Sample records for ultimate load capacity

  1. Dynamic load testing on the bearing capacity of prestressed tubular concrete piles in soft ground

    NASA Astrophysics Data System (ADS)

    Yu, Chuang; Liu, Songyu

    2008-11-01

    Dynamic load testing (DLT) is a high strain test method for assessing pile performance. The shaft capacity of a driven PTC (prestressed tubular concrete) pile in marine soft ground will vary with time after installation. The DLT method has been successfully transferred to the testing of prestressed pipe piles in marine soft clay of Lianyungang area in China. DLT is investigated to determine the ultimate bearing capacity of single pile at different period after pile installation. The ultimate bearing capacity of single pile was founded to increase more than 70% during the inventing 3 months, which demonstrate the time effect of rigid pile bearing capacity in marine soft ground. Furthermore, the skin friction and axial force along the pile shaft are presented as well, which present the load transfer mechanism of pipe pile in soft clay. It shows the economy and efficiency of DLT method compared to static load testing method.

  2. Study on Predicting Axial Load Capacity of CFST Columns

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, H.; Muthu, K. U.; Kumar, N. S.

    2017-11-01

    This work presents an analytical study and experimental study on the behaviour and ultimate load carrying capacity of axially compressed self-compacting concrete-filled steel tubular columns. Results of tests conducted by various researchers on 213 samples concrete-filled steel tubular columns are reported and present authors experimental data are reported. Two theoretical equations were derived for the prediction of the ultimate axial load strength of concrete-filled steel tubular columns. The results from prediction were compared with the experimental data. Validation to the experimental results was made.

  3. Mechanical and deformation analyses of pile foundation for supporting structure of off-shore wind turbine at Changhua coast in Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, W. C.; Lin, D. G.

    2015-12-01

    This study investigates the bearing capacities and mechanical behaviors of pile foundation installed on the seabed of wind farm near Chang-Hua coast of western Taiwan for the supporting structure of offshore wind turbine. A series of three-dimensional (3-D) numerical modeling of pile foundation subjected to various types of combined loading were carried out using Plaix-3D finite element program to investigate the interactive behaviors between soil and pile. In the numerical modeling, pile diameter, pile length and pile spacing were selected as design parameters to inspect their effects on the bearing capacities and deformation behaviors of the pile foundation. For a specific design parameter combination, one can obtain the corresponding loading-displacement curve, various ultimate bearing capacities, V-H (Vertical-Horizontal combined loading) ultimate bearing capacity envelope, and p-ycurve of pile foundation. Numerical results indicate that: (1) Large displacement and plastic points at ultimate state mostly distribute and concentrate in the topsoil of seabed and around pile head. (2) The soil resistance on the soil-pile interface is ascending with the increases of depth, pile diameter and pile length. (3) The vertical and horizontal bearing capacities of pile group increase significantly with the increase of pile diameter. (4) The vertical and bending moment capacities of pile group increase greatly with the increase of pile length whereas the horizontal capacity is almost insensitive to pile length. (5) The bending moment of pile is highly influenced by the pile spacing. (6) For different design parameters, the shape of ultimate bearing capacity envelopes of pile group on V-H plane is similar while the envelopes will expand as the design parameters increase. For different loading levels of bending moment, the envelopes on V-H plane will contract gradually as the bending moment loading increasing.

  4. Discussion of the Method to Determine the Ultimate Bearing Capacity of Soil Foundation

    NASA Astrophysics Data System (ADS)

    Du, Peng; Liu, Xiaoling; Zhang, Yangfu

    2017-12-01

    Combining literature examples, this paper has carried out Contrastive analysis of the theoretical formula method and finite element method about the ultimate bearing capacity of foundation, To verify rationality and superiority of the incremental load method in finite element ABAQUS in solving the bearing capacity of foundation soil. The study can provide certain reference for practical engineering calculation and analysis of foundation bearing capacity.

  5. PLAN2D - A PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF PLANAR FRAMES

    NASA Technical Reports Server (NTRS)

    Lawrence, C.

    1994-01-01

    PLAN2D is a FORTRAN computer program for the plastic analysis of planar rigid frame structures. Given a structure and loading pattern as input, PLAN2D calculates the ultimate load that the structure can sustain before collapse. Element moments and plastic hinge rotations are calculated for the ultimate load. The location of hinges required for a collapse mechanism to form are also determined. The program proceeds in an iterative series of linear elastic analyses. After each iteration the resulting elastic moments in each member are compared to the reserve plastic moment capacity of that member. The member or members that have moments closest to their reserve capacity will determine the minimum load factor and the site where the next hinge is to be inserted. Next, hinges are inserted and the structural stiffness matrix is reformulated. This cycle is repeated until the structure becomes unstable. At this point the ultimate collapse load is calculated by accumulating the minimum load factor from each previous iteration and multiplying them by the original input loads. PLAN2D is based on the program STAN, originally written by Dr. E.L. Wilson at U.C. Berkeley. PLAN2D has several limitations: 1) Although PLAN2D will detect unloading of hinges it does not contain the capability to remove hinges; 2) PLAN2D does not allow the user to input different positive and negative moment capacities and 3) PLAN2D does not consider the interaction between axial and plastic moment capacity. Axial yielding and buckling is ignored as is the reduction in moment capacity due to axial load. PLAN2D is written in FORTRAN and is machine independent. It has been tested on an IBM PC and a DEC MicroVAX. The program was developed in 1988.

  6. Kansas Department of Transportation column expert : ultimate shear capacity of circular columns using the simplified modified compression field theory.

    DOT National Transportation Integrated Search

    2015-09-01

    The importance of the analysis of circular columns to accurately predict their ultimate confined : capacity under shear-flexure-axial force interaction domain is recognized in light of the extreme load event : imposed by the current American Associat...

  7. Ultimate Strength of Ferro-Geopolymer Composite Built-Up I Joist

    NASA Astrophysics Data System (ADS)

    Vipin, K. T.; Ganesan, N.; Indira, P. V.

    2017-07-01

    An experimental study was carried out to study the behaviour of ferro-geopolymer built-up I- joist with different types of mesh reinforcements under flexure. Mesh reinforcements considered in this study are square welded meshes, square woven meshes and hexagonal meshes. First crack load as well as ultimate strength of ferro-geopolymer built-up I-joist in flexure was obtained. An attempt was made to predict the first crack load and ultimate moment capacity of the specimen.

  8. Ultimate Load Behaviour of Reinforced Concrete Beam with Corroded Reinforcement

    NASA Astrophysics Data System (ADS)

    Kanchana Devi, A.; Ramajaneyulu, K.; Sundarkumar, S.; Ramesh, G.; Bharat Kumar, B. H.; Krishna Moorthy, T. S.

    2017-12-01

    Corrosion of reinforcement reduces the load carrying capacity, energy dissipation and ductility of Reinforced Concrete (RC) members. In the present study, reinforcements of RC beam are subjected to 10, 25, and 30% corrosion and the respective RC beams are tested to evaluate their ultimate load behaviour. A huge drop in energy dissipation capacity of the RC beam is observed beyond the corrosion level of 10%. Further, nonlinear finite element analysis is employed to assess the load-displacement behaviour and ultimate load of RC beam. The corrosion induced damage to the reinforcement is represented in the finite element model by modifying its mechanical properties based on the results reported in the literature. The resultant load versus displacement curves of reinforced concrete beams are obtained. Good correlation is observed between the finite element analysis results and that obtained from experimental investigation on the control beam. The experimental results are also compared with the finite element analysis results for RC beams with corroded reinforcement. In order to understand the effect of corrosion on the mechanical properties of reinforcement, the corroded reinforcements are modelled in nonlinear finite element analysis by (i) reducing the area of reinforcement alone (ii) by reducing both area and mechanical properties and (iii) reducing the mechanical properties without reducing the area of steel as reported in literature. The results obtained for the beam with corroded reinforcement confirms reduction in yield stress and ultimate stress of the reinforcement steel.

  9. Damage Tolerance of Sandwich Plates with Debonded Face Sheets

    NASA Technical Reports Server (NTRS)

    Avery, John L., III; Sankar, Bhavani V.

    1998-01-01

    Axial compression tests were performed on debonded sandwich composites made of graphite/epoxy face-sheets and aramid fiber honeycomb core. The sandwich beams were manufactured using a vacuum baccrin2 process. The face-sheet and the sandwich beam were co-cured. Delamination between one of the face sheets and the core was introduced by using a Teflon layer during the curing process. Axial compression tests were performed to determine the ultimate load carrying capacity of the debonded beams. Flatwise tension tests and Double Cantilever Beam tests were performed to determine. respectively, the strength and fracture toughness of the face-sheet/core interface. From the test results semi-empirical formulas were derived for the fracture toughness and ultimate compressive load carrying capacity in terms of the core density. core thickness. face-sheet thickness and debond length. Four different failure modes and their relation to the structural properties were identified. Linear buckling analysis was found to be inadequate in predicting the compressive load carrying capacity of the debonded sandwich composites.

  10. Evaluation of bearing capacity of piles from cone penetration test data.

    DOT National Transportation Integrated Search

    1999-11-01

    This study presents an evaluation of the performance of eight cone penetration test (CPT) methods in predicting the ultimate load carrying capacity of square precast prestressed concrete (PPC) piles driven into Louisiana soils. A search in the DOTD f...

  11. Assessment of the transportation route of oversize and excessive loads in relation to the load-bearing capacity of existing bridges

    NASA Astrophysics Data System (ADS)

    Doležel, Jiří; Novák, Drahomír; Petrů, Jan

    2017-09-01

    Transportation routes of oversize and excessive loads are currently planned in relation to ensure the transit of a vehicle through critical points on the road. Critical points are level-intersection of roads, bridges etc. This article presents a comprehensive procedure to determine a reliability and a load-bearing capacity level of the existing bridges on highways and roads using the advanced methods of reliability analysis based on simulation techniques of Monte Carlo type in combination with nonlinear finite element method analysis. The safety index is considered as a main criterion of the reliability level of the existing construction structures and the index is described in current structural design standards, e.g. ISO and Eurocode. An example of a single-span slab bridge made of precast prestressed concrete girders of the 60 year current time and its load bearing capacity is set for the ultimate limit state and serviceability limit state. The structure’s design load capacity was estimated by the full probability nonlinear MKP analysis using a simulation technique Latin Hypercube Sampling (LHS). Load-bearing capacity values based on a fully probabilistic analysis are compared with the load-bearing capacity levels which were estimated by deterministic methods of a critical section of the most loaded girders.

  12. Interface bonding of shotcrete reinforced brick masonry assemblages, volume 1

    NASA Astrophysics Data System (ADS)

    Robinson, D. W.; Kahn, L. F.

    1982-09-01

    Nine 9 sq ft. shotcrete reinforced brick masonry assemblages and one 9 sq ft brick masonry control specimen were tested under a single reversed cycle diagonal compression load similar to the ASTM E519-74 testing procedures. The interface surface conditions, between the brick and shotcrete were varied. The surfaces of the single sythe of old brick were either dry, wet, or epoxy coated before application of the 3-inch reinforced shotcrete layer. Ultimate load capacities of the specimens were similar, however, specimens with epoxy-enhanced interfaces were the most ductile; the dry brick specimens showed interface bond failure immediately after the ultimate inplane load was attained.

  13. Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.

    PubMed

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N.

  14. Experimental and finite element study of ultimate strength of continuous composite concrete slabs with steel decking

    NASA Astrophysics Data System (ADS)

    Gholamhoseini, Alireza

    2018-03-01

    Composite one-way concrete slabs with profiled steel decking as permanent formwork are commonly used in the construction industry. The steel decking supports the wet concrete of a cast in situ reinforced or post-tensioned concrete slab and, after the concrete sets, acts as external reinforcement. In this type of slab, longitudinal shear failure between the concrete and the steel decking is the most common type of failure at the ultimate load stage. Design codes require the experimental evaluation of the ultimate load capacity and longitudinal shear strength of each type of steel decking using full-scale tests on simple-span slabs. There is also no procedure in current design codes to evaluate the ultimate load capacity and longitudinal shear strength of continuous composite slabs and this is often assessed experimentally by full-scale tests. This paper presents the results of three full-scale tests up to failure on continuous composite concrete slabs cast with trapezoidal steel decking profile (KF70) that is widely used in Australia. Slab specimens were tested in four-point bending at each span with shear spans of span/4. The longitudinal shear failure of each slab is evaluated and the measured mid-span deflection, the end slip and the mid-span steel and concrete strains are also presented and discussed. Redistribution of bending moment in each slab is presented and discussed. A finite element model is proposed and verified by experimental data using interface element to model the bond properties between steel decking and concrete slab and investigate the ultimate strength of continuous composite concrete slabs.

  15. Installation and use of epoxy-grouted rock anchors for skyline logging in southeast Alaska.

    Treesearch

    W.L. Schroeder; D.N. Swanston

    1992-01-01

    Field tests of the load-carrying capacity of epoxy-grouted rock anchors in poor quality bedrock on Wrangel Island in southeast Alaska demonstrated the effectiveness of rock anchors as substitutes for stump anchors for logging system guylines. Ultimate capacity depends mainly on rock hardness or strength and length of the imbedded anchor.

  16. A unified approach for determining the ultimate strength of RC members subjected to combined axial force, bending, shear and torsion

    PubMed Central

    Huang, Zhen

    2017-01-01

    This paper uses experimental investigation and theoretical derivation to study the unified failure mechanism and ultimate capacity model of reinforced concrete (RC) members under combined axial, bending, shear and torsion loading. Fifteen RC members are tested under different combinations of compressive axial force, bending, shear and torsion using experimental equipment designed by the authors. The failure mechanism and ultimate strength data for the four groups of tested RC members under different combined loading conditions are investigated and discussed in detail. The experimental research seeks to determine how the ultimate strength of RC members changes with changing combined loads. According to the experimental research, a unified theoretical model is established by determining the shape of the warped failure surface, assuming an appropriate stress distribution on the failure surface, and considering the equilibrium conditions. This unified failure model can be reasonably and systematically changed into well-known failure theories of concrete members under single or combined loading. The unified calculation model could be easily used in design applications with some assumptions and simplifications. Finally, the accuracy of this theoretical unified model is verified by comparisons with experimental results. PMID:28414777

  17. Age- and sex-related regional compressive strength characteristics of human lumbar vertebrae in osteoporosis

    PubMed Central

    Kurutz, Márta; Donáth, Judit; Gálos, Miklós; Varga, Péter; Fornet, Béla

    2008-01-01

    Objective To obtain the compressive load bearing and energy absorption capacity of lumbar vertebrae of osteoporotic elderly for the everyday medical praxis in terms of the simple diagnostic data, like computed tomography (CT), densitometry, age, and sex. Methods Compressive test of 54 osteoporotic cadaver vertebrae L1 and L2, 16 males and 38 females (age range 43–93, mean age 71.6 ± 13.3 years, mean bone mineral density (BMD) 0.377 ± 0.089 g/cm2, mean T-score −5.57 ± 0.79, Z-score −4.05 ± 0.77) was investigated. Based on the load-displacement diagrams and the measured geometrical parameters of vertebral bodies, proportional, ultimate and yield stresses and strains, Young’s modulus, ductility and energy absorption capacity were determined. Three vertebral regions were distinguished: superior, central and inferior regions, but certain parameters were calculated for the upper/ lower intermediate layers, as well. Cross-sectional areas, and certain bone tissue parameters were determined by image analysis of CT pictures of vertebrae. Sex- and age-related decline functions and trends of strength characteristics were determined. Results Size-corrected failure load was 15%–25% smaller in women, proportional and ultimate stresses were about 30%–35% smaller for women in any region, and 20%–25% higher in central regions for both sexes. Young’s moduli were about 30% smaller in women in any region, and 20%–25% smaller in the central region for both sexes. Small strains were higher in males, large strains were higher in females, namely, proportional strains were about 25% larger in men, yield and ultimate strains were quasi equal for sexes, break strains were 10% higher in women. Ultimate energy absorption capacity was 10%–20% higher in men; the final ductile energy absorption capacity was quasi equal for sexes in all levels. Age-dependence was stronger for men, mainly in central regions (ultimate load, male: r = −0.66, p < 0.01, female: r = −0.52, p < 0.005; ultimate stress, male: r = −0.69, p < 0.01, female: r = −0.50, p < 0.005; Young’s modulus, male: r = −0.55, p < 0.05, female: r = −0.52, p < 0.005, ultimate stiffness, male: r = −0.58, p < 0.05, female: r = −0.35, p < 0.03, central ultimate absorbed energy density, male: r = −0.59, p < 0.015, female: r = −0.29, p < 0.08). Conclusions For the strongly osteoporotic population (BMD < 0.4 g/cm2, T-score < −4) the statical variables (loads, stresses) showed significant correlation; mixed variables (stiffness, Young’s modulus, energy) showed moderate correlation; kinematical variables (displacements, strains) showed no correlation with age. The strong correlation of men between BMD and aging (r = −0.82, p < 0.001) and betwen BMD and strength parameters (r = 0.8–0.9, p < 0.001) indicated linear trends in age-related strength loss for men; however, the moderate correlation of women between BMD and aging (r = −0.47, p < 0.005) and between BMD and strength parameters (r = 0.4–0.5, p < 0.005) suggested the need of nonlinear (quadratic) approximation that provided the better fit in age-related strength functions of females modelling postmenopausal disproportionalities. PMID:21197342

  18. Experimental Tests on the Composite Foam Sandwich Pipes Subjected to Axial Load

    NASA Astrophysics Data System (ADS)

    Li, Feng; Zhao, QiLin; Xu, Kang; Zhang, DongDong

    2015-12-01

    Compared to the composite thin-walled tube, the composite foam sandwich pipe has better local flexural rigidity, which can take full advantage of the high strength of composite materials. In this paper, a series of composite foam sandwich pipes with different parameters were designed and manufactured using the prefabricated polyurethane foam core-skin co-curing molding technique with E-glass fabric prepreg. The corresponding axial-load compressive tests were conducted to investigate the influence factors that experimentally determine the axial compressive performances of the tubes. In the tests, the detailed failure process and the corresponding load-displacement characteristics were obtained; the influence rules of the foam core density, surface layer thickness, fiber ply combination and end restraint on the failure modes and ultimate bearing capacity were studied. Results indicated that: (1) the fiber ply combination, surface layer thickness and end restraint have a great influence on the ultimate load bearing capacity; (2) a reasonable fiber ply combination and reliable interfacial adhesion not only optimize the strength but also transform the failure mode from brittle failure to ductile failure, which is vital to the fully utilization of the composite strength of these composite foam sandwich pipes.

  19. An Experimental Investigation on the Ultimate Strength of Partially Infilled: Braced Steel Frames

    NASA Astrophysics Data System (ADS)

    Dubey, Shailendra Kumar Damodar; Kute, Sunil Y.

    2017-12-01

    Infilled walls are usually, considered as non-structural elements. However, these walls are effective in carrying lateral loads. In this regard, an experimental investigation was planned and conducted to study the effect of braced and partially infilled steel frames with cement mortar and concrete in comparison to the bare frames. All these frames were tested up to collapse and subjected only to horizontal loads to obtain an effective and possible solution for soft storey which are generally not infilled. In comparison to bare steel frames, partially infilled frames have an increase of lateral load capacity by 45-60%. Central bracing is more effective than that of the corner bracing. For the same load partially infilled frames have significantly less deflection than that of the bare frames. A reduced load factor is suggested for the design of soft storey columns with the partial infills. A mathematical model has been proposed to calculate the theoretical ultimate load for the braced, cement mortar and concrete partial infilled frames.

  20. Experimental Study of Axially Tension Cold Formed Steel Channel Members

    NASA Astrophysics Data System (ADS)

    Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia

    2017-12-01

    Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971-2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the minimum melting point value of 550 MPa required for standard mild steel materials in accordance with the code SNI 03-7971-2013 about Cold formed steel.

  1. Experimental Study of Axially Tension Cold Formed Steel Channel Members

    NASA Astrophysics Data System (ADS)

    Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia

    2017-12-01

    Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971- 2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the minimum melting point value of 550 MPa required for standard mild steel materials in accordance with the code SNI 03- 7971-2013 about Cold formed steel.

  2. Cognitive Spare Capacity as an Index of Listening Effort.

    PubMed

    Rudner, Mary

    2016-01-01

    Everyday listening may be experienced as effortful, especially by individuals with hearing loss. This may be due to internal factors, such as cognitive load, and external factors, such as noise. Even when speech is audible, internal and external factors may combine to reduce cognitive spare capacity, or the ability to engage in cognitive processing of spoken information. A better understanding of cognitive spare capacity and how it can be optimally allocated may guide new approaches to rehabilitation and ultimately improve outcomes. This article presents results of three tests of cognitive spare capacity:1. Sentence-final Word Identification and Recall (SWIR) test2. Cognitive Spare Capacity Test (CSCT)3. Auditory Inference Span Test (AIST)Results show that noise reduces cognitive spare capacity even when speech intelligibility is retained. In addition, SWIR results show that hearing aid signal processing can increase cognitive spare capacity, and CSCT and AIST results show that increasing load reduces cognitive spare capacity. Correlational evidence suggests that while the effect of noise on cognitive spare capacity is related to working memory capacity, the effect of load is related to executive function. Future studies should continue to investigate how hearing aid signal processing can mitigate the effect of load on cognitive spare capacity, and whether such effects can be enhanced by developing executive skills through training. The mechanisms modulating cognitive spare capacity should be investigated by studying their neural correlates, and tests of cognitive spare capacity should be developed for clinical use in conjunction with developing new approaches to rehabilitation.

  3. Ultimate force and stiffness of 2-piece zirconium dioxide implants with screw-retained monolithic lithium-disilicate reconstructions.

    PubMed

    Joda, Tim; Voumard, Benjamin; Zysset, Philippe K; Brägger, Urs; Ferrari, Marco

    2018-04-01

    The aims were to analyze stiffness, ultimate force, and failure modes of a 2-piece zirconium dioxide (ZrO 2 ) implant system. Eleven 2-piece ZrO 2 implants, each mounted with ZrO 2 abutments plus bonded monolithic lithium disilicate (LS 2 ) restorations, were grouped for 3.3mm (A) and 4.1mm (B) diameter samples. Quasi-static load was monotonically applied under a standardized test set-up (loading configuration according to DIN ISO 14801). The ultimate force was defined as the maximum force that implants are able to carry out until fracture; stiffness was measured as the maximum slope during loading. An unpaired t-test was performed between group A and B for ultimate force and stiffness (p<0.05). Force-displacement curves revealed statistically homogenous inner-group results for all samples. Failure modes showed characteristic fractures at the neck configuration of the implants independent of the diameter. Mean stiffness was 1099N/mm (±192) for group A, and significantly lower compared to group B with 1630N/mm (±274) (p<0.01); whereas mean ultimate force was 348N (±53) for group A, and significantly increased for group B with 684N (±29) (p<0.0001). The examined 2-piece ZrO 2 implant system mounted to LS 2 -restorations seems to be a stable unit under in-vitro conditions with mechanical properties compared to loading capacity of physiological force. The metal-free implant reconstructions demonstrated high stiffness and ultimate force under quasi-static load for single tooth replacement under consideration of the dental indication of narrow and standard diameter implants. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. Quantitative evolutionary design

    PubMed Central

    Diamond, Jared

    2002-01-01

    The field of quantitative evolutionary design uses evolutionary reasoning (in terms of natural selection and ultimate causation) to understand the magnitudes of biological reserve capacities, i.e. excesses of capacities over natural loads. Ratios of capacities to loads, defined as safety factors, fall in the range 1.2-10 for most engineered and biological components, even though engineered safety factors are specified intentionally by humans while biological safety factors arise through natural selection. Familiar examples of engineered safety factors include those of buildings, bridges and elevators (lifts), while biological examples include factors of bones and other structural elements, of enzymes and transporters, and of organ metabolic performances. Safety factors serve to minimize the overlap zone (resulting in performance failure) between the low tail of capacity distributions and the high tail of load distributions. Safety factors increase with coefficients of variation of load and capacity, with capacity deterioration with time, and with cost of failure, and decrease with costs of initial construction, maintenance, operation, and opportunity. Adaptive regulation of many biological systems involves capacity increases with increasing load; several quantitative examples suggest sublinear increases, such that safety factors decrease towards 1.0. Unsolved questions include safety factors of series systems, parallel or branched pathways, elements with multiple functions, enzyme reaction chains, and equilibrium enzymes. The modest sizes of safety factors imply the existence of costs that penalize excess capacities. Those costs are likely to involve wasted energy or space for large or expensive components, but opportunity costs of wasted space at the molecular level for minor components. PMID:12122135

  5. Sediment Loss and its Contributors in Puerto Rico Watersheds

    EPA Science Inventory

    A major environmental concern in the Commonwealth of Puerto Rico is increased sediment load to water reservoirs and ultimately to estuaries and reef areas outside the estuaries. Sediment deposition has significantly reduced the storage capacity of reservoirs, and the associated c...

  6. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    NASA Astrophysics Data System (ADS)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-06-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  7. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    NASA Astrophysics Data System (ADS)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-03-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  8. Evaluation of the thermal and structural performance of straw bale construction

    NASA Astrophysics Data System (ADS)

    Beaudry, Kyle R.

    This thesis is primarily divided into two distinct experimental programs evaluating: 1) the thermal performance and, 2) the structural performance of straw bale construction. The thermal performance chapter describes hot-box testing (based on ASTM C1363-11) of seven straw bale wall panels to obtain their apparent thermal conductivity values. All panels were constructed with stacked bales and cement-lime plaster skins on each side of the bales. Four panels were made with traditional, 2-string field bales of densities ranging from 89.5 kg/m3 - 131 kg/m3 and with the bales on-edge (fibres perpendicular to the heat flow). Three panels were made with manufactured high-density bales (291 kg/m3 - 372 kg/m3). The fibres of the manufactured bales were randomly oriented. The key conclusion of this work is that within the experimental error, there is no difference in the apparent thermal conductivity value for panels using normal density bales and manufactured high-density bales up to a density of 333 kg/m3. The structural performance chapter describes gravity and transverse load testing (based on ASTM E72-15) of non-plastered modular straw bale wall (DBW) panels to evaluate their strength capacity and failure modes. The out-of-plane flexural (OPF) tests exhibited a mean ultimate bending moment of 49.7 kNm. The axial compression (AC) tests exhibited a mean ultimate line load of 161.0 kN/m. The local flexural header beam (HP) tests exhibited an ultimate line load of 31.6 kN/m. The OPF and AC capacities of the DBW exceeded the capacities exhibited by a conventional 38 mm x 140 mm stud wall. However, the DBW's header beam strength and stiffness was inferior to conventional stud wall.

  9. Ultimate Longitudinal Strength of Composite Ship Hulls

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangming; Huang, Lingkai; Zhu, Libao; Tang, Yuhang; Wang, Anwen

    2017-01-01

    A simple analytical model to estimate the longitudinal strength of ship hulls in composite materials under buckling, material failure and ultimate collapse is presented in this paper. Ship hulls are regarded as assemblies of stiffened panels which idealized as group of plate-stiffener combinations. Ultimate strain of the plate-stiffener combination is predicted under buckling or material failure with composite beam-column theory. The effects of initial imperfection of ship hull and eccentricity of load are included. Corresponding longitudinal strengths of ship hull are derived in a straightforward method. A longitudinally framed ship hull made of symmetrically stacked unidirectional plies under sagging is analyzed. The results indicate that present analytical results have a good agreement with FEM method. The initial deflection of ship hull and eccentricity of load can dramatically reduce the bending capacity of ship hull. The proposed formulations provide a simple but useful tool for the longitudinal strength estimation in practical design.

  10. An experimental investigation on the ultimate strength of epoxy repaired braced partial infilled RC frames

    NASA Astrophysics Data System (ADS)

    Dubey, Shailendra Kumar Damodar; Kute, Sunil

    2014-09-01

    Due to earthquake, buildings are damaged partially or completely. Particularly structures with soft storey are mostly affected. In general, such damaged structures are repaired and reused. In this regard, an experimental investigation was planned and conducted on models of single-bay, single-storey of partial concrete infilled reinforced concrete (RC) frames up to collapse with corner, central and diagonal steel bracings. Such collapsed frames were repaired with epoxy resin and retested. The initiative was to identify the behaviour, extent of restored ultimate strength and deflection of epoxy-retrofitted frames in comparison to the braced RC frames. The performance of such frames has been considered only for lateral loads. In comparison to bare RC frames, epoxy repaired partial infilled frames have significant increase in the lateral load capacity. Central bracing is more effective than corner and diagonal bracing. For the same load, epoxy repaired frames have comparable deflection than similar braced frames.

  11. Evaluation of Soil Erosion and Sediment Yield from Ridge Watersheds Leading to Guánica Bay, Puerto Rico, Using SWAT Model

    EPA Science Inventory

    Increased sediment loading to reservoirs and, ultimately, to Guánica Bay and reef areas is a significant concern in Puerto Rico. Sediment deposition has significantly reduced storage capacity of reservoirs, and sediment-attached contaminants can stress corals and negative...

  12. Ultimate strength capacity of a square hollow section filled with fibrous foamed concrete

    NASA Astrophysics Data System (ADS)

    Amirah Azra Khairuddin, Siti; Rahman, Norashidah Abd; Jamaluddin, Norwati; Jaini, Zainorizuan Mohd; Ali, Noorwirdawati

    2017-11-01

    Concrete-filled sections used as building columns have become popular due to their architectural and structural elements. In recent years, there has been a renewed call for the improvement of materials used as concrete to fill the composite columns. Among these materials, foamed concrete has received great attention due to its structural characteristics and its potential as a construction material used in hollow sections. However, its behaviors as infill material in a hollow section, such as its strength and failure mode, should be investigated. In this study, experimental research was conducted to compare the experimental and theoretical values of its ultimate strength capacity. Eight specimens of hollow steel sections with two different thicknesses were filled with fibrous foamed concrete and then subjected to compression load. The obtained results were compared with those obtained from a hollow section with the same thicknesses, but were filled with normal foamed concrete. Results show that the ultimate strength capacity of the experimental value is the same as that of the theoretical value based on Eurocode 4. The largest percentage values between theoretical and experimental results for thicknesses of 2 and 4 mm are 58% and 55%, respectively.

  13. Voluntary run training but not estradiol deficiency alters the tibial bone-soleus muscle functional relationship in mice.

    PubMed

    Warren, Gordon L; Moran, Amy L; Hogan, Harry A; Lin, Angela S; Guldberg, Robert E; Lowe, Dawn A

    2007-11-01

    The study's objective was to investigate how estrogen deficiency and run training affect the tibial bone-soleus muscle functional relationship in mice. Female mice were assigned into one of two surgical conditions, ovariectomy (OVX) or sham ovariectomy (sham), and one of two activity conditions, voluntary wheel running (Run) or sedentary (Sed). To determine whether differences observed between OVX and sham conditions could be attributed to estradiol (E(2)), additional OVX mice were supplemented with E(2). Tibial bones were analyzed for their functional capacities, ultimate load, and stiffness. Soleus muscles were analyzed for their functional capacities, maximal isometric tetanic force (P(o)), and peak eccentric force. The ratios of bone functional capacities to those of muscle were calculated. The bone functional capacities were affected by both surgical condition and activity but more strongly by surgical condition. Ultimate load and stiffness for the sham group were 7-12% greater than those for OVX animals (P = 0.002), whereas only stiffness was greater for Run than for Sed animals (9%; P = 0.015). The muscle functional capacities were affected by both surgical condition and activity; however, in contrast to the bone, the muscle was more affected by activity. P(o) and peak eccentric force were 10-21% greater for Run than for Sed animals (P < or = 0.016), whereas only P(o) was greater in sham than in OVX animals (9%; P = 0.011). The bone-to-muscle ratios of functional capacities were affected by activity but not by surgical condition or E(2) supplementation. Thus a mismatch of bone-muscle function occurred in mice that voluntarily ran on wheels, irrespective of estrogen status.

  14. Advance release of data for the 1980 Statistical Year Book of the electric utility industry. [Monograph; data tables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    This monograph consists of 25 data tables that will be included in the subject year book, revealing such information as: total US installed generating capacity; installed capacity by states; installed capacity by ownership and type of prime mover; capability - peak load - kWh requirements; generation by states; generation by fuel; sales by years and classes of service; ultimate customers - by years and classes of service; revenues - by years and classes of service; average use and revenue per customer; average revenues per kWh sold; consumption of fossil fuels for electric generation; construction expenditures; and public-utility long-term financing.

  15. Strain measurements by fiber Bragg grating sensors for in situ pile loading tests

    NASA Astrophysics Data System (ADS)

    Schmidt-Hattenberger, Cornelia; Straub, Tilmann; Naumann, Marcel; Borm, Günter; Lauerer, Robert; Beck, Christoph; Schwarz, Wolfgang

    2003-07-01

    A fiber Bragg grating (FBG) sensor network has been installed into a large diameter concrete pile on a real construction site. The intention was to monitor its deformation behavior during several quasi-static loading cycles. The skin friction between pile and subsoil affecting the ultimate bearing capacity of the pile as well as the settlement behavior of the structure under investigation has been derived from our measurements. A comparison between the results of the fiber Bragg grating sensors and conventional concrete strain gages (CSG) has shown excellent correspondence.

  16. An analysis of the static load test on single square pile of 40x40 cm2, using finite element method in Rusunawa project, Jatinegara, Jakarta

    NASA Astrophysics Data System (ADS)

    Harasid, Harun; Roesyanto; Iskandar, Rudi; Silalahi, Sofyan A.

    2018-03-01

    Piling Foundation is one of the foundations which is used to penetrate its load through soil layer. The power carried by the piling is obtained from the end bearing capacity, that is, the compressive end piling and friction bearing capacity obtained from friction bearing and adhesive capacity between the piling and the soil around it. The investigation on the Standard Penetration Test is aimed to get the description of soil layer, based on the type and color of soil through visual observation, and soil characteristics. SPT data can be used to calculate bearing capacity. Besides investigating the SPT, this study is also been equipped by taking the samples in laboratory and loading test on the piling and Ducth Cone Penetrometer (DCP) data to confirm its bearing capacity. This study analyzed bearing capacity and settlement in the square pile of 40X40 cm in diameter in a single pile or grouped, using an empirical method, AllPile program, Plaxis program, and comparing the result with interpreting its loading test in the foundation of Rusunawa project, Jatinegara, Jakarta. The analysis was been done by using the data on soil investigation and laboratory by comparing them with Mohr-Coulomb soil model. Ultimate bearing capacity from the SPT data in the piling of 15.4 meters was 189.81 tons and the parameter of soil shear strength was 198.67 tons. The sander point, based on Aoki and De Alencar bearing capacity was 276.241 tons and based on Mayerhoff it was 305.49 tons. Based on the loading test of bearing capacity, unlimited bearing capacity for the three methods was Davisson (260 tons), Mazurkiewich (270 tons), and Chin (250 tons). The efficiency of grouped piles according to Converse-Library Equation method = 0.73, according to Los Angeles Group Action Equation method = 0.59, and according to Sheila-Keeny method = 0.94. Bearing capacity based on piling strength was 221.76 tons, bearing capacity based on calendaring data was 201.71 tons, and lateral bearing capacity of a single piling foundation was 129.6 kN (12.96 tons). When the maximum load (280 tons) was been given, more decrease occurred in the Maintained load test of 21.00 mm and Quick Load Test method of 20.67 mm, compared with the result of Load Test in the field of 18.74 mm. Based on ASTM D1143/81, the permitted value was 25.40 mm. Therefore, based on that decreasing, it could be concluded that foundation piles were safe in the construction. The pore water pressure is highly influenced by time so that in Maintained Load Test and Quick Load Test, there was the disparity in the level of pore water pressure. Based on the result of the calculation, Quick Load Test showed that in pore water pressure was dissipated in its acceleration.

  17. Mechanical loading, damping, and load-driven bone formation in mouse tibiae.

    PubMed

    Dodge, Todd; Wanis, Mina; Ayoub, Ramez; Zhao, Liming; Watts, Nelson B; Bhattacharya, Amit; Akkus, Ozan; Robling, Alexander; Yokota, Hiroki

    2012-10-01

    Mechanical loads play a pivotal role in the growth and maintenance of bone and joints. Although loading can activate anabolic genes and induce bone remodeling, damping is essential for preventing traumatic bone injury and fracture. In this study we investigated the damping capacity of bone, joint tissue, muscle, and skin using a mouse hindlimb model of enhanced loading in conjunction with finite element modeling to model bone curvature. Our hypothesis was that loads were primarily absorbed by the joints and muscle tissue, but that bone also contributed to damping through its compression and natural bending. To test this hypothesis, fresh mouse distal lower limb segments were cyclically loaded in axial compression in sequential bouts, with each subsequent bout having less surrounding tissue. A finite element model was generated to model effects of bone curvature in silico. Two damping-related parameters (phase shift angle and energy loss) were determined from the output of the loading experiments. Interestingly, the experimental results revealed that the knee joint contributed to the largest portion of the damping capacity of the limb, and bone itself accounted for approximately 38% of the total phase shift angle. Computational results showed that normal bone curvature enhanced the damping capacity of the bone by approximately 40%, and the damping effect grew at an accelerated pace as curvature was increased. Although structural curvature reduces critical loads for buckling in beam theory, evolution apparently favors maintaining curvature in the tibia. Histomorphometric analysis of the tibia revealed that in response to axial loading, bone formation was significantly enhanced in the regions that were predicted to receive a curvature-induced bending moment. These results suggest that in addition to bone's compressive damping capacity, surrounding tissues, as well as naturally-occurring bone curvature, also contribute to mechanical damping, which may ultimately affect bone remodeling and bone quality. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Composite Testing

    DTIC Science & Technology

    2007-01-01

    characterising the behaviour and ultimate load capacity of adhesively bonded joints for both composite-to-composite and composite-to-metal hybrid systems...novel hybrid joint details one of which involved perforations in the steel. The second detail employed bonding and bolting. The detail performed well...will be fabricated by four teams (3TEX, Space Micro, Tech Partnership, and Beltran) as part of the STTR Hybrid Joints Test Articles Program. Each

  19. Experimental and numerical investigation of slabs on ground subjected to concentrated loads

    NASA Astrophysics Data System (ADS)

    Øverli, Jan

    2014-09-01

    An experimental program is presented where a slab on ground is subjected to concentrated loading at the centre, the edges and at the corners. Analytical solutions for the ultimate load capacity fit well with the results obtained in the tests. The non-linear behaviour of the slab is captured by performing nonlinear finite element analyses. The soil is modelled as a no-tension bedding and a smeared crack approach is employed for the concrete. Through a parametric study, the finite element model has been used to assess the influence of subgrade stiffness and shrinkage. The results indicate that drying shrinkage can cause severe cracking in slabs on grade.

  20. Behaviour of axially and eccentrically loaded short columns reinforced with GFRP bars

    NASA Astrophysics Data System (ADS)

    Sreenath, S.; Balaji, S.; Saravana Raja Mohan, K.

    2017-07-01

    The corrosion of steel reinforcing bars is a predominant factor in limiting the life expectancy of Reinforced Cement Concrete (RCC) structures. Corrosion resistant Fibre Reinforced Polymer (FRP) bars can be an effective alternative to steel bars in this context. Recent investigations reported the flexural behaviour of RCC beams reinforced with Glass Fibre Reinforced Polymer (GFRP) bars. This study is meant to investigate the suitability of Sand Coated GFRP reinforcement bars in short square columns which when loaded axially and loaded with a minimum eccentricity. Standard tests to assess mechanical properties of GFRP bars and pullout test to quantify the bond strength between the bars and concrete were conducted. GFRP reinforced column specimens with a cross-sectional dimension of 100mm X 100mm and of length 1000mm were cast and tested under axial and eccentric loading. The assessed load carrying capacity was compared with that of conventional steel reinforced columns of the same size. The yield load and ultimate load at failure withstood by the steel reinforced columns were considerably more than that of GFRP reinforced columns. The energy absorption capacity of GFRP reinforced columns was also poor compared to steel reinforced columns. Both the columns exhibited nearly the same ductile behaviour. Hence GFRP reinforcements are not recommendable for compression members.

  1. Depth investigation of rapid sand filters for drinking water production reveals strong stratification in nitrification biokinetic behavior.

    PubMed

    Tatari, K; Smets, B F; Albrechtsen, H-J

    2016-09-15

    The biokinetic behavior of NH4(+) removal was investigated at different depths of a rapid sand filter treating groundwater for drinking water preparation. Filter materials from the top, middle and bottom layers of a full-scale filter were exposed to various controlled NH4(+) loadings in a continuous-flow lab-scale assay. NH4(+) removal capacity, estimated from short term loading up-shifts, was at least 10 times higher in the top than in the middle and bottom filter layers, consistent with the stratification of Ammonium Oxidizing Bacteria (AOB). AOB density increased consistently with the NH4(+) removal rate, indicating their primarily role in nitrification under the imposed experimental conditions. The maximum AOB cell specific NH4(+) removal rate observed at the bottom was at least 3 times lower compared to the top and middle layers. Additionally, a significant up-shift capacity (4.6 and 3.5 times) was displayed from the top and middle layers, but not from the bottom layer at increased loading conditions. Hence, AOB with different physiological responses were active at the different depths. The biokinetic analysis predicted that despite the low NH4(+) removal capacity at the bottom layer, the entire filter is able to cope with a 4-fold instantaneous loading increase without compromising the effluent NH4(+). Ultimately, this filter up-shift capacity was limited by the density of AOB and their biokinetic behavior, both of which were strongly stratified. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Shear Strengthening of RC Deep Beam Using Externally Bonded GFRP Fabrics

    NASA Astrophysics Data System (ADS)

    Kumari, A.; Patel, S. S.; Nayak, A. N.

    2018-06-01

    This work presents the experimental investigation of RC deep beams wrapped with externally bonded Glass Fibre Reinforced Polymer (GFRP) fabrics in order to study the Load versus deflection behavior, cracking pattern, failure modes and ultimate shear strength. A total number of five deep beams have been casted, which is designed with conventional steel reinforcement as per IS: 456 (Indian standard plain and reinforced concrete—code for practice, Bureau of Indian Standards, New Delhi, 2000). The spans to depth ratio for all RC deep beams have been kept less than 2 as per the above specification. Out of five RC deep beams, one without retrofitting serves as a reference beam and the rest four have been wrapped with GFRP fabrics in multiple layers and tested with two point loading condition. The first cracking load, ultimate load and the shear contribution of GFRP to the deep beams have been observed. A critical discussion is made with respect to the enhancement of the strength, behaviour and performance of retrofitted deep beams in comparison to the deep beam without GFRP in order to explore the potential use of GFRP for strengthening the RC deep beams. Test results have demonstrated that the deep beams retrofitted with GFRP shows a slower development of the diagonal cracks and improves shear carrying capacity of the RC deep beam. A comparative study of the experimental results with the theoretical ones predicted by various researchers available in the literatures has also been presented. It is observed that the ultimate load of the beams retrofitted with GFRP fabrics increases with increase of number of GFRP layers up to a specific number of layers, i.e. 3 layers, beyond which it decreases.

  3. Shear Strengthening of RC Deep Beam Using Externally Bonded GFRP Fabrics

    NASA Astrophysics Data System (ADS)

    Kumari, A.; Patel, S. S.; Nayak, A. N.

    2018-02-01

    This work presents the experimental investigation of RC deep beams wrapped with externally bonded Glass Fibre Reinforced Polymer (GFRP) fabrics in order to study the Load versus deflection behavior, cracking pattern, failure modes and ultimate shear strength. A total number of five deep beams have been casted, which is designed with conventional steel reinforcement as per IS: 456 (Indian standard plain and reinforced concrete—code for practice, Bureau of Indian Standards, New Delhi, 2000). The spans to depth ratio for all RC deep beams have been kept less than 2 as per the above specification. Out of five RC deep beams, one without retrofitting serves as a reference beam and the rest four have been wrapped with GFRP fabrics in multiple layers and tested with two point loading condition. The first cracking load, ultimate load and the shear contribution of GFRP to the deep beams have been observed. A critical discussion is made with respect to the enhancement of the strength, behaviour and performance of retrofitted deep beams in comparison to the deep beam without GFRP in order to explore the potential use of GFRP for strengthening the RC deep beams. Test results have demonstrated that the deep beams retrofitted with GFRP shows a slower development of the diagonal cracks and improves shear carrying capacity of the RC deep beam. A comparative study of the experimental results with the theoretical ones predicted by various researchers available in the literatures has also been presented. It is observed that the ultimate load of the beams retrofitted with GFRP fabrics increases with increase of number of GFRP layers up to a specific number of layers, i.e. 3 layers, beyond which it decreases.

  4. Time dependent variation of carrying capacity of prestressed precast beam

    NASA Astrophysics Data System (ADS)

    Le, Tuan D.; Konečný, Petr; Matečková, Pavlína

    2018-04-01

    The article deals with the evaluation of the precast concrete element time dependent carrying capacity. The variation of the resistance is inherited property of laboratory as well as in-situ members. Thus the specification of highest, yet possible, laboratory sample resistance is important with respect to evaluation of laboratory experiments based on the test machine loading capabilities. The ultimate capacity is evaluated through the bending moment resistance of a simply supported prestressed concrete beam. The probabilistic assessment is applied. Scatter of random variables of compressive strength of concrete and effective height of the cross section is considered. Monte Carlo simulation technique is used to investigate the performance of the cross section of the beam with changes of tendons’ positions and compressive strength of concrete.

  5. Experimental study on behavior of steel channel strengthened with CFRP

    NASA Astrophysics Data System (ADS)

    Tang, Hongyuan; Deng, Xuezhi; Zhou, Xiaojun

    2017-11-01

    This paper describes the behaviour of axially loaded long and eccentrically loaded short thin-walled steel channels, strengthened with transversely bonded carbon fibre reinforced polymer (CFRP) sheets. Seven long members, each 1400 mm long, and seven short members, each 750mmlong, were tested. The main parameters were the number of CFRP plies (one or two) and the clear spacing between the CFRP strips (50, 100 or 150 mm). The effect of CFRP sheet layer and clear spacing was studied. All the ultimate load capacity of the reinforced members was improved in different extent. A maximum strength gain of 9.13% was achieved for long members with two CFRP layers and 50 mm spacing of CFRP strips. The experimental results show that the global buckling happens to all the long specimens. For short members, the maximum strength gain of 12.1% was achieved with two CFRP layers and 50 mm spacing of CFRP strips. With the exception of the most heavily reinforced (2 plies at 50 and 100 mm), local buckling was observed prior to global buckling for short members, which was completely opposite of the control specimens. Meanwhile, when the clear spacing of CFRP strips is greater than theweb height of steel channel, the transversely bonded CFRP does not have a significant improvement in buckling load capacity of the short- and long-channel components. While the clear spacing is less than the web height, the more number of CFRP layer, the more enhancement of buckling load capacity.

  6. Behaviour of wrapped cold-formed steel columns under different loading conditions

    NASA Astrophysics Data System (ADS)

    Baabu, B. Hari; Sreenath, S.

