colloids of various sizes and concentrations. This technique has been used in several solubility studies. In this study, the formation of colloids in a mixed system of silver nitrate and sodium chloride was observed by acoustic LIBD. Silver chloride has low solubility limit, therefore LIBD measurement is appropriate. Silver and chloride solutions with equal concentrations, set at below and above the solubility of silver chloride as the expected solid product, were mixed and the resulting colloids were observed. The result of LIBD measurement showed that larger particles were present as more silver and chloride introduced. However, once the concentrations exceeded the solubility limit of silver chloride, the detected particle size seemed to be decreasing, hence suggested the occurrence of coprecipitation process. This phenomenon indicated that the ability of LIBD to detect even small changes in colloid amounts might be a useful tool in study on formation and stability of colloids, i.e. to confirm whether nanoparticles synthesis has been successfully performed and whether the system is stable or not.

  5. Theoretical limitations of quantification for noncompetitive sandwich immunoassays.

    PubMed

    Woolley, Christine F; Hayes, Mark A; Mahanti, Prasun; Douglass Gilman, S; Taylor, Tom

    2015-11-01

    Immunoassays exploit the highly selective interaction between antibodies and antigens to provide a vital method for biomolecule detection at low concentrations. Developers and practitioners of immunoassays have long known that non-specific binding often restricts immunoassay limits of quantification (LOQs). Aside from non-specific binding, most efforts by analytical chemists to reduce the LOQ for these techniques have focused on improving the signal amplification methods and minimizing the limitations of the detection system. However, with detection technology now capable of sensing single-fluorescence molecules, this approach is unlikely to lead to dramatic improvements in the future. Here, fundamental interactions based on the law of mass action are analytically connected to signal generation, replacing the four- and five-parameter fittings commercially used to approximate sigmoidal immunoassay curves and allowing quantitative consideration of non-specific binding and statistical limitations in order to understand the ultimate detection capabilities of immunoassays. The restrictions imposed on limits of quantification by instrumental noise, non-specific binding, and counting statistics are discussed based on equilibrium relations for a sandwich immunoassay. Understanding the maximal capabilities of immunoassays for each of these regimes can greatly assist in the development and evaluation of immunoassay platforms. While many studies suggest that single molecule detection is possible through immunoassay techniques, here, it is demonstrated that the fundamental limit of quantification (precision of 10 % or better) for an immunoassay is approximately 131 molecules and this limit is based on fundamental and unavoidable statistical limitations.

  6. Limits of quantitation - Yet another suggestion

    NASA Astrophysics Data System (ADS)

    Carlson, Jill; Wysoczanski, Artur; Voigtman, Edward

    2014-06-01

    The work presented herein suggests that the limit of quantitation concept may be rendered substantially less ambiguous and ultimately more useful as a figure of merit by basing it upon the significant figure and relative measurement error ideas due to Coleman, Auses and Gram, coupled with the correct instantiation of Currie's detection limit methodology. Simple theoretical results are presented for a linear, univariate chemical measurement system with homoscedastic Gaussian noise, and these are tested against both Monte Carlo computer simulations and laser-excited molecular fluorescence experimental results. Good agreement among experiment, theory and simulation is obtained and an easy extension to linearly heteroscedastic Gaussian noise is also outlined.

  7. Physics of Limiting Phenomena in Superconducting Microwave Resonators: Vortex Dissipation, Ultimate Quench and Quality Factor Degradation Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described inmore » detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the

  8. Physics of limiting phenomena in superconducting microwave resonators: Vortex dissipation, ultimate quench and quality factor degradation mechanisms

    NASA Astrophysics Data System (ADS)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radiofrequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associated to the superheating

  9. Censoring approach to the detection limits in X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Pajek, M.; Kubala-Kukuś, A.

    2004-10-01

    We demonstrate that the effect of detection limits in the X-ray fluorescence analysis (XRF), which limits the determination of very low concentrations of trace elements and results in appearance of the so-called "nondetects", can be accounted for using the statistical concept of censoring. More precisely, the results of such measurements can be viewed as the left random censored data, which can further be analyzed using the Kaplan-Meier method correcting the data for the presence of nondetects. Using this approach, the results of measured, detection limit censored concentrations can be interpreted in a nonparametric manner including the correction for the nondetects, i.e. the measurements in which the concentrations were found to be below the actual detection limits. Moreover, using the Monte Carlo simulation technique we show that by using the Kaplan-Meier approach the corrected mean concentrations for a population of the samples can be estimated within a few percent uncertainties with respect of the simulated, uncensored data. This practically means that the final uncertainties of estimated mean values are limited in fact by the number of studied samples and not by the correction procedure itself. The discussed random-left censoring approach was applied to analyze the XRF detection-limit-censored concentration measurements of trace elements in biomedical samples.

  10. Ultimate patterning limits for EUV at 5nm node and beyond

    NASA Astrophysics Data System (ADS)

    Ali, Rehab Kotb; Hamed Fatehy, Ahmed; Lafferty, Neal; Word, James

    2018-03-01

    The 5nm technology node introduces more aggressive geometries than previous nodes. In this paper, we are introducing a comprehensive study to examine the pattering limits of EUV at 0.33NA. The study is divided into two main approaches: (A) Exploring pattering limits of Single Exposure EUV Cut/Block mask in Self-Aligned-Multi-Patterning (SAMP) process, and (B) Exploring the pattering limits of a Single Exposure EUV printing of metal Layers. The printability of the resulted OPC masks is checked through a model based manufacturing flow for the two pattering approaches. The final manufactured patterns are quantified by Edge Placement Error (EPE), Process Variation Band (PVBand), soft/hard bridging and pinching, Image Log Slope (ILS) and Common Depth of Focus (CDOF)

  11. True detection limits in an experimental linearly heteroscedastic system.. Part 2

    NASA Astrophysics Data System (ADS)

    Voigtman, Edward; Abraham, Kevin T.

    2011-11-01

    Despite much different processing of the experimental fluorescence detection data presented in Part 1, essentially the same estimates were obtained for the true theoretical Currie decision levels ( YC and XC) and true Currie detection limits ( YD and XD). The obtained experimental values, for 5% probability of false positives and 5% probability of false negatives, were YC = 56.0 mV, YD = 125. mV, XC = 0.132 μg/mL and XD = 0.293 μg/mL. For 5% probability of false positives and 1% probability of false negatives, the obtained detection limits were YD = 158 . mV and XD = 0.371 μg/mL. Furthermore, by using bootstrapping methodology on the experimental data for the standards and the analytical blank, it was possible to validate previously published experimental domain expressions for the decision levels ( yC and xC) and detection limits ( yD and xD). This was demonstrated by testing the generated decision levels and detection limits for their performance in regard to false positives and false negatives. In every case, the obtained numbers of false negatives and false positives were as specified a priori.

  12. Calculation of the detection limit in radiation measurements with systematic uncertainties

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. M.; Russ, W.; Venkataraman, R.; Young, B. M.

    2015-06-01

    The detection limit (LD) or Minimum Detectable Activity (MDA) is an a priori evaluation of assay sensitivity intended to quantify the suitability of an instrument or measurement arrangement for the needs of a given application. Traditional approaches as pioneered by Currie rely on Gaussian approximations to yield simple, closed-form solutions, and neglect the effects of systematic uncertainties in the instrument calibration. These approximations are applicable over a wide range of applications, but are of limited use in low-count applications, when high confidence values are required, or when systematic uncertainties are significant. One proposed modification to the Currie formulation attempts account for systematic uncertainties within a Gaussian framework. We have previously shown that this approach results in an approximation formula that works best only for small values of the relative systematic uncertainty, for which the modification of Currie's method is the least necessary, and that it significantly overestimates the detection limit or gives infinite or otherwise non-physical results for larger systematic uncertainties where such a correction would be the most useful. We have developed an alternative approach for calculating detection limits based on realistic statistical modeling of the counting distributions which accurately represents statistical and systematic uncertainties. Instead of a closed form solution, numerical and iterative methods are used to evaluate the result. Accurate detection limits can be obtained by this method for the general case.

  13. Proximate versus ultimate limiting nutrients in the Mississippi River Plume and Implications for Hypoxia Reductions through Nutrient Management

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Laurent, Arnaud

    2016-04-01

    A large hypoxic area (15,000 km2 on average) forms every summer over the Texas-Louisiana shelf in the northern Gulf of Mexico due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through nutrient management in the watershed; for example, an interagency Hypoxia Task Force is developing Action Plans with input from various stakeholders that set out targets for hypoxia reduction. An open question is how far nutrient loads would have to be decreased in order to produce the desired reductions in hypoxia and when these would be measurable given significant natural variability. We have simulated a large number of multi-year nutrient load reduction scenarios with a regional biogeochemical model for the region. The model is based on the Regional Ocean Modeling System (ROMS), explicitly includes nitrogen (N) and phosphorus (P) species as inorganic nutrients, and has been shown to realistically reproduce the key processes responsible for hypoxia generation. We have quantified the effects of differential reductions in river N and P loads on hypoxic extent. An assessment of the effects of N versus P reductions is important because, thus far, nutrient management efforts have focused on N, yet P is known to limit primary production in spring and early summer. A debate is ongoing as to whether targets for P reductions should be set and whether nutrient reduction efforts should focus solely on P, which results primarily from urban and industrial point sources and is uncoupled from agricultural fertilizer application. Our results strongly indicate that N is the 'ultimate' limiting nutrient to primary production determining the areal extent and duration of hypoxic conditions in a cumulative sense, while P is temporarily limiting in spring. Although reductions in river P load would decrease hypoxic extent in early summer, they would have a much

  14. Phosphofructokinase and mitochondria partially explain the high ultimate pH of broiler pectoralis major muscle.

    PubMed

    Matarneh, Sulaiman K; Yen, Con-Ning; Elgin, Jennifer M; Beline, Mariane; da Luz E Silva, Saulo; Wicks, Jordan C; England, Eric M; Dalloul, Rami A; Persia, Michael E; Omara, Islam I; Shi, Hao; Gerrard, David E

    2018-05-01

    During postmortem metabolism, muscle pH gradually declines to reach an ultimate pH near 5.6 across most meat species. Yet, broiler pectoralis major (P. major) muscle generates meat with high ultimate pH (pH ∼ 5.9). For better understanding of the underlying mechanism responsible for this phenomenon, we evaluated the involvement of breast muscle chilling on the extent of postmortem metabolism. Broiler breast muscles were either subjected to chilling treatment (control) or left at room temperature (RT) for 120 min. P. major muscle from the RT treatment had lower ultimate pH, greater glycogen degradation and lactate accumulation. While these findings suggest that carcass chilling can contribute to the premature termination of postmortem metabolism, chilling did not fully explain the high ultimate pH of P. major muscle. Our results also revealed that glucose-6-phosphate (G6P) was very low at 24 h, and therefore we hypothesized that G6P was limiting. To test this hypothesis, muscle samples from P. major and porcine longissimus lumborum (LL) muscle were homogenized into a reaction buffer that mimics postmortem glycolysis with or without 0.5 mg/mL isolated mitochondria. While samples containing porcine LL muscle reached the normal level of ultimate pH, P. major muscle samples reached a value similar to that observed in vivo even in the presence of excess G6P, indicating that G6P was not limiting. Mitochondria enhanced the glycolytic flux and pH decline in systems containing muscle from both species. More importantly, however, was that in vitro system containing chicken with mitochondria reached pH value similar to that of samples containing LL muscle without mitochondria. To investigate further, phosphofructokinase (PFK) activity was compared in broiler P. major and porcine LL muscle at different pH values. PFK activity was lower in P. major muscle at pH 7, 6.5, and 6.2 than LL muscle. In conclusion, carcass chilling can partially contribute to the high ultimate p

  15. Estimating the resolution limit of the map equation in community detection

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuro; Rosvall, Martin

    2015-01-01

    A community detection algorithm is considered to have a resolution limit if the scale of the smallest modules that can be resolved depends on the size of the analyzed subnetwork. The resolution limit is known to prevent some community detection algorithms from accurately identifying the modular structure of a network. In fact, any global objective function for measuring the quality of a two-level assignment of nodes into modules must have some sort of resolution limit or an external resolution parameter. However, it is yet unknown how the resolution limit affects the so-called map equation, which is known to be an efficient objective function for community detection. We derive an analytical estimate and conclude that the resolution limit of the map equation is set by the total number of links between modules instead of the total number of links in the full network as for modularity. This mechanism makes the resolution limit much less restrictive for the map equation than for modularity; in practice, it is orders of magnitudes smaller. Furthermore, we argue that the effect of the resolution limit often results from shoehorning multilevel modular structures into two-level descriptions. As we show, the hierarchical map equation effectively eliminates the resolution limit for networks with nested multilevel modular structures.

  16. Shot noise limited detection of OH using the technique of laser induced fluorescence

    NASA Technical Reports Server (NTRS)

    Bakalyar, D. M.; Davis, L. I., Jr.; Guo, C.; James, J. V.; Kakos, S.; Morris, P. T.; Wang, C. C.

    1984-01-01

    Nearly shot-noise limited detection of OH using the technique of laser-induced fluorescence is reported. A LIDAR configuration is used to excite fluorescence in a large volume and a narrow-bandwidth interference filter provides spectral discrimination. This arrangement alleviates the effect of ozone interference and facilitates image processing at relatively close distances. The detection limit is determined mainly by the shot-noise of the solar background. Ground-based measurements in Dearborn indicate a detection limit of better than 1 x 10 to the 6th power OH/cubic cm over a forty-minute acquisition period. Under favorable conditions, a comparable detection limit was also observed for airborne measurements.

  17. Shot noise limited detection of OH using the technique of laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Bakalyar, D. M.; Davis, L. I., Jr.; Guo, C.; James, J. V.; Wang, C. C.; Kakos, S.; Morris, P. T.

    1984-01-01

    Nearly shot-noise limited detection of OH using the technique of laser-induced fluorescence is reported. A LIDAR configuration is used to excite fluoresence in a large volume and a narrow-bandwidth interference filter provides spectral discrimination. This arrangement alleviates the effect of ozone interference and facilitates image processing at relatively close distances. The detection limit is determined mainly by the short-noise of the solar background. Ground-based measurements in Dearborn indicate a detection limit of better than 1 x 10 to the 6th power OH/cubic cm over a forty-minute acquisition period. Under favorable conditions, a comparable detection limit was also observed for airborne measurements.

  18. Limits of detection and decision. Part 3

    NASA Astrophysics Data System (ADS)

    Voigtman, E.

    2008-02-01

    It has been shown that the MARLAP (Multi-Agency Radiological Laboratory Analytical Protocols) for estimating the Currie detection limit, which is based on 'critical values of the non-centrality parameter of the non-central t distribution', is intrinsically biased, even if no calibration curve or regression is used. This completed the refutation of the method, begun in Part 2. With the field cleared of obstructions, the true theory underlying Currie's limits of decision, detection and quantification, as they apply in a simple linear chemical measurement system (CMS) having heteroscedastic, Gaussian measurement noise and using weighted least squares (WLS) processing, was then derived. Extensive Monte Carlo simulations were performed, on 900 million independent calibration curves, for linear, "hockey stick" and quadratic noise precision models (NPMs). With errorless NPM parameters, all the simulation results were found to be in excellent agreement with the derived theoretical expressions. Even with as much as 30% noise on all of the relevant NPM parameters, the worst absolute errors in rates of false positives and false negatives, was only 0.3%.

  19. Of Detection Limits and Effective Mitigation: The Use of Infrared Cameras for Methane Leak Detection

    NASA Astrophysics Data System (ADS)

    Ravikumar, A. P.; Wang, J.; McGuire, M.; Bell, C.; Brandt, A. R.

    2017-12-01

    Mitigating methane emissions, a short-lived and potent greenhouse gas, is critical to limiting global temperature rise to two degree Celsius as outlined in the Paris Agreement. A major source of anthropogenic methane emissions in the United States is the oil and gas sector. To this effect, state and federal governments have recommended the use of optical gas imaging systems in periodic leak detection and repair (LDAR) surveys to detect for fugitive emissions or leaks. The most commonly used optical gas imaging systems (OGI) are infrared cameras. In this work, we systematically evaluate the limits of infrared (IR) camera based OGI system for use in methane leak detection programs. We analyze the effect of various parameters that influence the minimum detectable leak rates of infrared cameras. Blind leak detection tests were carried out at the Department of Energy's MONITOR natural gas test-facility in Fort Collins, CO. Leak sources included natural gas wellheads, separators, and tanks. With an EPA mandated 60 g/hr leak detection threshold for IR cameras, we test leak rates ranging from 4 g/hr to over 350 g/hr at imaging distances between 5 ft and 70 ft from the leak source. We perform these experiments over the course of a week, encompassing a wide range of wind and weather conditions. Using repeated measurements at a given leak rate and imaging distance, we generate detection probability curves as a function of leak-size for various imaging distances, and measurement conditions. In addition, we estimate the median detection threshold - leak-size at which the probability of detection is 50% - under various scenarios to reduce uncertainty in mitigation effectiveness. Preliminary analysis shows that the median detection threshold varies from 3 g/hr at an imaging distance of 5 ft to over 150 g/hr at 50 ft (ambient temperature: 80 F, winds < 4 m/s). Results from this study can be directly used to improve OGI based LDAR protocols and reduce uncertainty in estimated

  20. Targeted Analyte Detection by Standard Addition Improves Detection Limits in MALDI Mass Spectrometry

    PubMed Central

    Eshghi, Shadi Toghi; Li, Xingde; Zhang, Hui

    2014-01-01

    Matrix-assisted laser desorption/ionization has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications. PMID:22877355

  1. Detection limits of antimicrobials in ewe milk by delvotest photometric measurements.

    PubMed

    Althaus, R L; Torres, A; Montero, A; Balasch, S; Molina, M P

    2003-02-01

    The Delvotest method detection limits per manufacturer's instructions at a fixed reading time of 3 h for 24 antimicrobial agents were determined in ewe milk by photometric measurement. For each drug, eight concentrations were tested on 20 ewe milk samples from individual ewes. Detection limits, determined by means of logistic regression models, were (microg/kg): 3, amoxycillin; 2, ampicillin; 18, cloxacillin; 1, penicillin "G"; 34, cefadroxil; 430, cephalosporin "C"; 40, cephalexin; 20, cefoperazone; 33, Ceftiofur; 18, cefuroxime; 6100, streptomycin; 1200, gentamycin; 2600, neomycin; 830, erythromycin; 100, tylosin; 180, doxycycline; 320, oxytetracycline; 590, tetracycline; 88, sulfadiazine; 44, sulfamethoxazole; 140, sulfametoxypyridazine; 48, sulfaquinoxaline; 12,000, chloramphenicol; and 290, trimethoprim. Whereas the beta-lactam antibiotics, sulphonamides, and tylosin were detected by Delvotest method at levels equal to those of maximum residue limits, its sensitivity needs to be enhanced to detect aminoglycosides, tetracyclines, streptomycin, chloramphenicol, and trimethoprim residues in ewe milk or to develop an integrated residue detection system for ewe milk with different sensitive microorganisms for each group of antiinfectious agents.

  2. The Ultimate Fizz

    ERIC Educational Resources Information Center

    Heckscher, Mary

    2008-01-01

    Many recipes for elementary science activities suggest making carbon dioxide from baking soda and vinegar; however, they often do not give exact measurements of the ingredients. The author was able to turn this "drawback" into a plus by challenging her fifth-grade students to find the "ultimate fizz"--i.,e., "What amount of baking soda added to a…

  3. 29 CFR 18.704 - Opinion on ultimate issue.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Opinion on ultimate issue. 18.704 Section 18.704 Labor... ultimate issue. Testimony in the form of an opinion or inference otherwise admissible is not objectionable because it embraces an ultimate issue to be decided by the judge as trier of fact. ...

  4. Theoretical detection limit of PIXE analysis using 20 MeV proton beams

    NASA Astrophysics Data System (ADS)

    Ishii, Keizo; Hitomi, Keitaro

    2018-02-01

    Particle-induced X-ray emission (PIXE) analysis is usually performed using proton beams with energies in the range 2∼3 MeV because at these energies, the detection limit is low. The detection limit of PIXE analysis depends on the X-ray production cross-section, the continuous background of the PIXE spectrum and the experimental parameters such as the beam currents and the solid angle and detector efficiency of X-ray detector. Though the continuous background increases as the projectile energy increases, the cross-section of the X-ray increases as well. Therefore, the detection limit of high energy proton PIXE is not expected to increase significantly. We calculated the cross sections of continuous X-rays produced in several bremsstrahlung processes and estimated the detection limit of a 20 MeV proton PIXE analysis by modelling the Compton tail of the γ-rays produced in the nuclear reactions, and the escape effect on the secondary electron bremsstrahlung. We found that the Compton tail does not affect the detection limit when a thin X-ray detector is used, but the secondary electron bremsstrahlung escape effect does have an impact. We also confirmed that the detection limit of the PIXE analysis, when used with 4 μm polyethylene backing film and an integrated beam current of 1 μC, is 0.4∼2.0 ppm for proton energies in the range 10∼30 MeV and elements with Z = 16-90. This result demonstrates the usefulness of several 10 MeV cyclotrons for performing PIXE analysis. Cyclotrons with these properties are currently installed in positron emission tomography (PET) centers.

  5. Ultimate justification: Wittgenstein and medical ethics.

    PubMed

    Hughes, J

    1995-02-01

    Decisions must be justified. In medical ethics various grounds are given to justify decisions, but ultimate justification seems illusory and little considered. The philosopher Wittgenstein discusses the problem of ultimate justification in the context of general philosophy. His comments, nevertheless, are pertinent to ethics. From a discussion of Wittgensteinian notions, such as 'bedrock', the idea that 'ultimate' justification is grounded in human nature as such is derived. This discussion is relevant to medical ethics in at least five ways: it shows generally what type of certainty there is in practical ethics; it seems to imply some objective foundation to our ethical judgements; it squares with our experience of making ethical decisions; it shows something of the nature of moral arguments; and, finally, it has implications for teaching medicine and ethics.

  6. Ultimate justification: Wittgenstein and medical ethics.

    PubMed Central

    Hughes, J

    1995-01-01

    Decisions must be justified. In medical ethics various grounds are given to justify decisions, but ultimate justification seems illusory and little considered. The philosopher Wittgenstein discusses the problem of ultimate justification in the context of general philosophy. His comments, nevertheless, are pertinent to ethics. From a discussion of Wittgensteinian notions, such as 'bedrock', the idea that 'ultimate' justification is grounded in human nature as such is derived. This discussion is relevant to medical ethics in at least five ways: it shows generally what type of certainty there is in practical ethics; it seems to imply some objective foundation to our ethical judgements; it squares with our experience of making ethical decisions; it shows something of the nature of moral arguments; and, finally, it has implications for teaching medicine and ethics. PMID:7776343

  7. 78 FR 55117 - Ultimate Heat Sink for Nuclear Power Plants; Draft Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... applicants may use to implement general design criteria (GDC) that are applicable to the ultimate heat sink... only for comments received on or before this date. Although a time limit is given, comments and... published guides are encouraged at any time. ADDRESSES: You may submit comment by any of the following...

  8. Censoring: a new approach for detection limits in total-reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Pajek, M.; Kubala-Kukuś, A.; Braziewicz, J.

    2004-08-01

    It is shown that the detection limits in the total-reflection X-ray fluorescence (TXRF), which restrict quantification of very low concentrations of trace elements in the samples, can be accounted for using the statistical concept of censoring. We demonstrate that the incomplete TXRF measurements containing the so-called "nondetects", i.e. the non-measured concentrations falling below the detection limits and represented by the estimated detection limit values, can be viewed as the left random-censored data, which can be further analyzed using the Kaplan-Meier (KM) method correcting for nondetects. Within this approach, which uses the Kaplan-Meier product-limit estimator to obtain the cumulative distribution function corrected for the nondetects, the mean value and median of the detection limit censored concentrations can be estimated in a non-parametric way. The Monte Carlo simulations performed show that the Kaplan-Meier approach yields highly accurate estimates for the mean and median concentrations, being within a few percent with respect to the simulated, uncensored data. This means that the uncertainties of KM estimated mean value and median are limited in fact only by the number of studied samples and not by the applied correction procedure for nondetects itself. On the other hand, it is observed that, in case when the concentration of a given element is not measured in all the samples, simple approaches to estimate a mean concentration value from the data yield erroneous, systematically biased results. The discussed random-left censoring approach was applied to analyze the TXRF detection-limit-censored concentration measurements of trace elements in biomedical samples. We emphasize that the Kaplan-Meier approach allows one to estimate the mean concentrations being substantially below the mean level of detection limits. Consequently, this approach gives a new access to lower the effective detection limits for TXRF method, which is of prime interest for

  9. Sniper detection using infrared camera: technical possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Bieszczad, G.

    2010-04-01

    The paper discusses technical possibilities to build an effective system for sniper detection using infrared cameras. Descriptions of phenomena which make it possible to detect sniper activities in infrared spectra as well as analysis of physical limitations were performed. Cooled and uncooled detectors were considered. Three phases of sniper activities were taken into consideration: before, during and after the shot. On the basis of experimental data the parameters defining the target were determined which are essential in assessing the capability of infrared camera to detect sniper activity. A sniper body and muzzle flash were analyzed as targets. The simulation of detection ranges was done for the assumed scenario of sniper detection task. The infrared sniper detection system was discussed, capable of fulfilling the requirements. The discussion of the results of analysis and simulations was finally presented.

  10. L2 and L3 Ultimate Attainment: An Investigation of Two Parameters

    ERIC Educational Resources Information Center

    Hermas, Abdelkader

    2014-01-01

    This study considers the upper limit of ultimate attainment in the L2 French and L3 English of trilingual learners. The learners are native speakers of Moroccan Arabic who started learning L2 French at eight and L3 English at 16. They are advanced in both languages. Four constructions representing the verb movement and null subject parameter were…

  11. Thermodynamic limits of energy harvesting from outgoing thermal radiation.

    PubMed

    Buddhiraju, Siddharth; Santhanam, Parthiban; Fan, Shanhui

    2018-04-17

    We derive the thermodynamic limits of harvesting power from the outgoing thermal radiation from the ambient to the cold outer space. The derivations are based on a duality relation between thermal engines that harvest solar radiation and those that harvest outgoing thermal radiation. In particular, we derive the ultimate limit for harvesting outgoing thermal radiation, which is analogous to the Landsberg limit for solar energy harvesting, and show that the ultimate limit far exceeds what was previously thought to be possible. As an extension of our work, we also derive the ultimate limit of efficiency of thermophotovoltaic systems.

  12. Detectability limit and uncertainty considerations for laser induced fluorescence spectroscopy in flames

    NASA Technical Reports Server (NTRS)

    Daily, J. W.

    1978-01-01

    Laser induced fluorescence spectroscopy of flames is discussed, and derived uncertainty relations are used to calculate detectability limits due to statistical errors. Interferences due to Rayleigh scattering from molecules as well as Mie scattering and incandescence from particles have been examined for their effect on detectability limits. Fluorescence trapping is studied, and some methods for reducing the effect are considered. Fluorescence trapping places an upper limit on the number density of the fluorescing species that can be measured without signal loss.

  13. Detection limit of a VCO based detection chain dedicated to particles recognition and tracking

    NASA Astrophysics Data System (ADS)

    Coulié, K.; Rahajandraibe, W.; Aziza, H.; Micolau, G.; Vauché, R.

    2018-01-01

    A particle detection chain based on CMOS-SOI VCO circuit is presented. The solution is used for the recognition and the tracking of a given particle at circuit level. TCAD simulation of the detector has been performed on a 3×3 matrix of diodes based detector for particles recognition and tracking. The current response of the detector has been used for a case study in order to determine the ability of the chain to recognize an alpha particle crossing a 3×3 detection cell. The detection limit of the proposed solution is investigated and discussed in this paper.

  14. On the Determination of Uncertainty and Limit of Detection in Label-Free Biosensors.

    PubMed

    Lavín, Álvaro; Vicente, Jesús de; Holgado, Miguel; Laguna, María F; Casquel, Rafael; Santamaría, Beatriz; Maigler, María Victoria; Hernández, Ana L; Ramírez, Yolanda

    2018-06-26

    A significant amount of noteworthy articles reviewing different label-free biosensors are being published in the last years. Most of the times, the comparison among the different biosensors is limited by the procedure used of calculating the limit of detection and the measurement uncertainty. This article clarifies and establishes a simple procedure to determine the calibration function and the uncertainty of the concentration measured at any point of the measuring interval of a generic label-free biosensor. The value of the limit of detection arises naturally from this model as the limit at which uncertainty tends when the concentration tends to zero. The need to provide additional information, such as the measurement interval and its linearity, among others, on the analytical systems and biosensor in addition to the detection limit is pointed out. Finally, the model is applied to curves that are typically obtained in immunoassays and a discussion is made on the application validity of the model and its limitations.

  15. Prediction of the limit of detection of an optical resonant reflection biosensor.

    PubMed

    Hong, Jongcheol; Kim, Kyung-Hyun; Shin, Jae-Heon; Huh, Chul; Sung, Gun Yong

    2007-07-09

    A prediction of the limit of detection of an optical resonant reflection biosensor is presented. An optical resonant reflection biosensor using a guided-mode resonance filter is one of the most promising label-free optical immunosensors due to a sharp reflectance peak and a high sensitivity to the changes of optical path length. We have simulated this type of biosensor using rigorous coupled wave theory to calculate the limit of detection of the thickness of the target protein layer. Theoretically, our biosensor has an estimated ability to detect thickness change approximately the size of typical antigen proteins. We have also investigated the effects of the absorption and divergence of the incident light on the detection ability of the biosensor.

  16. The Ultimate Flag Games.

    ERIC Educational Resources Information Center

    Angel, Kenny; Sutton, Nancy

    This paper describes six Ultimate Flag Games which offer a change from traditional games and sports that are usually geared toward athletically inclined students. These new games, aimed at middle school through college students, allow for success from the least-skilled through the most athletically talented students. Players are ability grouped…

  17. Ten-year clinical experience of humanitarian cardiothoracic surgery in Rwanda: Building a platform for ultimate sustainability in a resource-limited setting.

    PubMed

    Swain, JaBaris D; Sinnott, Colleen; Breakey, Suellen; Hasson Charles, Rian; Mody, Gita; Nyirimanzi, Napthal; Patton-Bolman, Ceeya; Come, Patricia; Ganza, Gapira; Rusingiza, Emmanuel; Ruhamya, Nathan; Mucumbitsi, Joseph; Borges, Jorge; Zammert, Martin; Muehlschlegel, Jochen D; Oakes, Robert; Leavitt, Bruce; Bolman, R Morton

    2018-06-01

    Despite its near complete eradication in resource-rich countries, rheumatic heart disease remains the most common acquired cardiovascular disease in sub-Saharan Africa. With a ratio of physicians/population of 1 per 10,500, including only 4 cardiologists for a population of 11.4 million, Rwanda represents a resource-limited setting lacking the local capacity to detect and treat early cases of strep throat and perform lifesaving operations for advanced rheumatic heart disease. Humanitarian surgical outreach in this region can improve the delivery of cardiovascular care by providing sustainability through mentorship, medical expertise, training, and knowledge transfer, and ultimately the creation of a cardiac center. We describe the experience of consecutive annual visits to Rwanda since 2008 and report the outcomes of a collaborative approach to enable sustainable cardiac surgery in the region. The Ferrans and Powers Quality of Life Index tool's Cardiac Version (http://www.uic.edu/orgs/qli/) was administered to assess the postoperative quality of life. Ten visits have been completed, performing 149 open procedures, including 200 valve implantations, New York Heart Association class III or IV, with 4.7% 30-day mortality. All procedures were performed with the participation of local Rwandan personnel, expatriate physicians, nurses, residents, and support staff. Early complications included cerebrovascular accident (n = 4), hemorrhage requiring reoperation (n = 6), and death (n = 7). Quality of life was assessed to further understand challenges encountered after cardiac surgery in this resource-limited setting. Four major domains were considered: health and functioning, social and economic, psychologic/spiritual, and family. The mean total quality of life index was 20.79 ± 4.07 on a scale from 0 to 30, for which higher scores indicated higher quality of life. Women had significantly lower "social and economic" subscores (16.81 ± 4.17) than men (18.64 ± 4

  18. Nonparametric rank regression for analyzing water quality concentration data with multiple detection limits.

    PubMed

    Fu, Liya; Wang, You-Gan

    2011-02-15

    Environmental data usually include measurements, such as water quality data, which fall below detection limits, because of limitations of the instruments or of certain analytical methods used. The fact that some responses are not detected needs to be properly taken into account in statistical analysis of such data. However, it is well-known that it is challenging to analyze a data set with detection limits, and we often have to rely on the traditional parametric methods or simple imputation methods. Distributional assumptions can lead to biased inference and justification of distributions is often not possible when the data are correlated and there is a large proportion of data below detection limits. The extent of bias is usually unknown. To draw valid conclusions and hence provide useful advice for environmental management authorities, it is essential to develop and apply an appropriate statistical methodology. This paper proposes rank-based procedures for analyzing non-normally distributed data collected at different sites over a period of time in the presence of multiple detection limits. To take account of temporal correlations within each site, we propose an optimal linear combination of estimating functions and apply the induced smoothing method to reduce the computational burden. Finally, we apply the proposed method to the water quality data collected at Susquehanna River Basin in United States of America, which clearly demonstrates the advantages of the rank regression models.

  19. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution.

    PubMed

    Peña, José M; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I; López-Granados, Francisca

    2015-03-06

    In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5-6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations.

  20. Quantifying Efficacy and Limits of Unmanned Aerial Vehicle (UAV) Technology for Weed Seedling Detection as Affected by Sensor Resolution

    PubMed Central

    Peña, José M.; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I.; López-Granados, Francisca

    2015-01-01

    In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5–6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations. PMID:25756867

  1. LIMITATIONS ON THE USES OF MULTIMEDIA EXPOSURE MEASUREMENTS FOR MULTIPATHWAY EXPOSURE ASSESSMENT - PART I: HANDLING OBSERVATIONS BELOW DETECTION LIMITS

    EPA Science Inventory

    Multimedia data from two probability-based exposure studies were investigated in terms of how censoring of non-detects affected estimation of population parameters and associations. Appropriate methods for handling censored below-detection-limit (BDL) values in this context were...

  2. Education and Ultimate Meaning

    ERIC Educational Resources Information Center

    Schinkel, Anders

    2015-01-01

    Richard Peters and John White have both argued that education should contribute to the meaning people are able to find in or give to life. Both dismiss the idea of ultimate or profound meaning ("the meaning of life") in favour of ordinary meaning, or "meaning in life". Thus they exemplify the trend visible also in the general…

  3. Ultimate RHIC Performance Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, H.

    1986-11-10

    The RHIC performance estimates for pp operation given in the Conceptual Design report are intentionally conservative as to energy and luminosity. The ultimate RHIC performance was estimated by an ad-hoc comittee with F.Dell, H. Foelsche, H. Hahn, S.Y. Lee, G. Parzen, E. Raka, S. Tepikian, and P. Thompson as members. The present note summarizes the committee's conclusions.

  4. Reliability of Hull Girder Ultimate Strength of Steel Ships

    NASA Astrophysics Data System (ADS)

    Da-wei, Gao; Gui-jie, Shi

    2018-03-01

    Hull girder ultimate strength is an evaluation index reflecting the true safety margin or structural redundancy about container ships. Especially, after the hull girder fracture accident of the MOL COMFORT, the 8,000TEU class large container ship, on June 17 2013, larger container ship safety has been paid on much more attention. In this paper, different methods of calculating hull girder ultimate strength are firstly discussed and compared with. The bending ultimate strength can be analyzed by nonlinear finite element method (NFEM) and increment-iterative method, and also the shear ultimate strength can be analyzed by NFEM and simple equations. Then, the probability distribution of hull girder wave loads and still water loads of container ship are summarized. At last, the reliability of hull girder ultimate strength under bending moment and shear forces for three container ships is analyzed by using a first order method. The conclusions can be applied to give guidance for ship design and safety evaluation.

  5. N and P as ultimate and proximate limiting nutrients in the northern Gulf of Mexico: implications for hypoxia reduction strategies

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Laurent, Arnaud

    2018-05-01

    The occurrence of hypoxia in coastal oceans is a long-standing and growing problem worldwide and is clearly linked to anthropogenic nutrient inputs. While the need for reducing anthropogenic nutrient loads is generally accepted, it is costly and thus requires scientifically sound nutrient-reduction strategies. Issues under debate include the relative importance of nitrogen (N) and phosphorus (P) as well as the magnitude of the reduction requirements. The largest anthropogenically induced hypoxic area in North American coastal waters (of 15 000 ± 5000 km2) forms every summer in the northern Gulf of Mexico where the Mississippi and Atchafalaya rivers deliver large amounts of freshwater and nutrients to the shelf. A 2001 plan for reducing this hypoxic area by nutrient management in the watershed called for a reduction of N loads. Since then evidence of P limitation during the time of hypoxia formation has arisen, and a dual nutrient-reduction strategy for this system has been endorsed. Here we report the first systematic analysis of the effects of single and dual nutrient load reductions from a spatially explicit physical-biogeochemical model for the northern Gulf of Mexico. The model has been shown previously to skillfully represent the processes important for hypoxic formation. Our analysis of an ensemble of simulations with stepwise reductions in N, P, and N and P loads provides insight into the effects of both nutrients on primary production and hypoxia, and it allows us to estimate what nutrient reductions would be required for single and dual nutrient-reduction strategies to reach the hypoxia target. Our results show that, despite temporary P limitation, N is the ultimate limiting nutrient for primary production in this system. Nevertheless, a reduction in P load would reduce hypoxia because primary production is P limited in the region where density stratification is conducive to hypoxia development, but reductions in N load have a bigger effect

  6. An adaptive confidence limit for periodic non-steady conditions fault detection

    NASA Astrophysics Data System (ADS)

    Wang, Tianzhen; Wu, Hao; Ni, Mengqi; Zhang, Milu; Dong, Jingjing; Benbouzid, Mohamed El Hachemi; Hu, Xiong

    2016-05-01

    System monitoring has become a major concern in batch process due to the fact that failure rate in non-steady conditions is much higher than in steady ones. A series of approaches based on PCA have already solved problems such as data dimensionality reduction, multivariable decorrelation, and processing non-changing signal. However, if the data follows non-Gaussian distribution or the variables contain some signal changes, the above approaches are not applicable. To deal with these concerns and to enhance performance in multiperiod data processing, this paper proposes a fault detection method using adaptive confidence limit (ACL) in periodic non-steady conditions. The proposed ACL method achieves four main enhancements: Longitudinal-Standardization could convert non-Gaussian sampling data to Gaussian ones; the multiperiod PCA algorithm could reduce dimensionality, remove correlation, and improve the monitoring accuracy; the adaptive confidence limit could detect faults under non-steady conditions; the fault sections determination procedure could select the appropriate parameter of the adaptive confidence limit. The achieved result analysis clearly shows that the proposed ACL method is superior to other fault detection approaches under periodic non-steady conditions.

  7. Gold nanoparticle-based low limit of detection Love wave biosensor for carcinoembryonic antigens.

    PubMed

    Li, Shuangming; Wan, Ying; Su, Yan; Fan, Chunhai; Bhethanabotla, Venkat R

    2017-09-15

    In this work, a Love wave biosensing platform is described for detecting cancer-related biomarker carcinoembryonic antigen (CEA). An ST 90°-X quartz Love wave device with a layer of SiO 2 waveguide was combined with gold nanoparticles (Au NPs) to amplify the mass loading effect of the acoustic wave sensor to achieve a limit of detection of 37pg/mL. The strategy involves modifying the Au NPs with anti-CEA antibody conjugates to form nanoprobes in a sandwich immunoassay. The unamplified detection limit of the Love wave biosensor is 9.4ng/mL. This 2-3 order of magnitude reduction in the limit of detection brings the SAW platform into the range useful for clinical diagnosis. Measurement electronics and microfluidics are easily constructed for acoustic wave biosensors, such as the Love wave device described here, allowing for robust platforms for point of care applications for cancer biomarkers in general. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Strategies and limitations for fluorescence detection of XAFS at high flux beamlines

    DOE PAGES

    Heald, Steve M.

    2015-02-17

    The issue of detecting the XAFS signal from dilute samples is discussed in detail with the aim of making best use of high flux beamlines that provide up to 10 13 photons -1. Various detection methods are compared, including filters with slits, solid state detectors, crystal analyzers and combinations of these. These comparisons rely on simulations that use experimentally determined parameters. It is found that inelastic scattering places a fundamental limit on detection, and that it is important to take proper account of the polarization dependence of the signals. The combination of a filter–slit system with a solid state detectormore » is a promising approach. With an optimized system good performance can be obtained even if the total count rate is limited to 10 7 Hz. Detection schemes with better energy resolution can help at the largest dilutions if their collection efficiency and count rate limits can be improved.« less

  9. Strategies and limitations for fluorescence detection of XAFS at high flux beamlines

    PubMed Central

    Heald, Steve M.

    2015-01-01

    The issue of detecting the XAFS signal from dilute samples is discussed in detail with the aim of making best use of high flux beamlines that provide up to 1013 photons s−1. Various detection methods are compared, including filters with slits, solid state detectors, crystal analyzers and combinations of these. These comparisons rely on simulations that use experimentally determined parameters. It is found that inelastic scattering places a fundamental limit on detection, and that it is important to take proper account of the polarization dependence of the signals. The combination of a filter–slit system with a solid state detector is a promising approach. With an optimized system good performance can be obtained even if the total count rate is limited to 107 Hz. Detection schemes with better energy resolution can help at the largest dilutions if their collection efficiency and count rate limits can be improved. PMID:25723945

  10. Limit of detection of 15{sub N} by gas-chromatography atomic emission detection: Optimization using an experimental design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deruaz, D.; Bannier, A.; Pionchon, C.

    1995-08-01

    This paper deals with the optimal conditions for the detection of {sup 15}N determined using a four-factor experimental design from [2{sup 13}C,-1,3 {sup 15}N] caffeine measured with an atomic emission detector (AED) coupled to gas chromatography (GC). Owing to the capability of a photodiodes array, AED can simultaneously detect several elements using their specific emission lines within a wavelength range of 50 nm. So, the emissions of {sup 15}N and {sup 14}N are simultaneously detected at 420.17 nm and 421.46 nm respectively. Four independent experimental factors were tested (1) helium flow rate (plasma gas); (2) methane pressure (reactant gas); (3)more » oxygen pressure; (4) hydrogen pressure. It has been shown that these four gases had a significant influence on the analytical response of {sup 15}N. The linearity of the detection was determined using {sup 15}N amounts ranging from 1.52 pg to 19 ng under the optimal conditions obtained from the experimental design. The limit of detection was studied using different methods. The limits of detection of {sup 15}N was 1.9 pg/s according to the IUPAC method (International-Union of Pure and Applied Chemistry). The method proposed by Quimby and Sullivan gave a value of 2.3 pg/s and that of Oppenheimer gave a limit of 29 pg/s. For each determination, and internal standard: 1-isobutyl-3.7 dimethylxanthine was used. The results clearly demonstrate that GC AED is sensitive and selective enough to detect and measure {sup 15}N-labelled molecules after gas chromatographic separation.« less

  11. Method for improving the limit of detection in a data signal

    DOEpatents

    Synovec, Robert E.; Yueng, Edward S.

    1989-10-17

    A method for improving the limit of detection for a data set in which experimental noise is uncorrelated along a given abscissa and an analytical signal is correlated to the abscissa, the steps comprising collecting the data set, converting the data set into a data signal including an analytical portion and the experimental noise portion, designating and adjusting a baseline of the data signal to center the experimental noise numerically about a zero reference, and integrating the data signal preserving the corresponding information for each point of the data signal. The steps of the method produce an enhanced integrated data signal which improves the limit of detection of the data signal.

  12. Ultimate Lateral Capacity of Rigid Pile in c- φ Soil

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-min

    2018-03-01

    To date no analytical solution of the pile ultimate lateral capacity for the general c- φ soil has been obtained. In the present study, a new dimensionless embedded ratio was proposed and the analytical solutions of ultimate lateral capacity and rotation center of rigid pile in c- φ soils were obtained. The results showed that both the dimensionless ultimate lateral capacity and dimensionless rotation center were the univariate functions of the embedded ratio. Also, the ultimate lateral capacity in the c- φ soil was the combination of the ultimate lateral capacity ( f c ) in the clay, and the ultimate lateral capacity ( f φ ) in the sand. Therefore, the Broms chart for clay, solution for clay ( φ=0) put forward by Poulos and Davis, solution for sand ( c=0) obtained by Petrasovits and Awad, and Kondner's ultimate bending moment were all proven to be the special cases of the general solution in the present study. A comparison of the field and laboratory tests in 93 cases showed that the average ratios of the theoretical values to the experimental value ranged from 0.85 to 1.15. Also, the theoretical values displayed a good agreement with the test values.

  13. Ultimate Educational Aims, Overridingness, and Personal Well-Being

    ERIC Educational Resources Information Center

    Haji, Ishtiyaque; Cuypers, Stefaan E.

    2011-01-01

    Discussion regarding education's aims, especially its ultimate aims, is a key topic in the philosophy of education. These aims or values play a pivotal role in regulating and structuring moral and other types of normative education. We outline two plausible strategies to identify and justify education's ultimate aims. The first associates these…

  14. Engineering Ultimate Self-Protection in Autonomic Agents for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    NASA's Exploration Initiative (EI) will push space exploration missions to the limit. Future missions will be required to be self-managing as well as self-directed, in order to meet the challenges of human and robotic space exploration. We discuss security and self protection in autonomic agent based-systems, and propose the ultimate self-protection mechanism for such systems-self-destruction. Like other metaphors in Autonomic Computing, this is inspired by biological systems, and is the analog of biological apoptosis. Finally, we discus the role it might play in future NASA space exploration missions.

  15. METHODS OF DEALING WITH VALUES BELOW THE LIMIT OF DETECTION USING SAS

    EPA Science Inventory

    Due to limitations of chemical analysis procedures, small concentrations cannot be precisely measured. These concentrations are said to be below the limit of detection (LOD). In statistical analyses, these values are often censored and substituted with a constant value, such ...

  16. "Got Disc?" The "Ultimate" Experience in Physical Education

    ERIC Educational Resources Information Center

    Johnson, Tyler G.; Darst, Paul W.; Brusseau, Timothy A.

    2006-01-01

    A quality physical education program is one in which students are exposed to and can participate in a variety of sports and activities. One activity that is increasing in popularity in and outside of physical education is the game of "Ultimate." Opportunities to play Ultimate are increasing rapidly in intramural programs and community and…

  17. Ultimately short ballistic vertical graphene Josephson junctions

    PubMed Central

    Lee, Gil-Ho; Kim, Sol; Jhi, Seung-Hoon; Lee, Hu-Jong

    2015-01-01

    Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale. PMID:25635386

  18. Method for improving the limit of detection in a data signal

    DOEpatents

    Synovec, R.E.; Yueng, E.S.

    1989-10-17

    Disclosed is a method for improving the limit of detection for a data set in which experimental noise is uncorrelated along a given abscissa and an analytical signal is correlated to the abscissa, the steps comprising collecting the data set, converting the data set into a data signal including an analytical portion and the experimental noise portion, designating and adjusting a baseline of the data signal to center the experimental noise numerically about a zero reference, and integrating the data signal preserving the corresponding information for each point of the data signal. The steps of the method produce an enhanced integrated data signal which improves the limit of detection of the data signal. 8 figs.

  19. Signal detection evidence for limited capacity in visual search

    PubMed Central

    Fencsik, David E.; Flusberg, Stephen J.; Horowitz, Todd S.; Wolfe, Jeremy M.

    2014-01-01

    The nature of capacity limits (if any) in visual search has been a topic of controversy for decades. In 30 years of work, researchers have attempted to distinguish between two broad classes of visual search models. Attention-limited models have proposed two stages of perceptual processing: an unlimited-capacity preattentive stage, and a limited-capacity selective attention stage. Conversely, noise-limited models have proposed a single, unlimited-capacity perceptual processing stage, with decision processes influenced only by stochastic noise. Here, we use signal detection methods to test a strong prediction of attention-limited models. In standard attention-limited models, performance of some searches (feature searches) should only be limited by a preattentive stage. Other search tasks (e.g., spatial configuration search for a “2” among “5”s) should be additionally limited by an attentional bottleneck. We equated average accuracies for a feature and a spatial configuration search over set sizes of 1–8 for briefly presented stimuli. The strong prediction of attention-limited models is that, given overall equivalence in performance, accuracy should be better on the spatial configuration search than on the feature search for set size 1, and worse for set size 8. We confirm this crossover interaction and show that it is problematic for at least one class of one-stage decision models. PMID:21901574

  20. Re-evaluation of groundwater monitoring data for glyphosate and bentazone by taking detection limits into account.

    PubMed

    Hansen, Claus Toni; Ritz, Christian; Gerhard, Daniel; Jensen, Jens Erik; Streibig, Jens Carl

    2015-12-01

    Current regulatory assessment of pesticide contamination of Danish groundwater is exclusively based on samples with pesticide concentrations above detection limit. Here we demonstrate that a realistic quantification of pesticide contamination requires the inclusion of "non-detect" samples i.e. samples with concentrations below the detection limit, as left-censored observations. The median calculated pesticide concentrations are shown to be reduced 10(4) to 10(5) fold for two representative herbicides (glyphosate and bentazone) relative to the median concentrations based upon observations above detection limits alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. METHODS OF DEALING WITH VALUES BELOW THE LIMIT OF DETECTION USING SAS

    EPA Science Inventory

    Due to limitations of chemical analysis procedures, small values cannot be precisely measured. These values are said to be below the limit of detection (LOD). In statistical analyses, these values are often censored and substituted with a constant value, such as half the LOD,...

  2. Global limits and interference patterns in dark matter direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catena, Riccardo; Gondolo, Paolo

    2015-08-13

    We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less

  3. Global limits and interference patterns in dark matter direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catena, Riccardo; Gondolo, Paolo, E-mail: riccardo.catena@theorie.physik.uni-goettingen.de, E-mail: paolo.gondolo@utah.edu

    2015-08-01

    We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less

  4. Immuno-analysis of microparticles: probing at the limits of detection

    PubMed Central

    Latham, Sharissa L.; Tiberti, Natalia; Gokoolparsadh, Naveena; Holdaway, Karen; Olivier Couraud, Pierre; Grau, Georges E. R.; Combes, Valery

    2015-01-01

    Microparticle (MP) research is clouded by debate regarding the accuracy and validity of flow cytometry (FCM) as an analytical methodology, as it is influenced by many variables including the pre-analytical conditions, instruments physical capabilities and detection parameters. This study utilises a simplistic in vitro system for generating MP, and through comparative analysis with immuno-electron microscopy (Immuno-EM) assesses the strengths and limitations of probe selection and high-sensitivity FCM. Of the markers examined, MP were most specifically labelled with phosphatidylserine ligands, annexin V and lactadherin, although only ~60% MP are PS positive. Whilst these two ligands detect comparable absolute MP numbers, they interact with the same population in distinct manners; annexin V binding is enhanced on TNF induced MP. CD105 and CD54 expression were, as expected, consistent and enhanced following TNF activation respectively. Their labelling however accounted for as few as 30–40% of MP. The greatest discrepancies between FCM and I-EM were observed in the population solely labelled for the surface antigen. These findings demonstrate that despite significant improvements in resolution, high-sensitivity FCM remains limited in detecting small-size MP expressing low antigen levels. This study highlights factors to consider when selecting endothelial MP probes, as well as interpreting and representing data. PMID:26553743

  5. LASERS: Ultimate energy parameters of the radiation emitted from neodymium-glass laser systems

    NASA Astrophysics Data System (ADS)

    Eshmemet'eva, E. V.; Korolev, V. I.; Mesnyankin, E. P.; Serebryakov, V. A.; Shashkin, V. V.; Yashin, V. E.

    1992-09-01

    An experimental investigation was made of the energy conversion efficiency and of the effects of stimulated Brillouin scattering and of optical breakdown, limiting the maximum energy density obtained from several phosphate and silicate neodymium glasses when the duration of the output pulses was 50-150 ns. The experimental results were used to develop a numerical model for calculation of the gain allowing for these processes. A design was developed for an amplifier with ultimate radiation characteristics.

  6. Ultimate Osmosis Engineered by the Pore Geometry and Functionalization of Carbon Nanostructures

    PubMed Central

    Song, Zhigong; Xu, Zhiping

    2015-01-01

    Osmosis is the key process in establishing versatile functions of cellular systems and enabling clean-water harvesting technologies. Membranes with single-atom thickness not only hold great promises in approaching the ultimate limit of these functions, but also offer an ideal test-bed to explore the underlying physical mechanisms. In this work, we explore diffusive and osmotic transport of water and ions through carbon nanotube and porous graphene based membranes by performing molecular dynamics simulations. Our comparative study shows that the cylindrical confinement in carbon nanotubes offers much higher salt rejection at similar permeability in osmosis compared to porous graphene. Moreover, chemical functionalization of the pores modulates the membrane performance by its steric and electrostatic nature, especially at small-size pores due to the fact that the optimal transport is achieved by ordered water transport near pore edges. These findings lay the ground for the ultimate design of forward osmosis membranes with optimized performance trade-off, given the capability of nano-engineering nanostructures by their geometry and chemistry. PMID:26037602

  7. Some Physics Constraints on Ultimate Achievement in Track and Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frohlich, Cliff

    2009-02-06

    World records in track and field have improved remarkably throughout the last 100 years; however, in several events physics places quite strict limitations on ultimate performance. For example, analysis suggests that records in broad jump and pole vault have approached their optimum possible values. Physical constraints are more subtle for events such as javelin, high jump, and the distance races, and thus there may be opportunities for “breakthroughs” in current records. Considering that there is enormous cultural interest and economic expenditure on sports, for most events the level of scientific analysis isn’t very high. This presents a research opportunity formore » fans who are engineers or physicists.« less

  8. Targeted analyte detection by standard addition improves detection limits in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Toghi Eshghi, Shadi; Li, Xingde; Zhang, Hui

    2012-09-18

    Matrix-assisted laser desorption/ionization (MALDI) has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications.