    2017-07-01

    The use of Cold Formed Steel (CFS) sections as structural members is widely accepted because of its light nature. However, the load carrying capacity of these sections will be less compared to hot rolled sections. This study is meant to analyze the possibility of strengthening cold formed members by wrapping it with Glass Fiber Reinforced Polymer (GFRP) laminates. Light gauge steel columns of cross sectional dimensions 100mm x 50mm x 3.15mm were taken for this study. The effective length of the section is about 750mm. A total of 8 specimens including the control specimen is tested under axial and eccentric loading. The columns were tested keeping both ends hinged. For both loading cases the buckling behaviour, ultimate load carrying capacity and load-deflection characteristics of the CFS columns were analyzed. The GFRP laminates were wrapped on columns in three different ways such that wrapping the outer surface of web and flange throughout the length of specimen, wrapping the outer surface of web alone throughout the length of specimen and wrapping the outer surface of web and flange for the upper half length of the specimen where the buckling is expected. For both loading cases, the results indicated that the column with wrapping at the outer surface of web and flange throughout the length of specimen provides better strength for it.

  7. Combined wind turbine fatigue and ultimate load reduction by individual blade control

    NASA Astrophysics Data System (ADS)

    Han, Y.; Leithead, W. E.

    2014-06-01

    If each blade of the wind turbine has individual pitch actuator, there is possibility of employing the pitch system to mitigate structural loads through advanced control methods. Previously, considerable reduction of blade lifetime equivalent fatigue loads has been achieved by Individual Blade Control (IBC) and in addition, it has also been shown the potential in blade ultimate loads reduction. However, both fatigue and ultimate loads impact on the design and life of wind turbine blades. In this paper, the design and application of IBC that concurrently reduce both blade fatigue and ultimate loads is investigated. The contributions of blade load spectral components, which are 1P, 2P and edgewise mode from blade in-plane and/or out-of-plane bending moments, are firstly explored. Four different control options for reducing various combinations of these load components are compared. In response to the different spectral peaks of both fatigue and ultimate loads, the controller has been designed so that it can act on different frequency components which vary with wind speed. The performance of the IBC controller on fatigue and ultimate load reduction is assessed by simulating a 5MW exemplar wind turbine. Simulation results show that with a proper selection of controlling inputs at different wind speed, the use of a single combined IBC can achieve satisfactory reduction on both fatigue and ultimate loads.

  8. 14 CFR 23.561 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... experiences the static inertia loads corresponding to the following ultimate load factors— (i) Upward, 3.0g... occupant, experience the static inertia loads corresponding to the following ultimate load factors— (i... ultimate inertia force of 3 g; and (ii) A coefficient of friction of 0.5 at the ground. (d) If it is not...

  9. Ultimate Lateral Capacity of Rigid Pile in c- φ Soil

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-min

    2018-03-01

    To date no analytical solution of the pile ultimate lateral capacity for the general c- φ soil has been obtained. In the present study, a new dimensionless embedded ratio was proposed and the analytical solutions of ultimate lateral capacity and rotation center of rigid pile in c- φ soils were obtained. The results showed that both the dimensionless ultimate lateral capacity and dimensionless rotation center were the univariate functions of the embedded ratio. Also, the ultimate lateral capacity in the c- φ soil was the combination of the ultimate lateral capacity ( f c ) in the clay, and the ultimate lateral capacity ( f φ ) in the sand. Therefore, the Broms chart for clay, solution for clay ( φ=0) put forward by Poulos and Davis, solution for sand ( c=0) obtained by Petrasovits and Awad, and Kondner's ultimate bending moment were all proven to be the special cases of the general solution in the present study. A comparison of the field and laboratory tests in 93 cases showed that the average ratios of the theoretical values to the experimental value ranged from 0.85 to 1.15. Also, the theoretical values displayed a good agreement with the test values.

  10. Experimental Research of FRP Composite Tube Confined Steel-reinforced Concrete Stub Columns Under Axial Compression

    NASA Astrophysics Data System (ADS)

    Wang, Ji Zhong; Cheng, Lu; Wang, Xin Pei

    2018-06-01

    A new column of FRP composite tube confined steel-reinforced concrete (FTCSRC) column was proposed. This paper elaborates on laboratorial and analytical studies on the behavior of FCTSRC columns subjected to axial compressive load. Eight circular FTCSRC stub columns and one circular steel tube confined concrete (STCC) stub column were tested to investigate the failure mode and axial compression performance of circular FTCRSC columns. Parametric analysis was implemented to inquire the influence of confinement material (CFRP-steel tube or CFRP-GFRP tube), internal steel and CFRP layers on the ultimate load capacity. CFRP-steel composite tube was composed of steel tube and CFRP layer which was wrapped outside the steel tube, while CFRP-GFRP composite tube was composite of GFRP tube and CFRP layer. The test results indicate that the confinement effect of CFRP-steel tube is greatly superior to CFRP-GFRP tube. The ductility performance of steel tube confined high-strength concrete column can be improved obviously by encasing steel in the core concrete. Furthermore, with the increase in the layers of FRP wraps, the axial load capacity increases greatly.

  11. Investigation of the seismic resistance of interior building partitions, phase 1

    NASA Astrophysics Data System (ADS)

    Anderson, R. W.; Yee, Y. C.; Savulian, G.; Barclay, B.; Lee, G.

    1981-02-01

    The effective participation of wood-framed interior shear wall partitions when determining the ultimate resistance capacity of two- and three-story masonry apartment buildings to seismic loading was investigated. Load vs. deflection tests were performed on 8 ft by 8 ft wall panel specimens constructed of four different facing materials, including wood lath and plaster, gypsum lath and plaster, and gypsum wallboard with joints placed either horizontally or vertically. The wood lath and plaster construction is found to be significantly stronger and stiffer than the other three specimens. Analyses of the test panels using finite element methods to predict their static resistance characteristics indicates that the facing material acts as the primary shear-resisting structural element. Resistance of shear wall partitions to lateral loads was assessed.

  12. 14 CFR 23.561 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... occupant experiences the static inertia loads corresponding to the following ultimate load factors— (i... could injure an occupant, experience the static inertia loads corresponding to the following ultimate...) A downward ultimate inertia force of 3 g; and (ii) A coefficient of friction of 0.5 at the ground...

  13. 14 CFR 23.561 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... occupant experiences the static inertia loads corresponding to the following ultimate load factors— (i... could injure an occupant, experience the static inertia loads corresponding to the following ultimate...) A downward ultimate inertia force of 3 g; and (ii) A coefficient of friction of 0.5 at the ground...

  14. 14 CFR 23.561 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... occupant experiences the static inertia loads corresponding to the following ultimate load factors— (i... could injure an occupant, experience the static inertia loads corresponding to the following ultimate...) A downward ultimate inertia force of 3 g; and (ii) A coefficient of friction of 0.5 at the ground...

  15. 14 CFR 23.561 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... occupant experiences the static inertia loads corresponding to the following ultimate load factors— (i... could injure an occupant, experience the static inertia loads corresponding to the following ultimate...) A downward ultimate inertia force of 3 g; and (ii) A coefficient of friction of 0.5 at the ground...

  16. Effect of load eccentricity and substructure deformation on ultimate strength of shuttle orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.

    1981-01-01

    The effect of load eccentricity and substructure deformation on the ultimate strength and stress displacement properties of the shuttle orbiter thermal protection system (TPS) was determined. The LI-900 Reusable Surface Insulation (RSI) tiles mounted on the .41 cm thick Strain Isolator Pad (SIP) were investigated. Substructure deformations reduce the ultimate strength of the SIP/tile TPS and increase the scatter in the ultimate strength data. Substructure deformations that occur unsymmetric to the tile can cause the tile to rotate when subjected to a uniform applied load. Load eccentricity reduces SIP/tile TPS ultimate strength and causes tile rotation.

  17. A framework for the etiology of running-related injuries.

    PubMed

    Bertelsen, M L; Hulme, A; Petersen, J; Brund, R K; Sørensen, H; Finch, C F; Parner, E T; Nielsen, R O

    2017-11-01

    The etiology of running-related injury is important to consider as the effectiveness of a given running-related injury prevention intervention is dependent on whether etiologic factors are readily modifiable and consistent with a biologically plausible causal mechanism. Therefore, the purpose of the present article was to present an evidence-informed conceptual framework outlining the multifactorial nature of running-related injury etiology. In the framework, four mutually exclusive parts are presented: (a) Structure-specific capacity when entering a running session; (b) structure-specific cumulative load per running session; (c) reduction in the structure-specific capacity during a running session; and (d) exceeding the structure-specific capacity. The framework can then be used to inform the design of future running-related injury prevention studies, including the formation of research questions and hypotheses, as well as the monitoring of participation-related and non-participation-related exposures. In addition, future research applications should focus on addressing how changes in one or more exposures influence the risk of running-related injury. This necessitates the investigation of how different factors affect the structure-specific load and/or the load capacity, and the dose-response relationship between running participation and injury risk. Ultimately, this direction allows researchers to move beyond traditional risk factor identification to produce research findings that are not only reliably reported in terms of the observed cause-effect association, but also translatable in practice. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Post-Buckling and Ultimate Strength Analysis of Stiffened Composite Panel Base on Progressive Damage

    NASA Astrophysics Data System (ADS)

    Zhang, Guofan; Sun, Xiasheng; Sun, Zhonglei

    Stiffened composite panel is the typical thin wall structure applied in aerospace industry, and its main failure mode is buckling subjected to compressive loading. In this paper, the development of an analysis approach using Finite Element Method on post-buckling behavior of stiffened composite structures under compression was presented. Then, the numerical results of stiffened panel are obtained by FE simulations. A thorough comparison were accomplished by comparing the load carrying capacity and key position strains of the specimen with test. The comparison indicates that the FEM results which adopted developed methodology could meet the demand of engineering application in predicting the post-buckling behavior of intact stiffened structures in aircraft design stage.

  19. Aircraft of the future

    NASA Technical Reports Server (NTRS)

    Yeger, S.

    1985-01-01

    Some basic problems connected with attempts to increase the size and capacity of transport aircraft are discussed. According to the square-cubic law, the increase in structural weight is proportional to the third power of the increase in the linear dimensions of the aircraft when geomettric similarity is maintained, while the surface area of the aircraft increases according to the second power. A consequence is that the fraction of useful weight will decrease as aircraft increase in size. However, in flying-wing designs in which the whole load on the wing is proportional to the distribution of lifting forces, the total bending moment on the wing will be sharply reduced, enabling lighter construction. Flying wings may have an ultimate capacity of 3000 passengers.

  20. The Ultimate Pile Bearing Capacity from Conventional and Spectral Analysis of Surface Wave (SASW) Measurements

    NASA Astrophysics Data System (ADS)

    Faizah Bawadi, Nor; Anuar, Shamilah; Rahim, Mustaqqim A.; Mansor, A. Faizal

    2018-03-01

    A conventional and seismic method for determining the ultimate pile bearing capacity was proposed and compared. The Spectral Analysis of Surface Wave (SASW) method is one of the non-destructive seismic techniques that do not require drilling and sampling of soils, was used in the determination of shear wave velocity (Vs) and damping (D) profile of soil. The soil strength was found to be directly proportional to the Vs and its value has been successfully applied to obtain shallow bearing capacity empirically. A method is proposed in this study to determine the pile bearing capacity using Vs and D measurements for the design of pile and also as an alternative method to verify the bearing capacity from the other conventional methods of evaluation. The objectives of this study are to determine Vs and D profile through frequency response data from SASW measurements and to compare pile bearing capacities obtained from the method carried out and conventional methods. All SASW test arrays were conducted near the borehole and location of conventional pile load tests. In obtaining skin and end bearing pile resistance, the Hardin and Drnevich equation has been used with reference strains obtained from the method proposed by Abbiss. Back analysis results of pile bearing capacities from SASW were found to be 18981 kN and 4947 kN compared to 18014 kN and 4633 kN of IPLT with differences of 5% and 6% for Damansara and Kuala Lumpur test sites, respectively. The results of this study indicate that the seismic method proposed in this study has the potential to be used in estimating the pile bearing capacity.

  1. Evaluating the Dynamic Characteristics of Retrofitted RC Beams

    NASA Astrophysics Data System (ADS)

    Ghods, Amir S.; Esfahani, Mohamad R.; Moghaddasie, Behrang

    2008-07-01

    The aim of this experimental study was to investigate the relationship between the damage and changes in dynamic characteristics of reinforced concrete members strengthened with Carbon Fiber Reinforced Polymer (CFRP). Modal analysis is a popular non-destructive method for evaluating health of structural systems. A total of 8 reinforced concrete beams with similar dimensions were made using concrete with two different compressive strengths and reinforcement ratios. Monotonic loading was applied with four-point-bending setup in order to generate different damage levels in the specimens while dynamic testing was conducted to monitor the changes in dynamic characteristics of the specimens. In order to investigate the effect of CFRP on static and dynamic properties of specimens, some of the beams were loaded to half of their ultimate load carrying capacity and then were retrofitted using composite laminates with different configuration. Retrofitted specimens demonstrated elevated load carrying capacity, higher flexural stiffness and lower displacement ductility. By increasing the damage level in specimens, frequencies of the beams were decreased and after strengthening these values were improved significantly. The intensity of the damage level in each specimen affects the shape of its mode as well. Fixed points and curvatures of mode shapes of beams tend to move toward the location of the damage in each case.

  2. Reduced Design Load Basis for Ultimate Blade Loads Estimation in Multidisciplinary Design Optimization Frameworks

    NASA Astrophysics Data System (ADS)

    Pavese, Christian; Tibaldi, Carlo; Larsen, Torben J.; Kim, Taeseong; Thomsen, Kenneth

    2016-09-01

    The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar to the one computed using the full DLB. This observation is used to propose a scheme that is computationally cheap, and that can be integrated inside an MDO framework, providing a sufficiently reliable estimation of the blade ultimate loading. The latter aspect is of key importance when design variables implementing passive control methodologies are included in the formulation of the optimization problem. An MDO of a 10 MW wind turbine blade is presented as an applied case study to show the efficacy of the reduced DLB concept.

  3. Experimental Study on Welded Headed Studs Used In Steel Plate-Concrete Composite Structures Compared with Contactless Method of Measuring Displacement

    NASA Astrophysics Data System (ADS)

    Kisała, Dawid; Tekieli, Marcin

    2017-10-01

    Steel plate-concrete composite structures are a new innovative design concept in which a thin steel plate is attached to the reinforced concrete beam by means of welded headed studs. The comparison between experimental studies and theoretical analysis of this type of structures shows that their behaviour is dependent on the load-slip relationship of the shear connectors used to ensure sufficient bond between the concrete and steel parts of the structure. The aim of this paper is to describe an experimental study on headed studs used in steel plate-concrete composite structures. Push-out tests were carried out to investigate the behaviour of shear connectors. The test specimens were prepared according to standard push-out tests, however, instead of I-beam, a steel plate 16 mm thick was used to better reflect the conditions in the real structure. The test specimens were produced in two batches using concrete with significantly different compressive strength. The experimental study was carried out on twelve specimens. Besides the traditional measurements based on LVDT sensors, optical measurements based on the digital image correlation method (DIC) and pattern tracking methods were used. DIC is a full-field contactless optical method for measuring displacements in experimental testing, based on the correlation of the digital images taken during test execution. With respect to conventional methods, optical measurements offer a wider scope of results and can give more information about the material or construction behaviour during the test. The ultimate load capacity and load-slip curves obtained from the experiments were compared with the values calculated based on Eurocodes, American and Chinese design specifications. It was observed that the use of the relationships developed for the traditional steel-concrete composite structures is justified in the case of ultimate load capacity of shear connectors in steel plate-concrete composite structures.

  4. 14 CFR 23.813 - Emergency exit access.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...

  5. 14 CFR 23.813 - Emergency exit access.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...

  6. 14 CFR 23.813 - Emergency exit access.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...

  7. 14 CFR 23.813 - Emergency exit access.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...

  8. 14 CFR 23.813 - Emergency exit access.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...

  9. Behaviour of concrete beams reinforced withFRP prestressed concrete prisms

    NASA Astrophysics Data System (ADS)

    Svecova, Dagmar

    The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the same ultimate capacity, but reinforced with either steel, PCP or FRP rebars, the service load deflections of beams reinforced with PCP are comparable to that of a steel reinforced concrete beam, and are four times smaller than the deflection of the companion FRP reinforced beam. Similarly, the crack width of the PCP reinforced beams under service loads is comparable to that of the steel reinforced beam while the FRP reinforced beam developed unacceptably wide cracks. In the analytical part comprehensive analysis of the experimental data in both flexure and shear is performed. It is determined that the existing design expressions for ultimate flexural strength and service load deflection calculation cannot accurately predict the response of PCP reinforced beams. Accordingly, new expressions for calculation of deflection, crack width, tension stiffening, and ultimate capacity of the PCP reinforced beams are proposed. The predictions of the proposed methods of analysis agree very well with the corresponding experimental data. Based on the results of the current study, it is concluded that high strength concrete prisms prestressed with carbon fibre reinforced plastic bars can be used as reinforcement in concrete structures to avoid the problems of large deflections and wide cracks under service loads.

  10. 14 CFR 25.305 - Strength and deformation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  11. 14 CFR 25.305 - Strength and deformation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  12. 14 CFR 25.305 - Strength and deformation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  13. 14 CFR 25.305 - Strength and deformation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  14. 14 CFR 25.305 - Strength and deformation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  15. Long Term Displacement Data of Woven Fabric Webbings Under Constant Load for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Kenner, Winfred S.; Jones, Thomas C.; Doggett, William R.; Lucy, Melvin H.; Grondin, Trevor A.; Whitley, Karen S.; Duncan, Quinton; Plant, James V.

    2014-01-01

    Inflatable modules for space applications offer weight and launch volume savings relative to current metallic modules. Limited data exist on the creep behavior of the restraint layer of inflatable modules. Long-term displacement and strain data of two high strength woven fabric webbings, Kevlar and Vectran, under constant load is presented. The creep behavior of webbings is required by designers to help determine service life parameters of inflatable modules. Four groups of different webbings with different loads were defined for this study. Group 1 consisted of 4K Kevlar webbings loaded to 33% ultimate tensile strength and 6K Vectran webbings loaded to 27% ultimate tensile strength, group 2 consisted of 6K Kevlar webbings loaded to 40% and 43% ultimate tensile strength, and 6K Vectran webbings loaded to 50% ultimate tensile strength, group 3 consisted of 6K Kevlar webbings loaded to 52% ultimate tensile strength and 6K Vectran webbings loaded to 60% ultimate tensile strength, and group 4 consisted of 12.5K Kevlar webbings loaded to 22% ultimate tensile strength, and 12.5K Vectran webbings loaded to 22% ultimate tensile strength. The uniquely designed test facility, hardware, displacement measuring devices, and test data are presented. Test data indicate that immediately after loading all webbings stretch an inch or more, however as time increases displacement values significantly decrease to fall within a range of several hundredth of an inch over the remainder of test period. Webbings in group 1 exhibit near constant displacements and strains over a 17-month period. Data acquisition was suspended after the 17th month, however webbings continue to sustain load without any local webbing damage as of the 21st month of testing. Webbings in group 2 exhibit a combination of initial constant displacement and subsequent increases in displacement rates over a 16-month period. Webbings in group 3 exhibit steady increases in displacement rates leading to webbing failure over a 3-month period. Five of six webbings experienced local damage and subsequent failure in group 3. Data from group 4 indicates increasing webbing displacements over a 7-month period. All webbings in groups 1, 2, and 4 remain suspended without any local damage as of the writing of this paper. Variations in facility temperatures over test period seem to have had limited effect on long-term webbing displacement data.

  16. 14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...

  17. 14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...

  18. 14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...

  19. 14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...

  20. 14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...

  1. Designing of Timber Bolt Connection Subjected To Double Unequal Shears

    NASA Astrophysics Data System (ADS)

    Musilek, Josef; Plachy, Jan

    2017-10-01

    The paper deals with load-carrying capacity of bolted connections subjected to unequal double shear with thin plates as outer members and inner timber member. This type of connection is usually widespread and in building support structures made of wood is commonly used. This may occur for example in skeletal structures which contain structural elements based on wood, but also for smaller wooden buildings. Specifically, this type of connection can be found in ceiling structures in the joint joists and beams. If one joist greater margin than the second, bringing the load on the side of the joists of a larger span greater loads than on the side with a smaller span joist. Structure engineer, who is designing such a connection, must use for the design of the connection design procedures and formulas from which he or she calculates the design resistance in order to carry out further assessment of the reliability of the connection in the ultimate limit state. The load-carrying capacity of this connections type can be calculated at present according to Johansen’s equations, which are also contained in present European standard for the design timber structures -Eurocode 5. These Johansen’s equations assume that the loads which act on the outer plates are equal. For this reason, the structure engineer is often forced to use formulas intended for the timber bolt connection subjected to double equal shear and he or she must find ways how to use them although the formulas are not suitable. This paper deals with the case, when the loads acting on the outer plates are unequal.

  2. The role of suture cutout in the failure of meniscal root repair during the early post-operative period: a biomechanical study.

    PubMed

    Perez-Blanca, Ana; Prado Nóvoa, María; Lombardo Torre, Maximiano; Espejo-Reina, Alejandro; Ezquerro Juanco, Francisco; Espejo-Baena, Alejandro

    2018-04-01

    To assess the role of suture cutout in the mechanics of failure of the repaired posterior meniscal root during the early post-operative period when using sutures of different shape. Twenty medial porcine menisci were randomized in two groups depending on the suture shape used to repair the posterior root: thread or tape. The sutured menisci were subjected to cyclic loading (1000 cycles, (10, 30) N) followed by load-to-failure testing. Residual displacements, stiffness, and ultimate failure load were determined. During tests, the tissue-suture interface was recorded using a high-resolution camera. In cyclic tests, cutout progression at the suture insertion points was not observed for any specimen of either group and no differences in residual displacements were found between use of thread or tape. In load-to-failure tests, suture cutout started in all menisci at a load close to the ultimate failure and all specimens failed by suture pullout. Suture tape had a greater ultimate load with no other differences. In a porcine model of a repaired posterior meniscal root subjected to cyclic loads representative of current rehabilitation protocols in the early post-operative period under restricted loading conditions, suture cutout was not found as a main source of permanent root displacement when using suture thread or tape. Suture cutout progression started at high loading levels close to the ultimate load of the construct. Tape, with a meniscus-suture contact area larger than thread, produced higher ultimate load.

  3. Centaur Standard Shroud (CSS) static ultimate load structural tests

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A series of tests were conducted on the jettisonable metallic shroud used on the Titan/Centaur launch vehicle to verify its structural capabilities and to evaluate its structural interaction with the Centaur stage. A flight configured shroud and the interfacing Titan/Centaur structural assemblies were subjected to tests consisting of combinations of applied axial and shear loads to design ultimate values, including a set of tests on thermal conditions and two dynamic response tests to verify the analytical stiffness model. The strength capabilities were demonstrated at ultimate (125 percent of design limit) loads. It was also verified that the spring rate of the flight configured shroud-to-Centaur forward structural deflections of the specimen became nonlinear, as expected, above limit load values. This test series qualification program verified that the Titan/Centaur shroud and the Centaur and Titan interface components are qualified structurally at design ultimate loads.

  4. Flexural performance of steel fiber reinforced concrete (SFRC) ribbed slab with various topping thicknesses

    NASA Astrophysics Data System (ADS)

    Rahman, Fadhillah Abdul; Bakar, Afidah Abu; Hashim, Mohd Hisbany Mohd; Ahmad, Hazrina

    2017-11-01

    Ribbed slab provides lighter slab than an equivalent solid slab which helps in reducing the weight with its voids. However, in order to overcome the drawbacks in the construction process, the application of steel fibre reinforcement concrete (SFRC) is seen as an alternative material to be used in the slab. This study is performed to investigate the behaviour of SFRC as the main material in ribbed slab, omitting the conventional reinforcements, under four-point bending test. Three equivalent samples of ribbed slabs were prepared for this study with variations in the topping thickness of 100, 75 and 50 mm. The flexural strength of ribbed slab with 100 mm topping shows similar loading carrying capacity with the 75mm topping while 50 mm gave the lowest ultimate loading. First cracks for all slabs occurred at the topping. The cracks began from the external ribs and propagates toward the internal rib. Incorporation of steel fibres help in giving a longer deflection softening than a sudden brittle failure, thus proves its ability to increase energy absorption capacity and improving cracking behaviour.

  5. Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings.

    PubMed

    Bao, Yihai; Main, Joseph A; Noh, Sam-Young

    2017-08-01

    A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness.

  6. Flexural behavior of reinforced concrete beam with polymer coated pumice

    NASA Astrophysics Data System (ADS)

    Nainggolan, Christin Remayanti; Wijatmiko, Indradi; Wibowo, Ari

    2017-09-01

    Sustainable development has become an important issue due to the increasing consideration of preserving the nature. Many alternative for coarse aggregate replacement have been investigated ranging from natural and fabricated aggregates. In this study, natural aggregate pumice was investigated since it offers lower density that give paramount benefit in reducing total building weight and hence reducing the earthquake excitation effect and optimizing the structural dimension. However, the characteristic of porous surfaces of pumice causes excessive water absorption during concrete mixing process. Therefore, to reduce the additional water, the pumice aggregates were coated with polymer. The tested specimens consisted of normal concrete beams (NCB), uncoated pumice aggregate concrete beam (UPA) and polymer coated pumice aggregate concrete beam (PCP). The objective of the research was to obtain the effect of coating on the pumice aggregate to the flexural behavior of concrete beams. The lateral load-displacement behavior, ductility and collapse mechanism were studied. The results showed that there were only marginal drop on the load-carrying capacity of the pumice aggregate beam compared to those of normal beam. Additionally, the ductility coefficient of specimens UPA and PCP decreased of 11,97% and 14,03% respectively compared to NCB, and the ultimate load capacity decreased less than 1%. Overall, the pumice aggregate showed good characteristic for replacing normal coarse aggregate.

  7. Experimental and Theoretical Research on the Compression Performance of CFRP Sheet Confined GFRP Short Pipe

    PubMed Central

    Zhao, Qilin; Chen, Li; Shao, Guojian

    2014-01-01

    The axial compressive strength of unidirectional FRP made by pultrusion is generally quite lower than its axial tensile strength. This fact decreases the advantages of FRP as main load bearing member in engineering structure. A theoretical iterative calculation approach was suggested to predict the ultimate axial compressive stress of the combined structure and analyze the influences of geometrical parameters on the ultimate axial compressive stress of the combined structure. In this paper, the experimental and theoretical research on the CFRP sheet confined GFRP short pole was extended to the CFRP sheet confined GFRP short pipe, namely, a hollow section pole. Experiment shows that the bearing capacity of the GFRP short pipe can also be heightened obviously by confining CFRP sheet. The theoretical iterative calculation approach in the previous paper is amended to predict the ultimate axial compressive stress of the CFRP sheet confined GFRP short pipe, of which the results agree with the experiment. Lastly the influences of geometrical parameters on the new combined structure are analyzed. PMID:24672288

  8. Squat Biomechanical Modeling Results from Exercising on the Hybrid Ultimate Lifting Kit

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen M.

    2016-01-01

    Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. The computational models currently under development utilize the OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from test subjects for estimation of muscle and joint loads. The subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. Test variables include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data is also obtained using free weights for a comparison to the resistively loaded exercise device. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. The focus of this presentation is to summarize the results from the full squat exercises across the different test variables.

  9. Behavior of Tilted Angle Shear Connectors

    PubMed Central

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  10. A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of therasnostic agents

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2015-12-01

    Nanoparticles have demonstrated great potential for enhancing drug delivery. However, the low drug encapsulation efficiency at high drug-to-nanoparticle feeding ratios and minimal drug loading content in nanoparticle at any feeding ratios are major hurdles to their widespread applications. Here we report a robust eukaryotic cell-like hybrid nanoplatform (EukaCell) for encapsulation of theranostic agents (doxorubicin and indocyanine green). The EukaCell consists of a phospholipid membrane, a cytoskeleton-like mesoporous silica matrix and a nucleus-like fullerene core. At high drug-to-nanoparticle feeding ratios (for example, 1:0.5), the encapsulation efficiency and loading content can be improved by 58 and 21 times, respectively, compared with conventional silica nanoparticles. Moreover, release of the encapsulated drug can be precisely controlled via dosing near infrared laser irradiation. Ultimately, the ultra-high (up to ~87%) loading content renders augmented anticancer capacity both in vitro and in vivo. Our EukaCell is valuable for drug delivery to fight against cancer and potentially other diseases.

  11. Behavior of Tilted Angle Shear Connectors.

    PubMed

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  12. Dynamic impact indentation of hydrated biological tissues and tissue surrogate gels

    NASA Astrophysics Data System (ADS)

    Ilke Kalcioglu, Z.; Qu, Meng; Strawhecker, Kenneth E.; Shazly, Tarek; Edelman, Elazer; VanLandingham, Mark R.; Smith, James F.; Van Vliet, Krystyn J.

    2011-03-01

    For both materials engineering research and applied biomedicine, a growing need exists to quantify mechanical behaviour of tissues under defined hydration and loading conditions. In particular, characterisation under dynamic contact-loading conditions can enable quantitative predictions of deformation due to high rate 'impact' events typical of industrial accidents and ballistic insults. The impact indentation responses were examined of both hydrated tissues and candidate tissue surrogate materials. The goals of this work were to determine the mechanical response of fully hydrated soft tissues under defined dynamic loading conditions, and to identify design principles by which synthetic, air-stable polymers could mimic those responses. Soft tissues from two organs (liver and heart), a commercially available tissue surrogate gel (Perma-Gel™) and three styrenic block copolymer gels were investigated. Impact indentation enabled quantification of resistance to penetration and energy dissipative constants under the rates and energy densities of interest for tissue surrogate applications. These analyses indicated that the energy dissipation capacity under dynamic impact increased with increasing diblock concentration in the styrenic gels. Under the impact rates employed (2 mm/s to 20 mm/s, corresponding to approximate strain energy densities from 0.4 kJ/m3 to 20 kJ/m3), the energy dissipation capacities of fully hydrated soft tissues were ultimately well matched by a 50/50 triblock/diblock composition that is stable in ambient environments. More generally, the methodologies detailed here facilitate further optimisation of impact energy dissipation capacity of polymer-based tissue surrogate materials, either in air or in fluids.

  13. A new concept of precast concrete retaining wall: from laboratory model to the in-situ tests

    NASA Astrophysics Data System (ADS)

    Bui, T. T.; Tran, H. V.; Limam, A.; Bost, M.; Bui, Q. B.; Robit, P.

    2018-04-01

    A new concept for the soil nail walls is here proposed and validated through experimental and numerical approaches. This process, based on the use of precast elements that are easier to install, is cheaper and more aesthetic than the classical methods, but the main advantage is reducing the cement consumption which conducts to divided carbon footprint by three. In order to characterize the structural capacity of this new process, this article present an investigation on two in-situ representative walls, one in shotcrete which is the old way of construction, and the other, consisting the precast reinforced concrete slabs, which is the new process. We thus have a demonstrator on a real scale, and perfectly representative, since the constructive modes, as well as the mechanical, thermal, and hydric loadings are the real ones associated with the environment in situ. Substantial instrumentation has been realized over a long period (nearly 2 years), enabling to follow the evolution of the displacements of each wall and the efforts in the anchor nails. To determine the bearing capacity of the constituent element of the precast nail wall, an experimental study coupled with a numerical simulation has been conducted in the laboratory on a single precast slab. This study allows the evaluation of the load associated to crack initiation and the bearing capacity associated to the ultimate state, at the scale of the constituent elements. Finally, in order to evaluate the behaviour of the two concepts of nail walls in the case of extreme solicitation, a dynamic loading induced by an explosion has been conducted on the site.

  14. Analysis of integrating compressed air energy storage concepts with coal gasification/combined-cycle systems for continuous power production. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhamkin, M.; Patel, M.; Andersson, L.

    1992-12-01

    A previous study sponsored by EPRI concluded that integrating a compressed-air energy storage (CAES) plant with a coal-gasification system (CGS) can reduce the required capacity and cost of the expensive gasification system. The results showed that when compared at an equal plant capacity, the capital cost of the CGS portion of the integrated CAES/CGS plant can be reduced by as much as 30% relative to the same portion of an integrated gasification combined cycle (IGCC) plant. Furthermore, the capital cost of the CAES/CGS.plant, configured as a peaking unit, was found to be slightly lower than that of the base-load IGCCmore » plant. However, the overall economics of the CAES/CGS plant were adversely affected by the low capacity factor of the peak-load service, and ultimately, were found to be less attractive than the IGCC plant. The main objective of this study was to develop and analyze integrated CAES/CGS power plant concepts which provide for continuous (around-the-clock) operation of both the CAES reheat turboexpander train and the CGS facility. The developed concepts also provide utility-load management functions by driving the CAES compressor trains with off-peak electricity supplied through the grid. EPRI contracted with Energy Storage & Power Consultants, Inc. (ESPC) to develop conceptual designs, optimized performance characteristics, and preliminary cost data for these CAES/CGS concepts, and to provide a technical and cost comparison to the IGCC plant. The CAES/CGS concepts developed by ESPC for the current study contrast from those of Reference 1.« less

  15. Analysis of integrating compressed air energy storage concepts with coal gasification/combined-cycle systems for continuous power production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhamkin, M.; Patel, M.; Andersson, L.

    1992-12-01

    A previous study sponsored by EPRI concluded that integrating a compressed-air energy storage (CAES) plant with a coal-gasification system (CGS) can reduce the required capacity and cost of the expensive gasification system. The results showed that when compared at an equal plant capacity, the capital cost of the CGS portion of the integrated CAES/CGS plant can be reduced by as much as 30% relative to the same portion of an integrated gasification combined cycle (IGCC) plant. Furthermore, the capital cost of the CAES/CGS.plant, configured as a peaking unit, was found to be slightly lower than that of the base-load IGCCmore » plant. However, the overall economics of the CAES/CGS plant were adversely affected by the low capacity factor of the peak-load service, and ultimately, were found to be less attractive than the IGCC plant. The main objective of this study was to develop and analyze integrated CAES/CGS power plant concepts which provide for continuous (around-the-clock) operation of both the CAES reheat turboexpander train and the CGS facility. The developed concepts also provide utility-load management functions by driving the CAES compressor trains with off-peak electricity supplied through the grid. EPRI contracted with Energy Storage Power Consultants, Inc. (ESPC) to develop conceptual designs, optimized performance characteristics, and preliminary cost data for these CAES/CGS concepts, and to provide a technical and cost comparison to the IGCC plant. The CAES/CGS concepts developed by ESPC for the current study contrast from those of Reference 1.« less

  16. Finite Element Analysis of Increasing Column Section and CFRP Reinforcement Method under Different Axial Compression Ratio

    NASA Astrophysics Data System (ADS)

    Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang

    2017-11-01

    Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.

  17. The biomechanical strength of a hardware-free femoral press-fit method for ACL bone-tendon-bone graft fixation.

    PubMed

    Arnold, M P; Burger, L D; Wirz, D; Goepfert, B; Hirschmann, M T

    2017-04-01

    The purpose was to investigate graft slippage and ultimate load to failure of a femoral press-fit fixation technique for anterior cruciate ligament (ACL) reconstruction. Nine fresh-frozen knees were used. Standardized harvesting of the B-PT-B graft was performed. The femora were cemented into steel rods, and a tunnel was drilled outside-in into the native ACL footprint and expanded using a manual mill bit. The femoral bone block was fixed press-fit. To pull the free end of the graft, it was fixed to a mechanical testing machine using a deep-freezing technique. A motion capture system was used to assess three-dimensional micro-motion. After preconditioning of the graft, 1000 cycles of tensile loading were applied. Finally, an ultimate load to failure test was performed. Graft slippage in mm ultimate load to failure as well as type of failure was noted. In six of the nine measured specimens, a typical pattern of graft slippage was observed during cyclic loading. For technical reasons, the results of three knees had to be discarded. 78.6 % of total graft slippage occurred in the first 100 cycles. Once the block had settled, graft slippage converged to zero, highlighting the importance of initial preconditioning of the graft in the clinical setting. Graft slippage after 1000 cycles varied around 3.4 ± 3.2 mm (R = 1.3-9.8 mm) between the specimens. Ultimate loading (n = 9) revealed two characteristic patterns of failure. In four knees, the tendon ruptured, while in five knees the bone block was pulled out of the femoral tunnel. The median ultimate load to failure was 852 N (R = 448-1349 N). The implant-free femoral press-fit fixation provided adequate primary stability with ultimate load to failure pull forces at least equal to published results for interference screws; hence, its clinical application is shown to be safe.

  18. Impact of measurement uncertainty from experimental load distribution factors on bridge load rating

    NASA Astrophysics Data System (ADS)

    Gangone, Michael V.; Whelan, Matthew J.

    2018-03-01

    Load rating and testing of highway bridges is important in determining the capacity of the structure. Experimental load rating utilizes strain transducers placed at critical locations of the superstructure to measure normal strains. These strains are then used in computing diagnostic performance measures (neutral axis of bending, load distribution factor) and ultimately a load rating. However, it has been shown that experimentally obtained strain measurements contain uncertainties associated with the accuracy and precision of the sensor and sensing system. These uncertainties propagate through to the diagnostic indicators that in turn transmit into the load rating calculation. This paper will analyze the effect that measurement uncertainties have on the experimental load rating results of a 3 span multi-girder/stringer steel and concrete bridge. The focus of this paper will be limited to the uncertainty associated with the experimental distribution factor estimate. For the testing discussed, strain readings were gathered at the midspan of each span of both exterior girders and the center girder. Test vehicles of known weight were positioned at specified locations on each span to generate maximum strain response for each of the five girders. The strain uncertainties were used in conjunction with a propagation formula developed by the authors to determine the standard uncertainty in the distribution factor estimates. This distribution factor uncertainty is then introduced into the load rating computation to determine the possible range of the load rating. The results show the importance of understanding measurement uncertainty in experimental load testing.

  19. Quantum Limits of Space-to-Ground Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission

  20. LRFD software for design and actual ultimate capacity of confined rectangular columns.

    DOT National Transportation Integrated Search

    2013-04-01

    The analysis of concrete columns using unconfined concrete models is a well established practice. On the : other hand, prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear : analysis. Modern codes and...

  1. Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings

    PubMed Central

    Bao, Yihai; Main, Joseph A.; Noh, Sam-Young

    2017-01-01

    A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness. PMID:28890599

  2. Impact capacity reduction in railway prestressed concrete sleepers with vertical holes

    NASA Astrophysics Data System (ADS)

    Ngamkhanong, Chayut; Li, Dan; Kaewunruen, Sakdirat

    2017-09-01

    Railway prestressed concrete sleepers (or railroad ties) are principally designed in order to carry wheel loads from the rails to the ground as well as to secure rail gauge for dynamic safe movements of trains. In spite of the most common use of the prestressed concrete sleepers in railway tracks, the concrete sleepers are often modified on construction sites to fit in other systems such as cables, signalling gears, drainage pipes, etc. This is because those signalling, fibre optic, equipment cables are often damaged either by ballast corners or by tamping machine. It is thus necessary to modify concrete sleepers to cater cables internally so that the cables or drainage pipes would not experience detrimental or harsh environments. Accordingly, this study will extend from the previous study into the design criteria of holes and web openings. This paper will highlight structural capacity of concrete sleepers under dynamic transient loading. The modified compression field theory for ultimate strength design of concrete sleepers will be highlighted in this study. The outcome of this study will improve the understanding into dynamic behavior of prestressed concrete sleepers with vertical holes. The insight will enable predictive track maintenance regime in railway industry.

  3. Biomechanical Modeling of Split-leg Squat and Heel Raise on the Hybrid Ultimate Lifting Kit (HULK)

    NASA Technical Reports Server (NTRS)

    Thompson, William K.; Gallo, Christopher A.; Lewandowski, Beth E.; Jagodnik, Kathleen M.; Humphreys, Brad; Funk, Justin; Funk, Nathan; Dewitt, John K.

    2016-01-01

    Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and musculoskeletal forces that occur during exercises performed on the prototype devices. Computational models currently use OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from subjects for estimation of muscle and joint loads. Subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the loads on the body. Multiple exercises are performed and evaluated during a test session such as a full squat, single leg squat, heel raise and dead lift. Variables for these exercises include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data from free weights are compared to the resistively loaded exercise device. The focus of this presentation is to summarize the results from the single-leg squat and heel raise exercises performed during three sessions occurring in 2015. Differences in loading configuration, cadence and stance produce differences in kinematics, joint toques and force and muscle forces.

  4. 14 CFR 23.301 - Loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... load would significantly change the distribution of external or internal loads, this redistribution...) and ultimate loads (limit loads multiplied by prescribed factors of safety). Unless otherwise provided...

  5. Biomechanical evaluation of a single-row versus double-row repair for complete subscapularis tears.

    PubMed

    Wellmann, Mathias; Wiebringhaus, Philipp; Lodde, Ina; Waizy, Hazibullah; Becher, Christoph; Raschke, Michael J; Petersen, Wolf

    2009-12-01

    The purpose of the study was to compare a single-row repair and a double-row repair technique for the specific characteristics of a complete subscapularis lesion. Ten pairs of human cadaveric shoulder human shoulder specimens were tested for stiffness and ultimate tensile strength of the intact tendons in a load to failure protocol. After a complete subscapularis tear was provoked, the specimens were assigned to two treatment groups: single-row repair (1) and a double-row repair using a "suture bridge" technique (2). After repair cyclic loading a subsequent load to failure protocol was performed to determine the ultimate tensile load, the stiffness and the elongation behaviour of the reconstructions. The intact subscapularis tendons had a mean stiffness of 115 N/mm and a mean ultimate load of 720 N. The predominant failure mode of the intact tendons was a tear at the humeral insertion site (65%). The double-row technique restored 48% of the ultimate load of the intact tendons (332 N), while the single-row technique revealed a significantly lower ultimate load of 244 N (P = 0.001). In terms of the stiffness, the double-row technique showed a mean stiffness of 81 N/mm which is significantly higher compared to the stiffness of the single-row repairs of 55 N/mm (P = 0.001). The double-row technique has been shown to be stronger and stiffer when compared to a conventional single-row repair. Therefore, this technique is recommended from a biomechanical point of view irrespectively if performed by an open or arthroscopic approach.

  6. A biomechanical comparison of 2 techniques of footprint reconstruction for rotator cuff repair: the SwiveLock-FiberChain construct versus standard double-row repair.

    PubMed

    Burkhart, Stephen S; Adams, Christopher R; Burkhart, Sarah S; Schoolfield, John D

    2009-03-01

    The purpose of this study was to compare the biomechanical fixation parameters of a standard double-row rotator cuff repair with those of a knotless footprint reconstruction using the double-row SwiveLock-FiberChain technique (Arthrex, Naples, FL). Seven matched pairs of human cadaveric shoulders were used for testing (mean age, 48 +/- 10.3 years). A shoulder from each matched pair was randomly selected to receive a standard 4-anchor double-row repair of the supraspinatus tendon, and the contralateral shoulder received a 4-anchor double-row SwiveLock-FiberChain repair. The tendon was cycled from 10 N to 100 N at 1 Hz for 500 cycles, followed by a single-cycle pull to failure at 33 mm/s. Yield load, ultimate load, cyclic displacement, and mode of failure were recorded. Yield load and ultimate load were higher for the SwiveLock-FiberChain repair compared with the standard double-row repair for 6 of the 7 treatment pairs; however, 1 cadaver had a contrary outcome, so the overall mean differences in yield load and ultimate load were not significantly different from 0 by Student t test (P > .15). Furthermore, smaller differences between yield load and ultimate load for the SwiveLock-FiberChain repair in 5 of the 7 treatment pairs showed a self-reinforcing mechanism. Double-row footprint reconstruction with the knotless SwiveLock-FiberChain system in this study had yield loads, ultimate loads, and cyclic displacements that were statistically equivalent to those of standard double-row rotation cuff reconstructions. The SwiveLock-FiberChain system's combination of strength, self-reinforcement, and decreased operating time may offer advantages to the surgeon, particularly when dealing with older patients in whom poor tissue quality and total operative time are important considerations.

  7. Seismic performance of recycled concrete-filled square steel tube columns

    NASA Astrophysics Data System (ADS)

    Chen, Zongping; Jing, Chenggui; Xu, Jinjun; Zhang, Xianggang

    2017-01-01

    An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.

  8. Biomechanical characteristics of the horizontal mattress stitch: implication for double-row and suture-bridge rotator cuff repair.

    PubMed

    Tamboli, Mallika; Mihata, Teruhisa; Hwang, James; McGarry, Michelle H; Kang, Yangmi; Lee, Thay Q

    2014-03-01

    We investigated the effects of bite-size horizontal mattress stitch (distance between the limbs passed through the tendon) on the biomechanical properties of the repaired tendon. We anchored 20 bovine Achilles tendons to bone using no. 2 high-strength suture and 5-mm titanium suture anchors in a mattress-suture technique. Tendons were allocated randomly into two groups of ten each to receive stitches with a 4- or 10-mm bite. Specimens underwent cyclic loading from 5 to 30 N at 1 mm/s for 30 cycles, followed by tensile testing to failure. Gap formation, tendon strain, hysteresis, stiffness, yield load, ultimate load, energy to yield load, and energy to ultimate load were compared between groups using unpaired t tests. The 4-mm group had less (p < 0.05) gap formation and less (p < 0.05) longitudinal strain than did the 10-mm group. Ultimate load (293.6 vs. 148.9 N) and energy to ultimate load (2,563 vs. 1,472 N-mm) were greater (p < 0.001) for the 10-mm group than the 4-mm group. All tendons repaired with 4-mm suturing failed at the suture-tendon interface, with sutures pulling through the tendon, whereas the suture itself failed before the tendon did in seven of the ten specimens in the 10-mm group. Whereas a 4-mm bite fixed the tendon more tightly but at the cost of decreased ultimate strength, a 10-mm bite conveyed greater ultimate strength but with increased gap and strain. These results suggest that for the conventional double-row repair, small mattress stitches provide a tighter repair, whereas large stitches are beneficial to prevent sutures from pulling through the tendon after surgery. For suture-bridge rotator cuff repair, large stitches are beneficial because the repaired tendon has a higher strength, and the slightly mobile medial knot can be tightened by lateral fixation.

  9. Ultimate compression after impact load prediction in graphite/epoxy coupons using neural network and multivariate statistical analyses

    NASA Astrophysics Data System (ADS)

    Gregoire, Alexandre David

    2011-07-01

    The goal of this research was to accurately predict the ultimate compressive load of impact damaged graphite/epoxy coupons using a Kohonen self-organizing map (SOM) neural network and multivariate statistical regression analysis (MSRA). An optimized use of these data treatment tools allowed the generation of a simple, physically understandable equation that predicts the ultimate failure load of an impacted damaged coupon based uniquely on the acoustic emissions it emits at low proof loads. Acoustic emission (AE) data were collected using two 150 kHz resonant transducers which detected and recorded the AE activity given off during compression to failure of thirty-four impacted 24-ply bidirectional woven cloth laminate graphite/epoxy coupons. The AE quantification parameters duration, energy and amplitude for each AE hit were input to the Kohonen self-organizing map (SOM) neural network to accurately classify the material failure mechanisms present in the low proof load data. The number of failure mechanisms from the first 30% of the loading for twenty-four coupons were used to generate a linear prediction equation which yielded a worst case ultimate load prediction error of 16.17%, just outside of the +/-15% B-basis allowables, which was the goal for this research. Particular emphasis was placed upon the noise removal process which was largely responsible for the accuracy of the results.