  9. Ultimate Cost of Building Walls.

    ERIC Educational Resources Information Center

    Grimm, Clayford T.; Gross, James G.

    The need for economic analysis of building walls is discussed, and the factors influencing the ultimate cost of exterior walls are studied. The present worth method is used to analyze three types of exterior non-loadbearing panel or curtain walls. Anticipated costs are expressed in terms of their present value per square foot of wall area. The…

  10. Detection limit for rate fluctuations in inhomogeneous Poisson processes

    NASA Astrophysics Data System (ADS)

    Shintani, Toshiaki; Shinomoto, Shigeru

    2012-04-01

    Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.

  11. Detection limit for rate fluctuations in inhomogeneous Poisson processes.

    PubMed

    Shintani, Toshiaki; Shinomoto, Shigeru

    2012-04-01

    Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.

  12. Ultrafast scene detection and recognition with limited visual information

    PubMed Central

    Hagmann, Carl Erick; Potter, Mary C.

    2016-01-01

    Humans can detect target color pictures of scenes depicting concepts like picnic or harbor in sequences of six or twelve pictures presented as briefly as 13 ms, even when the target is named after the sequence (Potter, Wyble, Hagmann, & McCourt, 2014). Such rapid detection suggests that feedforward processing alone enabled detection without recurrent cortical feedback. There is debate about whether coarse, global, low spatial frequencies (LSFs) provide predictive information to high cortical levels through the rapid magnocellular (M) projection of the visual path, enabling top-down prediction of possible object identities. To test the “Fast M” hypothesis, we compared detection of a named target across five stimulus conditions: unaltered color, blurred color, grayscale, thresholded monochrome, and LSF pictures. The pictures were presented for 13–80 ms in six-picture rapid serial visual presentation (RSVP) sequences. Blurred, monochrome, and LSF pictures were detected less accurately than normal color or grayscale pictures. When the target was named before the sequence, all picture types except LSF resulted in above-chance detection at all durations. Crucially, when the name was given only after the sequence, performance dropped and the monochrome and LSF pictures (but not the blurred pictures) were at or near chance. Thus, without advance information, monochrome and LSF pictures were rarely understood. The results offer only limited support for the Fast M hypothesis, suggesting instead that feedforward processing is able to activate conceptual representations without complementary reentrant processing. PMID:28255263

  13. Failure Detecting Method of Fault Current Limiter System with Rectifier

    NASA Astrophysics Data System (ADS)

    Tokuda, Noriaki; Matsubara, Yoshio; Asano, Masakuni; Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa

    A fault current limiter (FCL) is extensively needed to suppress fault current, particularly required for trunk power systems connecting high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. We proposed a new type FCL system (rectifier type FCL), consisting of solid-state diodes, DC reactor and bypass AC reactor, and demonstrated the excellent performances of this FCL by developing the small 6.6kV and 66kV model. It is important to detect the failure of power devices used in the rectifier under the normal operating condition, for keeping the excellent reliability of the power system. In this paper, we have proposed a new failure detecting method of power devices most suitable for the rectifier type FCL. This failure detecting system is simple and compact. We have adapted the proposed system to the 66kV prototype single-phase model and successfully demonstrated to detect the failure of power devices.

  14. Sensor fault detection and recovery in satellite attitude control

    NASA Astrophysics Data System (ADS)

    Nasrolahi, Seiied Saeed; Abdollahi, Farzaneh

    2018-04-01

    This paper proposes an integrated sensor fault detection and recovery for the satellite attitude control system. By introducing a nonlinear observer, the healthy sensor measurements are provided. Considering attitude dynamics and kinematic, a novel observer is developed to detect the fault in angular rate as well as attitude sensors individually or simultaneously. There is no limit on type and configuration of attitude sensors. By designing a state feedback based control signal and Lyapunov stability criterion, the uniformly ultimately boundedness of tracking errors in the presence of sensor faults is guaranteed. Finally, simulation results are presented to illustrate the performance of the integrated scheme.

  15. The detection limits of antimicrobial agents in cow's milk by a simple Yoghurt Culture Test.

    PubMed

    Mohsenzadeh, M; Bahrainipour, A

    2008-09-15

    The aim of this study was to study performance of Yoghurt Culture Test (YCT) in the detection of antimicrobial residues in milk. For this purpose, the sensitivity of YCT for 15 antibiotics were determined. For each drug, 8 concentrations were tested. The detection limits of YCT at 2.5 h and 4 h incubation were determined (microg kg(-1)): 15 and 37.5, penicillin G; 4 and 5, ampicillin; 5 and 7.5, amoxycillin; 100 and 200, cephalexin; 80 and 100, cefazoline; 100 and 200, oxytetracycline; 500 and 100, chlortetracycline; 100 and 200, tetracycline; 150 and 200, doxycycline; 200 and 400, sulphadimidine; 500 and 1000, gentamycin; 1000 and 1500, spectinomycin; 400 and 500, erythromycin; 50 and 100, tylosin; 5000 and 10000, chloramphenicol. The YCT detection limits at 2.5 h incubation for ampicillin, cephalexin, tetracycline, oxytetracycline and tylosin are similar to those obtained as Maximum Residue Limit (MRL) according to Regulation 2377/90 EEC as set out by the European Union. In addition the detection limits of YCT for some antibiotics were lower than some of microbial inhibitor test.

  16. Approaching the Ultimate Limits of Communication Efficiency with a Photon-Counting Detector

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris; Moision, Bruce; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush

    2012-01-01

    Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We first review the state-of-the-art coherent on-off-keying (OOK) with a photoncounting measurement, illustrating its asymptotic inefficiency relative to the Holevo limit. We show that a commonly made Poisson approximation in thermal noise leads to unbounded photon information efficiencies, violating the conjectured Holevo limit. We analyze two binary-modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with conventional OOK. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.

  17. Ultimate Attainment in Late Second Language Acquisition: Phonetic and Grammatical Challenges in Advanced Dutch-English Bilingualism

    ERIC Educational Resources Information Center

    Schmid, Monika S.; Gilbers, Steven; Nota, Amber

    2014-01-01

    The present article provides an exploration of ultimate attainment in second language (L2) and its limitations. It is argued that the question of maturational constraints can best be investigated when the reference population is bilingual and exposed on a regular basis to varieties of their first language (L1) that show cross-linguistic influence.…

  18. Attentional Capacity Limits Gap Detection during Concurrent Sound Segregation.

    PubMed

    Leung, Ada W S; Jolicoeur, Pierre; Alain, Claude

    2015-11-01

    Detecting a brief silent interval (i.e., a gap) is more difficult when listeners perceive two concurrent sounds rather than one in a sound containing a mistuned harmonic in otherwise in-tune harmonics. This impairment in gap detection may reflect the interaction of low-level encoding or the division of attention between two sound objects, both of which could interfere with signal detection. To distinguish between these two alternatives, we compared ERPs during active and passive listening with complex harmonic tones that could include a gap, a mistuned harmonic, both features, or neither. During active listening, participants indicated whether they heard a gap irrespective of mistuning. During passive listening, participants watched a subtitled muted movie of their choice while the same sounds were presented. Gap detection was impaired when the complex sounds included a mistuned harmonic that popped out as a separate object. The ERP analysis revealed an early gap-related activity that was little affected by mistuning during the active or passive listening condition. However, during active listening, there was a marked decrease in the late positive wave that was thought to index attention and response-related processes. These results suggest that the limitation in detecting the gap is related to attentional processing, possibly divided attention induced by the concurrent sound objects, rather than deficits in preattentional sensory encoding.

  19. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving anmore » ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic

  20. The ultimate physical limits of privacy

    NASA Astrophysics Data System (ADS)

    Ekert, Artur; Renner, Renato

    2014-03-01

    Among those who make a living from the science of secrecy, worry and paranoia are just signs of professionalism. Can we protect our secrets against those who wield superior technological powers? Can we trust those who provide us with tools for protection? Can we even trust ourselves, our own freedom of choice? Recent developments in quantum cryptography show that some of these questions can be addressed and discussed in precise and operational terms, suggesting that privacy is indeed possible under surprisingly weak assumptions.

  1. The ultimate physical limits of privacy.

    PubMed

    Ekert, Artur; Renner, Renato

    2014-03-27

    Among those who make a living from the science of secrecy, worry and paranoia are just signs of professionalism. Can we protect our secrets against those who wield superior technological powers? Can we trust those who provide us with tools for protection? Can we even trust ourselves, our own freedom of choice? Recent developments in quantum cryptography show that some of these questions can be addressed and discussed in precise and operational terms, suggesting that privacy is indeed possible under surprisingly weak assumptions.

  2. Combining markers with and without the limit of detection

    PubMed Central

    Dong, Ting; Liu, Catherine Chunling; Petricoin, Emanuel F.; Tang, Liansheng Larry

    2014-01-01

    In this paper, we consider the combination of markers with and without the limit of detection (LOD). LOD is often encountered when measuring proteomic markers. Because of the limited detecting ability of an equipment or instrument, it is difficult to measure markers at a relatively low level. Suppose that after some monotonic transformation, the marker values approximately follow multivariate normal distributions. We propose to estimate distribution parameters while taking the LOD into account, and then combine markers using the results from the linear discriminant analysis. Our simulation results show that the ROC curve parameter estimates generated from the proposed method are much closer to the truth than simply using the linear discriminant analysis to combine markers without considering the LOD. In addition, we propose a procedure to select and combine a subset of markers when many candidate markers are available. The procedure based on the correlation among markers is different from a common understanding that a subset of the most accurate markers should be selected for the combination. The simulation studies show that the accuracy of a combined marker can be largely impacted by the correlation of marker measurements. Our methods are applied to a protein pathway dataset to combine proteomic biomarkers to distinguish cancer patients from non-cancer patients. PMID:24132938

  3. Detection limits for nanoparticles in solution with classical turbidity spectra

    NASA Astrophysics Data System (ADS)

    Le Blevennec, G.

    2013-09-01

    Detection of nanoparticles in solution is required to manage safety and environmental problems. Spectral transmission turbidity method has now been known for a long time. It is derived from the Mie Theory and can be applied to any number of spheres, randomly distributed and separated by large distance compared to wavelength. Here, we describe a method for determination of size, distribution and concentration of nanoparticles in solution using UV-Vis transmission measurements. The method combines Mie and Beer Lambert computation integrated in a best fit approximation. In a first step, a validation of the approach is completed on silver nanoparticles solution. Verification of results is realized with Transmission Electronic Microscopy measurements for size distribution and an Inductively Coupled Plasma Mass Spectrometry for concentration. In view of the good agreement obtained, a second step of work focuses on how to manage the concentration to be the most accurate on the size distribution. Those efficient conditions are determined by simple computation. As we are dealing with nanoparticles, one of the key points is to know what the size limits reachable are with that kind of approach based on classical electromagnetism. In taking into account the transmission spectrometer accuracy limit we determine for several types of materials, metals, dielectrics, semiconductors the particle size limit detectable by such a turbidity method. These surprising results are situated at the quantum physics frontier.

  4. Thermal Infrared Spectral Band Detection Limits for Unidentified Surface Materials

    NASA Technical Reports Server (NTRS)

    Kirkland, Laurel E.; Herr, Kenneth C.; Salisbury, John W.

    2001-01-01

    Infrared emission spectra recorded by airborne or satellite spectrometers can be searched for spectral features to determine the composition of rocks on planetary surfaces. Surface materials are identified by detections of characteristic spectral bands. We show how to define whether to accept an observed spectral feature as a detection when the target material is unknown. We also use remotely sensed spectra measured by the Thermal Emission Spectrometer (TES) and the Spatially Enhanced Broadband Array Spectrograph System to illustrate the importance of instrument parameters and surface properties on band detection limits and how the variation in signal-to-noise ratio with wavelength affects the bands that are most detectable for a given instrument. The spectrometer's sampling interval, spectral resolution, signal-to-noise ratio as a function of wavelength, and the sample's surface properties influence whether the instrument can detect a spectral feature exhibited by a material. As an example, in the 6-13 micrometer wavelength region, massive carbonates exhibit two bands: a very strong, broad feature at approximately 6.5 micrometers and a less intense, sharper band at approximately 11.25 micrometers. Although the 6.5-micrometer band is stronger and broader in laboratory-measured spectra, the 11.25-micrometer band will cause a more detectable feature in TES spectra.

  5. Man vs. Machine: A Junior-level Laboratory Exercise Comparing Human and Instrumental Detection Limits

    ERIC Educational Resources Information Center

    Elias, Ryan J.; Hopfer, Helene; Hofstaedter, Amanda N.; Hayes, John E.

    2017-01-01

    The human nose is a very sensitive detector and is able to detect potent aroma compounds down to low ng/L levels. These levels are often below detection limits of analytical instrumentation. The following laboratory exercise is designed to compare instrumental and human methods for the detection of volatile odor active compounds. Reference…

  6. The ultimate disposition of depleted uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated atmore » the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.« less

  7. Calculation of the detection limits for radionuclides identified in gamma-ray spectra based on post-processing peak analysis results.

    PubMed

    Korun, M; Vodenik, B; Zorko, B

    2018-03-01

    A new method for calculating the detection limits of gamma-ray spectrometry measurements is presented. The method is applicable for gamma-ray emitters, irrespective of the influences of the peaked background, the origin of the background and the overlap with other peaks. It offers the opportunity for multi-gamma-ray emitters to calculate the common detection limit, corresponding to more peaks. The detection limit is calculated by approximating the dependence of the uncertainty in the indication on its value with a second-order polynomial. In this approach the relation between the input quantities and the detection limit are described by an explicit expression and can be easy investigated. The detection limit is calculated from the data usually provided by the reports of peak-analyzing programs: the peak areas and their uncertainties. As a result, the need to use individual channel contents for calculating the detection limit is bypassed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Determination of target detection limits in hyperspectral data using band selection and dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Gross, W.; Boehler, J.; Twizer, K.; Kedem, B.; Lenz, A.; Kneubuehler, M.; Wellig, P.; Oechslin, R.; Schilling, H.; Rotman, S.; Middelmann, W.

    2016-10-01

    Hyperspectral remote sensing data can be used for civil and military applications to robustly detect and classify target objects. High spectral resolution of hyperspectral data can compensate for the comparatively low spatial resolution, which allows for detection and classification of small targets, even below image resolution. Hyperspectral data sets are prone to considerable spectral redundancy, affecting and limiting data processing and algorithm performance. As a consequence, data reduction strategies become increasingly important, especially in view of near-real-time data analysis. The goal of this paper is to analyze different strategies for hyperspectral band selection algorithms and their effect on subpixel classification for different target and background materials. Airborne hyperspectral data is used in combination with linear target simulation procedures to create a representative amount of target-to-background ratios for evaluation of detection limits. Data from two different airborne hyperspectral sensors, AISA Eagle and Hawk, are used to evaluate transferability of band selection when using different sensors. The same target objects were recorded to compare the calculated detection limits. To determine subpixel classification results, pure pixels from the target materials are extracted and used to simulate mixed pixels with selected background materials. Target signatures are linearly combined with different background materials in varying ratios. The commonly used classification algorithms Adaptive Coherence Estimator (ACE) is used to compare the detection limit for the original data with several band selection and data reduction strategies. The evaluation of the classification results is done by assuming a fixed false alarm ratio and calculating the mean target-to-background ratio of correctly detected pixels. The results allow drawing conclusions about specific band combinations for certain target and background combinations. Additionally

  9. In vitro bioassays for detecting dioxin-like activity--application potentials and limits of detection, a review.

    PubMed

    Eichbaum, Kathrin; Brinkmann, Markus; Buchinger, Sebastian; Reifferscheid, Georg; Hecker, Markus; Giesy, John P; Engwall, Magnus; van Bavel, Bert; Hollert, Henner

    2014-07-15

    Use of in vitro assays as screening tool to characterize contamination of a variety of environmental matrices has become an increasingly popular and powerful toolbox in the field of environmental toxicology. While bioassays cannot entirely substitute analytical methods such as gas chromatography-mass spectrometry (GC-MS), the increasing improvement of cell lines and standardization of bioassay procedures enhance their utility as bioanalytical pre-screening tests prior to more targeted chemical analytical investigations. Dioxin-receptor-based assays provide a holistic characterization of exposure to dioxin-like compounds (DLCs) by integrating their overall toxic potential, including potentials of unknown DLCs not detectable via e.g. GC-MS. Hence, they provide important additional information with respect to environmental risk assessment of DLCs. This review summarizes different in vitro bioassay applications for detection of DLCs and considers the comparability of bioassay and chemical analytically derived toxicity equivalents (TEQs) of different approaches and various matrices. These range from complex samples such as sediments through single reference to compound mixtures. A summary of bioassay derived detection limits (LODs) showed a number of current bioassays to be equally sensitive as chemical methodologies, but moreover revealed that most of the bioanalytical studies conducted to date did not report their LODs, which represents a limitation with regard to low potency samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Phase magnification by two-axis countertwisting for detection-noise robust interferometry

    NASA Astrophysics Data System (ADS)

    Anders, Fabian; Pezzè, Luca; Smerzi, Augusto; Klempt, Carsten

    2018-04-01

    Entanglement-enhanced atom interferometry has the potential of surpassing the standard quantum limit and eventually reaching the ultimate Heisenberg bound. The experimental progress is, however, hindered by various technical noise sources, including the noise in the detection of the output quantum state. The influence of detection noise can be largely overcome by exploiting echo schemes, where the entanglement-generating interaction is repeated after the interferometer sequence. Here, we propose an echo protocol that uses two-axis countertwisting as the main nonlinear interaction. We demonstrate that the scheme is robust to detection noise and its performance is superior compared to the already demonstrated one-axis twisting echo scheme. In particular, the sensitivity maintains the Heisenberg scaling in the limit of a large particle number. Finally, we show that the protocol can be implemented with spinor Bose-Einstein condensates. Our results thus outline a realistic approach to mitigate the detection noise in quantum-enhanced interferometry.

  11. Predictive inference for best linear combination of biomarkers subject to limits of detection.

    PubMed

    Coolen-Maturi, Tahani

    2017-08-15

    Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine, machine learning and credit scoring. The receiver operating characteristic (ROC) curve is a useful tool to assess the ability of a diagnostic test to discriminate between two classes or groups. In practice, multiple diagnostic tests or biomarkers are combined to improve diagnostic accuracy. Often, biomarker measurements are undetectable either below or above the so-called limits of detection (LoD). In this paper, nonparametric predictive inference (NPI) for best linear combination of two or more biomarkers subject to limits of detection is presented. NPI is a frequentist statistical method that is explicitly aimed at using few modelling assumptions, enabled through the use of lower and upper probabilities to quantify uncertainty. The NPI lower and upper bounds for the ROC curve subject to limits of detection are derived, where the objective function to maximize is the area under the ROC curve. In addition, the paper discusses the effect of restriction on the linear combination's coefficients on the analysis. Examples are provided to illustrate the proposed method. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. A non-earthcentric approach to life detection

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Nealson, K. H.

    2001-01-01

    The ultimate goal of a comprehensive life detection strategy is never to miss life when we encounter it. To accomplish this goal, we must define life in universal, that is, non-Earthcentric, measurable terms. Next, we must understand the nature of biosignatures observed from the measured parameters of life. And finally, we must have a clear idea of the end-member states for the search--what does life, past life, or no life look like (in terms of the measured parameters) at multiple spatial and temporal scales? If we can approach these problems both in the laboratory and in the field on Earth, then we have a chance of being able to detect life elsewhere in our solar system. What are the required limits of detection at each of those scales? What spatial, spectral, and temporal resolutions are necessary to detect life? These questions are actively being investigated in our group, and in this report, we present our strategy and approach to non-Earthcentric life detection.

  13. Physical Demands in Competitive Ultimate Frisbee.

    PubMed

    Krustrup, Peter; Mohr, Magni

    2015-12-01

    The objective was to study game demands in competitive ultimate Frisbee by performing match analysis during a game. Thirteen moderately trained (Yo-Yo intermittent recovery test levels 1 and 2 [Yo-Yo IR1 and IR2] performance: 1790 ± 382 m and 657 ± 225 m, respectively) competitive male ultimate Frisbee athletes played a game in which activity profile using Global Positioning System (GPS) technology and heart rate (HR) were recorded. Game HRmean and HRpeak were 82 ± 2% and 99 ± 1% of maximum heart rate, respectively. Total game distance was 4.70 ± 0.47 km, of which 0.63 ± 0.14 km was high-intensity running and 0.21 ± 0.11 km was sprinting. In the second half, 10% less (p ≤ 0.05) ground was covered with high-intensity running compared with the first half (0.28 ± 0.08 km vs. 0.31 ± 0.07 km). Less (43-47%; p ≤ 0.05) high-intensity running was performed in the third 9-minute period of each half compared with the first two 9-minute periods of the same half. Players performed 17.4 ± 5.7 sprints during the match. Yo-Yo IR2 performance correlated to the amount of high-intensity running in the last 9 minutes of both halves (r = 0.69, p ≤ 0.05), whereas Yo-Yo IR1 performance correlated with total sprint distance (r = 0.74, p ≤ 0.05). Ultimate Frisbee is an intense intermittent team sport with high cardiovascular loading and clear indications of fatigue toward the end of each half. Yo-Yo IR test performances correlate with physical match performance.

  14. 15 CFR 748.11 - Statement by Ultimate Consignee and Purchaser.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ultimate consignee, provided the required statements are contained in Block 24 on the license application... copy submitted by the applicant must be of sufficient quality to ensure all assertions made on the...) Form or letter. The ultimate consignee and purchaser must complete either a statement on company...

  15. 15 CFR 748.11 - Statement by Ultimate Consignee and Purchaser.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ultimate consignee, provided the required statements are contained in Block 24 on the license application... copy submitted by the applicant must be of sufficient quality to ensure all assertions made on the...) Form or letter. The ultimate consignee and purchaser must complete either a statement on company...

  16. Detectability Thresholds and Optimal Algorithms for Community Structure in Dynamic Networks

    NASA Astrophysics Data System (ADS)

    Ghasemian, Amir; Zhang, Pan; Clauset, Aaron; Moore, Cristopher; Peel, Leto

    2016-07-01

    The detection of communities within a dynamic network is a common means for obtaining a coarse-grained view of a complex system and for investigating its underlying processes. While a number of methods have been proposed in the machine learning and physics literature, we lack a theoretical analysis of their strengths and weaknesses, or of the ultimate limits on when communities can be detected. Here, we study the fundamental limits of detecting community structure in dynamic networks. Specifically, we analyze the limits of detectability for a dynamic stochastic block model where nodes change their community memberships over time, but where edges are generated independently at each time step. Using the cavity method, we derive a precise detectability threshold as a function of the rate of change and the strength of the communities. Below this sharp threshold, we claim that no efficient algorithm can identify the communities better than chance. We then give two algorithms that are optimal in the sense that they succeed all the way down to this threshold. The first uses belief propagation, which gives asymptotically optimal accuracy, and the second is a fast spectral clustering algorithm, based on linearizing the belief propagation equations. These results extend our understanding of the limits of community detection in an important direction, and introduce new mathematical tools for similar extensions to networks with other types of auxiliary information.

  17. 40 CFR Appendix B to Part 136 - Definition and Procedure for the Determination of the Method Detection Limit-Revision 1.11

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calculated method detection limit. To insure that the estimate of the method detection limit is a good...) where: MDL = the method detection limit t(n-1,1- α=.99) = the students' t value appropriate for a 99... Determination of the Method Detection Limit-Revision 1.11 B Appendix B to Part 136 Protection of Environment...

  18. Radiometric Short-Term Fourier Transform analysis of photonic Doppler velocimetry recordings and detectivity limit

    NASA Astrophysics Data System (ADS)

    Prudhomme, G.; Berthe, L.; Bénier, J.; Bozier, O.; Mercier, P.

    2017-01-01

    Photonic Doppler Velocimetry is a plug-and-play and versatile diagnostic used in dynamic physic experiments to measure velocities. When signals are analyzed using a Short-Time Fourier Transform, multiple velocities can be distinguished: for example, the velocities of moving particle-cloud appear on spectrograms. In order to estimate the back-scattering fluxes of target, we propose an original approach "PDV Radiometric analysis" resulting in an expression of time-velocity spectrograms coded in power units. Experiments involving micron-sized particles raise the issue of detection limit; particle-size limit is very difficult to evaluate. From the quantification of noise sources, we derive an estimation of the spectrogram noise leading to a detectivity limit, which may be compared to the fraction of the incoming power which has been back-scattered by the particle and then collected by the probe. This fraction increases with their size. At last, some results from laser-shock accelerated particles using two different PDV systems are compared: it shows the improvement of detectivity with respect to the Effective Number of Bits (ENOB) of the digitizer.

  19. Iron pentacarbonyl detection limits in the cigarette smoke matrix using FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Parrish, Milton E.; Plunkett, Susan E.; Harward, Charles N.

    2005-11-01

    Endogenous metals present in tobacco from agricultural practices have been purported to generate metal carbonyls in cigarette smoke. Transition metal catalysts, such as iron oxide, have been investigated for the reduction of carbon monoxide (CO) in cigarette smoke. These studies motivated the development of an analytical method to determine if iron pentacarbonyl [Fe(CO) 5] is present in mainstream smoke from cigarette models having cigarette paper made with iron oxide. An FT-IR puff-by-puff method was developed and the detection limit was determined using two primary reference spectra from different sources to estimate the amount of Fe(CO) 5 present in a high-pressure steel cylinder of CO. We do not detect Fe(CO) 5 in a single 35 mL puff from reference cigarettes or from those cigarette models having cigarette paper made with iron oxide, with a 30-ppbV limit of detection (LOD). Also, it was shown that a filter containing activated carbon would remove Fe(CO) 5.

  20. Quantum Limits of Space-to-Ground Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    Quantum limiting factors contributed by the transmitter, the optical channel, and the receiver of a space-to-ground optical communications link are described. Approaches to move toward the ultimate quantum limit are discussed.

  1. Bootstrap calculation of ultimate strength temperature maxima for neutron irradiated ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Obraztsov, S. M.; Konobeev, Yu. V.; Birzhevoy, G. A.; Rachkov, V. I.

    2006-12-01

    The dependence of mechanical properties of ferritic/martensitic (F/M) steels on irradiation temperature is of interest because these steels are used as structural materials for fast, fusion reactors and accelerator driven systems. Experimental data demonstrating temperature peaks in physical and mechanical properties of neutron irradiated pure iron, nickel, vanadium, and austenitic stainless steels are available in the literature. A lack of such an information for F/M steels forces one to apply a computational mathematical-statistical modeling methods. The bootstrap procedure is one of such methods that allows us to obtain the necessary statistical characteristics using only a sample of limited size. In the present work this procedure is used for modeling the frequency distribution histograms of ultimate strength temperature peaks in pure iron and Russian F/M steels EP-450 and EP-823. Results of fitting the sums of Lorentz or Gauss functions to the calculated distributions are presented. It is concluded that there are two temperature (at 360 and 390 °C) peaks of the ultimate strength in EP-450 steel and single peak at 390 °C in EP-823.

  2. Gravitational wave detection using laser interferometry beyond the standard quantum limit

    NASA Astrophysics Data System (ADS)

    Heurs, M.

    2018-05-01

    Interferometric gravitational wave detectors (such as advanced LIGO) employ high-power solid-state lasers to maximize their detection sensitivity and hence their reach into the universe. These sophisticated light sources are ultra-stabilized with regard to output power, emission frequency and beam geometry; this is crucial to obtain low detector noise. However, even when all laser noise is reduced as far as technically possible, unavoidable quantum noise of the laser still remains. This is a consequence of the Heisenberg Uncertainty Principle, the basis of quantum mechanics: in this case, it is fundamentally impossible to simultaneously reduce both the phase noise and the amplitude noise of a laser to arbitrarily low levels. This fact manifests in the detector noise budget as two distinct noise sources-photon shot noise and quantum radiation pressure noise-which together form a lower boundary for current-day gravitational wave detector sensitivities, the standard quantum limit of interferometry. To overcome this limit, various techniques are being proposed, among them different uses of non-classical light and alternative interferometer topologies. This article explains how quantum noise enters and manifests in an interferometric gravitational wave detector, and gives an overview of some of the schemes proposed to overcome this seemingly fundamental limitation, all aimed at the goal of higher gravitational wave event detection rates. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  3. Silicon wafer-based tandem cells: The ultimate photovoltaic solution?

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2014-03-01

    Recent large price reductions with wafer-based cells have increased the difficulty of dislodging silicon solar cell technology from its dominant market position. With market leaders expected to be manufacturing modules above 16% efficiency at 0.36/Watt by 2017, even the cost per unit area (60-70/m2) will be difficult for any thin-film photovoltaic technology to significantly undercut. This may make dislodgement likely only by appreciably higher energy conversion efficiency approaches. A silicon wafer-based cell able to capitalize on on-going cost reductions within the mainstream industry, but with an appreciably higher than present efficiency, might therefore provide the ultimate PV solution. With average selling prices of 156 mm quasi-square monocrystalline Si photovoltaic wafers recently approaching 1 (per wafer), wafers now provide clean, low cost templates for overgrowth of thin, wider bandgap high performance cells, nearly doubling silicon's ultimate efficiency potential. The range of possible Si-based tandem approaches is reviewed together with recent results and ultimate prospects.

  4. Inclusivity, exclusivity and limit of detection of commercially available real-time PCR assays for the detection of Salmonella.

    PubMed

    Margot, H; Stephan, R; Guarino, S; Jagadeesan, B; Chilton, D; O'Mahony, E; Iversen, C

    2013-08-01

    The traditional cultural detection of Salmonella spp. is both time- and labour-intensive. Salmonella is often a release criterion for the food industry and time to result is therefore an important factor. Storage of finished products and raw materials can be costly and may adversely impact available shelf-life. The application of real-time PCR for the detection of Salmonella spp. in food samples enables a potential time-saving of up to four days. The advancement of real-time PCR coupled with the development of commercially available systems in different formats has made this technology accessible for laboratories in an industrial environment. Ideally these systems are reliable and rapid as well as easy to use. The current study represents a comparative evaluation of seven commercial real-time PCR systems for the detection of Salmonella. Forty-nine target and twenty-nine non-target strains were included in the study to assess inclusivity and exclusivity. The limit of detection for each of the method was determined in four different food products. All systems evaluated were able to correctly identify the 49 Salmonella strains. Nevertheless, false positive results (Citrobacter spp.) were obtained with four of the seven systems. In milk powder and bouillon powder, the limit of detection was similar for all systems, suggesting a minimal matrix effect with these samples. Conversely, for black tea and cocoa powder some systems were prone to inhibition from matrix components. Up to 100% of the samples were inhibited using the proprietary extracts but inhibition could be reduced considerably by application of a DNA clean-up kit. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Assessment of target detection limits in hyperspectral data

    NASA Astrophysics Data System (ADS)

    Gross, W.; Boehler, J.; Schilling, H.; Middelmann, W.; Weyermann, J.; Wellig, P.; Oechslin, R.; Kneubuehler, M.

    2015-10-01

    Hyperspectral remote sensing data can be used for civil and military applications to detect and classify target objects that cannot be reliably separated using broadband sensors. The comparably low spatial resolution is compensated by the fact that small targets, even below image resolution, can still be classified. The goal of this paper is to determine the target size to spatial resolution ratio for successful classification of different target and background materials. Airborne hyperspectral data is used to simulate data with known mixture ratios and to estimate the detection threshold for given false alarm rates. The data was collected in July 2014 over Greding, Germany, using airborne aisaEAGLE and aisaHAWK hyperspectral sensors. On the ground, various target materials were placed on natural background. The targets were four quadratic molton patches with an edge length of 7 meters in the colors black, white, grey and green. Also, two different types of polyethylene (camouflage nets) with an edge length of approximately 5.5 meters were deployed. Synthetic data is generated from the original data using spectral mixtures. Target signatures are linearly combined with different background materials in specific ratios. The simulated mixtures are appended to the original data and the target areas are removed for evaluation. Commonly used classification algorithms, e.g. Matched Filtering, Adaptive Cosine Estimator are used to determine the detection limit. Fixed false alarm rates are employed to find and analyze certain regions where false alarms usually occur first. A combination of 18 targets and 12 backgrounds is analyzed for three VNIR and two SWIR data sets of the same area.

  6. Ultimate biodegradability and ecotoxicity of orally administered antidiabetic drugs.

    PubMed

    Markiewicz, Marta; Jungnickel, Christian; Stolte, Stefan; Białk-Bielińska, Anna; Kumirska, Jolanta; Mrozik, Wojciech

    2017-07-05

    Hypoglycaemic pharmaceuticals are recently more and more frequently detected in the environment. In our previous study, we have shown that even though many of them undergo significant primary degradation some are transformed to stable products or undergo such transformation that a large part of the structure is still preserved. One of the main routes of elimination from wastewaters or surface waters is biodegradation and a lack thereof leads to accumulation in the environment. Within this work we tested the ultimate biodegradability of six oral antidiabetics: metformin and its main metabolite guanylurea, acarbose, glibenclamide, gliclazide, glimepiride and repaglinide. We also compared the experimental results obtained in this and accompanying work with models designed to predict biodegradability and showed that these models are only moderately successful. Additionally, we examined these compounds in acute Daphnia magna test to check if they might pose an ecotoxicological threat. Combining the results of biodegradability and toxicity tests allows a preliminary assessment of their potential environmental impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. What are the ultimate limits to computational techniques: verifier theory and unverifiability

    NASA Astrophysics Data System (ADS)

    Yampolskiy, Roman V.

    2017-09-01

    Despite significant developments in proof theory, surprisingly little attention has been devoted to the concept of proof verifiers. In particular, the mathematical community may be interested in studying different types of proof verifiers (people, programs, oracles, communities, superintelligences) as mathematical objects. Such an effort could reveal their properties, their powers and limitations (particularly in human mathematicians), minimum and maximum complexity, as well as self-verification and self-reference issues. We propose an initial classification system for verifiers and provide some rudimentary analysis of solved and open problems in this important domain. Our main contribution is a formal introduction of the notion of unverifiability, for which the paper could serve as a general citation in domains of theorem proving, as well as software and AI verification.

  8. 26 CFR 48.6427-8 - Diesel fuel and kerosene; claims by ultimate purchasers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; claims by ultimate... kerosene; claims by ultimate purchasers. (a) Overview. This section provides rules under which ultimate purchasers of taxed diesel fuel and kerosene may claim the income tax credits or payments allowed by section...

  9. 26 CFR 48.6427-8 - Diesel fuel and kerosene; claims by ultimate purchasers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Diesel fuel and kerosene; claims by ultimate... kerosene; claims by ultimate purchasers. (a) Overview. This section provides rules under which ultimate purchasers of taxed diesel fuel and kerosene may claim the income tax credits or payments allowed by section...

  10. 26 CFR 48.6427-8 - Diesel fuel and kerosene; claims by ultimate purchasers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Diesel fuel and kerosene; claims by ultimate... kerosene; claims by ultimate purchasers. (a) Overview. This section provides rules under which ultimate purchasers of taxed diesel fuel and kerosene may claim the income tax credits or payments allowed by section...

  11. 26 CFR 48.6427-8 - Diesel fuel and kerosene; claims by ultimate purchasers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Diesel fuel and kerosene; claims by ultimate... kerosene; claims by ultimate purchasers. (a) Overview. This section provides rules under which ultimate purchasers of taxed diesel fuel and kerosene may claim the income tax credits or payments allowed by section...

  12. A fuel-limited isothermal DNA machine for the sensitive detection of cellular deoxyribonucleoside triphosphates.

    PubMed

    Dong, Jiantong; Wu, Tongbo; Xiao, Yu; Xu, Lei; Fang, Simin; Zhao, Meiping

    2016-09-29

    A fuel-limited isothermal DNA machine has been built for the sensitive fluorescence detection of cellular deoxyribonucleoside triphosphates (dNTPs) at the fmol level, which greatly reduces the required sample cell number. Upon the input of the limiting target dNTP, the machine runs automatically at 37 °C without the need for higher temperature.

  13. Gravitational wave detection using laser interferometry beyond the standard quantum limit.

    PubMed

    Heurs, M

    2018-05-28

    Interferometric gravitational wave detectors (such as advanced LIGO) employ high-power solid-state lasers to maximize their detection sensitivity and hence their reach into the universe. These sophisticated light sources are ultra-stabilized with regard to output power, emission frequency and beam geometry; this is crucial to obtain low detector noise. However, even when all laser noise is reduced as far as technically possible, unavoidable quantum noise of the laser still remains. This is a consequence of the Heisenberg Uncertainty Principle, the basis of quantum mechanics: in this case, it is fundamentally impossible to simultaneously reduce both the phase noise and the amplitude noise of a laser to arbitrarily low levels. This fact manifests in the detector noise budget as two distinct noise sources-photon shot noise and quantum radiation pressure noise-which together form a lower boundary for current-day gravitational wave detector sensitivities, the standard quantum limit of interferometry. To overcome this limit, various techniques are being proposed, among them different uses of non-classical light and alternative interferometer topologies. This article explains how quantum noise enters and manifests in an interferometric gravitational wave detector, and gives an overview of some of the schemes proposed to overcome this seemingly fundamental limitation, all aimed at the goal of higher gravitational wave event detection rates.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  14. Ultimate Longitudinal Strength of Composite Ship Hulls

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangming; Huang, Lingkai; Zhu, Libao; Tang, Yuhang; Wang, Anwen

    2017-01-01

    A simple analytical model to estimate the longitudinal strength of ship hulls in composite materials under buckling, material failure and ultimate collapse is presented in this paper. Ship hulls are regarded as assemblies of stiffened panels which idealized as group of plate-stiffener combinations. Ultimate strain of the plate-stiffener combination is predicted under buckling or material failure with composite beam-column theory. The effects of initial imperfection of ship hull and eccentricity of load are included. Corresponding longitudinal strengths of ship hull are derived in a straightforward method. A longitudinally framed ship hull made of symmetrically stacked unidirectional plies under sagging is analyzed. The results indicate that present analytical results have a good agreement with FEM method. The initial deflection of ship hull and eccentricity of load can dramatically reduce the bending capacity of ship hull. The proposed formulations provide a simple but useful tool for the longitudinal strength estimation in practical design.

  15. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy.

    PubMed

    Lübbe, Jannis; Temmen, Matthias; Rode, Sebastian; Rahe, Philipp; Kühnle, Angelika; Reichling, Michael

    2013-01-01

    The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip-surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d(z) at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d(Δ) (f) at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip-surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured d(z), we predict d(Δ) (f) for specific filter settings, a given level of detection-system noise spectral density d(z) (ds) and the cantilever-thermal-noise spectral density d(z) (th). We find an excellent agreement between the calculated and measured values for d(Δ) (f). Furthermore, we demonstrate that thermal noise in d(Δ) (f), defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth.

  16. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

    PubMed Central

    Lübbe, Jannis; Temmen, Matthias; Rode, Sebastian; Rahe, Philipp; Kühnle, Angelika

    2013-01-01

    Summary The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip–surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d z at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d Δ f at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip–surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured d z, we predict d Δ f for specific filter settings, a given level of detection-system noise spectral density d z ds and the cantilever-thermal-noise spectral density d z th. We find an excellent agreement between the calculated and measured values for d Δ f. Furthermore, we demonstrate that thermal noise in d Δ f, defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth. PMID:23400758

  17. Combined wind turbine fatigue and ultimate load reduction by individual blade control

    NASA Astrophysics Data System (ADS)

    Han, Y.; Leithead, W. E.

    2014-06-01

    If each blade of the wind turbine has individual pitch actuator, there is possibility of employing the pitch system to mitigate structural loads through advanced control methods. Previously, considerable reduction of blade lifetime equivalent fatigue loads has been achieved by Individual Blade Control (IBC) and in addition, it has also been shown the potential in blade ultimate loads reduction. However, both fatigue and ultimate loads impact on the design and life of wind turbine blades. In this paper, the design and application of IBC that concurrently reduce both blade fatigue and ultimate loads is investigated. The contributions of blade load spectral components, which are 1P, 2P and edgewise mode from blade in-plane and/or out-of-plane bending moments, are firstly explored. Four different control options for reducing various combinations of these load components are compared. In response to the different spectral peaks of both fatigue and ultimate loads, the controller has been designed so that it can act on different frequency components which vary with wind speed. The performance of the IBC controller on fatigue and ultimate load reduction is assessed by simulating a 5MW exemplar wind turbine. Simulation results show that with a proper selection of controlling inputs at different wind speed, the use of a single combined IBC can achieve satisfactory reduction on both fatigue and ultimate loads.

  18. Excess glycogen does not resolve high ultimate pH of oxidative muscle.

    PubMed

    England, Eric M; Matarneh, Sulaiman K; Oliver, Emily M; Apaoblaza, Ariel; Scheffler, Tracy L; Shi, Hao; Gerrard, David E

    2016-04-01

    Skeletal muscle glycogen content can impact the extent of postmortem pH decline. Compared to glycolytic muscles, oxidative muscles contain lower glycogen levels antemortem which may contribute to the higher ultimate pH. In an effort to explore further the participation of glycogen in postmortem metabolism, we postulated that increasing the availability of glycogen would drive additional pH decline in oxidative muscles to equivalent pH values similar to the ultimate pH of glycolytic muscles. Glycolysis and pH declines were compared in porcine longissimus lumborum (glycolytic) and masseter (oxidative) muscles using an in vitro system in the presence of excess glycogen. The ultimate pH of the system containing longissimus lumborum reached a value similar to that observed in intact muscle. The pH decline of the system containing masseter samples stopped prematurely resulting in a higher ultimate pH which was similar to that of intact masseter muscle. To investigate further, we titrated powdered longissimus lumborum and masseter samples in the reaction buffer. As the percentage of glycolytic sample increased, the ultimate pH decreased. These data show that oxidative muscle produces meat with a high ultimate pH regardless of glycogen content and suggest that inherent muscle factors associated with glycolytic muscle control the extent of pH decline in pig muscles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Trace element analysis by EPMA in geosciences: detection limit, precision and accuracy

    NASA Astrophysics Data System (ADS)

    Batanova, V. G.; Sobolev, A. V.; Magnin, V.

    2018-01-01

    Use of the electron probe microanalyser (EPMA) for trace element analysis has increased over the last decade, mainly because of improved stability of spectrometers and the electron column when operated at high probe current; development of new large-area crystal monochromators and ultra-high count rate spectrometers; full integration of energy-dispersive / wavelength-dispersive X-ray spectrometry (EDS/WDS) signals; and the development of powerful software packages. For phases that are stable under a dense electron beam, the detection limit and precision can be decreased to the ppm level by using high acceleration voltage and beam current combined with long counting time. Data on 10 elements (Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, Zn) in olivine obtained on a JEOL JXA-8230 microprobe with tungsten filament show that the detection limit decreases proportionally to the square root of counting time and probe current. For all elements equal or heavier than phosphorus (Z = 15), the detection limit decreases with increasing accelerating voltage. The analytical precision for minor and trace elements analysed in olivine at 25 kV accelerating voltage and 900 nA beam current is 4 - 18 ppm (2 standard deviations of repeated measurements of the olivine reference sample) and is similar to the detection limit of corresponding elements. To analyse trace elements accurately requires careful estimation of background, and consideration of sample damage under the beam and secondary fluorescence from phase boundaries. The development and use of matrix reference samples with well-characterised trace elements of interest is important for monitoring and improving of the accuracy. An evaluation of the accuracy of trace element analyses in olivine has been made by comparing EPMA data for new reference samples with data obtained by different in-situ and bulk analytical methods in six different laboratories worldwide. For all elements, the measured concentrations in the olivine reference sample

  20. Finite-size analysis of the detectability limit of the stochastic block model

    NASA Astrophysics Data System (ADS)

    Young, Jean-Gabriel; Desrosiers, Patrick; Hébert-Dufresne, Laurent; Laurence, Edward; Dubé, Louis J.

    2017-06-01

    It has been shown in recent years that the stochastic block model is sometimes undetectable in the sparse limit, i.e., that no algorithm can identify a partition correlated with the partition used to generate an instance, if the instance is sparse enough and infinitely large. In this contribution, we treat the finite case explicitly, using arguments drawn from information theory and statistics. We give a necessary condition for finite-size detectability in the general SBM. We then distinguish the concept of average detectability from the concept of instance-by-instance detectability and give explicit formulas for both definitions. Using these formulas, we prove that there exist large equivalence classes of parameters, where widely different network ensembles are equally detectable with respect to our definitions of detectability. In an extensive case study, we investigate the finite-size detectability of a simplified variant of the SBM, which encompasses a number of important models as special cases. These models include the symmetric SBM, the planted coloring model, and more exotic SBMs not previously studied. We conclude with three appendices, where we study the interplay of noise and detectability, establish a connection between our information-theoretic approach and random matrix theory, and provide proofs of some of the more technical results.

  1. Power generation costs and ultimate thermal hydraulic power limits in hypothetical advanced designs with natural circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffey, R.B.; Rohatgi, U.S.

    Maximum power limits for hypothetical designs of natural circulation plants can be described analytically. The thermal hydraulic design parameters are those which limit the flow, being the elevations, flow areas, and loss coefficients. WE have found some simple ``design`` equations for natural circulation flow to power ratio, and for the stability limit. The analysis of historical and available data for maximum capacity factor estimation shows 80% to be reasonable and achievable. The least cost is obtained by optimizing both hypothetical plant performance for a given output,a nd the plant layout and design. There is also scope to increase output andmore » reduce cost by considering design variations of primary and secondary pressure, and by optimizing component elevations and loss coefficients. The design limits for each are set by stability and maximum flow considerations, which deserve close and careful evaluation.« less

  2. 75 FR 60133 - Agency Information Collection Activities: Declaration of Ultimate Consignee That Articles Were...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Activities: Declaration of Ultimate Consignee That Articles Were Exported for Temporary Scientific or... the Declaration of Ultimate Consignee That Articles Were Exported for Temporary Scientific or...: Title: Declaration of Ultimate Consignee That Articles Were Exported for Temporary Scientific or...

  3. Signal averaging limitations in heterodyne- and direct-detection laser remote sensing measurements

    NASA Technical Reports Server (NTRS)

    Menyuk, N.; Killinger, D. K.; Menyuk, C. R.

    1983-01-01

    The improvement in measurement uncertainty brought about by the averaging of increasing numbers of pulse return signals in both heterodyne- and direct-detection lidar systems is investigated. A theoretical analysis is presented which shows the standard deviation of the mean measurement to decrease as the inverse square root of the number of measurements, except in the presence of temporal correlation. Experimental measurements based on a dual-hybrid-TEA CO2 laser differential absorption lidar system are reported which demonstrate that the actual reduction in the standard deviation of the mean in both heterodyne- and direct-detection systems is much slower than the inverse square-root dependence predicted for uncorrelated signals, but is in agreement with predictions in the event of temporal correlation. Results thus favor the use of direct detection at relatively short range where the lower limit of the standard deviation of the mean is about 2 percent, but advantages of heterodyne detection at longer ranges are noted.

  4. Detection limits of the strip test and PCR for genetically modified corn in Brazil.

    PubMed

    Nascimento, V E; Von Pinho, É V R; Von Pinho, R G; do Nascimento, A D

    2012-08-16

    Brazilian legislation establishes a labeling limit for products that contain more than 1% material from genetically modified organisms (GMOs). We assessed the sensitivity of the lateral flow strip test in detection of the GMO corn varieties Bt11 and MON810 and the specificity and sensitivity of PCR techniques for their detection. For the strip test, the GMO seeds were mixed with conventional seeds at levels of 0.2, 0.4 and 0.8% for Bt11, and 0.4, 0.8 and 1.6% for MON810. Three different methodologies were assessed and whole seeds, their endosperm and embryonic axis were used. For the PCR technique, the GMO seeds of each of the two varieties were mixed with conventional seeds at levels of 20, 10, 5, 2, 1, and 0.5%. The seeds were ground and the DNA extracted. For detection of the GMO material, specific primers were used for MON810 and Bt11 and maize zein as an endogenous control. The sensitivity of the strip test varied for both maize varieties and methodologies. The test was positive for Bt11 only at 0.8%, in contrast with the detection limit of 0.4% indicated by the manufacturer. In the multiplex PCR, the primers proved to be specific for the different varieties. These varieties were detected in samples with one GMO seed in 100. Thus, this technique proved to be efficient in detecting contaminations equal to or greater than 1%.

  5. Ultimate Strength of Ferro-Geopolymer Composite Built-Up I Joist

    NASA Astrophysics Data System (ADS)

    Vipin, K. T.; Ganesan, N.; Indira, P. V.

    2017-07-01

    An experimental study was carried out to study the behaviour of ferro-geopolymer built-up I- joist with different types of mesh reinforcements under flexure. Mesh reinforcements considered in this study are square welded meshes, square woven meshes and hexagonal meshes. First crack load as well as ultimate strength of ferro-geopolymer built-up I-joist in flexure was obtained. An attempt was made to predict the first crack load and ultimate moment capacity of the specimen.

  6. 78 FR 69101 - Agency Information Collection Activities: Declaration of the Ultimate Consignee That Articles...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... Activities: Declaration of the Ultimate Consignee That Articles Were Exported for Temporary Scientific or... the Declaration of the Ultimate Consignee that Articles were Exported for Temporary Scientific or...: Title: Declaration of the Ultimate Consignee that Articles were Exported for Temporary Scientific or...

  7. A socio-psychological investigation into limitations and incentives concerning reporting a clinically suspect situation aimed at improving early detection of classical swine fever outbreaks.

    PubMed

    Elbers, A R W; Gorgievski-Duijvesteijn, M J; van der Velden, P G; Loeffen, W L A; Zarafshani, K

    2010-04-21

    The aim of this study was to identify limitations and incentives in reporting clinically suspect situations, possibly caused by classical swine fever (CSF), to veterinary authorities with the ultimate aim to facilitate early detection of CSF outbreaks. Focus group sessions were held with policy makers from the veterinary authorities, and representatives of veterinary practitioners and pig farmer unions. Personal interviews with a small group of pig farmers and practitioners were held to check limitations raised and solutions proposed during the focus group sessions. An electronic questionnaire was mailed to pig farmers and practitioners to investigate perceptions and attitudes with respect to clinically suspect situations possibly caused by CSF. After triangulating the responses of veterinary authorities, veterinary practitioners and farmers, six themes emerged across all groups: (1) lack of knowledge on the early signs of CSF; (2) guilt, shame and prejudice; (3) negative opinion on control measures; (4) dissatisfaction with post-reporting procedures; (5) lack of trust in government bodies; (6) uncertainty and lack of transparency of reporting procedures. The following solutions to facilitate early detection of CSF were put forward: (a) development of a clinical decision-support system for vets and farmers, in order to get faster diagnosis and detection of CSF; (b) possibility to submit blood samples directly to the reference laboratory to exclude CSF in a clinical situation with non-specific clinical signs, without isolation of the farm and free of charge for the individual farmer; (c) decrease social and economic consequences of reporting CSF, for example by improving the public opinion on first reports; (d) better schooling of veterinary officers to deal with emotions and insecurity of farmers in the process after reporting; (e) better communication of rules and regulations, where to report, what will happen next; (f) up-to-date website with information and

  8. Ultimate compression after impact load prediction in graphite/epoxy coupons using neural network and multivariate statistical analyses

    NASA Astrophysics Data System (ADS)

    Gregoire, Alexandre David

    2011-07-01

    The goal of this research was to accurately predict the ultimate compressive load of impact damaged graphite/epoxy coupons using a Kohonen self-organizing map (SOM) neural network and multivariate statistical regression analysis (MSRA). An optimized use of these data treatment tools allowed the generation of a simple, physically understandable equation that predicts the ultimate failure load of an impacted damaged coupon based uniquely on the acoustic emissions it emits at low proof loads. Acoustic emission (AE) data were collected using two 150 kHz resonant transducers which detected and recorded the AE activity given off during compression to failure of thirty-four impacted 24-ply bidirectional woven cloth laminate graphite/epoxy coupons. The AE quantification parameters duration, energy and amplitude for each AE hit were input to the Kohonen self-organizing map (SOM) neural network to accurately classify the material failure mechanisms present in the low proof load data. The number of failure mechanisms from the first 30% of the loading for twenty-four coupons were used to generate a linear prediction equation which yielded a worst case ultimate load prediction error of 16.17%, just outside of the +/-15% B-basis allowables, which was the goal for this research. Particular emphasis was placed upon the noise removal process which was largely responsible for the accuracy of the results.

  9. Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors

    DOE PAGES

    Wu, Ting; Alharbi, Abdullah; You, Kai-Dyi; ...

    2017-06-21

    Dual-gate field-effect biosensors (bioFETs) with asymmetric gate capacitances were shown to surpass the Nernst limit of 59 mV/pH. However, previous studies have conflicting findings on the effect of the capacitive amplification scheme on the sensor detection limit, which is inversely proportional to the signal-to-noise ratio (SNR). In this paper, we present a systematic experimental investigation of the SNR using ultrathin silicon transistors. Our sensors operate at low voltage and feature asymmetric front and back oxide capacitances with asymmetry factors of 1.4 and 2.3. We demonstrate that in the dual-gate configuration, the response of our bioFETs to the pH change increasesmore » proportional to the asymmetry factor and indeed exceeds the Nernst limit. Further, our results reveal that the noise amplitude also increases in proportion to the asymmetry factor. We establish that the commensurate increase of the noise amplitude originates from the intrinsic low-frequency characteristic of the sensor noise, dominated by number fluctuation. Finally, these findings suggest that this capacitive signal amplification scheme does not improve the intrinsic detection limit of the dual-gate biosensors.« less

  10. Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ting; Alharbi, Abdullah; You, Kai-Dyi

    Dual-gate field-effect biosensors (bioFETs) with asymmetric gate capacitances were shown to surpass the Nernst limit of 59 mV/pH. However, previous studies have conflicting findings on the effect of the capacitive amplification scheme on the sensor detection limit, which is inversely proportional to the signal-to-noise ratio (SNR). In this paper, we present a systematic experimental investigation of the SNR using ultrathin silicon transistors. Our sensors operate at low voltage and feature asymmetric front and back oxide capacitances with asymmetry factors of 1.4 and 2.3. We demonstrate that in the dual-gate configuration, the response of our bioFETs to the pH change increasesmore » proportional to the asymmetry factor and indeed exceeds the Nernst limit. Further, our results reveal that the noise amplitude also increases in proportion to the asymmetry factor. We establish that the commensurate increase of the noise amplitude originates from the intrinsic low-frequency characteristic of the sensor noise, dominated by number fluctuation. Finally, these findings suggest that this capacitive signal amplification scheme does not improve the intrinsic detection limit of the dual-gate biosensors.« less

  11. Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors.

    PubMed

    Wu, Ting; Alharbi, Abdullah; You, Kai-Dyi; Kisslinger, Kim; Stach, Eric A; Shahrjerdi, Davood

    2017-07-25

    Dual-gate field-effect biosensors (bioFETs) with asymmetric gate capacitances were shown to surpass the Nernst limit of 59 mV/pH. However, previous studies have conflicting findings on the effect of the capacitive amplification scheme on the sensor detection limit, which is inversely proportional to the signal-to-noise ratio (SNR). Here, we present a systematic experimental investigation of the SNR using ultrathin silicon transistors. Our sensors operate at low voltage and feature asymmetric front and back oxide capacitances with asymmetry factors of 1.4 and 2.3. We demonstrate that in the dual-gate configuration, the response of our bioFETs to the pH change increases proportional to the asymmetry factor and indeed exceeds the Nernst limit. Further, our results reveal that the noise amplitude also increases in proportion to the asymmetry factor. We establish that the commensurate increase of the noise amplitude originates from the intrinsic low-frequency characteristic of the sensor noise, dominated by number fluctuation. These findings suggest that this capacitive signal amplification scheme does not improve the intrinsic detection limit of the dual-gate biosensors.

  12. Evaluation of a single-item screening question to detect limited health literacy in peritoneal dialysis patients.

    PubMed

    Jain, Deepika; Sheth, Heena; Bender, Filitsa H; Weisbord, Steven D; Green, Jamie A

    2014-01-01

    Studies have shown that a single-item question might be useful in identifying patients with limited health literacy. However, the utility of the approach has not been studied in patients receiving maintenance peritoneal dialysis (PD). We assessed health literacy in a cohort of 31 PD patients by administering the Rapid Estimate of Adult Literacy in Medicine (REALM) and a single-item health literacy (SHL) screening question "How confident are you filling out medical forms by yourself?" (Extremely, Quite a bit, Somewhat, A little bit, or Not at all). To determine the accuracy of the single-item question for detecting limited health literacy, we performed sensitivity and specificity analyses of the SHL and plotted the area under the receiver operating characteristic (AUROC) curve using the REALM as a reference standard. Using a cut-off of "Somewhat" or less confident, the sensitivity of the SHL for detecting limited health literacy was 80%, and the specificity was 88%. The positive likelihood ratio was 6.9. The SHL had an AUROC of 0.79 (95% confidence interval: 0.52 to 1.00). Our results show that the SHL could be effective in detecting limited health literacy in PD patients.

  13. ULTIMATE: a deployable multiple integral field unit for Subaru

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Zhelem, Ross; Brown, David; Staszak, Nicholas F.; Lidman, Chris; Nataf, David M.; Casey, Andrew R.; Xavier, Pascal; Sheinis, Andrew; Gillingham, Peter; Tims, Julia; Lawrence, Jon; Bryant, Julia; Sharp, Rob

    2016-08-01

    ULTIMATE is an instrument concept under development at the AAO, for the Subaru Telescope, which will have the unique combination of ground layer adaptive optics feeding multiple deployable integral field units. This will allow ULTIMATE to probe unexplored parameter space, enabling science cases such as the evolution of galaxies at z 0:5 to 1.5, and the dark matter content of the inner part of our Galaxy. ULTIMATE will use Starbugs to position between 7 and 13 IFUs over a 14 × 8 arcmin field-of-view, pro- vided by a new wide-field corrector. All Starbugs can be positioned simultaneously, to an accuracy of better than 5 milli-arcsec within the typical slew-time of the telescope, allowing for very efficient re-configuration between observations. The IFUs will feed either the near-infrared nuMOIRCS or the visible/ near-infrared PFS spectrographs, or both. Future possible upgrades include the possibility of purpose built spectrographs and incorporating OH suppression using fibre Bragg gratings. We describe the science case and resulting design requirements, the baseline instrument concept, and the expected performance of the instrument.

  14. First direct detection limits on sub-GeV dark matter from XENON10.

    PubMed

    Essig, Rouven; Manalaysay, Aaron; Mardon, Jeremy; Sorensen, Peter; Volansky, Tomer

    2012-07-13

    The first direct detection limits on dark matter in the MeV to GeV mass range are presented, using XENON10 data. Such light dark matter can scatter with electrons, causing ionization of atoms in a detector target material and leading to single- or few-electron events. We use 15  kg day of data acquired in 2006 to set limits on the dark-matter-electron scattering cross section. The strongest bound is obtained at 100 MeV where σ(e)<3×10(-38)  cm2 at 90% C.L., while dark-matter masses between 20 MeV and 1 GeV are bounded by σ(e)<10(-37)  cm2 at 90% C.L. This analysis provides a first proof of principle that direct detection experiments can be sensitive to dark-matter candidates with masses well below the GeV scale.

  15. Power-limited low-thrust trajectory optimization with operation point detection

    NASA Astrophysics Data System (ADS)

    Chi, Zhemin; Li, Haiyang; Jiang, Fanghua; Li, Junfeng

    2018-06-01

    The power-limited solar electric propulsion system is considered more practical in mission design. An accurate mathematical model of the propulsion system, based on experimental data of the power generation system, is used in this paper. An indirect method is used to deal with the time-optimal and fuel-optimal control problems, in which the solar electric propulsion system is described using a finite number of operation points, which are characterized by different pairs of thruster input power. In order to guarantee the integral accuracy for the discrete power-limited problem, a power operation detection technique is embedded in the fourth-order Runge-Kutta algorithm with fixed step. Moreover, the logarithmic homotopy method and normalization technique are employed to overcome the difficulties caused by using indirect methods. Three numerical simulations with actual propulsion systems are given to substantiate the feasibility and efficiency of the proposed method.

  16. STATISTICAL METHODS FOR ENVIRONMENTAL APPLICATIONS USING DATA SETS WITH BELOW DETECTION LIMIT OBSERVATIONS AS INCORPORTED IN PROUCL 4.0

    EPA Science Inventory

    Nondetect (ND) or below detection limit (BDL) results cannot be measured accurately, and, therefore, are reported as less than certain detection limit (DL) values. However, since the presence of some contaminants (e.g., dioxin) in environmental media may pose a threat to human he...

  17. Detection limit of intragenic deletions with targeted array comparative genomic hybridization

    PubMed Central

    2013-01-01

    Background Pathogenic mutations range from single nucleotide changes to deletions or duplications that encompass a single exon to several genes. The use of gene-centric high-density array comparative genomic hybridization (aCGH) has revolutionized the detection of intragenic copy number variations. We implemented an exon-centric design of high-resolution aCGH to detect single- and multi-exon deletions and duplications in a large set of genes using the OGT 60 K and 180 K arrays. Here we describe the molecular characterization and breakpoint mapping of deletions at the smaller end of the detectable range in several genes using aCGH. Results The method initially implemented to detect single to multiple exon deletions, was able to detect deletions much smaller than anticipated. The selected deletions we describe vary in size, ranging from over 2 kb to as small as 12 base pairs. The smallest of these deletions are only detectable after careful manual review during data analysis. Suspected deletions smaller than the detection size for which the method was optimized, were rigorously followed up and confirmed with PCR-based investigations to uncover the true detection size limit of intragenic deletions with this technology. False-positive deletion calls often demonstrated single nucleotide changes or an insertion causing lower hybridization of probes demonstrating the sensitivity of aCGH. Conclusions With optimizing aCGH design and careful review process, aCGH can uncover intragenic deletions as small as dozen bases. These data provide insight that will help optimize probe coverage in array design and illustrate the true assay sensitivity. Mapping of the breakpoints confirms smaller deletions and contributes to the understanding of the mechanism behind these events. Our knowledge of the mutation spectra of several genes can be expected to change as previously unrecognized intragenic deletions are uncovered. PMID:24304607

  18. ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES BASED ON PULSAR-TIMING ARRAY LIMITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, S. R.; Vallisneri, M.; Ellis, J. A.

    2016-03-01

    Decade-long timing observations of arrays of millisecond pulsars have placed highly constraining upper limits on the amplitude of the nanohertz gravitational-wave stochastic signal from the mergers of supermassive black hole binaries (∼10{sup −15} strain at f = 1 yr{sup −1}). These limits suggest that binary merger rates have been overestimated, or that environmental influences from nuclear gas or stars accelerate orbital decay, reducing the gravitational-wave signal at the lowest, most sensitive frequencies. This prompts the question whether nanohertz gravitational waves (GWs) are likely to be detected in the near future. In this Letter, we answer this question quantitatively using simple statistical estimates,more » deriving the range of true signal amplitudes that are compatible with current upper limits, and computing expected detection probabilities as a function of observation time. We conclude that small arrays consisting of the pulsars with the least timing noise, which yield the tightest upper limits, have discouraging prospects of making a detection in the next two decades. By contrast, we find large arrays are crucial to detection because the quadrupolar spatial correlations induced by GWs can be well sampled by many pulsar pairs. Indeed, timing programs that monitor a large and expanding set of pulsars have an ∼80% probability of detecting GWs within the next 10 years, under assumptions on merger rates and environmental influences ranging from optimistic to conservative. Even in the extreme case where 90% of binaries stall before merger and environmental coupling effects diminish low-frequency gravitational-wave power, detection is delayed by at most a few years.« less

  19. Improvements of low-detection-limit filter-free fluorescence sensor developed by charge accumulation operation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kiyotsugu; Choi, Yong Joon; Moriwaki, Yu; Hizawa, Takeshi; Iwata, Tatsuya; Dasai, Fumihiro; Kimura, Yasuyuki; Takahashi, Kazuhiro; Sawada, Kazuaki

    2017-04-01

    We developed a low-detection-limit filter-free fluorescence sensor by a charge accumulation technique. For charge accumulation, a floating diffusion amplifier (FDA), which included a floating diffusion capacitor, a transfer gate, and a source follower circuit, was used. To integrate CMOS circuits with the filter-free fluorescence sensor, we adopted a triple-well process to isolate transistors from the sensor on a single chip. We detected 0.1 nW fluorescence under the illumination of excitation light by 1.5 ms accumulation, which was one order of magnitude greater than that of a previous current detection sensor.

  20. Procedures for determination of detection limits: application to high-performance liquid chromatography analysis of fat-soluble vitamins in human serum.

    PubMed

    Browne, Richard W; Whitcomb, Brian W

    2010-07-01

    Problems in the analysis of laboratory data commonly arise in epidemiologic studies in which biomarkers subject to lower detection thresholds are used. Various thresholds exist including limit of detection (LOD), limit of quantification (LOQ), and limit of blank (LOB). Choosing appropriate strategies for dealing with data affected by such limits relies on proper understanding of the nature of the detection limit and its determination. In this paper, we demonstrate experimental and statistical procedures generally used for estimating different detection limits according to standard procedures in the context of analysis of fat-soluble vitamins and micronutrients in human serum. Fat-soluble vitamins and micronutrients were analyzed by high-performance liquid chromatography with diode array detection. A simulated serum matrix blank was repeatedly analyzed for determination of LOB parametrically by using the observed blank distribution as well as nonparametrically by using ranks. The LOD was determined by combining information regarding the LOB with data from repeated analysis of standard reference materials (SRMs), diluted to low levels; from LOB to 2-3 times LOB. The LOQ was determined experimentally by plotting the observed relative standard deviation (RSD) of SRM replicates compared with the concentration, where the LOQ is the concentration at an RSD of 20%. Experimental approaches and example statistical procedures are given for determination of LOB, LOD, and LOQ. These quantities are reported for each measured analyte. For many analyses, there is considerable information available below the LOQ. Epidemiologic studies must understand the nature of these detection limits and how they have been estimated for appropriate treatment of affected data.

  1. 26 CFR 48.6427-11 - Kerosene; claims by registered ultimate vendors (blending).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-11 Kerosene... certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments allowed...

  2. 26 CFR 48.6427-11 - Kerosene; claims by registered ultimate vendors (blending).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-11 Kerosene... certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments allowed...

  3. 26 CFR 48.6427-11 - Kerosene; claims by registered ultimate vendors (blending).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-11 Kerosene... certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments allowed...

  4. 26 CFR 48.6427-11 - Kerosene; claims by registered ultimate vendors (blending).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-11 Kerosene... certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments allowed...

  5. The limit of detection in scintigraphic imaging with I-131 in patients with differentiated thyroid carcinoma

    NASA Astrophysics Data System (ADS)

    Hänscheid, H.; Lassmann, M.; Buck, A. K.; Reiners, C.; Verburg, F. A.

    2014-05-01

    Radioiodine scintigraphy influences staging and treatment in patients with differentiated thyroid carcinoma. The limit of detection for fractional uptake in an iodine avid focus in a scintigraphic image was determined from the number of lesion net counts and the count density of the tissue background. The count statistics were used to calculate the diagnostic activity required to elevate the signal from a lesion with a given uptake significantly above a homogeneous background with randomly distributed counts per area. The dependences of the minimal uptake and the minimal size of lesions visible in a scan on several parameters of influence were determined by linking the typical biokinetics observed in iodine avid tissue to the lesion mass and to the absorbed dose received in a radioiodine therapy. The detection limits for fractional uptake in a neck lesion of a typical patient are about 0.001% after therapy with 7000 MBq, 0.01% for activities typically administered in diagnostic assessments (74-185 MBq), and 0.1% after the administration of 10 MBq I-131. Lesions at the limit of detection in a diagnostic scan with biokinetics eligible for radioiodine therapy are small with diameters of a few millimeters. Increasing the diagnostic activity by a factor of 4 reduces the diameter of visible lesions by 25% or about 1 mm. Several other determinants have a comparable or higher influence on the limit of detection than the administered activity; most important are the biokinetics in both blood pool and target tissue and the time of measurement. A generally valid recommendation for the timing of the scan is impossible as the time of the highest probability to detect iodine avid tissue depends on the administered activity as well as on the biokinetics in the lesion and background in the individual patient.

  6. PHYSICAL EFFECTS OCCURRING DURING GENERATION AND AMPLIFICATION OF LASER RADIATION: Ultimate values of the gain of solid-state rod amplifiers operating under inversion storage conditions

    NASA Astrophysics Data System (ADS)

    Bayanov, V. I.; Vinokurov, G. N.; Zhulin, V. I.; Yashin, V. E.

    1989-02-01

    A numerical calculation is reported of an inversion conservation coefficient of cylindrical rod solid-state amplifiers with the active element diameter from 1.5 to 15 cm operated under continuous pumping conditions. It is shown that the ultimate gain, limited only by superluminescence, exceeds considerably the value usually obtained in experiments. Various methods of eliminating parasitic effects, which limit the gain of real amplifiers, are considered. The degree of influence of these effects on the inversion conservation coefficient is discussed. The results are given of an experimental determination of the gain close to the ultimate value (0.18 cm- 1 for an active element 3 cm in diameter). Calculations are reported of the angular distributions of superluminescence and parasitic modes demonstrating that the latter can be suppressed by spatial filtering.

  7. Plasticity and constraints on social evolution in African mole-rats: ultimate and proximate factors

    PubMed Central

    Faulkes, Chris G.; Bennett, Nigel C.

    2013-01-01

    Here, we review comparative studies of African mole-rats (family Bathyergidae) to explain how constraints acting at the ultimate (environmental) and proximate (organismal) levels have led to convergent gains and losses of sociality within this extensive adaptive radiation of subterranean rodents endemic to sub-Saharan Africa. At the ultimate level, living in environments that range from mesic through to arid has led to both variation and flexibility in social organization among species, culminating in the pinnacle of social evolution in the eusocial naked and Damaraland mole-rats (Heterocephalus glaber and Fukomys damarensis). The common mole-rat (Cryptomys hottentotus) provides a model example of how plasticity in social traits exists within a single species inhabiting areas with different ecological constraint. At the proximate level, reproductive strategies and cooperative breeding may be constrained by the correlated evolution of a suite of traits including physiological suppression of reproduction, the development of physiological and morphological castes, and the mode of ovulatory control and seasonality in breeding. Furthermore, recent neurobiological advances indicate that differential patterns of neurotransmitter expression within the forebrain may underpin (and limit) either a solitary or group living/cooperative lifestyle not only in mole-rats, but also more widely among disparate mammalian taxa. PMID:23569295

  8. STATISTICS OF GAMMA-RAY POINT SOURCES BELOW THE FERMI DETECTION LIMIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyshev, Dmitry; Hogg, David W., E-mail: dm137@nyu.edu

    2011-09-10

    An analytic relation between the statistics of photons in pixels and the number counts of multi-photon point sources is used to constrain the distribution of gamma-ray point sources below the Fermi detection limit at energies above 1 GeV and at latitudes below and above 30 deg. The derived source-count distribution is consistent with the distribution found by the Fermi Collaboration based on the first Fermi point-source catalog. In particular, we find that the contribution of resolved and unresolved active galactic nuclei (AGNs) to the total gamma-ray flux is below 20%-25%. In the best-fit model, the AGN-like point-source fraction is 17%more » {+-} 2%. Using the fact that the Galactic emission varies across the sky while the extragalactic diffuse emission is isotropic, we put a lower limit of 51% on Galactic diffuse emission and an upper limit of 32% on the contribution from extragalactic weak sources, such as star-forming galaxies. Possible systematic uncertainties are discussed.« less

  9. Detection Limits for Spectro-fluorometry: A Case Study in the Region of Finstersee, Canton Zug, Northern Switzerland

    NASA Astrophysics Data System (ADS)

    Otz, M. H.; Otz, H. K.; Keller, P.

    2002-05-01

    Synthetic fluorescent dyes, applied below the visual detection limit (< 0.1 mg/L), have been used as tracers of ground water flow paths since the beginning of the 1950s. Since 1965, we have used spectro-fluorometers with photomultipliers to measure low concentrations of fluorescent dyes in ground water in Switzerland. In collaboration with the Engineering Geology Department of the ETH, we have separated uranine at 0.1 ng/L and Na-naphtionate at 1 ng/L from background fluorescence of spring water in the Finstersee region. These values are 10-100 times lower than postulated detection limits in the literature. The use of low dye concentrations prevents a study region from being contaminated by increased background levels due to remnant dye within the aquifer, thereby leaving the region available for future dye tracing studies. Lower detection limits also can solve particular hydraulic problems where conventional methods fail and enhance the possibility for using artificial dyes in environmentally sensitive aquifer settings.

  10. Detection limits for real-time source water monitoring using indigenous freshwater microalgae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez Jr, Miguel; Greenbaum, Elias

    This research identified toxin detection limits using the variable fluorescence of naturally occurring microalgae in source drinking water for five chemical toxins with different molecular structures and modes of toxicity. The five chemicals investigated were atrazine, Diuron, paraquat, methyl parathion, and potassium cyanide. Absolute threshold sensitivities of the algae for detection of the toxins in unmodified source drinking water were measured. Differential kinetics between the rate of action of the toxins and natural changes in algal physiology, such as diurnal photoinhibition, are significant enough that effects of the toxin can be detected and distinguished from the natural variance. This ismore » true even for physiologically impaired algae where diminished photosynthetic capacity may arise from uncontrollable external factors such as nutrient starvation. Photoinhibition induced by high levels of solar radiation is a predictable and reversible phenomenon that can be dealt with using a period of dark adaption of 30 minutes or more.« less

  11. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser.

    PubMed

    Özdemir, Şahin Kaya; Zhu, Jiangang; Yang, Xu; Peng, Bo; Yilmaz, Huzeyfe; He, Lina; Monifi, Faraz; Huang, Steven He; Long, Gui Lu; Yang, Lan

    2014-09-16

    Optical whispering-gallery-mode resonators (WGMRs) have emerged as promising platforms for label-free detection of nano-objects. The ultimate sensitivity of WGMRs is determined by the strength of the light-matter interaction quantified by quality factor/mode volume, Q/V, and the resolution is determined by Q. To date, to improve sensitivity and precision of detection either WGMRs have been doped with rare-earth ions to compensate losses and increase Q or plasmonic resonances have been exploited for their superior field confinement and lower V. Here, we demonstrate, for the first time to our knowledge, enhanced detection of single-nanoparticle-induced mode splitting in a silica WGMR via Raman gain-assisted loss compensation and WGM Raman microlaser. In particular, the use of the Raman microlaser provides a dopant-free, self-referenced, and self-heterodyned scheme with a detection limit ultimately determined by the thermorefractive noise. Notably, we detected and counted individual nanoparticles with polarizabilities down to 3.82 × 10(-6) μm(3) by monitoring a heterodyne beatnote signal. This level of sensitivity is achieved without exploiting plasmonic effects, external references, or active stabilization and frequency locking. Single nanoparticles are detected one at a time; however, their characterization by size or polarizability requires ensemble measurements and statistical averaging. This dopant-free scheme retains the inherited biocompatibility of silica and could find widespread use for sensing in biological media. The Raman laser and operation band of the sensor can be tailored for the specific sensing environment and the properties of the targeted materials by changing the pump laser wavelength. This scheme also opens the possibility of using intrinsic Raman or parametric gain for loss compensation in other systems where dissipation hinders progress and limits applications.

  12. Detection limits of Legionella pneumophila in environmental samples after co-culture with Acanthamoeba polyphaga

    PubMed Central

    2013-01-01

    Background The efficiency of recovery and the detection limit of Legionella after co-culture with Acanthamoeba polyphaga are not known and so far no investigations have been carried out to determine the efficiency of the recovery of Legionella spp. by co-culture and compare it with that of conventional culturing methods. This study aimed to assess the detection limits of co-culture compared to culture for Legionella pneumophila in compost and air samples. Compost and air samples were spiked with known concentrations of L. pneumophila. Direct culturing and co-culture with amoebae were used in parallel to isolate L. pneumophila and recovery standard curves for both methods were produced for each sample. Results The co-culture proved to be more sensitive than the reference method, detecting 102-103 L. pneumophila cells in 1 g of spiked compost or 1 m3 of spiked air, as compared to 105-106 cells in 1 g of spiked compost and 1 m3 of spiked air. Conclusions Co-culture with amoebae is a useful, sensitive and reliable technique to enrich L. pneumophila in environmental samples that contain only low amounts of bacterial cells. PMID:23442526

  13. Sample-morphology effects on x-ray photoelectron peak intensities. II. Estimation of detection limits for thin-film materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Cedric J., E-mail: cedric.powell@nist.gov; Werner, Wolfgang S. M.; Smekal, Werner

    2014-09-01

    The authors show that the National Institute of Standards and Technology database for the simulation of electron spectra for surface analysis (SESSA) can be used to determine detection limits for thin-film materials such as a thin film on a substrate or buried at varying depths in another material for common x-ray photoelectron spectroscopy (XPS) measurement conditions. Illustrative simulations were made for a W film on or in a Ru matrix and for a Ru film on or in a W matrix. In the former case, the thickness of a W film at a given depth in the Ru matrix wasmore » varied so that the intensity of the W 4d{sub 5/2} peak was essentially the same as that for a homogeneous RuW{sub 0.001} alloy. Similarly, the thickness of a Ru film at a selected depth in the W matrix was varied so that the intensity of the Ru 3p{sub 3/2} peak matched that from a homogeneous WRu{sub 0.01} alloy. These film thicknesses correspond to the detection limits of each minor component for measurement conditions where the detection limits for a homogeneous sample varied between 0.1 at. % (for the RuW{sub 0.001} alloy) and 1 at. % (for the WRu{sub 0.01} alloy). SESSA can be similarly used to convert estimates of XPS detection limits for a minor species in a homogeneous solid to the corresponding XPS detection limits for that species as a thin film on or buried in the chosen solid.« less

  14. System for detecting and limiting electrical ground faults within electrical devices

    DOEpatents

    Gaubatz, Donald C.

    1990-01-01

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  15. Comparison of detection limit in fiber-based conventional, amplified, and gain-clamped cavity ring-down techniques

    NASA Astrophysics Data System (ADS)

    Sharma, K.; Abdul Khudus, M. I. M.; Alam, S. U.; Bhattacharya, S.; Venkitesh, D.; Brambilla, G.

    2018-01-01

    Relative performance and detection limit of conventional, amplified, and gain-clamped cavity ring-down techniques (CRDT) in all-fiber configurations are compared experimentally for the first time. Refractive index measurement using evanescent field in tapered fibers is used as a benchmark for the comparison. The systematic optimization of a nested-loop configuration in gain-clamped CRDT is also discussed, which is crucial for achieving a constant gain in a CRDT experiment. It is found that even though conventional CRDT has the lowest standard error in ring-down time (Δτ), the value of ring-down time (τ) is very small, thus leading to poor detection limit. Amplified CRDT provides an improvement in τ, albeit with two orders of magnitude higher Δτ due to amplifier noise. The nested-loop configuration in gain-clamped CRDT helps in reducing Δτ by an order of magnitude as compared to amplified CRDT whilst retaining the improvement in τ. A detection limit of 1 . 03 × 10-4 RIU at refractive index of 1.322 with a 3 mm long and 4.5 μm diameter tapered fiber is demonstrated with the gain-clamped CRDT.

  16. Flexible Modeling of Survival Data with Covariates Subject to Detection Limits via Multiple Imputation.

    PubMed

    Bernhardt, Paul W; Wang, Huixia Judy; Zhang, Daowen

    2014-01-01

    Models for survival data generally assume that covariates are fully observed. However, in medical studies it is not uncommon for biomarkers to be censored at known detection limits. A computationally-efficient multiple imputation procedure for modeling survival data with covariates subject to detection limits is proposed. This procedure is developed in the context of an accelerated failure time model with a flexible seminonparametric error distribution. The consistency and asymptotic normality of the multiple imputation estimator are established and a consistent variance estimator is provided. An iterative version of the proposed multiple imputation algorithm that approximates the EM algorithm for maximum likelihood is also suggested. Simulation studies demonstrate that the proposed multiple imputation methods work well while alternative methods lead to estimates that are either biased or more variable. The proposed methods are applied to analyze the dataset from a recently-conducted GenIMS study.

  17. Ultimate pier and contraction scour prediction in cohesive soils at selected bridges in Illinois

    USGS Publications Warehouse

    Straub, Timothy D.; Over, Thomas M.; Domanski, Marian M.

    2013-01-01

    The Scour Rate In COhesive Soils-Erosion Function Apparatus (SRICOS-EFA) method includes an ultimate scour prediction that is the equilibrium maximum pier and contraction scour of cohesive soils over time. The purpose of this report is to present the results of testing the ultimate pier and contraction scour methods for cohesive soils on 30 bridge sites in Illinois. Comparison of the ultimate cohesive and noncohesive methods, along with the Illinois Department of Transportation (IDOT) cohesive soil reduction-factor method and measured scour are presented. Also, results of the comparison of historic IDOT laboratory and field values of unconfined compressive strength of soils (Qu) are presented. The unconfined compressive strength is used in both ultimate cohesive and reduction-factor methods, and knowing how the values from field methods compare to the laboratory methods is critical to the informed application of the methods. On average, the non-cohesive method results predict the highest amount of scour, followed by the reduction-factor method results; and the ultimate cohesive method results predict the lowest amount of scour. The 100-year scour predicted for the ultimate cohesive, noncohesive, and reduction-factor methods for each bridge site and soil are always larger than observed scour in this study, except 12% of predicted values that are all within 0.4 ft of the observed scour. The ultimate cohesive scour prediction is smaller than the non-cohesive scour prediction method for 78% of bridge sites and soils. Seventy-six percent of the ultimate cohesive predictions show a 45% or greater reduction from the non-cohesive predictions that are over 10 ft. Comparing the ultimate cohesive and reduction-factor 100-year scour predictions methods for each bridge site and soil, the scour predicted by the ultimate cohesive scour prediction method is less than the reduction-factor 100-year scour prediction method for 51% of bridge sites and soils. Critical shear stress

  18. A method for early determination of meat ultimate pH.

    PubMed

    Young, O A; West, J; Hart, A L; van Otterdijk, F F H

    2004-02-01

    A patented method of rapidly determining the ultimate pH from approximate glycolytic potential of muscles of slaughtered animals has been devised. The method is based on the rapid hydrolysis of muscle glycogen to glucose by the enzyme amyloglucosidase and subsequent measurement of the liberated glucose. In acetate buffer at pH 4.5, glucose concentration can be determined in 30 s with domestic meters for diabetes control. The meter response differed from that of glucose in blood, but was linear with concentration. In slurries comprising homogenised meat in acetate buffer and added glucose, a similar linear response was obtained. Amyloglucosidase was capable of rapidly hydrolysing glycogen to glucose in such slurries. In the 24 h following slaughter, a decrease in glycogen, as determined by glucose, occurred in parallel with the decline in pH. At the same time, lactate progressively accumulated as expected. Values for the approximate glycolytic potential and (by calibration) ultimate pH, were obtained on prerigor muscle within 7 min of muscle sampling in an industrial environment. The method is suitable for on-line application in beef abattoirs particularly those employing hot boning where ultimate must be known at the grading point.

  19. Evaluation on the detection limit of blood hemoglobin using photolepthysmography based on path-length optimization

    NASA Astrophysics Data System (ADS)

    Sun, Di; Guo, Chao; Zhang, Ziyang; Han, Tongshuai; Liu, Jin

    2016-10-01

    The blood hemoglobin concentration's (BHC) measurement using Photoplethysmography (PPG), which gets blood absorption to near infrared light from the instantaneous pulse of transmitted light intensity, has not been applied to the clinical use due to the non-enough precision. The main challenge might be caused of the non-enough stable pulse signal when it's very weak and it often varies in different human bodies or in the same body with different physiological states. We evaluated the detection limit of BHC using PPG as the measurement precision level, which can be considered as a best precision result because we got the relative stable subject's pulse signals recorded by using a spectrometer with high signal-to-noise ratio (SNR) level, which is about 30000:1 in short term. Moreover, we optimized the used pathlength using the theory based on optimum pathlength to get a better sensitivity to the absorption variation in blood. The best detection limit was evaluated as about 1 g/L for BHC, and the best SNR of pulse for in vivo measurement was about 2000:1 at 1130 and 1250 nm. Meanwhile, we conclude that the SNR of pulse signal should be better than 400:1 when the required detection limit is set to 5 g/L. Our result would be a good reference to the BHC measurement to get a desired BHC measurement precision of real application.

  20. Quantum-statistical theory of microwave detection using superconducting tunnel junctions

    NASA Astrophysics Data System (ADS)

    Deviatov, I. A.; Kuzmin, L. S.; Likharev, K. K.; Migulin, V. V.; Zorin, A. B.

    1986-09-01

    A quantum-statistical theory of microwave and millimeter-wave detection using superconducting tunnel junctions is developed, with a rigorous account of quantum, thermal, and shot noise arising from fluctuation sources associated with the junctions, signal source, and matching circuits. The problem of the noise characterization in the quantum sensitivity range is considered and a general noise parameter Theta(N) is introduced. This parameter is shown to be an adequate figure of merit for most receivers of interest while some devices can require a more complex characterization. Analytical expressions and/or numerically calculated plots for Theta(N) are presented for the most promising detection modes including the parametric amplification, heterodyne mixing, and quadratic videodetection, using both the quasiparticle-current and the Cooper-pair-current nonlinearities. Ultimate minimum values of Theta(N) for each detection mode are compared and found to be in agreement with limitations imposed by the quantum-mechanical uncertainty principle.

  1. Modeling of a Single-Notch Microfiber Coupler for High-Sensitivity and Low Detection-Limit Refractive Index Sensing.

    PubMed

    Zhang, Jiali; Shi, Lei; Zhu, Song; Xu, Xinbiao; Zhang, Xinliang

    2016-05-11

    A highly sensitive refractive index sensor with low detection limit based on an asymmetric optical microfiber coupler is proposed. It is composed of a silica optical microfiber and an As₂Se₃ optical microfiber. Due to the asymmetry of the microfiber materials, a single-notch transmission spectrum is demonstrated by the large refractive index difference between the two optical microfibers. Compared with the symmetric coupler, the bandwidth of the asymmetric structure is over one order of magnitude narrower than that of the former. Therefore, the asymmetric optical microfiber coupler based sensor can reach over one order of magnitude smaller detection limit, which is defined as the minimal detectable refractive index change caused by the surrounding analyte. With the advantage of large evanescent field, the results also show that a sensitivity of up to 3212 nm per refractive index unit with a bandwidth of 12 nm is achieved with the asymmetric optical microfiber coupler. Furthermore, a maximum sensitivity of 4549 nm per refractive index unit can be reached while the radii of the silica optical microfiber and As₂Se₃ optical microfiber are 0.5 μm and a 0.128 μm, respectively. This sensor component may have important potential for low detection-limit physical and biochemical sensing applications.

  2. Detecting ionizing radiation with optical fibers down to biomedical doses

    NASA Astrophysics Data System (ADS)

    Avino, S.; D'Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; De Natale, P.; Gagliardi, G.

    2013-10-01

    We report on a passive ionizing radiation sensor based on a fiber-optic resonant cavity interrogated by a high resolution interferometric technique. After irradiation in clinical linear accelerators, we observe significant variations of the fiber thermo-optic coefficient. Exploiting this effect, we demonstrate an ultimate detection limit of 160 mGy with an interaction volume of only 6 × 10-4 mm3. Thanks to its reliability, compactness, and sensitivity at biomedical dose levels, our system lends itself to real applications in radiation therapy procedures as well as in radiation monitoring and protection in medicine, aerospace, and nuclear power plants.

  3. Statistical Methods for Generalized Linear Models with Covariates Subject to Detection Limits.

    PubMed

    Bernhardt, Paul W; Wang, Huixia J; Zhang, Daowen

    2015-05-01

    Censored observations are a common occurrence in biomedical data sets. Although a large amount of research has been devoted to estimation and inference for data with censored responses, very little research has focused on proper statistical procedures when predictors are censored. In this paper, we consider statistical methods for dealing with multiple predictors subject to detection limits within the context of generalized linear models. We investigate and adapt several conventional methods and develop a new multiple imputation approach for analyzing data sets with predictors censored due to detection limits. We establish the consistency and asymptotic normality of the proposed multiple imputation estimator and suggest a computationally simple and consistent variance estimator. We also demonstrate that the conditional mean imputation method often leads to inconsistent estimates in generalized linear models, while several other methods are either computationally intensive or lead to parameter estimates that are biased or more variable compared to the proposed multiple imputation estimator. In an extensive simulation study, we assess the bias and variability of different approaches within the context of a logistic regression model and compare variance estimation methods for the proposed multiple imputation estimator. Lastly, we apply several methods to analyze the data set from a recently-conducted GenIMS study.

  4. Picomolar detection limits with current-polarized Pb2+ ion-selective membranes.

    PubMed

    Pergel, E; Gyurcsányi, R E; Tóth, K; Lindner, E

    2001-09-01

    Minor ion fluxes across ion-selective membranes bias submicromolar activity measurements with conventional ion-selective electrodes. When ion fluxes are balanced, the lower limit of detection is expected to be dramatically improved. As proof of principle, the flux of lead ions across an ETH 5435 ionophore-based lead-selective membrane was gradually compensated by applying a few nanoamperes of galvanostatic current. When the opposite ion fluxes were matched, and the undesirable leaching of primary ions was eliminated, Nernstian response down to 3 x 10(-12) M was achieved.

  5. Ultimate concerns in late modernity: Archer, Bourdieu and reflexivity.

    PubMed

    Farrugia, David; Woodman, Dan

    2015-12-01

    Through a critique of Margaret Archer's theory of reflexivity, this paper explores the theoretical contribution of a Bourdieusian sociology of the subject for understanding social change. Archer's theory of reflexivity holds that conscious 'internal conversations' are the motor of society, central both to human subjectivity and to the 'reflexive imperative' of late modernity. This is established through critiques of Bourdieu, who is held to erase creativity and meaningful personal investments from subjectivity, and late modernity is depicted as a time when a 'situational logic of opportunity' renders embodied dispositions and the reproduction of symbolic advantages obsolete. Maintaining Archer's focus on 'ultimate concerns' in a context of social change, this paper argues that her theory of reflexivity is established through a narrow misreading and rejection of Bourdieu's work, which ultimately creates problems for her own approach. Archer's rejection of any pre-reflexive dimensions to subjectivity and social action leaves her unable to sociologically explain the genesis of 'ultimate concerns', and creates an empirically dubious narrative of the consequences of social change. Through a focus on Archer's concept of 'fractured reflexivity', the paper explores the theoretical necessity of habitus and illusio for understanding the social changes that Archer is grappling with. In late modernity, reflexivity is valorized just as the conditions for its successful operation are increasingly foreclosed, creating 'fractured reflexivity' emblematic of the complex contemporary interaction between habitus, illusio, and accelerating social change. © London School of Economics and Political Science 2015.

  6. Detection limit of Mycobacterium chimaera in water samples for monitoring medical device safety: insights from a pilot experimental series.

    PubMed

    Schreiber, P W; Köhler, N; Cervera, R; Hasse, B; Sax, H; Keller, P M

    2018-07-01

    A growing number of Mycobacterium chimaera infections after cardiosurgery have been reported by several countries. These potentially fatal infections were traced back to contaminated heater-cooler devices (HCDs), which use water as a heat transfer medium. Aerosolization of water contaminated with M. chimaera from HCDs enables airborne transmission to patients undergoing open chest surgery. Infection control teams test HCD water samples for mycobacterial growth to guide preventive measures. The detection limit of M. chimaera in water samples, however, has not previously been investigated. To determine the detection limit of M. chimaera in water samples using laboratory-based serial dilution tests. An M. chimaera strain representative of the international cardiosurgery-associated M. chimaera outbreak was used to generate a logarithmic dilution series. Two different water volumes, 50 and 1000mL, were inoculated, and, after identical processing (centrifugation, decantation, and decontamination), seeded on mycobacteria growth indicator tube (MGIT) and Middlebrook 7H11 solid media. MGIT consistently showed a lower detection limit than 7H11 solid media, corresponding to a detection limit of ≥1.44 × 10 4 cfu/mL for 50mL and ≥2.4cfu/mL for 1000mL water samples. Solid media failed to detect M. chimaera in 50mL water samples. Depending on water volume and culture method, major differences exist in the detection limit of M. chimaera. In terms of sensitivity, 1000mL water samples in MGIT media performed best. Our results have important implications for infection prevention and control strategies in mitigation of the M. chimaera outbreak and healthcare water safety in general. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Ultimate dynamics of the Kirschner-Panetta model: Tumor eradication and related problems

    NASA Astrophysics Data System (ADS)

    Starkov, Konstantin E.; Krishchenko, Alexander P.

    2017-10-01

    In this paper we consider the ultimate dynamics of the Kirschner-Panetta model which was created for studying the immune response to tumors under special types of immunotherapy. New ultimate upper bounds for compact invariant sets of this model are given, as well as sufficient conditions for the existence of a positively invariant polytope. We establish three types of conditions for the nonexistence of compact invariant sets in the domain of the tumor-cell population. Our main results are two types of conditions for global tumor elimination depending on the ratio between the proliferation rate of the immune cells and their mortality rate. These conditions are described in terms of simple algebraic inequalities imposed on model parameters and treatment parameters. Our theoretical studies of ultimate dynamics are complemented by numerical simulation results.

  8. Revisiting perceptions of quality of hospice care: managing for the ultimate referral.

    PubMed

    Churchman, Richard; York, Grady S; Woodard, Beth; Wainright, Charles; Rau-Foster, Mary

    2014-08-01

    Hospice services provided in the final months of life are delivered through complex interpersonal relationships between caregivers, patients, and families. Often, service value and quality are defined by these interpersonal interactions. This understanding provides hospice leaders with an enormous opportunity to create processes that provide the optimal level of care during the last months of life. The authors argue that the ultimate referral is attained when a family member observes the care of a loved one, and the family member conveys a desire to receive the same quality of services their loved one received at that facility. The point of this article is to provide evidence that supports the methods to ultimately enhance the patient's and family's experience and increase the potential for the ultimate referral. © The Author(s) 2013.

  9. 26 CFR 48.6427-10 - Kerosene; claims by registered ultimate vendors (blocked pumps).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-10 Kerosene... which certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments...

  10. 26 CFR 48.6427-10 - Kerosene; claims by registered ultimate vendors (blocked pumps).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-10 Kerosene... which certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments...

  11. 26 CFR 48.6427-10 - Kerosene; claims by registered ultimate vendors (blocked pumps).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-10 Kerosene... which certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments...

  12. 26 CFR 48.6427-10 - Kerosene; claims by registered ultimate vendors (blocked pumps).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Kerosene; claims by registered ultimate vendors... Administrative Provisions of Special Application to Retailers and Manufacturers Taxes § 48.6427-10 Kerosene... which certain registered ultimate vendors of taxed kerosene may claim the income tax credits or payments...

  13. Quantum-capacity-approaching codes for the detected-jump channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassl, Markus; Wei Zhaohui; Ji Zhengfeng

    2010-12-15

    The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasuresmore » and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.« less

  14. From nature to MEMS: towards the detection-limit of crickets' hair sensors

    NASA Astrophysics Data System (ADS)

    Dagamseh, A. M. K.

    2013-05-01

    Crickets use highly sensitive mechanoreceptor hairs to detect approaching spiders. The high sensitivity of these hairs enables perceiving tiny air-movements which are only just distinguishable from noise. This forms our source of inspiration to design sensitive arrays made of artificial hair sensors for flow pattern observation i.e. Flow camera. The realization of such high-sensitive hair sensor requires designs with low thermo-mechanical noise to match the detection-limit of crickets' hairs. Here we investigate the damping factor in our artificial hair-sensor using different models as it is the source of the thermo-mechanical noise in MEMS structures. The results show that the damping factor estimated in air is in the range of 10-12 N.m/rad.s-1 which translates into a 52 μm/s threshold flow velocity.

  15. Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality.

    PubMed

    Fujita, Takeshi

    2017-01-01

    Nanoporous metals prepared via dealloying or selective leaching of solid solution alloys and compounds represent an emerging class of materials. They possess a three-dimensional (3D) structure of randomly interpenetrating ligaments/nanopores with sizes between 5 nm and several tens of micrometers, which can be tuned by varying their preparation conditions (such as dealloying time and temperature) or additional thermal coarsening. As compared to other nanostructured materials, nanoporous metals have many advantages, including their bicontinuous structure, tunable pore sizes, bulk form, good electrical conductivity, and high structural stability. Therefore, nanoporous metals represent ideal 3D materials with versatile functionality, which can be utilized in various fields. In this review, we describe the recent applications of nanoporous metals in molecular detection, catalysis, 3D graphene synthesis, hierarchical pore formation, and additive manufacturing (3D printing) together with our own achievements in these areas. Finally, we discuss possible ways of realizing the ultimate 3D functionality beyond the scope of nanoporous metals.

  16. Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality

    PubMed Central

    Fujita, Takeshi

    2017-01-01

    Abstract Nanoporous metals prepared via dealloying or selective leaching of solid solution alloys and compounds represent an emerging class of materials. They possess a three-dimensional (3D) structure of randomly interpenetrating ligaments/nanopores with sizes between 5 nm and several tens of micrometers, which can be tuned by varying their preparation conditions (such as dealloying time and temperature) or additional thermal coarsening. As compared to other nanostructured materials, nanoporous metals have many advantages, including their bicontinuous structure, tunable pore sizes, bulk form, good electrical conductivity, and high structural stability. Therefore, nanoporous metals represent ideal 3D materials with versatile functionality, which can be utilized in various fields. In this review, we describe the recent applications of nanoporous metals in molecular detection, catalysis, 3D graphene synthesis, hierarchical pore formation, and additive manufacturing (3D printing) together with our own achievements in these areas. Finally, we discuss possible ways of realizing the ultimate 3D functionality beyond the scope of nanoporous metals. PMID:29057026

  17. Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality

    NASA Astrophysics Data System (ADS)

    Fujita, Takeshi

    2017-12-01

    Nanoporous metals prepared via dealloying or selective leaching of solid solution alloys and compounds represent an emerging class of materials. They possess a three-dimensional (3D) structure of randomly interpenetrating ligaments/nanopores with sizes between 5 nm and several tens of micrometers, which can be tuned by varying their preparation conditions (such as dealloying time and temperature) or additional thermal coarsening. As compared to other nanostructured materials, nanoporous metals have many advantages, including their bicontinuous structure, tunable pore sizes, bulk form, good electrical conductivity, and high structural stability. Therefore, nanoporous metals represent ideal 3D materials with versatile functionality, which can be utilized in various fields. In this review, we describe the recent applications of nanoporous metals in molecular detection, catalysis, 3D graphene synthesis, hierarchical pore formation, and additive manufacturing (3D printing) together with our own achievements in these areas. Finally, we discuss possible ways of realizing the ultimate 3D functionality beyond the scope of nanoporous metals.

  18. Batch Fabrication of Ultrasensitive Carbon Nanotube Hydrogen Sensors with Sub-ppm Detection Limit.

    PubMed

    Xiao, Mengmeng; Liang, Shibo; Han, Jie; Zhong, Donglai; Liu, Jingxia; Zhang, Zhiyong; Peng, Lianmao

    2018-04-27

    Carbon nanotube (CNT) has been considered as an ideal channel material for building highly sensitive gas sensors. However, the reported H 2 sensors based on CNT always suffered from the low sensitivity or low production. We developed the technology to massively fabricate ultra-highly sensitive H 2 sensors based on solution derived CNT network through comprehensive optimization of the CNT material, device structure, and fabrication process. In the H 2 sensors, high semiconducting purity solution-derived CNT film sorted by poly[9-(1-octylonoyl)-9 H-carbazole-2,7-diyl](PCz) is used as the main channel, which is decorated with Pd nanoparticles as functionalization for capturing H 2 . Meanwhile, Ti contacts are used to form a Schottky barrier for enhancing transferred charge-induced resistance change, and then a response of resistance change by 3 orders of magnitude is achieved at room temperature under the concentration of ∼311 ppm with a very fast response time of approximately 7 s and a detection limit of 890 ppb, which is the highest response to date for CNT H 2 sensors and the very first time to show the sub-ppm detection for H 2 at room temperature. Furthermore, the detection limit concentration can be improved to 89 ppb at 100 °C. The batch fabrication of CNT film H 2 sensors with ultra-high sensitivity and high uniformity is ready to promote CNT devices to application for the first time in some specialized field.

  19. 7 CFR 4274.308 - Eligibility requirements-Ultimate recipients.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... making a loan to one of its members. (c) Any delinquent debt to the Federal Government by the ultimate... authority to incur the debt and carry out the purpose of the loan. (b) To be eligible to receive loans from... rates and terms. (4) Must, along with its principal officers (including their immediate family), hold no...

  20. Ultimate computing. Biomolecular consciousness and nano Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hameroff, S.R.

    1987-01-01

    The book advances the premise that the cytoskeleton is the cell's nervous system, the biological controller/computer. If indeed cytoskeletal dynamics in the nanoscale (billionth meter, billionth second) are the texture of intracellular information processing, emerging ''NanoTechnologies'' (scanning tunneling microscopy, Feynman machines, von Neumann replicators, etc.) should enable direct monitoring, decoding and interfacing between biological and technological information devices. This in turn could result in important biomedical applications and perhaps a merger of mind and machine: Ultimate Computing.

  1. Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection

    PubMed Central

    Pokhriyal, Anusha; Lu, Meng; Chaudhery, Vikram; Huang, Cheng-Sheng; Schulz, Stephen; Cunningham, Brian T.

    2010-01-01

    A Photonic Crystal (PC) surface fabricated upon a quartz substrate using nanoimprint lithography has been demonstrated to enhance light emission from fluorescent molecules in close proximity to the PC surface. Quartz was selected for its low autofluorescence characteristics compared to polymer-based PCs, improving the detection sensitivity and signal-to-noise ratio (SNR) of PC Enhanced Fluorescence (PCEF). Nanoimprint lithography enables economical fabrication of the subwavelength PCEF surface structure over entire 1x3 in2 quartz slides. The demonstrated PCEF surface supports a transverse magnetic (TM) resonant mode at a wavelength of λ = 632.8 nm and an incident angle of θ = 11°, which amplifies the electric field magnitude experienced by surface-bound fluorophores. Meanwhile, another TM mode at a wavelength of λ = 690 nm and incident angle of θ = 0° efficiently directs the fluorescent emission toward the detection optics. An enhancement factor as high as 7500 × was achieved for the detection of LD-700 dye spin-coated upon the PC, compared to detecting the same material on an unpatterned glass surface. The detection of spotted Alexa-647 labeled polypeptide on the PC exhibits a 330 × SNR improvement. Using dose-response characterization of deposited fluorophore-tagged protein spots, the PCEF surface demonstrated a 140 × lower limit of detection compared to a conventional glass substrate. PMID:21164826

  2. Toward multimodal signal detection of adverse drug reactions.

    PubMed

    Harpaz, Rave; DuMouchel, William; Schuemie, Martijn; Bodenreider, Olivier; Friedman, Carol; Horvitz, Eric; Ripple, Anna; Sorbello, Alfred; White, Ryen W; Winnenburg, Rainer; Shah, Nigam H

    2017-12-01

    Improving mechanisms to detect adverse drug reactions (ADRs) is key to strengthening post-marketing drug safety surveillance. Signal detection is presently unimodal, relying on a single information source. Multimodal signal detection is based on jointly analyzing multiple information sources. Building on, and expanding the work done in prior studies, the aim of the article is to further research on multimodal signal detection, explore its potential benefits, and propose methods for its construction and evaluation. Four data sources are investigated; FDA's adverse event reporting system, insurance claims, the MEDLINE citation database, and the logs of major Web search engines. Published methods are used to generate and combine signals from each data source. Two distinct reference benchmarks corresponding to well-established and recently labeled ADRs respectively are used to evaluate the performance of multimodal signal detection in terms of area under the ROC curve (AUC) and lead-time-to-detection, with the latter relative to labeling revision dates. Limited to our reference benchmarks, multimodal signal detection provides AUC improvements ranging from 0.04 to 0.09 based on a widely used evaluation benchmark, and a comparative added lead-time of 7-22 months relative to labeling revision dates from a time-indexed benchmark. The results support the notion that utilizing and jointly analyzing multiple data sources may lead to improved signal detection. Given certain data and benchmark limitations, the early stage of development, and the complexity of ADRs, it is currently not possible to make definitive statements about the ultimate utility of the concept. Continued development of multimodal signal detection requires a deeper understanding the data sources used, additional benchmarks, and further research on methods to generate and synthesize signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Accounting for Limited Detection Efficiency and Localization Precision in Cluster Analysis in Single Molecule Localization Microscopy

    PubMed Central

    Shivanandan, Arun; Unnikrishnan, Jayakrishnan; Radenovic, Aleksandra

    2015-01-01

    Single Molecule Localization Microscopy techniques like PhotoActivated Localization Microscopy, with their sub-diffraction limit spatial resolution, have been popularly used to characterize the spatial organization of membrane proteins, by means of quantitative cluster analysis. However, such quantitative studies remain challenged by the techniques’ inherent sources of errors such as a limited detection efficiency of less than 60%, due to incomplete photo-conversion, and a limited localization precision in the range of 10 – 30nm, varying across the detected molecules, mainly depending on the number of photons collected from each. We provide analytical methods to estimate the effect of these errors in cluster analysis and to correct for them. These methods, based on the Ripley’s L(r) – r or Pair Correlation Function popularly used by the community, can facilitate potentially breakthrough results in quantitative biology by providing a more accurate and precise quantification of protein spatial organization. PMID:25794150

  4. Digital exchange of graphic arts material: the ultimate challenge

    NASA Astrophysics Data System (ADS)

    McDowell, David Q.

    1996-02-01

    The digital exchange of graphic arts material - particularly advertising material for publications- in an open standardized environment represents the ultimate challenge for electronic data exchange. To meet the needs of publication advertising, the graphic arts industry must be able to transmit advertisements in an open environment where there are many senders and many receivers of the material. The material being transmitted consists of combinations of pictorial material, text, and line art with these elements superimposed on top of each other and/or interrelated in complex ways. The business relationships established by the traditional workflow environment, the combination of aesthetic and technical requirements, and the large base of existing hardware and software play a major role in limiting the options available. Existing first- and second-generation standards are focused on the CEPS environment, which operates on and stores data as raster files. The revolution in personal computer hardware and software, and the acceptance of these tools by the graphic arts community, dictates that standards must also be created and implemented for this world of vector/raster-based systems. The requirements for digital distribution of advertising material for publications, the existing graphic arts standards base, and the anticipation of future standards developments in response to these needs are explored.

  5. Digital exchange of graphic arts material: the ultimate challenge

    NASA Astrophysics Data System (ADS)

    McDowell, David Q.

    1996-01-01

    The digital exchange of graphic arts material -- particularly advertising material for publications -- in an open standardized environment represents the ultimate challenge for electronic data exchange. To meet the needs of publication advertising, the graphic arts industry must be able to transmit advertisements in an open environment where there are many senders and many receivers of the material. The material being transmitted consists of combinations of pictorial material, text, and line art with these elements superimposed on top of each other and/or interrelated in complex ways. The business relationships established by the traditional workflow environment, the combination of aesthetic and technical requirements, and the large base of existing hardware and software play a major role in limiting the options available. Existing first- and second-generation standards are focused on the CEPS environment, which operates on and stores data as raster files. The revolution in personal computer hardware and software, and the acceptance of these tools by the graphic arts community, dictates that standards must also be created and implemented for this world of vector/raster-based systems. The requirements for digital distribution of advertising material for publications, the existing graphic arts standards base, and the anticipation of future standards developments in response to these needs are explored.