  10. Dynamics of layered reinforced concrete beam on visco-elastic foundation with different resistances of concrete and reinforcement to tension and compression

    NASA Astrophysics Data System (ADS)

    Nemirovsky, Y. V.; Tikhonov, S. V.

    2018-03-01

    Originally, fundamentals of the theory of limit equilibrium and dynamic deformation of building metal and reinforced concrete structures were created by A. A. Gvozdev [1] and developed by his followers [4, 5, 6, 7, 11, 12]. Forming the basis for the calculation, the model of an ideal rigid-plastic material has enabled to determine in many cases the ultimate load bearing capacity and upper (kinematically possible) or lower (statically valid) values for a wide class of different structures with quite simple methods. At the same time, applied to concrete structures the most important property of concrete to significantly differently resist tension and compression was not taken into account [10]. This circumstance was considered in [3] for reinforced concrete beams under conditions of quasistatic loading. The deformation is often accompanied by resistance of the environment in construction practice [8, 9]. In [2], the dynamics of multi-layered concrete beams on visco-elastic foundation under the loadings of explosive type is considered. In this work we consider the case which is often encountered in practical applications when the loadings weakly change in time.

  11. Biomechanical properties of interosseous proximal carpal row ligaments.

    PubMed

    Nikolopoulos, Fotios; Apergis, Emmanuel; Kefalas, Vassilios; Zoubos, Aristides; Soucacos, Panayiotis; Papagelopoulos, Panayiotis

    2011-05-01

    The Scapholunate (S-L) and Lunotriquetrum (L-Tr) ligaments have been extensively studied in the literature. A wide range of measurements has been reported for ultimate load and stiffness with different mechanical protocols. In this study, we examined the mechanical properties of both ligaments harvested from the same wrist. Fifteen fresh cadaver wrists were used to harvest eight S-L and four L-Tr. Testing was performed in quasi-static loading in a well defined direction for each ligament system. The ultimate load for S-L was 68-210 N with a mean value of 147 ± 54 N and a stiffness of 35.7 ± 9.6 N/mm. For L-Tr the ultimate load was 122-179 N with a mean value of 150 ± 24 N and a stiffness of 192 ± 60 N/mm. The two ligaments had nearly the same ultimate load, but the L-Tr had a higher stiffness (p = 0.05). These findings could be useful to assess the appropriate autologous autografts for reconstruction of the S-L and L-Tr. Copyright © 2010 Orthopaedic Research Society.

  12. Opposite effects of capacity load and resolution load on distractor processing.

    PubMed

    Zhang, Weiwei; Luck, Steven J

    2015-02-01

    According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining 2 vs. 4 colors) or the precision of the representations (resolution load, detecting small vs. large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load.

  13. Opposite Effects of Capacity Load and Resolution Load on Distractor Processing

    PubMed Central

    Zhang, Weiwei; Luck, Steven J.

    2014-01-01

    According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining two versus four colors) or the precision of the representations (resolution load, detecting small versus large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load. PMID:25365573

  14. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement.

    PubMed

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-08-19

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.

  15. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement

    PubMed Central

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-01-01

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied. PMID:28788170

  16. Neural Network Prediction of Aluminum-Lithium Weld Strengths from Acoustic Emission Amplitude Data

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Israel, Peggy L.; Knotts, Gregory L.

    1993-01-01

    Acoustic Emission (AE) flaw growth activity was monitored in aluminum-lithium weld specimens from the onset tensile loading to failure. Data on actual ultimate strengths together with AE data from the beginning of loading up to 25 percent of the expected ultimate strength were used to train a backpropagation neural network to predict ultimate strengths. Architecturally, the fully interconnected network consisted of an input layer for the AE amplitude data, a hidden layer to accommodate failure mechanism mapping, and an output layer for ultimate strength prediction. The trained network was the applied to the prediction of ultimate strengths in the remaining six specimens. The worst case prediction error was found to be +2.6 percent.

  17. 49 CFR 237.71 - Determination of bridge load capacities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Determination of bridge load capacities. 237.71... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRIDGE SAFETY STANDARDS Capacity of Bridges § 237.71 Determination of bridge load capacities. (a) Each track owner shall determine the load capacity of each of its...

  18. 49 CFR 237.71 - Determination of bridge load capacities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Determination of bridge load capacities. 237.71... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRIDGE SAFETY STANDARDS Capacity of Bridges § 237.71 Determination of bridge load capacities. (a) Each track owner shall determine the load capacity of each of its...

  19. Dynamic Tensile Loading Improves the Functional Properties of Mesenchymal Stem Cell-Laden Nanofiber-Based Fibrocartilage

    PubMed Central

    Baker, Brendon M.; Shah, Roshan P.; Huang, Alice H.

    2011-01-01

    Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications. PMID:21247342

  20. Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage.

    PubMed

    Baker, Brendon M; Shah, Roshan P; Huang, Alice H; Mauck, Robert L

    2011-05-01

    Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications.

  1. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis.

    PubMed

    Schoenfeld, Brad J; Grgic, Jozo; Ogborn, Dan; Krieger, James W

    2017-12-01

    Schoenfeld, BJ, Grgic, J, Ogborn, D, and Krieger, JW. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res 31(12): 3508-3523, 2017-The purpose of this article was to conduct a systematic review of the current body of literature and a meta-analysis to compare changes in strength and hypertrophy between low- vs. high-load resistance training protocols. Searches of PubMed/MEDLINE, Cochrane Library, and Scopus were conducted for studies that met the following criteria: (a) an experimental trial involving both low-load training [≤60% 1 repetition maximum (1RM)] and high-load training (>60% 1RM); (b) with all sets in the training protocols being performed to momentary muscular failure; (c) at least one method of estimating changes in muscle mass or dynamic, isometric, or isokinetic strength was used; (d) the training protocol lasted for a minimum of 6 weeks; (e) the study involved participants with no known medical conditions or injuries impairing training capacity. A total of 21 studies were ultimately included for analysis. Gains in 1RM strength were significantly greater in favor of high- vs. low-load training, whereas no significant differences were found for isometric strength between conditions. Changes in measures of muscle hypertrophy were similar between conditions. The findings indicate that maximal strength benefits are obtained from the use of heavy loads while muscle hypertrophy can be equally achieved across a spectrum of loading ranges.

  2. Behaviour of square FRP-Confined High-Strength Concrete Columns under Eccentric Compression

    NASA Astrophysics Data System (ADS)

    Fallah Pour, Ali; Gholampour, Aliakbar; Zheng, Junai; Ozbakkaloglu, Togay

    2018-01-01

    This paper presents the results of an experimental study on the effect of load eccentricity on the axial compressive behaviour of carbon fibre-reinforced polymer (CFRP)- confined high-strength concrete (HSC) columns with a square cross-section. The axial loading was applied to the specimens at six different load eccentricities ranging from zero to 50 mm. The results show that the load eccentricity significantly influences the axial load-displacement and axial stress-strain behaviour of FRP-confined HSC. Increasing the load eccentricity leads to an increase in the ultimate axial strain but a decrease in the ultimate axial stress and second branch slope of the axial stress-strain curve.

  3. Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2000-01-01

    This paper introduces a simple "Rule of Thumb" (ROT) method to estimate the load capacity of foil air journal bearings, which are self-acting compliant-surface hydrodynamic bearings being considered for Oil-Free turbo-machinery applications such as gas turbine engines. The ROT is based on first principles and data available in the literature and it relates bearing load capacity to the bearing size and speed through an empirically based load capacity coefficient, D. It is shown that load capacity is a linear function of bearing surface velocity and bearing projected area. Furthermore, it was found that the load capacity coefficient, D, is related to the design features of the bearing compliant members and operating conditions (speed and ambient temperature). Early bearing designs with basic or "first generation" compliant support elements have relatively low load capacity. More advanced bearings, in which the compliance of the support structure is tailored, have load capacities up to five times those of simpler designs. The ROT enables simplified load capacity estimation for foil air journal bearings and can guide development of new Oil-Free turbomachinery systems.

  4. Behavior of wet precast beam column connections under progressive collapse scenario: an experimental study

    NASA Astrophysics Data System (ADS)

    Nimse, Rohit B.; Joshi, Digesh D.; Patel, Paresh V.

    2014-12-01

    Progressive collapse denotes a failure of a major portion of a structure that has been initiated by failure of a relatively small part of the structure such as failure of any vertical load carrying element (typically columns). Failure of large part of any structure will results into substantial loss of human lives and natural resources. Therefore, it is important to prevent progressive collapse which is also known as disproportionate collapse. Nowadays, there is an increasing trend toward construction of buildings using precast concrete. In precast concrete construction, all the components of structures are produced in controlled environment and they are being transported to the site. At site such individual components are connected appropriately. Connections are the most critical elements of any precast structure, because in past major collapse of precast structure took place because of connection failure. In this study, behavior of three different 1/3rd scaled wet precast beam column connections under progressive collapse scenario are studied and its performance is compared with monolithic connection. Precast connections are constructed by adopting different connection detailing at the junction by considering reinforced concrete corbel for two specimens and steel billet for one specimen. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection and deflection measured along the span of the beam. From the results, it is observed that load carrying capacity and ductility of precast connections considered in this study are more than that of monolithic connections.

  5. Double-Row Capsulolabral Repair Increases Load to Failure and Decreases Excessive Motion.

    PubMed

    McDonald, Lucas S; Thompson, Matthew; Altchek, David W; McGarry, Michelle H; Lee, Thay Q; Rocchi, Vanna J; Dines, Joshua S

    2016-11-01

    Using a cadaver shoulder instability model and load-testing device, we compared biomechanical characteristics of double-row and single-row capsulolabral repairs. We hypothesized a greater reduction in glenohumeral motion and translation and a higher load to failure in a mattress double-row capsulolabral repair than in a single-row repair. In 6 matched pairs of cadaveric shoulders, a capsulolabral injury was created. One shoulder was repaired with a single-row technique, and the other with a double-row mattress technique. Rotational range of motion, anterior-inferior translation, and humeral head kinematics were measured. Load-to-failure testing measured stiffness, yield load, deformation at yield load, energy absorbed at yield load, load to failure, deformation at ultimate load, and energy absorbed at ultimate load. Double-row repair significantly decreased external rotation and total range of motion compared with single-row repair. Both repairs decreased anterior-inferior translation compared with the capsulolabral-injured condition, however, no differences existed between repair types. Yield load in the single-row group was 171.3 ± 110.1 N, and in the double-row group it was 216.1 ± 83.1 N (P = .02). Ultimate load to failure in the single-row group was 224.5 ± 121.0 N, and in the double-row group it was 373.9 ± 172.0 N (P = .05). Energy absorbed at ultimate load in the single-row group was 1,745.4 ± 1,462.9 N-mm, and in the double-row group it was 4,649.8 ± 1,930.8 N-mm (P = .02). In cases of capsulolabral disruption, double-row repair techniques may result in decreased shoulder rotational range of motion and improved load-to-failure characteristics. In cases of capsulolabral disruption, repair techniques with double-row mattress repair may provide more secure fixation. Double-row capsulolabral repair decreases shoulder motion and increases load to failure, yield load, and energy absorbed at yield load more than single-row repair. Published by Elsevier Inc.

  6. Floating Breakwaters: State-of-the-Art Literature Review.

    DTIC Science & Technology

    1981-10-01

    transmission Mooring loads 20. / . 20. STR ACT (Continue on reverse ide If necessary and Identify by block number) A multitude of conceptual models of...are designed by finding the ultimate lateral resistance of the pile-soil system and increasing the lateral mooring load , Ft, by a fac- tor of safety...Fs, to determine the design lateral load on the pile. The ultimate lateral resistance of the anchor pile is reached when either the passive strength of

  7. Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade.

    PubMed

    Ge, Mingwei; Fang, Le; Tian, De

    2015-01-01

    At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project.

  8. Experimental investigation of connection performance for prefabricated timber beam

    NASA Astrophysics Data System (ADS)

    Lesmana, C.; Suhendi, S.

    2017-06-01

    This paper presents an investigation of connection performance for a simple supported prefabricated timber beams using Meranti hardwood (Shorea sp.). The good connection is crucial for the proper functioning of the timber structures. The adequate connection condition should be assured to achieve the requirement capacity design and performance of the system. The property of material was tested according to [1]. The proposed design of bolted connections has been evaluated through experimental investigation and compared to the simple supported beam without connection. The results demonstrate the effectiveness of the proposed connection design although the ultimate load of the beam with connection is only half of the beam without connection. The test results obtained the purposed connection should be improved.

  9. Capacities of template-type platforms in the Gulf of Mexico during hurricane Andrew

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bea, R.G.; Loch, K.J.; Young, P.L.

    1997-02-01

    This paper details results from nonlinear analyses of the ultimate limit state performance characteristics of four Gulf of Mexico (GOM) platforms subjected to intense loadings from hurricane Andrew. These four platforms were located to the east of the track of hurricane Andrew, and were thus in the most intense portion of the storm (Smith, 1993). The nonlinear analyses are able to replicate details of the observed behavior of the four structures. This replication is very dependent on realistic characterization of the performance characteristics of the pile foundations and on accurate information on the as is condition of the platforms beforemore » the storm.« less

  10. Experimental study on the use of steel-decks for prefabricated reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Priastiwi, Y. A.; Han, A. L.; Maryoto, A.; Noor, E. S.

    2017-11-01

    This paper presents an experimental study on the use of steel-decks for concrete beams. The purpose of this research is to determine the beam’s capacity, and the loaddisplacement relationships due to the use of steel-decks. The failure mechanism was also studied, since the behavior differs significantly from conventional concrete members. For analysis purposes, two beam prototypes with steel-decks (GB1 and GB2), and two conventional concrete beams having the exact same material properties and dimensions (NB1 and NB2) functioning as control elements, were tested. Load was applied by a two-point loading system, creating a pure bending state. To monitor vertical deflections, two LVDTs were used. All precision instruments were connected to a data logger, and a computer. The results showed that the beams GB had a significant ultimate moment capacity increase, which is 2,3 times the control element NB. The main enhancement contribution is originated from the presence of the bottom steel-deck, which due to bonding to the concrete, functioned as additional tensile reinforcement. The deck also increased the member’s ductility performance by 1.3 times. Specimen GB2 underwent bond loss in the transition zone between the deck and the concrete, reducing the initial stiffness of the member.

  11. Ultimate Limit State Assessment of Timber Bolt Connection Subjected to Double Unequal Shears

    NASA Astrophysics Data System (ADS)

    Musilek, Josef; Plachy, Jan

    2017-10-01

    Nowadays the problems occur when a structure engineer need to assess the ultimate limit state of timber bolt connection which is subjected to double unequal shears. This assessment of ultimate limit state shows the reliability of these connections. In assessing the reliability of this connection in ultimate limit state is a problem, because the formulas and equations that are currently available in design standards and available literature, describing only connections loaded symmetrically - this mean that they describe the timber bolt connection subjected to double equal shears. This fact causes problems because structural engineers have no available support, according to which they could assess reliability of the connection in terms of the ultimate limit state. They must therefore often report following an asymmetrically loaded connections carry about using formulas, which are primarily designed for checking connections loaded symmetrically. This leads logically to the fact that it is not respected by the actual behaviour of the connection in the ultimate limit state. Formulas derived in this paper provide the possibility to assess the ultimate limit state for such connection. The formulas derived in this article allow to carry out a reliability assessment of the ultimate limit state of timber bolt connection subjected to double shear. The using of the formulas derived in this paper leads to better description of the behaviour of this type of connection and also to the more economic design. An example of using these derived formulas is shown. There is shown in this example, how to assess the reliability of timber bolt connection subjected to double unequal shears in terms of ultimate limit states.

  12. Impact Capacity Reduction in Railway Prestressed Concrete Sleepers with Surface Abrasions

    NASA Astrophysics Data System (ADS)

    Ngamkhanong, Chayut; Li, Dan; Kaewunruen, Sakdirat

    2017-10-01

    Railway sleepers (also called ‘railroad tie’ in North America) embedded in ballasted railway tracks are a main part of railway track structures. Its important role is to transfer the loads evenly from the rails to a wider area of ballast bed and to secure rail gauge and enable safe passages of rolling stocks. By nature, railway infrastructure is nonlinear, evidenced by its behaviours, geometry and alignment, wheel-rail contact and operational parameters such as tractive efforts. Based on our critical review, the dynamic behaviour of railway sleepers has not been fully investigated, especially when the sleepers are deteriorated by excessive wears. In fact, the ballast angularity causes differential abrasions on the soffit or bottom surface of sleepers (especially at railseat zone). Furthermore, in sharp curves and rapid gradient change, longitudinal and lateral dynamics of rails increase the likelihood of railseat abrasions in concrete sleepers due to the unbalanced loading conditions. This paper presents a structural capacity of concrete sleepers under dynamic transient loading. The modified compression field theory for ultimate strength design of concrete sleepers under impact loading will be highlighted in this study. The influences of surface abrasions, including surface abrasion and soffit abrasion, on the dynamic behaviour of prestressed concrete sleepers, are firstly highlighted. The outcome of this study will improve the rail maintenance and inspection criteria in order to establish appropriate and sensible remote track condition monitoring network in practice. Moreover, this study will also improve the understanding of the fundamental dynamic behaviour of prestressed concrete sleepers with surface abrasions. The insight into these behaviours will not only improve safety and reliability of railway infrastructure but will enhance the structural safety of other concrete structures.

  13. Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade

    PubMed Central

    Ge, Mingwei; Fang, Le; Tian, De

    2015-01-01

    At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (C Popt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger C Popt or AEP (C Popt//AEP) for the same ultimate load, or a smaller load for the same C Popt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum C popt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and C popt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project. PMID:26528815

  14. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.

    PubMed

    Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard

    2017-01-01

    Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.

  15. Finite element analysis on flexural behavior of high ductility of fiber reinforced concrete beam

    NASA Astrophysics Data System (ADS)

    Zhou, Mohan; Chi, Cuiping; Pei, Changchun

    2017-03-01

    In this paper, finite element software is used to simulate and analyze ECC beams. With the ratio of water-binder, fiber content and the content of fly ash as variables, the initial cracking moments, the yield moments, the initial cracking deflections, and the yield deflections of the ECC beams are studied. The results show that the lower the water-binder ratio is, the better the beam performance is; When the fiber content is 13kg/m3, the mechanical properties of the ECC beams are the lowest, and then strengthen; When the content of fly ash increase, the bending moment of the specimen beam becomes smaller and the deflection tends to increase, however the deflection of the fly ash decreases when the content of fly ash is higher than 1300kg/m3 in the initial cracking. According to the formula of ordinary concrete ultimate load capacity, the formula of yield capacity of ECC beam is deduced.

  16. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent.

    PubMed

    Boddu, Veera M; Abburi, Krishnaiah; Talbott, Jonathan L; Smith, Edgar D

    2003-10-01

    A new composite chitosan biosorbent was prepared by coating chitosan, a glucosamine biopolymer, onto ceramic alumina. The composite bioadsorbent was characterized by high-temperature pyrolysis, porosimetry, scanning electron microscopy, and X-ray photoelectron spectroscopy. Batch isothermal equilibrium and continuous column adsorption experiments were conducted at 25 degrees C to evaluate the biosorbent for the removal of hexavalent chromium from synthetic as well as field samples obtained from chrome plating facilities. The effect of pH, sulfate, and chloride ion on adsorption was also investigated. The biosorbent loaded with Cr(VI) was regenerated using 0.1 M sodium hydroxide solution. A comparison of the results of the present investigation with those reported in the literature showed that chitosan coated on alumina exhibits greater adsorption capacity for chromium(VI). Further, experimental equilibrium data were fitted to Langmuir and Freundlich adsorption isotherms, and values of the parameters of the isotherms are reported. The ultimate capacity obtained from the Langmuir model is 153.85 mg/g chitosan.

  17. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    NASA Astrophysics Data System (ADS)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation) analyses of the flexure and beam specimens were also performed. These progressive failure analyses more closely approximated flexural behavior under actual testing conditions by reducing the elastic moduli of elements that were considered to have partially or totally failed. Individual element failures were predicted using the maximum stress, Tsai-Hill and Tsai-Wu failure criteria. Excellent predictions of flexural behavior were attributed to the progressive failure analyses combined with an appropriate failure criterion, and the reliable input material properties that were generated.

  18. Reliability of Hull Girder Ultimate Strength of Steel Ships

    NASA Astrophysics Data System (ADS)

    Da-wei, Gao; Gui-jie, Shi

    2018-03-01

    Hull girder ultimate strength is an evaluation index reflecting the true safety margin or structural redundancy about container ships. Especially, after the hull girder fracture accident of the MOL COMFORT, the 8,000TEU class large container ship, on June 17 2013, larger container ship safety has been paid on much more attention. In this paper, different methods of calculating hull girder ultimate strength are firstly discussed and compared with. The bending ultimate strength can be analyzed by nonlinear finite element method (NFEM) and increment-iterative method, and also the shear ultimate strength can be analyzed by NFEM and simple equations. Then, the probability distribution of hull girder wave loads and still water loads of container ship are summarized. At last, the reliability of hull girder ultimate strength under bending moment and shear forces for three container ships is analyzed by using a first order method. The conclusions can be applied to give guidance for ship design and safety evaluation.

  19. Load controller and method to enhance effective capacity of a photovoltaic power supply using a dynamically determined expected peak loading

    DOEpatents

    Perez, Richard

    2005-05-03

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply.

  20. Investigation on Wall Panel Sandwiched With Lightweight Concrete

    NASA Astrophysics Data System (ADS)

    Lakshmikandhan, K. N.; Harshavardhan, B. S.; Prabakar, J.; Saibabu, S.

    2017-08-01

    The rapid population growth and urbanization have made a massive demand for the shelter and construction materials. Masonry walls are the major component in the housing sector and it has brittle characteristics and exhibit poor performance against the uncertain loads. Further, the structure requires heavier sections for carrying the dead weight of masonry walls. The present investigations are carried out to develop a simple, lightweight and cost effective technology for replacing the existing wall systems. The lightweight concrete is developed for the construction of sandwich wall panel. The EPS (Expanded Polystyrene) beads of 3 mm diameter size are mixed with concrete and developed a lightweight concrete with a density 9 kN/m3. The lightweight sandwich panel is cast with a lightweight concrete inner core and ferrocement outer skins. This lightweight wall panel is tested for in-plane compression loading. A nonlinear finite element analysis with damaged plasticity model is carried out with both material and geometrical nonlinearities. The experimental and analytical results were compared. The finite element study predicted the ultimate load carrying capacity of the sandwich panel with reasonable accuracy. The present study showed that the lightweight concrete is well suitable for the lightweight sandwich wall panels.

  1. A study on the preparation of floating photocatalyst supported by hollow TiO2 and its performance

    NASA Astrophysics Data System (ADS)

    Wang, Jingang; He, Bin; Kong, Xiang Z.

    2015-02-01

    This research used hollow glass microspheres (HGMS) as carrier and polystyrene (PSt) as template. PSt was loaded on HGMS surface through the modification by silane coupler. Next, amorphous titanium dioxide (TiO2) produced through tetrabutyl titanate (TBT) hydrolysis precipitated on PSt surface, forming HGMS/PSt/TiO2 particles. Lastly, using the calcinations method, this research obtained anatase TiO2, eliminated PSt, and ultimately acquired composite particles with hollow TiO2 loaded on HGMS surface (HGMSHT). SEM results presented that hollow TiO2 was compact on HGMS surface and a multilayer network structure was formed. The specific surface area of HGMSHT particles was 26 m2/g, which was much larger than that of HGMS/TiO2 (HGMST) composite particles (5.6 m2/g) through direct TBT hydrolysis. Results of catalytic degradation experiment with Rhodamine B and phenol under UV light and sunlight demonstrated that due to larger TiO2 load capacity and specific surface area, the catalytic activity of HGMSHT composite particles was significantly more desirable than that of HGMST, and the catalyst presented satisfactory stability.

  2. A fully coupled variable properties thermohydraulic model for a cryogenic hydrostatic journal bearing

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.

    1986-01-01

    The goal set forth here is to continue the work started by Braun et al. (1984-1985) and present an integrated analysis of the behavior of the two row, 20 staggered pockets, hydrostatic cryogenic bearing used by the turbopumps of the Space Shuttle main engine. The variable properties Reynolds equation is fully coupled with the two-dimensional fluid film energy equation. The three-dimensional equations of the shaft and bushing model the boundary conditions of the fluid film energy equation. The effects of shaft eccentricity, angular velocity, and inertia pressure drops at pocket edge are incorporated in the model. Their effects on the bearing fluid properties, load carrying capacity, mass flow, pressure, velocity, and temperature form the ultimate object of this paper.

  3. Investigation into the energy-absorbing properties of multilayered circular thin-walled tube

    NASA Astrophysics Data System (ADS)

    Qi, Aidong; Liu, Chuanhua; Hu, Gongli; Gu, Hongjun

    2002-05-01

    With the rise in collision accident and the increase in requirement for resistance of blastproof structures in recent years, people attach much importance to the research and application of energy-absorbing device. In this paper the author calculates the specific strength, the specific hardness and ultimate internal force of a circular thin-walled tube by theoretic calculations, discusses the feasibility of using circular thin-walled tube as an energy-absorbing element, analyzes the energy-absorbing properties and the energy-absorbing mechanism through the energy-absorbing experiments using various materials and forms of arrangement, reaches the conclusion that the load-bearing capacity and energy-absorbing properties of multilayered tubes are superior to that of single tube, and puts forward the concept of 'grading tube'.

  4. Neural network modeling of conditions of destruction of wood plank based on measurements

    NASA Astrophysics Data System (ADS)

    Filkin, V.; Kaverzneva, T.; Lazovskaya, T.; Lukinskiy, E.; Petrov, A.; Stolyarov, O.; Tarkhov, D.

    2016-11-01

    The paper deals with the possibility of predicting the ultimate load breaking timber sample based on the loading force dependence on the deflection before destruction. Prediction of mechanical properties of wood is handicapped by complex anisotropic structures. The anisotropic nature of the material and, in a great measure, the random nature of wood grain local features defining moment of destruction lead to a significant dependence of the required load on the individual characteristics of a particular bar. The ultimate load is sought as a function of the coefficients of the neural network approximation of the loading force dependence on the deflection. For this purpose, a number of experiments on timber sample loading until the destruction is conducted. Modeling of the conditions of material destruction may provide the required safety control in building industry.

  5. Buckling test of a 3-meter-diameter corrugated graphite-epoxy ring-stiffened cylinder

    NASA Technical Reports Server (NTRS)

    Davis, R. C.

    1982-01-01

    A three m diameter by three m long corrugated cylindrical shell with external stiffening rings was tested to failure by buckling. The corrugation geometry for the graphite epoxy composite cylinder wall was optimized to withstand a compressive load producing an ultimate load intensity of 157.6 kN/m without buckling. The test method used to produce the design load intensity was to mount the specimen as a cantilevered cylinder and apply a pure bending moment to the end. A load introduction problem with the specimen was solved by using the BOSOR 4 shell of revolution computer code to analyze the shell and attached loading fixtures. The cylinder test loading achieved was 101 percent of design ultimate, and the resulting mass per unit of shell wall area was 1.96 kg/sq m.

  6. Load controller and method to enhance effective capacity of a photovotaic power supply using a dynamically determined expected peak loading

    DOEpatents

    Perez, Richard

    2003-04-01

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The expected peak loading of the variable load can be dynamically determined within a defined time interval with reference to variations in the variable load.

  7. Load controller and method to enhance effective capacity of a photovoltaic power supply

    DOEpatents

    Perez, Richard

    2000-01-01

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The renewable supply may comprise, for example, a photovoltaic power supply or a wind-based power supply.

  8. Load reduction test method of similarity theory and BP neural networks of large cranes

    NASA Astrophysics Data System (ADS)

    Yang, Ruigang; Duan, Zhibin; Lu, Yi; Wang, Lei; Xu, Gening

    2016-01-01

    Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.

  9. Comparison of the biomechanical properties of rottweiler and racing greyhound cranial cruciate ligaments.

    PubMed

    Wingfield, C; Amis, A A; Stead, A C; Law, H T

    2000-07-01

    An in vitro study of rottweiler and racing greyhound cranial cruciate ligaments revealed that the rottweiler ligaments had a significantly greater cross-sectional area at their distal attachments. Mechanical testing showed that the ultimate load related to body mass was significantly higher in the extended racing greyhound stifle during cranial tibial loading to failure, as were linear stiffness, tensile strength and tangent modulus. During ligament axis loading to failure, the only significant difference in structural and mechanical properties recorded between the two breeds was a greater ultimate strain for the greyhound ligament with the stifle joint flexed. Energy absorbed by the ligament complex at failure during cranial tibial loading was twice that for ligament axis loading for both breeds. The clinical significance is that the rottweiler cranial cruciate ligament is more vulnerable to damage as it requires half the load per unit body mass that the greyhound requires to cause a rupture.

  10. Estimating Nitrogen Loads, BMPs, and Target Loads Exceedance Risks

    EPA Science Inventory

    The Wabash River (WR) watershed, IN, drains two-thirds of the state’s 92 counties and has primarily agricultural land use. The nutrient and sediment loads of the WR significantly increase loads of the Ohio River ultimately polluting the Gulf of Mexico. The objective of this study...

  11. Load-bearing capacity of all-ceramic posterior inlay-retained fixed dental prostheses.

    PubMed

    Puschmann, Djamila; Wolfart, Stefan; Ludwig, Klaus; Kern, Matthias

    2009-06-01

    The purpose of this in vitro study was to compare the quasi-static load-bearing capacity of all-ceramic resin-bonded three-unit inlay-retained fixed dental prostheses (IRFDPs) made from computer-aided design/computer-aided manufacturing (CAD/CAM)-manufactured yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) frameworks with two different connector dimensions, with and without fatigue loading. Twelve IRFDPs each were made with connector dimensions 3 x 3 mm(2) (width x height) (control group) and 3 x 2 mm(2) (test group). Inlay-retained fixed dental prostheses were adhesively cemented on identical metal-models using composite resin cement. Subgroups of six specimens each were fatigued with maximal 1,200,000 loading cycles in a chewing simulator with a weight load of 25 kg and a load frequency of 1.5 Hz. The load-bearing capacity was tested in a universal testing machine for IRFDPs without fatigue loading and for IRFDPs that had not already fractured during fatigue loading. During fatigue testing one IRFDP (17%) of the test group failed. Under both loading conditions, IRFDPs of the control group exhibited statistically significantly higher load-bearing capacities than the test group. Fatigue loading reduced the load-bearing capacity in both groups. Considering the maximum chewing forces in the molar region, it seems possible to use zirconia ceramic as a core material for IRFDPs with a minimum connector dimension of 9 mm(2). A further reduction of the connector dimensions to 6 mm(2) results in a significant reduction of the load-bearing capacity.

  12. Analysis of Bearing Capacity Pile Foundation with Using Capwap Software for Testing Pile Driving Analyzer (pda) at Fasfel Development Project Parlimbungan Ketek Sikara-Kara Mandailing Natal District (north Sumatera)

    NASA Astrophysics Data System (ADS)

    Oberlyn Simanjuntak, Johan; Suita, Diana

    2017-12-01

    Pile foundation is one type deep foundation that serves to distribute the load of hard soil structure loading which has a high bearing capacity that is located deep enough inside the soil. To determine the bearing capacity of the pile and at the same time control the Calendring results, the Pile Driving Analyzer (PDA) test at 8 pile sections from the 84 point piling section (10% of the number sections), the results were analyzed by CAPWAP SOFTWARE, and the highest bearing capacity of Ru 177 ton and the lowest bearing capacity of 111 tons, is bigger than the plan load which load plans that is 60,9 tons. Finally the PDA safe is bearing bearing capacity of the load planning.

  13. Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach.

    PubMed

    Chen, Ru-Jun; Zhang, Yi-Bo; Liu, Ting; Xu, Bing-Qing; Lin, Yuan-Hua; Nan, Ce-Wen; Shen, Yang

    2017-03-22

    All-solid-state bulk-type lithium ion batteries (LIBs) are considered ultimate solutions to the safety issues associated with conventional LIBs using flammable liquid electrolyte. The development of bulk-type all-solid-state LIBs has been hindered by the low loading of active cathode materials, hence low specific surface capacity, and by the high interface resistance, which results in low rate and cyclic performance. In this contribution, we propose and demonstrate a synergistic all-composite approach to fabricating flexible all-solid-state LIBs. PEO-based composite cathode layers (filled with LiFePO 4 particles) of ∼300 μm in thickness and composite electrolyte layers (filled with Al-LLZTO particles) are stacked layer-by-layer with lithium foils as negative layer and hot-pressed into a monolithic all-solid-state LIB. The flexible LIB delivers a high specific discharge capacity of 155 mAh/g, which corresponds to an ultrahigh surface capacity of 10.8 mAh/cm 2 , exhibits excellent capacity retention up to at least 10 cycles and could work properly under harsh operating conditions such as bending or being sectioned into pieces. The all-composite approach is favorable for improving both mesoscopic and microscopic interfaces inside the all-solid-state LIB and may provide a new toolbox for design and fabrication of all-solid-state LIBs.

  14. 2015 California Demand Response Potential Study - Charting California’s Demand Response Future. Interim Report on Phase 1 Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alstone, Peter; Potter, Jennifer; Piette, Mary Ann

    Demand response (DR) is an important resource for keeping the electricity grid stable and efficient; deferring upgrades to generation, transmission, and distribution systems; and providing other customer economic benefits. This study estimates the potential size and cost of the available DR resource for California’s three investor-owned utilities (IOUs), as the California Public Utilities Commission (CPUC) evaluates how to enhance the role of DR in meeting California’s resource planning needs and operational requirements. As the state forges a clean energy future, the contributions of wind and solar electricity from centralized and distributed generation will fundamentally change the power grid’s operational dynamics.more » This transition requires careful planning to ensure sufficient capacity is available with the right characteristics – flexibility and fast response – to meet reliability needs. Illustrated is a snapshot of how net load (the difference between demand and intermittent renewables) is expected to shift. Increasing contributions from renewable generation introduces steeper ramps and a shift, into the evening, of the hours that drive capacity needs. These hours of peak capacity need are indicated by the black dots on the plots. Ultimately this study quantifies the ability and the cost of using DR resources to help meet the capacity need at these forecasted critical hours in the state.« less

  15. Functional connectivity among multi-channel EEGs when working memory load reaches the capacity.

    PubMed

    Zhang, Dan; Zhao, Huipo; Bai, Wenwen; Tian, Xin

    2016-01-15

    Evidence from behavioral studies has suggested a capacity existed in working memory. As the concept of functional connectivity has been introduced into neuroscience research in the recent years, the aim of this study is to investigate the functional connectivity in the brain when working memory load reaches the capacity. 32-channel electroencephalographs (EEGs) were recorded for 16 healthy subjects, while they performed a visual working memory task with load 1-6. Individual working memory capacity was calculated according to behavioral results. Short-time Fourier transform was used to determine the principal frequency band (theta band) related to working memory. The functional connectivity among EEGs was measured by the directed transform function (DTF) via spectral Granger causal analysis. The capacity was 4 calculated from the behavioral results. The power was focused in the frontal midline region. The strongest connectivity strengths of EEG theta components from load 1 to 6 distributed in the frontal midline region. The curve of DTF values vs load numbers showed that DTF increased from load 1 to 4, peaked at load 4, then decreased after load 4. This study finds that the functional connectivity between EEGs, described quantitatively by DTF, became less strong when working memory load exceeded the capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effects of load proportioning on the capacity of multiple-hole composite joints

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Chastain, P. A.

    1985-01-01

    This study addresses the issue of adjusting the proportion of load transmitted by each hole in a multiple-hole joint so that the joint capacity is a maximum. Specifically two-hole-in-series joints are examined. The results indicate that when each hole reacts 50% of the total load, the joint capacity is not a maximum. One hole generally is understressed at joint failure. The algorithm developed to determine the load proportion at each hole which results in maximum capacity is discussed. The algorithm includes two-dimensional finite-element stress analysis and failure criteria. The algorithm is used to study the effects of joint width, hole spacing, and hole to joint-end distance on load proportioning and capacity. To study hole size effects, two hole diameters are considered. Three laminates are considered: a quasi-isotropic laminate; a cross-ply laminate; and a 45 degree angle-ply laminate. By proportioning the load, capacity can be increased generally from 5 to 10%. In some cases a greater increase is possible.

  17. Biomechanical evaluation of arthroscopic rotator cuff repairs: double-row compared with single-row fixation.

    PubMed

    Ma, C Benjamin; Comerford, Lyn; Wilson, Joseph; Puttlitz, Christian M

    2006-02-01

    Recent studies have shown that arthroscopic rotator cuff repairs can have higher rates of failure than do open repairs. Current methods of rotator cuff repair have been limited to single-row fixation of simple and horizontal stitches, which is very different from open repairs. The objective of this study was to compare the initial cyclic loading and load-to-failure properties of double-row fixation with those of three commonly used single-row techniques. Ten paired human supraspinatus tendons were split in half, yielding four tendons per cadaver. The bone mineral content at the greater tuberosity was assessed. Four stitch configurations (two-simple, massive cuff, arthroscopic Mason-Allen, and double-row fixation) were randomized and tested on each set of tendons. Specimens were cyclically loaded between 5 and 100 N at 0.25 Hz for fifty cycles and then loaded to failure under displacement control at 1 mm/sec. Conditioning elongation, peak-to-peak elongation, ultimate tensile load, and stiffness were measured with use of a three-dimensional tracking system and compared, and the failure type (suture or anchor pull-out) was recorded. No significant differences were found among the stitches with respect to conditioning elongation. The mean peak-to-peak elongation (and standard error of the mean) was significantly lower for the massive cuff (1.1 +/- 0.1 mm) and double-row stitches (1.1 +/- 0.1 mm) than for the arthroscopic Mason-Allen stitch (1.5 +/- 0.2 mm) (p < 0.05). The ultimate tensile load was significantly higher for double-row fixation (287 +/- 24 N) than for all of the single-row fixations (p < 0.05). Additionally, the massive cuff stitch (250 +/- 21 N) was found to have a significantly higher ultimate tensile load than the two-simple (191 +/- 18 N) and arthroscopic Mason-Allen (212 +/- 21 N) stitches (p < 0.05). No significant differences in stiffness were found among the stitches. Failure mechanisms were similar for all stitches. Rotator cuff repairs in the anterior half of the greater tuberosity had a significantly lower peak-to-peak elongation and higher ultimate tensile strength than did repairs on the posterior half. In this in vitro cadaver study, double-row fixation had a significantly higher ultimate tensile load than the three types of single-row fixation stitches. Of the single-row fixations, the massive cuff stitch had cyclic and load-to-failure characteristics similar to the double-row fixation. Anterior repairs of the supraspinatus tendon had significantly stronger biomechanical behavior than posterior repairs.

  18. Elastic, plastic, fracture analysis of masonry arches: A multi-span bridge case study

    NASA Astrophysics Data System (ADS)

    Lacidogna, Giuseppe; Accornero, Federico

    2018-01-01

    In this work a comparison is presented between elastic, plastic, and fracture analysis of the monumental arch bridge of Porta Napoli, Taranto (Italy). By means of a FEM model and applying the Mery's Method, the behavior of the curved structure under service loads is verified, while considering the Safe Theorem approach byHeyman, the ultimate carrying capacity of the structure is investigated. Moreover, by using Fracture Mechanics concepts, the damage process which takes place when the conditions assessed through linear elastic analysis are no longer valid, and before the set-in of the conditions established by means of the plastic limit analysis, is numerically analyzed. The study of these transitions returns an accurate and effective whole service life assessment of the Porta Napoli masonry arch bridge.

  19. The Role of Radial Clearance on the Performance of Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Howard, Samuel; Dykas, Brian

    2002-01-01

    Load capacity tests were conducted to determine how radial clearance variations affect the load capacity coefficient of foil air bearings. Two Generation III foil air bearings with the same design but possessing different initial radial clearances were tested at room temperature against an as-ground PS304 coated journal operating at 30,000 rpm. Increases in radial clearance were accomplished by reducing the journal's outside diameter via an in-place grinding system. From each load capacity test the bearing load capacity coefficient was calculated from the rule-of-thumb (ROT) model developed for foil air bearings. The test results indicate that, in terms of the load capacity coefficient, radial clearance has a direct impact on the performance of the foil air bearing. Each test bearing exhibited an optimum radial clearance that resulted in a maximum load capacity coefficient. Relative to this optimum value are two separate operating regimes that are governed by different modes of failure. Bearings operating with radial clearances less than the optimum exhibit load capacity coefficients that are a strong function of radial clearance and are prone to a thermal runaway failure mechanism and bearing seizure. Conversely, a bearing operating with a radial clearance twice the optimum suffered only a 20 percent decline in its maximum load capacity coefficient and did not experience any thermal management problems. However, it is unknown to what degree these changes in radial clearance had on other performance parameters, such as the stiffness and damping properties of the bearings.

  20. Isolating Age-Group Differences in Working Memory Load-Related Neural Activity: Assessing the Contribution of Working Memory Capacity Using a Partial-Trial fMRI Method

    PubMed Central

    Bennett, Ilana J.; Rivera, Hannah G.; Rypma, Bart

    2013-01-01

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. PMID:23357076

  1. Finite element Analysis of Semi-Grouting Sleeve Connection Member Based on ABAQUS

    NASA Astrophysics Data System (ADS)

    Bao, Longsheng; Fan, Qianyu; Wang, Ling

    2018-05-01

    This paper use investigates the force transfer mechanism and failure form of semi-grouting sleeve members under axial load, analyze the weak points of structural bearing capacity and verify the reliability of the connection of steel bars through finite element analysis software. The results show that adding the axial load to semi-grouting sleeve forms a 45°oblique compression zone, which help to transfer stress between reinforcement, grouting material and sleeve. Because the maximum stress of sleeve doesn’t reach its tensile resistance and the deformation of the sleeve is located at the junction of the grouting and the threaded section when the stress value of steel bars at each end of the semi-grouting sleeve reach its ultimate tensile strength, we conclude that the semi-grouting sleeve members can meet the construction quality requirements and be used to connect the steel bars at the joints of the assembled structures. It is necessary to avoid breaking down, since the deformation section will accumulate large plastic deformation during the processing of the sleeve.

  2. Compressive behavior of laminated neoprene bridge bearing pads under thermal aging condition

    NASA Astrophysics Data System (ADS)

    Jun, Xie; Zhang, Yannian; Shan, Chunhong

    2017-10-01

    The present study was conducted to obtain a better understanding of the variation rule of mechanical properties of laminated neoprene bridge bearing pads under thermal aging condition using compression tests. A total of 5 specimens were processed in a high-temperature chamber. After that, the specimens were tested subjected to axial load. The parameter mainly considered time of thermal aging processing for specimens. The results of compression tests show that the specimens after thermal aging processing are more probably brittle failure than the standard specimen. Moreover, the exposure of steel plate, cracks and other failure phenomena are more serious than the standard specimen. The compressive capacity, ultimate compressive strength, compressive elastic modulus of the laminated neoprene bridge bearing pads decreased dramatically with the increasing in the aging time of thermal aging processing. The attenuation trends of ultimate compressive strength, compressive elastic modulus of laminated neoprene bridge bearing pads under thermal aging condition accord with power function. The attenuation models are acquired by regressing data of experiment with the least square method. The attenuation models conform to reality well which shows that this model is applicable and has vast prospect in assessing the performance of laminated neoprene bridge bearing pads under thermal aging condition.

  3. Method for Estimating Thread Strength Reduction of Damaged Parent Holes with Inserts

    NASA Technical Reports Server (NTRS)

    Johnson, David L.; Stratton, Troy C.

    2005-01-01

    During normal assembly and disassembly of bolted-joint components, thread damage and/or deformation may occur. If threads are overloaded, thread damage/deformation can also be anticipated. Typical inspection techniques (e.g. using GO-NO GO gages) may not provide adequate visibility of the extent of thread damage. More detailed inspection techniques have provided actual pitch-diameter profiles of damaged-hardware holes. A method to predict the reduction in thread shear-out capacity of damaged threaded holes has been developed. This method was based on testing and analytical modeling. Test samples were machined to simulate damaged holes in the hardware of interest. Test samples containing pristine parent-holes were also manufactured from the same bar-stock material to provide baseline results for comparison purposes. After the particular parent-hole thread profile was machined into each sample a helical insert was installed into the threaded hole. These samples were tested in a specially designed fixture to determine the maximum load required to shear out the parent threads. It was determined from the pristine-hole samples that, for the specific material tested, each individual thread could resist an average load of 3980 pounds. The shear-out loads of the holes having modified pitch diameters were compared to the ultimate loads of the specimens with pristine holes. An equivalent number of missing helical coil threads was then determined based on the ratio of shear-out loads for each thread configuration. These data were compared with the results from a finite element model (FEM). The model gave insights into the ability of the thread loads to redistribute for both pristine and simulated damage configurations. In this case, it was determined that the overall potential reduction in thread load-carrying capability in the hardware of interest was equal to having up to three fewer threads in the hole that bolt threads could engage. One- half of this potential reduction was due to local pitch-diameter variations and the other half was due to overall pitch-diameter enlargement beyond Class 2 fit. This result was important in that the thread shear capacity for this particular hardware design was the limiting structural capability. The details of the method development, including the supporting testing, data reduction and analytical model results comparison will be discussed hereafter.

  4. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less

  5. Fibre Break Failure Processes in Unidirectional Composites. Part 2: Failure and Critical Damage State Induced by Sustained Tensile Loading

    NASA Astrophysics Data System (ADS)

    Thionnet, A.; Chou, H. Y.; Bunsell, A.

    2015-04-01

    The purpose of these three papers is not to just revisit the modelling of unidirectional composites. It is to provide a robust framework based on physical processes that can be used to optimise the design and long term reliability of internally pressurised filament wound structures. The model presented in Part 1 for the case of monotonically loaded unidirectional composites is further developed to consider the effects of the viscoelastic nature of the matrix in determining the kinetics of fibre breaks under slow or sustained loading. It is shown that the relaxation of the matrix around fibre breaks leads to locally increasing loads on neighbouring fibres and in some cases their delayed failure. Although ultimate failure is similar to the elastic case in that clusters of fibre breaks ultimately control composite failure the kinetics of their development varies significantly from the elastic case. Failure loads have been shown to reduce when loading rates are lowered.

  6. Coherent-state constellations and polar codes for thermal Gaussian channels

    NASA Astrophysics Data System (ADS)

    Lacerda, Felipe; Renes, Joseph M.; Scholz, Volkher B.

    2017-06-01

    Optical communication channels are ultimately quantum mechanical in nature, and we must therefore look beyond classical information theory to determine their communication capacity as well as to find efficient encoding and decoding schemes of the highest rates. Thermal channels, which arise from linear coupling of the field to a thermal environment, are of particular practical relevance; their classical capacity has been recently established, but their quantum capacity remains unknown. While the capacity sets the ultimate limit on reliable communication rates, it does not promise that such rates are achievable by practical means. Here we construct efficiently encodable codes for thermal channels which achieve the classical capacity and the so-called Gaussian coherent information for transmission of classical and quantum information, respectively. Our codes are based on combining polar codes with a discretization of the channel input into a finite "constellation" of coherent states. Encoding of classical information can be done using linear optics.