  6. Limits of linearity and detection for some drugs of abuse.

    PubMed

    Needleman, S B; Romberg, R W

    1990-01-01

    The limits of linearity (LOL) and detection (LOD) are important factors in establishing the reliability of an analytical procedure for accurately assaying drug concentrations in urine specimens. Multiple analyses of analyte over an extended range of concentrations provide a measure of the ability of the analytical procedure to correctly identify known quantities of drug in a biofluid matrix. Each of the seven drugs of abuse gives linear analytical responses from concentrations at or near their LOD to concentrations several-fold higher than those generally encountered in the drug screening laboratory. The upper LOL exceeds the Department of Navy (DON) cutoff values by factors of approximately 2 to 160. The LOD varies from 0.4 to 5.0% of the DON cutoff value for each drug. The limit of quantitation (LOQ) is calculated as the LOD + 7 SD. The range for LOL is greater for drugs analyzed with deuterated internal standards compared with those using conventional internal standards. For THC acid, cocaine, PCP, and morphine, LOLs are 8 to 160-fold greater than the defined cutoff concentrations. For the other drugs, the LOL's are only 2 to 4-fold greater than the defined cutoff concentrations.

  7. Ultimate linewidth reduction of a semiconductor laser frequency-stabilized to a Fabry-Pérot interferometer.

    PubMed

    Bahoura, Messaoud; Clairon, André

    2003-11-01

    We report a theoretical dynamical analysis on effect of semiconductor laser phase noise on the achievable linewidth when locked to a Fabry-Pérot cavity fringe using a modulation-demodulation frequency stabilization technique such as the commonly used Pound-Drever-Hall frequency locking scheme. We show that, in the optical domain, the modulation-demodulation operation produces, in the presence of semiconductor laser phase noise, two kinds of excess noise, which could be much above the shot noise limit, namely, conversion noise (PM-to-AM) and intermodulation noise. We show that, in typical stabilization conditions, the ultimate semiconductor laser linewidth reduction can be severely limited by the intermodulation excess noise. The modulation-demodulation operation produces the undesirable nonlinear intermodulation effect through which the phase noise spectral components of the semiconductor laser, in the vicinity of even multiples of the modulation frequency, are downconverted into the bandpass of the frequency control loop. This adds a spurious signal, at the modulation frequency, to the error signal and limits the performance of the locked semiconductor laser. This effect, reported initially in the microwave domain using the quasistatic approximation, can be considerably reduced by a convenient choice of the modulation frequency.

  8. Diamond-based electrochemical aptasensor realizing a femtomolar detection limit of bisphenol A.

    PubMed

    Ma, Yibo; Liu, Junsong; Li, Hongdong

    2017-06-15

    In this study, we designed and fabricated an electrochemical impedance aptasensor based on Au nanoparticles (Au-NPs) coated boron-doped diamond (BDD) modified with aptamers, and 6-mercapto-1-hexanol (MCH) for the detection of bisphenol A (BPA). The constructed BPA aptasensor exhibits good linearity from 1.0×10 -14 to 1.0×10 -9 molL -1 . The detection limitation of 7.2×10 -15 molL -1 was achieved, which can be attributed to the synergistic effect of combining BDD with Au-NPs, aptamers, and MCH. The examine results of BPA traces in Tris-HCl buffer and in milk, UV spectra of aptamer/BPA and interference test revealed that the novel aptasensors are of high sensitivity, specificity, stability and repeatability, which could be promising in practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. 75 FR 76746 - Agency Information Collection Activities: Declaration of Ultimate Consignee That Articles Were...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... Activities: Declaration of Ultimate Consignee That Articles Were Exported for Temporary Scientific or... That Articles Were Exported for Temporary Scientific or Educational Purposes. This is a proposed... forms of information. Title: Declaration of Ultimate Consignee That Articles Were Exported for Temporary...

  10. Passive IR polarization sensors: a new technology for mine detection

    NASA Astrophysics Data System (ADS)

    Barbour, Blair A.; Jones, Michael W.; Barnes, Howard B.; Lewis, Charles P.

    1998-09-01

    The problem of mine and minefield detection continues to provide a significant challenge to sensor systems. Although the various sensor technologies (infrared, ground penetrating radar, etc.) may excel in certain situations there does not exist a single sensor technology that can adequately detect mines in all conditions such as time of day, weather, buried or surface laid, etc. A truly robust mine detection system will likely require the fusion of data from multiple sensor technologies. The performance of these systems, however, will ultimately depend on the performance of the individual sensors. Infrared (IR) polarimetry is a new and innovative sensor technology that adds substantial capabilities to the detection of mines. IR polarimetry improves on basic IR imaging by providing improved spatial resolution of the target, an inherent ability to suppress clutter, and the capability for zero (Delta) T imaging. Nichols Research Corporation (Nichols) is currently evaluating the effectiveness of IR polarization for mine detection. This study is partially funded by the U.S. Army Night Vision & Electronic Sensors Directorate (NVESD). The goal of the study is to demonstrate, through phenomenology studies and limited field trials, that IR polarizaton outperforms conventional IR imaging in the mine detection arena.

  11. Detection, Size, Measurement, and Structural Analysis Limits for the 2MASS, UKIDSS-LAS, and VISTA VIKING Surveys

    NASA Astrophysics Data System (ADS)

    Andrews, Stephen K.; Kelvin, Lee S.; Driver, Simon P.; Robotham, Aaron S. G.

    2014-01-01

    The 2MASS, UKIDSS-LAS, and VISTA VIKING surveys have all now observed the GAMA 9hr region in the Ks band. Here we compare the detection rates, photometry, basic size measurements, and single-component GALFIT structural measurements for a sample of 37 591 galaxies. We explore the sensitivity limits where the data agree for a variety of issues including: detection, star-galaxy separation, photometric measurements, size and ellipticity measurements, and Sérsic measurements. We find that 2MASS fails to detect at least 20% of the galaxy population within all magnitude bins, however for those that are detected we find photometry is robust (± 0.2 mag) to 14.7 AB mag and star-galaxy separation to 14.8 AB mag. For UKIDSS-LAS we find incompleteness starts to enter at a flux limit of 18.9 AB mag, star-galaxy separation is robust to 16.3 AB mag, and structural measurements are robust to 17.7 AB mag. VISTA VIKING data are complete to approximately 20.0 AB mag and structural measurements appear robust to 18.8 AB mag.

  12. Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding.

    PubMed

    Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit

    2015-01-01

    We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10-20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%.

  13. [Monolithic column-gold composite substrate preparation and application to SERS detection of pigment].

    PubMed

    Xie, Yun-Fei; Li, Yan; Yu, Hui; Qian, He; Yao, Wei-Rong

    2014-03-01

    In the present study, we developed a novel SERS substrate with the porous monolith material combined with classic gold nanoparticles, and erythrosine as the research object, by adjusting the different experimental conditions for optimal SERS enhancements, including system pH and mixing time, and ultimately selected the optimum pH value 5.06 and mixing time 25 min. Compared with the traditional gold plastic substrate enhancement effect, the experimental conditions were applied to the monolith substrate SERS detection of dye erythrosine, different concentrations of samples were used for erythrosine SERS detection, and the detection limit reached 0.1 g x mL(-1). The method uses the payload of gold nanoparticles in mesoporous materials to effectively enhance the SERS signal. And this method has the advantages of simpleness and good stability, which provides a favorable theoretical basis for the rapid prohibited colorings screening.

  14. Quantum Lidar - Remote Sensing at the Ultimate Limit

    DTIC Science & Technology

    2009-07-01

    of Lossy Propaga- tion of Non-Classical Dual-Mode Entangled Photon States 57 34 Decay of Coherence for a N00N State (N=10) as a Function of...resolution could be beaten by exploiting entangled photons [Boto2000, Kok2001]. This effect is now universally known as quantum super-resolution. We...spontaneous parametric down conversion (SPDC), optical parametric amplifier (OPA), optical parametric oscillator (OPO), and entangled - photon Laser (EPL

  15. Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity.

    PubMed

    Hart, James L; Lang, Andrew C; Leff, Asher C; Longo, Paolo; Trevor, Colin; Twesten, Ray D; Taheri, Mitra L

    2017-08-15

    In many cases, electron counting with direct detection sensors offers improved resolution, lower noise, and higher pixel density compared to conventional, indirect detection sensors for electron microscopy applications. Direct detection technology has previously been utilized, with great success, for imaging and diffraction, but potential advantages for spectroscopy remain unexplored. Here we compare the performance of a direct detection sensor operated in counting mode and an indirect detection sensor (scintillator/fiber-optic/CCD) for electron energy-loss spectroscopy. Clear improvements in measured detective quantum efficiency and combined energy resolution/energy field-of-view are offered by counting mode direct detection, showing promise for efficient spectrum imaging, low-dose mapping of beam-sensitive specimens, trace element analysis, and time-resolved spectroscopy. Despite the limited counting rate imposed by the readout electronics, we show that both core-loss and low-loss spectral acquisition are practical. These developments will benefit biologists, chemists, physicists, and materials scientists alike.

  16. Statistical analysis of water-quality data containing multiple detection limits: S-language software for regression on order statistics

    USGS Publications Warehouse

    Lee, L.; Helsel, D.

    2005-01-01

    Trace contaminants in water, including metals and organics, often are measured at sufficiently low concentrations to be reported only as values below the instrument detection limit. Interpretation of these "less thans" is complicated when multiple detection limits occur. Statistical methods for multiply censored, or multiple-detection limit, datasets have been developed for medical and industrial statistics, and can be employed to estimate summary statistics or model the distributions of trace-level environmental data. We describe S-language-based software tools that perform robust linear regression on order statistics (ROS). The ROS method has been evaluated as one of the most reliable procedures for developing summary statistics of multiply censored data. It is applicable to any dataset that has 0 to 80% of its values censored. These tools are a part of a software library, or add-on package, for the R environment for statistical computing. This library can be used to generate ROS models and associated summary statistics, plot modeled distributions, and predict exceedance probabilities of water-quality standards. ?? 2005 Elsevier Ltd. All rights reserved.

  17. ROBUST ESTIMATION OF MEAN AND VARIANCE USING ENVIRONMENTAL DATA SETS WITH BELOW DETECTION LIMIT OBSERVATIONS

    EPA Science Inventory

    Scientists, especially environmental scientists often encounter trace level concentrations that are typically reported as less than a certain limit of detection, L. Type 1, left-censored data arise when certain low values lying below L are ignored or unknown as they cannot be mea...

  18. Effect of load eccentricity and substructure deformation on ultimate strength of shuttle orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.

    1981-01-01

    The effect of load eccentricity and substructure deformation on the ultimate strength and stress displacement properties of the shuttle orbiter thermal protection system (TPS) was determined. The LI-900 Reusable Surface Insulation (RSI) tiles mounted on the .41 cm thick Strain Isolator Pad (SIP) were investigated. Substructure deformations reduce the ultimate strength of the SIP/tile TPS and increase the scatter in the ultimate strength data. Substructure deformations that occur unsymmetric to the tile can cause the tile to rotate when subjected to a uniform applied load. Load eccentricity reduces SIP/tile TPS ultimate strength and causes tile rotation.

  19. Detection of trace amount of arsenic in groundwater by laser-induced breakdown spectroscopy and adsorption

    NASA Astrophysics Data System (ADS)

    Haider, A. F. M. Y.; Hedayet Ullah, M.; Khan, Z. H.; Kabir, Firoza; Abedin, K. M.

    2014-03-01

    LIBS technique coupled with adsorption has been applied for the efficient detection of arsenic in liquid. Several adsorbents like tea leaves, bamboo slice, charcoal and zinc oxide have been used to enable sensitive detection of arsenic presence in water using LIBS. Among these, zinc oxide and charcoal show the better results. The detection limits for arsenic in water were 1 ppm and 8 ppm, respectively, when ZnO and charcoal were used as adsorbents of arsenic. To date, the determination of 1 ppm of As in water is the lowest concentration of detected arsenic in water by the LIBS technique. The detection limit of As was lowered to even less than 100 ppb by a combination of LIBS technique, adsorption by ZnO and concentration enhancement technique. Using the combination of these three techniques the ultimate concentration of arsenic was found to be 0.083 ppm (83 ppb) for arsenic polluted water collected from a tube-well of Farajikandi union (longitude 90.64°, latitude 23.338° north) of Matlab Upozila of Chandpur district in Bangladesh. This result compares fairly well with the finding of arsenic concentration of 0.078 ppm in the sample by the AAS technique at the Bangladesh Council of Scientific and Industrial Research (BCSIR) lab. Such a low detection limit (1 ppm) of trace elements in liquid matrix has significantly enhanced the scope of LIBS as an analytical tool.

  20. Regions of absolute ultimate boundedness for discrete-time systems.

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Weissenberger, S.

    1972-01-01

    This paper considers discrete-time systems of the Lur'e-Postnikov class where the linear part is not asymptotically stable and the nonlinear characteristic satisfies only partially the usual sector condition. Estimates of the resulting finite regions of absolute ultimate boundedness are calculated by means of a quadratic Liapunov function.

  1. The Ultimate Sampling Dilemma in Experience-Based Decision Making

    ERIC Educational Resources Information Center

    Fiedler, Klaus

    2008-01-01

    Computer simulations and 2 experiments demonstrate the ultimate sampling dilemma, which constitutes a serious obstacle to inductive inferences in a probabilistic world. Participants were asked to take the role of a manager who is to make purchasing decisions based on positive versus negative feedback about 3 providers in 2 different product…

  2. Wilderness education: The ultimate commitment to quality wilderness stewardship

    Treesearch

    Gregory F. Hansen; Tom Carlson

    2007-01-01

    The effective planning, implementation, and monitoring of a wilderness education program will ultimately produce measurable results that can be instrumental in achieving wilderness management goals and objectives. This paper will provide a simple step-by-step overview of how to develop and maintain a successful wilderness education program through planning,...

  3. Characterising dark matter searches at colliders and direct detection experiments: Vector mediators

    DOE PAGES

    Buchmueller, Oliver; Dolan, Matthew J.; Malik, Sarah A.; ...

    2015-01-09

    We introduce a Minimal Simplified Dark Matter (MSDM) framework to quantitatively characterise dark matter (DM) searches at the LHC. We study two MSDM models where the DM is a Dirac fermion which interacts with a vector and axial-vector mediator. The models are characterised by four parameters: m DM, M med , g DM and g q, the DM and mediator masses, and the mediator couplings to DM and quarks respectively. The MSDM models accurately capture the full event kinematics, and the dependence on all masses and couplings can be systematically studied. The interpretation of mono-jet searches in this framework canmore » be used to establish an equal-footing comparison with direct detection experiments. For theories with a vector mediator, LHC mono-jet searches possess better sensitivity than direct detection searches for light DM masses (≲5 GeV). For axial-vector mediators, LHC and direct detection searches generally probe orthogonal directions in the parameter space. We explore the projected limits of these searches from the ultimate reach of the LHC and multi-ton xenon direct detection experiments, and find that the complementarity of the searches remains. In conclusion, we provide a comparison of limits in the MSDM and effective field theory (EFT) frameworks to highlight the deficiencies of the EFT framework, particularly when exploring the complementarity of mono-jet and direct detection searches.« less

  4. Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection.

    PubMed

    Kline, Neal D; Tripathi, Ashish; Mirsafavi, Rustin; Pardoe, Ian; Moskovits, Martin; Meinhart, Carl; Guicheteau, Jason A; Christesen, Steven D; Fountain, Augustus W

    2016-11-01

    A microfluidic device is being developed by University of California-Santa Barbara as part of a joint effort with the United States Army to develop a portable, rapid drug detection device. Surface-enhanced Raman spectroscopy (SERS) is used to provide a sensitive, selective detection technique within the microfluidic platform employing metallic nanoparticles as the SERS medium. Using several illicit drugs as analytes, the work presented here describes the efforts of the Edgewood Chemical Biological Center to optimize the microfluidic platform by investigating the role of nanoparticle material, nanoparticle size, excitation wavelength, and capping agents on the performance, and drug concentration detection limits achievable with Ag and Au nanoparticles that will ultimately be incorporated into the final design. This study is particularly important as it lays out a systematic comparison of limits of detection and potential interferences from working with several nanoparticle capping agents-such as tannate, citrate, and borate-which does not seem to have been done previously as the majority of studies only concentrate on citrate as the capping agent. Morphine, cocaine, and methamphetamine were chosen as test analytes for this study and were observed to have limits of detection (LOD) in the range of (1.5-4.7) × 10 -8 M (4.5-13 ng/mL), with the borate capping agent having the best performance.

  5. Detection of Stimulus Displacements Across Saccades is Capacity-Limited and Biased in Favor of the Saccade Target

    PubMed Central

    Irwin, David E.; Robinson, Maria M.

    2015-01-01

    Retinal image displacements caused by saccadic eye movements are generally unnoticed. Recent theories have proposed that perceptual stability across saccades depends on a local evaluation process centered on the saccade target object rather than on remapping and evaluating the positions of all objects in a display. In three experiments, we examined whether objects other than the saccade target also influence perceptual stability by measuring displacement detection thresholds across saccades for saccade targets and a variable number of non-saccade objects. We found that the positions of multiple objects are maintained across saccades, but with variable precision, with the saccade target object having priority in the perception of displacement, most likely because it is the focus of attention before the saccade and resides near the fovea after the saccade. The perception of displacement of objects that are not the saccade target is affected by acuity limitations, attentional limitations, and limitations on memory capacity. Unlike previous studies that have found that a postsaccadic blank improves the detection of displacement direction across saccades, we found that postsaccadic blanking hurt the detection of displacement per se by increasing false alarms. Overall, our results are consistent with the hypothesis that visual working memory underlies the perception of stability across saccades. PMID:26640430

  6. Eye movements during change detection: implications for search constraints, memory limitations, and scanning strategies.

    PubMed

    Zelinsky, G J

    2001-02-01

    Search, memory, and strategy constraints on change detection were analyzed in terms of oculomotor variables. Observers viewed a repeating sequence of three displays (Scene 1-->Mask-->Scene 2-->Mask...) and indicated the presence-absence of a changing object between Scenes 1 and 2. Scenes depicted real-world objects arranged on a surface. Manipulations included set size (one, three, or nine items) and the orientation of the changing objects (similar or different). Eye movements increased with the number of potentially changing objects in the scene, with this set size effect suggesting a relationship between change detection and search. A preferential fixation analysis determined that memory constraints are better described by the operation comparing the pre- and postchange objects than as a capacity limitation, and a scanpath analysis revealed a change detection strategy relying on the peripheral encoding and comparison of display items. These findings support a signal-in-noise interpretation of change detection in which the signal varies with the similarity of the changing objects and the noise is determined by the distractor objects and scene background.

  7. Reduced Design Load Basis for Ultimate Blade Loads Estimation in Multidisciplinary Design Optimization Frameworks

    NASA Astrophysics Data System (ADS)

    Pavese, Christian; Tibaldi, Carlo; Larsen, Torben J.; Kim, Taeseong; Thomsen, Kenneth

    2016-09-01

    The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar to the one computed using the full DLB. This observation is used to propose a scheme that is computationally cheap, and that can be integrated inside an MDO framework, providing a sufficiently reliable estimation of the blade ultimate loading. The latter aspect is of key importance when design variables implementing passive control methodologies are included in the formulation of the optimization problem. An MDO of a 10 MW wind turbine blade is presented as an applied case study to show the efficacy of the reduced DLB concept.

  8. Ultimate Load Behaviour of Reinforced Concrete Beam with Corroded Reinforcement

    NASA Astrophysics Data System (ADS)

    Kanchana Devi, A.; Ramajaneyulu, K.; Sundarkumar, S.; Ramesh, G.; Bharat Kumar, B. H.; Krishna Moorthy, T. S.

    2017-12-01

    Corrosion of reinforcement reduces the load carrying capacity, energy dissipation and ductility of Reinforced Concrete (RC) members. In the present study, reinforcements of RC beam are subjected to 10, 25, and 30% corrosion and the respective RC beams are tested to evaluate their ultimate load behaviour. A huge drop in energy dissipation capacity of the RC beam is observed beyond the corrosion level of 10%. Further, nonlinear finite element analysis is employed to assess the load-displacement behaviour and ultimate load of RC beam. The corrosion induced damage to the reinforcement is represented in the finite element model by modifying its mechanical properties based on the results reported in the literature. The resultant load versus displacement curves of reinforced concrete beams are obtained. Good correlation is observed between the finite element analysis results and that obtained from experimental investigation on the control beam. The experimental results are also compared with the finite element analysis results for RC beams with corroded reinforcement. In order to understand the effect of corrosion on the mechanical properties of reinforcement, the corroded reinforcements are modelled in nonlinear finite element analysis by (i) reducing the area of reinforcement alone (ii) by reducing both area and mechanical properties and (iii) reducing the mechanical properties without reducing the area of steel as reported in literature. The results obtained for the beam with corroded reinforcement confirms reduction in yield stress and ultimate stress of the reinforcement steel.

  9. An accurate and inexpensive color-based assay for detecting severe anemia in a limited-resource setting

    PubMed Central

    McGann, Patrick T.; Tyburski, Erika A.; de Oliveira, Vysolela; Santos, Brigida; Ware, Russell E.; Lam, Wilbur A.

    2016-01-01

    Severe anemia is an important cause of morbidity and mortality among children in resource-poor settings, but laboratory diagnostics are often limited in these locations. To address this need, we developed a simple, inexpensive, and color-based point-of-care (POC) assay to detect severe anemia. The purpose of this study was to evaluate the accuracy of this novel POC assay to detect moderate and severe anemia in a limited-resource setting. The study was a cross-sectional study conducted on children with sickle cell anemia in Luanda, Angola. The hemoglobin concentrations obtained by the POC assay were compared to reference values measured by a calibrated automated hematology analyzer. A total of 86 samples were analyzed (mean hemoglobin concentration 6.6 g/dL). There was a strong correlation between the hemoglobin concentrations obtained by the POC assay and reference values obtained from an automated hematology analyzer (r=0.88, P<0.0001). The POC assay demonstrated excellent reproducibility (r=0.93, P<0.0001) and the reagents appeared to be durable in a tropical setting (r=0.93, P<0.0001). For the detection of severe anemia that may require blood transfusion (hemoglobin <5 g/dL), the POC assay had sensitivity of 88.9% and specificity of 98.7%. These data demonstrate that an inexpensive (<$0.25 USD) POC assay accurately estimates low hemoglobin concentrations and has the potential to become a transformational diagnostic tool for severe anemia in limited-resource settings. PMID:26317494

  10. The application of microwave photonic detection in quantum communication

    NASA Astrophysics Data System (ADS)

    Diao, Wenting; Zhuang, Yongyong; Song, Xuerui; Wang, Liujun; Duan, Chongdi

    2018-03-01

    Quantum communication has attracted much attention in recent years, provides an ultimate level of security, and uniquely it is one of the most likely practical quantum technologies at present. In order to realize global coverage of quantum communication networks, not only need the help of satellite to realize wide area quantum communication, need implementation of optical fiber system to realize city to city quantum communication, but also, it is necessary to implement end-to-end quantum communications intercity and wireless quantum communications that can be received by handheld devices. Because of the limitation of application of light in buildings, it needs quantum communication with microwave band to achieve quantum reception of wireless handheld devices. The single microwave photon energy is very low, it is difficult to directly detect, which become a difficulty in microwave quantum detection. This paper summarizes the mode of single microwave photon detection methods and the possibility of application in microwave quantum communication, and promotes the development of quantum communication in microwave band and quantum radar.

  11. 49 Stories That Make an Ultimate STEM Lesson Plan

    ERIC Educational Resources Information Center

    Mehta, Swati; Mehta, Rohit; Berzina-Pitcher, Inese; Seals, Christopher; Mishra, Punya

    2016-01-01

    In this paper we reviewed what 49 large urban public school district STEM teachers enrolled in a year-long graduate certificate and fellowship program at a large Midwestern university considered as their amazing teaching moments. They were asked to share their amazing teaching moments that would make an Ultimate Lesson Plan in STEM. In smaller…

  12. Qualitative Contrast between Knowledge-Limited Mixed-State and Variable-Resources Models of Visual Change Detection

    ERIC Educational Resources Information Center

    Nosofsky, Robert M.; Donkin, Chris

    2016-01-01

    We report an experiment designed to provide a qualitative contrast between knowledge-limited versions of mixed-state and variable-resources (VR) models of visual change detection. The key data pattern is that observers often respond "same" on big-change trials, while simultaneously being able to discriminate between same and small-change…

  13. Sensing strategies for toxic vapor detection

    NASA Technical Reports Server (NTRS)

    Mottola, Horacio A.

    1995-01-01

    This work was motivated by the recommendations of the American Conference of Governmental Industrial Hygienists (ACGIH) that threshold limits for hydrazine, H2N-NH2 in air be lowered from 100 to 10 parts-per-billion (ppb) concentration levels. Hydrazine is one of the high-energy propellants used in large volumes in Space Shuttle, Titan, payloads, and other aerospace operations. Since analytical methods presently available for hydrazine detection and/or determination do not satisfy such low levels of detection, the ultimate goal of this research is the development and characterization of a portable and compact chemical sensor ideally capable to detect (in real time) 1 ppb of hydrazine, continuously and reversibly. The laboratory prototype developed as part of this project is comprised of: (1) a reactor part in which H2N-NH2 reacts, generating chemiluminescence emission, with tris(2,2'-bipyridine)ruthenium(III), which is immobilized on an ion-exchange polymeric materials of a perfluorinated hydrocarbon containing sulfonate groups as exchange centers (Nafion); (2) an electrochemical three-electrode cell posed at a potential at which the immobilized ruthenium complex could be reoxidized to the 3-oxidation state (as to provide reversible and continuous detection); and (3) a low power consumption photomultiplier tube to collect and quantitatively integrate the emitted photons with the help of auxiliary electronics and readout device.

  14. Multiple proximate and ultimate causes of natal dispersal in white-tailed deer

    USGS Publications Warehouse

    Long, E.S.; Diefenbach, D.R.; Rosenberry, C.S.; Wallingford, B.D.

    2008-01-01

    Proximate and ultimate causes of dispersal in vertebrates vary, and relative importance of these causes is poorly understood. Among populations, inter- and intrasexual social cues for dispersal are thought to reduce inbreeding and local mate competition, respectively, and specific emigration cue may affect dispersal distance, such that inbreeding avoidance dispersal tends to be farther than dispersal to reduce local competition. To investigate potential occurrence of multiple proximate and ultimate causes of dispersal within populations, we radio-marked 363 juvenile male white-tailed deer (Odocoileus virginianus) in 2 study areas in Pennsylvania. Natal dispersal probability and distance were monitored over a 3-year period when large-scale management changes reduced density of adult females and increased density of adult males. Most dispersal (95-97%) occurred during two 12-week periods: spring, when yearling males still closely associate with related females, and prior to fall breeding season, when yearling males closely associate with other breeding-age males. Following changes to sex and age structure that reduced potential for inbreeding and increased potential for mate competition, annual dispersal probability did not change; however, probability of spring dispersal decreased, whereas probability of fall dispersal increased. Spring dispersal distances were greater than fall dispersal distances, suggesting that adaptive inbreeding avoidance dispersal requires greater distance than mate competition dispersal where opposite-sex relatives are philopatric and populations are not patchily distributed. Both inbreeding avoidance and mate competition are important ultimate causes of dispersal of white-tailed deer, but ultimate motivations for dispersal are proximately cued by different social mechanisms and elicit different responses in dispersers.

  15. Determination of Detection Limits and Quantitation Limits for Compounds in a Database of GC/MS by FUMI Theory

    PubMed Central

    Nakashima, Shinya; Hayashi, Yuzuru

    2016-01-01

    The aim of this paper is to propose a stochastic method for estimating the detection limits (DLs) and quantitation limits (QLs) of compounds registered in a database of a GC/MS system and prove its validity with experiments. The approach described in ISO 11843 Part 7 is adopted here as an estimation means of DL and QL, and the decafluorotriphenylphosphine (DFTPP) tuning and retention time locking are carried out for adjusting the system. Coupled with the data obtained from the system adjustment experiments, the information (noise and signal of chromatograms and calibration curves) stored in the database is used for the stochastic estimation, dispensing with the repetition measurements. Of sixty-six pesticides, the DL values obtained by the ISO method were compared with those from the statistical approach and the correlation between them was observed to be excellent with the correlation coefficient of 0.865. The accuracy of the method proposed was also examined and concluded to be satisfactory as well. The samples used are commercial products of pesticides mixtures and the uncertainty from sample preparation processes is not taken into account. PMID:27162706

  16. Enhancement of laser-induced breakdown spectroscopy (LIBS) Detection limit using a low-pressure and short-pulse laser-induced plasma process.

    PubMed

    Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Yan, Jun Jie; Liu, Ji Ping

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width. In order to verify this method, low-pressure gas plasma was induced using nanosecond and picosecond lasers. The method was applied to the detection of Hg. The emission intensity ratio of the Hg atom to NO (IHg/INO) was analyzed to evaluate the LIBS detection limit because the NO emission (interference signal) was formed during the plasma generation and cooling process of N2 and O2 in the air. It was demonstrated that the enhancement of IHg/INO arose by decreasing the pressure to a few kilopascals, and the IHg/INO of the picosecond breakdown was always much higher than that of the nanosecond breakdown at low buffer gas pressure. Enhancement of IHg/INO increased more than 10 times at 700 Pa using picosecond laser with 35 ps pulse width. The detection limit was enhanced to 0.03 ppm (parts per million). We also saw that the spectra from the center and edge parts of plasma showed different features. Comparing the central spectra with the edge spectra, IHg/INO of the edge spectra was higher than that of the central spectra using the picosecond laser breakdown process.

  17. Nanoparticle size detection limits by single particle ICP-MS for 40 elements.

    PubMed

    Lee, Sungyun; Bi, Xiangyu; Reed, Robert B; Ranville, James F; Herckes, Pierre; Westerhoff, Paul

    2014-09-02

    The quantification and characterization of natural, engineered, and incidental nano- to micro-size particles are beneficial to assessing a nanomaterial's performance in manufacturing, their fate and transport in the environment, and their potential risk to human health. Single particle inductively coupled plasma mass spectrometry (spICP-MS) can sensitively quantify the amount and size distribution of metallic nanoparticles suspended in aqueous matrices. To accurately obtain the nanoparticle size distribution, it is critical to have knowledge of the size detection limit (denoted as Dmin) using spICP-MS for a wide range of elements (other than a few available assessed ones) that have been or will be synthesized into engineered nanoparticles. Herein is described a method to estimate the size detection limit using spICP-MS and then apply it to nanoparticles composed of 40 different elements. The calculated Dmin values correspond well for a few of the elements with their detectable sizes that are available in the literature. Assuming each nanoparticle sample is composed of one element, Dmin values vary substantially among the 40 elements: Ta, U, Ir, Rh, Th, Ce, and Hf showed the lowest Dmin values, ≤10 nm; Bi, W, In, Pb, Pt, Ag, Au, Tl, Pd, Y, Ru, Cd, and Sb had Dmin in the range of 11-20 nm; Dmin values of Co, Sr, Sn, Zr, Ba, Te, Mo, Ni, V, Cu, Cr, Mg, Zn, Fe, Al, Li, and Ti were located at 21-80 nm; and Se, Ca, and Si showed high Dmin values, greater than 200 nm. A range of parameters that influence the Dmin, such as instrument sensitivity, nanoparticle density, and background noise, is demonstrated. It is observed that, when the background noise is low, the instrument sensitivity and nanoparticle density dominate the Dmin significantly. Approaches for reducing the Dmin, e.g., collision cell technology (CCT) and analyte isotope selection, are also discussed. To validate the Dmin estimation approach, size distributions for three engineered nanoparticle samples were

  18. Ultimate scaling of TiN/ZrO2/TiN capacitors: Leakage currents and limitations due to electrode roughness

    NASA Astrophysics Data System (ADS)

    Jegert, Gunther; Kersch, Alfred; Weinreich, Wenke; Lugli, Paolo

    2011-01-01

    In this paper, we investigate the influence of electrode roughness on the leakage current in TiN/high-κ ZrO2/TiN (TZT) thin-film capacitors which are used in dynamic random access memory cells. Based on a microscopic transport model, which is expanded to incorporate electrode roughness, we assess the ultimate scaling potential of TZT capacitors in terms of equivalent oxide thickness, film smoothness, thickness fluctuations, defect density and distribution, and conduction band offset (CBO). The model is based on three-dimensional, fully self-consistent, kinetic Monte Carlo transport simulations. Tunneling transport in the bandgap of the dielectric is treated, which includes defect-assisted transport mechanisms. Electrode roughness is described in the framework of fractal geometry. While the short-range roughness of the electrodes is found not to influence significantly the leakage current, thickness fluctuations of the dielectric have a major impact. For thinner dielectric films they cause a transformation of the dominant transport mechanism from Poole-Frenkel conduction to trap-assisted tunneling. Consequently, the sensitivity of the leakage current on electrode roughness drastically increases on downscaling. Based on the simulations, optimization of the CBO is suggested as the most viable strategy to extend the scalability of TZT capacitors over the next chip generations.

  19. NONDESTRUCTIVE TESTING (NDT) TECHNIQUES TO DETECT CONTAINED SUBSURFACE HAZARDOUS WASTE

    EPA Science Inventory

    The project involves the detection of buried containers with NDT (remote-sensing) techniques. Seventeen techniques were considered and four were ultimately decided upon. They were: electromagnetic induction (EMI); metal detection (MD); magnetometer (MAG); and ground penetrating r...

  20. Getting “Just Deserts” or Seeing the “Silver Lining”: The Relation between Judgments of Immanent and Ultimate Justice

    PubMed Central

    Harvey, Annelie J.; Callan, Mitchell J.

    2014-01-01

    People can perceive misfortunes as caused by previous bad deeds (immanent justice reasoning) or resulting in ultimate compensation (ultimate justice reasoning). Across two studies, we investigated the relation between these types of justice reasoning and identified the processes (perceptions of deservingness) that underlie them for both others (Study 1) and the self (Study 2). Study 1 demonstrated that observers engaged in more ultimate (vs. immanent) justice reasoning for a “good” victim and greater immanent (vs. ultimate) justice reasoning for a “bad” victim. In Study 2, participants' construals of their bad breaks varied as a function of their self-worth, with greater ultimate (immanent) justice reasoning for participants with higher (lower) self-esteem. Across both studies, perceived deservingness of bad breaks or perceived deservingness of ultimate compensation mediated immanent and ultimate justice reasoning respectively. PMID:25036011

  1. A Shadowing Problem in the Detection of Overlapping Communities: Lifting the Resolution Limit through a Cascading Procedure

    PubMed Central

    Young, Jean-Gabriel; Allard, Antoine; Hébert-Dufresne, Laurent; Dubé, Louis J.

    2015-01-01

    Community detection is the process of assigning nodes and links in significant communities (e.g. clusters, function modules) and its development has led to a better understanding of complex networks. When applied to sizable networks, we argue that most detection algorithms correctly identify prominent communities, but fail to do so across multiple scales. As a result, a significant fraction of the network is left uncharted. We show that this problem stems from larger or denser communities overshadowing smaller or sparser ones, and that this effect accounts for most of the undetected communities and unassigned links. We propose a generic cascading approach to community detection that circumvents the problem. Using real and artificial network datasets with three widely used community detection algorithms, we show how a simple cascading procedure allows for the detection of the missing communities. This work highlights a new detection limit of community structure, and we hope that our approach can inspire better community detection algorithms. PMID:26461919

  2. Detection of radioactive particles offshore by γ-ray spectrometry Part I: Monte Carlo assessment of detection depth limits

    NASA Astrophysics Data System (ADS)

    Maučec, M.; de Meijer, R. J.; Rigollet, C.; Hendriks, P. H. G. M.; Jones, D. G.

    2004-06-01

    A joint research project between the British Geological Survey and Nuclear Geophysics Division of the Kernfysisch Versneller Instituut, Groningen, the Netherlands, was commissioned by the United Kingdom Atomic Energy Authority to establish the efficiency of a towed seabed γ-ray spectrometer for the detection of 137Cs-containing radioactive particles offshore Dounreay, Scotland. Using the MCNP code, a comprehensive Monte Carlo feasibility study was carried out to model various combinations of geological matrices, particle burial depth and lateral displacement, source activity and detector material. To validate the sampling and absolute normalisation procedures of MCNP for geometries including multiple (natural and induced) heterogeneous sources in environmental monitoring, a benchmark experiment was conducted. The study demonstrates the ability of seabed γ-ray spectrometry to locate radioactive particles offshore and to distinguish between γ count rate increases due to particles from those due to enhanced natural radioactivity. The information presented in this study will be beneficial for estimation of the inventory of 137Cs particles and their activity distribution and for the recovery of particles from the sea floor. In this paper, the Monte Carlo assessment of the detection limits is presented. The estimation of the required towing speed and acquisition times and their application to radioactive particle detection and discrimination offshore formed a supplementary part of this study.

  3. Transcending matter: physics and ultimate meaning.

    PubMed

    Paulson, Steve; Frank, Adam; Kaiser, David; Maudlin, Tim; Natarajan, Priyamvada

    2015-12-01

    From the discovery of new galaxies and nearly undetectable dark energy to the quantum entanglement of particles across the universe, new findings in physics naturally elicit a sense of awe and wonder. For the founders of modern physics-from Einstein and Bohr to Heisenberg, Pauli, and Bohm-a fascination with deeper questions of meaning and ultimate reality led some of them to explore esoteric traditions and metaphysics. More recently, however, physicists have largely shunned such philosophical and spiritual associations. What can contemporary physics offer us in the quest to understand our place in the universe? Has physics in some ways become a religion unto itself that rejects the search for existential meaning? Discussion of these and related questions is presented in this paper. © 2015 New York Academy of Sciences.

  4. A novel dNTP-limited PCR and HRM assay to detect Williams-Beuren syndrome.

    PubMed

    Zhang, Lichen; Zhang, Xiaoqing; You, Guoling; Yu, Yongguo; Fu, Qihua

    2018-06-01

    Williams-Beuren syndrome (WBS) is caused by a microdeletion of chromosome arm 7q11.23. A rapid and inexpensive genotyping method to detect microdeletion on 7q11.23 needs to be developed for the diagnosis of WBS. This study describes the development of a new type of molecular diagnosis method to detect microdeletion on 7q11.23 based upon high-resolution melting (HRM). Four genes on 7q11.23 were selected as the target genes for the deletion genotyping. dNTP-limited duplex PCR was used to amplify the reference gene, CFTR, and one of the four genes respectively on 7q11.23. An HRM assay was performed on the PCR products, and the height ratio of the negative derivative peaks between the target gene and reference gene was employed to analyze the copy number variation of the target region. A new genotyping method for detecting 7q11.23 deletion was developed based upon dNTP-limited PCR and HRM, which cost only 96 min. Samples from 15 WBS patients and 12 healthy individuals were genotyped by this method in a blinded fashion, and the sensitivity and specificity was 100% (95% CI, 0.80-1, and 95% CI, 0.75-1, respectively) which was proved by CytoScan HD array. The HRM assay we developed is an rapid, inexpensive, and highly accurate method for genotyping 7q11.23 deletion. It is potentially useful in the clinical diagnosis of WBS. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Investigation of detection limits for solutes in water measured by laser raman spectrometry

    USGS Publications Warehouse

    Goldberg, M.C.

    1977-01-01

    The influence of experimental parameters on detection sensitivity was determined for laser Raman analysis of dissolved solutes in water. Individual solutions of nitrate, sulfate, carbonate, bicarbonate, monohydrogen phosphate, dihydrogen phosphate, acetate ion, and acetic acid were measured. An equation is derived which expresses the signal-to-noise ratio in terms of solute concentration, measurement time, spectral slit width, laser power fluctuations, and solvent background intensity. Laser beam intensity fluctuations at the sample and solvent background intensity are the most important limiting factors.

  6. 37. ALTERNATE DESIGN, SIMILAR TO THAT ULTIMATELY SELECTED, BUT USING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. ALTERNATE DESIGN, SIMILAR TO THAT ULTIMATELY SELECTED, BUT USING STEPPED TOWERS, AND WITH PYLONS CAPPED BY LANTERNS Pen-and-ink drawing by project architect Alfred Eichler, ca. 1934. - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  7. The eye limits the brain's learning potential

    PubMed Central

    Zhou, Jiawei; Zhang, Yudong; Dai, Yun; Zhao, Haoxin; Liu, Rong; Hou, Fang; Liang, Bo; Hess, Robert F.; Zhou, Yifeng

    2012-01-01

    The concept of a critical period for visual development early in life during which sensory experience is essential to normal neural development is now well established. However recent evidence suggests that a limited degree of plasticity remains after this period and well into adulthood. Here, we ask the question, "what limits the degree of plasticity in adulthood?" Although this limit has been assumed to be due to neural factors, we show that the optical quality of the retinal image ultimately limits the brain potential for change. We correct the high-order aberrations (HOAs) normally present in the eye's optics using adaptive optics, and reveal a greater degree of neuronal plasticity than previously appreciated. PMID:22509464

  8. ``Ultimate'' information content in solar and stellar spectra. Photospheric line asymmetries and wavelength shifts

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis

    2008-12-01

    bisector studies for many stars. Circumventing remaining limits of astrophysical noise in line-blends and rotationally smeared profiles may ultimately require spectroscopy across spatially resolved stellar disks, utilizing optical interferometers and extremely large telescopes of the future. Tables are only available in electronic form at http://www.aanda.org

  9. Ultimate explanations and suboptimal choice.

    PubMed

    Vasconcelos, Marco; Machado, Armando; Pandeirada, Josefa N S

    2018-07-01

    Researchers have unraveled multiple cases in which behavior deviates from rationality principles. We propose that such deviations are valuable tools to understand the adaptive significance of the underpinning mechanisms. To illustrate, we discuss in detail an experimental protocol in which animals systematically incur substantial foraging losses by preferring a lean but informative option over a rich but non-informative one. To understand how adaptive mechanisms may fail to maximize food intake, we review a model inspired by optimal foraging principles that reconciles sub-optimal choice with the view that current behavioral mechanisms were pruned by the optimizing action of natural selection. To move beyond retrospective speculation, we then review critical tests of the model, regarding both its assumptions and its (sometimes counterintuitive) predictions, all of which have been upheld. The overall contention is that (a) known mechanisms can be used to develop better ultimate accounts and that (b) to understand why mechanisms that generate suboptimal behavior evolved, we need to consider their adaptive value in the animal's characteristic ecology. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Comparison of detection limits in environmental analysis--is it possible? An approach on quality assurance in the lower working range by verification.

    PubMed

    Geiss, S; Einax, J W

    2001-07-01

    Detection limit, reporting limit and limit of quantitation are analytical parameters which describe the power of analytical methods. These parameters are used for internal quality assurance and externally for competing, especially in the case of trace analysis in environmental compartments. The wide variety of possibilities for computing or obtaining these measures in literature and in legislative rules makes any comparison difficult. Additionally, a host of terms have been used within the analytical community to describe detection and quantitation capabilities. Without trying to create an order for the variety of terms, this paper is aimed at providing a practical proposal for answering the main questions for the analysts concerning quality measures above. These main questions and related parameters were explained and graphically demonstrated. Estimation and verification of these parameters are the two steps to get real measures. A rule for a practical verification is given in a table, where the analyst can read out what to measure, what to estimate and which criteria have to be fulfilled. In this manner verified parameters detection limit, reporting limit and limit of quantitation now are comparable and the analyst himself is responsible to the unambiguity and reliability of these measures.

  11. Addition of zinc methacrylate in dental polymers: MMP-2 inhibition and ultimate tensile strength evaluation.

    PubMed

    Henn, Sandrina; de Carvalho, Rodrigo Varella; Ogliari, Fabrício Aulo; de Souza, Ana Paula; Line, Sergio Roberto Peres; da Silva, Adriana Fernandes; Demarco, Flávio Fernando; Etges, Adriana; Piva, Evandro

    2012-04-01

    This study evaluated the effect of zinc methacrylate (ZM) on the inhibition of matrix metalloproteinase 2 (MMP-2) and the ultimate tensile strength (UTS) of an experimental polymer. Enzymes secreted from mouse gingival tissues were analyzed by gelatin zymography in buffers containing 5 mM CaCl(2) (Tris-CaCl(2)) in 50 mM Tris-HCl buffer with various concentrations of ZM (0.5, 1, 2, 4, 8, and 16 mM). The matrix metalloproteinases present in the conditioned media were characterized by immunoprecipitation. The polymer UTS evaluation was performed in eight groups with various concentrations of ZM (0, 0.5, 1, 2.5, 5, 10, 20, and 30 wt.%), in a mechanical testing machine. MMP-2 (62 kDa) was detected in the zymographic assays and inhibited by ZM in all tested concentrations. UTS data were submitted to one-way ANOVA and Tukey's test (α = 0.05), and no significant differences were observed among groups, except in the polymer containing 30% ZM, presenting a significantly lower value when compared with the control group (p < 0.05). The results suggest that ZM inhibits MMP-2 expression in all concentrations tested, while small concentrations did not affect the ultimate tensile strength of the polymer. Zinc methacrylate is a metalloproteinase inhibitor that can be copolymerized with other methacrylate monomers. Yet, the addition of ZM did not affect the resin bond strength. Thus, in vivo tests should be performed to evaluate the performance of this material.

  12. Lower Limits on Aperture Size for an ExoEarth Detecting Coronagraphic Mission

    NASA Technical Reports Server (NTRS)

    Stark, Christopher C.; Roberge, Aki; Mandell, Avi; Clampin, Mark; Domagal-Goldman, Shawn D.; McElwain, Michael W.; Stapelfeldt, Karl R.

    2015-01-01

    The yield of Earth-like planets will likely be a primary science metric for future space-based missions that will drive telescope aperture size. Maximizing the exoEarth candidate yield is therefore critical to minimizing the required aperture. Here we describe a method for exoEarth candidate yield maximization that simultaneously optimizes, for the first time, the targets chosen for observation, the number of visits to each target, the delay time between visits, and the exposure time of every observation. This code calculates both the detection time and multiwavelength spectral characterization time required for planets. We also refine the astrophysical assumptions used as inputs to these calculations, relying on published estimates of planetary occurrence rates as well as theoretical and observational constraints on terrestrial planet sizes and classical habitable zones. Given these astrophysical assumptions, optimistic telescope and instrument assumptions, and our new completeness code that produces the highest yields to date, we suggest lower limits on the aperture size required to detect and characterize a statistically motivated sample of exoEarths.

  13. Glassy carbon electrode modified with polyanilne/ethylenediamine for detection of copper ions

    NASA Astrophysics Data System (ADS)

    Patil, Harshada K.; Deshmukh, Megha A.; Bodkhe, Gajanan A.; Shirsat, Mahendra D.

    2018-05-01

    Increasing water pollution is having high concern, since it creates the threats to all leaving organisms of existence. Industrial sewages have not only polluted the main stream lines of water, also the ground level water is having serious contaminations. Heavy metal ions are the pollutants which are not degradable and can be accumulated on living things ultimately the excess accumulation results into the serious concerns. Therefore, it is necessary to develop the sensors which can detect the heavy metal ions up to its maximum contamination limits. Conducting polymers are the materials which possess large application spectra. This investigation reports the electrochemically synthesized polyaniline (PANI) for modification of glassy carbon electrode (GCE). Ethylenediamine (EDA) - chelating ligand used for the modification of polyaniline so as to inculcate the selectivity toward copper ions Cu (II). The electrochemical cyclic voltammetry (CV) was used for the study of redox characteristics of PANI and influence of EDA modification. The result of CV has shown the reduced oxidation and reduction peak currents after modification indicating the domination of EDA. GCE modified with PANI/EDA was then employed for the detection of divalent copper ions and have shown the affinity toward Cu ions. The detection limit achieved was equal to 10mg/lit.

  14. Applying ISO 11929:2010 Standard to detection limit calculation in least-squares based multi-nuclide gamma-ray spectrum evaluation

    NASA Astrophysics Data System (ADS)

    Kanisch, G.

    2017-05-01

    The concepts of ISO 11929 (2010) are applied to evaluation of radionuclide activities from more complex multi-nuclide gamma-ray spectra. From net peak areas estimated by peak fitting, activities and their standard uncertainties are calculated by weighted linear least-squares method with an additional step, where uncertainties of the design matrix elements are taken into account. A numerical treatment of the standard's uncertainty function, based on ISO 11929 Annex C.5, leads to a procedure for deriving decision threshold and detection limit values. The methods shown allow resolving interferences between radionuclide activities also in case of calculating detection limits where they can improve the latter by including more than one gamma line per radionuclide. The co"mmon single nuclide weighted mean is extended to an interference-corrected (generalized) weighted mean, which, combined with the least-squares method, allows faster detection limit calculations. In addition, a new grouped uncertainty budget was inferred, which for each radionuclide gives uncertainty budgets from seven main variables, such as net count rates, peak efficiencies, gamma emission intensities and others; grouping refers to summation over lists of peaks per radionuclide.

  15. A Supercompressible, Elastic, and Bendable Carbon Aerogel with Ultrasensitive Detection Limits for Compression Strain, Pressure, and Bending Angle.

    PubMed

    Zhuo, Hao; Hu, Yijie; Tong, Xing; Chen, Zehong; Zhong, Linxin; Lai, Haihong; Liu, Linxiang; Jing, Shuangshuang; Liu, Qingzhong; Liu, Chuanfu; Peng, Xinwen; Sun, Runcang

    2018-05-01

    Ultralight and compressible carbon materials have promising applications in strain and pressure detection. However, it is still difficult to prepare carbon materials with supercompressibility, elasticity, stable strain-electrical signal response, and ultrasensitive detection limits, due to the challenge in structural regulation. Herein, a new strategy to prepare a reduced graphene oxide (rGO)-based lamellar carbon aerogels with unexpected and integrated performances by designing wave-shape rGO layers and enhancing the interaction among the rGO layers is demonstrated. Addition of cellulose nanocrystalline and low-molecular-weight carbon precursors enhances the interaction among rGO layers and thus produces an ultralight, flexible, and superstable structure. The as-prepared carbon aerogel displays a supercompressibility (undergoing an extreme strain of 99%) and elasticity (100% height retention after 10 000 cycles at a strain of 30%), as well as stable strain-current response (at least 10 000 cycles). Particularly, the carbon aerogel is ultrasensitive for detecting tiny change in strain (0.012%) and pressure (0.25 Pa), which are the lowest detection limits for compressible carbon materials reported in the literature. Moreover, the carbon aerogel exhibits excellent bendable performance and can detect an ultralow bending angle of 0.052°. Additionally, the carbon aerogel also demonstrates its promising application as wearable devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Adjudicating pathological criminal incapacity within a climate of ultimate issue barriers: a comparative perspective.

    PubMed

    Stevens, Geert Philip

    2015-01-01

    Mental health experts are increasingly being utilised by the criminal justice system to provide assistance to courts during the assessment of issues falling beyond the knowledge and/or experience of the courts. A particular domain where the assistance of qualified psychiatrists and psychologists is becoming essential is where the defence of pathological criminal incapacity falls to be assessed. Mental health professionals testifying during trials where the defence of pathological criminal incapacity is raised will present opinion evidence which is one of the exceptions to the rule of inadmissibility of opinion evidence. Mental health professionals providing their opinion evidence are, however, prohibited from expressing opinions on so-called "ultimate issues" upon which only the court may ultimately rule upon. The latter rule is also commonly known in practice as the "ultimate issue" rule which presents multifaceted challenges in respect of the application of the defence of pathological criminal incapacity. In this article, the author assesses the application of the ultimate issue rule with reference to the defence of pathological criminal incapacity as it operates within the South African criminal law context. A comparative analysis is also provided with reference to the rule as it operates in the United States of America and more specifically Federal Rule 704. It is concluded that the ultimate issue rule unnecessarily restricts testimony provided by mental health professionals as such placing a barrier on such evidence. As such, it is argued that the rule is superfluous as it remains within the discretion of the trier of fact to decide as to what weight to attach to such evidence. Copyright © 2015. Published by Elsevier Ltd.

  17. Early breast cancer screening using iron/iron oxide-based nanoplatforms with sub-femtomolar limits of detection

    PubMed Central

    Samarakoon, Thilani N; Yapa, Asanka S; Abayaweera, Gayani; Basel, Matthew T; Maynez, Pamela; Ortega, Raquel; Toledo, Yubisela; Bossmann, Leonie; Robinson, Colette; Janik, Katharine E; Koper, Olga B; Li, Ping; Motamedi, Massoud; Higgins, Daniel A; Gadbury, Gary

    2016-01-01

    Summary Proteases, including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins (CTS) exhibit numerous functions in tumor biology. Solid tumors are characterized by changes in protease expression levels by tumor and surrounding tissue. Therefore, monitoring protease levels in tissue samples and liquid biopsies is a vital strategy for early cancer detection. Water-dispersable Fe/Fe3O4-core/shell based nanoplatforms for protease detection are capable of detecting protease activity down to sub-femtomolar limits of detection. They feature one dye (tetrakis(carboxyphenyl)porphyrin (TCPP)) that is tethered to the central nanoparticle by means of a protease-cleavable consensus sequence and a second dye (Cy 5.5) that is directly linked. Based on the protease activities of urokinase plasminogen activator (uPA), MMPs 1, 2, 3, 7, 9, and 13, as well as CTS B and L, human breast cancer can be detected at stage I by means of a simple serum test. By monitoring CTS B and L stage 0 detection may be achieved. This initial study, comprised of 46 breast cancer patients and 20 apparently healthy human subjects, demonstrates the feasibility of protease-activity-based liquid biopsies for early cancer diagnosis. PMID:27335730

  18. Early breast cancer screening using iron/iron oxide-based nanoplatforms with sub-femtomolar limits of detection.

    PubMed

    Udukala, Dinusha N; Wang, Hongwang; Wendel, Sebastian O; Malalasekera, Aruni P; Samarakoon, Thilani N; Yapa, Asanka S; Abayaweera, Gayani; Basel, Matthew T; Maynez, Pamela; Ortega, Raquel; Toledo, Yubisela; Bossmann, Leonie; Robinson, Colette; Janik, Katharine E; Koper, Olga B; Li, Ping; Motamedi, Massoud; Higgins, Daniel A; Gadbury, Gary; Zhu, Gaohong; Troyer, Deryl L; Bossmann, Stefan H

    2016-01-01

    Proteases, including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins (CTS) exhibit numerous functions in tumor biology. Solid tumors are characterized by changes in protease expression levels by tumor and surrounding tissue. Therefore, monitoring protease levels in tissue samples and liquid biopsies is a vital strategy for early cancer detection. Water-dispersable Fe/Fe3O4-core/shell based nanoplatforms for protease detection are capable of detecting protease activity down to sub-femtomolar limits of detection. They feature one dye (tetrakis(carboxyphenyl)porphyrin (TCPP)) that is tethered to the central nanoparticle by means of a protease-cleavable consensus sequence and a second dye (Cy 5.5) that is directly linked. Based on the protease activities of urokinase plasminogen activator (uPA), MMPs 1, 2, 3, 7, 9, and 13, as well as CTS B and L, human breast cancer can be detected at stage I by means of a simple serum test. By monitoring CTS B and L stage 0 detection may be achieved. This initial study, comprised of 46 breast cancer patients and 20 apparently healthy human subjects, demonstrates the feasibility of protease-activity-based liquid biopsies for early cancer diagnosis.

  19. Determining the 95% limit of detection for waterborne pathogen analyses from primary concentration to qPCR

    USDA-ARS?s Scientific Manuscript database

    The limit of detection (LOD) for qPCR-based analyses is not consistently defined or determined in studies on waterborne pathogens. Moreover, the LODs reported often reflect the qPCR assay rather than the entire sample process. Our objective was to develop a method to determine the 95% LOD (lowest co...

  20. WE-H-207A-09: Theoretical Limits to Molecular Biomarker Detection Using Magnetic Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, J; Geisel School of Medicine, Dartmouth College, Hanover, NH

    Purpose: Estimate the limits of molecular biomarker detection using magnetic nanoparticle methods like in vivo ELISA. Methods: Magnetic nanoparticles in an alternating magnetic field produce a magnetization that can be detected at exceedingly low levels because the signal at the harmonic frequencies is uniquely produced by the nanoparticles. Because the magnetization can also be used to characterize the nanoparticle rotational freedom, the bound state can be found. If the nanoparticles are coated with molecules that bind the desired biomarker, the rotational freedom reflects the biomarker concentration. The irreducible noise limit is the thermal noise or Johnson noise of the tissuemore » and the contrast that can be measured must be larger than that limit. The contrast produced is a function of the applied field and depends strongly on nanoparticle volume. We have estimated the contrast using a Langevin function of a single composite variable to approximate the full stochastic Langevin equation for nanoparticle dynamics. Results: The thermal noise for a bandwidth reasonable for spectroscopy suggests mid zeptomolar (10–21) to low attomolar (10–18) concentrations can be measured in a volume that is 10cm in scale. The suggested sensitivity is far below the physiologically concentrations of almost all critical biomarkers including cytokines (picomolar), hormones (nanomolar) and heat shock proteins. Conclusion: The sensitivity of in vivo ELISA concentration measurements should be sufficient to measure physiological concentrations of critical biomarkers like cytokines in vivo. Further the sensitivity should be sufficient to measure concentrations of other biomarkers that are six to eight orders of magnitude lower in concentration than immune signaling molecules like cytokines. NIH - 1U54CA151662-01 Department of Radiology.« less

  1. The Ultimate Challenge: Prove B. F. Skinner Wrong

    PubMed Central

    Chance, Paul

    2007-01-01

    For much of his career, B. F. Skinner displayed the optimism that is often attributed to behaviorists. With time, however, he became less and less sanguine about the power of behavior science to solve the major problems facing humanity. Near the end of his life he concluded that a fair consideration of principles revealed by the scientific analysis of behavior leads to pessimism about our species. In this article I discuss the case for Skinner's pessimism and suggest that the ultimate challenge for behavior analysts today is to prove Skinner wrong. PMID:22478494

  2. Evaluation of MidIR fibre optic reflectance: Detection limit, reproducibility and binary mixture discrimination

    NASA Astrophysics Data System (ADS)

    Sessa, Clarimma; Bagán, Héctor; García, José Francisco

    2013-11-01

    MidIR fibre optic reflectance (MidIR-FORS) is a promising analytical technique in the field of science conservation, especially because it is non-destructive. Another advantage of MidIR-FORS is that the obtained information is representative, as a large amount of spectral data can be collected. Although the technique has a high potential and is almost routinely applied, its quality parameters have not been thoroughly studied in the specific application of analysis of artistic materials. The objective of this study is to evaluate the instrumental capabilities of MidIR-FORS for the analysis of artwork materials in terms of detection limit, reproducibility, and mixture characterisation. The study has been focused on oil easel painting and several paints of known composition have been analysed. Paint layers include blue pigments not only because of their important role along art history, but also because their physical and spectroscopic characteristics allow a better evaluation of the MidIR-FORS capabilities. The results of the analysis indicate that MidIR-FORS supplies a signal affected by different factors, such as the optical, morphological and physical properties of the surface, in addition to the composition of materials analysed. Consequently, the detection limits established are relatively high for artistic objects (Prussian blue - PB 2.1-6.5%; Phthalocyanine blue - Pht 6.3-10.2%; synthetic Ultramarine blue - UM 12.1%) and may therefore lead to an incomplete description of the artwork. Reproducibility of the technique over time and across surface has been determined. The results show that the major sources of dispersion are the heterogeneity of the pigments distribution, physical features, and band shape distortions. The total dispersion is around 4% for the most intense bands (oil) and increases up to 26% when weak or overlapped bands are considered (PB, Pht, UM). The application of different pre-treatments (cutoff of fibres absorption, Savizky-Golay smoothing

  3. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit

    NASA Astrophysics Data System (ADS)

    Pan, Weicheng; Wu, Haodi; Luo, Jiajun; Deng, Zhenzhou; Ge, Cong; Chen, Chao; Jiang, Xiaowei; Yin, Wan-Jian; Niu, Guangda; Zhu, Lujun; Yin, Lixiao; Zhou, Ying; Xie, Qingguo; Ke, Xiaoxing; Sui, Manling; Tang, Jiang

    2017-11-01

    Sensitive X-ray detection is crucial for medical diagnosis, industrial inspection and scientific research. The recently described hybrid lead halide perovskites have demonstrated low-cost fabrication and outstanding performance for direct X-ray detection, but they all contain toxic Pb in a soluble form. Here, we report sensitive X-ray detectors using solution-processed double perovskite Cs2AgBiBr6 single crystals. Through thermal annealing and surface treatment, we largely eliminate Ag+/Bi3+ disordering and improve the crystal resistivity, resulting in a detector with a minimum detectable dose rate as low as 59.7 nGyair s-1, comparable to the latest record of 0.036 μGyair s-1 using CH3NH3PbBr3 single crystals. Suppressed ion migration in Cs2AgBiBr6 permits relatively large external bias, guaranteeing efficient charge collection without a substantial increase in noise current and thus enabling the low detection limit.

  4. Fighting an old disease with modern tools: characteristics and molecular detection methods of drug-resistant Mycobacterium tuberculosis.

    PubMed

    Engström, Anna

    2016-01-01

    Tuberculosis (TB) is an ancient disease, but not a disease of the past. The increasing prevalence of drug-resistant strains of Mycobacterium tuberculosis, the causative agent of TB, demands new measures to combat the situation. Rapid and accurate detection of the pathogen, and its drug susceptibility pattern, is essential for timely initiation of treatment, and ultimately, control of the disease. Molecular-based methods offer a great chance to improve detection of drug-resistant TB; however, their development and usage should be accompanied with a profound understanding of drug resistance mechanisms and circulating M. tuberculosis strains in specific settings, as otherwise, the usefulness of such tests may be limited. This review gives an overview of the history of TB treatment and drug resistance, drug resistance mechanisms for the most commonly used drugs and molecular methods designed to detect drug-resistant strains.

  5. Investigation of detection limits for diffuse optical tomography systems: II. Analysis of slab and cup geometry for breast imaging.

    PubMed

    Ziegler, Ronny; Brendel, Bernhard; Rinneberg, Herbert; Nielsen, Tim

    2009-01-21

    Using a statistical (chi-square) test on simulated data and a realistic noise model derived from the system's hardware we study the performance of diffuse optical tomography systems for fluorescence imaging. We compare the predicted smallest size of detectable lesions at various positions in slab and cup geometry and model how detection sensitivity depends on breast compression and lesion fluorescence contrast. Our investigation shows that lesion detection is limited by relative noise in slab geometry and by absolute noise in cup geometry.

  6. Transition to the Ultimate Regime in Two-Dimensional Rayleigh-Bénard Convection

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaojue; Mathai, Varghese; Stevens, Richard J. A. M.; Verzicco, Roberto; Lohse, Detlef

    2018-04-01

    The possible transition to the so-called ultimate regime, wherein both the bulk and the boundary layers are turbulent, has been an outstanding issue in thermal convection, since the seminal work by Kraichnan [Phys. Fluids 5, 1374 (1962), 10.1063/1.1706533]. Yet, when this transition takes place and how the local flow induces it is not fully understood. Here, by performing two-dimensional simulations of Rayleigh-Bénard turbulence covering six decades in Rayleigh number Ra up to 1 014 for Prandtl number Pr =1 , for the first time in numerical simulations we find the transition to the ultimate regime, namely, at Ra*=1013 . We reveal how the emission of thermal plumes enhances the global heat transport, leading to a steeper increase of the Nusselt number than the classical Malkus scaling Nu ˜Ra1 /3 [Proc. R. Soc. A 225, 196 (1954), 10.1098/rspa.1954.0197]. Beyond the transition, the mean velocity profiles are logarithmic throughout, indicating turbulent boundary layers. In contrast, the temperature profiles are only locally logarithmic, namely, within the regions where plumes are emitted, and where the local Nusselt number has an effective scaling Nu ˜Ra0.38 , corresponding to the effective scaling in the ultimate regime.

  7. Limitation in the detection of Listeria monocytogenes in food in the presence of competing Listeria innocua.

    PubMed

    Oravcová, K; Trncíková, T; Kuchta, T; Kaclíková, E

    2008-02-01

    Detectability of Listeria monocytogenes at 10(0) CFU per food sample in the presence of Listeria innocua using standard microbiological detection was evaluated and compared with the real-time PCR-based method. Enrichment in half-Fraser broth followed by subculture in Fraser broth according to EN ISO 11290-1 was used. False-negative detection of 10(0) CFU L. monocytogenes was obtained in the presence of 10(1) CFU L. innocua per sample using the standard detection method in contrast to more than 10(5) CFU L. innocua per sample using real-time PCR. Identification of L. monocytogenes on the chromogenic medium by the standard procedure was impossible if L. innocua was able to overgrow L. monocytogenes by more than three orders of magnitude after the enrichment in model samples. These results were confirmed using naturally contaminated food samples. Standard microbiological method was insufficient for the reliable detection of 10(0) CFU L. monocytogenes in the presence of more than 10(0) CFU of L. innocua per sample. On the other hand, if the growth of L. monocytogenes was sufficient to reach the concentration equal to the detection limit of PCR, the amount of the other microflora present in the food sample including L. innocua was not relevant for success of the PCR detection of L. monocytogenes. After the enrichment, the PCR detection is more convenient than the standard one as PCR detection is not compromised by other present microflora.

  8. Ultimate Success Rates on National Board Examinations: A Research Brief.

    ERIC Educational Resources Information Center

    Gross, Leon J.; Wallis, Norman E.; Present, Richard K.

    1999-01-01

    A study investigated the percentage of optometry students successfully completing the four-component National Board of Examiners in Optometry examination at graduation between 1995 to 1997. Ultimate pass rates for all four components ranged from 87.0% to 90.9%. Results are discussed in relation to the 1993 test-sequence expansion and to the number…

  9. Autonomy in Second Language Phonology: Choice vs. Limits

    ERIC Educational Resources Information Center

    Moyer, Alene

    2017-01-01

    Learning a new sound system poses challenges of a social, psychological, and cognitive nature, but the learner's decisions are key to ultimate attainment. This presentation focuses on two essential concepts: CHOICE, or how one wants to sound in the target language; and LIMITS, or various challenges to one's goals vis-a-vis accent. Qualitative and…

  10. An introduction to UGRS: the ultimate grading and remanufacturing system

    Treesearch

    John Moody; Charles J. Gatchell; Elizabeth S. Walker; Powsiri Klinkhachorn

    1998-01-01

    The Ultimate Grading and Remanufactming System (UGRS) is an advanced computer program for grading and remanufacturing lumber. It is an interactive program that will both grade lumber according to NHLA rules and remanufacture it for maximum value. UGRS is written to run under Microsoft Windows 3.0 or later updates and provides a sophisticated graphical user interface....

  11. Limited copy number-high resolution melting (LCN-HRM) enables the detection and identification by sequencing of low level mutations in cancer biopsies.

    PubMed

    Do, Hongdo; Dobrovic, Alexander

    2009-10-08

    Mutation detection in clinical tumour samples is challenging when the proportion of tumour cells, and thus mutant alleles, is low. The limited sensitivity of conventional sequencing necessitates the adoption of more sensitive approaches. High resolution melting (HRM) is more sensitive than sequencing but identification of the mutation is desirable, particularly when it is important to discriminate false positives due to PCR errors or template degradation from true mutations.We thus developed limited copy number - high resolution melting (LCN-HRM) which applies limiting dilution to HRM. Multiple replicate reactions with a limited number of target sequences per reaction allow low level mutations to be detected. The dilutions used (based on Ct values) are chosen such that mutations, if present, can be detected by the direct sequencing of amplicons with aberrant melting patterns. Using cell lines heterozygous for mutations, we found that the mutations were not readily detected when they comprised 10% of total alleles (20% tumour cells) by sequencing, whereas they were readily detectable at 5% total alleles by standard HRM. LCN-HRM allowed these mutations to be identified by direct sequencing of those positive reactions.LCN-HRM was then used to review formalin-fixed paraffin-embedded (FFPE) clinical samples showing discordant findings between sequencing and HRM for KRAS exon 2 and EGFR exons 19 and 21. Both true mutations present at low levels and sequence changes due to artefacts were detected by LCN-HRM. The use of high fidelity polymerases showed that the majority of the artefacts were derived from the damaged template rather than replication errors during amplification. LCN-HRM bridges the sensitivity gap between HRM and sequencing and is effective in distinguishing between artefacts and true mutations.

  12. Ultimate biochemical oxygen demand in semi-intensively managed shrimp pond waters

    USDA-ARS?s Scientific Manuscript database

    Three independent studies were conducted to quantified ultimate biochemical oxygen demand (UBOD) and the corresponding decomposition rate constant for production pond (average 21.5 ha each) waters and effluents on six semi-intensively managed marine shrimp (Litopenaeus vannamei) farms in Honduras. S...

  13. Estimation of Ultimate Tensile Strength of dentin Using Finite Element Analysis from Endodontically Treated Tooth

    NASA Astrophysics Data System (ADS)

    Sinthaworn, S.; Puengpaiboon, U.; Warasetrattana, N.; Wanapaisarn, S.

    2018-01-01

    Endodontically treated teeth were simulated by finite element analysis in order to estimate ultimate tensile strength of dentin. Structures of the endodontically treated tooth cases are flared root canal, restored with different number of fiber posts {i.e. resin composite core without fiber post (group 1), fiber post No.3 with resin composite core (group 2) and fiber post No.3 accessory 2 fiber posts No.0 with resin composite core (group 3)}. Elastic modulus and Poisson’s ratio of materials were selected from literatures. The models were loaded by the average fracture resistances load of each groups (group 1: 361.80 N, group 2: 559.46 N, group 3: 468.48 N) at 135 degree angulation in respect to the longitudinal axis of the teeth. The stress analysis and experimental confirm that fracture zone is at dentin area. To estimate ultimate tensile strength of dentin, trial and error of ultimate tensile strength were tested to obtain factor of safety (FOS) equal to 1.00. The result reveals that ultimate tensile strength of dentin of group 1, 2, 3 are 38.89, 30.96, 37.19 MPa, respectively.

  14. 15 CFR Supplement No. 3 to Part 748 - BIS-711, Statement by Ultimate Consignee and Purchaser Instructions

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... this form. Block 6: Ultimate Consignee. Enter the requested information and sign the statement in ink... must be signed in ink by the Purchaser, if the Purchaser is not the same as the Ultimate Consignee...

  15. 15 CFR Supplement No. 3 to Part 748 - BIS-711, Statement by Ultimate Consignee and Purchaser Instructions

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... this form. Block 6: Ultimate Consignee. Enter the requested information and sign the statement in ink... must be signed in ink by the Purchaser, if the Purchaser is not the same as the Ultimate Consignee...

  16. 15 CFR Supplement No. 3 to Part 748 - BIS-711, Statement by Ultimate Consignee and Purchaser Instructions

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... this form. Block 6: Ultimate Consignee. Enter the requested information and sign the statement in ink... must be signed in ink by the Purchaser, if the Purchaser is not the same as the Ultimate Consignee...

  17. 15 CFR Supplement No. 3 to Part 748 - BIS-711, Statement by Ultimate Consignee and Purchaser Instructions

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... this form. Block 6: Ultimate Consignee. Enter the requested information and sign the statement in ink... must be signed in ink by the Purchaser, if the Purchaser is not the same as the Ultimate Consignee...

  18. Determining the 95% limit of detection for waterborne pathogen analyses from primary concentration to qPCR.

    PubMed

    Stokdyk, Joel P; Firnstahl, Aaron D; Spencer, Susan K; Burch, Tucker R; Borchardt, Mark A

    2016-06-01

    The limit of detection (LOD) for qPCR-based analyses is not consistently defined or determined in studies on waterborne pathogens. Moreover, the LODs reported often reflect the qPCR assay alone rather than the entire sample process. Our objective was to develop an approach to determine the 95% LOD (lowest concentration at which 95% of positive samples are detected) for the entire process of waterborne pathogen detection. We began by spiking the lowest concentration that was consistently positive at the qPCR step (based on its standard curve) into each procedural step working backwards (i.e., extraction, secondary concentration, primary concentration), which established a concentration that was detectable following losses of the pathogen from processing. Using the fraction of positive replicates (n = 10) at this concentration, we selected and analyzed a second, and then third, concentration. If the fraction of positive replicates equaled 1 or 0 for two concentrations, we selected another. We calculated the LOD using probit analysis. To demonstrate our approach we determined the 95% LOD for Salmonella enterica serovar Typhimurium, adenovirus 41, and vaccine-derived poliovirus Sabin 3, which were 11, 12, and 6 genomic copies (gc) per reaction (rxn), respectively (equivalent to 1.3, 1.5, and 4.0 gc L(-1) assuming the 1500 L tap-water sample volume prescribed in EPA Method 1615). This approach limited the number of analyses required and was amenable to testing multiple genetic targets simultaneously (i.e., spiking a single sample with multiple microorganisms). An LOD determined this way can facilitate study design, guide the number of required technical replicates, aid method evaluation, and inform data interpretation. Published by Elsevier Ltd.

  19. Determining the 95% limit of detection for waterborne pathogen analyses from primary concentration to qPCR

    USGS Publications Warehouse

    Stokdyk, Joel P.; Firnstahl, Aaron; Spencer, Susan K.; Burch, Tucker R; Borchardt, Mark A.

    2016-01-01

    The limit of detection (LOD) for qPCR-based analyses is not consistently defined or determined in studies on waterborne pathogens. Moreover, the LODs reported often reflect the qPCR assay alone rather than the entire sample process. Our objective was to develop an approach to determine the 95% LOD (lowest concentration at which 95% of positive samples are detected) for the entire process of waterborne pathogen detection. We began by spiking the lowest concentration that was consistently positive at the qPCR step (based on its standard curve) into each procedural step working backwards (i.e., extraction, secondary concentration, primary concentration), which established a concentration that was detectable following losses of the pathogen from processing. Using the fraction of positive replicates (n = 10) at this concentration, we selected and analyzed a second, and then third, concentration. If the fraction of positive replicates equaled 1 or 0 for two concentrations, we selected another. We calculated the LOD using probit analysis. To demonstrate our approach we determined the 95% LOD for Salmonella enterica serovar Typhimurium, adenovirus 41, and vaccine-derived poliovirus Sabin 3, which were 11, 12, and 6 genomic copies (gc) per reaction (rxn), respectively (equivalent to 1.3, 1.5, and 4.0 gc L−1 assuming the 1500 L tap-water sample volume prescribed in EPA Method 1615). This approach limited the number of analyses required and was amenable to testing multiple genetic targets simultaneously (i.e., spiking a single sample with multiple microorganisms). An LOD determined this way can facilitate study design, guide the number of required technical replicates, aid method evaluation, and inform data interpretation.

  20. A Control Allocation System for Automatic Detection and Compensation of Phase Shift Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana

    2011-01-01

    This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.

  1. The psychiatrist's guide to right and wrong: Part IV: The insanity defense and the Ultimate Issue Rule.

    PubMed

    Goldstein, R L

    1989-01-01

    In the wake of Hinckley, widespread public dissatisfaction with the role of psychiatrists in insanity defense litigation prompted Congress in 1984 to amend the Federal Rules of Evidence to prohibit psychiatric testimony on the ultimate legal issue of whether or not a defendant is insane. APA's Statement on the Insanity Defense served as the ably articulated premise for this evidentiary amendment. APA argued that in going beyond their psychiatric expertise by answering ultimate issue questions as to whether defendants are legally insane, experts are likely to confuse the jury and undermine public confidence in psychiatry. APA also asserted that there was an impermissible logical leap between scientific psychiatric inquiry and moral-legal conclusions on the ultimate issue of insanity. This article reviews the origins, history, and vicissitudes of the Ultimate Issue Rule and analyzes the Statement on the Insanity Defense from both a legal and psychiatric perspective on the issue of whether psychiatrists should answer the ultimate question in insanity cases. The analysis suggests that APA's conclusions are not supported on scientific or evidentiary grounds, but may be warranted as a policy consideration to safeguard the public image of psychiatry.

  2. Prisoner Fasting as Symbolic Speech: The Ultimate Speech-Action Test.

    ERIC Educational Resources Information Center

    Sneed, Don; Stonecipher, Harry W.

    The ultimate test of the speech-action dichotomy, as it relates to symbolic speech to be considered by the courts, may be the fasting of prison inmates who use hunger strikes to protest the conditions of their confinement or to make political statements. While hunger strikes have been utilized by prisoners for years as a means of protest, it was…

  3. Effects of Kapton Sample Cell Windows on the Detection Limit of Smectite: Implications for CheMin on the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Ming, Douglas W.; Morris, R. V.; Blake, D. F.

    2012-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CheMin has two different window materials used for sample cells -- Mylar and Kapton. Instrument details are provided elsewhere. Fe/Mg-smectite (e.g., nontronite) has been identified in Gale Crater, the MSL future landing site, by CRISM spectra. While large quantities of phyllosilicate minerals will be easily detected by CheMin, it is important to establish detection limits of such phases to understand capabilities and limitations of the instrument. A previous study indicated that the (001) peak of smectite at 15 Ang was detectable in a mixture of 1 wt.% smectite with olivine when Mylar is the window material for the sample cell. Complications arise when Kapton is the window material because Kapton itself also has a diffraction peak near 15 Ang (6.8 deg 2 Theta). This study presents results of mineral mixtures of smectite and olivine to determine smectite detection limits for Kapton sample cells. Because the intensity and position of the smectite (001) peak depends on the hydration state, we also analyzed mixtures with "hydrated" and "dehydrated"h smectite to examine the effects of hydration state on detection limits.

  4. A method for evaluating the performance of computer-aided detection of pulmonary nodules in lung cancer CT screening: detection limit for nodule size and density

    PubMed Central

    Kobayashi, Hajime; Ohkubo, Masaki; Narita, Akihiro; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Sone, Shusuke

    2017-01-01

    Objective: We propose the application of virtual nodules to evaluate the performance of computer-aided detection (CAD) of lung nodules in cancer screening using low-dose CT. Methods: The virtual nodules were generated based on the spatial resolution measured for a CT system used in an institution providing cancer screening and were fused into clinical lung images obtained at that institution, allowing site specificity. First, we validated virtual nodules as an alternative to artificial nodules inserted into a phantom. In addition, we compared the results of CAD analysis between the real nodules (n = 6) and the corresponding virtual nodules. Subsequently, virtual nodules of various sizes and contrasts between nodule density and background density (ΔCT) were inserted into clinical images (n = 10) and submitted for CAD analysis. Results: In the validation study, 46 of 48 virtual nodules had the same CAD results as artificial nodules (kappa coefficient = 0.913). Real nodules and the corresponding virtual nodules showed the same CAD results. The detection limits of the tested CAD system were determined in terms of size and density of peripheral lung nodules; we demonstrated that a nodule with a 5-mm diameter was detected when the nodule had a ΔCT > 220 HU. Conclusion: Virtual nodules are effective in evaluating CAD performance using site-specific scan/reconstruction conditions. Advances in knowledge: Virtual nodules can be an effective means of evaluating site-specific CAD performance. The methodology for guiding the detection limit for nodule size/density might be a useful evaluation strategy. PMID:27897029

  5. Limited copy number - high resolution melting (LCN-HRM) enables the detection and identification by sequencing of low level mutations in cancer biopsies

    PubMed Central

    Do, Hongdo; Dobrovic, Alexander

    2009-01-01

    Background Mutation detection in clinical tumour samples is challenging when the proportion of tumour cells, and thus mutant alleles, is low. The limited sensitivity of conventional sequencing necessitates the adoption of more sensitive approaches. High resolution melting (HRM) is more sensitive than sequencing but identification of the mutation is desirable, particularly when it is important to discriminate false positives due to PCR errors or template degradation from true mutations. We thus developed limited copy number - high resolution melting (LCN-HRM) which applies limiting dilution to HRM. Multiple replicate reactions with a limited number of target sequences per reaction allow low level mutations to be detected. The dilutions used (based on Ct values) are chosen such that mutations, if present, can be detected by the direct sequencing of amplicons with aberrant melting patterns. Results Using cell lines heterozygous for mutations, we found that the mutations were not readily detected when they comprised 10% of total alleles (20% tumour cells) by sequencing, whereas they were readily detectable at 5% total alleles by standard HRM. LCN-HRM allowed these mutations to be identified by direct sequencing of those positive reactions. LCN-HRM was then used to review formalin-fixed paraffin-embedded (FFPE) clinical samples showing discordant findings between sequencing and HRM for KRAS exon 2 and EGFR exons 19 and 21. Both true mutations present at low levels and sequence changes due to artefacts were detected by LCN-HRM. The use of high fidelity polymerases showed that the majority of the artefacts were derived from the damaged template rather than replication errors during amplification. Conclusion LCN-HRM bridges the sensitivity gap between HRM and sequencing and is effective in distinguishing between artefacts and true mutations. PMID:19811662

  6. Detection limits of 405 nm and 633 nm excited PpIX fluorescence for brain tumor detection during stereotactic biopsy

    NASA Astrophysics Data System (ADS)

    Markwardt, Niklas; Götz, Marcus; Haj-Hosseini, Neda; Hollnburger, Bastian; Sroka, Ronald; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2016-04-01

    5-aminolevulinic-acid-(5-ALA)-induced protoporphyrin IX (PpIX) fluorescence may be used to improve stereotactic brain tumor biopsies. In this study, the sensitivity of PpIX-based tumor detection has been investigated for two potential excitation wavelengths (405 nm, 633 nm). Using a 200 μm fiber in contact with semi-infinite optical phantoms containing ink and Lipovenös, PpIX detection limits of 4.0 nM and 200 nM (relating to 1 mW excitation power) were determined for 405 nm and 633 nm excitation, respectively. Hence, typical PpIX concentrations in glioblastomas of a few μM should be well detectable with both wavelengths. Additionally, blood layers of selected thicknesses were placed between fiber and phantom. Red excitation was shown to be considerably less affected by blood interference: A 50 μm blood layer, for instance, blocked the 405- nm-excited fluorescence completely, but reduced the 633-nm-excited signal by less than 50%. Ray tracing simulations demonstrated that - without blood layer - the sensitivity advantage of 405 nm rises for decreasing fluorescent volume from 50-fold to a maximum of 100-fold. However, at a tumor volume of 1 mm3, which is a typical biopsy sample size, the 633-nm-excited fluorescence signal is only reduced by about 10%. Further simulations revealed that with increasing fiber-tumor distance, the signal drops faster for 405 nm. This reduces the risk of detecting tumor tissue outside the needle's coverage, but diminishes the overlap between optically and mechanically sampled volumes. While 405 nm generally offers a higher sensitivity, 633 nm is more sensitive to distant tumors and considerably superior in case of blood-covered tumor tissue.

  7. Single-Layer Limit of Metallic Indium Overlayers on Si(111).

    PubMed

    Park, Jae Whan; Kang, Myung Ho

    2016-09-09

    Density-functional calculations are used to identify one-atom-thick metallic In phases grown on the Si(111) surface, which have long been sought in quest of the ultimate two-dimensional (2D) limit of metallic properties. We predict two metastable single-layer In phases, one sqrt[7]×sqrt[3] phase with a coverage of 1.4 monolayer (ML; here 1 ML refers to one In atom per top Si atom) and the other sqrt[7]×sqrt[7] phase with 1.43 ML, which indeed agree with experimental evidences. Both phases reveal quasi-1D arrangements of protruded In atoms, leading to 2D-metallic but anisotropic band structures and Fermi surfaces. This directional feature contrasts with the free-electron-like In-overlayer properties that are known to persist up to the double-layer thickness, implying that the ultimate 2D limit of In overlayers may have been achieved in previous studies of double-layer In phases.

  8. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA

    USGS Publications Warehouse

    Hunter, Margaret; Dorazio, Robert M.; Butterfield, John S.; Meigs-Friend, Gaia; Nico, Leo; Ferrante, Jason A.

    2017-01-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species’ presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty – indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis, and forensic and clinical diagnostics.

  9. Lowering thresholds for speed limit enforcement impairs peripheral object detection and increases driver subjective workload.

    PubMed

    Bowden, Vanessa K; Loft, Shayne; Tatasciore, Monica; Visser, Troy A W

    2017-01-01

    Speed enforcement reduces incidences of speeding, thus reducing traffic accidents. Accordingly, it has been argued that stricter speed enforcement thresholds could further improve road safety. Effective speed monitoring however requires driver attention and effort, and human information-processing capacity is limited. Emphasizing speed monitoring may therefore reduce resource availability for other aspects of safe vehicle operation. We investigated whether lowering enforcement thresholds in a simulator setting would introduce further competition for limited cognitive and visual resources. Eighty-four young adult participants drove under conditions where they could be fined for travelling 1, 6, or 11km/h over a 50km/h speed-limit. Stricter speed enforcement led to greater subjective workload and significant decrements in peripheral object detection. These data indicate that the benefits of reduced speeding with stricter enforcement may be at least partially offset by greater mental demands on drivers, reducing their responses to safety-critical stimuli on the road. It is likely these results under-estimate the impact of stricter speed enforcement on real-world drivers who experience significantly greater pressures to drive at or above the speed limit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. LRFD software for design and actual ultimate capacity of confined rectangular columns.

    DOT National Transportation Integrated Search

    2013-04-01

    The analysis of concrete columns using unconfined concrete models is a well established practice. On the : other hand, prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear : analysis. Modern codes and...

  11. Rapid population growth and environmental degradation: ultimate versus proximate factors.

    PubMed

    Shaw, R P

    1989-01-01

    This philosophical review of 2 arguments about responsibility for and solutions to environmental degradation concludes that both sides are correct: the ultimate and the proximal causes. Ultimate causes of pollution are defined as the technology responsible for a given type of pollution, such as burning fossil fuel; proximate causes are defined as situation-specific factors confounding the problem, such as population density or rate of growth. Commoner and others argue that developed countries with low or negative population growth rates are responsible for 80% of world pollution, primarily in polluting technologies such as automobiles, power generation, plastics, pesticides, toxic wastes, garbage, warfaring, and nuclear weapons wastes. Distortionary policies also contribute; examples are agricultural trade protection, land mismanagement, urban bias in expenditures, and institutional rigidity., Poor nations are responsible for very little pollution because poverty allows little waste or expenditures for polluting, synthetic technologies. The proximal causes of pollution include numbers and rate of growth of populations responsible for the pollution. Since change in the ultimate cause of pollution remains out of reach, altering the numbers of polluters can make a difference. Predictions are made for proportions of the world's total waste production, assuming current 1.6 tons/capita for developed countries and 0.17 tons/capita for developing countries. If developing countries grow at current rates and become more wealthy, they will be emitting half the world's waste by 2025. ON the other hand, unsustainable population growth goes along with inadequate investment in human capital: education, health, employment, infrastructure. The solution is to improve farming technologies in the 117 non-self-sufficient countries, fund development in the most unsustainable enclaves of growing countries, break institutionalized socio-political rigidity in these enclaves, and focus on

  12. 15 CFR 740.3 - Shipments of limited value (LVS).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... included in the same order and controlled under the same ECCN entry on the CCL does not exceed the amount... the same ultimate or intermediate consignee of commodities classified under a single ECCN may not exceed 12 times the LVS value limit for that ECCN; however, there is no restriction on the number of...

  13. 15 CFR 740.3 - Shipments of limited value (LVS).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... included in the same order and controlled under the same ECCN entry on the CCL does not exceed the amount... the same ultimate or intermediate consignee of commodities classified under a single ECCN may not exceed 12 times the LVS value limit for that ECCN; however, there is no restriction on the number of...

  14. 15 CFR 740.3 - Shipments of limited value (LVS).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... included in the same order and controlled under the same ECCN entry on the CCL does not exceed the amount... the same ultimate or intermediate consignee of commodities classified under a single ECCN may not exceed 12 times the LVS value limit for that ECCN; however, there is no restriction on the number of...

  15. 15 CFR 740.3 - Shipments of limited value (LVS).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... included in the same order and controlled under the same ECCN entry on the CCL does not exceed the amount... the same ultimate or intermediate consignee of commodities classified under a single ECCN may not exceed 12 times the LVS value limit for that ECCN; however, there is no restriction on the number of...

  16. Thermal background noise limitations

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1982-01-01

    Modern detection systems are increasingly limited in sensitivity by the background thermal photons which enter the receiving system. Expressions for the fluctuations of detected thermal radiation are derived. Incoherent and heterodyne detection processes are considered. References to the subject of photon detection statistics are given.

  17. Age and Ultimate Attainment in the Pronunciation of a Foreign Language.

    ERIC Educational Resources Information Center

    Bongaerts, Theo; van Summeren, Chantal; Planken, Brigette; Schils, Erik

    1997-01-01

    Reports on two studies addressing the issue of ultimate attainment of pronunciation by late second-language learners. Findings indicate that it is not impossible to achieve an authentic, nativelike pronunciation of a second language after a specified biological time. The article argues that certain learner characteristics and learning contexts may…

  18. Propellant Feed System Leak Detection: Lessons Learned From the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Hass, Neal; Mizukami, Masashi; Neal, Bradford A.; St. John, Clinton; Beil, Robert J.; Griffin, Timothy P.

    1999-01-01

    This paper presents pertinent results and assessment of propellant feed system leak detection as applied to the Linear Aerospike SR-71 Experiment (LASRE) program flown at the NASA Dryden Flight Research Center, Edwards, California. The LASRE was a flight test of an aerospike rocket engine using liquid oxygen and high-pressure gaseous hydrogen as propellants. The flight safety of the crew and the experiment demanded proven technologies and techniques that could detect leaks and assess the integrity of hazardous propellant feed systems. Point source detection and systematic detection were used. Point source detection was adequate for catching gross leakage from components of the propellant feed systems, but insufficient for clearing LASRE to levels of acceptability. Systematic detection, which used high-resolution instrumentation to evaluate the health of the system within a closed volume, provided a better means for assessing leak hazards. Oxygen sensors detected a leak rate of approximately 0.04 cubic inches per second of liquid oxygen. Pressure sensor data revealed speculated cryogenic boiloff through the fittings of the oxygen system, but location of the source(s) was indeterminable. Ultimately, LASRE was cancelled because leak detection techniques were unable to verify that oxygen levels could be maintained below flammability limits.

  19. METHYLATED ASIII COMPOUNDS AS POTENTIAL PROXIMATE/ULTIMATE GENOTOXIC METABOLITES OF INORGANIC ARSENIC

    EPA Science Inventory

    METHYLATED Asm COMPOUNDS AS POTENTIAL PROXIMATE/ULTIMATE GENOTOXIC METABOLITES OF INORGANIC ARSENIC.

    The methylation of inorganic arsenic has typically been viewed as a detoxification process. Genotoxicity tests have generally shown that arsenite has greater mutagenic p...

  20. Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models.

    PubMed

    Burgués, Javier; Jiménez-Soto, Juan Manuel; Marco, Santiago

    2018-07-12

    The limit of detection (LOD) is a key figure of merit in chemical sensing. However, the estimation of this figure of merit is hindered by the non-linear calibration curve characteristic of semiconductor gas sensor technologies such as, metal oxide (MOX), gasFETs or thermoelectric sensors. Additionally, chemical sensors suffer from cross-sensitivities and temporal stability problems. The application of the International Union of Pure and Applied Chemistry (IUPAC) recommendations for univariate LOD estimation in non-linear semiconductor gas sensors is not straightforward due to the strong statistical requirements of the IUPAC methodology (linearity, homoscedasticity, normality). Here, we propose a methodological approach to LOD estimation through linearized calibration models. As an example, the methodology is applied to the detection of low concentrations of carbon monoxide using MOX gas sensors in a scenario where the main source of error is the presence of uncontrolled levels of humidity. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. AN ALTERNATIVE CALIBRATION OF CR-39 DETECTORS FOR RADON DETECTION BEYOND THE SATURATION LIMIT.

    PubMed

    Franci, Daniele; Aureli, Tommaso; Cardellini, Francesco

    2016-12-01

    Time-integrated measurements of indoor radon levels are commonly carried out using solid-state nuclear track detectors (SSNTDs), due to the numerous advantages offered by this radiation detection technique. However, the use of SSNTD also presents some problems that may affect the accuracy of the results. The effect of overlapping tracks often results in the underestimation of the detected track density, which leads to the reduction of the counting efficiency for increasing radon exposure. This article aims to address the effect of overlapping tracks by proposing an alternative calibration technique based on the measurement of the fraction of the detector surface covered by alpha tracks. The method has been tested against a set of Monte Carlo data and then applied to a set of experimental data collected at the radon chamber of the Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, at the ENEA centre in Casaccia, using CR-39 detectors. It has been proved that the method allows to extend the detectable range of radon exposure far beyond the intrinsic limit imposed by the standard calibration based on the track density. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Instrumental Analysis in Environmental Chemistry - Gas Phase Detection Systems

    ERIC Educational Resources Information Center

    Stedman, Donald H.; Meyers, Philip A.

    1974-01-01

    Discusses advances made in chemical analysis instrumentation used in environmental monitoring. This first of two articles is concerned with analytical instrumentation in which detection and dispersion depend ultimately on the properties of gaseous molecules. (JR)

  3. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA.

    PubMed

    Hunter, Margaret E; Dorazio, Robert M; Butterfield, John S S; Meigs-Friend, Gaia; Nico, Leo G; Ferrante, Jason A

    2017-03-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low-concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species' presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty-indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis and forensic and clinical diagnostics. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  4. Ultimate Spectrum of Solar/Stellar Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Struminsky, Alexei

    2015-08-01

    We reconstruct an ultimate spectrum of solar/stellar cosmic rays (SCR) in a given point in the heliosphere (stellar sphere) basing on maximal value of magnetic field strenght in active region and its characteristic linear dimension. An accelerator of given dimensions and magnetic field strengh may accelarate to a finite energy for a given time (a maximal energy of SCR). We will use spectrum of SCR proposed by Syrovatsky (1961) for relativistic and non-relativistic energies normaliszing it to galactic cosmic ray (GCR) intensity at maximal SCR energy. Maximal values of SCR flux propagating in the heliosphere are determined by equilibrium between pressure of interplanetary magnrtic field and dynamic pressure of SCR (Frier&Webber, 1963). The obtained spectra would be applied to explain the extreme solar particle event occurred in about 775 AD basing on the tree-ring chronology (Miyake et al., 2012).

  5. HHV Predicting Correlations for Torrefied Biomass Using Proximate and Ultimate Analyses

    PubMed Central

    Nhuchhen, Daya Ram; Afzal, Muhammad T.

    2017-01-01

    Many correlations are available in the literature to predict the higher heating value (HHV) of raw biomass using the proximate and ultimate analyses. Studies on biomass torrefaction are growing tremendously, which suggest that the fuel characteristics, such as HHV, proximate analysis and ultimate analysis, have changed significantly after torrefaction. Such changes may cause high estimation errors if the existing HHV correlations were to be used in predicting the HHV of torrefied biomass. No study has been carried out so far to verify this. Therefore, this study seeks answers to the question: “Can the existing correlations be used to determine the HHV of the torrefied biomass”? To answer this, the existing HHV predicting correlations were tested using torrefied biomass data points. Estimation errors were found to be significantly high for the existing HHV correlations, and thus, they are not suitable for predicting the HHV of the torrefied biomass. New correlations were then developed using data points of torrefied biomass. The ranges of reported data for HHV, volatile matter (VM), fixed carbon (FC), ash (ASH), carbon (C), hydrogen (H) and oxygen (O) contents were 14.90 MJ/kg–33.30 MJ/kg, 13.30%–88.57%, 11.25%–82.74%, 0.08%–47.62%, 35.08%–86.28%, 0.53%–7.46% and 4.31%–44.70%, respectively. Correlations with the minimum mean absolute errors and having all components of proximate and ultimate analyses were selected for future use. The selected new correlations have a good accuracy of prediction when they are validated using another set of data (26 samples). Thus, these new and more accurate correlations can be useful in modeling different thermochemical processes, including combustion, pyrolysis and gasification processes of torrefied biomass. PMID:28952487

  6. Detection of Hepatitis B Virus DNA among Chronic and potential Occult HBV patients in resource-limited settings by Loop-Mediated Isothermal Amplification assay.

    PubMed

    Akram, Arifa; Islam, S M Rashedul; Munshi, Saif Ullah; Tabassum, Shahina

    2018-05-16

    Transmission of Hepatitis B Virus (HBV) usually occurs due to the transfusion of blood or blood products from chronic HBV (CHB) or occult HBV infected (OBI) patients. Besides serological tests e.g. HBsAg and anti-HBc (total), detection of HBV-DNA is necessary for the diagnosis of OBI patients. Different nucleic acid tests (NATs) including real-time-Polymerase Chain Reaction (qPCR) are used for the detect HBV-DNA. The NATs are expensive and require technical expertise which are barriers to introducing them in resource-limited settings. This study was undertaken to evaluate the use of Loop-Mediated Isothermal Amplification (LAMP) assay as an alternative to qPCR for the detection of HBV-DNA in CHB and potential OBI patients in resource-limited settings. Following the published protocols with some modifications, a LAMP assay was developed for detection of HBV-DNA by either using a heat block followed by detection in an agarose gel or using a qPCR thermocycler. The LAMP assay was applied to supernatant prepared from heat treated serum collected from CHB and potential OBI patients. HBV viral load in serum was measured by qPCR using a single step HBV-DNA quantification kit. Among 200 samples tested, qPCR was capable to detect HBV-DNA in 25.5% of cases, whereas LAMP assay detected HBV-DNA in 43.5% cases. The qPCR was able to detect 11 (9.16%) potential OBI cases, whereas LAMP assay identified HBV-DNA in 43 (35.83%) cases. In addition to tests for HBsAg and/or anti-HBc (total), detection of HBV-DNA by LAMP assay may aid in preventing post-transfusion HBV infection in resource-limited settings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Mechanical Computing Redux: Limitations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Liu, Tsu-Jae King

    2014-03-01

    Technology solutions for overcoming the energy efficiency limits of nanoscale complementary metal oxide semiconductor (CMOS) technology ultimately will be needed in order to address the growing issue of integrated-circuit chip power density. Off-state leakage current sets a fundamental lower limit in energy per operation for any voltage-level-based digital logic implemented with transistors (CMOS and beyond), which leads to practical limits for device density (i.e. cost) and operating frequency (i.e. system performance). Mechanical switches have zero off-state leakag and hence can overcome this fundamental limit. Contact adhesive force sets a lower limit for the switching energy of a mechanical switch, however, and also directly impacts its performance. This paper will review recent progress toward the development of nano-electro-mechanical relay technology and discuss remaining challenges for realizing the promise of mechanical computing for ultra-low-power computing. Supported by the Center for Energy Efficient Electronics Science (NSF Award 0939514).

  8. 78 FR 72972 - Application of Ultimate JETCHARTERS, LLC for Commuter Air Carrier Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... all interested persons to show cause why it should not issue an order finding Ultimate JETCHARTERS, LLC, fit, willing, and able, and awarding it commuter air carrier authority to conduct scheduled...

  9. SUPPLEMENT TO EPA COMPENDIUM METHOD TO-15 - REDUCTION OF METHOD DETECTION LIMITS TO MEET VAPOR INTRUSION MONITORING NEEDS

    EPA Science Inventory

    The Supplement to EPA Compendium Method TO-15 provides guidance for reducing the method detection limit (MDL) for the compound 1,1- dichloroethene (1,1-DCE) and for other volatile organic compounds (VOCs) from 0.5 ppbv, as cited in Method TO-15, to much lower concentrations. R...

  10. SUPPLEMENT TO EPA COMPENDIUM METHOD TO-15 - REDUCTION OF METHOD DETECTION LIMITS TO MEET VAPOR INTRUSION MONITORING NEEDS

    EPA Science Inventory

    The Supplement to EPA Compendium Method TO-15 provides guidance for reducing the method detection limit (MDL) for the compound 1,1-dichloroethene (1,1-DCE) and for other volatile organic compounds (VOCs) from 0.5 parts per billion by volume (ppbv), as cited in Method TO-15, to ...

  11. 7 CFR 4280.29 - Supplemental financing required for the Ultimate Recipient Project.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Supplemental financing required for the Ultimate Recipient Project. 4280.29 Section 4280.29 Agriculture Regulations of the Department of Agriculture... AND GRANTS Rural Economic Development Loan and Grant Programs § 4280.29 Supplemental financing...

  12. Natural history of optical coherence tomography-detected non-flow-limiting edge dissections following drug-eluting stent implantation.

    PubMed

    Radu, Maria D; Räber, Lorenz; Heo, Jungho; Gogas, Bill D; Jørgensen, Erik; Kelbæk, Henning; Muramatsu, Takashi; Farooq, Vasim; Helqvist, Steffen; Garcia-Garcia, Hector M; Windecker, Stephan; Saunamäki, Kari; Serruys, Patrick W

    2014-01-22

    Angiographic evidence of edge dissections has been associated with a risk of early stent thrombosis. Optical coherence tomography (OCT) is a high-resolution technology detecting a greater number of edge dissections--particularly non-flow-limiting--compared to angiography. Their natural history and clinical implications remain unclear. The objectives of the present study were to assess the morphology, healing response, and clinical outcomes of OCT-detected edge dissections using serial OCT imaging at baseline and at one year following drug-eluting stent (DES) implantation. Edge dissections were defined as disruptions of the luminal surface in the 5 mm segments proximal and distal to the stent, and categorised as flaps, cavities, double-lumen dissections or fissures. Qualitative and quantitative OCT analyses were performed every 0.5 mm at baseline and one year, and clinical outcomes were assessed. Sixty-three lesions (57 patients) were studied with OCT at baseline and one-year follow-up. Twenty-two non-flow-limiting edge dissections in 21 lesions (20 patients) were identified by OCT; only two (9%) were angiographically visible. Flaps were found in 96% of cases. The median longitudinal dissection length was 2.9 mm (interquartile range [IQR] 1.6-4.2 mm), whereas the circumferential and axial extensions amounted to 1.2 mm (IQR: 0.9-1.7 mm) and 0.6 mm (IQR: 0.4-0.7 mm), respectively. Dissections extended into the media and adventitia in seven (33%) and four (20%) cases, respectively. Eighteen (82%) OCT-detected edge dissections were also evaluated with intravascular ultrasound which identified nine (50%) of these OCT-detected dissections. No stent thrombosis or target lesion revascularisation occurred up to one year. At follow-up, 20 (90%) edge dissections were completely healed on OCT. The two cases exhibiting persistent dissection had the longest flaps (2.81 mm and 2.42 mm) at baseline. OCT-detected edge dissections which are angiographically silent in the majority of

  13. Dual-balanced detection scheme with optical hard-limiters in an optical code division multiple access system

    NASA Astrophysics Data System (ADS)

    Liu, Maw-Yang; Hsu, Yi-Kai

    2017-03-01

    Three-arm dual-balanced detection scheme is studied in an optical code division multiple access system. As the MAI and beat noise are the main deleterious source of system performance, we utilize optical hard-limiters to alleviate such channel impairment. In addition, once the channel condition is improved effectively, the proposed two-dimensional error correction code can remarkably enhance the system performance. In our proposed scheme, the optimal thresholds of optical hard-limiters and decision circuitry are fixed, and they will not change with other system parameters. Our proposed scheme can accommodate a large number of users simultaneously and is suitable for burst traffic with asynchronous transmission. Therefore, it is highly recommended as the platform for broadband optical access network.

  14. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    PubMed Central

    Wang, Chuji; Sahay, Peeyush

    2009-01-01

    Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis. PMID:22408503

  15. [Estimation of time detection limit for human cytochrome b in females of Lutzomyia evansi].

    PubMed

    Vergara, José Gabriel; Verbel-Vergara, Daniel; Montesino, Ana Milena; Pérez-Doria, Alveiro; Bejarano, Eduar Elías

    2017-03-29

    Molecular biology techniques have allowed a better knowledge of sources of blood meals in vector insects. However, the usefulness of these techniques depends on both the quantity of ingested blood and the digestion process in the insect. To identify the time limit for detection of the human cytochrome b (Cyt b) gene in experimentally fed females of Lutzomyia evansi. Eight groups of L. evansi females were fed on human blood and sacrificed at intervals of 24 hours post-ingestion. Total DNA was extracted from each female and a segment of 358 bp of Cyt b was amplified. In order to eliminate false positives, amplification products were subjected to a restriction fragment length polymorphism (RFLP) analysis. The human Cyt b gene segment was detected in 86% (49/57) of the females of L. evansi, from 0 to 168 hours after blood ingestion. In 7% (4/57) of the individuals we amplified insect DNA, while in the remaining 7%, the band of interest was not amplified. We did not find any statistical differences between groups of females sacrificed at different times post-blood meal regarding the amplification of the human Cyt b gene segment or the number of samples amplified. The human Cyt b gene segment was detectable in L. evansi females up to 168 hours after blood ingestion.

  16. Assembly of Customized TAL Effectors Through Advanced ULtiMATE System.

    PubMed

    Yang, Junjiao; Guo, Shengjie; Yuan, Pengfei; Wei, Wensheng

    2016-01-01

    Transcription activator-like effectors (TALEs) have been widely applied in gene targeting. Here we describe an advanced ULtiMATE (USER-based Ligation-Mediated Assembly of TAL Effector) system that utilizes USER fusion technique and archive of 512 tetramer templates to achieve highly efficient construction of TALEs, which takes only half a day to accomplish the assembly of any given TALE construct. This system is also suitable for large-scale assembly of TALENs and any other TALE-based constructions.

  17. Geologic constraints on the upper limits of reserve growth

    USGS Publications Warehouse

    Stanley, Richard G.

    2001-01-01

    For many oil and gas fields, estimates of ultimate recovery (the sum of cumulative production plus estimated reserves) tend to increase from one year to the next, and the gain is called reserve growth. Forecasts of reserve growth by the U.S. Geological Survey rely on statistical analyses of historical records of oil and gas production and estimated reserves. The preproposal in this Open-File Report suggests that this traditional petroleum–engineering approach to reserve growth might be supplemented, or at least better understood, by using geological data from individual oil and gas fields, 3–D modeling software, and standard volumetric techniques to estimate in–place volumes of oil and gas. Such estimates, in turn, can be used to constrain the upper limits of reserve growth and ultimate recovery from those fields.

  18. Plug nozzles: The ultimate customer driven propulsion system

    NASA Technical Reports Server (NTRS)

    Aukerman, Carl A.

    1991-01-01

    This paper presents the results of a study applying the plug cluster nozzle concept to the propulsion system for a typical lunar excursion vehicle. Primary attention for the design criteria is given to user defined factors such as reliability, low volume, and ease of propulsion system development. Total thrust and specific impulse are held constant in the study while other parameters are explored to minimize the design chamber pressure. A brief history of the plug nozzle concept is included to point out the advanced level of technology of the concept and the feasibility of exploiting the variables considered in this study. The plug cluster concept looks very promising as a candidate for consideration for the ultimate customer driven propulsion system.

  19. Scheme for efficient extraction of low-frequency signal beyond the quantum limit by frequency-shift detection.

    PubMed

    Yang, R G; Zhang, J; Zhai, Z H; Zhai, S Q; Liu, K; Gao, J R

    2015-08-10

    Low-frequency (Hz~kHz) squeezing is very important in many schemes of quantum precision measurement. But it is more difficult than that at megahertz-frequency because of the introduction of laser low-frequency technical noise. In this paper, we propose a scheme to obtain a low-frequency signal beyond the quantum limit from the frequency comb in a non-degenerate frequency and degenerate polarization optical parametric amplifier (NOPA) operating below threshold with type I phase matching by frequency-shift detection. Low-frequency squeezing immune to laser technical noise is obtained by a detection system with a local beam of two-frequency intense laser. Furthermore, the low-frequency squeezing can be used for phase measurement in Mach-Zehnder interferometer, and the signal-to-noise ratio (SNR) can be enhanced greatly.

  20. Quantitative analysis of trace levels of surface contamination by X-ray photoelectron spectroscopy Part I: statistical uncertainty near the detection limit.

    PubMed

    Hill, Shannon B; Faradzhev, Nadir S; Powell, Cedric J

    2017-12-01

    We discuss the problem of quantifying common sources of statistical uncertainties for analyses of trace levels of surface contamination using X-ray photoelectron spectroscopy. We examine the propagation of error for peak-area measurements using common forms of linear and polynomial background subtraction including the correlation of points used to determine both background and peak areas. This correlation has been neglected in previous analyses, but we show that it contributes significantly to the peak-area uncertainty near the detection limit. We introduce the concept of relative background subtraction variance (RBSV) which quantifies the uncertainty introduced by the method of background determination relative to the uncertainty of the background area itself. The uncertainties of the peak area and atomic concentration and of the detection limit are expressed using the RBSV, which separates the contributions from the acquisition parameters, the background-determination method, and the properties of the measured spectrum. These results are then combined to find acquisition strategies that minimize the total measurement time needed to achieve a desired detection limit or atomic-percentage uncertainty for a particular trace element. Minimization of data-acquisition time is important for samples that are sensitive to x-ray dose and also for laboratories that need to optimize throughput.