  7. The ultimate state of polymeric materials and laminated and fibrous composites under asymmetric high-cycle loading

    NASA Astrophysics Data System (ADS)

    Golub, V. P.; Pogrebniak, A. D.; Kochetkova, E. S.

    2008-01-01

    The prediction of the high-cycle fatigue strength of polymeric and composite materials in asymmetric loading is considered. The problem is solved on the basis of a nonlinear model of ultimate state allowing us to describe all typical forms of the diagrams of ultimate stresses. The material constants of the model are determined from the results of fatigue tests in symmetric reversed cycling, in a single fatigue test with the minimum stress equal to zero, and in a short-term strength test. The fatigue strength characteristics of some polymers, glass-fiber laminates, glass-fiber-reinforced plastics, organic-fiber-reinforced plastics, and wood laminates in asymmetric tension-compression, bending, and torsion have been calculated and approved experimentally.

  8. Constitutive Behavior of Reinforced Concrete Membrane Elements under Tri-directional Shear

    NASA Astrophysics Data System (ADS)

    Labib, Moheb

    The two-dimensional behavior of typical reinforced concrete (RC) structures has been extensively studied in the past several decades by investigating the constitutive behavior of full-scale reinforced concrete elements subjected to a bi-axial state of stress. In order to understand the true behavior of many large complex structures, the goal of this investigation is to develop new constitutive relationships for RC elements subjected to tri-directional shear stresses. Recently, additional out-of-plane jacks were installed on the panel tester at University of Houston so that concrete elements could be subjected to tri-directional shear stresses. This upgrade makes the panel tester the only one of its kind in the US that is capable of applying such combinations of stresses on full-scale reinforced concrete elements. This dissertation presents the details of the mounting and installation of the additional hydraulic jacks on the universal panel tester. The experimental program includes a series of seven reinforced concrete elements subjected to different combinations of in-plane and out-of-plane shear stresses. Increasing the applied out-of-plane shear stresses reduced the membrane shear strength of the elements. The effect of applying out-of-plane shear stresses on the in-plane shear strength was represented by modifying the softening coefficient in the compression stress strain curve of concrete struts. The modified model was able to capture the behavior and the ultimate capacity of the tested elements. The effect of the in-plane shear reinforcement ratio on the interaction between in-plane and out-of-plane shear stresses was evaluated. The model was implemented in the Finite Element package FEAP and was used to predict the ultimate capacity of many structures subjected to a combination of in-plane and out-of-plane shear stresses. The results of the analytical model were used to develop simplified design equations for members subjected to bi-directional shear loads. The applied out-of-plane shear load was resolved in two equal out-of-plane shear components to construct tri-directional shear interaction diagrams.

  9. Optical components damage parameters database system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong

    2012-10-01

    Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.

  10. Isolating age-group differences in working memory load-related neural activity: assessing the contribution of working memory capacity using a partial-trial fMRI method.

    PubMed

    Bennett, Ilana J; Rivera, Hannah G; Rypma, Bart

    2013-05-15

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Fracture Resistance of Lithium Disilicate Ceramics Bonded to Enamel or Dentin Using Different Resin Cement Types and Film Thicknesses.

    PubMed

    Rojpaibool, Thitithorn; Leevailoj, Chalermpol

    2017-02-01

    To investigate the influence of cement film thickness, cement type, and substrate (enamel or dentin) on ceramic fracture resistance. One hundred extracted human third molars were polished to obtain 50 enamel and 50 dentin specimens. The specimens were cemented to 1-mm-thick lithium disilicate ceramic plates with different cement film thicknesses (100 and 300 μm) using metal strips as spacers. The cements used were etch-and-rinse (RelyX Ultimate) and self-adhesive (RelyX U200) resin cements. Compressive load was applied on the ceramic plates using a universal testing machine, and fracture loads were recorded in Newtons (N). Statistical analysis was performed by multiple regression (p < 0.05). Representative specimens were evaluated by scanning electron microscopy to control the cement film thickness. The RelyX Ultimate group with a cement thickness of 100 μm cemented to enamel showed the highest mean fracture load (MFL; 1591 ± 172.59 N). The RelyX Ultimate groups MFLs were significantly higher than the corresponding RelyX U200 groups (p < 0.05), and thinner film cement demonstrated a higher MFL than thicker films (p < 0.05). Bonding to dentin resulted in lower MFL than with enamel (p < 0.001). Higher fracture loads were related to thinner cement film thickness and RelyX Ultimate resin cement. Bonding to dentin resulted in lower fracture loads than bonding to enamel. Reduced resin film thickness could reduce lithium disilicate restoration fracture. Etch-and-rinse resin cements are recommended for cementing on either enamel or dentin, compared with self-adhesive resin cement, for improved fracture resistance. © 2015 by the American College of Prosthodontists.

  12. Numerical Modelling and Analysis of Hydrostatic Thrust Air Bearings for High Loading Capacities and Low Air Consumption

    NASA Astrophysics Data System (ADS)

    Yu, Yunluo; Pu, Guang; Jiang, Kyle

    2017-12-01

    The paper presents a numerical simulation study on hydrostatic thrust air bearings to assess the load capacity, compressed air consumptions, and the dynamic response. Finite Difference Method (FDM) and Finite Volume Method (FVM) are combined to solve the non-linear Reynolds equation to find the pressure distribution of the air bearing gas film and the total loading capacity of the bearing. The influence of design parameters on air film gap characteristics, including the air film thickness, supplied pressure, depth of the groove and external load, are investigated based on the proposed FDM model. The simulation results show that the thrust air bearings with a groove have a higher load capacity and air consumption than without a groove, and the load capacity and air consumption both increase with the depth of the groove. Bearings without the groove are better damped than those with the grooves, and the stability of thrust bearing decreases when the groove depth increases. The stability of the thrust bearings is also affected by their loading.

  13. National Launch System cycle 1 loads and models data book

    NASA Technical Reports Server (NTRS)

    Bugg, F.; Brunty, J.; Ernsberger, G.; Mcghee, D.; Gagliano, L.; Harrington, F.; Meyer, D.; Blades, E.

    1992-01-01

    This document contains preliminary cycle 1 loads for the National Launch System (NLS) 1 and 2 vehicles. The loads provided and recommended as design loads represent the maximum load expected during prelaunch and flight regimes, i.e., limit loads, except that propellant tank ullage pressure has not been included. Ullage pressure should be added to the loads book values for cases where the addition results in higher loads. The loads must be multiplied by the appropriate factors of safety to determine the ultimate loads for which the structure must be capable.

  14. A micromechanical model to explain the mechanical properties of bovine cortical bone in tension: In vitro fluoride ion effects

    NASA Astrophysics Data System (ADS)

    Kotha, Shiva Prasad

    Bone mineral and bone organic are assumed to be a linearly elastic, brittle material. A simple micromechanical model based on the shear lag theory is developed to model the stress transfer between the mineral platelets of bone. The bone mineral platelets carry most of the applied load while the organic primarily serves to transfer load between the overlapped mineral platelets by shear. Experiments were done to elucidate the mechanism of failure in bovine cortical bone and to decrease the mineral content of control bone with in-vitro fluoride ion treatments. It was suggested that the failure at the ultrastructural level is due to the transverse failure of bonds between the collagen microfibrils in the organic matrix. However, the shear stress transfer and the axial load bearing capacity of the organic is not impaired. Hence, it is assumed that the shear strain in the matrix increases while the shear stress remains constant at the shear yield stress once the matrix starts yielding at the ends of the bone mineral. When the shear stress over the length of the mineral platelet reaches the shear yield stress, no more applied stress is carried by the bone mineral platelets while the organic matrix carries the increased axial load. The bone fails when the axial stress in the organic reaches its ultimate stress. The bone mineral is assumed to dissolve due to in-vitro fluoride ion treatments and precipitate calcium fluoride or fluoroapatite like material. The amount of dissolution is estimated based on 19F Nuclear Magnetic Resonance or a decrease in the carbonate content of bone. The dissolution of bone mineral is assumed to increase the porosity in the organic. We assume that the elastic modulus and the ultimate strength of the organic decrease due to the increased porosity. A simple empirical model is used to model the decrease in the elastic modulus. The strength is modeled to decrease based on an increase in the cross-sectional area occupied by the porosity. The precipitate is assumed to contribute to the mechanical properties of bone due to friction generated by the poisson's contraction of the organic as it carries axial loads. The resulting stress-strain curve predicted by the model resembles the stress-strain curves obtained in the experiments.

  15. Investigating the influence of working memory capacity when driving behavior is combined with cognitive load: An LCT study of young novice drivers.

    PubMed

    Ross, Veerle; Jongen, Ellen M M; Wang, Weixin; Brijs, Tom; Brijs, Kris; Ruiter, Robert A C; Wets, Geert

    2014-01-01

    Distracted driving has received increasing attention in the literature due to potential adverse safety outcomes. An often posed solution to alleviate distraction while driving is hands-free technology. Interference by distraction can occur however at the sensory input (e.g., visual) level, but also at the cognitive level where hands-free technology induces working memory (WM) load. Active maintenance of goal-directed behavior in the presence of distraction depends on WM capacity (i.e., Lavie's Load theory) which implies that people with higher WM capacity are less susceptible to distractor interference. This study investigated the interaction between verbal WM load and WM capacity on driving performance to determine whether individuals with higher WM capacity were less affected by verbal WM load, leading to a smaller deterioration of driving performance. Driving performance of 46 young novice drivers (17-25 years-old) was measured with the lane change task (LCT). Participants drove without and with verbal WM load of increasing complexity (auditory-verbal response N-back task). Both visuospatial and verbal WM capacity were investigated. Dependent measures were mean deviation in the lane change path (MDEV), lane change initiation (LCI) and percentage of correct lane changes (PCL). Driving experience was included as a covariate. Performance on each dependent measure deteriorated with increasing verbal WM load. Meanwhile, higher WM capacity related to better LCT performance. Finally, for LCI and PCL, participants with higher verbal WM capacity were influenced less by verbal WM load. These findings entail that completely eliminating distraction is necessary to minimize crash risks among young novice drivers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Ontogeny of intestinal safety factors: lactase capacities and lactose loads.

    PubMed

    O'Connor, T P; Diamond, J

    1999-03-01

    We measured intestinal safety factors (ratio of a physiological capacity to the load on it) for lactose digestion in developing rat pups. Specifically, we assessed the quantitative relationships between lactose load and the series capacities of lactase and the Na+-glucose cotransporter (SGLT-1). Both capacities increased significantly with age in suckling pups as a result of increasing intestinal mass and maintenance of mass-specific activities. The youngest pups examined (5 days) had surprisingly high safety factors of 8-13 for both lactase and SGLT-1, possibly because milk contains lactase substrates other than lactose; it also, however, suggests that their intestinal capacities were being prepared to meet future demands rather than just current ones. By day 10 (and also at day 15), increased lactose loads resulted in lower safety factors of 4-6, values more typical of adult intestines. The safety factor of SGLT-1 in day 30 (weanling) and day 100 (adult) rats was only approximately 1.0. This was initially unexpected, because most adult intestines maintain a modest reserve capacity beyond nutrient load values, but postweaning rats appear to use hindgut fermentation, assessed by gut morphology and hydrogen production assays, as a built-in reserve capacity. The series capacities of lactase and SGLT-1 varied in concert with each other over ontogeny and as lactose load was manipulated by experimental variation in litter size.

  17. Soil load above Hanford waste storage tanks (2 volumes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pianka, E.W.

    1995-01-25

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter formore » each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.« less

  18. Large-deflection-theory Analysis of the Effect of Web Initial Curvature on the Ultimate Strength of Steel Plate Girder

    NASA Astrophysics Data System (ADS)

    Kala, Jiří; Kala, Zdeněk

    2011-09-01

    The objective of the paper is to analyze the influence of initial imperfections on the behaviour of thin-walled girders welded of slender plate elements. In parallel with experiments, one of the ultimate load tests was computer modelled. In so doing, the girder was modelled, using the geometrically and materially non-linear variant of the shell finite element method, by the ANSYS program. The shape changing during loading process is often accompanying with sudden "snap-through" i. e. rapid curvature change.

  19. Composite Grids for Reinforcement of Concrete Structures.

    DTIC Science & Technology

    1998-06-01

    to greater compressive loads before induced shear failure occurs. Concrete columns were tested in compression to explore alter- native... columns were tested on the same day as the fiber-reinforced concrete columns . Load /deflection readings were taken with the load cell to determine the...ln) Figure 78. Ultimate load vs toughness for the different beam types tested . USACERLTR-98/81 141 £\\

  20. Nandrolone decanoate and load increase remodeling and strength in human supraspinatus bioartificial tendons.

    PubMed

    Triantafillopoulos, Ioannis K; Banes, Albert J; Bowman, Karl F; Maloney, Melissa; Garrett, William E; Karas, Spero G

    2004-06-01

    To date, no studies document the effect of anabolic steroids on rotator cuff tendons. Controlled laboratory study. Anabolic steroids enhance remodeling and improve the biomechanical properties of bioartificially engineered human supraspinatus tendons. Bioartificial tendons were treated with either nandrolone decanoate (nonload, steroid, n = 18), loading (load, nonsteroid, n = 18), or both (load, steroid, n = 18). A control group received no treatment (nonload, nonsteroid [NLNS], n = 18). Bioartificial tendons' remodeling was assessed by daily scanning, cytoskeletal organization by staining, matrix metalloproteinase-3 levels by ELISA assay, and biomechanical properties by load-to-failure testing. The load, steroid group showed the greatest remodeling and the best organized actin cytoskeleton. Matrix metallo-proteinase-3 levels in the load, steroid group were greater than those of the nonload, nonsteroid group (P <.05). Ultimate stress and ultimate strain in the load, steroid group were greater than those of the nonload, nonsteroid and nonload, steroid groups (P <.05). The strain energy density in the load, steroid group was greater when compared to other groups (P <.05). Nandrolone decanoate and load acted synergistically to increase matrix remodeling and biomechanical properties of bioartificial tendons. Data suggest anabolic steroids may enhance production of bioartificial tendons and rotator cuff tendon healing in vitro. More research is necessary before such clinical use is recommended.

  1. Effect of External Post-tensioning in Retrofitting of RC Beams

    NASA Astrophysics Data System (ADS)

    Manisekar, R.

    2018-05-01

    There are large number of existing concrete bridges in distressed condition in India and other countries, and they need retrofitting solutions. External post-tensioning is a prime technique for bridge retrofitting. It is being applied for retrofitting of bridges in India and other countries. Although the technique is becoming popular in retrofitting, various issues regarding performance of post-retrofitting behaviour need to be studied in detail. RC beam specimens of rectangular section were distressed by means of cracks to a certain limit, and were retrofitted by external post-tensioning. Retrofitted specimens were tested to fail to study the post-retrofitting behaviour. Retrofitting has increased the ultimate load carrying capacity by 81% with reference to the control beam, and recovered the deflection. This paper intends to report the results of the experimental investigations, and conclusions.

  2. Hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion

    NASA Technical Reports Server (NTRS)

    Ghosh, M. K.; Hamrock, B. J.; Brewe, D. E.

    1984-01-01

    A numerical solution to the problem of hydrodynamic lubrication of rigid point contacts with an isoviscous, incompressible lubricant was obtained. The hydrodynamic load-carrying capacity under unsteady (or dynamic) conditions arising from the combined effects of squeeze motion superposed upon the entraining motion was determined for both normal approach and separation. Superposed normal motion considerably increases net load-carrying capacity during normal approach and substantially reduces net load-carrying capacity during separation. Geometry was also found to have a significant influence on the dynamic load-carrying capacity. The ratio of dynamic to steady state load-carrying capacity increases with increasing geometry parameter for normal approach and decreases during separation. The cavitation (film rupture) boundary is also influenced significantly by the normal motion, moving downstream during approach and upstream during separation. For sufficiently high normal separation velocity the rupture boundary may even move upstream of the minimum-film-thickness position. Sixty-three cases were used to derive a functional relationship for the ratio of the dynamic to steady state load-carrying capacity in terms of the dimensionless normal velocity parameter (incorporating normal velocity, entraining velocity, and film thickness) and the geometry parameter.

  3. Hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion

    NASA Technical Reports Server (NTRS)

    Ghosh, M. K.; Hamrock, B. J.; Brewe, D.

    1985-01-01

    A numerical solution to the problem of hydrodynamic lubrication of rigid point contacts with an isoviscous, incompressible lubricant was obtained. The hydrodynamic load-carrying capacity under unsteady (or dynamic) conditions arising from the combined effects of squeeze motion superposed upon the entraining motion was determined for both normal approach and separation. Superposed normal motion considerably increases net load-carrying capacity during normal approach and substantially reduces net load-carrying capacity during separation. Geometry was also found to have a significant influence on the dynamic load-carrying capacity. The ratio of dynamic to steady state load-carrying capacity increases with increasing geometry parameter for normal approach and decreases during separation. The cavitation (film rupture) boundary is also influenced significantly by the normal motion, moving downstream during approach and upstream during separation. For sufficiently high normal separation velocity the rupture boundary may even move upstream of the minimum-film-thickness position. Sixty-three cases were used to derive a functional relationship for the ratio of the dynamic to steady state load-carrying capacity in terms of the dimensionless normal velocity parameter (incorporating normal velocity, entraining velocity, and film thickness) and the geometry parameter.

  4. Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2002-01-01

    Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.

  5. Combined Bearing Capacity of Spudcans on a Double Layer Deposit of Strong-Over-Weak Clays

    NASA Astrophysics Data System (ADS)

    Yin, Qilin; Dong, Sheng

    2018-05-01

    An extreme sea storm process can lead to a jack-up rig under the combined loading condition of vertical load (V), horizontal load (H), and moment (M) to have stability problems. This paper presents the analysis of combined bearing capacities of a circular spudcan on layered clays with a strong layer overlying a comparatively weaker layer. Numerical models combined with displacement- based load tests, swipe tests, and constant ratio displacement probe tests are adopted to calculate the uniaxial bearing capacities, failure envelopes in combined V-H, V-M planes, and failure envelopes in a combined V-H-M load space, respectively. A parametric study on the effects of vertical load level V, the layer strength ratio s u,t/s u,b, and the hard layer thickness t 1 on the bearing capacities is then performed. Results show that the vertical load level is a key factor that influences the values of H and M and the size of the H-M failure envelope. The existence of the underlying weak clay decreases the bearing capacities in all directions, and the vertical capacity V ult is affected more than the horizontal (H ult) and moment (M ult) capacities based on a single uniform deposit. The influence of the underlying weak clay on H-M failure envelope is mainly shown where H and M are coupled in the same direction. In contrast, little difference is observed when H and M are coupled in opposite directions.

  6. Design of rock socketed drilled shafts

    DOT National Transportation Integrated Search

    1998-09-01

    Three field load tests of drilled shafts socketed in Burlington limestone were conducted using the Osterberg load cell. The objective of these tests was to compare the shaft capacities obtained from the field load tests with capacities predicted usin...

  7. Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading.

    PubMed

    Dittmer, Marc Philipp; Nensa, Moritz; Stiesch, Meike; Kohorst, Philipp

    2013-01-01

    Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects.

  8. Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading

    PubMed Central

    DITTMER, Marc Philipp; NENSA, Moritz; STIESCH, Meike; KOHORST, Philipp

    2013-01-01

    Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. Objective The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Material and Methods Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). Results All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. Conclusion The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects. PMID:24037068

  9. Dilution: A Theoretical Burden or Just Load? A Reply to Tsal and Benoni (2010)

    ERIC Educational Resources Information Center

    Lavie, Nilli; Torralbo, Ana

    2010-01-01

    Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and…

  10. Estimation of Ultimate Tensile Strength of dentin Using Finite Element Analysis from Endodontically Treated Tooth

    NASA Astrophysics Data System (ADS)

    Sinthaworn, S.; Puengpaiboon, U.; Warasetrattana, N.; Wanapaisarn, S.

    2018-01-01

    Endodontically treated teeth were simulated by finite element analysis in order to estimate ultimate tensile strength of dentin. Structures of the endodontically treated tooth cases are flared root canal, restored with different number of fiber posts {i.e. resin composite core without fiber post (group 1), fiber post No.3 with resin composite core (group 2) and fiber post No.3 accessory 2 fiber posts No.0 with resin composite core (group 3)}. Elastic modulus and Poisson’s ratio of materials were selected from literatures. The models were loaded by the average fracture resistances load of each groups (group 1: 361.80 N, group 2: 559.46 N, group 3: 468.48 N) at 135 degree angulation in respect to the longitudinal axis of the teeth. The stress analysis and experimental confirm that fracture zone is at dentin area. To estimate ultimate tensile strength of dentin, trial and error of ultimate tensile strength were tested to obtain factor of safety (FOS) equal to 1.00. The result reveals that ultimate tensile strength of dentin of group 1, 2, 3 are 38.89, 30.96, 37.19 MPa, respectively.

  11. 49 CFR 571.110 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent..., the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the... vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10...

  12. 49 CFR 571.110 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent..., the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the... vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10...

  13. 49 CFR 571.110 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent..., the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the... vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10...

  14. 49 CFR 571.110 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent..., the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the... vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10...

  15. 49 CFR 571.110 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent..., the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the... vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronold, K.O.; Nielsen, N.J.R.; Tura, F.

    This paper demonstrates how a structural reliability method can be applied as a rational means to analyze free spans of submarine pipelines with respect to failure in ultimate loading, and to establish partial safety factors for design of such free spans against this failure mode. It is important to note that the described procedure shall be considered as an illustration of a structural reliability methodology, and that the results do not represent a set of final design recommendations. A scope of design cases, consisting of a number of available site-specific pipeline spans, is established and is assumed representative for themore » future occurrence of submarine pipeline spans. Probabilistic models for the wave and current loading and its transfer to stresses in the pipe wall of a pipeline span is established together with a stochastic representation of the material resistance. The event of failure in ultimate loading is considered as based on a limit state which is reached when the maximum stress over the design life of the pipeline exceeds the yield strength of the pipe material. The yielding limit state is considered an ultimate limit state (ULS).« less

  17. Effect of stress ratio on the fatigue behaviour of glass/epoxy composite

    NASA Astrophysics Data System (ADS)

    Syayuthi, A. R. A.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Basaruddin, K. S.; Peng, T. L.

    2017-10-01

    The effect of stress ratio on the fatigue behaviour of the GFRE composite has been investigated. The glass fibre reinforced epoxy (GFRE) composite plates were fabricated using vacuum infusion method. Static tensile was performed in accordance with the ASTM D5766 standard, and the cyclic test was conducted according to ASTM D3479 with three different stress ratio, R = 0, 0.5, -1. Static tensile tests were carried out to determine the ultimate strength of this composite. Subsequently, fatigue tests loads ranging from 30% to 90% of the ultimate load were applied to each specimen. The S-N curve of different stress ratio loading of fibreglass/epoxy composites was then established. The results show that the number of cycles to failure increases as the loading is decreased. The specimens for fatigue tests loads 30% at R = 0 and -1 recorded the highest number of cycles at 2 million cycles. The results obtained from this test indicated a significant life reduction for R = -1 compared with the tension-tension loading, with the life reduction for R = -1 being greatest. The fatigue behaviour of the GFRE composite materials is not only influenced by the percentage of fatigue tests load but with different of stress ratio.

  18. Dilution: atheoretical burden or just load? A reply to Tsal and Benoni (2010).

    PubMed

    Lavie, Nilli; Torralbo, Ana

    2010-12-01

    Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and Benoni (2010) find that distractor response competition effects can be reduced under conditions with a high search set size but low perceptual load (due to a singleton color target). They claim that the usual effect of search set size on distractor processing is not due to attentional load but instead attribute this to lower level visual interference. Here, we propose an account for their findings within load theory. We argue that in tasks of low perceptual load but high set size, an irrelevant distractor competes with the search nontargets for remaining capacity. Thus, distractor processing is reduced under conditions in which the search nontargets receive the spillover of capacity instead of the irrelevant distractor. We report a new experiment testing this prediction. Our new results demonstrate that, when peripheral distractor processing is reduced, it is the search nontargets nearest to the target that are perceived instead. Our findings provide new evidence for the spare capacity spillover hypothesis made by load theory and rule out accounts in terms of lower level visual interference (or mere "dilution") for cases of reduced distractor processing under low load in displays of high set size. We also discuss additional evidence that discounts the viability of Tsal and Benoni's dilution account as an alternative to perceptual load.

  19. Processing Capacity under Perceptual and Cognitive Load: A Closer Look at Load Theory

    ERIC Educational Resources Information Center

    Fitousi, Daniel; Wenger, Michael J.

    2011-01-01

    Variations in perceptual and cognitive demands (load) play a major role in determining the efficiency of selective attention. According to load theory (Lavie, Hirst, Fockert, & Viding, 2004) these factors (a) improve or hamper selectivity by altering the way resources (e.g., processing capacity) are allocated, and (b) tap resources rather than…

  20. Position statement. Part two: Maintaining immune health.

    PubMed

    Walsh, Neil P; Gleeson, Michael; Pyne, David B; Nieman, David C; Dhabhar, Firdaus S; Shephard, Roy J; Oliver, Samuel J; Bermon, Stéphane; Kajeniene, Alma

    2011-01-01

    The physical training undertaken by athletes is one of a set of lifestyle or behavioural factors that can influence immune function, health and ultimately exercise performance. Others factors including potential exposure to pathogens, health status, lifestyle behaviours, sleep and recovery, nutrition and psychosocial issues, need to be considered alongside the physical demands of an athlete's training programme. The general consensus on managing training to maintain immune health is to start with a programme of low to moderate volume and intensity; employ a gradual and periodised increase in training volumes and loads; add variety to limit training monotony and stress; avoid excessively heavy training loads that could lead to exhaustion, illness or injury; include non-specific cross-training to offset staleness; ensure sufficient rest and recovery; and instigate a testing programme for identifying signs of performance deterioration and manifestations of physical stress. Inter-individual variability in immunocompetence, recovery, exercise capacity, non-training stress factors, and stress tolerance likely explains the different vulnerability of athletes to illness. Most athletes should be able to train with high loads provided their programme includes strategies devised to control the overall strain and stress. Athletes, coaches and medical personnel should be alert to periods of increased risk of illness (e.g. intensive training weeks, the taper period prior to competition, and during competition) and pay particular attention to recovery and nutritional strategies.

  1. Calculation of Centrally Loaded Thin-Walled Columns Above the Buckling Limit

    NASA Technical Reports Server (NTRS)

    Reinitzhuber, F.

    1945-01-01

    When thin-walled columns formed from flanged sheet, such as used in airplane construction, are subjected to axial load, their behavior at failure varies according to the slenderness ratio. On long columns the axis deflects laterally while the cross section form is maintained; buckling results. The respective breaking load in the elastic range is computed by Euler's formula and for the plastic range by the Engesser- Karman formula. Its magnitude is essentially dependent upon the length. On intermediate length columns, especially where open sections are concerned, the cross section is distorted while the cross section form is preserved; twisting failure results. The buckling load in twisting is calculated according to Wagner and Kappus. On short columns the straight walls of low-bending resistance that form the column are deflected at the same time that the cross section form changes - buckling occurs without immediate failure. Then the buckling load of the total section computable from the buckling loads of the section walls is not the ultimate load; quite often, especially on thin-walled sections, it lies considerably higher and is secured by tests. Both loads, the buckling and the ultimate load are only in a small measure dependent upon length. The present report is an attempt to theoretically investigate the behavior of such short, thin-walled columns above the buckling load with the conventional calculating methods.

  2. Study on load-bearing characteristics of a new pile group foundation for an offshore wind turbine.

    PubMed

    Lang, Ruiqing; Liu, Run; Lian, Jijian; Ding, Hongyan

    2014-01-01

    Because offshore wind turbines are high-rise structures, they transfer large horizontal loads and moments to their foundations. One of the keys to designing a foundation is determining the sensitivities and laws affecting its load-bearing capacity. In this study, this procedure was carried out for a new high-rise cap pile group foundation adapted to the loading characteristics of offshore wind turbines. The sensitivities of influential factors affecting the bearing properties were determined using an orthogonal test. Through a combination of numerical simulations and model tests, the effects of the inclination angle, length, diameter, and number of side piles on the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity were determined. The results indicate that an increase in the inclination angle of the side piles will increase the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity. An increase in the length of the side piles will increase the vertical bearing capacity and bending bearing capacity. When the length of the side piles is close to the central pile, the increase is more apparent. Finally, increasing the number of piles will increase the horizontal bearing capacity; however, the growth rate is small because of the pile group effect.

  3. Study on Load-Bearing Characteristics of a New Pile Group Foundation for an Offshore Wind Turbine

    PubMed Central

    Liu, Run; Lian, Jijian; Ding, Hongyan

    2014-01-01

    Because offshore wind turbines are high-rise structures, they transfer large horizontal loads and moments to their foundations. One of the keys to designing a foundation is determining the sensitivities and laws affecting its load-bearing capacity. In this study, this procedure was carried out for a new high-rise cap pile group foundation adapted to the loading characteristics of offshore wind turbines. The sensitivities of influential factors affecting the bearing properties were determined using an orthogonal test. Through a combination of numerical simulations and model tests, the effects of the inclination angle, length, diameter, and number of side piles on the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity were determined. The results indicate that an increase in the inclination angle of the side piles will increase the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity. An increase in the length of the side piles will increase the vertical bearing capacity and bending bearing capacity. When the length of the side piles is close to the central pile, the increase is more apparent. Finally, increasing the number of piles will increase the horizontal bearing capacity; however, the growth rate is small because of the pile group effect. PMID:25250375

  4. Evaluation of Amorphous Transformer by Optimum Capacity Selection based on the Load Curve Pattern of Customers

    NASA Astrophysics Data System (ADS)

    Takagi, Masaaki; Yamamoto, Hiromi; Yamaji, Kenji

    Energy loss in transformer is composed of no-load loss and load loss. No-load loss of amorphous transformer (i.e. amorphous metal-based transformer) is less by about 70% compared with traditional transformers (e.g. silicon steel-based transformer). However, amorphous transformers have disadvantages of high cost and high load loss parameter compared with traditional transformers. Furthermore, there are varieties of transformer capacities, and the customers who would buy new transformer have many choices. In this paper, the authors propose an algorithm for optimum transformer selection based on the load curve patterns of customers. It is possible to select the capacity that minimizes the total cost by measuring equivalent load Qe that is the root mean square of load. It becomes clear that amorphous transformer is effective in achieving substantial energy saving compared with traditional transformer.

  5. The capacity-load model of non-communicable disease risk: understanding the effects of child malnutrition, ethnicity and the social determinants of health.

    PubMed

    Wells, Jonathan C K

    2018-05-01

    The capacity-load model is a conceptual model developed to improve understanding of the life-course aetiology of non-communicable diseases (NCDs) and their ecological and societal risk factors. The model addresses continuous associations of both (a) nutrition and growth patterns in early life and (b) lifestyle factors at older ages with NCD risk. Metabolic capacity refers to physiological traits strongly contingent on early nutrition and growth during the first 1000 days, which promote the long-term capacity for homeostasis in the context of fuel metabolism and cardiovascular health. Metabolic load refers to components of nutritional status and lifestyle that challenge homeostasis. The higher the load, and the lower the capacity, the greater the NCD risk. The model therefore helps understand dose-response associations of both early development and later phenotype with NCD risk. Infancy represents a critical developmental period, during which slow growth can constrain metabolic capacity, whereas rapid weight gain may elevate metabolic load. Severe acute malnutrition in early childhood (stunting, wasting) may continue to deplete metabolic capacity, and confer elevated susceptibility to NCDs in the long term. The model can be applied to associations of NCD risk with socio-economic position (SEP): lower SEP is generally associated with lower capacity but often also with elevated load. The model can also help explain ethnic differences in NCD risk, as both early growth patterns and later body composition differ systematically between ethnic groups. Recent work has begun to clarify the role of organ development in metabolic capacity, which may further contribute to ethnic differences in NCD risk.

  6. Universal resilience patterns in cascading load model: More capacity is not always better

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Wang, Xue; Cai, Lin; Ni, Chengzhang; Xie, Wei; Xu, Bo

    We study the problem of universal resilience patterns in complex networks against cascading failures. We revise the classical betweenness method and overcome its limitation of quantifying the load in cascading model. Considering that the generated load by all nodes should be equal to the transported one by all edges in the whole network, we propose a new method to quantify the load on an edge and construct a simple cascading model. By attacking the edge with the highest load, we show that, if the flow between two nodes is transported along the shortest paths between them, then the resilience of some networks against cascading failures inversely decreases with the enhancement of the capacity of every edge, i.e. the more capacity is not always better. We also observe the abnormal fluctuation of the additional load that exceeds the capacity of each edge. By a simple graph, we analyze the propagation of cascading failures step by step, and give a reasonable explanation of the abnormal fluctuation of cascading dynamics.

  7. Highly flexible, freestanding tandem sulfur cathodes for foldable Li–S batteries with a high areal capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chi-Hao; Chung, Sheng-Heng; Manthiram, Arumugam

    Li–S batteries with a high theoretical capacity are considered as the most promising candidate to satisfy the increasing demand for batteries with a high areal capacity. However, the low sulfur loading (<2 mg cm -2) and poor flexibility of current Li–S batteries limit their application in establishing foldable Li–S batteries with a high areal capacity. Here, to solve this problem, we employ here a free-standing flexible tandem sulfur cathode with a remarkably high sulfur loading to demonstrate foldable, high-areal-capacity Li–S batteries. The design of the tandem cathode readily increases the sulfur loading and effectively retards the migration of polysulfides. Therefore,more » the Li–S cell employing the tandem cathode exhibits a high initial areal capacity of 12.3 mA h cm -2 with stable cycling stability even with a high sulfur loading of up to 16 mg cm -2. These tandem cathodes are promising for foldable Li–S cells with a high areal capacity and energy density.« less

  8. Highly flexible, freestanding tandem sulfur cathodes for foldable Li–S batteries with a high areal capacity

    DOE PAGES

    Chang, Chi-Hao; Chung, Sheng-Heng; Manthiram, Arumugam

    2017-01-05

    Li–S batteries with a high theoretical capacity are considered as the most promising candidate to satisfy the increasing demand for batteries with a high areal capacity. However, the low sulfur loading (<2 mg cm -2) and poor flexibility of current Li–S batteries limit their application in establishing foldable Li–S batteries with a high areal capacity. Here, to solve this problem, we employ here a free-standing flexible tandem sulfur cathode with a remarkably high sulfur loading to demonstrate foldable, high-areal-capacity Li–S batteries. The design of the tandem cathode readily increases the sulfur loading and effectively retards the migration of polysulfides. Therefore,more » the Li–S cell employing the tandem cathode exhibits a high initial areal capacity of 12.3 mA h cm -2 with stable cycling stability even with a high sulfur loading of up to 16 mg cm -2. These tandem cathodes are promising for foldable Li–S cells with a high areal capacity and energy density.« less

  9. Dilution

    PubMed Central

    Lavie, Nilli; Torralbo, Ana

    2010-01-01

    Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and Benoni (2010) find that distractor response competition effects can be reduced under conditions with a high search set size but low perceptual load (due to a singleton color target). They claim that the usual effect of search set size on distractor processing is not due to attentional load but instead attribute this to lower level visual interference. Here, we propose an account for their findings within load theory. We argue that in tasks of low perceptual load but high set size, an irrelevant distractor competes with the search nontargets for remaining capacity. Thus, distractor processing is reduced under conditions in which the search nontargets receive the spillover of capacity instead of the irrelevant distractor. We report a new experiment testing this prediction. Our new results demonstrate that, when peripheral distractor processing is reduced, it is the search nontargets nearest to the target that are perceived instead. Our findings provide new evidence for the spare capacity spillover hypothesis made by load theory and rule out accounts in terms of lower level visual interference (or mere “dilution”) for cases of reduced distractor processing under low load in displays of high set size. We also discuss additional evidence that discounts the viability of Tsal and Benoni's dilution account as an alternative to perceptual load. PMID:21133554

  10. Cyclic load testing of biodegradable suture anchors containing 2 high-strength sutures.

    PubMed

    Barber, F Alan; Coons, David A; Ruiz-Suarez, Michell

    2007-04-01

    The purpose of this study was to test 4 different biodegradable suture anchors threaded with 2 high-strength sutures under cyclic loading conditions in humeral cadaveric specimens divided into 2 different age groups. Thirty-two paired human cadaveric humeri were stripped of all soft tissue. Two groups were studied: group 1, in which the mean age was 54 years, and group 2, in which the mean age was 70 years. We placed 1 suture anchor at 3 humeral sites per bone (anterior, middle, and posterior greater tuberosity). We tested 24 specimens using each of 4 anchors: TwinFix AB (Smith & Nephew Endoscopy, Andover, MA), BioZip (Stryker Endoscopy, San Jose, CA), Bio-Corkscrew FT (Arthrex, Naples, FL), and SpiraLok (DePuy Mitek, Raynham, MA). The anchor's sutures were grasped with an Instron clamp (Instron, Canton, MA), preloaded, and cycled from 10 to 60 N 500 times, followed by destructive testing. The mean displacement at 500 cycles, yield loads, failure modes, and ultimate loads were recorded. Most cyclic motion occurred during the first 100 cycles. More motion occurred in older bones than in younger bones (P < .05). The mean yield loads were greater for the young group for the SpiraLok anchors than for Bio-Corkscrew FT anchors in the young and old groups (P < .001), TwinFix anchors in the old group (P < .05), and BioZip anchors in the old group (P < .05). The ultimate failure loads for SpiraLok anchors in the young group were greater than for Bio-Corkscrew FT anchors in the young and old groups and BioZip anchors in the old group (P < .05). In group 1 TwinFix AB (P = .01) and BioZip (P = .02) ultimate loads were statistically greater than that for Bio-Corkscrew FT. The TwinFix AB failed by anchor pullout. The Bio-Corkscrew FT failed by eyelet pullout. The BioZip and SpiraLok pulled out in older bone and experienced eyelet breakage in younger bone. None of the 4 anchors reached 5 mm of displacement even after 500 loading cycles. Most of the displacement occurred in the first 100 cycles. Of all anchors tested, the Bio-Corkscrew FT recorded the lowest displacement after 500 cycles (P < .05). The SpiraLok had the highest ultimate load of all anchors tested (P < .01). Rotator cuff anchors perform differently in younger humeral bone than in older humeral bone. Most displacement with cyclic loading occurring between the anchor and bone takes place in the first 100 cycles. Anchors in older bones can be expected to fail at lower loads.

  11. The nature of operating flight loads and their effect on propulsion system structures

    NASA Technical Reports Server (NTRS)

    Dickenson, K. H.; Martin, R. L.

    1981-01-01

    Past diagnostics studies revealed the primary causes of performance deterioration of high by-pass turbofan engines to be flight loads, erosion, and thermal distortion. The various types of airplane loads that are imposed on the engine throughout the lifetime of an airplane are examined. These include flight loads from gusts and maneuvers and ground loads from takeoff, landing, and taxi conditions. Clarification is made in definitions of the airframer's limit and ultimate design loads and the engine manufacturer's operating design loads. Finally, the influence of these loads on the propulsion system structures is discussed.

  12. Effects of an external circuit on a MHD slider bearing with couplestress fluid between conducting plates

    NASA Astrophysics Data System (ADS)

    Tasneem Fathima, Syeda; Jamal, Salma; Hanumagowda, B. N.

    2018-04-01

    A MHD Slider bearing lubricated with conducting couplestress fluid (CCSF) between two electrical conducting plates under the influence of magnetic field in free space is theoretically investigated. A closed form solution for the film pressure and load carrying capacity is obtained analytically in terms of inlet-outlet (IO) film height ratio of slider bearings. The results are presented graphically for different values of operating parameters. The results suggest that the bearings with couplestress fluid as lubricant provide significant load carrying capacity than Newtonian lubricant case. Further, it is observed that the influence of applied magnetic field and induced magnetic field is to increase the load carrying capacity substantially while, the load decreases with increase in IO film ratio. Besides, the conductivity increases the load carrying capacity significantly. The results are compared with the Newtonian Fluid case.

  13. Load Carriage Capacity of the Dismounted Combatant - A Commanders’ Guide

    DTIC Science & Technology

    2012-10-01

    predictive model has been used throughout this document to predict the physiological burden (i.e. energy cost ) of representative load carriage...scenarios. As a general guide this model indicates that a 10 kg increase in external load is metabolically equivalent (i.e. energy cost ) to an increase...larger increases in energy cost for a load carriage task. The multi-factorial nature of human load carriage capacity makes it difficult to set

  14. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar.

    PubMed

    Herbrand, Martin; Adam, Viviane; Classen, Martin; Kueres, Dominik; Hegger, Josef

    2017-09-19

    Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  15. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar

    PubMed Central

    Herbrand, Martin; Classen, Martin; Kueres, Dominik; Hegger, Josef

    2017-01-01

    Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented. PMID:28925962

  16. Numerical analysis on seismic behavior of reinforced concrete beam to concrete filled steel tubular column connections with ring-beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yi., E-mail: zhaoyi091218@163.com; Xu, Li. Hua.

    This paper presents numerical study of the seismic behavior of reinforced concrete beam to concrete filled steel tube column connections with ring-beam. The material stress-strain relations, element type and boundary condition are selected, which are consistent with actual situation. Then the seismic behavior of this type of joint are researched by ABAQUS, and finite element analyses are conducted under cyclic loading. Its parameters are discussed including thickness of steel tubular column wall, sectional dimension of the ring-beam and strength of the core concrete. The results show that the ultimate capacity of the connections is improved with sectional dimension of themore » ring-beam increased. In the meanwhile, the influence on skeleton curve of the joints is slight of which included thickness of steel tubular column wall and strength of the core concrete.« less

  17. Square-lashing technique in segmental spinal instrumentation: a biomechanical study.

    PubMed

    Arlet, Vincent; Draxinger, Kevin; Beckman, Lorne; Steffen, Thomas

    2006-07-01

    Sublaminar wires have been used for many years for segmental spinal instrumentation in scoliosis surgery. More recently, stainless steel wires have been replaced by titanium cables. However, in rigid scoliotic curves, sublaminar wires or simple cables can either brake or pull out. The square-lashing technique was devised to avoid complications such as cable breakage or lamina cutout. The purpose of the study was therefore to test biomechanically the pull out and failure mode of simple sublaminar constructs versus the square-lashing technique. Individual vertebrae were subjected to pullout testing having one of two different constructs (single loop and square lashing) using either monofilament wire or multifilament cables. Four different methods of fixation were therefore tested: single wire construct, square-lashing wiring construct, single cable construct, and square-lashing cable construct. Ultimate failure load and failure mechanism were recorded. For the single wire the construct failed 12/16 times by wire breakage with an average ultimate failure load of 793 N. For the square-lashing wire the construct failed with pedicle fracture in 14/16, one bilateral lamina fracture, and one wire breakage. Ultimate failure load average was 1,239 N For the single cable the construct failed 12/16 times due to cable breakage (average force 1,162 N). 10/12 of these breakages were where the cable looped over the rod. For the square-lashing cable all of these constructs (16/16) failed by fracture of the pedicle with an average ultimate failure load of 1,388 N. The square-lashing construct had a higher pullout strength than the single loop and almost no cutting out from the lamina. The square-lashing technique with cables may therefore represent a new advance in segmental spinal instrumentation.

  18. Multi-Hazard Assessment of Scour Damaged Bridges with UAS-Based Measurements

    NASA Astrophysics Data System (ADS)

    Özcan, O.; Ozcan, O.

    2017-12-01

    Flood and stream induced scour occurring in bridge piers constructed on rivers is one of the mostly observed failure reasons in bridges. Scour induced failure risk in bridges and determination of the alterations in bridge safety under seismic effects has the ultimate importance. Thus, for the determination of bridge safety under the scour effects, the scour amount under bridge piers should be designated realistically and should be tracked and updated continuously. Hereby, the scour induced failures in bridge foundation systems will be prevented and bridge substructure design will be conducted safely. In this study, in order to measure the amount of scour in bridge load bearing system (pile foundations and pile abutments) and to attain very high definition 3 dimensional models of river flood plain for the flood analysis, unmanned aircraft system (UAS) based measurement methods were implemented. UAS based measurement systems provide new and practical approach and bring high precision and reliable solutions considering recent measurement systems. For this purpose, the reinforced concrete (RC) bridge that is located on Antalya Boğaçayı River, Turkey and that failed in 2003 due to flood-induced scour was selected as the case study. The amount of scour occurred in bridge piers and piles was determined realistically and the behavior of bridge piers under scour effects was investigated. Future flood effects and the resultant amount of scour was determined with HEC-RAS software by using digital surface models that were obtained at regular intervals using UAS for the riverbed. In the light of the attained scour measurements and expected scour after a probable flood event, the behavior of scour damaged RC bridge was investigated by pushover and time history analyses under lateral and vertical seismic loadings. In the analyses, the load and displacement capacity of bridge was observed to diminish significantly under expected scour. Thus, the deterioration in multi hazard performance of the bridge was monitored significantly in the light of updated bridge load bearing system capacity. Regarding the case study, UAS based and continuously updated bridge multi hazard risk detection system was established that can be used for bridges located on riverbed.

  19. Water Quality Assessment and Determining the Carrying Capacity of Pollution Load Batang Kuranji River

    NASA Astrophysics Data System (ADS)

    Dewata, I.; Adri, Z.

    2018-04-01

    This study aims to determine the water quality and carrying capacity of pollution load Batang Kuranji River in the headwaters, middle, and downstream. This research is descriptive quantitative parameters of pH, BOD, COD, TSS, and DOES Depictions of river water quality refer to RegulationNo.82/2001, while determination of carrying capacity of pollution load river refers to the Kep Men LHNo.10/2003.The result is Kuranji Batang River water quality upstream region included in either category who meet the quality standard first class ofPP82/2001. TSS concentrations at head waters of 21 mg/L, BOD1,6 mg/L, COD7,99mg/L and DO 7,845 mg/L. While the carrying capacity of pollution load river in upstream region included in both categories namely BOD of 4,4 kg/sec, COD 273,60 kg/sec, TSS906,00kg/sec, and DO parameters of 49.20 kg/sec. Middle region (point 2, 3, and 4) water quality Batang Kuranji River has exceeded the quality standard of 82/2001 for class II and class III. Meanwhile, carrying capacity of pollution load river in area included in ugly category. The calculation is done with application Qual2Kw show that carrying capacity of pollution load river of BOD -857.3 kg/sec, COD -777.40 kg/sec, TSS +9511.5 kg/sec, and DO +69.30 kg/sec.

  20. Design of advanced beams considering elasto-plastic behaviour of material

    NASA Astrophysics Data System (ADS)

    Tolun, S.

    1992-10-01

    The paper proposes a computational procedure for precise calculation of limit and ultimate or design loads, which must be carried by an advanced aviation beam, without permanent distortion and without rupture. Among several stress-strain curve representations, one that is suitable for a particular material is chosen for applied loads, yield, and failure load calculations, and then nonlinear analysis is performed.

  1. Castings Airworthiness

    DTIC Science & Technology

    1989-05-01

    also drawn up by Vereinigte Flugtech- nischen Werken as a technoeconomic analysis . The aerospace industry will be looking for the following...ultimate load without rupture. These conditions are verified by analysis and test. The limit load is the maximum load the vehicle is expected to see...the uncertainty factor (formerly known as the factor of safety) which accounts for variations in manufacture, defects not assumed in analysis but

  2. Nonlinear modeling of truss-plate joints

    Treesearch

    Leslie H. Groom; Anton Polensek

    1992-01-01

    A theoretical model is developed for predicting mechanisms of load transfer between a wood member and a metal die-punched truss plate. The model, which treats a truss-plate tooth as a beam on an inelastic foundation of wood and applies Runae-Kutta numerical analysis to solve the governing differentia1 equations, predicts the load-disp1acement trace and ultimate load of...

  3. Sandia National Laboratories: Up on the roof

    Science.gov Websites

    load of rooftop solar photovoltaic (PV) installations," says structural engineer Steve Dwyer (6912 deemed not strong enough. More load-bearing capacity In two, first-of-their-kind studies funded by DOE's load-bearing capacity for residential rooftop structural systems is several times higher than the

  4. 78 FR 46540 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... fasteners, which can lead to cracking and loss of load carrying capacity, resulting in a possible... already delivered. This condition, if not corrected, could result in cracking and loss of load carrying... cracking and loss of load carrying capacity, resulting in a possible decompression event. (f) Compliance...

  5. Moving Aerospace Structural Design Practice to a Load and Resistance Factor Approach

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.; Raju, Ivatury S.

    2016-01-01

    Aerospace structures are traditionally designed using the factor of safety (FOS) approach. The limit load on the structure is determined and the structure is then designed for FOS times the limit load - the ultimate load. Probabilistic approaches utilize distributions for loads and strengths. Failures are predicted to occur in the region of intersection of the two distributions. The load and resistance factor design (LRFD) approach judiciously combines these two approaches by intensive calibration studies on loads and strength to result in structures that are efficient and reliable. This paper discusses these three approaches.

  6. Tensile strength of the pullout repair technique for the medial meniscus posterior root tear: a porcine study.

    PubMed

    Fujii, Masataka; Furumatsu, Takayuki; Xue, Haowei; Miyazawa, Shinichi; Kodama, Yuya; Hino, Tomohito; Kamatsuki, Yusuke; Ozaki, Toshifumi

    2017-10-01

    The purpose of this study was to compare the load-to-failure of different common suturing techniques with a new technique for the medial meniscus posterior root tear (MMPRT). Thirty porcine medial menisci were randomly assigned to three suturing techniques used for transtibial pullout repair of the MMPRT (n = 10 per group). Three different meniscal suture configurations were studied: the two simple suture (TSS) technique, the conventional modified Mason-Allen suture (MMA) technique, and the new MMA technique using the FasT-Fix combined with the Ultrabraid (F-MMA). The ultimate failure load was tested using a tensile testing machine. The MMA and F-MMA groups demonstrated significantly higher failure loads than the TSS group (P = 0.0003 and P = 0.0005, respectively). No significant differences were observed between the MMA and F-MMA groups (P = 0.734). The ultimate failure load was significantly greater in the F-MMA than the TSS group and similar to the conventional MMA technique.

  7. Influence of preliminary damage on the load-bearing capacity of zirconia fixed dental prostheses.

    PubMed

    Kohorst, Philipp; Butzheinen, Lutz Oliver; Dittmer, Marc Philipp; Heuer, Wieland; Borchers, Lothar; Stiesch, Meike

    2010-12-01

    The objective of this investigation was to evaluate the influence of differently shaped preliminary cuts in combination with artificial aging on the load-bearing capacity of four-unit zirconia fixed dental prostheses (FDPs). Forty frameworks were fabricated from white-stage zirconia blanks (InCeram YZ, Vita) by means of a computer-aided design/computer-aided manufacturing system (Cerec inLab, Sirona). Frameworks were divided into four homogeneous groups with ten specimens each. Prior to veneering, frameworks of two groups were "damaged" by defined saw cuts of different dimensions, to simulate accidental flaws generated during shape cutting. After the veneering process, FDPs, with the exception of a control group without preliminary damage, were subjected to thermal and mechanical cycling (TMC) during 200 days storage in distilled water at 36°C. Following the aging procedure, all specimens were loaded until fracture, and forces at fracture were recorded. The statistical analysis of force at fracture data was performed using two-way ANOVA, with the level of significance chosen at 0.05. Neither type of preliminary mechanical damage significantly affected the load-bearing capacity of FDPs. In contrast, artificial aging by TMC proved to have a significant influence on the load-bearing capacity of both the undamaged and the predamaged zirconia restorations (p < 0.001); however, even though load-bearing capacity decreased by about 20% due to simulated aging, the FDPs still showed mean load-bearing capacities of about 1600 N. The results of this study reveal that zirconia restorations have a high tolerance regarding mechanical damages. Irrespective of these findings, damage to zirconia ceramics during production or finishing should be avoided, as this may nevertheless lead to subcritical crack growth and, eventually, catastrophic failure. Furthermore, to ensure long-term clinical success, the design of zirconia restorations has to accommodate the decrease in load-bearing capacity due to TMC in the oral environment. © 2010 by The American College of Prosthodontists.

  8. Calculation of cracking under pulsed heat loads in tungsten manufactured according to ITER specifications

    NASA Astrophysics Data System (ADS)

    Arakcheev, A. S.; Skovorodin, D. I.; Burdakov, A. V.; Shoshin, A. A.; Polosatkin, S. V.; Vasilyev, A. A.; Postupaev, V. V.; Vyacheslavov, L. N.; Kasatov, A. A.; Huber, A.; Mertens, Ph; Wirtz, M.; Linsmeier, Ch; Kreter, A.; Löwenhoff, Th; Begrambekov, L.; Grunin, A.; Sadovskiy, Ya

    2015-12-01

    A mathematical model of surface cracking under pulsed heat load was developed. The model correctly describes a smooth brittle-ductile transition. The elastic deformation is described in a thin-heated-layer approximation. The plastic deformation is described with the Hollomon equation. The time dependence of the deformation and stresses is described for one heating-cooling cycle for a material without initial plastic deformation. The model can be applied to tungsten manufactured according to ITER specifications. The model shows that the stability of stress-relieved tungsten deteriorates when the base temperature increases. This proved to be a result of the close ultimate tensile and yield strengths. For a heat load of arbitrary magnitude a stability criterion was obtained in the form of condition on the relation of the ultimate tensile and yield strengths.

  9. Response of shallow geothermal energy pile from laboratory model tests

    NASA Astrophysics Data System (ADS)

    Marto, A.; Amaludin, A.

    2015-09-01

    In shallow geothermal energy pile systems, the thermal loads from the pile, transferred and stored in the soil will cause thermally induced settlement. This factor must be considered in the geotechnical design process to avoid unexpected hazards. Series of laboratory model tests were carried out to study the behaviour of energy piles installed in kaolin soil, subjected to thermal loads and a combination of axial and thermal loads (henceforth known as thermo-axial loads). Six tests which included two thermal load tests (35°C and 40°C) and four thermo-axial load tests (100 N and 200 N, combined with 35°C and 40°C thermal loads) were conducted. To simulate the behaviour of geothermal energy piles during its operation, the thermo-axial tests were carried out by applying an axial load to the model pile head, and a subsequent application of thermal load. The model soil was compacted at 90% maximum dry density and had an undrained shear strength of 37 kPa, thus classified as having a firm soil consistency. The behaviour of model pile, having the ultimate load capacity of 460 N, was monitored using a linear variable displacement transducer, load cell and wire thermocouple, to measure the pile head settlement, applied axial load and model pile temperature. The acquired data from this study was used to define the thermo-axial response characteristics of the energy pile model. In this study, the limiting settlement was defined as 10% of the model pile diameter. For thermal load tests, higher thermal loads induced higher values of thermal settlement. At 40°C thermal load an irreversible settlement was observed after the heating and cooling cycle was applied to the model pile. Meanwhile, the pile response to thermo-axial loads were attributed to soil consistency and the magnitude of both the axial and thermal loads applied to the pile. The higher the thermoaxial loads, the higher the settlements occurred. A slight hazard on the model pile was detected, since the settlement occurred was greater than the limiting value when the pile was loaded with thermo-axial loads of 40°C and 200 N. It is therefore recommended that the global factor of safety to be applied for energy pile installed in firm soil should be more than 2.3 to prevent any hazard to occur in the future, should the pile also be subjected to thermal load of 40°C or greater.

  10. Tools for Early Prediction of Drug Loading in Lipid-Based Formulations

    PubMed Central

    2015-01-01

    Identification of the usefulness of lipid-based formulations (LBFs) for delivery of poorly water-soluble drugs is at date mainly experimentally based. In this work we used a diverse drug data set, and more than 2,000 solubility measurements to develop experimental and computational tools to predict the loading capacity of LBFs. Computational models were developed to enable in silico prediction of solubility, and hence drug loading capacity, in the LBFs. Drug solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and Capmul MCM EP) correlated (R2 0.89) as well as the drug solubility in Carbitol and other ethoxylated excipients (PEG400, R2 0.85; Polysorbate 80, R2 0.90; Cremophor EL, R2 0.93). A melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was accurately calculated from solubility data in single excipients (R2 0.91). In silico models, without the demand of experimentally determined solubility, also gave good predictions of the loading capacity in these complex formulations (R2 0.79). The framework established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using molecular information extracted from calculated descriptors and thermal properties of the crystalline drug. PMID:26568134

  11. Tools for Early Prediction of Drug Loading in Lipid-Based Formulations.

    PubMed

    Alskär, Linda C; Porter, Christopher J H; Bergström, Christel A S

    2016-01-04

    Identification of the usefulness of lipid-based formulations (LBFs) for delivery of poorly water-soluble drugs is at date mainly experimentally based. In this work we used a diverse drug data set, and more than 2,000 solubility measurements to develop experimental and computational tools to predict the loading capacity of LBFs. Computational models were developed to enable in silico prediction of solubility, and hence drug loading capacity, in the LBFs. Drug solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and Capmul MCM EP) correlated (R(2) 0.89) as well as the drug solubility in Carbitol and other ethoxylated excipients (PEG400, R(2) 0.85; Polysorbate 80, R(2) 0.90; Cremophor EL, R(2) 0.93). A melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was accurately calculated from solubility data in single excipients (R(2) 0.91). In silico models, without the demand of experimentally determined solubility, also gave good predictions of the loading capacity in these complex formulations (R(2) 0.79). The framework established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using molecular information extracted from calculated descriptors and thermal properties of the crystalline drug.

  12. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Eric; Withers, Chuck; McIlvaine, Janet

    Low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. This report evaluates the performance of variable-capacity comfort systems, with a focus on inverter-driven, variable-capacity systems, as well as proposed system enhancements.

  13. The Fatigue Behavior of Built-Up Welded Beams of Commercially Pure Titanium

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil; Poondla, Narendra; Bathini, Udaykar; Srivatsan, T. S.

    2011-10-01

    In this article, the results of a recent study aimed at evaluating, understanding, and rationalizing the extrinsic influence of fatigue loading on the response characteristics of built-up welded beams made from commercially pure titanium (Grade 2) are presented and discussed. The beams were made from welding plates and sheets of titanium using the pulsed gas metal arc welding technique to form a structural beam having an I-shaped cross section. The welds made for the test beams of the chosen metal were fillet welds using a matching titanium filler metal wire. The maximum and minimum load values at which the built-up beams were cyclically deformed were chosen to be within the range of 22-45% of the maximum predicted flexural static load. The beams were deformed in fatigue at a stress ratio of 0.1 and constant frequency of 5 Hz. The influence of the ratio of maximum load with respect to the ultimate failure load on fatigue performance, quantified in terms of fatigue life, was examined. The percentage of maximum load to ultimate load that resulted in run-out of one million cycles was established. The overall fracture behavior of the failed beam sample was characterized by scanning electron microscopy observations to establish the conjoint influence of load severity, intrinsic microstructural effects, and intrinsic fracture surface features in governing failure by fracture.

  14. Loading capacity of zirconia implant supported hybrid ceramic crowns.

    PubMed

    Rohr, Nadja; Coldea, Andrea; Zitzmann, Nicola U; Fischer, Jens

    2015-12-01

    Recently a polymer infiltrated hybrid ceramic was developed, which is characterized by a low elastic modulus and therefore may be considered as potential material for implant supported single crowns. The purpose of the study was to evaluate the loading capacity of hybrid ceramic single crowns on one-piece zirconia implants with respect to the cement type. Fracture load tests were performed on standardized molar crowns milled from hybrid ceramic or feldspar ceramic, cemented to zirconia implants with either machined or etched intaglio surface using four different resin composite cements. Flexure strength, elastic modulus, indirect tensile strength and compressive strength of the cements were measured. Statistical analysis was performed using two-way ANOVA (p=0.05). The hybrid ceramic exhibited statistically significant higher fracture load values than the feldspar ceramic. Fracture load values and compressive strength values of the respective cements were correlated. Highest fracture load values were achieved with an adhesive cement (1253±148N). Etching of the intaglio surface did not improve the fracture load. Loading capacity of hybrid ceramic single crowns on one-piece zirconia implants is superior to that of feldspar ceramic. To achieve maximal loading capacity for permanent cementation of full-ceramic restorations on zirconia implants, self-adhesive or adhesive cements with a high compressive strength should be used. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. The training—injury prevention paradox: should athletes be training smarter and harder?

    PubMed Central

    Gabbett, Tim J

    2016-01-01

    Background There is dogma that higher training load causes higher injury rates. However, there is also evidence that training has a protective effect against injury. For example, team sport athletes who performed more than 18 weeks of training before sustaining their initial injuries were at reduced risk of sustaining a subsequent injury, while high chronic workloads have been shown to decrease the risk of injury. Second, across a wide range of sports, well-developed physical qualities are associated with a reduced risk of injury. Clearly, for athletes to develop the physical capacities required to provide a protective effect against injury, they must be prepared to train hard. Finally, there is also evidence that under-training may increase injury risk. Collectively, these results emphasise that reductions in workloads may not always be the best approach to protect against injury. Main thesis This paper describes the ‘Training-Injury Prevention Paradox’ model; a phenomenon whereby athletes accustomed to high training loads have fewer injuries than athletes training at lower workloads. The Model is based on evidence that non-contact injuries are not caused by training per se, but more likely by an inappropriate training programme. Excessive and rapid increases in training loads are likely responsible for a large proportion of non-contact, soft-tissue injuries. If training load is an important determinant of injury, it must be accurately measured up to twice daily and over periods of weeks and months (a season). This paper outlines ways of monitoring training load (‘internal’ and ‘external’ loads) and suggests capturing both recent (‘acute’) training loads and more medium-term (‘chronic’) training loads to best capture the player's training burden. I describe the critical variable—acute:chronic workload ratio—as a best practice predictor of training-related injuries. This provides the foundation for interventions to reduce players risk, and thus, time-loss injuries. Summary The appropriately graded prescription of high training loads should improve players’ fitness, which in turn may protect against injury, ultimately leading to (1) greater physical outputs and resilience in competition, and (2) a greater proportion of the squad available for selection each week. PMID:26758673

  16. 49 CFR 237.131 - Design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... modification which materially modifies the capacity of a bridge or the stresses in any primary load-carrying... materially modify the capacity of a bridge or the stresses in any primary load-carrying component of a bridge...

  17. 49 CFR 237.131 - Design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... modification which materially modifies the capacity of a bridge or the stresses in any primary load-carrying... materially modify the capacity of a bridge or the stresses in any primary load-carrying component of a bridge...

  18. Optimization of self-acting step thrust bearings for load capacity and stiffness.

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1972-01-01

    Linearized analysis of a finite-width rectangular step thrust bearing. Dimensionless load capacity and stiffness are expressed in terms of a Fourier cosine series. The dimensionless load capacity and stiffness were found to be a function of the dimensionless bearing number, the pad length-to-width ratio, the film thickness ratio, the step location parameter, and the feed groove parameter. The equations obtained in the analysis were verified. The assumptions imposed were substantiated by comparing the results with an existing exact solution for the infinite width bearing. A digital computer program was developed which determines optimal bearing configuration for maximum load capacity or stiffness. Simple design curves are presented. Results are shown for both compressible and incompressible lubrication. Through a parameter transformation the results are directly usable in designing optimal step sector thrust bearings.

  19. As Working Memory Grows: A Developmental Account of Neural Bases of Working Memory Capacity in 5- to 8-Year Old Children and Adults.

    PubMed

    Kharitonova, Maria; Winter, Warren; Sheridan, Margaret A

    2015-09-01

    Working memory develops slowly: Even by age 8, children are able to maintain only half the number of items that adults can remember. Neural substrates that support performance on working memory tasks also have a slow developmental trajectory and typically activate to a lesser extent in children, relative to adults. Little is known about why younger participants elicit less neural activation. This may be due to maturational differences, differences in behavioral performance, or both. Here we investigate the neural correlates of working memory capacity in children (ages 5-8) and adults using a visual working memory task with parametrically increasing loads (from one to four items) using fMRI. This task allowed us to estimate working memory capacity limit for each group. We found that both age groups increased the activation of frontoparietal networks with increasing working memory loads, until working memory capacity was reached. Because children's working memory capacity limit was half of that for adults, the plateau occurred at lower loads for children. Had a parametric increase in load not been used, this would have given an impression of less activation overall and less load-dependent activation for children relative to adults. Our findings suggest that young children and adults recruit similar frontoparietal networks at working memory loads that do not exceed capacity and highlight the need to consider behavioral performance differences when interpreting developmental differences in neural activation.

  20. Assimilative capacity of the Waccamaw River and the Atlantic Intracoastal Waterway near Myrtle Beach, South Carolina, 1989-92

    USGS Publications Warehouse

    Drewes, P.A.; Conrads, P.A.

    1995-01-01

    The assimilative capacities of selected reaches of the Waccamaw River and the Atlantic Intracoastal Waterway near Myrtle Beach, South Carolina, were determined using results from water-quality simulations by the Branched Lagrangian Transport Model. The study area included tidally influenced sections of the Waccamaw River, the Pee Dee River, Bull Creek, and the Atlantic Intracoastal Waterway. Hydrodynamic data for the Branched Lagrangian Transport Model were simulated using the U.S. Geological Survey BRANCH one-dimensional unsteady- flow model. Assimilative capacities were determined for four locations using low-, medium-, and high- flow conditions and the average dissolved-oxygen concentration for a 7-day period. Results indicated that for the Waccamaw River near Conway, the ultimate oxygen demand is 370 to 6,740 pounds per day for 7-day average streamflows of 17 to 1,500 cubic feet per second. For the Waccamaw River at Bucksport, the ultimate oxygen demand is 580 to 7,300 pounds per day for 7-day average streamflows of 62 to 1,180 cubic feet per second. For the Atlantic Intracoastal Waterway near North Myrtle Beach, simulations indicate ultimate oxygen demand is 5,100 to 10,000 pounds per day for 7-day average streamflows of 110 to 465 cubic feet per second. The ultimate oxygen demand for the Waccamaw River near Murrells Inlet is 11,000 to 230,000 pounds per day for 7-day average streamflows of 2,240 to 13,700 cubic feet per second.

  1. [Influence of sterilization treatments on continuous carbon-fiber reinforced polyolefin composite].

    PubMed

    Guan, Shi-bing; Hou, Chun-lin; Chen, Ai-min; Zhang, Wei; Wang, Ji-e

    2007-08-21

    To evaluate the influence of sterilization treatment on continuous carbon-fiber reinforced polyolefin composite (CFRP) so as to provide experimental reference for selection of sterilization method for CFRP. Seventy bars of CFRP were divided into 7 equal groups to undergo sterilization by autoclave, 2% glutaraldehyde soaking, 75% alcohol soaking, ethylene oxide sterilization, and Co-60 gamma ray irradiation of the dosages 11 kGy, 25 kGy, and 18 kGy respectively, and another 10 bars were used as blank controls. Then the bars underwent three-point bending test and longitudinal compression test so as to measure the biomechanical changes after sterilization treatment, including the maximum load, ultimate strength, and elastic modulus. Three-point bending test showed that the levels of maximum load of the all experimental groups were lower than that of the control group, however, only those of the 3 Co-60 irradiation groups were significantly lower than that of the control group and that Co-60 radiation lowered the level of maximum load dose-dependently; and that the levels of ultimate strength of all the all experimental groups were lower than that of the control group, however, only those of the 3 Co-60 groups were significantly lower than that of the control group and that the higher the dosage of Co-60 radiation the lower the level of ultimate strength, however, not dose-dependently. The elastic modulus of the Co-60 25 KGy group was significantly higher than that of the control group, and there was no significant difference in the level of ultimate strength among the other groups. Longitudinal compression test showed that the levels of maximum load and ultimate strength of the 3 Co-60 irradiation groups, autoclave group, and circular ethylene groups were significantly lower than that of the control group, and there was no significant difference in elastic modulus among different groups. During sterilized package of CFRP products produced in quantity autoclave sterilization and Co-60 gamma ray irradiation sterilization should be avoided. Ethylene oxide is proposed as the best sterilization method. If gamma ray irradiation is to be used further technology improvement is necessary.

  2. Influence of Distributed Residential Energy Storage on Voltage in Rural Distribution Network and Capacity Configuration

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Tong, Yibin; Zhao, Zhigang; Zhang, Xuefen

    2018-03-01

    Large-scale access of distributed residential photovoltaic (PV) in rural areas has solved the voltage problem to a certain extent. However, due to the intermittency of PV and the particularity of rural residents’ power load, the problem of low voltage in the evening peak remains to be resolved. This paper proposes to solve the problem by accessing residential energy storage. Firstly, the influence of access location and capacity of energy storage on voltage distribution in rural distribution network is analyzed. Secondly, the relation between the storage capacity and load capacity is deduced for four typical load and energy storage cases when the voltage deviation meets the demand. Finally, the optimal storage position and capacity are obtained by using PSO and power flow simulation.

  3. Better Building Alliance, Plug and Process Loads in Commercial Buildings: Capacity and Power Requirement Analysis (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    This brochure addresses gaps in actionable knowledge that can help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. This brochure should be used to make these decisions so systems can operate more energy efficiently; upfront capital costs will also decrease. This information can also be used to drive changes in negotiations about PPL energy demands. It should enable brokers and tenants to agree about lower PPL capacities. Owner-occupied buildings will also benefit.more » Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems.« less

  4. Study on Power Loss Reduction Considering Load Variation with Large Penetration of Distributed Generation in Smart Grid

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Lv, Xiangyu; Guo, Li; Cai, Lixia; Jie, Jinxing; Su, Kuo

    2017-05-01

    With the increasing of penetration of distributed in the smart grid, the problems that the power loss increasing and short circuit capacity beyond the rated capicity of circuit breaker will become more serious. In this paper, a methodology (Modified BPSO) is presented for network reconfiguration which is based on hybrid approach of Tabu Search and BPSO algorithms to prevent the local convergence and to decrease the calculation time using double fitnesses to consider the constraints. Moreover, an average load simulated method (ALS method) load variation considered is proposed that the average load value is used to instead of the actual load to calculation. Finally, from a case study, the results of simulation certify the approaches will decrease drastically the losses and improve the voltage profiles obviously, at the same time, the short circuit capacity is also decreased into less the shut-off capacity of circuit breaker. The power losses won’t be increased too much even if the short circuit capacity constraint is considered; voltage profiles are better with the constraint of short circuit capacity considering. The ALS method is simple and calculated time is speed.

  5. The Unintentional Memory Load in Tests for Young Children.

    ERIC Educational Resources Information Center

    Jones, Margaret Hubbard

    The validity of certain standardized tests may be affected by the short-term memory load therein and its relation to a child's short-term memory capacity. Factors of testing which increase a test's memory load and consequently interfere with comprehension are discussed. It is hypothesized that a test which strains the short-term memory capacity of…

  6. Cognitive Load Theory, Educational Research, and Instructional Design: Some Food for Thought

    ERIC Educational Resources Information Center

    de Jong, Ton

    2010-01-01

    Cognitive load is a theoretical notion with an increasingly central role in the educational research literature. The basic idea of cognitive load theory is that cognitive capacity in working memory is limited, so that if a learning task requires too much capacity, learning will be hampered. The recommended remedy is to design instructional systems…

  7. Multiscale Sediment-Laden Flow Theory and Its Application in Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Cao, Z. X.; Pender, G.; Hu, P.

    2011-09-01

    Sediment-laden flows over erodible bed normally feature multiple time scales. The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity regime in line with local flow scenario and the bed deforms as compared to the flow, which literally dictate if a capacity based and/or decoupled model is justified. This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed, with bed load and suspended load transport respectively. It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable, whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity. Physically coupled modeling is critical for cases characterized by rapid bed variation. Applications are outlined on flash floods and landslide dam break floods.

  8. Assessing Fatigue and Ultimate Load Uncertainty in Floating Offshore Wind Turbines Due to Varying Simulation Length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, G.; Lackner, M.; Haid, L.

    2013-07-01

    With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation lengthmore » on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.« less

  9. Experimental investigation of steel fiber-reinforced concrete beams under cyclic loading

    NASA Astrophysics Data System (ADS)

    Ranjbaran, Fariman; Rezayfar, Omid; Mirzababai, Rahmatollah

    2018-03-01

    An experimental study has been conducted to study the cyclic behavior of reinforced concrete beams in which steel fibers were added to the concrete mix. Seven similar geometrically specimens in full scale were studied under four- point bending test in the form of slow cyclic loading. One sample as a control specimen was made without steel fibers or 0% volume fraction (vf) and six other samples with 1, 2 and 4% vf of steel fibers in twin models. The maximum and ultimate resistance, ductility, degradation of loading and unloading stiffness, absorption and dissipation of energy and equivalent viscous damping were studied in this investigation and the effect of steel fibers on the cyclic behavior was compared with each other. Generally, the addition of steel fibers up to a certain limit value (vf = 2%) improves the cyclic behavior of reinforced concrete beams and results in the increase of maximum strength and ultimate displacement.

  10. Lightening the load: perceptual load impairs visual detection in typical adults but not in autism.

    PubMed

    Remington, Anna M; Swettenham, John G; Lavie, Nilli

    2012-05-01

    Autism spectrum disorder (ASD) research portrays a mixed picture of attentional abilities with demonstrations of enhancements (e.g., superior visual search) and deficits (e.g., higher distractibility). Here we test a potential resolution derived from the Load Theory of Attention (e.g., Lavie, 2005). In Load Theory, distractor processing depends on the perceptual load of the task and as such can only be eliminated under high load that engages full capacity. We hypothesize that ASD involves enhanced perceptual capacity, leading to the superior performance and increased distractor processing previously reported. Using a signal-detection paradigm, we test this directly and demonstrate that, under higher levels of load, perceptual sensitivity was reduced in typical adults but not in adults with ASD. These findings confirm our hypothesis and offer a promising solution to the previous discrepancies by suggesting that increased distractor processing in ASD results not from a filtering deficit but from enhanced perceptual capacity.

  11. Dual-action gas thrust bearing for improving load capacity

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    The principle of utilizing hydrodynamic effects in diverging films to improve the load carrying capacity in gas thrust bearings is discussed. A new concept of a dual action bearing based on that principle is described and analyzed. The potential of the new bearing is demonstrated both analytically for an infinitely long slider and by numerical solution for a flat sector shaped thrust bearing. It is shown that the dual action bearing can extend substantially the range of load carrying capacity in gas lubricated thrust bearings and can improve their efficiency.

  12. Experimental Study for Structural Behaviour of Precast Lightweight Panel (PLP) Under Flexural Load

    NASA Astrophysics Data System (ADS)

    Goh, W. I.; Mohamad, N.; Tay, Y. L.; Rahim, N. H. A.; Jhatial, A. A.; Samad, A. A. A.; Abdullah, R.

    2017-06-01

    Precast lightweight concrete slab is first fabricated in workshop or industrial before construction and then transported to site and installed by skilled labour. It can reduce construction time by minimizing user delay and time for cast-in-situ to increase workability and efficiency. is environmental friendly and helps in resource reduction. Although the foamed concrete has low compressive strength compared to normal weight concrete but it has excellent thermal insulation and sound absorption. It is environmental friendly and helps in resource reduction. To determine the material properties of foamed concrete, nine cubes and six cylindrical specimens were fabricated and the results were recorded. In this study, structural behaviour of precast lightweight panel (PLP) with dry density of 1800 kg/m3 was tested under flexural load. The results were recorded and analysed in terms of ultimate load, crack pattern, load-deflection profiles and strain distribution. Linear Voltage Displacement Transducers (LVDT) and strain gauges were used to determine the deflection and strain distribution of PLP. The theoretical and experimental ultimate load of PLP was analysed and recorded to be 70 and 62 kN respectively, having a difference of 12.9%. Based on the results, it can be observed that PLP can resist the adequate loading. Thus, it can be used in precast industry for construction purposes.

  13. Biomechanical differences of the anterior and posterior bands of the ulnar collateral ligament of the elbow.

    PubMed

    Jackson, Timothy J; Jarrell, Shelby E; Adamson, Gregory J; Chung, Kyung Chil; Lee, Thay Q

    2016-07-01

    The main purpose of this study was to examine the functional characteristics of the anterior and posterior bands of the anterior bundle of the ulnar collateral ligament (UCL). Six cadaveric elbows were tested using a digital tracking system to measure the strain in the anterior band and posterior band of the anterior bundle of the UCL throughout a flexion/extension arc. The specimens were then placed in an Instron materials testing machine and loaded to failure to determine yield load and ultimate load of the UCL. The posterior band showed a linear increase in strain with increasing degrees of elbow flexion while the anterior band showed minimal change in strain throughout. The bands showed similar strain at yield load and ultimate load, demonstrating similar intrinsic properties. The anterior band of the anterior bundle of the UCL shows an isometric strain pattern through elbow range of motion, while the posterior band shows an increasing strain pattern in higher degrees of elbow flexion. Both bands show similar strain in a load to failure model, indicating insertion point, not intrinsic differences, of the bands determine the function of the anterior bundle of the UCL. This demonstrates a biomechanical rationale for UCL reconstructions using single point anatomical insertion points.

  14. Megafauna moves nutrients uphill.

    PubMed

    Gross, Michael

    2016-01-11

    Large animals have a disproportionate capacity to transport nutrients along gradients and against water flow directions, making them more available to ecosystems and ultimately saving them from disappearing in sea floor sediments. Megafauna extinctions have reduced this capacity dramatically, while humans and their livestock aren’t stepping in to restore this important ecosystem service.

  15. Probabilistic analysis of structures involving random stress-strain behavior

    NASA Technical Reports Server (NTRS)

    Millwater, H. R.; Thacker, B. H.; Harren, S. V.

    1991-01-01

    The present methodology for analysis of structures with random stress strain behavior characterizes the uniaxial stress-strain curve in terms of (1) elastic modulus, (2) engineering stress at initial yield, (3) initial plastic-hardening slope, (4) engineering stress at point of ultimate load, and (5) engineering strain at point of ultimate load. The methodology is incorporated into the Numerical Evaluation of Stochastic Structures Under Stress code for probabilistic structural analysis. The illustrative problem of a thick cylinder under internal pressure, where both the internal pressure and the stress-strain curve are random, is addressed by means of the code. The response value is the cumulative distribution function of the equivalent plastic strain at the inner radius.

  16. Effect of the Coronal Wall Thickness of Dental Implants on the Screw Joint Stability in the Internal Implant-Abutment Connection.

    PubMed

    Lee, Ji-Hye; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2016-01-01

    To evaluate the effect of implant coronal wall thickness on load-bearing capacity and screw joint stability. Experimental implants were customized after investigation of the thinnest coronal wall thickness of commercially available implant systems with a regular platform diameter. Implants with four coronal wall thicknesses (0.2, 0.3, 0.4, and 0.5 mm) were fabricated. Three sets of tests were performed. The first set was a failure test to evaluate load-bearing capacity and elastic limit. The second and third sets were cyclic and static loading tests. After abutment screw tightening of each implant, vertical cyclic loading of 250 N or static loading from 250 to 800 N was applied. Coronal diameter expansion, axial displacement, and removal torque values of the implants were compared. Repeated measures analysis of variance (ANOVA) was used for statistical analysis (α = .05). Implants with 0.2-mm coronal wall thickness demonstrated significantly low load-bearing capacity and elastic limit (both P < .05). These implants also showed significantly large coronal diameter expansion and axial displacement after screw tightening (both P < .05). Greater vertical load and thinner coronal wall thickness significantly increased coronal diameter expansion of the implant, axial displacement of the abutment, and removal torque loss of the abutment screw (all P < .05). Implant coronal wall thickness of 0.2 mm produces significantly inferior load-bearing capacity and screw joint stability.

  17. Mathematical solution of the stone column effect on the load bearing capacity and settlement using numerical analysis

    NASA Astrophysics Data System (ADS)

    Madun, A.; Meghzili, S. A.; Tajudin, SAA; Yusof, M. F.; Zainalabidin, M. H.; Al-Gheethi, A. A.; Dan, M. F. Md; Ismail, M. A. M.

    2018-04-01

    The most important application of various geotechnical construction techniques is for ground improvement. Many soil improvement project had been developed due to the ongoing increase in urban and industrial growth and the need for greater access to lands. Stone columns are one of the best effective and feasible techniques for soft clay soil improvement. Stone columns increase the bearing capacity and reduce the settlement of soil. Finite element analyses were performed using the program PLAXIS 2D. An elastic-perfectly plastic constitutive relation, based on the Mohr–Coulomb criterion, governs the soft clay and stone column behaviour. This paper presents on how the response surface methodology (RSM) software is used to optimize the effect of the diameters and lengths of column on the load bearing capacity and settlement of soft clay. Load tests through the numerical modelling using Plaxis 2D were carried out on the loading plate at 66 mm. Stone column load bearing capacity increases with the increasing diameter of the column and settlement decreases with the increasing length of the column. Results revealed that the bigger column diameter, the higher load bearing capacity of soil while the longer column length, the lower settlement of soil. However, the optimum design of stone column was varied with each factor (diameter and length) separately for improvement.

  18. High pressure solubility of carbon dioxide (CO2) in aqueous solution of piperazine (PZ) activated N-methyldiethanolamine (MDEA) solvent for CO2 capture

    NASA Astrophysics Data System (ADS)

    Khan, Saleem Nawaz; Hailegiorgis, Sintayehu Mekuria; Man, Zakaria; Shariff, Azmi Mohd

    2017-10-01

    In this study, the solubility of carbon dioxide (CO2) in the aqueous solution of piperazine (PZ) activated N-methyldiethanolamine (MDEA) was investigated. In the aqueous solution the concentrations of the N-methyldiethanolamine (MDEA) and piperazine (PZ) were kept constant at 30 wt. % and 3 wt. %, respectively. The solubility experiments were carried out between the temperatures ranges of 303.15 to 333.15 K. The pressure range was selected as 2-50 bar for solubility of carbon dioxide in the aqueous solution. The solubility of the CO2 is reported in terms of CO2 loading capacity of the solvent. The loading capacity of the solvent is the ratio between the numbers of moles of CO2 absorbed to the numbers of moles of solvent used. The experimental data showed that the CO2 loading increased with increase in CO2 partial pressure, while it decreased with increase in system's temperature. It was also observed from the experimental data that the higher pressure favors the absorption process while the increased temperature hinders the absorption process of CO2 capture. The loading capacity of the investigated solvent was compared with the loading capacity of the solvents reported in the literature. The investigated solvent showed better solubility in terms of loading capacity.

  19. Failure tolerance strategy of space manipulator for large load carrying tasks

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Yuan, Bonan; Jia, Qingxuan; Sun, Hanxu; Guo, Wen

    2018-07-01

    During the execution of large load carrying tasks in long term service, there is a notable risk of space manipulator suffering from locked-joint failure, thus space manipulator should be with enough failure tolerance performance. A research on evaluating failure tolerance performance and re-planning feasible task trajectory for space manipulator performing large load carrying tasks is conducted in this paper. The effects of locked-joint failure on critical performance(reachability and load carrying capacity) of space manipulator are analyzed at first. According to the requirements of load carrying tasks, we further propose a new concept of failure tolerance workspace with load carrying capacity(FTWLCC) to evaluate failure tolerance performance, and improve the classic A* algorithm to search the feasible task trajectory. Through the normalized FTWLCC and the improved A* algorithm, the reachability and load carrying capacity of the degraded space manipulator are evaluated, and the reachable and capable trajectory can be obtained. The establishment of FTWLCC provides a novel idea that combines mathematical statistics with failure tolerance performance to illustrate the distribution of load carrying capacity in three-dimensional space, so multiple performance indices can be analyzed simultaneously and visually. And the full consideration of all possible failure situations and motion states makes FTWLCC and improved A* algorithm be universal and effective enough to be appropriate for random joint failure and variety of requirement of large load carrying tasks, so they can be extended to other types of manipulators.

  20. Processing capacity under perceptual and cognitive load: a closer look at load theory.

    PubMed

    Fitousi, Daniel; Wenger, Michael J

    2011-06-01

    Variations in perceptual and cognitive demands (load) play a major role in determining the efficiency of selective attention. According to load theory (Lavie, Hirst, Fockert, & Viding, 2004) these factors (a) improve or hamper selectivity by altering the way resources (e.g., processing capacity) are allocated, and (b) tap resources rather than data limitations (Norman & Bobrow, 1975). Here we provide an extensive and rigorous set of tests of these assumptions. Predictions regarding changes in processing capacity are tested using the hazard function of the response time (RT) distribution (Townsend & Ashby, 1978; Wenger & Gibson, 2004). The assumption that load taps resource rather than data limitations is examined using measures of sensitivity and bias drawn from signal detection theory (Swets, 1964). All analyses were performed at two levels: the individual and the aggregate. Hypotheses regarding changes in processing capacity were confirmed at the level of the aggregate. Hypotheses regarding resource and data limitations were not completely supported at either level of analysis. And in all of the analyses, we observed substantial individual differences. In sum, the results suggest a need to expand the theoretical vocabulary of load theory, rather than a need to discard it.

  1. Structural aspects of cold-formed steel section designed as U-shape composite beam

    NASA Astrophysics Data System (ADS)

    Saggaff, Anis; Tahir, Mahmood Md.; Azimi, Mohammadamin; Alhajri, T. M.

    2017-11-01

    Composite beam construction usually associated with old-style Hot-Rolled Steel Section (HRSS) has proven to act much better in compare with Cold-Formed Steel Section (CFSS) sections due to thicker section. Due, it's getting popular to replace HRSS with CFSS in some aspects as a composite beam. The advantages such as lightweight, cost effective and easy to install have contributed to the apply CFSS as a preferred construction material for composite beam. There is a few technical data available regarding the application of the usage of CFSS as a composite system, despite the potentials use for residential and light-weight industrial constructions. This paper presents an experimental tests results which have been conducted using CFSS as composite beam. Composite action of CFSS arranged as double beam with Self-Compacting Concrete (SCC) slab are integrated together with bolted shear connectors were used. A full-scale test comprised of 3 proposed composite beam specimens with bolted shear connector spaced at 300 mm interval of grade 8.8 was using single nut with washer on flange of CFS, cast to the slab and loaded until failed. The test show that the bolted shear connector yielded better capacity of ultimate strength and ultimate moment for the proposed composite beam. It can be concluded that, bolted shear connectors of 16 mm in diameter performed better than the other diameter size of bolted shear connectors.

  2. Validation of Different Combination of Three Reversing Half-Hitches Alternating Posts (RHAPs) Effects on Arthroscopic Knot Integrity.

    PubMed

    Chong, Alexander Cm; Prohaska, Daniel J; Bye, Brian P

    2017-05-01

    With arthroscopic techniques being used, the importance of knot tying has been examined. Previous literature has examined the use of reversing half-hitches on alternating posts (RHAPs) on knot security. Separately, there has been research regarding different suture materials commonly used in the operating room. The specific aim of this study was to validate the effect of different stacked half-hitch configuration and different braided suture materials on arthroscopic knot integrity. Three different suture materials tied with five different RHAPs in arthroscopic knots were compared. A single load-to-failure test was performed and the mean ultimate clinical failure load was obtained. Significant knot holding strength improvement was found when one half-hitch was reversed as compared to baseline knot. When two of the half-hitches were reversed, there was a greater improvement with all knots having a mean ultimate clinical failure load greater than 150 newtons (N). Comparison of the suture materials demonstrated a higher mean ultimate clinical failure load when Force Fiber ® was used and at least one half-hitch was reversed. Knots tied with either Force Fiber ® or Orthocord ® showed 0% chance of knot slippage while knots tied with FiberWire ® or braided fishing line had about 10 and 30% knot slippage chances, respectively. A significant effect was observed in regards to both stacked half-hitch configuration and suture materials used on knot loop and knot security. Caution should be used with tying three RHAPs in arthroscopic surgery, particularly with a standard knot pusher and arthroscopic cannulas. The findings of this study indicated the importance of three RHAPs in performing arthroscopic knot tying and provided evidence regarding discrepancies of maximum clinical failure loads observed between orthopaedic surgeons, thereby leading to better surgical outcomes in the future.

  3. Fatigue Resistance of CAD/CAM Resin Composite Molar Crowns

    PubMed Central

    Shembish, Fatma A.; Tong, Hui; Kaizer, Marina; Janal, Malvin N.; Thompson, Van P.; Opdam, Niek J.; Zhang, Yu

    2016-01-01

    Objective To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. Methods Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n = 24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n = 24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electronic microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures. Results The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700 N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450 N. Significance Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3 – 4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. PMID:26777092

  4. ON THE BIOMECHANICAL FUNCTION OF SCAFFOLDS FOR ENGINEERING LOAD BEARING SOFT TISSUES

    PubMed Central

    Stella, John A.; D’Amore, Antonio; Wagner, William R.; Sacks, Michael S.

    2010-01-01

    Replacement or regeneration of load bearing soft tissues has long been the impetus for the development bioactive materials. While maturing, current efforts continue to be confounded by our lack of understanding of the intricate multi-scale hierarchical arrangements and interactions typically found in native tissues. The current state of the art in biomaterial processing enables a degree of controllable microstructure that can be used for the development of model systems to deduce fundamental biological implications of matrix morphologies on cell function. Furthermore, the development of computational frameworks which allow for the simulation of experimentally derived observations represents a positive departure from what has mostly been an empirically driven field, enabling a deeper understanding of the highly complex biological mechanisms we wish to ultimately emulate. Ongoing research is actively pursuing new materials and processing methods to control material structure down to the micro-scale to sustain or improve cell viability, guide tissue growth, and provide mechanical integrity all while exhibiting the capacity to degrade in a controlled manner. The purpose of this review is not to focus solely on material processing but to assess the ability of these techniques to produce mechanically sound tissue surrogates, highlight the unique structural characteristics produced in these materials, and discuss how this translates to distinct macroscopic biomechanical behaviors. PMID:20060509

  5. Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries

    DOE PAGES

    Cao, Peng-Fei; Naguib, Michael; Du, Zhijia; ...

    2018-01-04

    Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less

  6. Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Peng-Fei; Naguib, Michael; Du, Zhijia

    Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less

  7. Cognitive Load in Voice Therapy Carry-Over Exercises

    ERIC Educational Resources Information Center

    Iwarsson, Jenny; Morris, David Jackson; Balling, Laura Winther

    2017-01-01

    Purpose: The cognitive load generated by online speech production may vary with the nature of the speech task. This article examines 3 speech tasks used in voice therapy carry-over exercises, in which a patient is required to adopt and automatize new voice behaviors, ultimately in daily spontaneous communication. Method: Twelve subjects produced…

  8. Design and evaluation of a bolted joint for a discrete carbon-epoxy rod-reinforced hat section

    NASA Technical Reports Server (NTRS)

    Rousseau, Carl Q.; Baker, Donald J.

    1996-01-01

    The use of prefabricated pultruded carbon-epoxy rods has reduced the manufacturing complexity and costs of stiffened composite panels while increasing the damage tolerance of the panels. However, repairability of these highly efficient discrete stiffeners has been a concern. Design, analysis, and test results are presented in this paper for a bolted-joint repair for the pultruded rod concept that is capable of efficiently transferring axial loads in a hat-section stiffener on the upper skin segment of a heavily loaded aircraft wing component. A tension and a compression joint design were evaluated. The tension joint design achieved approximately 1.0% strain in the carbon-epoxy rod-reinforced hat-section and failed in a metal fitting at 166% of the design ultimate load. The compression joint design failed in the carbon-epoxy rod-reinforced hat-section test specimen area at approximately 0.7% strain and at 110% of the design ultimate load. This strain level of 0.7% in compression is similar to the failure strain observed in previously reported carbon-epoxy rod-reinforced hat-section column tests.

  9. Biomechanical characteristics of single-row repair in comparison to double-row repair with consideration of the suture configuration and suture material.

    PubMed

    Baums, M H; Buchhorn, G H; Spahn, G; Poppendieck, B; Schultz, W; Klinger, H-M

    2008-11-01

    The aim of the study was to evaluate the time zero mechanical properties of single- versus double-row configuration for rotator cuff repair in an animal model with consideration of the stitch technique and suture material. Thirty-two fresh-frozen sheep shoulders were randomly assigned to four repair groups: suture anchor single-row repair coupled with (1) braided, nonabsorbable polyester suture sized USP No. 2 (SRAE) or (2) braided polyblend polyethylene suture sized No. 2 (SRAH). The double-row repair was coupled with (3) USP No. 2 (DRAE) or (4) braided polyblend polyethylene suture No. 2 (DRAH). Arthroscopic Mason-Allen stitches were used (single-row) and combined with medial horizontal mattress stitches (double-row). Shoulders were cyclically loaded from 10 to 180 N. Displacement to gap formation of 5- and 10-mm at the repair site, cycles to failure, and the mode of failure were determined. The ultimate tensile strength was verified in specimens that resisted to 3,000 cycles. DRAE and DRAH had a lower frequency of 5- (P = 0.135) and 10-mm gap formation (P = 0.135). All DRAE and DRAH resisted 3,000 cycles while only three SRAE and one SRAH resisted 3,000 cycles (P < 0.001). The ultimate tensile strength in double-row specimens was significantly higher than in others (P < 0.001). There was no significant variation in using different suture material (P > 0.05). Double-row suture anchor repair with arthroscopic Mason-Allen/medial mattress stitches provides initial strength superior to single-row repair with arthroscopic Mason-Allen stitches under isometric cyclic loading as well as under ultimate loading conditions. Our results support the concept of double-row fixation with arthroscopic Mason-Allen/medial mattress stitches in rotator cuff tears with improvement of initial fixation strength and ultimate tensile load. Use of new polyblend polyethylene suture material seems not to increase the initial biomechanical aspects of the repair construct.

  10. Estimating Track Capacity Based on Rail Stresses and Metal Fatigue.

    DOT National Transportation Integrated Search

    2011-09-21

    This paper describes a framework to evaluate the structural capacity of railroad track to train-induced loads. The framework is applied to estimate structural performance in terms of allowable limits for crosstie spacing. Evaluation of the load-carry...

  11. Study on Mechanical Properties of Barite Concrete under Impact Load

    NASA Astrophysics Data System (ADS)

    Chen, Z. F.; Cheng, K.; Wu, D.; Gan, Y. C.; Tao, Q. W.

    2018-03-01

    In order to research the mechanical properties of Barite concrete under impact load, a group of concrete compression tests was carried out under the impact load by using the drop test machine. A high-speed camera was used to record the failure process of the specimen during the impact process. The test results show that:with the increase of drop height, the loading rate, the peak load, the strain under peak load, the strain rate and the dynamic increase factor (DIF) all increase gradually. The ultimate tensile strain is close to each other, and the time of impact force decreases significantly, showing significant strain rate effect.