  1. Ultimate strength performance of tankers associated with industry corrosion addition practices

    NASA Astrophysics Data System (ADS)

    Kim, Do Kyun; Kim, Han Byul; Zhang, Xiaoming; Li, Chen Guang; Paik, Jeom Kee

    2014-09-01

    In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR), Common Structural Rules (CSR), and harmonised Common Structural Rules (CSRH) are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS), and Time-Dependent Corrosion Wastage Model (TDCWM). To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures

  2. The Assessment of the Ultimate Hull Girder Strength of RO-RO Ship after Damages

    NASA Astrophysics Data System (ADS)

    Zubair Muis Alie, Muhammad; Sitepu, Ganding; Izaak Latumahin, Samuel

    2018-03-01

    Many accidents of Ro-Ro ships happen in Indonesia such as collision and grounding. When the collision or grounding takes place on the Ro-Ro ship, the ultimate strength of hull structure after damage becomes decrease. Car and passenger decks are critical location since collision and/or grounding occur. In the present study, the assessment of the ultimate hull girder strength is conducted. The cross section of Ro-Ro ship is taken to be analyzed. The collision and grounding damages are assumed to be palced on the side and bottom area, respectively. The damages are created by removing the element from the side shell and bottom part. Finally, the result obtained is compared with one another.

  3. A New Conjugation Method Used for the Development of an Immunoassay for the Detection of Amanitin, a Deadly Mushroom Toxin.

    PubMed

    Bever, Candace S; Barnych, Bogdan; Hnasko, Robert; Cheng, Luisa W; Stanker, Larry H

    2018-06-28

    One of the deadliest mushrooms is the death cap mushroom, Amanita phalloides . The most toxic constituent is α-amanitin, a bicyclic octapeptide, which damages the liver and kidneys. To develop a new tool for detecting this toxin, polyclonal antibodies were generated and characterized. Both α- and β-amanitin were coupled to carrier proteins through four different linking chemistries, one of which has never before been described. These conjugates were evaluated for their effectiveness in generating antibodies specific for the free toxin, as well as their utility in formatting heterogeneous assays with high sensitivity. Ultimately, these efforts yielded a newly described conjugation procedure utilizing periodate oxidation followed by reductive amination that successfully resulted in generating sensitive immunoassays (limit of detection (LOD), ~1.0 µg/L). The assays were characterized for their selectivity and were found to equally detect α-, β-, and γ-amanitin, and not cross-react with other toxins tested. Toxin detection in mushrooms was possible using a simple sample preparation method. This enzyme-linked immunosorbent assay (ELISA) is a simple and fast test, and readily detects amatoxins extracted from A. phalloides .

  4. Detection of flow limitation in obstructive sleep apnea with an artificial neural network.

    PubMed

    Norman, Robert G; Rapoport, David M; Ayappa, Indu

    2007-09-01

    During sleep, the development of a plateau on the inspiratory airflow/time contour provides a non-invasive indicator of airway collapsibility. Humans recognize this abnormal contour easily, and this study replicates this with an artificial neural network (ANN) using a normalized shape. Five 10 min segments were selected from each of 18 sleep records (respiratory airflow measured with a nasal cannula) with varying degrees of sleep disordered breathing. Each breath was visually scored for shape, and breaths split randomly into a training and test set. Equally spaced, peak amplitude normalized flow values (representing breath shape) formed the only input to a back propagation ANN. Following training, breath-by-breath agreement of the ANN with the manual classification was tabulated for the training and test sets separately. Agreement of the ANN was 89% in the training set and 70.6% in the test set. When the categories of 'probably normal' and 'normal', and 'probably flow limited' and 'flow limited' were combined, the agreement increased to 92.7% and 89.4% respectively, similar to the intra- and inter-rater agreements obtained by a visual classification of these breaths. On a naive dataset, the agreement of the ANN to visual classification was 57.7% overall and 82.4% when the categories were collapsed. A neural network based only on the shape of inspiratory airflow succeeded in classifying breaths as to the presence/absence of flow limitation. This approach could be used to provide a standardized, reproducible and automated means of detecting elevated upper airway resistance.

  5. Fill factor in organic solar cells can exceed the Shockley-Queisser limit

    NASA Astrophysics Data System (ADS)

    Trukhanov, Vasily A.; Bruevich, Vladimir V.; Paraschuk, Dmitry Yu.

    2015-06-01

    The ultimate efficiency of organic solar cells (OSC) is under active debate. The solar cell efficiency is calculated from the current-voltage characteristic as a product of the open-circuit voltage (VOC), short-circuit current (JSC), and the fill factor (FF). While the factors limiting VOC and JSC for OSC were extensively studied, the ultimate FF for OSC is scarcely explored. Using numerical drift-diffusion modeling, we have found that the FF in OSC can exceed the Shockley-Queisser limit (SQL) established for inorganic p-n junction solar cells. Comparing charge generation and recombination in organic donor-acceptor bilayer heterojunction and inorganic p-n junction, we show that such distinctive properties of OSC as interface charge generation and heterojunction facilitate high FF, but the necessary condition for FF exceeding the SQL in OSC is field-dependence of charge recombination at the donor-acceptor interface. These findings can serve as a guideline for further improvement of OSC.

  6. Improvement of LOD in Fluorescence Detection with Spectrally Nonuniform Background by Optimization of Emission Filtering.

    PubMed

    Galievsky, Victor A; Stasheuski, Alexander S; Krylov, Sergey N

    2017-10-17

    The limit-of-detection (LOD) in analytical instruments with fluorescence detection can be improved by reducing noise of optical background. Efficiently reducing optical background noise in systems with spectrally nonuniform background requires complex optimization of an emission filter-the main element of spectral filtration. Here, we introduce a filter-optimization method, which utilizes an expression for the signal-to-noise ratio (SNR) as a function of (i) all noise components (dark, shot, and flicker), (ii) emission spectrum of the analyte, (iii) emission spectrum of the optical background, and (iv) transmittance spectrum of the emission filter. In essence, the noise components and the emission spectra are determined experimentally and substituted into the expression. This leaves a single variable-the transmittance spectrum of the filter-which is optimized numerically by maximizing SNR. Maximizing SNR provides an accurate way of filter optimization, while a previously used approach based on maximizing a signal-to-background ratio (SBR) is the approximation that can lead to much poorer LOD specifically in detection of fluorescently labeled biomolecules. The proposed filter-optimization method will be an indispensable tool for developing new and improving existing fluorescence-detection systems aiming at ultimately low LOD.

  7. Confocal laser-induced fluorescence detector for narrow capillary system with yoctomole limit of detection.

    PubMed

    Weaver, Mitchell T; Lynch, Kyle B; Zhu, Zaifang; Chen, Huang; Lu, Joann J; Pu, Qiaosheng; Liu, Shaorong

    2017-04-01

    Laser-induced fluorescence (LIF) detectors for low-micrometer and sub-micrometer capillary on-column detection are not commercially available. In this paper, we describe in details how to construct a confocal LIF detector to address this issue. We characterize the detector by determining its limit of detection (LOD), linear dynamic range (LDR) and background signal drift; a very low LOD (~70 fluorescein molecules or 12 yoctomole fluorescein), a wide LDR (greater than 3 orders of magnitude) and a small background signal drift (~1.2-fold of the root mean square noise) are obtained. For detecting analytes inside a low-micrometer and sub-micrometer capillary, proper alignment is essential. We present a simple protocol to align the capillary with the optical system and use the position-lock capability of a translation stage to fix the capillary in position during the experiment. To demonstrate the feasibility of using this detector for narrow capillary systems, we build a 2-μm-i.d. capillary flow injection analysis (FIA) system using the newly developed LIF prototype as a detector and obtain an FIA LOD of 14 zeptomole fluorescein. We also separate a DNA ladder sample by bare narrow capillary - hydrodynamic chromatography and use the LIF prototype to monitor the resolved DNA fragments. We obtain not only well-resolved peaks but also the quantitative information of all DNA fragments. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The role of multiparametric flow cytometry in the detection of minimal residual disease in acute leukaemia.

    PubMed

    Lee, Denise; Grigoriadis, George; Westerman, David

    2015-12-01

    Flow cytometry is the most accessible method for minimal residual disease (MRD) detection due to its availability in most haematological centres. Using a precise combination of different antibodies, immunophenotypic detection of MRD in acute leukaemia can be performed by identifying abnormal combinations or expressions of antigens on malignant cells at diagnosis, during and post treatment. These abnormal phenotypes, referred to as leukaemia-associated immunophenotypes (LAIPs) are either absent or expressed at low frequency in normal bone marrow (BM) cells and are used to monitor the behaviour and quantitate the amount of residual disease following treatment. In paediatric acute lymphoblastic leukaemia (ALL), the level of MRD by multiparametric flow cytometry (MPFC) during therapy is recognised as an important predictor of outcome. Although less extensively studied, adult ALL and adult and paediatric acute myeloid leukaemia (AML) have also demonstrated similar findings. The challenge now is incorporating this information for risk-stratification so that therapy can be tailored individually and ultimately improve outcome while also limiting treatment-related toxicity. In this review we will elaborate on the current and future role of MPFC in MRD in acute leukaemia while also addressing its limitations.

  9. Detecting single viruses and nanoparticles using whispering gallery microlasers.

    PubMed

    He, Lina; Ozdemir, Sahin Kaya; Zhu, Jiangang; Kim, Woosung; Yang, Lan

    2011-06-26

    There is a strong demand for portable systems that can detect and characterize individual pathogens and other nanoscale objects without the use of labels, for applications in human health, homeland security, environmental monitoring and diagnostics. However, most nanoscale objects of interest have low polarizabilities due to their small size and low refractive index contrast with the surrounding medium. This leads to weak light-matter interactions, and thus makes the label-free detection of single nanoparticles very difficult. Micro- and nano-photonic devices have emerged as highly sensitive platforms for such applications, because the combination of high quality factor Q and small mode volume V leads to significantly enhanced light-matter interactions. For example, whispering gallery mode microresonators have been used to detect and characterize single influenza virions and polystyrene nanoparticles with a radius of 30 nm (ref. 12) by measuring in the transmission spectrum either the resonance shift or mode splitting induced by the nanoscale objects. Increasing Q leads to a narrower resonance linewidth, which makes it possible to resolve smaller changes in the transmission spectrum, and thus leads to improved performance. Here, we report a whispering gallery mode microlaser-based real-time and label-free detection method that can detect individual 15-nm-radius polystyrene nanoparticles, 10-nm gold nanoparticles and influenza A virions in air, and 30 nm polystyrene nanoparticles in water. Our approach relies on measuring changes in the beat note that is produced when an ultra-narrow emission line from a whispering gallery mode microlaser is split into two modes by a nanoscale object, and these two modes then interfere. The ultimate detection limit is set by the laser linewidth, which can be made much narrower than the resonance linewidth of any passive resonator. This means that microlaser sensors have the potential to detect objects that are too small to be

  10. Determination of a Limited Scope Network's Lightning Detection Efficiency

    NASA Technical Reports Server (NTRS)

    Rompala, John T.; Blakeslee, R.

    2008-01-01

    This paper outlines a modeling technique to map lightning detection efficiency variations over a region surveyed by a sparse array of ground based detectors. A reliable flash peak current distribution (PCD) for the region serves as the technique's base. This distribution is recast as an event probability distribution function. The technique then uses the PCD together with information regarding: site signal detection thresholds, type of solution algorithm used, and range attenuation; to formulate the probability that a flash at a specified location will yield a solution. Applying this technique to the full region produces detection efficiency contour maps specific to the parameters employed. These contours facilitate a comparative analysis of each parameter's effect on the network's detection efficiency. In an alternate application, this modeling technique gives an estimate of the number, strength, and distribution of events going undetected. This approach leads to a variety of event density contour maps. This application is also illustrated. The technique's base PCD can be empirical or analytical. A process for formulating an empirical PCD specific to the region and network being studied is presented. A new method for producing an analytical representation of the empirical PCD is also introduced.

  11. Addressing the Limit of Detectability of Residual Oxide Discontinuities in Friction Stir Butt Welds of Aluminum using Phased Array Ultrasound

    NASA Technical Reports Server (NTRS)

    Johnston, P. H.

    2008-01-01

    This activity seeks to estimate a theoretical upper bound of detectability for a layer of oxide embedded in a friction stir weld in aluminum. The oxide is theoretically modeled as an ideal planar layer of aluminum oxide, oriented normal to an interrogating ultrasound beam. Experimentally-measured grain scattering level is used to represent the practical noise floor. Echoes from naturally-occurring oxides will necessarily fall below this theoretical limit, and must be above the measurement noise to be potentially detectable.

  12. Hydrolysis and nucleophilic substitution of model and ultimate carcinogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmick, J.S.

    1992-01-01

    The hydrolysis reaction of the Model Carcinogen O-pivaloyl-N-(4-chlorophenyl)hydroxylamine in aqueous buffer (pH 7.0-10.0) proceeds by was of a nitrenium ion intermediate. The products formed from this process are predominately 2,4-dichloroaniline, and 2-hydroxy-4-chloro-pivalanilide. At pH 10-13 the rate becomes dependent upon hydroxide. The product that is formed is 4-chlorophenylhydroxylamine. 4-Chlorophenyl-hydroxylamine is formed by basic ester hydrolysis determined by an [sup 18]O GC-MS experiment. The reaction of O-pivaloyl-N-(4-chlorophenyl)hydroxylamine in an aqueous diethylamine (pH 11.3) buffer gave 4-chlorophenyl-N,N-diethylhydrazine as the substitution product in a 16% yield. The reaction of O-pivaloyl-N-(4-methylphenyl)hydroxylamine with diethylamine gave a 1% yield of the hydrazine product. The reaction ofmore » N,N-dimethylanline and aniline with ring-substituted O-pivaloyl-N-arylhydroxylamines in MeOH generates products of nucleophilic attack on the nitrogen of the hydroxylamine derivative. The hydrolysis of the ultimate carcinogen N-(sulfonatooxy)-N-4-aminobiphenyl proceeds by two consecutive pseudo-first-order processes and generates predominately a product of nucleophilic attack by chloride ion at the ortho position of the aromatic ring. A labile intermediate identified as N-acetypl-4-hydroxy-4-phenyl-2,5-cyclohexadienone imine has been detected by NMR. This intermediate rearranges to form 4-hydroxy-3-phenylacetanilide. The hydrolysis of N-benzoyl-4-hydroxy-4-hydroxy-4-phenyl-2,5-cyclohexadienone imine proceeds by way of two consecutive pseudo-first-order processes. The hydrolysis of N-benzoyl-4-methoxy-4-phenyl-2,5-cyclohexadienone imine also proceeds by two consecutive pseudo-first-order processes. Spectroscopic evidence of two diastereomeric intermediates formed from the hydrolysis of the N-benzoyl imines were tentatively identified as N-benzoyl-N-hydroxy-4-hydroxy-4-phenyl-2,5-cyclohexadienone imine.« less

  13. The prospects of transition metal dichalcogenides for ultimately scaled CMOS

    NASA Astrophysics Data System (ADS)

    Thiele, S.; Kinberger, W.; Granzner, R.; Fiori, G.; Schwierz, F.

    2018-05-01

    MOSFET gate length scaling has been a main source of progress in digital electronics for decades. Today, researchers still spend considerable efforts on reducing the gate length and on developing ultimately scaled MOSFETs, thereby exploring both new device architectures and alternative channel materials beyond Silicon such as two-dimensional TMDs (transition metal dichalcogenide). On the other hand, the envisaged scaling scenario for the next 15 years has undergone a significant change recently. While the 2013 ITRS edition required a continuation of aggressive gate length scaling for at least another 15 years, the 2015 edition of the ITRS suggests a deceleration and eventually a levelling off of gate length scaling and puts more emphasis on alternative options such as pitch scaling to keep Moore's Law alive. In the present paper, future CMOS scaling is discussed in the light of emerging two-dimensional MOSFET channel, in particular two-dimensional TMDs. To this end, the scaling scenarios of the 2013 and 2015 ITRS editions are considered and the scaling potential of TMD MOSFETs is investigated by means of quantum-mechanical device simulations. It is shown that for ultimately scaled MOSFETs as required in the 2013 ITRS, the heavy carrier effective masses of the Mo- and W-based TMDs are beneficial for the suppression of direct source-drain tunneling, while to meet the significantly relaxed scaling targets of the 2016 ITRS heavy-effective-mass channels are not needed.

  14. Feasibility of Flaw Detection in Railroad Wheels Using Acoustic Signatures

    DOT National Transportation Integrated Search

    1976-10-01

    The feasibility study on the use of acoustic signatures for detection of flaws in railway wheels was conducted with the ultimate objective of development of an intrack device for moving cars. Determinations of the natural modes of vibrating wheels un...

  15. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology

    PubMed Central

    Jehlička, Jan; Edwards, Howell G. M.; Osterrothová, Kateřina; Novotná, Julie; Nedbalová, Linda; Kopecký, Jiří; Němec, Ivan; Oren, Aharon

    2014-01-01

    In this paper, it is demonstrated how Raman spectroscopy can be used to detect different carotenoids as possible biomarkers in various groups of microorganisms. The question which arose from previous studies concerns the level of unambiguity of discriminating carotenoids using common Raman microspectrometers. A series of laboratory-grown microorganisms of different taxonomic affiliation was investigated, such as halophilic heterotrophic bacteria, cyanobacteria, the anoxygenic phototrophs, the non-halophilic heterotrophs as well as eukaryotes (Ochrophyta, Rhodophyta and Chlorophyta). The data presented show that Raman spectroscopy is a suitable tool to assess the presence of carotenoids of these organisms in cultures. Comparison is made with the high-performance liquid chromatography approach of analysing pigments in extracts. Direct measurements on cultures provide fast and reliable identification of the pigments. Some of the carotenoids studied are proposed as tracers for halophiles, in contrast with others which can be considered as biomarkers of other genera. The limits of application of Raman spectroscopy are discussed for a few cases where the current Raman spectroscopic approach does not allow discriminating structurally very similar carotenoids. The database reported can be used for applications in geobiology and exobiology for the detection of pigment signals in natural settings. PMID:25368348

  16. Portable TXRF Spectrometer with 10{sup -11}g Detection Limit and Portable XRF Spectromicroscope with Sub-mm Spatial Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunimura, Shinsuke; Hatakeyama, So; Sasaki, Nobuharu

    A portable total reflection X-ray fluorescence (TXRF) spectrometer that we have developed is applied to trace elemental analysis of water solutions. Although a 5 W X-ray tube is used in the portable TXRF spectrometer, detection limits of several ppb are achieved for 3d transition metal elements and trace elements in a leaching solution of soils, a leaching solution of solder, and alcoholic beverages are detected. Portable X-ray fluorescence (XRF) spectromicroscopes with a 1 W X-ray tube and an 8 W X-ray tube are also presented. Using the portable XRF spectromicroscope with the 1 W X-ray tube, 93 ppm of Crmore » is detected with an about 700 {mu}m spatial resolution. Spatially resolved elemental analysis of a mug painted with blue, red, green, and white is performed using the two portable spectromicroscopes, and the difference in elemental composition at each paint is detected.« less

  17. Ultimate boundedness stability and controllability of hereditary systems

    NASA Technical Reports Server (NTRS)

    Chukwu, E. N.

    1979-01-01

    By generalizing the Liapunov-Yoshizawa techniques, necessary and sufficient conditions are given for uniform boundedness and uniform ultimate boundedness of a rather general class of nonlinear differential equations of neutral type. Among the applications treated by the methods are the Lienard equation of neutral type and hereditary systems of Lurie type. The absolute stability of this later equation is also investigated. A certain existence result of a solution of a neutral functional differential inclusion with two point boundary values is applied to study the exact function space controllability of a nonlinear neutral functional differential control system. A geometric growth condition is used to characterize both the function space and Euclidean controllability of another nonlinear delay system which has a compact and convex control set. This yields conditions under which perturbed nonlinear delay controllable systems are controllable.

  18. 40 CFR Appendix C to Part 425 - Definition and Procedure for the Determination of the Method Detection Limit 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Determination of the Method Detection Limit 1 C Appendix C to Part 425 Protection of Environment ENVIRONMENTAL... CATEGORY Pt. 425, App. C Appendix C to Part 425—Definition and Procedure for the Determination of the... reagent water. (c) The concentration value that corresponds to the region of the standard curve where...

  19. Simple and direct method for detecting phosphorus in air at normal pressure and temperature using a combination of LIBS and LIFS techniques

    NASA Astrophysics Data System (ADS)

    Al-Jeffery, Mohammad O.; Kondou, H.; Belenkevitch, Alexander; Azzeer, Abdallah M.

    2002-05-01

    The Environmental Protection Agency (EAP) designated phosphorus as hazardous material; it is flammable and poisonous. Phosphorus attacks the respiratory system, liver, kidneys, jaw, teeth, blood, eyes, and skin. Phosphorus is an element that has a high detection limit when using laser-induced breakdown spectroscopy (LIBS) techniques. In order to improve on detection limits, laser-induced fluorescence spectroscopy (LIFS) has been proposed, as an extension to LIBS. The ultimate goal of this work is to use the combined LIBS & LIFS techniques to detect the presence of phosphorus in air and to measure its level. In order to provide 'proof-of-concept' results, the sample used for our experiment was prepared using the 'igniting' strip of a safety match box. The spectrally and temporally resolved detection of the specific atomic emission revealed analytical information about the elemental composition of the sample. A tunable Ti: sapphire laser, at the resonance wavelength of 253.4 nm, was then used to probe the plume by exciting the phosphorus element and we measured the fluorescence from the atoms at 213.62 nm and 214.91 nm. The whole experiment was carried out in a few minutes. We have thus demonstrated for the first time, to our knowledge, the use of LIBS and LIFS in air quality monitoring and in particular for phosphorus detection.

  20. Detection and quantification of intraperitoneal fluid using electrical impedance tomography.

    PubMed

    Sadleir, R J; Fox, R A

    2001-04-01

    A prototype electrical impedance tomography system was evaluated prior to its use for the detection of intraperitoneal bleeding, with the assistance of patients undergoing continuous ambulatory peritoneal dialysis (CAPD). The system was sensitive enough to detect small amounts of dialysis fluid appearing in subtractive images over short time periods. Uniform sensitivity to blood appearing anywhere within the abdominal cavity was produced using a post-reconstructive filter that corrected for changes in apparent resistivity of anomalies with their radial position. The image parameter used as an indication of fluid quantity, the resistivity index, varied approximately linearly with the quantity of fluid added. A test of the system's response to the introduction of conductive fluid out of the electrode plane (when a blood-equivalent fluid was added to the stomach) found that the sensitivity of the system was about half that observed in the electrode plane. Breathing artifacts were found to upset quantitative monitoring of intraperitoneal bleeding, but only on time scales short compared with the fluid administration rate. Longer term breathing changes, such as those due to variations in the functional residual capacity of the lungs, should ultimately limit the sensitivity over long time periods.

  1. ON COMPUTING UPPER LIMITS TO SOURCE INTENSITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Vinay L.; Siemiginowska, Aneta; Van Dyk, David A.

    2010-08-10

    A common problem in astrophysics is determining how bright a source could be and still not be detected in an observation. Despite the simplicity with which the problem can be stated, the solution involves complicated statistical issues that require careful analysis. In contrast to the more familiar confidence bound, this concept has never been formally analyzed, leading to a great variety of often ad hoc solutions. Here we formulate and describe the problem in a self-consistent manner. Detection significance is usually defined by the acceptable proportion of false positives (background fluctuations that are claimed as detections, or Type I error),more » and we invoke the complementary concept of false negatives (real sources that go undetected, or Type II error), based on the statistical power of a test, to compute an upper limit to the detectable source intensity. To determine the minimum intensity that a source must have for it to be detected, we first define a detection threshold and then compute the probabilities of detecting sources of various intensities at the given threshold. The intensity that corresponds to the specified Type II error probability defines that minimum intensity and is identified as the upper limit. Thus, an upper limit is a characteristic of the detection procedure rather than the strength of any particular source. It should not be confused with confidence intervals or other estimates of source intensity. This is particularly important given the large number of catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples, the differences between these upper limits and confidence bounds. Both measures are useful quantities that should be reported in order to extract the most science from catalogs, though they answer different statistical questions: an upper bound describes an inference range on the source intensity, while an upper limit calibrates the detection process. We provide a recipe for computing

  2. Markov Dynamics as a Zooming Lens for Multiscale Community Detection: Non Clique-Like Communities and the Field-of-View Limit

    PubMed Central

    Schaub, Michael T.; Delvenne, Jean-Charles; Yaliraki, Sophia N.; Barahona, Mauricio

    2012-01-01

    In recent years, there has been a surge of interest in community detection algorithms for complex networks. A variety of computational heuristics, some with a long history, have been proposed for the identification of communities or, alternatively, of good graph partitions. In most cases, the algorithms maximize a particular objective function, thereby finding the ‘right’ split into communities. Although a thorough comparison of algorithms is still lacking, there has been an effort to design benchmarks, i.e., random graph models with known community structure against which algorithms can be evaluated. However, popular community detection methods and benchmarks normally assume an implicit notion of community based on clique-like subgraphs, a form of community structure that is not always characteristic of real networks. Specifically, networks that emerge from geometric constraints can have natural non clique-like substructures with large effective diameters, which can be interpreted as long-range communities. In this work, we show that long-range communities escape detection by popular methods, which are blinded by a restricted ‘field-of-view’ limit, an intrinsic upper scale on the communities they can detect. The field-of-view limit means that long-range communities tend to be overpartitioned. We show how by adopting a dynamical perspective towards community detection [1], [2], in which the evolution of a Markov process on the graph is used as a zooming lens over the structure of the network at all scales, one can detect both clique- or non clique-like communities without imposing an upper scale to the detection. Consequently, the performance of algorithms on inherently low-diameter, clique-like benchmarks may not always be indicative of equally good results in real networks with local, sparser connectivity. We illustrate our ideas with constructive examples and through the analysis of real-world networks from imaging, protein structures and the power grid

  3. Ultimate force and stiffness of 2-piece zirconium dioxide implants with screw-retained monolithic lithium-disilicate reconstructions.

    PubMed

    Joda, Tim; Voumard, Benjamin; Zysset, Philippe K; Brägger, Urs; Ferrari, Marco

    2018-04-01

    The aims were to analyze stiffness, ultimate force, and failure modes of a 2-piece zirconium dioxide (ZrO 2 ) implant system. Eleven 2-piece ZrO 2 implants, each mounted with ZrO 2 abutments plus bonded monolithic lithium disilicate (LS 2 ) restorations, were grouped for 3.3mm (A) and 4.1mm (B) diameter samples. Quasi-static load was monotonically applied under a standardized test set-up (loading configuration according to DIN ISO 14801). The ultimate force was defined as the maximum force that implants are able to carry out until fracture; stiffness was measured as the maximum slope during loading. An unpaired t-test was performed between group A and B for ultimate force and stiffness (p<0.05). Force-displacement curves revealed statistically homogenous inner-group results for all samples. Failure modes showed characteristic fractures at the neck configuration of the implants independent of the diameter. Mean stiffness was 1099N/mm (±192) for group A, and significantly lower compared to group B with 1630N/mm (±274) (p<0.01); whereas mean ultimate force was 348N (±53) for group A, and significantly increased for group B with 684N (±29) (p<0.0001). The examined 2-piece ZrO 2 implant system mounted to LS 2 -restorations seems to be a stable unit under in-vitro conditions with mechanical properties compared to loading capacity of physiological force. The metal-free implant reconstructions demonstrated high stiffness and ultimate force under quasi-static load for single tooth replacement under consideration of the dental indication of narrow and standard diameter implants. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. The limits to tree height.

    PubMed

    Koch, George W; Sillett, Stephen C; Jennings, Gregory M; Davis, Stephen D

    2004-04-22

    Trees grow tall where resources are abundant, stresses are minor, and competition for light places a premium on height growth. The height to which trees can grow and the biophysical determinants of maximum height are poorly understood. Some models predict heights of up to 120 m in the absence of mechanical damage, but there are historical accounts of taller trees. Current hypotheses of height limitation focus on increasing water transport constraints in taller trees and the resulting reductions in leaf photosynthesis. We studied redwoods (Sequoia sempervirens), including the tallest known tree on Earth (112.7 m), in wet temperate forests of northern California. Our regression analyses of height gradients in leaf functional characteristics estimate a maximum tree height of 122-130 m barring mechanical damage, similar to the tallest recorded trees of the past. As trees grow taller, increasing leaf water stress due to gravity and path length resistance may ultimately limit leaf expansion and photosynthesis for further height growth, even with ample soil moisture.

  5. Experimental and finite element study of ultimate strength of continuous composite concrete slabs with steel decking

    NASA Astrophysics Data System (ADS)

    Gholamhoseini, Alireza

    2018-03-01

    Composite one-way concrete slabs with profiled steel decking as permanent formwork are commonly used in the construction industry. The steel decking supports the wet concrete of a cast in situ reinforced or post-tensioned concrete slab and, after the concrete sets, acts as external reinforcement. In this type of slab, longitudinal shear failure between the concrete and the steel decking is the most common type of failure at the ultimate load stage. Design codes require the experimental evaluation of the ultimate load capacity and longitudinal shear strength of each type of steel decking using full-scale tests on simple-span slabs. There is also no procedure in current design codes to evaluate the ultimate load capacity and longitudinal shear strength of continuous composite slabs and this is often assessed experimentally by full-scale tests. This paper presents the results of three full-scale tests up to failure on continuous composite concrete slabs cast with trapezoidal steel decking profile (KF70) that is widely used in Australia. Slab specimens were tested in four-point bending at each span with shear spans of span/4. The longitudinal shear failure of each slab is evaluated and the measured mid-span deflection, the end slip and the mid-span steel and concrete strains are also presented and discussed. Redistribution of bending moment in each slab is presented and discussed. A finite element model is proposed and verified by experimental data using interface element to model the bond properties between steel decking and concrete slab and investigate the ultimate strength of continuous composite concrete slabs.

  6. Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms.

    PubMed

    Pisano, E D; Zong, S; Hemminger, B M; DeLuca, M; Johnston, R E; Muller, K; Braeuning, M P; Pizer, S M

    1998-11-01

    The purpose of this project was to determine whether Contrast Limited Adaptive Histogram Equalization (CLAHE) improves detection of simulated spiculations in dense mammograms. Lines simulating the appearance of spiculations, a common marker of malignancy when visualized with masses, were embedded in dense mammograms digitized at 50 micron pixels, 12 bits deep. Film images with no CLAHE applied were compared to film images with nine different combinations of clip levels and region sizes applied. A simulated spiculation was embedded in a background of dense breast tissue, with the orientation of the spiculation varied. The key variables involved in each trial included the orientation of the spiculation, contrast level of the spiculation and the CLAHE settings applied to the image. Combining the 10 CLAHE conditions, 4 contrast levels and 4 orientations gave 160 combinations. The trials were constructed by pairing 160 combinations of key variables with 40 backgrounds. Twenty student observers were asked to detect the orientation of the spiculation in the image. There was a statistically significant improvement in detection performance for spiculations with CLAHE over unenhanced images when the region size was set at 32 with a clip level of 2, and when the region size was set at 32 with a clip level of 4. The selected CLAHE settings should be tested in the clinic with digital mammograms to determine whether detection of spiculations associated with masses detected at mammography can be improved.

  7. Addition of multiple limiting resources reduces grassland diversity.

    PubMed

    Harpole, W Stanley; Sullivan, Lauren L; Lind, Eric M; Firn, Jennifer; Adler, Peter B; Borer, Elizabeth T; Chase, Jonathan; Fay, Philip A; Hautier, Yann; Hillebrand, Helmut; MacDougall, Andrew S; Seabloom, Eric W; Williams, Ryan; Bakker, Jonathan D; Cadotte, Marc W; Chaneton, Enrique J; Chu, Chengjin; Cleland, Elsa E; D'Antonio, Carla; Davies, Kendi F; Gruner, Daniel S; Hagenah, Nicole; Kirkman, Kevin; Knops, Johannes M H; La Pierre, Kimberly J; McCulley, Rebecca L; Moore, Joslin L; Morgan, John W; Prober, Suzanne M; Risch, Anita C; Schuetz, Martin; Stevens, Carly J; Wragg, Peter D

    2016-09-01

    Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.

  8. The Ultimate Strength of Double Hull Oil Tanker Due to Grounding and Collision

    NASA Astrophysics Data System (ADS)

    Izaak Latumahina, Samuel; Zubair Muis Alie, Muhammad; Sitepu, Ganding

    2018-02-01

    The damaged tanker by grounding and collision may totally collapse if loss its buoyancy, stability and suffer structural failure. The objective of the present study is to investigate the ultimate strength of double hull oil tanker under vertical bending moments due to grounding and collision. The damages are modelled by removing the elements consist of stiffened and unstiffened plates from the damages part. One-frame space of the double hull oil tanker is taken to be analysed. Two damages cases are considered in the analyses those are grounding and collision. The transversal damage extent for grounding are 10%, 25%, 40% and 55%. The groundings are placed at symmetric position on the outer bottom part. For the case of collision, the vertical damage extent are taken as 10%, 20%, 40% and 60%. The transversal damages extent is taken to be B/16 and it is constant for all collision damages. The investigation of the ultimate strength is performed by the Non-Linear Finite Element Analysis method under moment control. The boundary condition is applied with fully constrained on all nodes at the aft-end, while the rigid linked on all nodes is attached at the fore-end with respect to the reference point on the neutral axis. The initial imperfection, welding residual stress and crack are not considered in the analyses. The results obtained by Non-Linear Finite Element Analyses for the ultimate strength are compared with the in-house program using Smith’s method implemented in HULLST. The stress distribution and deformation for every case of damages including intact are also discussed in the present study.

  9. Infectious pancreatic necrosis: its detection and identification

    USGS Publications Warehouse

    Wolf, K.

    1965-01-01

    Ultimate control of infectious pancreatic necrosis (IPN) in hatcheries depends largely upon learning where the virus occurs. To detect the presence of virus either susceptible fish or susceptible fish cell cultures may be used as test systems. In modern virology, it is generally agreed that cell cultures are more convenient, are usually a much more sensitive test system, and allow more rapid determinations.

  10. Space simulation ultimate pressure lowered two decades by removal of diffusion pump oil contaminants during operation

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1973-01-01

    The complex problem why large space simulation chambers do not realize the true ultimate vacuum was investigated. Some contaminating factors affecting diffusion pump performance have been identified and some advances in vacuum/distillation/fractionation technology have been achieved which resulted in a two decade or more lower ultimate pressure. Data are presented to show the overall or individual contaminating effect of commonly used phthalate ester plasticizers of 390 to 530 molecular weight on diffusion pump performance. Methods for removing contaminants from diffusion pump silicone oil during operation and reclaiming contaminated oil by high vacuum molecular distillation are described.

  11. Experimental Estimation of Entanglement at the Quantum Limit

    NASA Astrophysics Data System (ADS)

    Brida, Giorgio; Degiovanni, Ivo Pietro; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G. A.; Shurupov, Alexander

    2010-03-01

    Entanglement is the central resource of quantum information processing and the precise characterization of entangled states is a crucial issue for the development of quantum technologies. This leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated with the ultimate precision allowed by quantum mechanics.

  12. Highly selective optical fluoride ion sensor with submicromolar detection limit based on aluminum(III) octaethylporphyrin in thin polymeric film.

    PubMed

    Badr, Ibrahim H A; Meyerhoff, Mark E

    2005-04-20

    A highly selective, sensitive, and reversible fluoride optical sensing film based on aluminum(III)octaethylporphyrin as a fluoride ionophore and a lipophilic pH indicator as the optical transducer is described. The fluoride optical sensing films exhibit a submicromolar detection limit and high discrimination for fluoride over several lipophilic anions such as nitrate, perchlorate, and thiocyanate.

  13. Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2002-01-01

    Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.

  14. Thermoelectric detection of inclusions in metallic biomaterials by magnetic sensing

    NASA Astrophysics Data System (ADS)

    Carreon, Hector

    2017-05-01

    The detectability of small inclusions and subtle imperfections by magnetic measurements that senses thermoelectric currents produced by a temperature gradient is ultimately limited by the intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected. The probability of detection (POD) of a given material flaw is determined by the resulting signal-to-noise ratio rather than by the absolute magnitude of the signal itself. The strength of the magnetic field to be detected greatly depends on the physical nature of the host medium and dimensions of the imperfection. This paper presents experimental data for the magnetic field produced by thermoelectric currents around tin inclusions in different host medium such as 316LVM stainless steel and Ti-6Al-4V titanium alloy under external thermal excitation. The diameter of the inclusions and the lift-off distance varied from 0.39 to 3.175 mm and from 1 to 10 mm, respectively. A 0.6 °C/cm temperature gradient in the samples produced peak magnetic flux densities ranging from 0.1 to 280 nT, that was measured by a fluxgate magnetometer. The numerical results were found to be in good agreement with theoretical predictions and demonstrated that both property anisotropy and gradient in thermoelectric materials can significantly influence the induced thermoelectric currents and magnetic fields.

  15. Performance limits for maritime Inverse Synthetic Aperture Radar (ISAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin Walter

    2013-11-01

    The performance of an Inverse Synthetic Aperture Radar (ISAR) system depends on a variety of factors, many which are interdependent in some manner. In this report we specifically examine ISAR as applied to maritime targets (e.g. ships). It is often difficult to get your arms around the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall ISAR system. While themore » information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the seek time.« less

  16. Non-invasive detection of vulnerable coronary plaque

    PubMed Central

    Sharif, Faisal; Lohan, Derek G; Wijns, William

    2011-01-01

    Critical coronary stenoses have been shown to contribute to only a minority of acute coronary syndromes and sudden cardiac death. Autopsy studies have identified a subgroup of high-risk patients with disrupted vulnerable plaque and modest stenosis. Consequently, a clinical need exists to develop methods to identify these plaques prospectively before disruption and clinical expression of disease. Recent advances in invasive and non-invasive imaging techniques have shown the potential to identify these high-risk plaques. Non-invasive imaging with magnetic resonance imaging, computed tomography and positron emission tomography holds the potential to differentiate between low- and high-risk plaques. There have been significant technological advances in non-invasive imaging modalities, and the aim is to achieve a diagnostic sensitivity for these technologies similar to that of the invasive modalities. Molecular imaging with the use of novel targeted nanoparticles may help in detecting high-risk plaques that will ultimately cause acute myocardial infarction. Moreover, nanoparticle-based imaging may even provide non-invasive treatments for these plaques. However, at present none of these imaging modalities are able to detect vulnerable plaque nor have they been shown to definitively predict outcome. Further trials are needed to provide more information regarding the natural history of high-risk but non-flow-limiting plaque to establish patient specific targeted therapy and to refine plaque stabilizing strategies in the future. PMID:21860703

  17. Acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O.

    2003-09-01

    The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disk. The detection method that provides the best overall performance is able to correctly identify ~96% of the manatee vocalizations. However, the system also results in a false alarm rate of ~16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees.

  18. Ultimate Temperature of Pulse Tube Cryocoolers

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    2009-01-01

    An ideal pulse tube cryocooler using an ideal gas can operate at any temperature. This is not true for real gases. The enthalpy flow resulting from the real gas effects of He-3, He-4, and their mixtures in ideal pulse tube cryocoolers puts limits on the operating temperature of pulse tube cryocoolers. The discussion of these effects follows a previous description of the real gas effects in ideal pulse tube cryocoolers and makes use of models of the thermophysical properties of He-3 and He-4. Published data is used to extend the analysis to mixtures of He-3 and He-4. The analysis was done for pressures below 2 MPa and temperatures below 2.5 K. Both gases and their mixtures show low temperature limits for pulse tube cryocoolers. These limits are in the 0.5-2.2 K range and depend on pressure and mixture. In some circumstances, even lower temperatures may be possible. Pulse tube cryocoolers using the two-fluid properties of dilute 3He in superfluid He-4 appear to have no limit.

  19. Ultimate Temperature of Pulse Tube Cryocoolers

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    2009-01-01

    An ideal pulse tube cryocooler using an ideal gas can operate at any temperature. This is not true for real gases. The enthalpy flow resulting from the real gas effects of 3He, 4He, and their mixtures in ideal pulse tube cryocoolers puts limits on the operating temperature of pulse tube cryocoolers. The discussion of these effects follows a previous description of the real gas effects in ideal pulse tube cryocoolers and makes use of models of the thermophysical properties of 3He and 4He. Published data is used to extend the analysis to mixtures of 3He and 4He. The analysis was done for pressures below 2 MPa and temperatures below 2.5 K. Both gases and their mixtures show low temperature limits for pulse tube cryocoolers. These limits are in the 0.5-2.2 K range and depend on pressure and mixture. In some circumstances, even lower temperatures may be possible. Pulse tube cryocoolers using the ha-fluid properties of dilute 3He in superfluid 4He appear to have no limit.

  20. A practical approach to determination of laboratory GC-MS limits of detection.

    PubMed

    Underwood, P J; Kananen, G E; Armitage, E K

    1997-01-01

    Determination of limit of detection (LOD) values in a forensic laboratory serves a fundamental forensic requirement for assay performance. In addition to demonstrating assay capability, LOD values can also be used to fulfill certification requirements of a high-volume forensic drug laboratory. The LOD was defined as the lowest concentration of drug that the laboratory can detect in a specimen with forensic certainty at a minimum of 85% of the time. Overall batch acceptance criteria included acceptable quantitation of control materials (within 20% of target), acceptable chromatography (symmetry, peak integration, peak shape, peak, and baseline resolution), retention time within +/-1% of the extracted standard, and mass ion ratios within +/-20% of the extracted standard mass ion ratios. Individual specimen acceptance criteria were the same as the batch acceptance criteria excluding the quantitation requirement. Data were collected from all instruments on different runs. A minimum of ten data points was required for each certified instrument, and a minimum of 85% of data points was acceptable. Quantitation within +/-20% of the LOD concentration was not required, but acceptable mass ratios were required. Data points with poor chromatography (internal standard failed mass ratios; interference of the baseline, for example, shoulders; asymmetry; and baseline resolution) was omitted from the acceptable rate calculation. Data points with good chromatography with failed mass ion ratios were included in the acceptable rate calculation. With these criteria, we established the following LODs: 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid, 2 ng/mL; benzoylecgonine, 5 ng/mL; phencyclidine, 2.5 ng/mL; amphetamine, 150 ng/mL; methamphetamine, 100 ng/mL; codeine, 500 ng/mL; and morphine, 1000 ng/mL.

  1. Suppression of plasma virus load below the detection limit of a human immunodeficiency virus kit is associated with longer virologic response than suppression below the limit of quantitation.

    PubMed

    Raboud, J M; Rae, S; Hogg, R S; Yip, B; Sherlock, C H; Harrigan, P R; O'Shaughnessy, M V; Montaner, J S

    1999-10-01

    Suppression of human immunodeficiency virus type 1 plasma virus load (PVL) to <20 copies/mL is associated with a longer virologic response after initiation of antiretroviral therapy. The relationship between duration of virologic response and PVL nadir according to a less sensitive assay was explored. When compared with subjects with a PVL nadir >500 copies/mL, the relative risks of PVL rising above 1000 copies/mL for participants in the INCAS trial and the British Columbia Drug Treatment Program with a PVL nadir below the limit of detection (LOD) were 0.04 (95% confidence interval [CI], 0.02-0.09) and 0.06 (95% CI, 0.03-0.12), respectively. The corresponding relative risks for persons with a detectable but not quantifiable PVL nadir were 0.25 (95% CI, 0.13-0.50) and 0.54 (95% CI, 0.25-1.19). The relative risks of virologic failure associated with a PVL nadir detectable but not quantifiable and a PVL nadir below the LOD were statistically different (P<.0001) in both data sets.

  2. Ultimate pier and contraction scour prediction in cohesive soils at selected bridges in Illinois.

    DOT National Transportation Integrated Search

    2013-09-01

    The Scour Rate In COhesive Soils-Erosion Function Apparatus (SRICOS-EFA) method includes an ultimate scour prediction that is : the equilibrium maximum pier and contraction scour of cohesive soils over time. The purpose of this report is to present t...

  3. Hallmarks in prostate cancer imaging with Ga68-PSMA-11-PET/CT with reference to detection limits and quantitative properties.

    PubMed

    Sanchez-Crespo, Alejandro; Jussing, Emma; Björklund, Ann-Charlotte; Pokrovskaja Tamm, Katja

    2018-04-04

    Gallium-68-labeled prostate-specific antigen positron emission tomography/computed tomography imaging (Ga68-PSMA-11-PET/CT) has emerged as a potential gold standard for prostate cancer (PCa) diagnosis. However, the imaging limitations of this technique at the early state of PCa recurrence/metastatic spread are still not well characterized. The aim of this study was to determine the quantitative properties and the fundamental imaging limits of Ga68-PSMA-11-PET/CT in localizing small PCa cell deposits. The human PCa LNCaP cells (PSMA expressing) were grown and collected as single cell suspension or as 3D-spheroids at different cell numbers and incubated with Ga68-PSMA-11. Thereafter, human HCT116 cells (PSMA negative) were added to a total cell number of 2 × 10 5 cells per tube. The tubes were then pelleted and the supernatant aspirated. A whole-body PET/CT scanner with a clinical routine protocol was used for imaging the pellets inside of a cylindrical water phantom with increasing amounts of background activity. The actual activity bound to the cells was also measured in an automatic gamma counter. Imaging detection limits and activity recovery coefficients as a function of LNCaP cell number were obtained. The effect of Ga68-PSMA-11 mass concentration on cell binding was also investigated in samples of LnCaP cells incubated with increasing concentrations of radioligand. A total of 1 × 10 4 LNCaP cells mixed in a pellet of 2 × 10 5 cells were required to reach a 50% detection probability with Ga68-PSMA-11-PET/CT without background. With a background level of 1 kBq/ml, between 4 × 10 5 and 1 × 10 6 cells are required. The radioligand equilibrium dissociation constant was 27.05 nM, indicating high binding affinity. Hence, the specific activity of the radioligand has a profound effect on image quantification. Ga68-PSMA-11-PET detects a small number of LNCaP cells even when they are mixed in a population of non-PSMA expressing cells and in the

  4. The Use and Abuse of Limits of Detection in Environmental Analytical Chemistry

    PubMed Central

    Brown, Richard J. C.

    2008-01-01

    The limit of detection (LoD) serves as an important method performance measure that is useful for the comparison of measurement techniques and the assessment of likely signal to noise performance, especially in environmental analytical chemistry. However, the LoD is only truly related to the precision characteristics of the analytical instrument employed for the analysis and the content of analyte in the blank sample. This article discusses how other criteria, such as sampling volume, can serve to distort the quoted LoD artificially and make comparison between various analytical methods inequitable. In order to compare LoDs between methods properly, it is necessary to state clearly all of the input parameters relating to the measurements that have been used in the calculation of the LoD. Additionally, the article discusses that the use of LoDs in contexts other than the comparison of the attributes of analytical methods, in particular when reporting analytical results, may be confusing, less informative than quoting the actual result with an accompanying statement of uncertainty, and may act to bias descriptive statistics. PMID:18690384

  5. Finding Kuiper Belt Objects Below the Detection Limit

    NASA Astrophysics Data System (ADS)

    Whidden, Peter; Kalmbach, Bryce; Bektesevic, Dino; Connolly, Andrew; Jones, Lynne; Smotherman, Hayden; Becker, Andrew

    2018-01-01

    We demonstrate a novel approach for uncovering the signatures of moving objects (e.g. Kuiper Belt Objects) below the detection thresholds of single astronomical images. To do so, we will employ a matched filter moving at specific rates of proposed orbits through a time-domain dataset. This is analogous to the better-known "shift-and-stack" method; however it uses neither direct shifting nor stacking of the image pixels. Instead of resampling the raw pixels to create an image stack, we will instead integrate the object detection probabilities across multiple single-epoch images to accrue support for a proposed orbit. The filtering kernel provides a measure of the probability that an object is present along a given orbit, and enables the user to make principled decisions about when the search has been successful, and when it may be terminated. The results we present here utilize GPUs to speed up the search by two orders of magnitudes over CPU implementations.

  6. Variation in the limit-of-detection of the ProSpecT Campylobacter microplate enzyme immunoassay in stools spiked with emerging Campylobacter species.

    PubMed

    Bojanić, Krunoslav; Midwinter, Anne Camilla; Marshall, Jonathan Craig; Rogers, Lynn Elizabeth; Biggs, Patrick Jon; Acke, Els

    2016-08-01

    Campylobacter enteritis in humans is primarily associated with C. jejuni/coli infection. The impact of other Campylobacter spp. is likely to be underestimated due to the bias of culture methods towards Campylobacter jejuni/coli diagnosis. Stool antigen tests are becoming increasingly popular and appear generally less species-specific. A review of independent studies of the ProSpecT® Campylobacter Microplate enzyme immunoassay (EIA) developed for C. jejuni/coli showed comparable diagnostic results to culture methods but the examination of non-jejuni/coli Campylobacter spp. was limited and the limit-of-detection (LOD), where reported, varied between studies. This study investigated LOD of EIA for Campylobacter upsaliensis, Campylobacter hyointestinalis and Campylobacter helveticus spiked in human stools. Multiple stools and Campylobacter isolates were used in three different concentrations (10(4)-10(9)CFU/ml) to reflect sample heterogeneity. All Campylobacter species evaluated were detectable by EIA. Multivariate analysis showed LOD varied between Campylobacter spp. and faecal consistency as fixed effects and individual faecal samples as random effects. EIA showed excellent performance in replicate testing for both within and between batches of reagents, in agreement between visual and spectrophotometric reading of results, and returned no discordance between the bacterial concentrations within independent dilution test runs (positive results with lower but not higher concentrations). This study shows how limitations in experimental procedures lead to an overestimation of consistency and uniformity of LOD for EIA that may not hold under routine use in diagnostic laboratories. Benefits and limitations for clinical practice and the influence on estimates of performance characteristics from detection of multiple Campylobacter spp. by EIA are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Estimation of the limit of detection using information theory measures.

    PubMed

    Fonollosa, Jordi; Vergara, Alexander; Huerta, Ramón; Marco, Santiago

    2014-01-31

    Definitions of the limit of detection (LOD) based on the probability of false positive and/or false negative errors have been proposed over the past years. Although such definitions are straightforward and valid for any kind of analytical system, proposed methodologies to estimate the LOD are usually simplified to signals with Gaussian noise. Additionally, there is a general misconception that two systems with the same LOD provide the same amount of information on the source regardless of the prior probability of presenting a blank/analyte sample. Based upon an analogy between an analytical system and a binary communication channel, in this paper we show that the amount of information that can be extracted from an analytical system depends on the probability of presenting the two different possible states. We propose a new definition of LOD utilizing information theory tools that deals with noise of any kind and allows the introduction of prior knowledge easily. Unlike most traditional LOD estimation approaches, the proposed definition is based on the amount of information that the chemical instrumentation system provides on the chemical information source. Our findings indicate that the benchmark of analytical systems based on the ability to provide information about the presence/absence of the analyte (our proposed approach) is a more general and proper framework, while converging to the usual values when dealing with Gaussian noise. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Chlorine-trapped CVD bilayer graphene for resistive pressure sensor with high detection limit and high sensitivity

    NASA Astrophysics Data System (ADS)

    Phuong Pham, Viet; Triet Nguyen, Minh; Park, Jin Woo; Kwak, Sung Soo; Nguyen, Dieu Hien Thi; Kyeom Mun, Mu; Danh Phan, Hoang; San Kim, Doo; Kim, Ki Hyun; Lee, Nae-Eung; Yeom, Geun Young

    2017-06-01

    Pressure sensing is one of the key functions for smart electronics. Considerably more effort is required to achieve the fabrication of pressure sensors that can imitate and overcome the sophisticated pressure sensing characteristics in nature and industry, especially in the innovation of materials and structures. Almost all of the pressure sensors reported until now have a high sensitivity at a low-pressure detection limit (<10 kPa). While the exploration of a pressure sensor with a high sensitivity and a high responsivity at a high-pressure is challenging, it is required for next generation smart electronics. Here, we report an exotic heterostructure pressure sensor based on ZnO/chlorine radical-trap doped bilayer graphene (ZGClG) as an ideal channel for pressure sensors. Using this ZGClG as the channel, this study shows the possibility of forming a pressure sensor with a high sensitivity (0.19 kPa-1) and a high responsivity (0.575 s) at V  =  1 V on glass substrate. Further, the pressure detection limit of this device was as high as 98 kPa. The investigation of the sensing mechanism under pressure has revealed that the significant improved sensing effect is related to the heavy p-type chlorine trap doping in the channel graphene with chlorine radicals without damaging the graphene. This work indicates that the ZGClG channel used for the pressure sensing device could also provide a simple and essential sensing platform for chemical-, medical-, and biological-sensing for future smart electronics.

  9. Dispersion compensation of fiber optic communication system with direct detection using artificial neural networks (ANNs)

    NASA Astrophysics Data System (ADS)

    Maghrabi, Mahmoud M. T.; Kumar, Shiva; Bakr, Mohamed H.

    2018-02-01

    This work introduces a powerful digital nonlinear feed-forward equalizer (NFFE), exploiting multilayer artificial neural network (ANN). It mitigates impairments of optical communication systems arising due to the nonlinearity introduced by direct photo-detection. In a direct detection system, the detection process is nonlinear due to the fact that the photo-current is proportional to the absolute square of the electric field intensity. The proposed equalizer provides the most efficient computational cost with high equalization performance. Its performance is comparable to the benchmark compensation performance achieved by maximum-likelihood sequence estimator. The equalizer trains an ANN to act as a nonlinear filter whose impulse response removes the intersymbol interference (ISI) distortions of the optical channel. Owing to the proposed extensive training of the equalizer, it achieves the ultimate performance limit of any feed-forward equalizer (FFE). The performance and efficiency of the equalizer is investigated by applying it to various practical short-reach fiber optic communication system scenarios. These scenarios are extracted from practical metro/media access networks and data center applications. The obtained results show that the ANN-NFFE compensates for the received BER degradation and significantly increases the tolerance to the chromatic dispersion distortion.