  12. Carrying the past to the future: Distinct brain networks underlie individual differences in human spatial working memory capacity.

    PubMed

    Liu, Siwei; Poh, Jia-Hou; Koh, Hui Li; Ng, Kwun Kei; Loke, Yng Miin; Lim, Joseph Kai Wei; Chong, Joanna Su Xian; Zhou, Juan

    2018-08-01

    Spatial working memory (SWM) relies on the interplay of anatomically separated and interconnected large-scale brain networks. EEG studies often observe load-associated sustained negative activity during SWM retention. Yet, whether and how such sustained negative activity in retention relates to network-specific functional activation/deactivation and relates to individual differences in SWM capacity remain to be elucidated. To cover these gaps, we recorded concurrent EEG-fMRI data in 70 healthy young adults during the Sternberg delayed-match-to-sample SWM task with three memory load levels. To a subset of participants (N = 28) that performed the task properly and had artefact-free fMRI and EEG data, we employed a novel temporo-spatial principal component analysis to derive load-dependent negative slow wave (NSW) from retention-related event-related potentials. The associations between NSW responses with SWM capacity were divergent in the higher (N = 14) and lower (N = 14) SWM capacity groups. Specifically, larger load-related increase in NSW amplitude was associated with greater SWM capacity for the higher capacity group but lower SWM capacity for the lower capacity group. Furthermore, for the higher capacity group, larger NSW amplitude was related to greater activation in bilateral parietal areas of the fronto-parietal network (FPN) and greater deactivation in medial frontal gyrus and posterior mid-cingulate cortex of the default mode network (DMN) during retention. In contrast, the lower capacity group did not show similar pattern. Instead, greater NSW was linked to higher deactivation in right posterior middle temporal gyrus. Our findings shed light on the possible differential EEG-informed neural network mechanism during memory maintenance underlying individual differences in SWM capacity. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Consideration of dynamic loads on the vertical tail by the theory of flat yawing maneuvers

    NASA Technical Reports Server (NTRS)

    Boshar, John; Davis, Philip

    1946-01-01

    Dynamic yawing effects on vertical tail loads are considered by a theory of flat yawing maneuvers. A comparison is shown between computed loads and the loads measured in flight in a fighter airplane. The dynamic effects were investigated on a large flying boat for both an abrupt rudder deflection and a sinusoidal rudder deflection. Only a moderate amount of control deflection was found to be necessary to attain the ultimate design load on the tail. In order to take into account dynamic effects in design, specifications of yawing maneuverability or control movement are needed.

  14. Biomechanical evaluation of knotless anatomical double-layer double-row rotator cuff repair: a comparative ex vivo study.

    PubMed

    Hepp, Pierre; Osterhoff, Georg; Engel, Thomas; Marquass, Bastian; Klink, Thomas; Josten, Christoph

    2009-07-01

    The layered configuration of the rotator cuff tendon is not taken into account in classic rotator cuff tendon repair techniques. The mechanical properties of (1) the classic double-row technique, (2) a double-layer double-row (DLDR) technique in simple suture configuration, and (3) a DLDR technique in mattress suture configuration are significantly different. Controlled laboratory study. Twenty-four sheep shoulders were assigned to 3 repair groups of full-thickness infraspinatus tears: group 1, traditional double-row repair; group 2, DLDR anchor repair with simple suture configuration; and group 3, DLDR knotless repair with mattress suture configuration. After ultrasound evaluation of the repair, each specimen was cyclically loaded with 10 to 100 N for 50 cycles. Each specimen was then loaded to failure at a rate of 1 mm/s. There were no statistically significant differences among the 3 testing groups for the mean footprint area. The cyclic loading test revealed no significant difference among the 3 groups with regard to elongation. For the load-to-failure test, groups 2 and 3 showed no differences in ultimate tensile load when compared with group 1. However, when compared to group 2, group 3 was found to have significantly higher values regarding ultimate load, ultimate elongation, and energy absorbed. The DLDR fixation techniques may provide strength of initial repair comparable with that of commonly used double-row techniques. When compared with the knotless technique with mattress sutures, simple suture configuration of DLDR repair may be too weak. Knotless DLDR rotator cuff repair may (1) restore the footprint by the use of double-row principles and (2) enable restoration of the shape and profile. Double-layer double-row fixation in mattress suture configuration has initial fixation strength comparable with that of the classic double-row fixation and so may potentially improve functional results of rotator cuff repair.

  15. Buckling and Post-Buckling Behaviors of a Variable Stiffness Composite Laminated Wing Box Structure

    NASA Astrophysics Data System (ADS)

    Wang, Peiyan; Huang, Xinting; Wang, Zhongnan; Geng, Xiaoliang; Wang, Yuansheng

    2018-04-01

    The buckling and post-buckling behaviors of variable stiffness composite laminates (VSCL) with curvilinear fibers were investigated and compared with constant stiffness composite laminates (CSCL) with straight fibers. A VSCL box structure was evaluated under a pure bending moment. The results of the comparative test showed that the critical buckling load of the VSCL box was approximately 3% higher than that of the CSCL box. However, the post-buckling load-bearing capacity was similar due to the layup angle and the immature status of the material processing technology. The properties of the VSCL and CSCL boxes under a pure bending moment were simulated using the Hashin criterion and cohesive interface elements. The simulation results are consistent with the experimental results in stiffness, critical buckling load and failure modes but not in post-buckling load capacity. The results of the experiment, the simulation and laminated plate theory show that VSCL greatly improves the critical buckling load but has little influence on the post-buckling load-bearing capacity.

  16. Simultaneous Optimization of Tooth Flank Form of Involute Helical Gears in Terms of Both Vibration and Load Carrying Capacity

    NASA Astrophysics Data System (ADS)

    Komori, Masaharu; Kubo, Aizoh; Suzuki, Yoshitomo

    The alignment condition of automotive gears changes considerably during operation due to the deformation of shafts, bearings, and gear box by transmission of load. Under such conditions, the gears are required to satisfy not only reliability in strength and durability under maximum loading conditions, but also low vibrational characteristics under light loading conditions during the cruising of a car. In this report, the characteristics of the optimum tooth flank form of gears in terms of both vibration and load carrying capacity are clarified. The local optimum tooth flank form appears in each excitation valley, where the vibrational excitation is low and the actual contact ratio takes a specific value. The influence of the choice of different local optimum solutions on the vibrational performance of the optimized gears is investigated. The practical design algorithm for the optimum tooth flank form of a gear set in terms of both vibration and load carrying capacity is then proposed and its result is evaluated by field experience.

  17. Acute effects of dietary glycemic index on antioxidant capacity in nutrient-controlled feeding study

    USDA-ARS?s Scientific Manuscript database

    Oxidative stress, caused by an imbalance between antioxidant capacity and reactive oxygen species, may be an early event in a metabolic cascade elicited by a high glycemic index (GI) diet, ultimately increasing the risk for cardiovascular disease and diabetes. We conducted a feeding study to evalua...

  18. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Eric; Withers, Chuck; McIlvaine, Janet

    The well-sealed, highly insulated building enclosures constructed by today's home building industry coupled with efficient lighting and appliances are achieving significantly reduced heating and cooling loads. These low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. Even if fixed-capacity equipment can be properly specified for peak loads, it remains oversized for use during much of the year. During these part-load cooling hours, oversized equipment meets the target dry-bulb temperatures very quickly, often without sufficient opportunity for moisture control. Themore » problem becomes more acute for high-performance houses in humid climates when meeting ASHRAE Standard 62.2 recommendations for wholehouse mechanical ventilation.« less

  19. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  20. [Physical work capacity in coal miners and industrial workers].

    PubMed

    Benavides, R

    1992-10-01

    The aerobic work capacity of 220 coal miners aged 22 to 63 years with a high physical work load and 78 industrial workers aged 19 to 58 years with a relatively light work load was measured to observe if there was a relationship between the work load of these subjects and their aerobic work capacity. All the subjects were subjected to a medical examination, spirometry, chest x Rays and anthropometric measurements. Aerobic work capacity was indirectly estimated extrapolating pulse rates obtained al submaximal work loads in a bicycle ergometer to the calculated maximal cardiac frequency for age. Aerobic work capacity was not different between coal miners and industrial workers, either measured as absolute values (2.43 +/- 0.41 and 2.5 +/- 0.49 l/min respectively) or as relative values (43.2 +/- 6.9 and 43.4 +/- 8.2 ml/kg lean body mass respectively). These values decreased with age in the same proportion in both groups (0.24 l/min per decade). Lean body mass was significantly higher in industrial workers and decreased significantly with age only in coal miners. Considering published energy requirements for mine labors, none of the studied miners should work as digger and a high proportion of the other workers would be exposed to hazardous work loads to their health. The fact that over 50% of these subjects can efficiently fulfill their jobs may indicate that they have a high anaerobic work capacity. This hypothesis needs confirmation with future studies.

  1. Effects of crystallinity and surface modification of calcium phosphate nanoparticles on the loading and release of tetracycline hydro-chloride

    NASA Astrophysics Data System (ADS)

    Zhang, Huaizhi; Yan, Dong; Menike Korale Gedara, Sriyani; Dingiri Marakkalage, Sajith Sudeepa Fernando; Gamage Kasun Methlal, Jothirathna; Han, YingChao; Dai, HongLian

    2017-03-01

    The influences of crystallinity and surface modification of calcium phosphate nanoparticles (nCaP) on their drug loading capacity and drug release profile were studied in the present investigation. The CaP nanoparticles with different crystallinity were prepared by precipitation method under different temperatures. CaP nanoparticles with lower crystallinity exhibited higher drug loading capacity. The samples were characterized by XRD, FT-IR, SEM, TEM and BET surface area analyzer respectively. The drug loading capacity of nCaP was evaluated to tetracycline hydro-chloride (TCH). The internalization of TCH loaded nCaP in cancer cell was observed by florescence microscope. nCaP could be stabilized and dispersed in aqueous solution by poly(acrylic acid) surface modification agent, leading to enhanced drug loading capacity. The drug release was conducted in different pH environment and the experimental data proved that nCaP were pH sensitive drug carrier, suggesting that nCaP could achieve the controlled drug release in intracellular acidic environment. Furthermore, nCaP with higher crystallinity showed lower drug release rate than that of lower crystallinity, indicating that the drug release profile could be adjusted by crystallinity of nCaP. nCaP with adjustable drug loading and release properties are promising candidate as drug carrier for disease treatment.

  2. Behaviour of Frictional Joints in Steel Arch Yielding Supports

    NASA Astrophysics Data System (ADS)

    Horyl, Petr; Šňupárek, Richard; Maršálek, Pavel

    2014-10-01

    The loading capacity and ability of steel arch supports to accept deformations from the surrounding rock mass is influenced significantly by the function of the connections and in particular, the tightening of the bolts. This contribution deals with computer modelling of the yielding bolt connections for different torques to determine the load-bearing capacity of the connections. Another parameter that affects the loading capacity significantly is the value of the friction coefficient of the contacts between the elements of the joints. The authors investigated both the behaviour and conditions of the individual parts for three values of tightening moment and the relation between the value of screw tightening and load-bearing capacity of the connections for different friction coefficients. ANSYS software and the finite element method were used for the computer modelling. The solution is nonlinear because of the bi-linear material properties of steel and the large deformations. The geometry of the computer model was created from designs of all four parts of the structure. The calculation also defines the weakest part of the joint's structure based on stress analysis. The load was divided into two loading steps: the pre-tensioning of connecting bolts and the deformation loading corresponding to 50-mm slip of one support. The full Newton-Raphson method was chosen for the solution. The calculations were carried out on a computer at the Supercomputing Centre VSB-Technical University of Ostrava.

  3. The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2013-01-01

    Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.

  4. In-Plane Cracking Behavior and Ultimate Strength for 2D Woven and Braided Melt-Infiltrated SiC/SiC Composites Tensile Loaded in Off-Axis Fiber Directions

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.

    2007-01-01

    The tensile mechanical properties of ceramic matrix composites (CMC) in directions off the primary axes of the reinforcing fibers are important for architectural design of CMC components that are subjected to multi-axial stress states. In this study, 2D-woven melt-infiltrated (MI) SiC/SiC composite panels with balanced fiber content in the 0 degree and 90 degree directions were tensile loaded in-plane in the 0 degree direction and at 45 degree to this direction. In addition, a 2D triaxially-braided MI composite panel with balanced fiber content in the plus or minus 67 degree bias directions and reduced fiber content in the axial direction was tensile loaded perpendicular to the axial direction tows (i.e., 23 degrees from the bias fibers). Stress-strain behavior, acoustic emission, and optical microscopy were used to quantify stress-dependent matrix cracking and ultimate strength in the panels. It was observed that both off-axis loaded panels displayed higher composite onset stresses for through-thickness matrix cracking than the 2D-woven 0/90 panels loaded in the primary 0 degree direction. These improvements for off-axis cracking strength can in part be attributed to higher effective fiber fractions in the loading direction, which in turn reduces internal stresses on critical matrix flaws for a given composite stress. Also for the 0/90 panel loaded in the 45 degree direction, an improved distribution of matrix flaws existed due to the absence of fiber tows perpendicular to the loading direction. In addition, for the +67/0/-67 braided panel, the axial tows perpendicular to the loading direction were not only low in volume fraction, but were also were well separated from one another. Both off-axis oriented panels also showed relatively good ultimate tensile strength when compared to other off-axis oriented composites in the literature, both on an absolute strength basis as well as when normalized by the average fiber strength within the composites. Initial implications are discussed for constituent and architecture design to improve the directional cracking of SiC/SiC CMC components with MI matrices.

  5. Response of reinforced concrete and corrugated steel pipes to surface load

    NASA Astrophysics Data System (ADS)

    Lay, Geoff R.

    Full-scale simulated live load tests were conducted in a controlled laboratory setting using a single-axle frame on 600-mm-inner-diameter reinforced concrete pipe (RCP) and corrugated steel pipe (CSP) when buried in dense, well-graded sand and gravel. Measurements of the RCP at nominal and working forces and beyond are reported for 0.3, 0.6 and 0.9 m of soil cover above the pipe crown. The RCP experienced no cracking when buried at 0.3 m under nominal and working CL-625 and CL-800 single-axle design loads. At these loads, the vertical contraction of the pipe diameter was less than 0.08 and 0.10 mm and the largest tensile strains in the pipe were 75 and 100 muepsilon (50-60% of the cracking strain), respectively. A 0.15 (+/-0.05)-mm-wide axial crack developed at the inner crown in the presence of a 6 kNm/m circumferential bending moment (70% of the theoretical ultimate moment capacity) at the fully factored CL-625 load. This crack did not propagate or widen from 3 series of cyclic load-unload tests. At 1300 kN of applied load the change in pipe diameter was less than 3.5 mm. Increasing soil cover from 0.3 to 0.6 to 0.9 m reduced the circumferential crown bending moment from 6.0 to 3.9 to 2.1 kNm/m, respectively, at 400 kN of axle load. A 1.6- and a 2.8-mm-thick CSP were also subjected to axle loading. No yielding or limit states occurred in the 1.6-mm-thick CSP when buried 0.9-m-deep. However, at 0.6 m of cover a 300 kN axle load caused local yielding at the pipe crown. Increasing soil cover from 0.6 to 0.9 m decreased the vertical diameter change from -3.0 to -1.2 mm and the crown bending moment from 0.7 to 0.2 kNm/m (75% and 20% of the yield moment), respectively, at a 250 kN axle load. Deflections of the thicker CSP were less than the thinner pipe below the CL-625 single-axle load, however further increases in applied load produced a greater response in the thicker pipe, likely due to a haunch support issue. Shallow axle loading produced a greater 3-dimensional response and a larger bending effect in both CSPs.

  6. Turbulent Extreme Event Simulations for Lidar-Assisted Wind Turbine Control

    NASA Astrophysics Data System (ADS)

    Schlipf, David; Raach, Steffen

    2016-09-01

    This work presents a wind field generator which allows to shape wind fields in the time domain while maintaining the spectral properties. This is done by an iterative generation of wind fields and by minimizing the error between wind characteristics of the generated wind fields and desired values. The method leads towards realistic ultimate load calculations for lidar-assisted control. This is demonstrated by fitting a turbulent wind field to an Extreme Operating Gust. The wind field is then used to compare a baseline feedback controller alone against a combined feedback and feedforward controller using simulated lidar measurements. The comparison confirms that the lidar-assisted controller is still able to significantly reduce the ultimate loads on the tower base under this more realistic conditions.

  7. The use of simulated rainfall to study the discharge process and the influence factors of urban surface runoff pollution loads.

    PubMed

    Qinqin, Li; Qiao, Chen; Jiancai, Deng; Weiping, Hu

    2015-01-01

    An understanding of the characteristics of pollutants on impervious surfaces is essential to estimate pollution loads and to design methods to minimize the impacts of pollutants on the environment. In this study, simulated rainfall equipment was constructed to investigate the pollutant discharge process and the influence factors of urban surface runoff (USR). The results indicated that concentrations of total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) appeared to be higher in the early period and then decreased gradually with rainfall duration until finally stabilized. The capacity and particle size of surface dust, rainfall intensity and urban surface slopes affected runoff pollution loads to a variable extent. The loads of TP, TN and COD showed a positive relationship with the surface dust capacity, whereas the maximum TSS load appeared when the surface dust was 0.0317 g·cm⁻². Smaller particle sizes (<0.125 mm) of surface dust generated high TN, TP and COD loads. Increases in rainfall intensity and surface slope enhanced the pollution carrying capacity of runoff, leading to higher pollution loads. Knowledge of the influence factors could assist in the management of USR pollution loads.

  8. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percentmore » by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind« less

  9. Chemical characterization of sediment "Legacy P" in watershed streams - implications for P loading under land management

    NASA Astrophysics Data System (ADS)

    Audette, Yuki; O'Halloran, Ivan; Voroney, Paul

    2016-04-01

    Transfer of dissolved phosphorus (P) in runoff water via streams is regulated mainly by both stream sediment P adsorption and precipitation processes. The adsorption capacity of stream sediments acting as a P sink was a great benefit to preserving water quality in downstream lakes in the past, as it minimized the effects of surplus P loading from watershed streams. However, with long-term continued P loading the capacity of the sediments to store P has diminished, and eventually converted stream sediments from P sinks to sources of dissolved P. This accumulation of 'legacy P' in stream sediments has become the major source of dissolved P and risk to downstream water quality. Agricultural best management practices (BMP) for P typically attempt to minimize the transfer of P from farmland. However, because of the limitation in sediment P adsorption capacity, adoption of BMPs, such as reduction of external P loading, may not result in an immediate improvement in water quality. The goal of the research is to chemically characterize the P forms contributing to legacy P in stream sediments located in the watershed connecting to Cook's Bay, one of three basins of Lake Simcoe, Ontario, Canada. This watershed receives the largest amount of external P loading and has the highest rate of sediment build-up, both of which are attributed to agriculture. Water samples were collected monthly at six study sites from October 2015 for analysis of pH, temperature, dissolved oxygen, total P, dissolved reactive P, particulate P, total N, NH4-N, NO3-N, TOC and other elements including Al, Fe, Mn, Mg, Ca, S, Na, K and Zn. Sediment core samples were collected in November 2015 and will continue to be collected in March, July and October 2016. Various forms of P in five vertical sections were characterized by sequential fractionation and solution 31P NMR spectroscopy techniques. Pore water, sediment texture and clay identification were performed. The concentration of total P in water samples were ~equal or less than the Ontario Provincial Water Quality Objectives (PWQO) of 0.03 mg P L-1 except at a site located in the stream in the Holland Marsh, which was ~7 times greater. Forms and distribution of P varied with sediment section and sampling site. The range of total sediment-P was from ~0.8 to 2.5 g P kg-1 sediment, and at some sites the mobile P forms accounted for > 75% of the total sediment-P. The study will continue to examine the temporal spatial and vertical distribution of P forms to predict the rates of P release under varying water chemistries. This basic research provides a fundamental approach for characterization of the legacy P in stream sediments, ultimately providing a better understanding of the linkage between changes in agricultural management practices affecting P losses from terrestrial sources and observed changes in surface water quality.

  10. Understanding the allocation of attention when faced with varying perceptual load in partial report: a computational approach.

    PubMed

    Kyllingsbæk, Søren; Sy, Jocelyn L; Giesbrecht, Barry

    2011-05-01

    The allocation of visual processing capacity is a key topic in studies and theories of visual attention. The load theory of Lavie (1995) proposes that allocation happens in two steps where processing resources are first allocated to task-relevant stimuli and secondly remaining capacity 'spills over' to task-irrelevant distractors. In contrast, the Theory of Visual Attention (TVA) proposed by Bundesen (1990) assumes that allocation happens in a single step where processing capacity is allocated to all stimuli, both task-relevant and task-irrelevant, in proportion to their relative attentional weight. Here we present data from two partial report experiments where we varied the number and discriminability of the task-irrelevant stimuli (Experiment 1) and perceptual load (Experiment 2). The TVA fitted the data of the two experiments well thus favoring the simple explanation with a single step of capacity allocation. We also show that the effects of varying perceptual load can only be explained by a combined effect of allocation of processing capacity as well as limits in visual working memory. Finally, we link the results to processing capacity understood at the neural level based on the neural theory of visual attention by Bundesen et al. (2005). Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Field testing of stiffened deep cement mixing piles under lateral cyclic loading

    NASA Astrophysics Data System (ADS)

    Raongjant, Werasak; Jing, Meng

    2013-06-01

    Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.

  12. 78 FR 31835 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Landing Pitchover Condition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... Model EMB-550 airplane. The Model EMB-550 airplane is the first of a new family of jet airplanes... the fuel vent and exhaust emission requirements of 14 CFR part 34 and the noise certification... condition from which ultimate loads must also be determined. Loads must be determined for critical fuel and...

  13. Evaluation of Long Composite Struts

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Wu, K. Chauncey; Phelps, James E.; McKenney, Martin J.; Oremont, Leonard; Barnard, Ansley

    2011-01-01

    Carbon-epoxy tapered struts are structurally efficient and offer opportunities for weight savings on aircraft and spacecraft structures. Seven composite struts were designed, fabricated and experimentally evaluated through uniaxial loading. The design requirements, analytical predictions and experimental results are presented. Struts with a tapered composite body and corrugated titanium end fittings successfully supported their design ultimate loads with no evidence of failure.

  14. Load Carrying Capacity of Metal Dowel Type Connections of Timber Structures

    NASA Astrophysics Data System (ADS)

    Gocál, Jozef

    2014-12-01

    This paper deals with the load-carrying capacity calculation of laterally loaded metal dowel type connections according to Eurocode 5. It is based on analytically derived, relatively complicated mathematical relationships, and thus it can be quite laborious for practical use. The aim is to propose a possible simplification of the calculation. Due to quite a great variability of fasteners' types and the connection arrangements, the attention is paid to the most commonly used nailed connections. There was performed quite an extensive parametric study focused on the calculation of load-carrying capacity of the simple shear and double shear plane nail connections, joining two or three timber parts of softwood or hardwood. Based on the study results, in conclusion there are presented simplifying recommendations for practical design.

  15. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Zahra; Abbott, Benjamin W.; Troccaz, Olivier; Baudry, Jacques; Pinay, Gilles

    2016-03-01

    Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43-) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent catchment buffering capacity and the probability of human disturbance provides a useful perspective for evaluating vulnerability of aquatic ecosystems and for managing systems to maintain agricultural production while minimizing leakage of nutrients.

  16. Reactive phosphorus removal from aquaculture and poultry productions systems using polymeric hydrogels.

    PubMed

    Kofinas, Peter; Kioussis, Dimitri R

    2003-01-15

    This work reports on the features of a sorption processes for the ultimate removal and recovery of reactive phosphorus from aquaculture and poultry production wastewater effluents. The sorbent used was a cross-linked polyamine (PAA-HCl) polymeric hydrogel. The PAA-HCl hydrogels were prepared by chemically cross-linking aqueous solutions of linear PAA-HCl chains with epichlorohydrin (EPI). The phosphorus binding capacity of the gels was measured in standard aqueous solutions as a function of ionic strength. Equilibrium PO4(3-), loadings of 100 mg anion/g gel were obtained. The regeneration ability of the gels was demonstrated by release of the bound phosphorus anions upon washing with 1-2 M NaOH solution, providing opportunities to recover and reuse the gel over multiple cycles. The ionic polyamine gels have been demonstrated to be appropriate materials for treating poultry and aquaculture wastewater effluents. Upon treatment phosphorus anion concentrations were reduced to levels suitable for discharge into natural surface waters.

  17. Comparison of completely knotless and hybrid double-row fixation systems: a biomechanical study.

    PubMed

    Chu, Thomas; McDonald, Erik; Tufaga, Michael; Kandemir, Utku; Buckley, Jenni; Ma, C Benjamin

    2011-04-01

    The purpose of this study was to compare the biomechanical performance of a completely knotless double-row repair system (SutureCross Knotless Anatomic Fixation System; KFx Medical, Carlsbad, CA) with 2 commonly used hybrid double-row repair (medial knot-tying, lateral knotless) systems (Bio-Corkscrew/PushLock [Arthrex, Naples, FL] and Spiralok/Versalok [DePuy Mitek, Raynham, MA]). Fourteen pairs of fresh-frozen cadaveric shoulders were harvested, the supraspinatus tendons were isolated, and full-thickness supraspinatus tears were created. One of each pair was repaired with the completely knotless system, and the contralateral side was repaired with either of the hybrid systems. The repairs were then subjected to cyclic loading followed by load to failure. Conditioning elongation, peak-to-peak elongation, ultimate load, and mechanism of failure were recorded and compared by use of paired t tests. Seven additional shoulders were tested to determine the effect of refrigeration storage on the completely knotless system by use of the same mechanical testing protocol. For the completely knotless repair group, 11 of 14 paired specimens failed during the cyclic loading period. Only 1 of 14 hybrid repair systems had failures during cyclic loading, and both hybrid repair systems had statistically lower conditioning elongation than the completely knotless repair group. The mean ultimate load of the SutureCross group was 166 ± 87 N, which was significantly lower than that in the Corkscrew/PushLock (310 ± 82 N) and Spiralok/Versalok (337 ± 44 N) groups. There was an effect of refrigeration storage on the peak-to-peak elongation and stiffness of the SutureCross group; however, there was no difference in ultimate tensile load or conditioning elongation. The completely knotless repair system has lower time-zero biomechanical properties than the other 2 hybrid systems. The SutureCross system has lower time-zero biomechanical properties when compared with other hybrid repair systems. Clinical outcome studies are needed to determine the significance. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. Evaluation for Loss of Lubrication Performance of Black Oxide, Superfinished, and As-Ground Surfaces for Use in Rotorcraft Transmissions

    DTIC Science & Technology

    2016-09-01

    2.3.2 Loss -of-Lubrication Protocol 5 2.3.3 Friction Mapping Protocol 7 2.4 Test Matrices 9 3. Results and Discussion 10 3.1 Load Capacity 10...protocols used to simulate relevant contact conditions are the load capacity (LC), loss -of-lubrication (LoL), and mapping protocols. 2.3.1 Load ...Entrainment velocity (m/s) Slip (%) Skew (°) Load (N) Contact stress (GPa) LoL 16 –100 0 100 1.29 2.3.2.2 Low-Speed Loss -of-Lubrication

  19. Biomechanics of Polyhydroxyalkanoate Mesh-Augmented Single-Row Rotator Cuff Repairs.

    PubMed

    Tashjian, Robert Z; Kolz, Christopher W; Suter, Thomas; Henninger, Heath B

    Polyhydroxyalkanoate (PHA) mesh is a bioresorbable scaffold used to reinforce the suture-tendon interface in rotator cuff repairs (RCRs). We conducted a study of cyclic and ultimate failure properties of PHA mesh-augmented single-row RCRs and nonaugmented RCRs. Eight pairs of fresh-frozen cadaver humeri (6 male, 2 female) were tested. Mean (SD) age was 61 (9) years. The supraspinatus tendon was resected and reattached in a single-row configuration using 2 triple-loaded suture anchors and 6 simple stitches. The opposite humerus underwent RCR augmented with 2 strips of 13-mm × 23-mm PHA mesh. Humeri were mounted in an Instron load frame, cycled 1000 times to 1.0 MPa of effective stress, and loaded to failure. Construct gapping and ultimate failure loads/displacements were recorded. Paired t tests compared augmented and nonaugmented RCRs (P ≤ .05 was significant). There was no difference in gapping over 1000 cycles (P = .879). Mean (SD) failure load was higher for PHA mesh-augmented RCRs, 571 (173) N, than for nonaugmented (control) RCRs, 472 (120) N (P = .042), and failures were consistent within pairs because of tissue failure at the knots or anchor pullout. This technique for arthroscopic augmentation can be used to improve initial biomechanical repair strength in tears at risk for failure.

  20. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    NASA Astrophysics Data System (ADS)

    Radziukynas, V.; Klementavičius, A.

    2016-04-01

    The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).

  1. Effect of Load Rate on Ultimate Tensile Strength of Ceramic Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2001-01-01

    The strengths of three continuous fiber-reinforced ceramic composites, including SiC/CAS-II, SiC/MAS-5 and SiC/SiC, were determined as a function of test rate in air at 1100 to 1200 C. All three composite materials exhibited a strong dependency of strength on test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress loading) suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology even for composite materials, at least for short range of lifetimes and when ultimate strength is used as the failure criterion.

  2. Large Area Nondestructive Evaluation of a Fatigue Loaded Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Madaras, Eric I.

    2016-01-01

    Large area nondestructive evaluation (NDE) inspections are required for fatigue testing of composite structures to track damage initiation and growth. Of particular interest is the progression of damage leading to ultimate failure to validate damage progression models. In this work, passive thermography and acoustic emission NDE were used to track damage growth up to failure of a composite three-stringer panel. Fourteen acoustic emission sensors were placed on the composite panel. The signals from the array were acquired simultaneously and allowed for acoustic emission location. In addition, real time thermal data of the composite structure were acquired during loading. Details are presented on the mapping of the acoustic emission locations directly onto the thermal imagery to confirm areas of damage growth leading to ultimate failure. This required synchronizing the acoustic emission and thermal data with the applied loading. In addition, processing of the thermal imagery which included contrast enhancement, removal of optical barrel distortion and correction of angular rotation before mapping the acoustic event locations are discussed.

  3. Innovative design of composite structures: Use of curvilinear fiber format to improve structural efficiency

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Charette, R. F.

    1987-01-01

    To increase the effectiveness and efficiency of fiber-reinforced materials, the use of fibers in a curvilinear rather than the traditional straightline format is explored. The capacity of a laminated square plate with a central circular hole loaded in tension is investigated. The orientation of the fibers is chosen so that the fibers in a particular layer are aligned with the principle stress directions in that layer. Finite elements and an iteration scheme are used to find the fiber orientation. A noninteracting maximum strain criterion is used to predict load capacity. The load capacities of several plates with different curvilinear fibers format are compared with the capacities of more conventional straightline format designs. It is found that the most practical curvilinear design sandwiches a group of fibers in a curvilinear format between a pair of +/-45 degree layers. This design has a 60% greater load capacity than a conventional quasi-isotropic design with the same number of layers. The +/-45 degree layers are necessary to prevent matrix cracking in the curvilinear layers due to stresses perpendicular to the fibers in those layers. Greater efficiencies are achievable with composite structures than now realized.

  4. Advanced performance of small diaphragm vacuum pumps through the use of mechatronics

    NASA Astrophysics Data System (ADS)

    Lachenmann, R.; Dirscherl, J.

    Oil-free diaphragm vacuum pumps have proven to be the best way in vacuum generation for the chemical laboratory and they also find increasing use as backing pumps for modern wide-range turbo molecular pumps. The majority of vacuum pumps in practical use pump only a rather small percentage of their lifetime at full gas load. A pump backing a turbo molecular pump does not have to pump a significant gas load when the high-vacuum pump is running at ultimate vacuum pressure. Also, for a vacuum distillation the vacuum pump has to operate at full speed only at the beginning to lower the pressure inside the system to a vacuum level where evaporation starts. In a rather leak-tight system the distillation process continues by evaporating from the hot liquid and condensing at the cold condenser without the need of a mechanical vacuum pump. Rotational speed controlled diaphragm pumps are now available through progress in mechatronics and offer high pumping speed capability for fast pump-down cycles and precise pressure control for distillations. At low gas load the rotational speed can be reduced, improving maintenance intervals, power consumption, noise, vibration and - surprisingly - also ultimate pressure. The different behaviour in pumping speed and ultimate pressure of rotational speed controlled diaphragm pumps in comparison to constant-speed pumps is related to the mechanical properties of the valves and gas dynamics .

  5. Load-bearing properties of minimal-invasive monolithic lithium disilicate and zirconia occlusal onlays: finite element and theoretical analyses

    PubMed Central

    Ma, Li; Guess, Petra C.; Zhang, Yu

    2013-01-01

    Objectives The aim of this study was to test the hypothesis that monolithic lithium disilicate glass-ceramic occlusal onlay can exhibit a load-bearing capacity that approaches monolithic zirconia, due to a smaller elastic modulus mismatch between the lithium disilicate and its supporting tooth structure relative to zirconia. Methods Ceramic occlusal onlays of various thicknesses cemented to either enamel or dentin were considered. Occlusal load was applied through an enamel-like deformable indenter or a control rigid indenter. Flexural tensile stress at the ceramic intaglio (cementation) surface—a cause for bulk fracture of occlusal onlays—was rigorously analyzed using finite element analysis and classical plate-on-foundation theory. Results When bonded to enamel (supported by dentin), the load-bearing capacity of lithium disilicate can approach 75% of that of zirconia, despite the flexural strength of lithium disilicate (400 MPa) being merely 40% of zirconia (1000 MPa). When bonded to dentin (with the enamel completely removed), the load-bearing capacity of lithium disilicate is about 57% of zirconia, still significantly higher than the anticipated value based on its strength. Both ceramics show slightly higher load-bearing capacity when loaded with a deformable indenter (enamel, glass-ceramic, or porcelain) rather than a rigid indenter. Significance When supported by enamel, the load-bearing property of minimally invasive lithium disilicate occlusal onlays (0.6 to 1.4 mm thick) can exceed 70% of that of zircona. Additionally, a relatively weak dependence of fracture load on restoration thickness indicates that a 1.2 mm thin lithium disilicate onlay can be as fracture resistant as its 1.6 mm counterpart. PMID:23683531

  6. Assessment of the behavior of reinforced concrete beams retrofitted with pre-stressed CFPR subjected to cyclic loading

    NASA Astrophysics Data System (ADS)

    Hojatkashani, Ata; Zanjani, Sara

    2018-03-01

    Rehabilitation of weak and damaged structures has been considered widely during recent years. A relatively modern way of strengthening concrete components is to confine parts under tension and shear by means of carbon fiber reinforce polymer (CFRP). This way of strengthening due to the conditions of composite materials such as light weight, linear elastic behavior until failure point, high tensile strength, high elastic modulus, resistance against corrosion, and high fatigue resistance has become so common. During structural strengthening by means of not pre-stressed FRP materials, usually, it is not possible to benefit from the maximum capacity of FRP materials. In addition, sometimes, the expensive cost of such materials will not make a suitable balance between rates of strengthening and consuming spending. Thus, pre-stressing CFRP materials has an undeniable role in the effective use of materials. In the current research, general procedure of simulation using finite-element method (FEM) by means of the numerical package ABAQUS has been presented. In this article, 12 reinforced concrete (RC) models in two states (strengthened with simple and pre-stressed CFRP) under cycling loading have been considered. A parametric study has been carried out in this research on the effects of parameters such as CFRP surface area, percentage of tensile steel rebar and pre-stressing stress on ultimate load carrying capacity (ULCC), stiffness, and the ability of depreciation energy for the samples. In the current article also, for design parameters, percentages of tensile steel rebars, surface area of CFPR sheets, and the effective pre-stressing stress in RC beams retrofitted with pre-stressed CFPR sheets have investigated. In this paper, it was investigated that using different amount of parameters such as steel rebar percentage, CFRP surface area percentage, and CFRP pre-stressing, the resulted ULCC and energy depreciation of the specimens was observed to be increasing and decreasing. Results from examined specimens with optimum steel rebar percentage, CFRP surface area percentage, and CFRP pre-stressing which had the most enhancement on ULCC and energy depreciation are reported in the current article.

  7. Spare capacity and phenotypic flexibility in the digestive system of a migratory bird: defining the limits of animal design

    PubMed Central

    McWilliams, Scott R.; Karasov, William H.

    2014-01-01

    Flexible phenotypes enable animals to live in environments that change over space and time, and knowing the limits to and the required time scale for this flexibility provides insights into constraints on energy and nutrient intake, diet diversity and niche width. We quantified the level of immediate and ultimate spare capacity, and thus the extent of phenotypic flexibility, in the digestive system of a migratory bird in response to increased energy demand, and identified the digestive constraints responsible for the limits on sustained energy intake. Immediate spare capacity decreased from approximately 50% for birds acclimated to relatively benign temperatures to less than 20% as birds approached their maximum sustainable energy intake. Ultimate spare capacity enabled an increase in feeding rate of approximately 126% as measured in birds acclimated for weeks at −29°C compared with +21°C. Increased gut size and not tissue-specific differences in nutrient uptake or changes in digestive efficiency or retention time were primarily responsible for this increase in capacity with energy demand, and this change required more than 1–2 days. Thus, the pace of change in digestive organ size may often constrain energy intake and, for birds, retard the pace of their migration. PMID:24718764

  8. Spare capacity and phenotypic flexibility in the digestive system of a migratory bird: defining the limits of animal design.

    PubMed

    McWilliams, Scott R; Karasov, William H

    2014-05-22

    Flexible phenotypes enable animals to live in environments that change over space and time, and knowing the limits to and the required time scale for this flexibility provides insights into constraints on energy and nutrient intake, diet diversity and niche width. We quantified the level of immediate and ultimate spare capacity, and thus the extent of phenotypic flexibility, in the digestive system of a migratory bird in response to increased energy demand, and identified the digestive constraints responsible for the limits on sustained energy intake. Immediate spare capacity decreased from approximately 50% for birds acclimated to relatively benign temperatures to less than 20% as birds approached their maximum sustainable energy intake. Ultimate spare capacity enabled an increase in feeding rate of approximately 126% as measured in birds acclimated for weeks at -29°C compared with +21°C. Increased gut size and not tissue-specific differences in nutrient uptake or changes in digestive efficiency or retention time were primarily responsible for this increase in capacity with energy demand, and this change required more than 1-2 days. Thus, the pace of change in digestive organ size may often constrain energy intake and, for birds, retard the pace of their migration.

  9. Biomechanical Analysis of Suture Anchor vs Tenodesis Screw for FHL Transfer.

    PubMed

    Drakos, Mark C; Gott, Michael; Karnovsky, Sydney C; Murphy, Conor I; DeSandis, Bridget A; Chinitz, Noah; Grande, Daniel; Chahine, Nadeen

    2017-07-01

    Chronic Achilles injury is often treated with flexor hallucis longus (FHL) tendon transfer to the calcaneus using 1 or 2 incisions. A single incision avoids the risks of extended dissections yet yields smaller grafts, which may limit fixation options. We investigated the required length of FHL autograft and biomechanical profiles for suture anchor and biotenodesis screw fixation. Single-incision FHL transfer with suture anchor or biotenodesis screw fixation to the calcaneus was performed on 20 fresh cadaveric specimens. Specimens were cyclically loaded until maximal load to failure. Length of FHL tendon harvest, ultimate load, stiffness, and mode of failure were recorded. Tendon harvest length needed for suture anchor fixation was 16.8 ± 2.1 mm vs 29.6 ± 2.4 mm for biotenodesis screw ( P = .002). Ultimate load to failure was not significantly different between groups. A significant inverse correlation existed between failure load and donor age when all specimens were pooled (ρ = -0.49, P < .05). Screws in younger specimens (fewer than 70) resulted in significantly greater failure loads ( P < .03). No difference in stiffness was found between groups. Modes of failure for screw fixation were either tunnel pullout (n = 6) or tendon rupture (n = 4). Anchor failure occurred mostly by suture breakage (n = 8). Adequate FHL tendon length could be harvested through a single posterior incision for fixation to the calcaneus with either fixation option, but suture anchor required significantly less graft length. Stiffness, fixation strength, and load to failure were comparable between groups. An inverse correlation existed between failure load and donor age. Younger specimens with screw fixation demonstrated significantly greater failure loads. Adequate harvest length for FHL transfer could be achieved with a single posterior incision. There was no difference in strength of fixation between suture anchor and biotenodesis screw.

  10. Experimental investigation on high performance RC column with manufactured sand and silica fume

    NASA Astrophysics Data System (ADS)

    Shanmuga Priya, T.

    2017-11-01

    In recent years, the use High Performance Concrete (HPC) has increased in construction industry. The ingredients of HPC depend on the availability and characteristics of suitable alternative materials. Those alternative materials are silica fume and manufactured sand, a by products from ferro silicon and quarry industries respectively. HPC made with silica fume as partial replacement of cement and manufactured sand as replacement of natural sand is considered as sustainable high performance concrete. In this present study the concrete was designed to get target strength of 60 MPa as per guide lines given by ACI 211- 4R (2008). The laboratory study was carried out experimentally to analyse the axial behavior of reinforced cement HPC column of size 100×100×1000mm and square in cross section. 10% of silica fume was preferred over ordinary portland cement. The natural sand was replaced by 0, 20, 40, 60, 80 and 100% with Manufactured Sand (M-Sand). In this investigation, totally 6 column specimens were cast for mixes M1 to M6 and were tested in 1000kN loading frame at 28 days. From this, Load-Mid height deflection curves were drawn and compared. Maximum ultimate load carrying capacity and the least deflection is obtained for the mix prepared by partial replacement of cement with 10% silica fume & natural sand by 100% M-Sand. The fine, amorphous and pozzalonic nature of silica fume and fine mineral particles in M- Sand increased the stiffness of HPC column. The test results revealed that HPC can be produced by using M-Sand with silica fume.

  11. The Transportation of Debris by Running Water

    USGS Publications Warehouse

    Gilbert, Grove Karl; Murphy, Edward Charles

    1914-01-01

    Scope.-The finer debris transported by a stream is borne in suspension. The coarser is swept along the channel bed. The suspended load is readily sampled and estimated, and much is known as to its quantity. The bed load is inaccessible and we are without definite information as to its amount. The primary purpose of the investigation was to learn the laws which control the movement of bed load, and especially to determine how the quantity of load is related to the stream's slope and discharge and to the degree of comminution of the debris. Method.-To this end a laboratory was equipped at Berkeley, Cal., and experiments were performed in which each of the three conditions mentioned was separately varied and the resulting variations of load were observed and measured. Sand and gravel were sorted by sieves into grades of uniform size. Determinate discharges were used. In each experiment a specific load was fed to a stream of specific width and discharge, and measurement was made of the slope to which the stream automatically adjusted its bed so as to enable the current to transport the load. The slope factor.-For each combination of discharge, width, and grade of debris there is a slope, called competent slope, which limits transportation. With lower slopes there is no load, or the stream has no capacity for load. With higher slopes capacity exists; and increase of slope gives increase of capacity. The value of capacity is approximately proportional to a power of the excess of slope above competent slope. If S equal the stream's slope and sigma equal competent slope, then the stream's capacity varies as (S - sigma)n. This is not a deductive, but an empiric law. The exponent n has not a fixed value, but an indefinite series of values depending on conditions. Its range of values in the experience of the laboratory is from 0.93 to 2.37, the values being greater as the discharges are smaller or the debris is coarser. The discharge factor.-For each combination of width, slope, and grade of debris there is a competent discharge, k. Calling the stream's discharge Q, the stream's capacity varies as (Q - k)o. The observed range of values for o is from 0.81 to 1.24, the values being greater as the slopes are smaller or the debris is coarser. Under like conditions o is less than n; or, in other words, capacity is less sensitive to change3 of discharge than to changes of slope. The fineness factor.-For each combination of width, slope, and discharge there is a limiting fineness of debris below which no transportation takes place. Calling fineness (or degree of comminution) F and competent fineness o, the stream's capacity varies with (F - o)p. The observed range of values for p is from 0.50 to 0.62, the values being greater as slopes and discharges are smaller. Capacity is less sensitive to changes in fineness of debris than to changes in discharge or slope. The form factor.-Most of the experiments were with straight channels. A few with crooked channels yielded nearly the same estimates of capacity. The ratio of depth to width is a more important factor. For any combination of slope, discharge, and fineness it is possible to reduce capacity to zero by making the stream very wide and shallow or very narrow and deep. Between these extremes is a particular ratio of depth to width, p, corresponding to a maximum capacity. The values of p range, under laboratory conditions, from 0.5 to 0.04, being greater as slope, discharge, and fineness are less. Velocity.-The velocity which determines capacity for bed load is that near the stream's bed, but attempts to measure bed velocity were not successful. Mean velocity was measured instead. To make a definite comparison between capacity and mean velocity it is necessary to postulate constancy in some accessory condition. If slope be the constant, in which case velocity changes with discharge, capacity varies on the average with the 3.2 power of velocity. If discharge be the constant, in w

  12. I can see clearly now: the effects of age and perceptual load on inattentional blindness

    PubMed Central

    Remington, Anna; Cartwright-Finch, Ula; Lavie, Nilli

    2014-01-01

    Attention and awareness are known to be linked (e.g., see Lavie et al., 2014, for a review). However the extent to which this link changes over development is not fully understood. Most research concerning the development of attention has investigated the effects of attention on distraction, visual search and spatial orienting, typically using reaction time measures which cannot directly support conclusions about conscious awareness. Here we used Lavie’s Load Theory of Attention and Cognitive Control to examine the development of attention effects on awareness. According to Load Theory, awareness levels are determined by the availability of attentional capacity. We hypothesized that attentional capacity develops with age, and consequently that awareness rates should increase with development due to the enhanced capacity. Thus we predicted that greater rates of inattentional blindness (IB) would be found at a younger age, and that lower levels of load will be sufficient to exhaust capacity and cause IB in children but not adults. We tested this hypothesis using an IB paradigm with adults and children aged 7–8, 9–10, 11–12 and 13 years old. Participants performed a line-length judgment task (indicating which arm of a cross is longer) and on the last trial were asked to report whether they noticed an unexpected task-irrelevant stimulus (a small square) in the display. Perceptual load was varied by changing the line-length difference (with a smaller difference in the conditions of higher load). The results supported our hypothesis: levels of awareness increased with age, and a moderate increase in the perceptual load of the task led to greater IB for children but not adults. These results extended across both peripheral and central presentations of the task stimuli. Overall, these findings establish the development of capacity for awareness and demonstrate the critical role of the perceptual load in the attended task. PMID:24795596

  13. I can see clearly now: the effects of age and perceptual load on inattentional blindness.

    PubMed

    Remington, Anna; Cartwright-Finch, Ula; Lavie, Nilli

    2014-01-01

    Attention and awareness are known to be linked (e.g., see Lavie et al., 2014, for a review). However the extent to which this link changes over development is not fully understood. Most research concerning the development of attention has investigated the effects of attention on distraction, visual search and spatial orienting, typically using reaction time measures which cannot directly support conclusions about conscious awareness. Here we used Lavie's Load Theory of Attention and Cognitive Control to examine the development of attention effects on awareness. According to Load Theory, awareness levels are determined by the availability of attentional capacity. We hypothesized that attentional capacity develops with age, and consequently that awareness rates should increase with development due to the enhanced capacity. Thus we predicted that greater rates of inattentional blindness (IB) would be found at a younger age, and that lower levels of load will be sufficient to exhaust capacity and cause IB in children but not adults. We tested this hypothesis using an IB paradigm with adults and children aged 7-8, 9-10, 11-12 and 13 years old. Participants performed a line-length judgment task (indicating which arm of a cross is longer) and on the last trial were asked to report whether they noticed an unexpected task-irrelevant stimulus (a small square) in the display. Perceptual load was varied by changing the line-length difference (with a smaller difference in the conditions of higher load). The results supported our hypothesis: levels of awareness increased with age, and a moderate increase in the perceptual load of the task led to greater IB for children but not adults. These results extended across both peripheral and central presentations of the task stimuli. Overall, these findings establish the development of capacity for awareness and demonstrate the critical role of the perceptual load in the attended task.