  10. Performance limits for exo-clutter Ground Moving Target Indicator (GMTI) radar.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin Walter

    2010-09-01

    The performance of a Ground Moving Target Indicator (GMTI) radar system depends on a variety of factors, many which are interdependent in some manner. It is often difficult to 'get your arms around' the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall GMTI radar system. While the information herein is not new to the literature, its collection into amore » single report hopes to offer some value in reducing the 'seek time'.« less

  11. Lower limits of spin detection efficiency for two-parameter two-qubit (TPTQ) states with non-ideal ferromagnetic detectors

    NASA Astrophysics Data System (ADS)

    Majd, Nayereh; Ghasemi, Zahra

    2016-10-01

    We have investigated a TPTQ state as an input state of a non-ideal ferromagnetic detectors. Minimal spin polarization required to demonstrate spin entanglement according to entanglement witness and CHSH inequality with respect to (w.r.t.) their two free parameters have been found, and we have numerically shown that the entanglement witness is less stringent than the direct tests of Bell's inequality in the form of CHSH in the entangled limits of its free parameters. In addition, the lower limits of spin detection efficiency fulfilling secure cryptographic key against eavesdropping have been derived. Finally, we have considered TPTQ state as an output of spin decoherence channel and the region of ballistic transmission time w.r.t. spin relaxation time and spin dephasing time has been found.

  12. Evaluating detection limits of next-generation sequencing for the surveillance and monitoring of international marine pests.

    PubMed

    Pochon, Xavier; Bott, Nathan J; Smith, Kirsty F; Wood, Susanna A

    2013-01-01

    Most surveillance programmes for marine invasive species (MIS) require considerable taxonomic expertise, are laborious, and are unable to identify species at larval or juvenile stages. Therefore, marine pests may go undetected at the initial stages of incursions when population densities are low. In this study, we evaluated the ability of the benchtop GS Junior™ 454 pyrosequencing system to detect the presence of MIS in complex sample matrices. An initial in-silico evaluation of the mitochondrial cytochrome c oxidase subunit I (COI) and the nuclear small subunit ribosomal DNA (SSU) genes, found that multiple primer sets (targeting a ca. 400 base pair region) would be required to obtain species level identification within the COI gene. In contrast a single universal primer set was designed to target the V1-V3 region of SSU, allowing simultaneous PCR amplification of a wide taxonomic range of MIS. To evaluate the limits of detection of this method, artificial contrived communities (10 species from 5 taxonomic groups) were created using varying concentrations of known DNA samples and PCR products. Environmental samples (water and sediment) spiked with one or five 160 hr old Asterias amurensis larvae were also examined. Pyrosequencing was able to recover DNA/PCR products of individual species present at greater than 0.64% abundance from all tested contrived communities. Additionally, single A. amurensis larvae were detected from both water and sediment samples despite the co-occurrence of a large array of environmental eukaryotes, indicating an equivalent sensitivity to quantitative PCR. NGS technology has tremendous potential for the early detection of marine invasive species worldwide.

  13. Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations.

    PubMed

    Correia, Manuel; Loeschner, Katrin

    2018-02-06

    We tested the suitability of asymmetric flow field-flow fractionation (AF4) coupled to multi-angle light scattering (MALS) for detection of nanoplastics in fish. A homogenized fish sample was spiked with 100 nm polystyrene nanoparticles (PSNPs) (1.3 mg/g fish). Two sample preparation strategies were tested: acid digestion and enzymatic digestion with proteinase K. Both procedures were found suitable for degradation of the organic matrix. However, acid digestion resulted in large PSNPs aggregates/agglomerates (> 1 μm). The presence of large particulates was not observed after enzymatic digestion, and consequently it was chosen as a sample preparation method. The results demonstrated that it was possible to use AF4 for separating the PSNPs from the digested fish and to determine their size by MALS. The PSNPs could be easily detected by following their light scattering (LS) signal with a limit of detection of 52 μg/g fish. The AF4-MALS method could also be exploited for another type of nanoplastics in solution, namely polyethylene (PE). However, it was not possible to detect the PE particles in fish, due to the presence of an elevated LS background. Our results demonstrate that an analytical method developed for a certain type of nanoplastics may not be directly applicable to other types of nanoplastics and may require further adjustment. This work describes for the first time the detection of nanoplastics in a food matrix by AF4-MALS. Despite the current limitations, this is a promising methodology for detecting nanoplastics in food and in experimental studies (e.g., toxicity tests, uptake studies). Graphical abstract Basic concept for the detection of nanoplastics in fish by asymmetric flow field-flow fractionation coupled to multi-angle light scattering.

  14. User's guide to UGRS: the Ultimate Grading and Remanufacturing System (version 5.0).

    Treesearch

    John Moody; Charles J. Gatchell; Elizabeth S. Walker; Powsiri Klinkhachorn

    1998-01-01

    The Ultimate Grading and Remanufacturing System (UGRS) is the latest generation of advanced computer programs for lumber grading. It is designed to be a training and research tool that allows grading of lumber according to 1998 NHLA rules and remanufacturing for maximum dollar value. A 32-bit application that runs under all Microsoft Windows operating systems, UGRS...

  15. Autonomous replication of nucleic acids by polymerization/nicking enzyme/DNAzyme cascades for the amplified detection of DNA and the aptamer-cocaine complex.

    PubMed

    Wang, Fuan; Freage, Lina; Orbach, Ron; Willner, Itamar

    2013-09-03

    The progressive development of amplified DNA sensors and aptasensors using replication/nicking enzymes/DNAzyme machineries is described. The sensing platforms are based on the tailoring of a DNA template on which the recognition of the target DNA or the formation of the aptamer-substrate complex trigger on the autonomous isothermal replication/nicking processes and the displacement of a Mg(2+)-dependent DNAzyme that catalyzes the generation of a fluorophore-labeled nucleic acid acting as readout signal for the analyses. Three different DNA sensing configurations are described, where in the ultimate configuration the target sequence is incorporated into a nucleic acid blocker structure associated with the sensing template. The target-triggered isothermal autonomous replication/nicking process on the modified template results in the formation of the Mg(2+)-dependent DNAzyme tethered to a free strand consisting of the target sequence. This activates additional template units for the nucleic acid self-replication process, resulting in the ultrasensitive detection of the target DNA (detection limit 1 aM). Similarly, amplified aptamer-based sensing platforms for cocaine are developed along these concepts. The modification of the cocaine-detection template by the addition of a nucleic acid sequence that enables the autonomous secondary coupled activation of a polymerization/nicking machinery and DNAzyme generation path leads to an improved analysis of cocaine (detection limit 10 nM).

  16. The theoretical ultimate magnetoelectric coefficients of magnetoelectric composites by optimization design

    NASA Astrophysics Data System (ADS)

    Wang, H.-L.; Liu, B.

    2014-03-01

    This paper investigates what is the largest magnetoelectric (ME) coefficient of ME composites, and how to realize it. From the standpoint of energy conservation, a theoretical analysis is carried out on an imaginary lever structure consisting of a magnetostrictive phase, a piezoelectric phase, and a rigid lever. This structure is a generalization of various composite layouts for optimization on ME effect. The predicted theoretical ultimate ME coefficient plays a similar role as the efficiency of ideal heat engine in thermodynamics, and is used to evaluate the existing typical ME layouts, such as the parallel sandwiched layout and the serial layout. These two typical layouts exhibit ME coefficient much lower than the theoretical largest values, because in the general analysis the stress amplification ratio and the volume ratio can be optimized independently and freely, but in typical layouts they are dependent or fixed. To overcome this shortcoming and achieve the theoretical largest ME coefficient, a new design is presented. In addition, it is found that the most commonly used electric field ME coefficient can be designed to be infinitely large. We doubt the validity of this coefficient as a reasonable ME effect index and consider three more ME coefficients, namely the electric charge ME coefficient, the voltage ME coefficient, and the static electric energy ME coefficient. We note that the theoretical ultimate value of the static electric energy ME coefficient is finite and might be a more proper measure of ME effect.

  17. The theoretical ultimate magnetoelectric coefficients of magnetoelectric composites by optimization design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.-L.; Liu, B., E-mail: liubin@tsinghua.edu.cn

    2014-03-21

    This paper investigates what is the largest magnetoelectric (ME) coefficient of ME composites, and how to realize it. From the standpoint of energy conservation, a theoretical analysis is carried out on an imaginary lever structure consisting of a magnetostrictive phase, a piezoelectric phase, and a rigid lever. This structure is a generalization of various composite layouts for optimization on ME effect. The predicted theoretical ultimate ME coefficient plays a similar role as the efficiency of ideal heat engine in thermodynamics, and is used to evaluate the existing typical ME layouts, such as the parallel sandwiched layout and the serial layout.more » These two typical layouts exhibit ME coefficient much lower than the theoretical largest values, because in the general analysis the stress amplification ratio and the volume ratio can be optimized independently and freely, but in typical layouts they are dependent or fixed. To overcome this shortcoming and achieve the theoretical largest ME coefficient, a new design is presented. In addition, it is found that the most commonly used electric field ME coefficient can be designed to be infinitely large. We doubt the validity of this coefficient as a reasonable ME effect index and consider three more ME coefficients, namely the electric charge ME coefficient, the voltage ME coefficient, and the static electric energy ME coefficient. We note that the theoretical ultimate value of the static electric energy ME coefficient is finite and might be a more proper measure of ME effect.« less

  18. Trace Chemical Detection through Vegetation Sentinels and Fluorescence Spectroscopy

    Treesearch

    John E. Anderson; Robert L. Fischer; Jean D. Nelson

    2006-01-01

    Detection of environmental contaminants through vegetation sentinels has long been a goal of remote sensing scientists. A promising technique that should be scalable to wide-area applications is the combined use of genetically modified vascular plants and fluorescence imaging. The ultimate goal of our research is to produce a bioreporter that will express fluorescence...

  19. Evolutionary speed limited by water in arid Australia.

    PubMed

    Goldie, Xavier; Gillman, Len; Crisp, Mike; Wright, Shane

    2010-09-07

    The covariation of biodiversity with climate is a fundamental pattern in nature. However, despite the ubiquity of this relationship, a consensus on the ultimate cause remains elusive. The evolutionary speed hypothesis posits direct mechanistic links between ambient temperature, the tempo of micro-evolution and, ultimately, species richness. Previous research has demonstrated faster rates of molecular evolution in warmer climates for a broad range of poikilothermic and homeothermic organisms, in both terrestrial and aquatic environments. In terrestrial systems, species richness increases with both temperature and water availability and the interaction of those terms: productivity. However, the influence of water availability as an independent variable on micro-evolutionary processes has not been examined previously. Here, using methodology that limits the potentially confounding role of cladogenetic and demographic processes, we report, to our knowledge, the first evidence that woody plants living in the arid Australian Outback are evolving more slowly than related species growing at similar latitudes in moist habitats on the mesic continental margins. These results support a modified evolutionary speed explanation for the relationship between the water-energy balance and plant diversity patterns.

  20. Taking the CCDs to the ultimate performance for low threshold experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Miguel; Moroni, Guillermo; Tiffenberg, Javier

    2016-11-14

    Scientific grade CCDs show atractive capabilities for the detection of particles with small energy deposition in matter. Their very low threshold of approximately 40 eV and their good spatial reconstruction of the event are key properties for currently running experiments: CONNIE and DAMIC. Both experiments can benefit from any increase of the detection efficiency of nuclear recoils at low energy. In this work we present two different approaches to increase this efficiency by increasing the SNR of events. The first one is based on the reduction of the readout noise of the device, which is the main contribution of uncertaintymore » to the signal measurement. New studies on the electronic noise from the integrated output amplifier and the readout electronics will be presented together with result of a new configuration showing a lower limit on the readout noise which can be implemented on the current setup of the CCD based experiments. A second approach to increase the SNR of events at low energy that will be presented is the studies of the spatial conformation of nuclear recoil events at different depth in the active volume by studies of new effects that differ from expected models based on not interacting diffusion model of electrons in the semiconductor.« less

  1. 22 CFR 123.9 - Country of ultimate destination and approval of reexports or retransfers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ARMS REGULATIONS LICENSES FOR THE EXPORT OF DEFENSE ARTICLES § 123.9 Country of ultimate destination... the Directorate of Defense Trade Controls must be obtained before reselling, transferring, reexporting, retransferring, transshipping, or disposing of a defense article to any end-user, end-use, or destination other...

  2. Data analysis and detection methods for on-line health monitoring of bridge structures

    DOT National Transportation Integrated Search

    2002-06-01

    Developing an efficient structural health monitoring (SHM) technique is important for reducing potential hazards posed : to the public by damaged civil structures. The ultimate goal of applying SHM is to real-time detect, localize, and quantify : the...

  3. Characteristics of right-sided colonic neoplasia and colonoscopy barriers limiting their early detection and prognosis: a review of the literature.

    PubMed

    Fischbach, Wolfgang; Elsome, Rory; Amlani, Bharat

    2018-06-05

    Colonoscopy provides less protection from colorectal cancer in the right colon than the left. Areas covered: This review examines patient outcomes and colonoscopy success rates to identify factors that limit the protective effect of colonoscopy in the right colon. The MEDLINE and Embase databases were searched for literature from 2000 onwards, on the long-term outcomes and differences in screening practice between the right and left colon. In total, 12 systematic reviews (including nine meta-analyses) and 44 primary data records were included. Differences in patient outcomes and colonoscopy practice were identified between the right and left colon, suggesting that several factors, many of which disproportionally affect the right colon, impact lesion detection rates. Shorter withdrawal times reduce detection rates, while longer times significantly increase detection; mostly of adenomas in the right colon. Colonoscope attachments often only show a significant improvement in detection rates in the right colon, suggesting detection is more challenging due to visibility of the right colonic mucosa. Higher bowel cleansing grades significantly improve detection rates in the right colon compared to the left. Expert commentary: These findings confirm the need for continued improvement of colonoscopy effectiveness, and obligatory quality assessment, overall and especially in the right colon.

  4. Development of Detectability Limits for On-Orbit Inspection of Space Shuttle Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.; Johnson, David G.; Mastropietro, A. J.; Ancarrow, Walt C.

    2005-01-01

    At the conclusion of the Columbia Accident Investigation, one of the recommendations of the Columbia Accident Investigation Board (CAIB) was that NASA develop and implement an inspection plan for the Reinforced Carbon-Carbon (RCC) system components of the Space Shuttle. To address these issues, a group of scientists and engineers at NASA Langley Research Center proposed the use of an IR camera to inspect the RCC. Any crack in an RCC panel changes the thermal resistance of the material in the direction perpendicular to the crack. The change in thermal resistance can be made visible by introducing a heat flow across the crack and using an IR camera to image the resulting surface temperature distribution. The temperature difference across the crack depends on the change in the thermal resistance, the length of the crack, the local thermal gradient, and the rate of radiation exchange with the environment. This paper describes how the authors derived the minimum thermal gradient detectability limits for a through crack in an RCC panel. This paper will also show, through the use of a transient, 3-dimensional, finite element model, that these minimum gradients naturally exist on-orbit. The results from the finite element model confirm that there are sufficient thermal gradient to detect a crack on 96% of the RCC leading edge.

  5. The ultimate state of polymeric materials and laminated and fibrous composites under asymmetric high-cycle loading

    NASA Astrophysics Data System (ADS)

    Golub, V. P.; Pogrebniak, A. D.; Kochetkova, E. S.

    2008-01-01

    The prediction of the high-cycle fatigue strength of polymeric and composite materials in asymmetric loading is considered. The problem is solved on the basis of a nonlinear model of ultimate state allowing us to describe all typical forms of the diagrams of ultimate stresses. The material constants of the model are determined from the results of fatigue tests in symmetric reversed cycling, in a single fatigue test with the minimum stress equal to zero, and in a short-term strength test. The fatigue strength characteristics of some polymers, glass-fiber laminates, glass-fiber-reinforced plastics, organic-fiber-reinforced plastics, and wood laminates in asymmetric tension-compression, bending, and torsion have been calculated and approved experimentally.

  6. Detecting position using ARKit II: generating position-time graphs in real-time and further information on limitations of ARKit

    NASA Astrophysics Data System (ADS)

    Dilek, Ufuk; Erol, Mustafa

    2018-05-01

    ARKit is a framework which allows developers to create augmented reality apps for the iPhone and iPad. In a previous study, we had shown that it could be used to detect position in educational physics experiments and emphasized that the ability to provide position data in real-time was one of the prominent features of this newly emerging technology. In this study, we demonstrate an example of how real-time data acquisition can be employed in educational settings, report some of the limitations of ARKit and how we have overcome these limitations. By means of ARKit or a similar framework, ordinary mobile devices can be adapted for use in microcomputer-based lab activities.

  7. Satellite based Global Flood Detection System - strengths and limitations

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Salamon, Peter; Thielen, Jutta; De Groeve, Tom; Zajac, Zuzanna

    2014-05-01

    One of the main problems for global hydrological models is that for many regions only very limited or no observational data for a model assessment is available. This problem could be overcome with filling the gaps using information derived from satellite observations. Thus, an evaluation of the remote sensing signal of the Global Flood Detection System (GFDS) against observed discharge data was performed in order to test the use of this data in sparsely gauged river basins. The study was carried out at 398 locations near the main rivers and in Africa, Asia, Europe, North America and South America. After evaluating different methodologies for extracting the satellite signal, a temporal (4 days) and spatial (4 GFDS pixels) average was chosen to proceed with the analysis. For the 340 stations with a concurrent time series longer than seven years for both, the signal and the in situ observed discharge (obtained mainly from the Global Runoff Data Centre), a calibration based on monthly linear models was carried out. The validation was executed and several skill scores were calculated such as the R2, Nash-Sutcliffe (NSE), and Root Mean Square Error (RMSE). It is important to highlight that, for this study, 230 stations globally had Nash-Sutcliffe efficient score higher than zero, indicating that for specific conditions the satellite signal as used in GFDS can fill the gaps where observations are not available. For example, several locations in African catchments have good performance as in the Niger, Volta and Zambezi for which Nash-Sutcliffe is greater than 0.75. It is known that a number of factors affect total upwelling microwave brightness from a mixed water and land surface measured by a single image pixel. Aiming to better understand how some features of the sites could affect the satellite signal and the correlation with in situ observations, apart from the dependency on the river geometry, a multivariate analysis was carried out between the skill scores (NSE and

  8. Lowering detection limits for 1,2,3-trichloropropane in water using solid phase extraction coupled to purge and trap sample introduction in an isotope dilution GC-MS method.

    PubMed

    Liao, Wenta; Ghabour, Miriam; Draper, William M; Chandrasena, Esala

    2016-09-01

    Purge and trap sample introduction (PTI) has been the premier sampling and preconcentration technique for gas chromatographic determination of volatile organic compounds (VOCs) in drinking water for almost 50 years. PTI affords sub parts-per-billion (ppb) detection limits for purgeable VOCs including fixed gases and higher boiling hydrocarbons and halocarbons. In this study the coupling of solid phase extraction (SPE) to PTI was investigated as a means to substantially increase enrichment and lower detection limits for the emerging contaminant, 1,2,3-trichloropropane (TCP). Water samples (500 mL) were dechlorinated, preserved with a biocide, and spiked with the isotope labeled internal standard, d5-TCP. The entire 500 mL sample was extracted with activated carbon or carbon molecular sieve SPE cartridges, and then eluted with dichloromethane -- excess solvent was removed in a nitrogen evaporator and diethylene glycol "keeper" remaining was dispersed in 5 mL of water for PTI GC-MS analysis. The experimental Method Detection Limit (MDL) for TCP was 0.11 ng/L (ppt) and accuracy was 95-103% in sub-ppt determinations. Groundwater samples including impaired California sources and treated water (n = 21) were analyzed with results ranging from below the method reporting limit (0.30 ng/L) to > 250 ng/L. Coupling of SPE with PTI may provide similar reductions in detection limits for other VOCs with appropriate physical-chemical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Ultimate Drivers and Proximate Correlates of Polyandry in Predatory Mites

    PubMed Central

    Schausberger, Peter; Patiño-Ruiz, J. David; Osakabe, Masahiro; Murata, Yasumasa; Sugimoto, Naoya; Uesugi, Ryuji; Walzer, Andreas

    2016-01-01

    Polyandry is more widespread than anticipated from Bateman’s principle but its ultimate (evolutionary) causes and proximate (mechanistic) correlates are more difficult to pinpoint than those of polygyny. Here, we combined mating experiments, quantification of reproductive traits and microsatellite genotyping to determine the fitness implications of polyandry in two predatory mite species, where males are highly polygynous (up to 45 fertilized females during life), whereas females range from monandry to various polyandry levels. The medium-level polyandrous (up to eight male mates possible) Neoseiulus californicus received clear direct and indirect benefits: multiply mated females produced more offspring with higher survival chances over longer times than singly mated females. In contrast, singly and multiply mated females of the low-level polyandrous (commonly two male mates at maximum) Phytoseiulus persimilis produced similar numbers of offspring having similar survival chances. In both species, multiple mating resulted in mixed offspring paternities, opening the chance for indirect fitness benefits such as enhanced genetic compatibility, complementarity and/or variability. However, the female re-mating likelihood and the paternity chance of non-first male mates were lower in P. persimilis than in N. californicus. Regarding proximate factors, in both species first mating duration and female re-mating likelihood were negatively correlated. Based on occasional fertilization failure of first male mates in P. persimilis, and mixed offspring paternities in both species, we argue that fertilization assurance and the chance to gain indirect fitness benefits are the ultimate drivers of polyandry in P. persimilis, whereas those of N. californicus are higher offspring numbers coupled with enhanced offspring viability and possibly other indirect fitness benefits. Overall, the adaptive significance and proximate events well reflected the polyandry levels. Our study provides

  10. Ultimate Drivers and Proximate Correlates of Polyandry in Predatory Mites.

    PubMed

    Schausberger, Peter; Patiño-Ruiz, J David; Osakabe, Masahiro; Murata, Yasumasa; Sugimoto, Naoya; Uesugi, Ryuji; Walzer, Andreas

    2016-01-01

    Polyandry is more widespread than anticipated from Bateman's principle but its ultimate (evolutionary) causes and proximate (mechanistic) correlates are more difficult to pinpoint than those of polygyny. Here, we combined mating experiments, quantification of reproductive traits and microsatellite genotyping to determine the fitness implications of polyandry in two predatory mite species, where males are highly polygynous (up to 45 fertilized females during life), whereas females range from monandry to various polyandry levels. The medium-level polyandrous (up to eight male mates possible) Neoseiulus californicus received clear direct and indirect benefits: multiply mated females produced more offspring with higher survival chances over longer times than singly mated females. In contrast, singly and multiply mated females of the low-level polyandrous (commonly two male mates at maximum) Phytoseiulus persimilis produced similar numbers of offspring having similar survival chances. In both species, multiple mating resulted in mixed offspring paternities, opening the chance for indirect fitness benefits such as enhanced genetic compatibility, complementarity and/or variability. However, the female re-mating likelihood and the paternity chance of non-first male mates were lower in P. persimilis than in N. californicus. Regarding proximate factors, in both species first mating duration and female re-mating likelihood were negatively correlated. Based on occasional fertilization failure of first male mates in P. persimilis, and mixed offspring paternities in both species, we argue that fertilization assurance and the chance to gain indirect fitness benefits are the ultimate drivers of polyandry in P. persimilis, whereas those of N. californicus are higher offspring numbers coupled with enhanced offspring viability and possibly other indirect fitness benefits. Overall, the adaptive significance and proximate events well reflected the polyandry levels. Our study provides a

  11. Fundamental limits of repeaterless quantum communications

    PubMed Central

    Pirandola, Stefano; Laurenza, Riccardo; Ottaviani, Carlo; Banchi, Leonardo

    2017-01-01

    Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed ‘teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters. PMID:28443624

  12. Fundamental limits of repeaterless quantum communications.

    PubMed

    Pirandola, Stefano; Laurenza, Riccardo; Ottaviani, Carlo; Banchi, Leonardo

    2017-04-26

    Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed 'teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters.

  13. 22 CFR 123.9 - Country of ultimate destination and approval of reexports or retransfers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ARMS REGULATIONS LICENSES FOR THE EXPORT OF DEFENSE ARTICLES § 123.9 Country of ultimate destination... the Directorate of Defense Trade Controls must be obtained before reselling, transferring, transshipping, or disposing of a defense article to any end user, end use or destination other than as stated on...

  14. Evaluating Detection Limits of Next-Generation Sequencing for the Surveillance and Monitoring of International Marine Pests

    PubMed Central

    Pochon, Xavier; Bott, Nathan J.; Smith, Kirsty F.; Wood, Susanna A.

    2013-01-01

    Most surveillance programmes for marine invasive species (MIS) require considerable taxonomic expertise, are laborious, and are unable to identify species at larval or juvenile stages. Therefore, marine pests may go undetected at the initial stages of incursions when population densities are low. In this study, we evaluated the ability of the benchtop GS Junior™ 454 pyrosequencing system to detect the presence of MIS in complex sample matrices. An initial in-silico evaluation of the mitochondrial cytochrome c oxidase subunit I (COI) and the nuclear small subunit ribosomal DNA (SSU) genes, found that multiple primer sets (targeting a ca. 400 base pair region) would be required to obtain species level identification within the COI gene. In contrast a single universal primer set was designed to target the V1–V3 region of SSU, allowing simultaneous PCR amplification of a wide taxonomic range of MIS. To evaluate the limits of detection of this method, artificial contrived communities (10 species from 5 taxonomic groups) were created using varying concentrations of known DNA samples and PCR products. Environmental samples (water and sediment) spiked with one or five 160 hr old Asterias amurensis larvae were also examined. Pyrosequencing was able to recover DNA/PCR products of individual species present at greater than 0.64% abundance from all tested contrived communities. Additionally, single A. amurensis larvae were detected from both water and sediment samples despite the co-occurrence of a large array of environmental eukaryotes, indicating an equivalent sensitivity to quantitative PCR. NGS technology has tremendous potential for the early detection of marine invasive species worldwide. PMID:24023913

  15. Current limiter circuit system

    DOEpatents

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  16. The ultimate legs of Chilopoda (Myriapoda): a review on their morphological disparity and functional variability

    PubMed Central

    Kenning, Matthes; Müller, Carsten H.G.

    2017-01-01

    The arthropodium is the key innovation of arthropods. Its various modifications are the outcome of multiple evolutionary transformations, and the foundation of nearly endless functional possibilities. In contrast to hexapods, crustaceans, and even chelicerates, the spectrum of evolutionary transformations of myriapod arthropodia is insufficiently documented and rarely scrutinized. Among Myriapoda, Chilopoda (centipedes) are characterized by their venomous forcipules—evolutionarily transformed walking legs of the first trunk segment. In addition, the posterior end of the centipedes’ body, in particular the ultimate legs, exhibits a remarkable morphological heterogeneity. Not participating in locomotion, they hold a vast functional diversity. In many centipede species, elongation and annulation in combination with an augmentation of sensory structures indicates a functional shift towards a sensory appendage. In other species, thickening, widening and reinforcement with a multitude of cuticular protuberances and glandular systems suggests a role in both attack and defense. Moreover, sexual dimorphic characteristics indicate that centipede ultimate legs play a pivotal role in intraspecific communication, mate finding and courtship behavior. We address ambiguous identifications and designations of podomeres in order to point out controversial aspects of homology and homonymy. We provide a broad summary of descriptions, illustrations, ideas and observations published in past 160 years, and propose that studying centipede ultimate legs is not only essential in itself for filling gaps of knowledge in descriptive morphology, but also provides an opportunity to explore diverse pathways of leg transformations within Myriapoda. PMID:29158971

  17. Acoustic signal detection of manatee calls

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O.

    2003-04-01

    The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disc. The detection method that provides the best overall performance is able to correctly identify ~=96% of the manatee vocalizations. However the system also results in a false positive rate of ~=16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees.

  18. The Giant Radio Array for Neutrino Detection

    NASA Astrophysics Data System (ADS)

    Kotera, K.; GRAND Collaboration

    2017-12-01

    The Giant Radio Array for Neutrino Detection (GRAND) project aims at detecting ultrahigh-energy neutrinos and cosmic rays with a ˜10^5 radio antenna array over 200'000 km^2 in mountainous regions in China, in order to solve the mystery of the origin of these two linked particles. Its strategy is to detect extensive air showers of the highest energies, above 10^{17} eV, that are triggered by the interaction of high-energy particles in the atmosphere or underground. In its first stages, GRAND will be competitive to detect the first cosmogenic neutrinos for favorable source scenarios. Ultimately, GRAND aims at reaching a sensitivity and angular resolution that should launch neutrino astronomy, and that will ensure the detection of these neutrinos, even in the most pessimistic cases. We present preliminary results of our simulations, plans for the ongoing, staged approach to the construction of GRAND, and the rich research program made possible by the design of GRAND.

  19. Detection Limit of Smectite by Chemin IV Laboratory Instrument: Preliminary Implications for Chemin on the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Archilles, Cherie; Ming, D. W.; Morris, R. V.; Blake, D. F.

    2011-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) is an miniature X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of detecting the mineralogical and elemental compositions of rocks, outcrops and soils on the surface of Mars. CheMin uses a microfocus-source Co X-ray tube, a transmission sample cell, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CRISM and OMEGA have identified the presence of phyllosilicates at several locations on Mars including the four candidate MSL landing sites. The objective of this study was to conduct preliminary studies to determine the CheMin detection limit of smectite in a smectite/olivine mixed mineral system.

  20. The detection and stabilisation of limit cycle for deterministic finite automata

    NASA Astrophysics Data System (ADS)

    Han, Xiaoguang; Chen, Zengqiang; Liu, Zhongxin; Zhang, Qing

    2018-04-01

    In this paper, the topological structure properties of deterministic finite automata (DFA), under the framework of the semi-tensor product of matrices, are investigated. First, the dynamics of DFA are converted into a new algebraic form as a discrete-time linear system by means of Boolean algebra. Using this algebraic description, the approach of calculating the limit cycles of different lengths is given. Second, we present two fundamental concepts, namely, domain of attraction of limit cycle and prereachability set. Based on the prereachability set, an explicit solution of calculating domain of attraction of a limit cycle is completely characterised. Third, we define the globally attractive limit cycle, and then the necessary and sufficient condition for verifying whether all state trajectories of a DFA enter a given limit cycle in a finite number of transitions is given. Fourth, the problem of whether a DFA can be stabilised to a limit cycle by the state feedback controller is discussed. Criteria for limit cycle-stabilisation are established. All state feedback controllers which implement the minimal length trajectories from each state to the limit cycle are obtained by using the proposed algorithm. Finally, an illustrative example is presented to show the theoretical results.

  1. Ultimate strength capacity of a square hollow section filled with fibrous foamed concrete

    NASA Astrophysics Data System (ADS)

    Amirah Azra Khairuddin, Siti; Rahman, Norashidah Abd; Jamaluddin, Norwati; Jaini, Zainorizuan Mohd; Ali, Noorwirdawati

    2017-11-01

    Concrete-filled sections used as building columns have become popular due to their architectural and structural elements. In recent years, there has been a renewed call for the improvement of materials used as concrete to fill the composite columns. Among these materials, foamed concrete has received great attention due to its structural characteristics and its potential as a construction material used in hollow sections. However, its behaviors as infill material in a hollow section, such as its strength and failure mode, should be investigated. In this study, experimental research was conducted to compare the experimental and theoretical values of its ultimate strength capacity. Eight specimens of hollow steel sections with two different thicknesses were filled with fibrous foamed concrete and then subjected to compression load. The obtained results were compared with those obtained from a hollow section with the same thicknesses, but were filled with normal foamed concrete. Results show that the ultimate strength capacity of the experimental value is the same as that of the theoretical value based on Eurocode 4. The largest percentage values between theoretical and experimental results for thicknesses of 2 and 4 mm are 58% and 55%, respectively.

  2. Detecting the limits of bronchial closure methods in an animal model.

    PubMed

    Tezel, C; Urek, S; Keles, M; Kiral, H; Koşar, A; Dudu, C; Arman, B

    2006-04-01

    Bronchopleural fistula is a serious complication of major lung resections that may lead to mortality. An experimental animal model was designed to find out the safest bronchial closure method by comparing leakage rates under pressure. The tracheobronchial trees of 50 freshly dead sheep were prepared for either manual closure or closure with a stapler. After left pneumonectomy, the specimens were divided into five groups (n = 10); 3/0 Premilene suture was used with two "u" sutures + interrupted sutures in Group I; in Group II, 3/0 Premilene sutures with continuous horizontal mattress + over-over continuous sutures were used. In Group III and IV the same techniques were used with 3/0 Vicryl. A stapler was used in Group V. Specimens were intubated with an endotracheal tube, connected to a sphygmomanometer, and subsequently positioned under water. The pressure level at which we detected air bubbles indicated the limits of the technique. The median leakage pressure resistance was significantly lower in Group III (135 mm Hg) ( P = 0.001). The best results were achieved by using the continuous horizontal mattress + over-over continuous suture technique. No statistical significance difference was found between the stapler group, Groups I, II, and IV in terms of median leakage pressures. This trial suggests that manual suture closure using an appropriate technique and monofilament materials is as safe as the stapler.

  3. Are Zeros Your Ultimate Weapon?

    ERIC Educational Resources Information Center

    Guskey, Thomas R.

    2004-01-01

    Grading is one of a teacher's greatest challenges and most important professional responsibilities. However, few teachers have any formal training in grading methods, and most teachers have limited knowledge about the effectiveness of various grading practices. As a consequence, when teachers develop their grading policies, they typically reflect…

  4. Directional genomic hybridization for chromosomal inversion discovery and detection.

    PubMed

    Ray, F Andrew; Zimmerman, Erin; Robinson, Bruce; Cornforth, Michael N; Bedford, Joel S; Goodwin, Edwin H; Bailey, Susan M

    2013-04-01

    Chromosomal rearrangements are a source of structural variation within the genome that figure prominently in human disease, where the importance of translocations and deletions is well recognized. In principle, inversions-reversals in the orientation of DNA sequences within a chromosome-should have similar detrimental potential. However, the study of inversions has been hampered by traditional approaches used for their detection, which are not particularly robust. Even with significant advances in whole genome approaches, changes in the absolute orientation of DNA remain difficult to detect routinely. Consequently, our understanding of inversions is still surprisingly limited, as is our appreciation for their frequency and involvement in human disease. Here, we introduce the directional genomic hybridization methodology of chromatid painting-a whole new way of looking at structural features of the genome-that can be employed with high resolution on a cell-by-cell basis, and demonstrate its basic capabilities for genome-wide discovery and targeted detection of inversions. Bioinformatics enabled development of sequence- and strand-specific directional probe sets, which when coupled with single-stranded hybridization, greatly improved the resolution and ease of inversion detection. We highlight examples of the far-ranging applicability of this cytogenomics-based approach, which include confirmation of the alignment of the human genome database and evidence that individuals themselves share similar sequence directionality, as well as use in comparative and evolutionary studies for any species whose genome has been sequenced. In addition to applications related to basic mechanistic studies, the information obtainable with strand-specific hybridization strategies may ultimately enable novel gene discovery, thereby benefitting the diagnosis and treatment of a variety of human disease states and disorders including cancer, autism, and idiopathic infertility.

  5. Estimation of potential and limits of bivalve closure response to detect contaminants: application to cadmium.

    PubMed

    Tran, Damien; Ciret, Pierre; Ciutat, Aurélie; Durrieu, Gilles; Massabuau, Jean-Charles

    2003-04-01

    Bivalve closure responses to detect contaminants have often been studied in ecotoxicology as an aquatic pollution biosensor. We present a new laboratory procedure to estimate its potential and limits for various contaminants and animal susceptible to stress. The study was performed in the Asiatic clam Corbicula fluminea and applied to cadmium. To take into account the rate of spontaneous closures, we integrated stress problems associated with fixation by a valve in common apparatus and the spontaneous rhythm associated with circadian activity to focus on conditions with the lowest probability of spontaneous closing. Moreover, we developed an original system by impedance valvometry, using light-weight impedance electrodes, to study free-ranging animals in low-stress conditions and a new analytical approach to describe valve closure behavior as a function of response time and concentration of contaminant. In C. fluminea, we show that cadmium concentrations above 50 microg/L can be detected within less than 1 h, concentrations down to 16 microg/L require 5 h of integration time, and values lower than 16 microg/L cannot be distinguished from background noise. Our procedure improved by a factor of six the cadmium sensitivity threshold reported in the literature. Problems of field applications are discussed.

  6. Discussion of the Method to Determine the Ultimate Bearing Capacity of Soil Foundation

    NASA Astrophysics Data System (ADS)

    Du, Peng; Liu, Xiaoling; Zhang, Yangfu

    2017-12-01

    Combining literature examples, this paper has carried out Contrastive analysis of the theoretical formula method and finite element method about the ultimate bearing capacity of foundation, To verify rationality and superiority of the incremental load method in finite element ABAQUS in solving the bearing capacity of foundation soil. The study can provide certain reference for practical engineering calculation and analysis of foundation bearing capacity.

  7. Limited irrigation research and infrared thermometry for detecting water stress

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS Limited Irrigation Research Farm, located outside of Greeley Colorado, is an experiment evaluating management perspectives of limited irrigation water. An overview of the farm systems is shown, including drip irrigation systems, water budgeting, and experimental design, as well as preli...

  8. Lava ultimate resin nano ceramic for CAD/ CAM: customization case study.

    PubMed

    Koller, M; Arnetzl, G V; Holly, L; Arnetzl, G

    2012-01-01

    Lava Ultimate Resin Nano Ceramic (RNC) blocks are innovative new CAD/CAM materials that make it possible to achieve superior esthetic results in easy steps. The blocks are made of nano ceramic particles embedded in a highly cured resin matrix. Therefore, composite materials can be used to characterize and adjust resin nano ceramic restorations after milling. The milled RNC restorations can be individualized intra-orally or extra-orally, either before or after insertion. Unlike conventional ceramic restorations, customization and glaze firing is neither necessary nor possible with RNC restorations. This opens up the opportunity for intraoral individualization and adaptation of the restorations.

  9. Heisenberg limit for displacements with semiclassical states

    NASA Astrophysics Data System (ADS)

    Luis, Alfredo

    2004-04-01

    We analyze the quantum limit to the sensitivity of the detection of small displacements. We focus on the case of free particles and harmonic oscillators as the systems experiencing the displacement. We show that the minimum displacement detectable is proportional to the inverse of the square root of the mean value of the energy in the state experiencing the displacement (Heisenberg limit). We present a measuring scheme that reaches this limit using semiclassical states. We examine the performance of this strategy under realistic practical conditions by computing the effect of imperfections such as losses and nonunit detection efficiencies. This analysis confirms the robustness of this measuring strategy by showing that the experimental imperfections can be suitably compensated by increasing the mean energy of the input state.

  10. Detection limits of tidal-wetland sequences to identify variable rupture modes of megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Shennan, Ian; Garrett, Ed; Barlow, Natasha

    2016-10-01

    Recent paleoseismological studies question whether segment boundaries identified for 20th and 21st century great, >M8, earthquakes persist through multiple earthquake cycles or whether smaller segments with different boundaries rupture and cause significant hazards. The smaller segments may include some currently slipping rather than locked. In this review, we outline general principles regarding indicators of relative sea-level change in tidal wetlands and the conditions in which paleoseismic indicators must be distinct from those resulting from non-seismic processes. We present new evidence from sites across southcentral Alaska to illustrate different detection limits of paleoseismic indicators and consider alternative interpretations for marsh submergence and emergence. We compare predictions of coseismic uplift and subsidence derived from geophysical models of earthquakes with different rupture modes. The spatial patterns of agreement and misfits between model predictions and quantitative reconstructions of coseismic submergence and emergence suggest that no earthquake within the last 4000 years had a pattern of rupture the same as the Mw 9.2 Alaska earthquake in 1964. From the Alaska examples and research from other subduction zones we suggest that If we want to understand whether a megathrust ruptures in segments of variable length in different earthquakes, we need to be site-specific as to what sort of geological-based criteria eliminate the possibility of a particular rupture mode in different earthquakes. We conclude that coastal paleoseismological studies benefit from a methodological framework that employs rigorous evaluation of five essential criteria and a sixth which may be very robust but only occur at some sites: 1 - lateral extent of peat-mud or mud-peat couplets with sharp contacts; 2 - suddenness of submergence or emergence, and replicated within each site; 3 - amount of vertical motion, quantified with 95% error terms and replicated within each

  11. Partial Least Squares Calibration Modeling Towards the Multivariate Limit of Detection for Enriched Isotopic Mixtures via Laser Ablation Molecular Isotopic Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Candace; Profeta, Luisa; Akpovo, Codjo

    The psuedo univariate limit of detection was calculated to compare to the multivariate interval. ompared with results from the psuedounivariate LOD, the multivariate LOD includes other factors (i.e. signal uncertainties) and the reveals the significance in creating models that not only use the analyte’s emission line but also its entire molecular spectra.

  12. On the ultimate uncertainty of the top quark pole mass

    NASA Astrophysics Data System (ADS)

    Beneke, M.; Marquard, P.; Nason, P.; Steinhauser, M.

    2017-12-01

    We combine the known asymptotic behaviour of the QCD perturbation series expansion, which relates the pole mass of a heavy quark to the MS ‾ mass, with the exact series coefficients up to the four-loop order to determine the ultimate uncertainty of the top-quark pole mass due to the renormalon divergence. We perform extensive tests of our procedure by varying the number of colours and flavours, as well as the scale of the strong coupling and the MS ‾ mass. Including an estimate of the internal bottom and charm quark mass effect, we conclude that this uncertainty is around 110 MeV. We further estimate the additional contribution to the mass relation from the five-loop correction and beyond to be around 300 MeV.

  13. Towards the Ultimate Membranes: Two-dimensional Nanoporous Materials and Films.

    PubMed

    Agrawal, Kumar Varoon

    2018-05-30

    The energy-efficient separation of molecules has been a popular topic in chemistry and chemical engineering as a consequence of the large energy-footprint of separation processes in the chemical industry. The Laboratory of Advanced Separations (LAS) at EPFL, led by Prof. Kumar Varoon Agrawal, is focused to develop next-generation, high-performance membranes that can improve the energy efficiency of hydrogen purification, carbon capture, hydrocarbon and water purification. For this, LAS is seeking to develop the ultimate nanoporous membranes, those with a thickness of 1 nm and possessing an array of size-selective nanopores. In this article, the research activities at LAS, especially in the bottom-up and top-down synthesis of chemically and thermally stable, nanoporous two-dimensional materials and membranes are discussed.

  14. R and D limited partnerships (possible applications in advanced communications satellite technology experiment program)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Typical R&D limited partnership arrangements, advantages and disadvantages of R&D limited partnership (RDLPs) and antitrust and tax implications are described. A number of typical forms of RDLPs are described that may be applicable for use in stimulating R&D and experimental programs using the advanced communications technology satellite. The ultimate goal is to increase the rate of market penetration of goods and/or services based upon advanced satellite communications technology. The conditions necessary for these RDLP forms to be advantageous are outlined.

  15. Fundamental limits on beam stability at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, G. A.

    1998-06-18

    Orbit correction is now routinely performed at the few-micron level in the Advanced Photon Source (APS) storage ring. Three diagnostics are presently in use to measure and control both AC and DC orbit motions: broad-band turn-by-turn rf beam position monitors (BPMs), narrow-band switched heterodyne receivers, and photoemission-style x-ray beam position monitors. Each type of diagnostic has its own set of systematic error effects that place limits on the ultimate pointing stability of x-ray beams supplied to users at the APS. Limiting sources of beam motion at present are magnet power supply noise, girder vibration, and thermal timescale vacuum chamber andmore » girder motion. This paper will investigate the present limitations on orbit correction, and will delve into the upgrades necessary to achieve true sub-micron beam stability.« less

  16. A strategy for detecting derelict fishing gear at sea.

    PubMed

    McElwee, Kris; Donohue, Mary J; Courtney, Catherine A; Morishige, Carey; Rivera-Vicente, Ariel

    2012-01-01

    Derelict fishing gear (DFG) is a highly persistent form of marine pollution known to cause environmental and economic damage. At-sea detection of DFG would support pelagic removal of this gear to prevent and minimize impacts on marine environments and species. In 2008, experts in marine debris, oceanography, remote sensing, and marine policy outlined a strategy to develop the capability to detect and ultimately remove DFG from the open ocean. The strategy includes three interrelated components: understanding the characteristics of the targeted DFG, indirectly detecting DFG by modeling likely locations, and directly detecting pelagic DFG using remote sensing. Together, these components aim to refine the search area, increase the likelihood of detection, and decrease mitigation response time, thereby providing guidance for removal operations. Here, we present this at-sea detection strategy, relate it to relevant extant research and technology, and identify gaps that currently prevent successful at-sea detection and removal of DFG. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Visual acuity of the honey bee retina and the limits for feature detection.

    PubMed

    Rigosi, Elisa; Wiederman, Steven D; O'Carroll, David C

    2017-04-06

    Visual abilities of the honey bee have been studied for more than 100 years, recently revealing unexpectedly sophisticated cognitive skills rivalling those of vertebrates. However, the physiological limits of the honey bee eye have been largely unaddressed and only studied in an unnatural, dark state. Using a bright display and intracellular recordings, we here systematically investigated the angular sensitivity across the light adapted eye of honey bee foragers. Angular sensitivity is a measure of photoreceptor receptive field size and thus small values indicate higher visual acuity. Our recordings reveal a fronto-ventral acute zone in which angular sensitivity falls below 1.9°, some 30% smaller than previously reported. By measuring receptor noise and responses to moving dark objects, we also obtained direct measures of the smallest features detectable by the retina. In the frontal eye, single photoreceptors respond to objects as small as 0.6° × 0.6°, with >99% reliability. This indicates that honey bee foragers possess significantly better resolution than previously reported or estimated behaviourally, and commonly assumed in modelling of bee acuity.

  18. The ultimate challenge of cloacal exstrophy.

    PubMed

    Schober, Justine M; Carmichael, Polly A; Hines, Melissa; Ransley, Philip G

    2002-01-01

    Our review addresses the various system abnormalities associated with cloacal exstrophy and revisits the question of gender assignment. Gender assignment decisions and psychological aspects of gender issues have become the "ultimate challenge." Exploration of gender identity, gender role behavior and sexual orientation has just begun. A comprehensive literature review was performed with all world literature regarding the current management of cloacal exstrophy. Research focused on management principles, outcomes and documentation of concurrent anomalies. We also describe original research evaluating gender identity in our own series of patients raised as girls to illustrate the challenge of treatment and augment the available literature, which is scant. Abnormalities of the vertebral column ranged from hemivertebra to myelomeningocele. With magnetic resonance imaging, the incidence of spinal dysraphism approached 100% and cord tethering was also more frequently recognized. For children with the short bowel syndrome, advances in antibiotic usage, and parenteral and enteral nutrition have increased the survival rate and reduced morbidity. A neurological component has been recognized for bladder function, bladder neck continence, lower extremity function and erectile capacity. Mitrofanoff-type reconstruction with bladder neck closure and continent catheterizable stoma dramatically increased continence. Diminutive or absent penis has been documented in 30% of males, and no documentation of paternity exists. The majority of females have bicornuate uterus. However, ovaries and tubes were generally normal. No reports of proven fertility exist. The strategy and timing of surgery relating to gender assignment remain controversial. A desperate need exists for research focusing on gender development and quality of life. Until that time, a cautious watchful approach may be most appropriate as our patients with cloacal exstrophy mature into adulthood.

  19. Statistical Limits to Super Resolution

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    1992-08-01

    The limits imposed by photon statistics on the degree to which Rayleigh's resolution limit for diffraction-limited images can be surpassed by applying image restoration techniques are investigated. An approximate statistical theory is given for the number of detected photons required in the image of an unresolved pair of equal point sources in order that its information content allows in principle resolution by restoration. This theory is confirmed by numerical restoration experiments on synthetic images, and quantitative limits are presented for restoration of diffraction-limited images formed by slit and circular apertures.

  20. On the Contribution of Curl-Free Current Patterns to the Ultimate Intrinsic Signal-to-Noise Ratio at Ultra-High Field Strength.

    PubMed

    Pfrommer, Andreas; Henning, Anke

    2017-05-01

    The ultimate intrinsic signal-to-noise ratio (SNR) is a coil independent performance measure to compare different receive coil designs. To evaluate this benchmark in a sample, a complete electromagnetic basis set is required. The basis set can be obtained by curl-free and divergence-free surface current distributions, which excite linearly independent solutions to Maxwell's equations. In this work, we quantitatively investigate the contribution of curl-free current patterns to the ultimate intrinsic SNR in a spherical head-sized model at 9.4 T. Therefore, we compare the ultimate intrinsic SNR obtained with having only curl-free or divergence-free current patterns, with the ultimate intrinsic SNR obtained from a combination of curl-free and divergence-free current patterns. The influence of parallel imaging is studied for various acceleration factors. Moreover results for different field strengths (1.5 T up to 11.7 T) are presented at specific voxel positions and acceleration factors. The full-wave electromagnetic problem is analytically solved using dyadic Green's functions. We show, that at ultra-high field strength (B 0 ⩾7T) a combination of curl-free and divergence-free current patterns is required to achieve the best possible SNR at any position in a spherical head-sized model. On 1.5- and 3T platforms, divergence-free current patterns are sufficient to cover more than 90% of the ultimate intrinsic SNR. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Evolutionary speed limited by water in arid Australia

    PubMed Central

    Goldie, Xavier; Gillman, Len; Crisp, Mike; Wright, Shane

    2010-01-01

    The covariation of biodiversity with climate is a fundamental pattern in nature. However, despite the ubiquity of this relationship, a consensus on the ultimate cause remains elusive. The evolutionary speed hypothesis posits direct mechanistic links between ambient temperature, the tempo of micro-evolution and, ultimately, species richness. Previous research has demonstrated faster rates of molecular evolution in warmer climates for a broad range of poikilothermic and homeothermic organisms, in both terrestrial and aquatic environments. In terrestrial systems, species richness increases with both temperature and water availability and the interaction of those terms: productivity. However, the influence of water availability as an independent variable on micro-evolutionary processes has not been examined previously. Here, using methodology that limits the potentially confounding role of cladogenetic and demographic processes, we report, to our knowledge, the first evidence that woody plants living in the arid Australian Outback are evolving more slowly than related species growing at similar latitudes in moist habitats on the mesic continental margins. These results support a modified evolutionary speed explanation for the relationship between the water-energy balance and plant diversity patterns. PMID:20410038

  2. Quantum-limited heat conduction over macroscopic distances

    NASA Astrophysics Data System (ADS)

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-05-01

    The emerging quantum technological apparatuses, such as the quantum computer, call for extreme performance in thermal engineering. Cold distant heat sinks are needed for the quantized electric degrees of freedom owing to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. However, the short distance between the heat-exchanging bodies in the previous experiments hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics, which provides a basis for the superconducting quantum computer. Especially, our results facilitate remote cooling of nanoelectronic devices using faraway in situ-tunable heat sinks. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications.

  3. 15 CFR Supplement No. 3 to Part 748 - BIS-711, Statement by Ultimate Consignee and Purchaser Instructions

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...” include: contractual, franchise, distributor, wholesaler, continuing and regular individual business, etc... persons, other than employees of the ultimate consignee or purchaser, who assisted in the preparation of...

  4. Limitations of malaria reactive case detection in an area of low and unstable transmission on the Myanmar-Thailand border.

    PubMed

    Parker, Daniel M; Landier, Jordi; von Seidlein, Lorenz; Dondorp, Arjen; White, Lisa; Hanboonkunupakarn, Borimas; Maude, Richard J; Nosten, François H

    2016-11-25

    the same sample size. The results of these simulations indicate that reactive case detection for clinical cases using RDTs has limited ability in halting transmission in regions of low and unstable transmission. This is linked to high spatial heterogeneity of cases, acquisition of malaria infections outside the village, as well missing asymptomatic infections. When cases are few and sporadic, reactive case detection would result in major time and budgetary losses.

  5. Sparse aperture masking at the VLT. II. Detection limits for the eight debris disks stars β Pic, AU Mic, 49 Cet, η Tel, Fomalhaut, g Lup, HD 181327 and HR 8799

    NASA Astrophysics Data System (ADS)

    Gauchet, L.; Lacour, S.; Lagrange, A.-M.; Ehrenreich, D.; Bonnefoy, M.; Girard, J. H.; Boccaletti, A.