  14. A calibration procedure for load cells to improve accuracy of mini-lysimeters in monitoring evapotranspiration

    NASA Astrophysics Data System (ADS)

    Misra, R. K.; Padhi, J.; Payero, J. O.

    2011-08-01

    SummaryWe used twelve load cells (20 kg capacity) in a mini-lysimeter system to measure evapotranspiration simultaneously from twelve plants growing in separate pots in a glasshouse. A data logger combined with a multiplexer was used to connect all load cells with the full-bridge excitation mode to acquire load-cell signal. Each load cell was calibrated using fixed load within the range of 0-0.8 times the full load capacity of load cells. Performance of all load cells was assessed on the basis of signal settling time, excitation compensation, hysteresis and temperature. Final calibration of load cells included statistical consideration of these effects to allow prediction of lysimeter weights and evapotranspiration over short-time intervals for improved accuracy and sustained performance. Analysis of the costs for the mini-lysimeter system indicates that evapotranspiration can be measured economically at a reasonable accuracy and sufficient resolution with robust method of load-cell calibration.

  15. Enhanced load-carrying capacity of hairy surfaces floating on water.

    PubMed

    Xue, Yahui; Yuan, Huijing; Su, Weidong; Shi, Yipeng; Duan, Huiling

    2014-05-08

    Water repellency of hairy surfaces depends on the geometric arrangement of these hairs and enables different applications in both nature and engineering. We investigate the mechanism and optimization of a hairy surface floating on water to obtain its maximum load-carrying capacity by the free energy and force analyses. It is demonstrated that there is an optimum cylinder spacing, as a result of the compromise between the vertical capillary force and the gravity, so that the hairy surface has both high load-carrying capacity and mechanical stability. Our analysis makes it clear that the setae on water striders' legs or some insects' wings are in such an optimized geometry. Moreover, it is shown that surface hydrophobicity can further increase the capacity of a hairy surface with thick cylinders, while the influence is negligible when the cylinders are thin.

  16. Enhanced load-carrying capacity of hairy surfaces floating on water

    PubMed Central

    Xue, Yahui; Yuan, Huijing; Su, Weidong; Shi, Yipeng; Duan, Huiling

    2014-01-01

    Water repellency of hairy surfaces depends on the geometric arrangement of these hairs and enables different applications in both nature and engineering. We investigate the mechanism and optimization of a hairy surface floating on water to obtain its maximum load-carrying capacity by the free energy and force analyses. It is demonstrated that there is an optimum cylinder spacing, as a result of the compromise between the vertical capillary force and the gravity, so that the hairy surface has both high load-carrying capacity and mechanical stability. Our analysis makes it clear that the setae on water striders' legs or some insects' wings are in such an optimized geometry. Moreover, it is shown that surface hydrophobicity can further increase the capacity of a hairy surface with thick cylinders, while the influence is negligible when the cylinders are thin. PMID:24808757

  17. Impact of Uncertainty from Load-Based Reserves and Renewables on Dispatch Costs and Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bowen; Maroukis, Spencer D.; Lin, Yashen

    2016-11-21

    Aggregations of controllable loads are considered to be a fast-responding, cost-efficient, and environmental-friendly candidate for power system ancillary services. Unlike conventional service providers, the potential capacity from the aggregation is highly affected by factors like ambient conditions and load usage patterns. Previous work modeled aggregations of controllable loads (such as air conditioners) as thermal batteries, which are capable of providing reserves but with uncertain capacity. A stochastic optimal power flow problem was formulated to manage this uncertainty, as well as uncertainty in renewable generation. In this paper, we explore how the types and levels of uncertainty, generation reserve costs, andmore » controllable load capacity affect the dispatch solution, operational costs, and CO2 emissions. We also compare the results of two methods for solving the stochastic optimization problem, namely the probabilistically robust method and analytical reformulation assuming Gaussian distributions. Case studies are conducted on a modified IEEE 9-bus system with renewables, controllable loads, and congestion. We find that different types and levels of uncertainty have significant impacts on dispatch and emissions. More controllable loads and less conservative solution methodologies lead to lower costs and emissions.« less

  18. Retrofitting of Reinforced Concrete Beams using Reactive Powder Concrete (RPC)

    NASA Astrophysics Data System (ADS)

    Karthik, S.; Sundaravadivelu, Karthik

    2017-07-01

    Strengthening of existing damaged structures is one of the leading studies in civil engineering. The purpose of retrofitting is to structurally treat the member with an aim to restore the structure to its original strength. The focus of this project is to study the behaviour of damaged Reinforced Concrete beam retrofitted with Reactive Powder Concrete (RPC) Overlay. Reinforced concrete beams of length 1200 mm, width 100 mm and depth 200 mm were casted with M30 grade of concrete in the laboratory and cured for 28 days. One beam is taken as control and are tested under two point loading to find out ultimate load. Remaining beams are subjected to 90 % ultimate load of control beams. The partially damaged beams are retrofitted with Reactive Powder Concrete Overlay at the full tension face of the beam and side overlay depends upon the respectable retrofitting techniques with 10 mm and 20 mm thick layer to find optimum. Materials like steel fibres are added to enhance the ductility by eliminating coarse particle for homogeneity of the structure. Finally, the modes of failure for retrofitted beams are analysed experimentally under two point loading & compared the results with Control beam.

  19. Design and Evaluation of a Bolted Joint for a Discrete Carbon-Epoxy Rod-Reinforced Hat Section

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.; Rousseau, Carl Q.

    1996-01-01

    The use of pre-fabricated pultruded carbon-epoxy rods has reduced the manufacturing complexity and costs of stiffened composite panels while increasing the damage tolerance of the panels. However, repairability of these highly efficient discrete stiffeners has been a concern. Design, analysis, and test results are presented in this paper for a bolted-joint repair for the pultruded rod concept that is capable of efficiently transferring axial loads in a hat-section stiffener on the upper skin segment of a heavily loaded aircraft wing component. A tension and a compression joint design were evaluated. The tension joint design achieved approximately 1.0 percent strain in the carbon-epoxy rod-reinforced hat-section and failed in a metal fitting at 166 percent of the design ultimate load. The compression joint design failed in the carbon-epoxy rod-reinforced hat-section test specimen area at approximately 0.7 percent strain and at 110 percent of the design ultimate load. This strain level of 0.7 percent in compression is similar to the failure strain observed in previously reported carbon-epoxy rod-reinforced hat-section column tests.

  20. A method for improving predictions of bed-load discharges to reservoirs

    USGS Publications Warehouse

    Lopes, V.L.; Osterkamp, W.R.; Bravo-Espinosa, M.

    2007-01-01

    Effective management options for mitigating the loss of reservoir water storage capacity to sedimentation depend on improved predictions of bed-load discharges into the reservoirs. Most predictions of bed-load discharges, however, are based on the assumption that the rates of bed-load sediment availability equal the transport capacity of the flow, ignoring the spatio-temporal variability of the sediment supply. This paper develops a semiquantitative method to characterize bed-load sediment transport in alluvial channels, assuming a channel reach is non-supply limited when the bed-load discharge of a given sediment particle-size class is functionally related to the energy that is available to transport that fraction of the total bed-load. The method was applied to 22 alluvial stream channels in the USA to determine whether a channel reach had a supply-limited or non-supply-limited bed-load transport regime. The non-supply-limited transport regime was further subdivided into two groups on the basis of statistical tests. The results indicated the pattern of bed-load sediment transport in alluvial channels depends on the complete spectrum of sediment particle sizes available for transport rather than individual particle-size fractions represented by one characteristic particle size. The application of the method developed in this paper should assist reservoir managers in selecting bed-load sediment transport equations to improve predictions of bed-load discharge in alluvial streams, thereby significantly increasing the efficiency of management options for maintaining the storage capacity of waterbodies. ?? 2007 Blackwell Publishing Asia Pty Ltd.

  1. A Novel Repair Method for Radial Tears of the Medial Meniscus: Biomechanical Comparison of Transtibial 2-Tunnel and Double Horizontal Mattress Suture Techniques Under Cyclic Loading.

    PubMed

    Bhatia, Sanjeev; Civitarese, David M; Turnbull, Travis Lee; LaPrade, Christopher M; Nitri, Marco; Wijdicks, Coen A; LaPrade, Robert F

    2016-03-01

    Complete radial tears of the medial meniscus have been reported to be functionally similar to a total meniscectomy. At present, there is no consensus on an ideal technique for repair of radial midbody tears of the medial meniscus. Prior attempts at repair with double horizontal mattress suture techniques have led to a reportedly high rate of incomplete healing or healing in a nonanatomic (gapped) position, which compromises the ability of the meniscus to withstand hoop stresses. A newly proposed 2-tunnel radial meniscal repair method will result in decreased gapping and increased ultimate failure loads compared with the double horizontal mattress suture repair technique under cyclic loading. Controlled laboratory study. Ten matched pairs of male human cadaveric knees (average age, 58.6 years; range, 48-66 years) were used. A complete radial medial meniscal tear was made at the junction of the posterior one-third and middle third of the meniscus. One knee underwent a horizontal mattress inside-out repair, while the contralateral knee underwent a radial meniscal repair entailing the same technique with a concurrent novel 2-tunnel repair. Specimens were potted and mounted on a universal testing machine. Each specimen was cyclically loaded 1000 times with loads between 5 and 20 N before experiencing a load to failure. Gap distances at the tear site and failure load were measured. The 2-tunnel repairs exhibited a significantly stronger ultimate failure load (median, 196 N; range, 163-212 N) than did the double horizontal mattress suture repairs (median, 106 N; range, 63-229 N) (P = .004). In addition, the 2-tunnel repairs demonstrated decreased gapping at all testing states (P < .05) with a final measured gapping of 1.7 mm and 4.1 mm after 1000 cycles for the 2-tunnel and double horizontal mattress suture repairs, respectively. The 2-tunnel repairs displayed significantly less gapping distance after cyclic loading and had significantly stronger ultimate failure loads compared with the double horizontal mattress suture repairs. Complete radial tears of the medial meniscus significantly decrease the ability of the meniscus to dissipate tibiofemoral loads, predisposing patients to early osteoarthritis. Improving the ability to repair medial meniscal radial tears in a way that withstands cyclic loads and heals in an anatomic position could significantly improve patient healing rates and result in improved preservation of the articular cartilage of the medial compartment of the knee. The 2-tunnel repair may be a more reliable and stronger repair option for midbody radial tears of the medial meniscus. Clinical studies are warranted to further evaluate these repairs. © 2015 The Author(s).

  2. The river absorption capacity determination as a tool to evaluate state of surface water

    NASA Astrophysics Data System (ADS)

    Wilk, Paweł; Orlińska-Woźniak, Paulina; Gębala, Joanna

    2018-02-01

    In order to complete a thorough and systematic assessment of water quality, it is useful to measure the absorption capacity of a river. Absorption capacity is understood as a pollution load introduced into river water that will not cause permanent and irreversible changes in the aquatic ecosystem and will not cause a change in the classification of water quality in the river profile. In order to implement the method, the Macromodel DNS/SWAT basin for the Middle Warta pilot (central Poland) was used to simulate nutrient loads. This enabled detailed analysis of water quality in each water body and the assessment of the size of the absorption capacity parameter, which allows the determination of how much pollution can be added to the river without compromising its quality class. Positive values of the calculated absorption capacity parameter mean that it is assumed that the ecosystem is adjusted in such a way that it can eliminate pollution loads through a number of self-purification processes. Negative values indicate that the load limit has been exceeded, and too much pollution has been introduced into the ecosystem for it to be able to deal with through the processes of self-purification. Absorption capacity thus enables the connection of environmental standards of water quality and water quality management plans in order to meet these standards.

  3. Waiting time effect of a GM type orifice pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Zhu, Shaowei; Kakimi, Yasuhiro; Matsubara, Yoichi

    In a general GM type orifice pulse tube refrigerator, there are two short periods during which both the high pressure valve and the low pressure valve are closed in one cycle. We call the short period `waiting time'. The pressure differences across the high pressure valve and the low pressure valve are decreased by using long waiting time. The pressure difference loss is decreased. Thus, the cooling capacity and the efficiency are increased, and the no-load temperature is decreased. The mechanism of the waiting time is discussed with numerical analysis and verified by experiments. Experiments show that there is an optimum waiting time for the no-load temperature, the cooling capacity and the efficiency, respectively. The no-load temperature of 40.3 K was achieved with a 90° waiting time. The cooling capacity of 58 W at 80 K was achieved with a 60° waiting time. The no-load temperature of 45.1 K and the cooling capacity of 45 W at 80 K were achieved with a 1° waiting time.

  4. A new anchor augmentation technique with a cancellous screw in osteoporotic rotator cuff repair: an in vitro biomechanical study on sheep humerus specimens.

    PubMed

    Uruc, Vedat; Ozden, Raif; Dogramacı, Yunus; Kalacı, Aydıner; Hallaceli, Hasan; Küçükdurmaz, Fatih

    2014-01-01

    The aim of this study was to test a simple technique to augment the pullout resistance of an anchor in an over-drilled sheep humerus model. Sixty-four paired sheep humeri were harvested from 32 male sheep aged 18 months. Specimens were divided into an augmented group and non-augmented group. FASTIN RC 5-mm titanium screw anchors (DePuy Mitek, Raynham, MA) double loaded with suture material (braided polyester, nonabsorbable USP No. 2) were used in both groups. Osteoporosis was simulated by over-drilling with a 4.5-mm drill. Augmentation was performed by fixing 1 of the sutures 1.5 cm inferior to the anchor insertion site with a washer screw. This was followed by a pull-to-failure test at 50 mm/min. The ultimate load (the highest value of strength before anchor pullout) was recorded. A paired t test was used to compare the biomechanical properties of the augmented and non-augmented groups. In all specimens the failure mode was pullout of the anchor. The ultimate failure loads were statistically significantly higher in the augmented group (P < .0001). The mean pullout strength was 121.1 ± 10.17 N in the non-augmented group and 176.1 ± 10.34 N in the augmented group. The described augmentation technique, which is achieved by inferior-lateral fixation of 1 of the sutures of the double-loaded anchor to a fully threaded 6.5-mm cancellous screw with a washer, significantly increases the ultimate failure loads in the over-drilled sheep humerus model. Our technique is simple, safe, and inexpensive. It can be easily used in all osteoporotic patients and will contribute to the reduction of anchor failure. This technique might be difficult to apply arthroscopically. Cannulated smaller screws would probably be more practical for arthroscopic use. Further clinical studies are needed. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  5. Simultaneous anatomic reconstruction of the acromioclavicular and coracoclavicular ligaments using a single tendon graft.

    PubMed

    Shin, Sang-Jin; Campbell, Sean; Scott, Jonathan; McGarry, Michelle H; Lee, Thay Q

    2014-09-01

    The purpose of this study was to introduce a novel surgical technique for simultaneous anatomic reconstruction of the acromioclavicular and coracoclavicular ligaments using a single tendon graft and to compare its biomechanical characteristics to those of a coracoid cerclage reconstruction of the coracoclavicular ligaments. Six matched pairs of human acromioclavicular joints with an average age of 54.8 ± 7.8 years were used. One shoulder from each pair received the single tendon acromioclavicular-coracoclavicular reconstruction; the contralateral shoulder received the coracoid cerclage reconstruction. Bovine extensor tendon was used for both techniques. The single tendon acromioclavicular-coracoclavicular reconstruction technique provided anatomic restoration of the two coracoclavicular ligaments and the superior and inferior acromioclavicular ligaments simultaneously using one coracoid hole, one acromion hole, and two clavicular holes with interference screws. Anterior-posterior and superior-inferior translations were quantified for all specimens before and after reconstruction, followed by load to failure testing. Following coracoid cerclage reconstruction, total anterior-posterior translation was significantly greater than intact (10.0 ± 5.7 mm; p = 0.008). Following single tendon acromioclavicular-coracoclavicular reconstruction, there was no significant difference in anterior-posterior translation compared to intact (-1.6 ± 2.2 mm; n.s.). The coracoid cerclage technique demonstrated significantly greater anterior-posterior translation than the single tendon acromioclavicular-coracoclavicular technique (p = 0.007). Both techniques restored superior-inferior translation to the intact condition (n.s.). Ultimate load, deformation at ultimate load, and energy absorbed at ultimate load were significantly greater after acromioclavicular-coracoclavicular reconstruction than after coracoid cerclage reconstruction (p < 0.05). This novel single tendon anatomic acromioclavicular-coracoclavicular reconstruction provided greater stability and stronger load to failure characteristics than the isolated coracoid cerclage reconstruction. A simultaneous acromioclavicular-coracoclavicular reconstruction technique using a single free tendon graft provided anatomic reconstruction of the conoid, trapezoid, and superior and inferior acromioclavicular ligaments and may reduce postoperative subluxation.

  6. The strength of polyaxial locking interfaces of distal radius plates.

    PubMed

    Hoffmeier, Konrad L; Hofmann, Gunther O; Mückley, Thomas

    2009-10-01

    Currently available polyaxial locking plates represent the consequent enhancement of fixed-angle, first-generation locking plates. In contrast to fixed-angle locking plates which are sufficiently investigated, the strength of the new polyaxial locking options has not yet been evaluated biomechanically. This study investigates the mechanical strength of single polyaxial interfaces of different volar radius plates. Single screw-plate interfaces of the implants Palmar 2.7 (Königsee Implantate und Instrumente zur Osteosynthese GmbH, Allendorf, Germany), VariAx (Stryker Leibinger GmbH & Co. KG, Freiburg, Germany) und Viper (Integra LifeSciences Corporation, Plainsboro, NJ, USA) were tested by cantilever bending. The strength of 0 degrees, 10 degrees and 20 degrees screw locking angle was obtained during static and dynamic loading. The Palmar 2.7 interfaces showed greater ultimate strength and fatigue strength than the interfaces of the other implants. The strength of the VariAx interfaces was about 60% of Palmar 2.7 in both, static and dynamic loading. No dynamic testing was applied to the Viper plate because of its low ultimate strength. By static loading, an increase in screw locking angle caused a reduction of strength for the Palmar 2.7 and Viper locking interfaces. No influence was observed for the VariAx locking interfaces. During dynamic loading; angulation had no influence on the locking strength of Palmar 2.7. However, reduction of locking strength with increasing screw angulation was observed for VariAx. The strength of the polyaxial locking interfaces differs remarkably between the examined implants. Depending on the implant an increase of the screw locking angle causes a reduction of ultimate or fatigue strength, but not in all cases a significant impact was observed.

  7. Room Temperature and Elevated Temperature Composite Sandwich Joint Testing

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.

    1998-01-01

    Testing of composite sandwich joint elements has been completed to verify the strength capacity of joints designed to carry specified running loads representative of a high speed civil transport wing. Static tension testing at both room and an elevated temperature of 350 F and fatigue testing at room temperature were conducted to determine strength capacity, fatigue life, and failure modes. Static tension test results yielded failure loads above the design loads for the room temperature tests, confirming the ability of the joint concepts tested to carry their design loads. However, strength reductions as large as 30% were observed at the elevated test temperature, where all failure loads were below the room temperature design loads for the specific joint designs tested. Fatigue testing resulted in lower than predicted fatigue lives.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, C. Keith; Shen, Bo; Shrestha, Som S.

    This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirementmore » (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28% increase in delivered heating load and an ~52% increase in the estimated heating operating cost over that given in the AHRI directory (AHRI 2014).« less

  9. Quantitative structure-property relationship (QSPR) modeling of drug-loaded polymeric micelles via genetic function approximation.

    PubMed

    Wu, Wensheng; Zhang, Canyang; Lin, Wenjing; Chen, Quan; Guo, Xindong; Qian, Yu; Zhang, Lijuan

    2015-01-01

    Self-assembled nano-micelles of amphiphilic polymers represent a novel anticancer drug delivery system. However, their full clinical utilization remains challenging because the quantitative structure-property relationship (QSPR) between the polymer structure and the efficacy of micelles as a drug carrier is poorly understood. Here, we developed a series of QSPR models to account for the drug loading capacity of polymeric micelles using the genetic function approximation (GFA) algorithm. These models were further evaluated by internal and external validation and a Y-randomization test in terms of stability and generalization, yielding an optimization model that is applicable to an expanded materials regime. As confirmed by experimental data, the relationship between microstructure and drug loading capacity can be well-simulated, suggesting that our models are readily applicable to the quantitative evaluation of the drug-loading capacity of polymeric micelles. Our work may offer a pathway to the design of formulation experiments.

  10. Quantitative Structure-Property Relationship (QSPR) Modeling of Drug-Loaded Polymeric Micelles via Genetic Function Approximation

    PubMed Central

    Lin, Wenjing; Chen, Quan; Guo, Xindong; Qian, Yu; Zhang, Lijuan

    2015-01-01

    Self-assembled nano-micelles of amphiphilic polymers represent a novel anticancer drug delivery system. However, their full clinical utilization remains challenging because the quantitative structure-property relationship (QSPR) between the polymer structure and the efficacy of micelles as a drug carrier is poorly understood. Here, we developed a series of QSPR models to account for the drug loading capacity of polymeric micelles using the genetic function approximation (GFA) algorithm. These models were further evaluated by internal and external validation and a Y-randomization test in terms of stability and generalization, yielding an optimization model that is applicable to an expanded materials regime. As confirmed by experimental data, the relationship between microstructure and drug loading capacity can be well-simulated, suggesting that our models are readily applicable to the quantitative evaluation of the drug-loading capacity of polymeric micelles. Our work may offer a pathway to the design of formulation experiments. PMID:25780923

  11. An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Zhang, Bu-han; Zhang, Zhe; Yin, Xiang-gen; Wang, Bo

    2011-11-01

    Most existing research on the vulnerability of power grids based on complex networks ignores the electrical characteristics and the capacity of generators and load. In this paper, the electrical betweenness is defined by considering the maximal demand of load and the capacity of generators in power grids. The loss of load, which reflects the ability of power grids to provide sufficient power to customers, is introduced to measure the vulnerability together with the size of the largest cluster. The simulation results of the IEEE-118 bus system and the Central China Power Grid show that the cumulative distributions of node electrical betweenness follow a power-law and that the nodes with high electrical betweenness play critical roles in both topological structure and power transmission of power grids. The results prove that the model proposed in this paper is effective for analyzing the vulnerability of power grids.

  12. Effects of reducing temperatures on the hydrogen storage capacity of double-walled carbon nanotubes with Pd loading.

    PubMed

    Sheng, Qu; Wu, Huimin; Wexler, David; Liu, Huakun

    2014-06-01

    The effects of different temperatures on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) with palladium loading have been investigated. When we use different temperatures, the particle sizes and specific surface areas of the samples are different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the amount of hydrogen storage capacity was determined (by AMC Gas Reactor Controller) to be 1.70, 1.85, 2.00, and 1.93 wt% for pristine DWCNTS and for 2%Pd/DWCNTs-300 degrees C, 2%Pd/DWCNTs-400 degrees C, and 2%Pd/DWCNTs-500 degrees C, respectively. We found that the hydrogen storage capacity can be enhanced by loading with 2% Pd nanoparticles and selecting a suitable temperature. Furthermore, the sorption can be attributed to the chemical reaction between atomic hydrogen and the dangling bonds of the DWCNTs.

  13. Plug and Process Loads Capacity and Power Requirements Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppy, M.; Gentile-Polese, L.

    2014-09-01

    This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus ofmore » this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.« less

  14. A novel delivery system of doxorubicin with high load and pH-responsive release from the nanoparticles of poly (α,β-aspartic acid) derivative.

    PubMed

    Wang, Xiaojuan; Wu, Guolin; Lu, Caicai; Zhao, Weipeng; Wang, Yinong; Fan, Yunge; Gao, Hui; Ma, Jianbiao

    2012-08-30

    A poly (amino acid)-based amphiphilic copolymer was utilized to fabricate a better micellar drug delivery system (DDS) with improved compatibility and sustained release of doxorubicin (DOX). First, poly (ethylene glycol) monomethyl ether (mPEG) and DOX were conjugated onto polyasparihyazide (PAHy), prepared by hydrazinolysis of the poly (succinimide) (PSI), to afford an amphiphilic polymer [PEG-hyd-P (AHy-hyd-DOX)] with acid-liable hydrazone bonds. The DOX, chemically conjugated to the PAHy, was designed to supply hydrophobic segments. PEGs were also grafted to the polymer via hydrazone bonds to supply hydrophiphilic segments and prolong its lifetime in blood circulation. Free DOX molecules could be entrapped into the nanoparticles fabricated by such an amphiphilic polymer (PEG-hyd-P (AHy-hyd-DOX)), via hydrophobic interaction and π-π stacking between the conjugated and free DOX molecules to obtain a pH responsive drug delivery system with high DOX loaded. The drug loading capacity, drug release behavior, and morphology of the micelles were investigated. The biological activity of micelles was evaluated in vitro. The drug loading capacity was intensively augmented by adjusting the feed ratio, and the maximum loading capacity was as high as 38%. Besides, the DOX-loaded system exhibited pH-dependent drug release profiles in vitro. The cumulative release of DOX was much faster at pH 5.0 than that at pH 7.4. The DOX-loaded system kept highly antitumor activity for a long time, compared with free DOX. This easy-prepared DDS, with features of biocompatibility, biodegradability, high drug loading capacity and pH-responsiveness, was a promising controlled release delivery system for DOX. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. On the biomechanical function of scaffolds for engineering load-bearing soft tissues.

    PubMed

    Stella, John A; D'Amore, Antonio; Wagner, William R; Sacks, Michael S

    2010-07-01

    Replacement or regeneration of load-bearing soft tissues has long been the impetus for the development of bioactive materials. While maturing, current efforts continue to be confounded by our lack of understanding of the intricate multi-scale hierarchical arrangements and interactions typically found in native tissues. The current state of the art in biomaterial processing enables a degree of controllable microstructure that can be used for the development of model systems to deduce fundamental biological implications of matrix morphologies on cell function. Furthermore, the development of computational frameworks which allow for the simulation of experimentally derived observations represents a positive departure from what has mostly been an empirically driven field, enabling a deeper understanding of the highly complex biological mechanisms we wish to ultimately emulate. Ongoing research is actively pursuing new materials and processing methods to control material structure down to the micro-scale to sustain or improve cell viability, guide tissue growth, and provide mechanical integrity, all while exhibiting the capacity to degrade in a controlled manner. The purpose of this review is not to focus solely on material processing but to assess the ability of these techniques to produce mechanically sound tissue surrogates, highlight the unique structural characteristics produced in these materials, and discuss how this translates to distinct macroscopic biomechanical behaviors. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Finite element modelling of concrete beams reinforced with hybrid fiber reinforced bars

    NASA Astrophysics Data System (ADS)

    Smring, Santa binti; Salleh, Norhafizah; Hamid, NoorAzlina Abdul; Majid, Masni A.

    2017-11-01

    Concrete is a heterogeneous composite material made up of cement, sand, coarse aggregate and water mixed in a desired proportion to obtain the required strength. Plain concrete does not with stand tension as compared to compression. In order to compensate this drawback steel reinforcement are provided in concrete. Now a day, for improving the properties of concrete and also to take up tension combination of steel and glass fibre-reinforced polymer (GFRP) bars promises favourable strength, serviceability, and durability. To verify its promise and support design concrete structures with hybrid type of reinforcement, this study have investigated the load-deflection behaviour of concrete beams reinforced with hybrid GFRP and steel bars by using ATENA software. Fourteen beams, including six control beams reinforced with only steel or only GFRP bars, were analysed. The ratio and the ordinate of GFRP to steel were the main parameters investigated. The behaviour of these beams was investigated via the load-deflection characteristics, cracking behaviour and mode of failure. Hybrid GFRP-Steel reinforced concrete beam showed the improvement in both ultimate capacity and deflection concomitant to the steel reinforced concrete beam. On the other hand, finite element (FE) modelling which is ATENA were validated with previous experiment and promising the good result to be used for further analyses and development in the field of present study.

  17. Multi-stage rescheduling of generation, load shedding and short-term transmission capacity for emergency state control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogh, B.; Chow, J.H.; Javid, H.S.

    1983-05-01

    A multi-stage formulation of the problem of scheduling generation, load shedding and short term transmission capacity for the alleviation of a viability emergency is presented. The formulation includes generation rate of change constraints, a linear network solution, and a model of the short term thermal overload capacity of transmission lines. The concept of rotating transmission line overloads for emergency state control is developed. The ideas are illustrated by a numerical example.

  18. Working memory load impairs the evaluation of behavioral errors in the medial frontal cortex.

    PubMed

    Maier, Martin E; Steinhauser, Marco

    2017-10-01

    Early error monitoring in the medial frontal cortex enables error detection and the evaluation of error significance, which helps prioritize adaptive control. This ability has been assumed to be independent from central capacity, a limited pool of resources assumed to be involved in cognitive control. The present study investigated whether error evaluation depends on central capacity by measuring the error-related negativity (Ne/ERN) in a flanker paradigm while working memory load was varied on two levels. We used a four-choice flanker paradigm in which participants had to classify targets while ignoring flankers. Errors could be due to responding either to the flankers (flanker errors) or to none of the stimulus elements (nonflanker errors). With low load, the Ne/ERN was larger for flanker errors than for nonflanker errors-an effect that has previously been interpreted as reflecting differential significance of these error types. With high load, no such effect of error type on the Ne/ERN was observable. Our findings suggest that working memory load does not impair the generation of an Ne/ERN per se but rather impairs the evaluation of error significance. They demonstrate that error monitoring is composed of capacity-dependent and capacity-independent mechanisms. © 2017 Society for Psychophysiological Research.

  19. Influence of loading and unloading velocity of confining pressure on strength and permeability characteristics of crystalline sandstone

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-ming; Yang, Yu-shun; Chu, Ya-pei; Zhang, Xiang; Xue, Yan-guang

    2018-06-01

    The triaxial compression test of crystalline sandstone under different loading and unloading velocity of confining pressure is carried out by using the self-made "THM coupled with servo-controlled seepage apparatus for containing-gas coal", analyzed the strength, deformation and permeability characteristics of the sample, the results show that: with the increase of confining pressures loading-unloading velocity, Mohr's stress circle center of the specimen shift to the right, and the ultimate intensity, peak strain and residual stress of the specimens increase gradually. With the decrease of unloading velocity of confining pressure, the axial strain, the radial strain and the volumetric strain of the sample decrease first and then increases, but the radial strain decreases more greatly. The loading and unloading of confining pressure has greater influence on axial strain of specimens. The deformation modulus decreases rapidly with the increase of axial strain and the Poisson's ratio decreases gradually at the initial stage of loading. When the confining pressure is loaded, the deformation modulus decrease gradually, and the Poisson's ratio increases gradually. When the confining pressure is unloaded, the deformation modulus increase gradually, and the Poisson's ratio decreases gradually. When the specimen reaches the ultimate intensity, the deformation modulus decreases rapidly, while the Poisson's ratio increases rapidly. The fitting curve of the confining pressure and the deformation modulus and the Poisson's ratio in accordance with the distribution of quadratic polynomial function in the loading-unloading confining pressure. There is a corresponding relationship between the evolution of rock permeability and damage deformation during the process of loading and unloading. In the late stage of yielding, the permeability increases slowly, and the permeability increases sharply after the rock sample is destroyed. Fitting the permeability and confining pressure conform to the variation law of the exponential function.

  20. Failure Behavior and Strength of Composite I-Section Beam with Double Cutouts and Stiffener Reinforcement

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Liu, Wei; Gao, Weicheng

    2018-02-01

    This work is carried out to study the influence of double cutouts and stiffener reinforcements on the performance of I-section Carbon Fibre/Epoxy composites beam, including buckling, post-buckling behavior and the ultimate failure. The cantilever I-section beam with two diamond-shaped cutouts in the web and three longitudinal L-shaped stiffeners bonded to one side is subjected to a shear load at free end. Both numerical modelling and Experiment of I-section CFRP beam are performed. In numerical analysis, Tsai-Wu failure criterion is utilized to detect the first-ply-failure load in nonlinear analysis by predicting the load-deflection response. Good agreements are obtained from comparison between the numerical simulations and test results. For the double-hole beam web, the two cutouts show close surface deformation amplitude, which indicates that the stiffeners make the force transformation more effective. Comparing to the numerical result of corresponding beam with single cutout and stiffener reinforcement, the longitudinal stiffeners can not only play a significant role in improving the structural stability (increase about 30%), but also take effects to improve the deformation compatibility of structure. Local buckling happened within the sub-webs partioned by the stiffener and the buckling load is different but close. With post-buckling regime, the two areas show similar deformation characteristic, while the sub-web close to fixed end bears more shear load than the sub-web close to loading end with the increase of normal deformation of structure. The catastrophic failure load is approximate 75.6% higher comparing to buckling load. Results illustrate that the tensile fracture of the fiber is the immediate cause of the ultimate failure of the structure.

  1. Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen; De Witt, John K.

    2017-01-01

    INTRODUCTION: Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to assist loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft for travel to the Moon or to Mars is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. METHODS The computational models currently under development utilize the OpenSim [1] software platform, consisting of open source code for musculoskeletal modeling, using biomechanical input data from test subjects for estimation of muscle and joint loads. The OpenSim Full Body Model [2] is used for all analyses. The model incorporates simplified wrap surfaces, a new knee model and updated lower body muscle parameters derived from cadaver measurements and magnetic resonance imaging of young adults. The upper body uses torque actuators at the lumbar and extremity joints. The test subjects who volunteer for this study are instrumented with reflective markers for motion capture data collection while performing squat exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device (ZIN Technologies, Middleburg Heights, OH). Ground reaction force data is collected with force plates under the feet, and device loading is recorded through load cells internal to the HULK. Test variables include the applied device load and the dual cable long bar or single cable T-bar interface between the test subject and the device. Data is also obtained using free weights with the identical loading for a comparison to the resistively loaded exercise device trials. The data drives the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. RESULTS Lower body kinematics, joint moments, joint forces and muscle forces are obtained from the OpenSim biomechanical analysis of the squat exercises under different loading conditions. Preliminary results from the model for the loading conditions will be presented as will hypotheses developed for follow on work.

  2. 49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vertical acceleration of 2g, without exceeding the ultimate strength of the material. The load is assumed... maximize the vertical clearance between the top of the rail and the bottom of the fuel tank. (2) Load case... equivalent to one half the weight of the locomotive at a vertical acceleration of 2g, without exceeding the...

  3. 49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vertical acceleration of 2g, without exceeding the ultimate strength of the material. The load is assumed... maximize the vertical clearance between the top of the rail and the bottom of the fuel tank. (2) Load case... equivalent to one half the weight of the locomotive at a vertical acceleration of 2g, without exceeding the...

  4. 49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vertical acceleration of 2g, without exceeding the ultimate strength of the material. The load is assumed... maximize the vertical clearance between the top of the rail and the bottom of the fuel tank. (2) Load case... equivalent to one half the weight of the locomotive at a vertical acceleration of 2g, without exceeding the...

  5. The optimum tension for bridging sutures in transosseous-equivalent rotator cuff repair: a cadaveric biomechanical study.

    PubMed

    Park, Ji Soon; McGarry, Michelle H; Campbell, Sean T; Seo, Hyuk Jun; Lee, Yeon Soo; Kim, Sae Hoon; Lee, Thay Q; Oh, Joo Han

    2015-09-01

    Transosseous-equivalent (TOE) rotator cuff repair can increase contact area and contact pressure between the repaired cuff tendon and bony footprint and can show higher ultimate loads to failure and smaller gap formation compared with other repair techniques. However, it has been suggested that medial rotator cuff failure after TOE repair may result from increased bridging suture tension. To determine optimum bridging suture tension in TOE repair by evaluating footprint contact and construct failure characteristics at different tensions. Controlled laboratory study. A total of 18 fresh-frozen cadaveric shoulders, randomly divided into 3 groups, were constructed with a TOE configuration using the same medial suture anchor and placing a Tekscan sensing pad between the repaired rotator cuff tendon and footprint. Nine of the 18 shoulders were used to measure footprint contact characteristics. With use of the Tekscan measurement system, the contact pressure and area between the rotator cuff tendon and greater tuberosity were quantified for bridging suture tensions of 60, 90, and 120 N with glenohumeral abduction angles of 0° and 30° and humeral rotation angles of 30° (internal), 0°, and 30° (external). TOE constructs of all 18 shoulders then underwent construct failure testing (cyclic loading and load to failure) to determine the yield load, ultimate load, stiffness, hysteresis, strain, and failure mode at 60 and 120 N of tension. As bridging suture tension increased, contact force, contact pressure, and peak pressure increased significantly at all positions (P < .05 for all). Regarding contact area, no significant differences were found between 90 and 120 N at all positions, although there were significant differences between 60 and 90 N. The construct failure test demonstrated no significant differences in any parameters according to various tensions (P > .05 for all). Increasing bridging suture tension to over 90 N did not improve contact area but did increase contact force and pressure. Bridging suture tension did not significantly affect ultimate failure loads. Considering the risks of overtensioning bridging sutures, it may be clinically more beneficial to keep bridging suture tension below 90 N. © 2015 The Author(s).

  6. The effect of sterilization on mechanical properties of soft tissue allografts.

    PubMed

    Conrad, Bryan P; Rappé, Matthew; Horodyski, MaryBeth; Farmer, Kevin W; Indelicato, Peter A

    2013-09-01

    One major concern regarding soft tissue allograft use in surgical procedures is the risk of disease transmission. Current techniques of tissue sterilization, such as irradiation have been shown to adversely affect the mechanical properties of soft tissues. Grafts processed using Biocleanse processing (a proprietary technique developed by Regeneration Technologies to sterilize human tissues) will have better biomechanical characteristics than tissues that have been irradiated. Fifteen pairs of cadaveric Achilles tendon allografts were obtained and separated into three groups of 10 each. Three treatment groups were: Biocleanse, Irradiated, and Control (untreated). Each specimen was tested to determine the biomechanical properties of the tissue. Specimens were cyclically preloaded and then loaded to failure in tension. During testing, load, displacement, and optical strain data were captured. Following testing, the cross sectional area of the tendons was determined. Tendons in the control group were found to have a higher extrinsic stiffness (slope of the load-deformation curve, p = .005), have a higher ultimate stress (force/cross sectional area, p = .006) and higher ultimate failure load (p = .003) than irradiated grafts. Biocleanse grafts were also found to be stiffer than irradiated grafts (p = .014) yet were not found to be statistically different from either irradiated or non-irradiated grafts in terms of load to failure. Biocleanse processing seems to be a viable alternative to irradiation for Achilles tendon allografts sterilization in terms of their biomechanical properties.

  7. Predicting marching capacity while carrying extremely heavy loads.

    PubMed

    Koerhuis, Claudy L; Veenstra, Bertil J; van Dijk, Jos J; Delleman, Nico J

    2009-12-01

    The objective of this study was to establish the best prediction for endurance time of combat soldiers marching with extremely heavy loads. It was hypothesized that loads relative to individual characteristics (% maximal load carry capacity [MLCC], % body mass, % lean body mass) would better predict endurance time than load itself. Twenty-three male combat soldiers participated. MLCC was determined by increasing the load by 7.5 kg every 4 minutes until exhaustion. The marching velocity and gradient were 3 km.h(-1) and 5%, respectively. Endurance time was determined carrying 70, 80, and 90% of MLCC. MLCC was on average 102.6 kg +/- 11.6. Load expressed as % MLCC was the best predictor for endurance time (R2 = 0.45). Load expressed as % body mass, as % lean body mass, and absolute load predicted endurance time less well (R2 = 0.30, R2 = 0.24, and R2 = 0.23, respectively). On the basis of these results, it is recommended to assess the MLCC of individual combat soldiers.

  8. Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes.

    PubMed

    Liu, Hao; Wolf, Mark; Karki, Khim; Yu, Young-Sang; Stach, Eric A; Cabana, Jordi; Chapman, Karena W; Chupas, Peter J

    2017-06-14

    Capacity fading has limited commercial layered Li-ion battery electrodes to <70% of their theoretical capacity. Higher capacities can be achieved initially by charging to higher voltages, however, these gains are eroded by a faster fade in capacity. Increasing lifetimes and reversible capacity are contingent on identifying the origin of this capacity fade to inform electrode design and synthesis. We used operando X-ray diffraction to observe how the lithiation-delithiation reactions within a LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA) electrode change after capacity fade following months of slow charge-discharge. The changes in the reactions that underpin energy storage after long-term cycling directly correlate to the capacity loss; heterogeneous reaction kinetics observed during extended cycles quantitatively account for the capacity loss. This reaction heterogeneity is ultimately attributed to intergranular fracturing that degrades the connectivity of subsurface grains within the polycrystalline NCA aggregate.

  9. Evaluation of Strip Footing Bearing Capacity Built on the Anthropogenic Embankment by Random Finite Element Method

    NASA Astrophysics Data System (ADS)

    Pieczynska-Kozlowska, Joanna

    2014-05-01

    One of a geotechnical problem in the area of Wroclaw is an anthropogenic embankment layer delaying to the depth of 4-5m, arising as a result of historical incidents. In such a case an assumption of bearing capacity of strip footing might be difficult. The standard solution is to use a deep foundation or foundation soil replacement. However both methods generate significant costs. In the present paper the authors focused their attention on the influence of anthropogenic embankment variability on bearing capacity. Soil parameters were defined on the basis of CPT test and modeled as 2D anisotropic random fields and the assumption of bearing capacity were made according deterministic finite element methods. Many repeated of the different realizations of random fields lead to stable expected value of bearing capacity. The algorithm used to estimate the bearing capacity of strip footing was the random finite element method (e.g. [1]). In traditional approach of bearing capacity the formula proposed by [2] is taken into account. qf = c'Nc + qNq + 0.5γBN- γ (1) where: qf is the ultimate bearing stress, cis the cohesion, qis the overburden load due to foundation embedment, γ is the soil unit weight, Bis the footing width, and Nc, Nq and Nγ are the bearing capacity factors. The method of evaluation the bearing capacity of strip footing based on finite element method incorporate five parameters: Young's modulus (E), Poisson's ratio (ν), dilation angle (ψ), cohesion (c), and friction angle (φ). In the present study E, ν and ψ are held constant while c and φ are randomized. Although the Young's modulus does not affect the bearing capacity it governs the initial elastic response of the soil. Plastic stress redistribution is accomplished using a viscoplastic algorithm merge with an elastic perfectly plastic (Mohr - Coulomb) failure criterion. In this paper a typical finite element mesh was assumed with 8-node elements consist in 50 columns and 20 rows. Footings width B occupies 10 elements, 0.1 x 0.1 meter size. The footings are placed at the center of the mesh. Figure 1 shows the mesh used in probabilistic bearing capacity analysis. PIC Figure 1- Mesh used in analyses REFERENCES Fenton, G.A., Griffiths, D.V., (2008) Risk Assessment in Geotechnical Engineering, John Wiley & Sons, New York, Terzaghi, K. (1943). Theoretical Soil Mechanics, New York: John Wiley & Sons.

  10. Study on load forecasting to data centers of high power density based on power usage effectiveness

    NASA Astrophysics Data System (ADS)

    Zhou, C. C.; Zhang, F.; Yuan, Z.; Zhou, L. M.; Wang, F. M.; Li, W.; Yang, J. H.

    2016-08-01

    There is usually considerable energy consumption in data centers. Load forecasting to data centers is in favor of formulating regional load density indexes and of great benefit to getting regional spatial load forecasting more accurately. The building structure and the other influential factors, i.e. equipment, geographic and climatic conditions, are considered for the data centers, and a method to forecast the load of the data centers based on power usage effectiveness is proposed. The cooling capacity of a data center and the index of the power usage effectiveness are used to forecast the power load of the data center in the method. The cooling capacity is obtained by calculating the heat load of the data center. The index is estimated using the group decision-making method of mixed language information. An example is given to prove the applicability and accuracy of this method.

  11. Analysis of Static Load Test of a Masonry Arch Bridge

    NASA Astrophysics Data System (ADS)

    Shi, Jing-xian; Fang, Tian-tian; Luo, Sheng

    2018-03-01

    In order to know whether the carrying capacity of the masonry arch bridge built in the 1980s on the shipping channel entering and coming out of the factory of a cement company can meet the current requirements of Level II Load of highway, through the equivalent load distribution of the test vehicle according to the current design specifications, this paper conducted the load test, evaluated the bearing capacity of the in-service stone arch bridge, and made theoretical analysis combined with Midas Civil. The results showed that under the most unfavorable load conditions the measured strain and deflection of the test sections were less than the calculated values, the bridge was in the elastic stage under the design load; the structural strength and stiffness of the bridge had a certain degree of prosperity, and under the in the current conditions of Level II load of highway, the bridge structure was in a safe state.

  12. Hydrophobic lappaconitine loaded into iota-carrageenan by one step self-assembly.

    PubMed

    Sun, Wenxiu; Saldaña, Marleny D A; Zhao, Yujia; Wu, Lingling; Dong, Tungalag; Jin, Ye; Zhang, Ji

    2016-02-10

    New data on the loading of pH-sensitive lappaconitine loaded into iota-carrageenan (LA-ICG) is provided. This LA-ICG ionic biopolymer was prepared by one step self-assembly. The LA-ICG was characterized in terms of the loading capacity, lappaconitine (LA) releasing behavior, pH-sensitivity, and analgesic properties. Iota-carrageenan (ICG) high loading capacity reached up to 26.18% (w/w). Also, the LA, loaded with ICG, was released faster in an acidic environment than that in neutral or alkaline environments. Animal analgesic experiments showed that the LA-ICG of low molecular weight had earlier onset time and longer duration than the LA. These results suggest that the ICG of low molecular weight has great potential to achieve the synergistic effect of LA. In addition, the ICG can be used as a novel natural polymeric carrier for loading a hydrophobic alkaloid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Gas Seal Pad With Herringbone-Grooved Rotor-Stiffness and Load Capacity

    NASA Technical Reports Server (NTRS)

    Flemming, David P.

    2006-01-01

    The principle of herringbone-grooved journal bearings has been applied to the case of a seal disc running under a finger seal pad. The inward pumping action of herringbone grooves on the disc generates load capacity and stiffness to maintain a fluid film and prevent contact of the pad and disc. This mechanism does not depend on a converging film under the pad, such as analyzed in previous works. Analysis shows that significant stiffness and load capacity can be supplied by herringbone grooves. In order for the grooves to be effective, the seal pressure drop must be taken outside of the grooved portion of the rotor, but this may be acceptable in order to gain freedom from maintaining a precise film convergence.