    2016-10-01

    Context. The formation of planetary systems is a common, yet complex mechanism. Numerous stars have been identified to possess a debris disk, a proto-planetary disk or a planetary system. The understanding of such formation process requires the study of debris disks. These targets are substantial and particularly suitable for optical and infrared observations. Sparse aperture masking (SAM) is a high angular resolution technique strongly contributing to probing the region from 30 to 200 mas around the stars. This area is usually unreachable with classical imaging, and the technique also remains highly competitive compared to vortex coronagraphy. Aims: We aim to study debris disks with aperture masking to probe the close environment of the stars. Our goal is either to find low-mass companions, or to set detection limits. Methods: We observed eight stars presenting debris disks (β Pictoris, AU Microscopii, 49 Ceti, η Telescopii, Fomalhaut, g Lupi, HD 181327, and HR 8799) with SAM technique on the NaCo instrument at the Very Large Telescope (VLT). Results: No close companions were detected using closure phase information under 0.5'' of separation from the parent stars. We obtained magnitude detection limits that we converted to Jupiter masses detection limits using theoretical isochrones from evolutionary models. Conclusions: We derived upper mass limits on the presence of companions in the area of a few times the telescope's diffraction limits around each target star. Based on observations collected at the European Southern Observatory (ESO) during runs 087.C-0450(A), 087.C-0450(B) 087.C-0750(A), 088.C-0358(A).All magnitude detection limits maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A31

  6. Health care quality, access, cost, workforce, and surgical education: the ultimate perfect storm.

    PubMed

    Schwartz, Marshall Z

    2012-01-01

    The discussions on health care reform over the past two years have focused on cost containment while trying to maintain quality of care. Focusing on just cost and quality unfortunately does not address other very important factors that impact on our health care delivery system. Availability of a well-trained workforce, maintaining the sophisticated medical/surgical education system, and ultimately access to quality care by the public are critical to maintaining and enhancing our health care delivery system. Unfortunately, all five of these components are under at risk. Thus, we have evolving the ultimate perfect storm affecting our health care delivery system. Although not ideal and given the uniqueness of our population and their expectations, our current delivery system is excellent compared to other countries. However, the cost of our current system is rising at an alarming rate. Currently, health care consumes 17% of our gross domestic product. If our system is not revised this will continue to rise and by 2025 it will consume 48%. The dilemma, given the current state of our overall economy and rising debt, is how to address this major problem. Unfortunately, the Affordable Care Act, which is now law, does not address most of the issues and the cost was initially grossly under estimated. Furthermore, the law does not address the issues of workforce, maintaining our medical education system or ultimately, access. A major revision of our system will be necessary to truly create a system that protects and enhances all five of the components of our health care delivery system. To effectively accomplish this will require addressing those issues that lead to wasteful spending and diversion of our health care dollars to profit instead of care. Improved and efficient delivery systems that reduce complications, reduction of duplication of tertiary and quaternary programs or services within the same markets (i.e. regionalization of care), health insurance reform, and

  7. Corotation lag limit on mass-loss rate from Io

    NASA Astrophysics Data System (ADS)

    Huang, T. S.; Siscoe, G. L.

    1987-08-01

    Considering rapid escape of H2O from Io during an early hot evolutionary epoch, an H2O plasma torus is constructed by balancing dissociation and ionization products against centrifugally driven diffusion, including for the first time the effects of corotation lag resulting from mass loading. Two fundamental limits are found as the mass injection rate increases: (1) an 'ignition' limit of 1.1 x 10 to the 6th kg/s, beyond which the torus cannot ionize itself and photoionization dominates; and (2) the ultimate mass loading limit of 1.3 x 10 to the 7th kg/s, which occurs when neutrals newly created by charge exchange and recombination cannot leave the torus, thereby bringing magnetospherically driven transport to a halt. Connecting this limit with the variations of Io's temperature in its early evolution epoch gives an estimate of the upper limit on the total mass loss from Io, about 3.0 x 10 to the 20th kg (for high-opacity nebula) and about 8.9 x 10 to the 20th kg (for low-opacity nebula). These limits correspond to eroding 8 km and 22 km of H2O from the surface. It is concluded that compared to the other Galilean satellites, Io was created basically dry.

  8. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters.

    PubMed

    Riedel, Timothy E; Zimmer-Faust, Amity G; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T; Ebentier, Darcy L; Byappanahalli, Muruleedhara; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B; Griffith, John F; Holden, Patricia A; Shanks, Orin C; Weisberg, Stephen B; Jay, Jennifer A

    2014-04-01

    Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters

    USGS Publications Warehouse

    Riedel, Timothy E.; Zimmer-Faust, Amity G.; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T.; Ebentier, Darcy L.; Byappanahalli, Muruleedhara N.; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B.; Griffith, John F.; Holden, Patricia A.; Shanks, Orin C.; Weisberg, Stephen B.; Jay, Jennifer A.

    2014-01-01

    Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample.

  10. Poaching Detection Technologies—A Survey

    PubMed Central

    Meratnia, Nirvana; Havinga, Paul

    2018-01-01

    Between 1960 and 1990, 95% of the black rhino population in the world was killed. In South Africa, a rhino was killed every 8 h for its horn throughout 2016. Wild animals, rhinos and elephants, in particular, are facing an ever increasing poaching crisis. In this paper, we review poaching detection technologies that aim to save endangered species from extinction. We present requirements for effective poacher detection and identify research challenges through the survey. We describe poaching detection technologies in four domains: perimeter based, ground based, aerial based, and animal tagging based technologies. Moreover, we discuss the different types of sensor technologies that are used in intruder detection systems such as: radar, magnetic, acoustic, optic, infrared and thermal, radio frequency, motion, seismic, chemical, and animal sentinels. The ultimate long-term solution for the poaching crisis is to remove the drivers of demand by educating people in demanding countries and raising awareness of the poaching crisis. Until prevention of poaching takes effect, there will be a continuous urgent need for new (combined) approaches that take up the research challenges and provide better protection against poaching in wildlife areas. PMID:29738501

  11. Development of a comprehensive analytical platform for the detection and quantitation of food fraud using a biomarker approach. The oregano adulteration case study.

    PubMed

    Wielogorska, Ewa; Chevallier, Olivier; Black, Connor; Galvin-King, Pamela; Delêtre, Marc; Kelleher, Colin T; Haughey, Simon A; Elliott, Christopher T

    2018-01-15

    Due to increasing number of food fraud incidents, there is an inherent need for the development and implementation of analytical platforms enabling detection and quantitation of adulteration. In this study a set of unique biomarkers of commonly found oregano adulterants became the targets in the development of a LC-MS/MS method which underwent a rigorous in-house validation. The method presented very high selectivity and specificity, excellent linearity (R 2 >0.988) low decision limits and detection capabilities (<2%), acceptable accuracy (intra-assay 92-113%, inter-assay 69-138%) and precision (CV<20%). The method was compared with an established FTIR screening assay and revealed a good correlation of quali- and quantitative results (R 2 >0.81). An assessment of 54 suspected adulterated oregano samples revealed that almost 90% of them contained at least one bulking agent, with a median level of adulteration of 50%. Such innovative methodologies need to be established as routine testing procedures to detect and ultimately deter food fraud. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Currie detection limits in gamma-ray spectroscopy.

    PubMed

    De Geer, Lars-Erik

    2004-01-01

    Currie Hypothesis testing is applied to gamma-ray spectral data, where an optimum part of the peak is used and the background is considered well known from nearby channels. With this, the risk of making Type I errors is about 100 times lower than commonly assumed. A programme, PeakMaker, produces random peaks with given characteristics on the screen and calculations are done to facilitate a full use of Poisson statistics in spectrum analyses. SHORT TECHNICAL NOTE SUMMARY: The Currie decision limit concept applied to spectral data is reinterpreted, which gives better consistency between the selected error risk and the observed error rates. A PeakMaker program is described and the few count problem is analyzed.

  13. Considerations on the determination of the limit of detection and the limit of quantification in one-dimensional and comprehensive two-dimensional gas chromatography.

    PubMed

    Krupčík, Ján; Májek, Pavel; Gorovenko, Roman; Blaško, Jaroslav; Kubinec, Robert; Sandra, Pat

    2015-05-29

    Methods based on the blank signal as proposed by IUPAC procedure and on the signal to noise ratio (S/N) as listed in the ISO-11843-1 norm for determination of the limit of detection (LOD) and quantitation (LOQ) in one-dimensional capillary gas chromatography (1D-GC) and comprehensive two-dimensional capillary gas chromatography (CG×GC) are described in detail and compared for both techniques. Flame ionization detection was applied and variables were the data acquisition frequency and, for CG×GC, also the modulation time. It has been stated that LOD and LOQ estimated according to IUPAC might be successfully used for 1D-GC-FID method. Moreover, LOD and LOQ decrease with decrease of data acquisition frequency (DAF). For GC×GC-FID, estimation of LOD by IUPAC gave poor reproducibility of results while for LOQ reproducibility was acceptable (within ±10% rel.). The LOD and LOQ determined by the S/N concept both for 1D-GC-FID and GC×GC-FID methods are ca. three times higher than those values estimated by the standard deviation of the blank. Since the distribution pattern of modulated peaks for any analyte separated by GC×GC is random and cannot be predicted, LOQ and LOD may vary within 30% for 3s modulation time. Concerning sensitivity, 1D-GC-FID at 2Hz and of GC×GC-FID at 50Hz shows a ca. 5 times enhancement of sensitivity in the modulated signal output. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. 75 FR 40765 - Hours of Service; Limited Exemption for the Distribution of Anhydrous Ammonia in Agricultural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... No. FMCSA-2010-0230] Hours of Service; Limited Exemption for the Distribution of Anhydrous Ammonia in... ammonia from any distribution point to a local farm retailer or to the ultimate consumer, and from a local... anhydrous ammonia during the planting and harvesting seasons, as defined by the States in which the carriers...

  15. Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125.

    PubMed

    Su, Hui-Wen; Lee, Mon-Juan; Lee, Wei

    2015-05-01

    Liquid crystal (LC)-based biosensing has attracted much attention in recent years. We focus on improving the detection limit of LC-based immunoassay techniques by surface modification of the surfactant alignment layer consisting of dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP). The cancer biomarker CA125 was detected with an array of anti-CA125 antibodies immobilized on the ultraviolet (UV)-modified DMOAP monolayer. Compared with a pristine counterpart, UV irradiation enhanced the binding affinity of the CA125 antibody and reproducibility of immunodetection in which a detection limit of 0.01 ng∕ml for the cancer biomarker CA125 was achieved. Additionally, the optical texture observed under a crossed polarized microscope was correlated with the analyte concentration. In a proof-of-concept experiment using CA125-spiked human serum as the analyte, specific binding between the CA125 antigen and the anti-CA125 antibody resulted in a distinct and concentration-dependent optical response despite the high background caused by nonspecific binding of other biomolecules in the human serum. Results from this study indicate that UVmodification of the alignment layer, as well as detection with LCs of large birefringence, contributes to the enhanced performance of the label-free LC-based immunodetection, which may be considered a promising alternative to conventional label-based methods.

  16. Laser-induced fluorescence detection platform for point-of-care testing

    NASA Astrophysics Data System (ADS)

    Berner, Marcel; Hilbig, Urs; Schubert, Markus B.; Gauglitz, Günter

    2017-08-01

    Point-of-care testing (POCT) devices for continuous low-cost monitoring of critical patient parameters require miniaturized and integrated setups for performing quick high-sensitivity analyses, away from central clinical laboratories. This work presents a novel and promising laser-induced fluorescence platform for measurements in direct optical test formats that leads towards such powerful POCT devices based on fluorescence-labeled immunoassays. Ultimate sensitivity of thin film photodetectors, integrated with microfluidics, and a comprehensive optimization of all system components aim at low-level signal detection in the targeted biosensor application. The setup acquires fluorescence signals from the volume of a microfluidic channel. An innovative sandwiching process forms a flow channel in the microfluidic chips by embedding laser-cut double-sided adhesive tapes. The custom fit of amorphous silicon based photodiode arrays to the geometry of the flow channel enables miniaturization, fully adequate for POCT devices. A free-beam laser excitation with line focus provides excellent alignment stability, allows for easy and reliable swapping of the disposable microfluidic chips, and therewith greatly improves the ease of use of the resulting integrated device. As a proof-of-concept of this novel in-volume measurement approach, the limit of detection for the dye DY636-COOH in pure water as a model fluorophore is examined and found to be 26 nmol l-1 .

  17. Narrow phase-dependent features in X-ray dim isolated neutron stars: a new detection and upper limits

    NASA Astrophysics Data System (ADS)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Tiengo, A.; Turolla, R.; Zane, S.

    2017-07-01

    We report on the results of a detailed phase-resolved spectroscopy of archival XMM-Newton observations of X-ray dim isolated neutron stars (XDINSs). Our analysis revealed a narrow and phase-variable absorption feature in the X-ray spectrum of RX J1308.6+2127. The feature has an energy of ˜740 eV and an equivalent width of ˜15 eV. It is detected only in ˜1/5 of the phase cycle, and appears to be present for the entire timespan covered by the observations (2001 December to 2007 June). The strong dependence on the pulsar rotation and the narrow width suggest that the feature is likely due to resonant cyclotron absorption/scattering in a confined high-B structure close to the stellar surface. Assuming a proton cyclotron line, the magnetic field strength in the loop is Bloop ˜ 1.7 × 1014 G, about a factor of ˜5 higher than the surface dipolar magnetic field (Bsurf ˜ 3.4 × 1013 G). This feature is similar to that recently detected in another XDINS, RX J0720.4-3125, showing (as expected by theoretical simulations) that small-scale magnetic loops close to the surface might be common to many highly magnetic neutron stars (although difficult to detect with current X-ray instruments). Furthermore, we investigated the available XMM-Newton data of all XDINSs in search for similar narrow phase-dependent features, but could derive only upper limits for all the other sources.

  18. Limiting Short-term Noise versus Optical Density in a Direct Absorption Spectrometer for Trace Gas Detection

    NASA Astrophysics Data System (ADS)

    Jervis, D.

    2016-12-01

    Field-deployable trace gas monitors are important for understanding a multitude of atmospheric processes: from forest photosynthesis and respiration [1], to fugitive methane emissions [2] and satellite measurement validation [3]. Consequently, a detailed knowledge of the performance limitations of these instruments is essential in order to establish reliable datasets. We present the short-term ( >1 Hz) performance of a long-pass direct absorption spectrometer as a function of the optical density of the absorption transition being probed. In particular, we identify fluctuations in the laser intensity as limiting the optical density uncertainty to 4x10-6/√Hz for weak transitions, and noise in the laser drive current as limiting the fractional noise in the optical density to 4x10-5/√Hz for deep transitions. We provide numerical and analytical predictions for both effects, as well as using the understanding of this phenomena to estimate how noise on neighboring strong and weak transitions couple to each other. All measurements were performed using the Aerodyne Research TILDAS Monitor, but are general to any instrument that uses direct absorption spectroscopy as a detection method. Wehr, R., et al. "Seasonality of temperate forest photosynthesis and daytime respiration." Nature 534.7609 (2016): 680-683. Conley, S., et al. "Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA." Science 351.6279 (2016): 1317-1320. Emmons, L. K., et al. "Validation of Measurements of Pollution in the Troposphere (MOPITT) CO retrievals with aircraft in situ profiles." Journal of Geophysical Research: Atmospheres 109.D3 (2004).

  19. Squat Biomechanical Modeling Results from Exercising on the Hybrid Ultimate Lifting Kit

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen M.

    2016-01-01

    Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. The computational models currently under development utilize the OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from test subjects for estimation of muscle and joint loads. The subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. Test variables include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data is also obtained using free weights for a comparison to the resistively loaded exercise device. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. The focus of this presentation is to summarize the results from the full squat exercises

  20. Di-epoxides of the three isomeric dicyclopenta-fused pyrenes: ultimate mutagenic active agents.

    PubMed

    Otero-Lobato, María José; Kaats-Richters, Veronica E M; Havenith, Remco W A; Jenneskens, Leonardus W; Seinen, Willem

    2004-11-14

    To rationalize the high bacterial mutagenic response recently found for the (di-) cyclopenta-fused pyrene congeners, viz. cyclopenta[cd]-(1), dicyclopenta[cd,mn]-(2), dicyclopenta[cd,fg]-(3) and dicyclopenta[cd,jk]pyrene (4), in the presence of a metabolic activation mixture (S9-mix), their (di-)epoxides at the externally fused unsaturated five-membered rings were previously proposed as the ultimate mutagenic active forms. In this study, cyclopenta[cd]pyrene-3,4-epoxide (5) and the novel dicyclopenta[cd,mn]pyrene-1,2,4,5-di-epoxide (6), dicyclopenta[cd,fg]pyrene-5,6,7,8-di-epoxide (7) and dicyclopenta[cd,jk]pyrene-1,2,6,7-di-epoxide (8) were synthesised from 1 to 4, respectively, and subsequently assayed for bacterial mutagenicity in the standard microsomal/histidine reverse mutation assay (Ames-assay with Salmonella typhimurium strain TA98). The di-epoxides 6-8 are present as a mixture of their cis- and trans-stereo-isomers in a close to 1:1 ratio ((1)H NMR spectroscopy and ab initio IGLO/III//RHF/6-31G** calculations). The direct-acting mutagenic activity and the strong cytotoxicity exerted by 5-8 both in the absence or presence of an exogenous metabolic activation system (+/-S9-mix) demonstrate that the ultimate mutagenic active forms are the proposed (di-)epoxides of 1-4.

  1. Fracture mechanics validity limits

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.; Ernst, Hugo A.

    1994-01-01

    Fracture behavior is characteristics of a dramatic loss of strength compared to elastic deformation behavior. Fracture parameters have been developed and exhibit a range within which each is valid for predicting growth. Each is limited by the assumptions made in its development: all are defined within a specific context. For example, the stress intensity parameters, K, and the crack driving force, G, are derived using an assumption of linear elasticity. To use K or G, the zone of plasticity must be small as compared to the physical dimensions of the object being loaded. This insures an elastic response, and in this context, K and G will work well. Rice's J-integral has been used beyond the limits imposed on K and G. J requires an assumption of nonlinear elasticity, which is not characteristic of real material behavior, but is thought to be a reasonable approximation if unloading is kept to a minimum. As well, the constraint cannot change dramatically (typically, the crack extension is limited to ten-percent of the initial remaining ligament length). Rice, et al investigated the properties required of J-type parameters, J(sub x), and showed that the time rate, dJ(sub x)/dt, must not be a function of the crack extension rate, da/dt. Ernst devised the modified-J parameter, J(sub M), that meets this criterion. J(sub M) correlates fracture data to much higher crack growth than does J. Ultimately, a limit of the validity of J(sub M) is anticipated, and this has been estimated to be at a crack extension of about 40-percent of the initial remaining ligament length. None of the various parameters can be expected to describe fracture in an environment of gross plasticity, in which case the process is better described by deformation parameters, e.g., stress and strain. In the current study, various schemes to identify the onset of the plasticity-dominated behavior, i.e., the end of fracture mechanics validity, are presented. Each validity limit parameter is developed in

  2. Simple random sampling-based probe station selection for fault detection in wireless sensor networks.

    PubMed

    Huang, Rimao; Qiu, Xuesong; Rui, Lanlan

    2011-01-01

    Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate.

  3. Ecological and Landscape Drivers of Neonicotinoid Insecticide Detections and Concentrations in Canada's Prairie Wetlands.

    PubMed

    Main, Anson R; Michel, Nicole L; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2015-07-21

    Neonicotinoids are commonly used seed treatments on Canada's major prairie crops. Transported via surface and subsurface runoff into wetlands, their ultimate aquatic fate remains largely unknown. Biotic and abiotic wetland characteristics likely affect neonicotinoid presence and environmental persistence, but concentrations vary widely between wetlands that appear ecologically (e.g., plant composition) and physically (e.g., depth) similar for reasons that remain unclear. We conducted intensive surveys of 238 wetlands, and documented 59 wetland (e.g., dominant plant species) and landscape (e.g., surrounding crop) characteristics as part of a novel rapid wetland assessment system. We used boosted regression tree (BRT) analysis to predict both probability of neonicotinoid analytical detection and concentration. BRT models effectively predicted the deviance in neonicotinoid detection (62.4%) and concentration (74.7%) from 21 and 23 variables, respectively. Detection was best explained by shallow marsh plant species identity (34.8%) and surrounding crop (13.9%). Neonicotinoid concentration was best explained by shallow marsh plant species identity (14.9%) and wetland depth (14.2%). Our research revealed that plant composition is a key indicator and/or driver of neonicotinoid presence and concentration in Prairie wetlands. We recommend wetland buffers consisting of diverse native vegetation be retained or restored to minimize neonicotinoid transport and retention in wetlands, thereby limiting their potential effects on wetland-dependent organisms.

  4. Simple Random Sampling-Based Probe Station Selection for Fault Detection in Wireless Sensor Networks

    PubMed Central

    Huang, Rimao; Qiu, Xuesong; Rui, Lanlan

    2011-01-01

    Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate. PMID:22163789

  5. Future Directions for the Early Detection of Colorectal Cancer Recurrence

    PubMed Central

    Walker, Avery S.; Johnson, Eric K.; Maykel, Justin A.; Stojadinovic, Alex; Nissan, Aviram; Brucher, Bjorn; Champagne, Bradley J.; Steele, Scott R.

    2014-01-01

    Surgical resection remains a mainstay of treatment and is highly effective for localized colorectal cancer. However, ~30-40% of patients develop recurrence following surgery and 40-50% of recurrences are apparent within the first few years after initial surgical resection. Several variables factor into the ultimate outcome of these patients, including the extent of disease, tumor biology, and patient co-morbidities. Additionally, the time from initial treatment to the development of recurrence is strongly associated with overall survival, particularly in patients who recur within one year of their surgical resection. Current post-resection surveillance strategies involve physical examination, laboratory, endoscopic and imaging studies utilizing various high and low-intensity protocols. Ultimately, the goal is to detect recurrence as early as possible, and ideally in the asymptomatic localized phase, to allow initiation of treatment that may still result in cure. While current strategies have been effective, several efforts are evolving to improve our ability to identify recurrent disease at its earliest phase. Our aim with this article is to briefly review the options available and, more importantly, examine emerging and future options to assist in the early detection of colon and rectal cancer recurrence. PMID:24790655

  6. PURIFICATION AND RECOVERY OF BULKY HYDROPHOBIC DNA ADDUCTS

    EPA Science Inventory

    For many years 32P postlabeling has detected DNA adducts at very low levels and yet has not been able to identify unknown adducts. Mass spectrometry offers substantially improved identification powers, albeit at some loss in detection limits. With this ultimate utilization of ma...

  7. PROXIMATE OR ULTIMATE GENOTOXIC FORMS OF ARSENIC: METHYLATED ARSENIC(III) SPECIES THAT REACT DIRECTLY WITH DNA

    EPA Science Inventory


    PROXIMATE OR ULTIMATE GENOTOXIC FORMS OF ARSENIC: METHYLATED ARSENIC(III) SPECIES THAT REACT DIRECTL Y WITH DNA.

    Abstract:

    Although inorganic arsenic (iAs), arsenite or arsenate, is genotoxic, there has been no demonstration that iAs or a methylated metabolite...

  8. Episodic foresight and anxiety: Proximate and ultimate perspectives.

    PubMed

    Miloyan, Beyon; Bulley, Adam; Suddendorf, Thomas

    2016-03-01

    In this paper, we examine the relationship between episodic foresight and anxiety from an evolutionary perspective, proposing that together they confer an advantage for modifying present moment decision-making and behaviour in the light of potential future threats to fitness. We review the body of literature on the role of episodic foresight in anxiety, from both proximate and ultimate perspectives. We propose that anxious feelings associated with episodic simulation of possible threat-related future events serve to imbue these simulations with motivational currency. Episodic and semantic details of a future threat may be insufficient for motivating its avoidance, but anxiety associated with a simulation can provoke adaptive threat management. As such, we detail how anxiety triggered by a self-generated, threat-related future simulation prepares the individual to manage that threat (in terms of its likelihood and/or consequences) over greater temporal distances than observed in other animals. We then outline how anxiety subtypes may represent specific mechanisms for predicting and managing particular classes of fitness threats. This approach offers an inroad for understanding the nature of characteristic future thinking patterns in anxiety disorders and serves to illustrate the adaptive function of the mechanism from which clinical anxiety deviates. © 2015 The British Psychological Society.

  9. Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood

    PubMed Central

    Wang, Yin; Nikodem, Michal; Zhang, Eric; Cikach, Frank; Barnes, Jarrod; Comhair, Suzy; Dweik, Raed A.; Kao, Christina; Wysocki, Gerard

    2015-01-01

    Measurement of NO and/or its metabolites in the various body compartments has transformed our understanding of biology. The inability of the current NO measurement methods to account for naturally occurring and experimental NO isotopes, however, has prevented the scientific community from fully understating NO metabolism in vivo. Here we present a mid-IR Faraday rotation spectrometer (FRS) for detection of NO isotopes. The instrument utilizes a novel dual modulation/demodulation (DM) FRS method which exhibits noise performance at only 2 times the fundamental quantum shot-noise level and provides the record sensitivity in its class. This is achieved with a system that is fully autonomous, robust, transportable, and does not require cryogenic cooling. The DM-FRS enables continuous monitoring of nitric oxide isotopes with the detection limits of 3.72 ppbv/Hz1/2 to14NO and 0.53 ppbv/Hz1/2 to15NO using only 45 cm active optical path. This DM-FRS measurement method can be used to improve the performance of conventional FRS sensors targeting other radical species. The feasibility of the instrument to perform measurements relevant to studies of NO metabolism in humans is demonstrated. PMID:25767064

  10. Recent observations of interstellar molecules - Detection of CCO and a limit on H2C3O

    NASA Technical Reports Server (NTRS)

    Brown, R. D.; Cragg, D. M.; Godfrey, P. D.; Irvine, W. M.; Mcgonagle, D.; Ohishi, M.

    1992-01-01

    In order to test gas-phase reaction schemes for the production of small oxides of carbon in cold, dense interstellar clouds, we have searched for the radical CCO and for propadienone (H2C3O) in Taurus Molecular Cloud 1, a nearby cloud which exhibits a rich organic chemistry. The radical CCO has been detected with a fractional abundance some two orders of magnitude less than that of CCS, about one order of magnitude less than that of H2CCO, and slightly less than that of C3O. An upper limit has been obtained on the abundance of propadienone which is slightly less than that of its isomer propynal (HC2CHO).

  11. Microbial limitation in a changing world: A stoichiometric approach for predicting microbial resource limitation and fluxes

    NASA Astrophysics Data System (ADS)

    Midgley, M.; Phillips, R.

    2014-12-01

    Microbes mediate fluxes of carbon (C), nitrogen (N), and phosphorus (P) in soils depending on ratios of available C, N, and P relative to microbial demand. Hence, characterizing microbial C and nutrient limitation in soils is critical for predicting how ecosystems will respond to human alterations of climate and nutrient availability. Here, we take a stoichiometric approach to assessing microbial C, N, and P limitation by using threshold element ratios (TERs). TERs enable shifting resource limitation to be assessed by matching C, N and P ratios from microbial biomass, extracellular enzyme activities, and soil nutrient concentrations. We assessed microbial nutrient limitation in temperate forests dominated by trees that associate with one of two mycorrhizal symbionts: arbsucular mycorrhizal (AM) or ectomycorrhizal (ECM) fungi. We found that both ECM and AM microbial communities were co-limited by C and N, supporting conventional wisdom that microbes are C-limited and temperate forests are N-limited. However, AM microbial communities were relatively more C-limited than ECM communities (P=0.001). In response to chronic field N fertilization, both AM and ECM communities became relatively more P-limited (P=0.011), but they remained N- and C-limited overall. Thus, realistic levels of N deposition may not dampen microbial N limitation. Reflecting differences in relative limitation, N mineralization rates were higher in AM soils than in ECM soils (P=0.004) while C mineralization rates were higher in ECM soils than in AM soils (P=0.023). There were no significant differences in P flux between AM and ECM soils or detectable mineralization responses to N addition, indicating that mineralization rates are closely tied to C and nutrient limitation. Overall, we found that 1) microbial resource limitation can be detected without resource addition; and 2) TERs and ratios of labile resources are viable tools for predicting mineralization responses to resource additions.

  12. Characterization of electrical noise limits in ultra-stable laser systems.

    PubMed

    Zhang, J; Shi, X H; Zeng, X Y; Lü, X L; Deng, K; Lu, Z H

    2016-12-01

    We demonstrate thermal noise limited and shot noise limited performance of ultra-stable diode laser systems. The measured heterodyne beat linewidth between such two independent diode lasers reaches 0.74 Hz. The frequency instability of one single laser approaches 1.0 × 10 -15 for averaging time between 0.3 s and 10 s, which is close to the thermal noise limit of the reference cavity. Taking advantage of these two ultra-stable laser systems, we systematically investigate the ultimate electrical noise contributions, and derive expressions for the closed-loop spectral density of laser frequency noise. The measured power spectral density of the beat frequency is compared with the theoretically calculated closed-loop spectral density of the laser frequency noise, and they agree very well. It illustrates the power and generality of the derived closed-loop spectral density formula of the laser frequency noise. Our result demonstrates that a 10 -17 level locking in a wide frequency range is feasible with careful design.

  13. Quantum-limited heat conduction over macroscopic distances

    PubMed Central

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-01-01

    The emerging quantum technological apparatuses1, 2, such as the quantum computer3–6, call for extreme performance in thermal engineering7. Cold distant heat sinks are needed for the quantized electric degrees of freedom due to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance8–10. However, the short distance between the heat-exchanging bodies in the previous experiments11–14 hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics15–17 which provides a basis for the superconducting quantum computer18–21. Especially, our results facilitate remote cooling of nanoelectronic devices using far-away in-situ-tunable heat sinks22, 23. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics24, 25. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications26. PMID:27239219

  14. Quantum-limited Terahertz detection without liquid cryogens

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under this contract, we have successfully designed, fabricated and tested a revolutionary new type of detector for Terahertz (THz) radiation, the tunable antenna-coupled intersubband Terahertz (TACIT) detector. The lowest-noise THz detectors used in the astrophysics community require cooling to temperatures below 4K. This deep cryogenic requirement forces satellites launched for THz- observing missions to include either large volumes of liquid Helium, complex cryocoolers, or both. Cryogenic requirements thus add significantly to the cost, complexity and mass of satellites and limit the duration of their missions. It hence desirable to develop new detector technologies with less stringent cryogenic requirements. Such detectors will not only be important in space-based astrophysics, but also respond to a growing demand for THz technology for earth-based scientific and commercial applications.

  15. One-Port Electronic Detection Strategies for Improving Sensitivity in Piezoelectric Resonant Sensor Measurements

    PubMed Central

    Hu, Zhongxu; Hedley, John; Keegan, Neil; Spoors, Julia; Gallacher, Barry; McNeil, Calum

    2016-01-01

    This paper describes a one-port mechanical resonance detection scheme utilized on a piezoelectric thin film driven silicon circular diaphragm resonator and discusses the limitations to such an approach in degenerate mode mass detection sensors. The sensor utilizes degenerated vibration modes of a radial symmetrical microstructure thereby providing both a sense and reference mode allowing for minimization of environmental effects on performance. The circular diaphragm resonator was fabricated with thickness of 4.5 µm and diameter of 140 µm. A PZT thin film of 0.75 µm was patterned on the top surface for the purposes of excitation and vibration sensing. The device showed a resonant frequency of 5.8 MHz for the (1, 1) mode. An electronic interface circuit was designed to cancel out the large static and parasitic capacitance allowing for electrical detection of the mechanical vibration thereby enabling the frequency split between the sense and reference mode to be measured accurately. The extracted motional current, proportional to the vibration velocity, was fed back to the drive to effectively increase the Q factor, and therefore device sensitivity, by more than a factor of 8. A software phase-locked loop was implemented to automatically track the resonant frequencies to allow for faster and accurate resonance detection. Results showed that by utilizing the absolute mode frequencies as an indication of sensor temperature, the variation in sensor temperature due to the heating from the drive electronics was accounted for and led to an ultimate measurement sensitivity of 2.3 Hz. PMID:27792154

  16. Detection of the actinides and cesium from environmental samples

    NASA Astrophysics Data System (ADS)

    Snow, Mathew Spencer

    Detection of the actinides and cesium in the environment is important for a variety of applications ranging from environmental remediation to safeguards and nuclear forensics. The utilization of multiple different elemental concentrations and isotopic ratios together can significantly improve the ability to attribute contamination to a unique source term and/or generation process; however, the utilization of multiple elemental "signatures" together from environmental samples requires knowledge of the impact of chemical fractionation for various elements under a variety of environmental conditions (including predominantly aqueous versus arid conditions). The research reported in this dissertation focuses on three major areas: 1. Improving the understanding of actinide-mineral interactions at ultra-low concentrations. Chapter 2 reports a batch sorption and modeling study of Np(V) sorption to the mineral goethite from attomolar to micromolar concentrations. 2. Improving the detection capabilities for Thermal Ionization Mass Spectrometry (TIMS) analyses of ultra-trace cesium from environmental samples. Chapter 4 reports a new method which significantly improves the chemical yields, purification, sample processing time, and ultimately, the detection limits for TIMS analyses of femtogram quantities of cesium from a variety of environmental sample matrices. 3. Demonstrating how actinide and cesium concentrations and isotopic ratios from environmental samples can be utilized together to determine a wealth of information including environmental transport mechanisms (e.g. aqueous versus arid transport) and information on the processes which generated the original material. Chapters1, 3 and 5 demonstrate these principles using Pu, Am, Np, and Cs concentrations and isotopic ratios from contaminated soils taken near the Subsurface Disposal Area (SDA) of Idaho National Laboratory (INL) (a low level radioactive waste disposal site in southeastern Idaho).

  17. Upper limits to the detection of ammonia from protoplanetary disks around HL Tauri and L1551-IRS 5

    NASA Technical Reports Server (NTRS)

    Gomez, Jose F.; Torrelles, Jose M.; Ho, Paul T. P.; Rodriguez, Luis F.; Canto, Jorge

    1993-01-01

    We present NH3(1, 1) and (2, 2) observations of the young stellar sources HL Tau and L1551-IRS 5 using the VLA in its B-configuration, which provides an angular resolution of about 0.4 arcsec (about 50 AU at 140 pc) at 1.3 cm wavelength. Our goal was to detect and resolve circumstellar molecular disks with radius of the order of 100 AU around these two sources. No ammonia emission was detected toward either of them. The 3-sigma levels were 2.7 mJy/beam and 3.9 mJy/beam for HL Tau and L1551-IRS 5, respectively, with a velocity resolution of about 5 km/s. With this nondetection, we estimate upper limits to the mass of the proposed protoplanetary molecular disks (within a radius of 10 AU from the central stars) on the order of 0.02/(X(NH3)/10 exp -8) solar mass for HL Tau and 0.1/(X(NH3)/10 exp -8) solar mass for L1551-IRS 5.

  18. 75 FR 13441 - Hours of Service; Limited 90-Day Waiver for the Distribution of Anhydrous Ammonia in Agricultural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Service; Limited 90-Day Waiver for the Distribution of Anhydrous Ammonia in Agricultural Operations AGENCY... anhydrous ammonia from any distribution point to a local farm retailer or to the ultimate consumer, and from... anhydrous ammonia during the 2010 spring planting season. The Agency has determined that the waiver would...

  19. Stand-off laser Raman spectroscopy and its advancement in explosives detection

    NASA Astrophysics Data System (ADS)

    Liu, Sheng-run; Xue, Bin; Li, Yi-zhe; Wang, Hui

    2017-10-01

    The explosives detection has been a hot and difficult issue in the field of security it is particularly important to detect explosives quickly and reliably. There are many methods to detect explosives currently, stand-off Raman spectroscopy is one of the most promising and practical technologies, this technique can be used for non-contact and nondestructive detection, ensure the safety of attendants, at the same time the precision and speed of detection are also very high and be characterized by rapid response. This paper mainly gives an account of the fundamental principle of Raman spectroscopy, as well as recount major challenges of Standoff Laser Raman Spectroscopy applied in explosives detection and corresponding solutions. From the perspective of the system, this paper sums up related theories and techniques of the excitation laser and telescopic system etc.. Ultimately, a brief analysis and summary of the development trend of this technology is given.

  20. sFIDA automation yields sub-femtomolar limit of detection for Aβ aggregates in body fluids.

    PubMed

    Herrmann, Yvonne; Kulawik, Andreas; Kühbach, Katja; Hülsemann, Maren; Peters, Luriano; Bujnicki, Tuyen; Kravchenko, Kateryna; Linnartz, Christina; Willbold, Johannes; Zafiu, Christian; Bannach, Oliver; Willbold, Dieter

    2017-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with yet non-existent therapeutic and limited diagnostic options. Reliable biomarker-based AD diagnostics are of utmost importance for the development and application of therapeutic substances. We have previously introduced a platform technology designated 'sFIDA' for the quantitation of amyloid β peptide (Aβ) aggregates as AD biomarker. In this study we implemented the sFIDA assay on an automated platform to enhance robustness and performance of the assay. In sFIDA (surface-based fluorescence intensity distribution analysis) Aβ species are immobilized by a capture antibody to a glass surface. Aβ aggregates are then multiply loaded with fluorescent antibodies and quantitated by high resolution fluorescence microscopy. As a model system for Aβ aggregates, we used Aβ-conjugated silica nanoparticles (Aβ-SiNaPs) diluted in PBS buffer and cerebrospinal fluid, respectively. Automation of the assay was realized on a liquid handling system in combination with a microplate washer. The automation of the sFIDA assay results in improved intra-assay precision, linearity and sensitivity in comparison to the manual application, and achieved a limit of detection in the sub-femtomolar range. Automation improves the precision and sensitivity of the sFIDA assay, which is a prerequisite for high-throughput measurements and future application of the technology in routine AD diagnostics. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy.

    PubMed

    Ramgopal, Sriram; Thome-Souza, Sigride; Jackson, Michele; Kadish, Navah Ester; Sánchez Fernández, Iván; Klehm, Jacquelyn; Bosl, William; Reinsberger, Claus; Schachter, Steven; Loddenkemper, Tobias

    2014-08-01

    Nearly one-third of patients with epilepsy continue to have seizures despite optimal medication management. Systems employed to detect seizures may have the potential to improve outcomes in these patients by allowing more tailored therapies and might, additionally, have a role in accident and SUDEP prevention. Automated seizure detection and prediction require algorithms which employ feature computation and subsequent classification. Over the last few decades, methods have been developed to detect seizures utilizing scalp and intracranial EEG, electrocardiography, accelerometry and motion sensors, electrodermal activity, and audio/video captures. To date, it is unclear which combination of detection technologies yields the best results, and approaches may ultimately need to be individualized. This review presents an overview of seizure detection and related prediction methods and discusses their potential uses in closed-loop warning systems in epilepsy. Copyright © 2014. Published by Elsevier Inc.

  2. The whispering gallery mode biosensor: label-free detection from virus to single protein

    NASA Astrophysics Data System (ADS)

    Holler, S.; Dantham, V. R.; Keng, D.; Kolchenko, V.; Arnold, S.; Mulroe, Brigid; Paspaley-Grbavac, M.

    2014-08-01

    The whispering gallery mode (WGM) biosensor is a micro-optical platform capable of sensitive label-free detection of biological particles. Described by the reactive sensing principle (RSP), this analytic formulation quantifies the response of the system to the adsorption of bioparticles. Guided by the RSP, the WGM biosensor enabling from detection of virus (e.g., Human Papillomavirus, HPV) to the ultimate goal of single protein detection. The latter was derived from insights into the RSP, which resulted in the development of a hybrid plasmonic WGM biosensor, which has recently demonstrated detection of individual protein cancer markers. Enhancements from bound gold nanoparticles provide the sensitivity to detect single protein molecules (66 kDa) with good signal-to-noise (S/N > 10), and project that detection of proteins as small as 5 kDa.

  3. Prospects and Limits of Energy Storage in Batteries.

    PubMed

    Abraham, K M

    2015-03-05

    Energy densities of Li ion batteries, limited by the capacities of cathode materials, must increase by a factor of 2 or more to give all-electric automobiles a 300 mile driving range on a single charge. Battery chemical couples with very low equivalent weights have to be sought to produce such batteries. Advanced Li ion batteries may not be able to meet this challenge in the near term. The state-of-the-art of Li ion batteries is discussed, and the challenges of developing ultrahigh energy density rechargeable batteries are identified. Examples of ultrahigh energy density battery chemical couples include Li/O2, Li/S, Li/metal halide, and Li/metal oxide systems. Future efforts are also expected to involve all-solid-state batteries with performance similar to their liquid electrolyte counterparts, biodegradable batteries to address environmental challenges, and low-cost long cycle-life batteries for large-scale energy storage. Ultimately, energy densities of electrochemical energy storage systems are limited by chemistry constraints.

  4. Towards a characterization of a motive whose ultimate goal is to increase the welfare of the world: Quixoteism.

    PubMed

    Salgado, Sergio; Oceja, Luis

    2011-05-01

    We use the term Quixoteism to refer to a new social motive. The characterization of this motive deals with two aspects: the definition of the ultimate goal (i.e., to increase the welfare of the world) and the proposal of a process that activates it (i.e., a transcendental-change orientation). Three studies were conducted to test this characterization. In Study 1 we developed an empirical measure of the transcendental-change orientation. The participants in Studies 2 and 3 were presented with a need situation. Results showed that the centrality of such an orientation was directly related to an interpretation consistent with the ultimate goal of Quixoteism (Study 2), and that its salience increases the likelihood of performing a high-cost prosocial behavior (Study 3).

  5. Refining historical limits method to improve disease cluster detection, New York City, New York, USA.

    PubMed

    Levin-Rector, Alison; Wilson, Elisha L; Fine, Annie D; Greene, Sharon K

    2015-02-01

    Since the early 2000s, the Bureau of Communicable Disease of the New York City Department of Health and Mental Hygiene has analyzed reportable infectious disease data weekly by using the historical limits method to detect unusual clusters that could represent outbreaks. This method typically produced too many signals for each to be investigated with available resources while possibly failing to signal during true disease outbreaks. We made method refinements that improved the consistency of case inclusion criteria and accounted for data lags and trends and aberrations in historical data. During a 12-week period in 2013, we prospectively assessed these refinements using actual surveillance data. The refined method yielded 74 signals, a 45% decrease from what the original method would have produced. Fewer and less biased signals included a true citywide increase in legionellosis and a localized campylobacteriosis cluster subsequently linked to live-poultry markets. Future evaluations using simulated data could complement this descriptive assessment.

  6. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Vasily; Hall, Gregory

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  7. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE PAGES

    Goncharov, Vasily; Hall, Gregory

    2016-08-25

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  8. Polarization-resolved sensing with tilted fiber Bragg gratings: theory and limits of detection

    NASA Astrophysics Data System (ADS)

    Bialiayeu, Aliaksandr; Ianoul, Anatoli; Albert, Jacques

    2015-08-01

    Polarization based sensing with tilted fiber Bragg grating (TFBG) sensors is analysed theoretically by two alternative approaches. The first method is based on tracking the grating transmission for two orthogonal states of linear polarized light that are extracted from the measured Jones matrix or Stokes vectors of the TFBG transmission spectra. The second method is based on the measurements along the system principle axes and polarization dependent loss (PDL) parameter, also calculated from measured data. It is shown that the frequent crossing of the Jones matrix eigenvalues as a function of wavelength leads to a non-physical interchange of the calculated principal axes; a method to remove this unwanted mathematical artefact and to restore the order of the system eigenvalues and the corresponding principal axes is provided. A comparison of the two approaches reveals that the PDL method provides a smaller standard deviation and therefore lower limit of detection in refractometric sensing. Furthermore, the polarization analysis of the measured spectra allows for the identification of the principal states of polarization of the sensor system and consequentially for the calculation of the transmission spectrum for any incident polarization state. The stability of the orientation of the system principal axes is also investigated as a function of wavelength.

  9. Influence of the Kingak Shale ultimate shelf margin on frontal structures of the Brooks Range in the National Petroleum Reserve in Alaska

    USGS Publications Warehouse

    Stier, Natalie E.; Connors, Christopher D.; Houseknecht, David W.

    2014-01-01

    The Jurassic–Lower Cretaceous Kingak Shale in the National Petroleum Reserve in Alaska (NPRA) includes several southward-offlapping depositional sequences that culminate in an ultimate shelf margin, which preserves the depositional profile in southern NPRA. The Kingak Shale thins abruptly southward across the ultimate shelf margin and grades into condensed shale, which is intercalated with underlying condensed shale and chert of the Upper Triassic Shublik Formation and overlying condensed shale of the Lower Cretaceous pebble shale unit and the gamma-ray zone (GRZ) of the Hue Shale. This composite of condensed shale forms a thin (≈300-meter) and mechanically weak section between much thicker and mechanically stronger units, including the Sadlerochit and Lisburne Groups below and the sandstone-prone foredeep wedge of the Torok Formation above. Seismic interpretation indicates that the composite condensed section acted as the major detachment during an Early Tertiary phase of deformation in the northern foothills of the Brooks Range and that thrust faults step up northward to the top of the Kingak, or to other surfaces within the Kingak or the overlying Torok. The main structural style is imbricate fault-bend folding, although fault-propagation folding is evident locally, and large-displacement thrust faults incorporate backthrusting to form structural wedges. The Kingak ultimate shelf margin served as a ramp to localize several thrust faults, and the spatial relationship between the ultimate shelf margin and thrust vergence is inferred to have controlled many structures in southern NPRA. For example, the obliqueness of the Carbon Creek anticline relative to other structures in the foothills is the result of northward-verging thrust faults impinging obliquely on the Kingak ultimate shelf margin in southwestern NPRA.

  10. Homeland Security and Contraband Detection

    NASA Astrophysics Data System (ADS)

    Lanza, R. C.

    Detection of contraband and illicit materials has become increasingly important, especially since the terrorist attacks in the United States on September 11, 2001. The nature of the detection problem embodies both physics issues and a set of operational constraints that limit the practical application of neutrons. The issue under consideration is detection of materials that are considered serious threats; these may include explosives; radioactive materials, fissile materials, and other materials associated with nuclear weapons, often referred to as special nuclear material (SNM). The overriding constraint is in the physics: systems must be based on clean physics; but unlike physics experiments, detection systems work under the limitation that materials must be identified nonintrusively, without interrupting the normal flow of commerce and with a high probability of detection and a low probability of false alarms. A great deal of work has been reported in the literature on neutron-based techniques for detecting explosives and drugs. The largest impetus by far for detecting explosives comes from aviation industry requirements for inspecting luggage and, to a lesser extent, cargo. The major alternative techniques are either X-ray-based or chemical trace detection methods that look for small traces of explosive residues. The limitations of the X-ray and trace methods in detecting explosives are well known, but currently (2008) it is safe to say that no neutron- or nuclear-based technique is being used routinely for security inspection, despite extensive development of these methods. Smuggling of nuclear materials has become a concern, and neutron techniques are particularly attractive for detecting them. Given the limitations of X-ray techniques and the need for SNM detection, it is now useful to reexamine neutron methodologies, particularly imaging. A significant number of neutron-based techniques have been proposed and are under development for security applications

  11. Is ``the Theory of Everything'' Merely the Ultimate Ensemble Theory?

    NASA Astrophysics Data System (ADS)

    Tegmark, Max

    1998-11-01

    We discuss some physical consequences of what might be called "the ultimate ensemble theory,", where not only worlds corresponding to say different sets of initial data or different physical constants are considered equally real, but also worlds ruled by altogether different equations. The only postulate in this theory is that all structures that exist mathematically exist also physically, by which we mean that in those complex enough to contain self-aware substructures (SASs), these SASs will subjectively perceive themselves as existing in a physically "real" world. We find that it is far from clear that this simple theory, which has no free parameters whatsoever, is observationally ruled out. The predictions of the theory take the form of probability distributions for the outcome of experiments, which makes it testable. In addition, it may be possible to rule it out by comparing its a priori predictions for the observable attributes of nature (the particle masses, the dimensionality of spacetime, etc.) with what is observed.

  12. On Approaching the Ultimate Limits of Communication Using a Photon-Counting Detector

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Moision, Bruce E.; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush

    2012-01-01

    Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement scheme is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We analyze two binary modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with the state-of-the-art coherent-state on-off keying modulation. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.

  13. Simulating and Detecting Radiation-Induced Errors for Onboard Machine Learning

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Bornstein, Benjamin; Granat, Robert; Tang, Benyang; Turmon, Michael

    2009-01-01

    Spacecraft processors and memory are subjected to high radiation doses and therefore employ radiation-hardened components. However, these components are orders of magnitude more expensive than typical desktop components, and they lag years behind in terms of speed and size. We have integrated algorithm-based fault tolerance (ABFT) methods into onboard data analysis algorithms to detect radiation-induced errors, which ultimately may permit the use of spacecraft memory that need not be fully hardened, reducing cost and increasing capability at the same time. We have also developed a lightweight software radiation simulator, BITFLIPS, that permits evaluation of error detection strategies in a controlled fashion, including the specification of the radiation rate and selective exposure of individual data structures. Using BITFLIPS, we evaluated our error detection methods when using a support vector machine to analyze data collected by the Mars Odyssey spacecraft. We found ABFT error detection for matrix multiplication is very successful, while error detection for Gaussian kernel computation still has room for improvement.

  14. Suicide bomber detection

    NASA Astrophysics Data System (ADS)

    Alexander, Naomi; Callejero, Carlos; Fiore, Franco; Gómez, Ignacio; Gonzalo, Ramón; Enríquez de Luna, Álvaro; Ederra, Iñigo; Palacios, Inés

    2009-05-01

    The chance of suicide bomber attacks against troops in the Theatre of Operations is currently quite high. Most of the time checkpoints and compound gates are not equipped with the appropriate equipment to screen for potential suicide bombers. The ultimate solution would be to be able to perform stand-off screening under various weather conditions whilst avoiding contact between Force Protection personnel and potential suicide bombers. Radiation in the millimeterwave and the lower Terahertz range, having the useful property of being able to penetrate clothing in addition to fog and rain, makes it a clear candidate for imaging in this situation. A study has been made simulating real case scenarios to test practical detection performance and stand-off distances at a range of frequencies in this band, the results of which will be presented.

  15. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of 86 volatile organic compounds in water by gas chromatography/mass spectrometry, including detections less than reporting limits

    USGS Publications Warehouse

    Connor, Brooke F.; Rose, Donna L.; Noriega, Mary C.; Murtaugh, Lucinda K.; Abney, Sonja R.

    1998-01-01

    This report presents precision and accuracy data for volatile organic compounds (VOCs) in the nanogram-per-liter range, including aromatic hydrocarbons, reformulated fuel components, and halogenated hydrocarbons using purge and trap capillary-column gas chromatography/mass spectrometry. One-hundred-four VOCs were initially tested. Of these, 86 are suitable for determination by this method. Selected data are provided for the 18 VOCs that were not included. This method also allows for the reporting of semiquantitative results for tentatively identified VOCs not included in the list of method compounds. Method detection limits, method performance data, preservation study results, and blank results are presented. The authors describe a procedure for reporting low-concentration detections at less than the reporting limit. The nondetection value (NDV) is introduced as a statistically defined reporting limit designed to limit false positives and false negatives to less than 1 percent. Nondetections of method compounds are reported as ?less than NDV.? Positive detections measured at less than NDV are reported as estimated concentrations to alert the data user to decreased confidence in accurate quantitation. Instructions are provided for analysts to report data at less than the reporting limits. This method can support the use of either method reporting limits that censor detections at lower concentrations or the use of NDVs as reporting limits. The data-reporting strategy for providing analytical results at less than the reporting limit is a result of the increased need to identify the presence or absence of environmental contaminants in water samples at increasingly lower concentrations. Long-term method detection limits (LTMDLs) for 86 selected compounds range from 0.013 to 2.452 micrograms per liter (?g/L) and differ from standard method detection limits (MDLs) in that the LTMDLs include the long-term variance of multiple instruments, multiple operators, and multiple

  16. Electrochemical and Infrared Absorption Spectroscopy Detection of SF₆ Decomposition Products.

    PubMed

    Dong, Ming; Zhang, Chongxing; Ren, Ming; Albarracín, Ricardo; Ye, Rixin

    2017-11-15

    Sulfur hexafluoride (SF₆) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF₆ decomposition and ultimately generates several types of decomposition products. These SF₆ decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF₆ decomposition products, and electrochemical sensing (ES) and infrared (IR) spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF₆ gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF₆ decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF₆ gas decomposition and is verified to reliably and accurately detect the gas components and concentrations.

  17. Exploring the Thermal Limits of IR-Based Automatic Whale Detection (ETAW)

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Exploring the thermal limits of IR-based automatic whale ...marine mammals are entering a predefined exclusion zone. Marine mammal observers usually scan the ship’s environs for whales using binoculars or the...Hence, in combination with the whales ’ prolonged dives, sighting opportunities are rare, which, in addition to the limited field of view and finite

  18. Novel genomic tools for specific and real-time detection of biothreat and frequently encountered foodborne pathogens.

    PubMed

    Woubit, Abdela; Yehualaeshet, Teshome; Habtemariam, Tsegaye; Samuel, Temesgen

    2012-04-01

    The bacterial genera Escherichia, Salmonella, Shigella, Vibrio, Yersinia, and Francisella include important food safety and biothreat agents. By extensive mining of the whole genome and protein databases of diverse, closely and distantly related bacterial species and strains, we have identified novel genome regions, which we utilized to develop a rapid detection platform for these pathogens. The specific genomic targets we have identified to design the primers in Francisella tularensis subsp. tularensis, F. tularensis subsp. novicida, Shigella dysenteriae, Salmonella enterica serovar Typhimurium, Vibrio cholerae, Yersinia pestis, and Yersinia pseudotuberculosis contained either known genes or putative proteins. Primer sets were designed from the target regions for use in real-time PCR assays to detect specific biothreat pathogens at species or strain levels. The primer sets were first tested by in silico PCR against whole-genome sequences of different species, subspecies, or strains and then by in vitro PCR against genomic DNA preparations from 23 strains representing six biothreat agents (Escherichia coli O157:H7 strain EDL 933, Shigella dysenteriae, S. enterica serovar Typhi, F. tularensis subsp. tularensis, V. cholerae, and Y. pestis) and six foodborne pathogens (Salmonella Typhimurium, Salmonella Saintpaul, Shigella sonnei, F. tularensis subsp. novicida, Vibrio parahaemolyticus, and Y. pseudotuberculosis). Each pathogen was specifically identifiable at the genus and species levels. Sensitivity assays performed with purified DNA showed the lowest detection limit of 128 fg of DNA/μl for F. tularensis subsp. tularensis. A preliminary test to detect Shigella organisms in a milk matrix also enabled the detection of 6 to 60 CFU/ml. These new tools could ultimately be used to develop platforms to simultaneously detect these pathogens.

  19. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Zahra; Abbott, Benjamin W.; Troccaz, Olivier; Baudry, Jacques; Pinay, Gilles

    2016-03-01

    Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43-) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent

  20. Family Size Preferences in Europe and USA: Ultimate Expected Number of Children. Comparative Studies Number 26: ECE Analyses of Surveys in Europe and USA.

    ERIC Educational Resources Information Center

    Berent, Jerzy

    This survey analysis compares fertility levels in the United States and European countries, discusses socioeconomic influences in ultimate expected family size, and examines birth rate trends. The average number of ultimately expected children varies from 2.13 children per woman in Bulgaria to 2.80 in Spain. Eighty to 90 percent of U.S. and…