  14. Amplitude effects on the dynamic performance of a hydrostatic gas thrust bearing

    NASA Technical Reports Server (NTRS)

    Stiffler, A. K.; Tapia, R. R.

    1975-01-01

    The Reynolds' equation is applied to a strip gas thrust bearing to analyze amplitude disturbance effects on its dynamic performance. The Reynolds' equation is numerically approximated using finite difference techniques. The time dependent load carrying capacity is represented by a Fourier series up to and including the third harmonics. Design curves for the load capacity and the linear stiffness and damping are presented as a function of inlet location, restrictor coefficient, supply pressure, amplitude of oscillation, and squeeze number. For the range of amplitudes investigated the dimensionless load capacity, stiffness and damping does not exhibit an appreciable change in magnitude; thus, only one design curve is needed to represent each relationship. A design methodology is presented.

  15. Effects of surface roughness, MHD and couple stress on squeeze film characteristics between curved circular plates

    NASA Astrophysics Data System (ADS)

    Hanumagowda, B. N.; Salma, A.; Nagarajappa, C. S.

    2018-04-01

    The theoretical discussion is carried out for understanding the combined study of MHD, rough surface and couple-stress in the presence of applied magnetic field between two curved circular plates is present analysis. Modified Reynolds Equations accounting for rough surface using stochastic model of Christensen are mathematically formulated. The close form derivations for pressure, load-supporting capacity and response-film time are obtained. Our results shows that, there is an significant increase (decrease) for pressure, load-supporting capacity and squeeze film time due to the effect of azimuthal (radial) roughness parameter when compared to the Hanumagowda.et.al [14] and numerical data of load supporting capacity and response time are given in Table for engineering applications.

  16. Anti-buckling design of variable stiffness composite cylinder under combined loading based on the multi-objective optimization method

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Chen, J.

    2018-06-01

    Variable stiffness composite structures take full advantages of composite’s design ability. An enlarged design space will make the structure’s performance more excellent. Through an optimal design of a variable stiffness cylinder, the buckling capacity of the cylinder will be increased as compared with its constant stiffness counterpart. In this paper, variable stiffness composite cylinders sustaining combined loadings are considered, and the optimization is conducted based on the multi-objective optimization method. The results indicate that variable stiffness cylinder’s loading capacity is increased significantly as compared with the constant stiffness, especially when an inhomogeneous loading is considered.

  17. Static Indentation Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2012-01-01

    The nickel-rich, binary nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt%), are emerging as viable materials for use in mechanical components like rolling element bearings and gears. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx.100 GPa). These properties result in the potential to endure extremely high indentation loads such as those encountered in bearings, gears and other mechanical components. In such applications, quantifying the load that results in permanent deformation that can affect component performance and life is important. In this paper, the static load capacity is measured by conducting indentation experiments in which 12.7 mm diameter balls made from the ceramic Si3N4 are pressed into highly polished, hardened 60NiTi flat plates. Hertz stress calculations are used to estimate contact stress. The results show that the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.6 microns deep) occurs. This load capacity is approximately twice that of high performance bearing steels suggesting that the potential exists to make highly resilient bearings and components from such materials.

  18. Research on Stabilization Properties of Inductive-Capacitive Transducers Based on Hybrid Electromagnetic Elements

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirllov, R. V.; Konev, A. A.

    2017-01-01

    Some electrical consumers (the charge system of storage capacitor, powerful pulse generators, electrothermal systems, gas-discharge lamps, electric ovens, plasma torches) require constant power consumption, while their resistance changes in the limited range. Current stabilization systems (CSS) with inductive-capacitive transducers (ICT) provide constant power, when the load resistance changes over a wide range and increaseы the efficiency of high-power loads’ power supplies. ICT elements are selected according to the maximum load, which leads to exceeding a predetermined value of capacity. The paper suggests carrying load power by the ICT based on multifunction integrated electromagnetic components (MIEC) to reduce the predetermined capacity of ICT elements and CSS weights and dimensions. The authors developed and patented ICT based on MIEC that reduces the CSS weights and dimensions by reducing components number with the possibility of device’s electric energy transformation and resonance frequency changing. An ICT mathematical model was produced. The model determines the width of the load stabilization range. Electromagnetic processes study model was built with the MIEC integral parameters (full inductance of the electrical lead, total capacity, current of electrical lead). It shows independence of the load current from the load resistance for different ways of MIEC connection.

  19. INTEGRATION OF RELIABILITY WITH MECHANISTIC THERMALHYDRAULICS: REPORT ON APPROACH AND TEST PROBLEM RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. S. Schroeder; R. W. Youngblood

    The Risk-Informed Safety Margin Characterization (RISMC) pathway of the Light Water Reactor Sustainability Program is developing simulation-based methods and tools for analyzing safety margin from a modern perspective. [1] There are multiple definitions of 'margin.' One class of definitions defines margin in terms of the distance between a point estimate of a given performance parameter (such as peak clad temperature), and a point-value acceptance criterion defined for that parameter (such as 2200 F). The present perspective on margin is that it relates to the probability of failure, and not just the distance between a nominal operating point and a criterion.more » In this work, margin is characterized through a probabilistic analysis of the 'loads' imposed on systems, structures, and components, and their 'capacity' to resist those loads without failing. Given the probabilistic load and capacity spectra, one can assess the probability that load exceeds capacity, leading to component failure. Within the project, we refer to a plot of these probabilistic spectra as 'the logo.' Refer to Figure 1 for a notional illustration. The implications of referring to 'the logo' are (1) RISMC is focused on being able to analyze loads and spectra probabilistically, and (2) calling it 'the logo' tacitly acknowledges that it is a highly simplified picture: meaningful analysis of a given component failure mode may require development of probabilistic spectra for multiple physical parameters, and in many practical cases, 'load' and 'capacity' will not vary independently.« less

  20. The Ultimate Factor of Safety for Aircraft and Spacecraft Its History, Applications and Misconceptions

    NASA Technical Reports Server (NTRS)

    Zipay, John J.; Modlin, C. Thomas, Jr.; Larsen, Curtis E.

    2016-01-01

    The ultimate factor of safety (FOSULT) concept used in aircraft and spacecraft has evolved over many decades. Currently an FOSULT 1.5 is the FAR-mandated value for aircraft while an FOSULT of 1.4 has been used in various spacecraft. This paper was motivated by the desire to concisely explain the origins, proper interpretation and application of the ultimate factor of safety concept, since the authors have seen throughout their careers many misconceptions and incorrect applications of this concept. The history of the ultimate factor of safety concept is briefly summarized, the proper application of the factor of safety in aircraft design, structural analysis and operations is covered in detail, examples of limit load exceedance in aircraft and spacecraft are discussed, the evolution of the 1.4 FOSULT for spacecraft is described and some misconceptions regarding the ultimate factor of safety concept are addressed. It is hoped that this paper can be a summary resource for engineers to understand the origin, purpose and proper application of the ultimate factor of safety.

  1. 14 CFR 31.27 - Strength.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to withstand the ultimate loads for at least three seconds without failure. For the envelope, a test... conditions. There must be no distortion or failure that is likely to cause serious injury to the occupants. A...

  2. The Future Impact of Wind on BPA Power System Load Following and Regulation Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Lu, Shuai; McManus, Bart

    Wind power is growing in a very fast pace as an alternative generating resource. As the ratio of wind power over total system capacity increases, the impact of wind on various system aspects becomes significant. This paper presents a methodology to study the future impact of wind on BPA power system load following and regulation requirements. Existing methodologies for similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. The methodology proposed in this paper uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system. It mimics themore » actual power system operations therefore the results are close to reality yet the study based on this methodology is convenient to perform. The capacity, ramp rate and ramp duration characteristics are extracted from the simulation results. System load following and regulation capacity requirements are calculated accordingly. The ramp rate and ramp duration data obtained from the analysis can be used to evaluate generator response or maneuverability requirement and regulating units’ energy requirement, respectively.« less

  3. Bearing capacity and rigidity of short plastic-concrete-tubal vertical columns under transverse load

    NASA Astrophysics Data System (ADS)

    Dolzhenko, A. V.; Naumov, A. E.; Shevchenko, A. E.

    2018-03-01

    The results of mathematical modeling in determining strain-stress distribution parameters of a short plastic-concrete-tubal vertical column under horizontal load as those in vertical constructions are described. Quantitative parameters of strain-stress distribution during vertical and horizontal loads and horizontal stiffness were determined by finite element modeling. The internal stress in the concrete column core was analyzed according to equivalent stress in Mohr theory of failure. It was determined that the bearing capacity of a short plastic- concrete-tubal vertical column is 25% higher in resistibility and 15% higher in rigidness than those of the caseless concrete columns equal in size. Cracks formation in the core of a short plastic-concrete-tubal vertical column happens under significantly bigger horizontal loads with less amount of concrete spent than that in caseless concrete columns. The significant increase of bearing capacity and cracking resistance of a short plastic-concrete-tubal vertical column under vertical and horizontal loads allows recommending them as highly effective and highly reliable structural wall elements in civil engineering.

  4. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    NASA Astrophysics Data System (ADS)

    Seino, H.; Nagashima, K.; Arai, Y.

    2008-02-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.

  5. ASME AG-1 Section FC Qualified HEPA Filters; a Particle Loading Comparison - 13435

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillo, Andrew; Ricketts, Craig I.

    High Efficiency Particulate Air (HEPA) Filters used to protect personnel, the public and the environment from airborne radioactive materials are designed, manufactured and qualified in accordance with ASME AG-1 Code section FC (HEPA Filters) [1]. The qualification process requires that filters manufactured in accordance with this ASME AG-1 code section must meet several performance requirements. These requirements include performance specifications for resistance to airflow, aerosol penetration, resistance to rough handling, resistance to pressure (includes high humidity and water droplet exposure), resistance to heated air, spot flame resistance and a visual/dimensional inspection. None of these requirements evaluate the particle loading capacitymore » of a HEPA filter design. Concerns, over the particle loading capacity, of the different designs included within the ASME AG-1 section FC code[1], have been voiced in the recent past. Additionally, the ability of a filter to maintain its integrity, if subjected to severe operating conditions such as elevated relative humidity, fog conditions or elevated temperature, after loading in use over long service intervals is also a major concern. Although currently qualified HEPA filter media are likely to have similar loading characteristics when evaluated independently, filter pleat geometry can have a significant impact on the in-situ particle loading capacity of filter packs. Aerosol particle characteristics, such as size and composition, may also have a significant impact on filter loading capacity. Test results comparing filter loading capacities for three different aerosol particles and three different filter pack configurations are reviewed. The information presented represents an empirical performance comparison among the filter designs tested. The results may serve as a basis for further discussion toward the possible development of a particle loading test to be included in the qualification requirements of ASME AG-1 Code sections FC and FK[1]. (authors)« less

  6. Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Wolf, Mark; Karki, Khim

    Capacity fading has limited commercial layered Li-ion battery electrodes to <70% of their theoretical capacity. Higher capacities can be achieved initially by charging to higher voltages, however, these gains are quickly eroded by a faster fade in capacity. In-creasing lifetimes and reversible capacity is contingent on identifying the origin of this capacity fade to inform electrode design and synthesis. We must understand how the battery reactions change following capacity loss after long-term cycling. Using operando X-ray diffraction, we followed the reaction of a LiNi 0.8Co 0.15Al 0.05O 2 (NCA) electrode after months of charge-discharge cycles. Furthermore, the heterogeneous reaction kineticsmore » observed during extended cycles quantitatively explain the capacity loss, which is ultimately attributed to inter-granular fracturing that degrades the connectivity of sub-surface grains within the polycrystalline NCA aggregate.« less

  7. Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes

    DOE PAGES

    Liu, Hao; Wolf, Mark; Karki, Khim; ...

    2017-05-26

    Capacity fading has limited commercial layered Li-ion battery electrodes to <70% of their theoretical capacity. Higher capacities can be achieved initially by charging to higher voltages, however, these gains are quickly eroded by a faster fade in capacity. In-creasing lifetimes and reversible capacity is contingent on identifying the origin of this capacity fade to inform electrode design and synthesis. We must understand how the battery reactions change following capacity loss after long-term cycling. Using operando X-ray diffraction, we followed the reaction of a LiNi 0.8Co 0.15Al 0.05O 2 (NCA) electrode after months of charge-discharge cycles. Furthermore, the heterogeneous reaction kineticsmore » observed during extended cycles quantitatively explain the capacity loss, which is ultimately attributed to inter-granular fracturing that degrades the connectivity of sub-surface grains within the polycrystalline NCA aggregate.« less

  8. Review of load rating and posting procedures and requirements.

    DOT National Transportation Integrated Search

    2014-12-01

    All states are required to load rate and post bridges in order to comply with federal standards. Load ratings are performed in order to : determine the safe live load capacity of a bridge, considering the existing conditions of the bridge. Based on t...

  9. A biomechanical comparison of tendon-bone interface motion and cyclic loading between single-row, triple-loaded cuff repairs and double-row, suture-tape cuff repairs using biocomposite anchors.

    PubMed

    Barber, F Alan; Drew, Otis R

    2012-09-01

    To compare tendon-bone interface motion and cyclic loading in a single-row, triple-loaded anchor repair with a suture-tape, rip-stop, double-row rotator cuff repair. Using 18 human shoulders from 9 matched cadaveric pairs, we created 2 groups of rotator cuff repairs. Group 1 was a double-row, rip-stop, suture-tape construct. Group 2 was a single-row, triple-loaded construct. Before mechanical testing, the supraspinatus footprint was measured with calipers. A superiorly positioned digital camera optically measured the tendon footprint motion during 60° of humeral internal and external rotation. Specimens were secured at a fixed angle not exceeding 45° in reference to the load. After preloading, each sample was cycled between 10 N and 100 N for 200 cycles at 1 Hz, followed by destructive testing at 33 mm/s. A digital camera with tracking software measured the repair displacement at 100 and 200 cycles. Ultimate load and failure mode for each sample were recorded. The exposed anterior footprint border (6.5% ± 6%) and posterior footprint border (0.9% ± 1.7%) in group 1 were statistically less than the exposed anterior footprint border (30.3% ± 17%) and posterior footprint border (29.8% ± 14%) in group 2 (P = .003 and P < .001, respectively). The maximal internal rotation and external rotation tendon footprint displacements in group 1 (1.6 mm and 1.4 mm, respectively) were less than those in group 2 (both 3.6 mm) (P = .007 and P = .004, respectively). Mean displacement after 100 cycles for group 1 and group 2 was 2.0 mm and 3.2 mm, respectively, and at 200 cycles, mean displacement was 2.5 mm and 4.2 mm, respectively (P = .02). The mean ultimate failure load in group 1 (586 N) was greater than that in group 2 (393 N) (P = .02). The suture-tendon interface was the site of most construct failures. The suture-tape, rip-stop, double-row rotator cuff repair had greater footprint coverage, less rotational footprint displacement, and a greater mean ultimate failure load than the triple-loaded, single-row repair on mechanical testing. No double-row or single-row constructs showed 5 mm of displacement after the first 100 cycles. The most common failure mode for both constructs was suture tearing through the tendon. Differences in cuff fixation influence rotational tendon movement and may influence postoperative healing. Stronger repair constructs still fail at the suture-tendon interface. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  10. The dual action gas thrust bearing - A new high load bearing concept

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    The principle of utilizing hydrodynamic effects in diverging films for improving load capacity in gas thrust bearings is discussed. A new concept of dual action bearing based on that principle is described and analyzed. The potential of the new bearing is demonstrated both analytically for an infinitely long slider and by numerical solution for a flat sector shaped thrust bearing. It is shown that the dual action bearing can extend substantially the range of load carrying capacity in gas lubricated thrust bearings and improve their efficiency.

  11. 49 CFR 571.120 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: XXX kg or XXX lbs” in block letters with appropriate values included. (d) The statement “Safety belt equipped seating capacity: XXX” with the appropriate value included. This is the total number of safety belt equipped seating positions. (e) The statement: “CAUTION: A full load of water equals XXX kg or XXX...

  12. 49 CFR 571.120 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: XXX kg or XXX lbs” in block letters with appropriate values included. (d) The statement “Safety belt equipped seating capacity: XXX” with the appropriate value included. This is the total number of safety belt equipped seating positions. (e) The statement: “CAUTION: A full load of water equals XXX kg or XXX...

  13. 49 CFR 571.120 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: XXX kg or XXX lbs” in block letters with appropriate values included. (d) The statement “Safety belt equipped seating capacity: XXX” with the appropriate value included. This is the total number of safety belt equipped seating positions. (e) The statement: “CAUTION: A full load of water equals XXX kg or XXX...

  14. 49 CFR 571.120 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: XXX kg or XXX lbs” in block letters with appropriate values included. (d) The statement “Safety belt equipped seating capacity: XXX” with the appropriate value included. This is the total number of safety belt equipped seating positions. (e) The statement: “CAUTION: A full load of water equals XXX kg or XXX...

  15. Comprehensive manual handling limits for lowering, pushing, pulling and carrying activities.

    PubMed

    Shoaf, C; Genaidy, A; Karwowski, W; Waters, T; Christensen, D

    1997-11-01

    The objective of this study was to develop a set of mathematical models for manual lowering, pushing, pulling and carrying activities that would result in establishing load capacity limits to protect the lower back against occupational low-back disorders. In order to establish safe guidelines, a three-stage process was used. First, psychophysical data was used to generate the models' discounting factors and recommended load capacities. Second, biomechanical analysis was used to refine the recommended load capacities. Third, physiological criteria were used to validate the models' discounting factors. Both task and personal factors were considered in the models' development. When compared to the results from prior psychophysical research for these activities, the developed load capacity values are lower than previously established limits. The results of this study allowed the authors to validate the hypothesis proposed and tested by Karwowski (1983) that states that the combination of physiological and biomechanical stresses should lead to the overall measure of task acceptability or the psychophysical stress. This study also found that some of the discounting factors for the task frequency parameters recommended in the prior psychophysical research should not be used as several of the high frequency factors violated physiological limits.

  16. The stability of cassette walls in compression

    NASA Astrophysics Data System (ADS)

    Voutay, Pierre-Arnaud

    Much research into the behaviour of cold formed steel columns in the last decade has focused on channel sections undergoing local, distortional and overall buckling. Light gauge steel cassette sections are a particular form of channel section which offers an alternative form of load-bearing wall assembly for use in low-rise steel framed construction. Cassette wall sections possess wide and slender flanges so that, by including intermediate stiffeners in these wide flanges, a significant increase in the ultimate load capacity may be achieved. However, the introduction of intermediate stiffeners also increases the number of buckling modes (stiffener buckling) and, therefore complicates the behaviour and increases the risk of interactive buckling between these modes. The work undertaken in this thesis aims to clarify the behaviour of wide flanges in compression with and without intermediate stiffeners. In this research, the distortional mode of web and narrow flange buckling was inhibited by connecting the narrow flanges of the cassettes together at suitable intervals. "Generalised Beam Theory" (GBT), which allows the individual buckling modes to be considered individually and in predetermined combinations, provides a particularly good tool with which to analyse and understand the buckling behaviour of cassette sections with and without intermediate stiffeners. "Generalised Beam Theory" (GBT) is used throughout this work to determine the elastic buckling stress of the sections studied (simply supported stiffened plates, as well as cassette sections). Since the economic design of cold-formed steel sections requires the consideration of post- buckling behaviour, elastic buckling values are not directly comparable with design code values which are usually based on the concept of effective width. Therefore, finite element analysis with both material and geometric nonlinearity has also been carried out in order to obtain the ultimate strength in the critical mode or mode combination. Firstly the results of experimental test are analysed and their behaviour reproduced numerically. This serves to explain the test results and verify the numerical model. Confidence in modelling non-linear instability phenomena with the finite element method is acquired. Secondly, an initial parametric study was undertaken on the behaviour of cassette sections with and without intermediate stiffeners. This study considers the effect of the length and overall buckling on the behaviour of cassette sections, the effect of load eccentricity and the effect of the rotational restraint given by the web to the stiffened wide flange. A second parametric study including 96 specimens was undertaken next. This study considered the effect of the number (up to three intermediate stiffeners) and sizes of intermediate stiffeners on slender flanges with a slenderness ratio between 150 ≤ w/t ≤ 600. A wide range of geometries was studied covering single and interactive buckling modes. Comparison of the ultimate strength obtained from finite element analysis with the ultimate strength obtained using the effective width approach of modem design codes such as Eurocode 3 part 1.3 (1996) and NAS (North American specification (2001)) was then possible. By integrating the stress distribution over the length of the specimen, the stiffened wide flange can be isolated from the rest of the section (webs and narrow flanges). Design procedures tor plate elements incorporating one or two intermediate stiffeners under compressive load are given in Eurocode 3; Part 1.3. However, cassette sections, which have wider and more slender flanges than typical sheeting and decking, are increasingly being used in practical construction. For such cases, the design procedures in Eurocode 3 are less well founded. An improvement of the Eurocode 3 procedure dealing with intermediate stiffeners is proposed and validated for one, two or three stiffeners. Throughout the work, simple expressions suitable for design calculations are presented. Modern design codes as well as Direct Strength Method are evaluated in the light of findings of this work and wherever possible suggestions for improvements are made.

  17. Fiber-reinforced composite substructure: load-bearing capacity of an onlay restoration and flexural properties of the material.

    PubMed

    Garoushi, Sufyan K; Lassila, Lippo V J; Tezvergil, Arzu; Vallittu, Pekka K

    2006-09-01

    The aim of this study was to determine the static load-bearing capacity of composite resin onlay restorations made of particulate filler composite (PFC) with two different types of fiber-reinforced composite (FRC) substructures. In addition, flexural properties of the material combination and the effect of polymerization devices were tested. Specimens were prepared to simulate an onlay restoration, which consisted of 2 to 3 mm of FRC layer as a substructure (short random and continuous bidirectional fiber orientation) and a 1 mm surface layer of PFC. Control specimens were prepared from plain PFC. In Group A the specimens were incrementally polymerized only with a hand-light curing unit for 40 s, while in Group B the specimens were post-cured in a light-curing oven for 15 min before they were statically loaded with a steel ball. Bar-shaped test specimens were prepared to measure the flexural properties of material combination using a three-point bending test (ISO 10477). Analysis of variance (ANOVA) revealed all specimens with a FRC substructure have higher values of static load-bearing capacity and flexural properties than those obtained with plain PFC (p<0.001). The load-bearing capacity of all the specimens decreased after post-curing and water storage. Restorations made from a material combination of FRC and PFC showed better mechanical properties than those obtained with plain PFC.

  18. Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes

    NASA Technical Reports Server (NTRS)

    Rogers, Howard H.

    2000-01-01

    Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.

  19. Cognitive Load Theory: implications for medical education: AMEE Guide No. 86.

    PubMed

    Young, John Q; Van Merrienboer, Jeroen; Durning, Steve; Ten Cate, Olle

    2014-05-01

    Cognitive Load Theory (CLT) builds upon established models of human memory that include the subsystems of sensory, working and long-term memory. Working memory (WM) can only process a limited number of information elements at any given time. This constraint creates a "bottleneck" for learning. CLT identifies three types of cognitive load that impact WM: intrinsic load (associated with performing essential aspects of the task), extraneous load (associated with non-essential aspects of the task) and germane load (associated with the deliberate use of cognitive strategies that facilitate learning). When the cognitive load associated with a task exceeds the learner's WM capacity, performance and learning is impaired. To facilitate learning, CLT researchers have developed instructional techniques that decrease extraneous load (e.g. worked examples), titrate intrinsic load to the developmental stage of the learner (e.g. simplify task without decontextualizing) and ensure that unused WM capacity is dedicated to germane load, i.e. cognitive learning strategies. A number of instructional techniques have been empirically tested. As learners' progress, curricula must also attend to the expertise-reversal effect. Instructional techniques that facilitate learning among early learners may not help and may even interfere with learning among more advanced learners. CLT has particular relevance to medical education because many of the professional activities to be learned require the simultaneous integration of multiple and varied sets of knowledge, skills and behaviors at a specific time and place. These activities possess high "element interactivity" and therefore impose a cognitive load that may surpass the WM capacity of the learner. Applications to various medical education settings (classroom, workplace and self-directed learning) are explored.

  20. Spatial and temporal variations in landscape evolution: historic and longer-term sediment flux through global catchments

    USGS Publications Warehouse

    Covault, Jacob A.; Craddock, William H.; Romans, Brian W.; Fildani, Andrea; Gosai, Mayur

    2013-01-01

    Sediment generation and transport through terrestrial catchments influence soil distribution, geochemical cycling of particulate and dissolved loads, and the character of the stratigraphic record of Earth history. To assess the spatiotemporal variation in landscape evolution, we compare global compilations of stream gauge–derived () and cosmogenic radionuclide (CRN)–derived (predominantly 10Be; ) denudation of catchments (mm/yr) and sediment load of rivers (Mt/yr). Stream gauges measure suspended sediment loads of rivers during several to tens of years, whereas CRNs provide catchment-integrated denudation rates at 102–105-yr time scales. Stream gauge–derived and CRN-derived sediment loads in close proximity to one another (<500 km) exhibit broad similarity ( stream gauge samples; CRN samples). Nearly two-thirds of CRN-derived sediment loads exceed historic loads measured at the same locations (). Excessive longer-term sediment loads likely are a result of longer-term recurrence of large-magnitude sediment-transport events. Nearly 80% of sediment loads measured at approximately the same locations exhibit stream gauge loads that are within an order of magnitude of CRN loads, likely as a result of the buffering capacity of large flood plains. Catchments in which space for deposition exceeds sediment supply have greater buffering capacity. Superior locations in which to evaluate anthropogenic influences on landscape evolution might be buffered catchments, in which temporary storage of sediment in flood plains can provide stream gauge–based sediment loads and denudation rates that are applicable over longer periods than the durations of gauge measurements. The buffering capacity of catchments also has implications for interpreting the stratigraphic record; delayed sediment transfer might complicate the stratigraphic record of external forcings and catchment modification.

  1. Design protocols and analytical strategies that incorporate structural reliability models

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.

    1995-01-01

    In spite of great improvements in accuracy through the use of computers, design methods, which can be equally critical in establishing the commercial success of a material, have been treated as afterthoughts. Early investment in design and development technologies can easily reduce manufacturing costs later in the product cycle. To avoid lengthy product development times for ceramic composites, funding agencies for materials research must commit resources to support design and development technologies early in the material life cycle. These technologies need not focus on designing the material, rather, the technology must focus on designing with the material, i. e., developing methods to design components fabricated from the new material. Thus a basic tenet that motivated this research effort is that a persistent need exists for improvements in the analysis of components fabricated from CMC material systems. From an aerospace design engineer's perspective the new generation of ceramic composites offers a significant potential for raising the thrust/weight ratio and reducing NOx emissions of gas turbine engines. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for 'graceful' rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Thus any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Establishing design protocols that enable the engineer to analyze and predict this type of behavior in ceramic composites was the general goal of this project.

  2. Design protocols and analytical strategies that incorporate structural reliability models

    NASA Astrophysics Data System (ADS)

    Duffy, Stephen F.

    1995-08-01

    In spite of great improvements in accuracy through the use of computers, design methods, which can be equally critical in establishing the commercial success of a material, have been treated as afterthoughts. Early investment in design and development technologies can easily reduce manufacturing costs later in the product cycle. To avoid lengthy product development times for ceramic composites, funding agencies for materials research must commit resources to support design and development technologies early in the material life cycle. These technologies need not focus on designing the material, rather, the technology must focus on designing with the material, i. e., developing methods to design components fabricated from the new material. Thus a basic tenet that motivated this research effort is that a persistent need exists for improvements in the analysis of components fabricated from CMC material systems. From an aerospace design engineer's perspective the new generation of ceramic composites offers a significant potential for raising the thrust/weight ratio and reducing NOx emissions of gas turbine engines. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for 'graceful' rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Thus any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Establishing design protocols that enable the engineer to analyze and predict this type of behavior in ceramic composites was the general goal of this project.

  3. The Effects of Torsional Preloading on the Torsional Resistance of Nickel-titanium Instruments.

    PubMed

    Oh, Seung-Hei; Ha, Jung-Hong; Kwak, Sang Won; Ahn, Shin Wook; Lee, WooCheol; Kim, Hyeon-Cheol

    2017-01-01

    This study evaluated the effect of torsional preloading on the torsional resistance of nickel-titanium (NiTi) endodontic instruments. WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland) and ProTaper Universal F2 (Dentsply Maillefer) files were used. The ultimate torsional strength until fracture was determined for each instrument. In the phase 1 experiment, the ProTaper and WaveOne files were loaded to have a maximum load from 2.0 up to 2.7 or 2.8 Ncm, respectively. In the phase 2 experiment, the number of repetitions of preloading for each file was increased from 50 to 200, whereas the preloading torque was fixed at 2.4 Ncm. Using torsionally preloaded specimens from phase 1 and 2, the torsional resistances were calculated to determine the ultimate strength, distortion angle, and toughness. The results were analyzed using 1-way analysis of variance and Duncan post hoc comparison. The fracture surfaces and longitudinal aspect of 5 specimens per group were examined under a scanning electron microscope. All preloaded groups showed significantly higher ultimate strength than the unpreloaded groups (P < .05). There was no significant difference among all groups for distortion angle and toughness. Although WaveOne had no significant difference between the repetition groups for ultimate strength, fracture angle, and toughness, ProTaper had a higher distortion angle and toughness in the 50-repetition group compared with the other repetition groups (P < .05). Scanning electron microscopic examinations of the fractured surface showed typical features of torsional fracture. Torsional preloading within the ultimate values could enhance the torsional strength of NiTi instruments. The total energy until fracture was maintained constantly, regardless of the alloy type. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Pullout strength of bone-patellar tendon-bone allograft bone plugs: a comparison of cadaver tibia and rigid polyurethane foam.

    PubMed

    Barber, F Alan

    2013-09-01

    To compare the load-to-failure pullout strength of bone-patellar tendon-bone (BPTB) allografts in human cadaver tibias and rigid polyurethane foam blocks. Twenty BPTB allografts were trimmed creating 25 mm × 10 mm × 10 mm tibial plugs. Ten-millimeter tunnels were drilled in 10 human cadaver tibias and 10 rigid polyurethane foam blocks. The BPTB anterior cruciate ligament allografts were inserted into these tunnels and secured with metal interference screws, with placement of 10 of each type in each material. After preloading (10 N), cyclic loading (500 cycles, 10 to 150 N at 200 mm/min) and load-to-failure testing (200 mm/min) were performed. The endpoints were ultimate failure load, cyclic loading elongation, and failure mode. No difference in ultimate failure load existed between grafts inserted into rigid polyurethane foam blocks (705 N) and those in cadaver tibias (669 N) (P = .69). The mean rigid polyurethane foam block elongation (0.211 mm) was less than that in tibial bone (0.470 mm) (P = .038), with a smaller standard deviation (0.07 mm for foam) than tibial bone (0.34 mm). All BPTB grafts successfully completed 500 cycles. The rigid polyurethane foam block showed less variation in test results than human cadaver tibias. Rigid polyurethane foam blocks provide an acceptable substitute for human cadaver bone tibia for biomechanical testing of BPTB allografts and offer near-equivalent results. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  5. 30 CFR 75.1401 - Hoists; rated capacities; indicators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hoists; rated capacities; indicators. 75.1401... Hoists; rated capacities; indicators. Hoists shall have rated capacities consistent with the loads handled. An accurate and reliable indicator of the position of the cage, platform, skip, bucket, or cars...

  6. 30 CFR 75.1401 - Hoists; rated capacities; indicators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hoists; rated capacities; indicators. 75.1401... Hoists; rated capacities; indicators. Hoists shall have rated capacities consistent with the loads handled. An accurate and reliable indicator of the position of the cage, platform, skip, bucket, or cars...

  7. Ultimate strength performance of tankers associated with industry corrosion addition practices

    NASA Astrophysics Data System (ADS)

    Kim, Do Kyun; Kim, Han Byul; Zhang, Xiaoming; Li, Chen Guang; Paik, Jeom Kee

    2014-09-01

    In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR), Common Structural Rules (CSR), and harmonised Common Structural Rules (CSRH) are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS), and Time-Dependent Corrosion Wastage Model (TDCWM). To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures

  8. Solar Heating And Cooling Of Buildings (SHACOB): Requirements definition and impact analysis-2. Volume 3: Customer load management systems

    NASA Astrophysics Data System (ADS)

    Cretcher, C. K.; Rountredd, R. C.

    1980-11-01

    Customer Load Management Systems, using off-peak storage and control at the residences, are analyzed to determine their potential for capacity and energy savings by the electric utility. Areas broadly representative of utilities in the regions around Washington, DC and Albuquerque, NM were of interest. Near optimum tank volumes were determined for both service areas, and charging duration/off-time were identified as having the greatest influence on tank performance. The impacts on utility operations and corresponding utility/customer economics were determined in terms of delta demands used to estimate the utilities' generating capacity differences between the conventional load management, (CLM) direct solar with load management (DSLM), and electric resistive systems. Energy differences are also determined. These capacity and energy deltas are translated into changes in utility costs due to penetration of the CLM or DSLM systems into electric resistive markets in the snapshot years of 1990 and 2000.

  9. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.

    PubMed

    Goldring, Mary B; Goldring, Steven R

    2010-03-01

    The articular surface plays an essential role in load transfer across the joint, and conditions that produce increased load transfer or altered patterns of load distribution accelerate the development of osteoarthritis (OA). Current knowledge segregates the risk factors into two fundamental mechanisms related to the adverse effects of "abnormal" loading on normal cartilage or "normal" loading on abnormal cartilage. Although chondrocytes can modulate their functional state in response to loading, their capacity to repair and modify the surrounding extracellular matrix is limited in comparison to skeletal cells in bone. This differential adaptive capacity underlies the more rapid appearance of detectable skeletal changes, especially after acute injuries that alter joint mechanics. The imbalance in the adaptation of the cartilage and bone disrupts the physiological relationship between these tissues and further contributes to OA pathology. This review focuses on the specific articular cartilage and skeletal features of OA and the putative mechanisms involved in their pathogenesis.

  10. A prototype for understanding the effects of TMDL standards: Tying property values to sediment loads in the Lake Tahoe Basin

    USGS Publications Warehouse

    Tracy, J.C.; Bernknopf, R.; Forney, W.; Hill, K.

    2004-01-01

    The Federal Clean Water Act (Section 303(d)) mandates that states develop Total Maximum Daily Load (TMDL) plans for water bodies that are on the Section 303(d) list. To be placed on the 303(d) list, a water body must be found to have water quality conditions that limit its ability to meet its designated beneficial uses. The TMDL for a water body is defined in 40 CFR 130 as the sum of waste load allocations from identified points sources and non-point sources within the water body's watershed. The TMDL plan for a listed water body should identify the current waste loads to the water body, the waste load capacity of the water body and then allocate the waste load capacity to the known point and non-point sources of pollution within the water body's watershed. Copyright 2004 ASCE.

  11. Degradation of Li/S Battery Electrodes On 3D Current Collectors Studied Using X-ray Phase Contrast Tomography

    PubMed Central

    Zielke, L.; Barchasz, C.; Waluś, S.; Alloin, F.; Leprêtre, J.-C.; Spettl, A.; Schmidt, V.; Hilger, A.; Manke, I.; Banhart, J.; Zengerle, R.; Thiele, S.

    2015-01-01

    Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance. PMID:26043280

  12. Degradation of Li/S Battery Electrodes On 3D Current Collectors Studied Using X-ray Phase Contrast Tomography

    NASA Astrophysics Data System (ADS)

    Zielke, L.; Barchasz, C.; Waluś, S.; Alloin, F.; Leprêtre, J.-C.; Spettl, A.; Schmidt, V.; Hilger, A.; Manke, I.; Banhart, J.; Zengerle, R.; Thiele, S.

    2015-06-01

    Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance.

  13. Working memory capacity and visual-verbal cognitive load modulate auditory-sensory gating in the brainstem: toward a unified view of attention.

    PubMed

    Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker

    2012-11-01

    Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.

  14. Design and Control of Hydronic Radiant Cooling Systems

    NASA Astrophysics Data System (ADS)

    Feng, Jingjuan

    Improving energy efficiency in the Heating Ventilation and Air conditioning (HVAC) systems in buildings is critical to achieve the energy reduction in the building sector, which consumes 41% of all primary energy produced in the United States, and was responsible for nearly half of U.S. CO2 emissions. Based on a report by the New Building Institute (NBI), when HVAC systems are used, about half of the zero net energy (ZNE) buildings report using a radiant cooling/heating system, often in conjunction with ground source heat pumps. Radiant systems differ from air systems in the main heat transfer mechanism used to remove heat from a space, and in their control characteristics when responding to changes in control signals and room thermal conditions. This dissertation investigates three related design and control topics: cooling load calculations, cooling capacity estimation, and control for the heavyweight radiant systems. These three issues are fundamental to the development of accurate design/modeling tools, relevant performance testing methods, and ultimately the realization of the potential energy benefits of radiant systems. Cooling load calculations are a crucial step in designing any HVAC system. In the current standards, cooling load is defined and calculated independent of HVAC system type. In this dissertation, I present research evidence that sensible zone cooling loads for radiant systems are different from cooling loads for traditional air systems. Energy simulations, in EnergyPlus, and laboratory experiments were conducted to investigate the heat transfer dynamics in spaces conditioned by radiant and air systems. The results show that the magnitude of the cooling load difference between the two systems ranges from 7-85%, and radiant systems remove heat faster than air systems. For the experimental tested conditions, 75-82% of total heat gain was removed by radiant system during the period when the heater (simulating the heat gain) was on, while for air system, 61-63% were removed. From a heat transfer perspective, the differences are mainly because the chilled surfaces directly remove part of the radiant heat gains from a zone, thereby bypassing the time-delay effect caused by the interaction of radiant heat gain with non-active thermal mass in air systems. The major conclusions based on these findings are: 1) there are important limitations in the definition of cooling load for a mixing air system described in Chapter 18 of ASHRAE Handbook of Fundamentals when applied to radiant systems; 2) due to the obvious mismatch between how radiant heat transfer is handled in traditional cooling load calculation methods compared to its central role in radiant cooling systems, this dissertation provides improvements for the current cooling load calculation method based on the Heat Balance procedure. The Radiant Time Series method is not appropriate for radiant system applications. The findings also directly apply to the selection of space heat transfer modeling algorithms that are part of all energy modeling software. Cooling capacity estimation is another critical step in a design project. The above mentioned findings and a review of the existing methods indicates that current radiant system cooling capacity estimation methods fail to take into account incident shortwave radiation generated by solar and lighting in the calculation process. This causes a significant underestimation (up to 150% for some instances) of floor cooling capacity when solar load is dominant. Building performance simulations were conducted to verify this hypothesis and quantify the impacts of solar for different design scenarios. A new simplified method was proposed to improve the predictability of the method described in ISO 11855 when solar radiation is present. The dissertation also compares the energy and comfort benefits of the model-based predictive control (MPC) method with a fine-tuned heuristic control method when applied to a heavyweight embedded surface system. A first order dynamic model of a radiant slab system was developed for implementation in model predictive controllers. A calibrated EnergyPlus model of a typical office building in California was used as a testbed for the comparison. The results indicated that MPC is able to reduce the cooling tower energy consumption by 55% and pumping power consumption by 26%, while maintaining equivalent or even better thermal comfort conditions. In summary, the dissertation work has: (1) provided clear evidence that the fundamental heat transfer mechanisms differ between radiant and air systems. These findings have important implications for the development of accurate and reliable design and energy simulation tools; (2) developed practical design methods and guidance to aid practicing engineers who are designing radiant systems; and (3) outlined future research and design tools need to advance the state-of-knowledge and design and operating guidelines for radiant systems.

  15. Two-loads Method for Distinguishing among the Muscle Force, Velocity, and Power Producing Capacities

    PubMed Central

    Jaric, Slobodan

    2016-01-01

    It has been generally accepted that muscles could have different mechanical capacities, such as those for producing high force (F), velocity (V), and power (P) outputs. Nevertheless, the standard procedures of the evaluation of muscle function both in research and routine testing are typically conducted under a single mechanical condition, such as under a single external load. Therefore, the observed outcomes do not allow for distinguishing among the different muscle capacities. As a result, the outcomes of most of the routine testing procedures have been of limited informational value, while a number of debated issues in research have originated from arbitrarily interpreted experimental findings regarding specific muscle capacities. A solution for the discussed problem could be based on the approximately linear and exceptionally strong F-V relationship typically observed from various functional tasks performed under different external loads. These findings allow for the 'two-loads method' proposed in this Current Opinion: the functional movement tasks (e.g., maximum jumping, cycling, running, pushing, lifting, or throwing) should be tested against just 2 distinctive external loads. Namely, the F-V relationship determined by 2 pairs of the F and V data could provide the parameters depicting the maximum F (i.e., the F-intercept), V (V-intercept), and P (calculated from the product of F and V) output of the tested muscles. Therefore, the proposed two-loads method applied in both research and routine testing could provide a deeper insight into the mechanical properties and function of the tested muscles and resolve a number of debated issues in the literature. PMID:27075326

  16. Mechanisms for capacity fading in the NiH2 cell and its effects on cycle life

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.

    1993-01-01

    During recent years there have been a number of instances where the capacity of nickel hydrogen battery cells has proven to be unstable during storage. The capacity losses seen after periods of cell or battery storage have typically varied from only a small amount of fading, up to about 30 percent of the total cell capacity. Detailed studies into the root causes for such fading have been carried out in a number of instances. This report provides an overview of the different mechanisms that have been found to be responsible for such capacity fading in nickel hydrogen cells, and summarizes the presently available data on how each responsible mechanism affects ultimate cell cycle life.

  17. Excess digestive capacity in predators reflects a life of feast and famine.

    PubMed

    Armstrong, Jonathan B; Schindler, Daniel E

    2011-07-06

    A central challenge for predators is achieving positive energy balance when prey are spatially and temporally heterogeneous. Ecological heterogeneity produces evolutionary trade-offs in the physiological design of predators; this is because the ability to capitalize on pulses of food abundance requires high capacity for food-processing, yet maintaining such capacity imposes energetic costs that are taxing during periods of food scarcity. Recent advances in physiology show that when variation in foraging opportunities is predictable, animals may adjust energetic trade-offs by rapidly modulating their digestive system to track variation in foraging opportunities. However, it is increasingly recognized that foraging opportunities for animals are unpredictable, which should favour animals that maintain a capacity for food-processing that exceeds average levels of consumption (loads). Despite this basic principle of quantitative evolutionary design, estimates of digestive load:capacity ratios in wild animals are virtually non-existent. Here we provide an extensive assessment of load:capacity ratios for the digestive systems of predators in the wild, compiling 639 estimates across 38 species of fish. We found that piscine predators typically maintain the physiological capacity to feed at daily rates 2-3 times higher than what they experience on average. A numerical simulation of the trade-off between food-processing capacity and metabolic cost suggests that the observed level of physiological opportunism is profitable only if predator-prey encounters, and thus predator energy budgets, are far more variable in nature than currently assumed.

  18. Acoustic emission analysis of fiber-reinforced composite in flexural testing.

    PubMed

    Alander, Pasi; Lassila, Lippo V J; Tezvergil, Arzu; Vallittu, Pekka K

    2004-05-01

    The aim of this study was to examine the emission of acoustic signals from six commercially available fiber-reinforced composites (FRC) used in the frameworks of fixed partial dentures in material bending. FRC test specimens were made of six commercially available fiber products of polyethylene or glass and five light-curing resins. FRC test specimens were polymerized with a hand light-curing unit or with a light-curing oven. The flexural test for determination of ultimate flexural strength of test specimens (n = 6) was based on the ISO 10477 standard after the specimens were stored in air or in water for two weeks. The acoustic emission (AE) signals were monitored during three-point loading test of the test specimens using a test with increasing loading levels until the specimens fractured. Generally, stress level required for the AE activity initiation ranged from 107 MPa (Ribbond) to 579 MPa (everStick). The ultimate flexural strength of FRC specimens were higher, ranging from 132 to 764 MPa, being highest with everStick and Vectris FRC, and lowest with Ribbond FRC. ANOVA showed a statistically significant difference between the initiation of AE activity and the ultimate flexural strength according to the brand (p < 0.001) storing conditions (p < 0.001) and polymerization procedure (p < 0.001). AE activity and ultimate flexural strength correlated significantly (p < 0.010, r = 0.887). The result of this study suggested that AE activity in FRC specimens started at a 19-32% lower stress level than occurred at final fracture.

  19. Heat capacity of aqueous monoethanolamine, diethanolamine, N-methyldiethanolamine, and N-methyldiethanolamine-based blends with carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, R.H.; Dingman, J.C.; Cronin, D.B.

    1997-09-01

    New data are reported on the heat capacity of CO{sub 2}-loaded, aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), N-methyldiethanolamine (MDEA), and aqueous MDEA-based blends with MEA and DEA. The work reported here was motivated by the need to quantify the effect of acid gas loading on the important physical properties of gas-sweetening solvents.

  20. A simple method for assessment of muscle force, velocity, and power producing capacities from functional movement tasks.

    PubMed

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-07-01

    A range of force (F) and velocity (V) data obtained from functional movement tasks (e.g., running, jumping, throwing, lifting, cycling) performed under variety of external loads have typically revealed strong and approximately linear F-V relationships. The regression model parameters reveal the maximum F (F-intercept), V (V-intercept), and power (P) producing capacities of the tested muscles. The aim of the present study was to evaluate the level of agreement between the routinely used "multiple-load model" and a simple "two-load model" based on direct assessment of the F-V relationship from only 2 external loads applied. Twelve participants were tested on the maximum performance vertical jumps, cycling, bench press throws, and bench pull performed against a variety of different loads. All 4 tested tasks revealed both exceptionally strong relationships between the parameters of the 2 models (median R = 0.98) and a lack of meaningful differences between their magnitudes (fixed bias below 3.4%). Therefore, addition of another load to the standard tests of various functional tasks typically conducted under a single set of mechanical conditions could allow for the assessment of the muscle mechanical properties such as the muscle F, V, and P producing capacities.

  1. Magnesium Powder Injection Molding (MIM) of Orthopedic Implants for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Wolff, M.; Schaper, J. G.; Suckert, M. R.; Dahms, M.; Ebel, T.; Willumeit-Römer, R.; Klassen, T.

    2016-04-01

    Metal injection molding (MIM) has a high potential for the economic near-net-shape mass production of small-sized and complex-shaped parts. The motivation for launching Mg into the MIM processing chain for manufacturing biodegradable medical implants is related to its compatibility with human bone and its degradation in a non-toxic matter. It has been recognized that the load-bearing capacity of MIM Mg parts is superior to that of biodegradable polymeric components. However, the choice of appropriate polymeric binder components and alloying elements enabling defect-free injection molding and sintering is a major challenge for the use of MIM Mg parts. This study considered the full processing chain for MIM of Mg-Ca alloys to achieve ultimate tensile strength of up to 141 MPa with tensile yield strength of 73 MPa, elongation at fracture Af of 7% and a Young's modulus of 38 GPa. To achieve these mechanical properties, a thermal debinding study was performed to determine optimal furnace and atmosphere conditions, sintering temperature, heating rates, sintering time and pressure.

  2. Strontium administration in young chickens improves bone volume and architecture but does not enhance bone structural and material strength.

    PubMed

    Shahnazari, M; Lang, D H; Fosmire, G J; Sharkey, N A; Mitchell, A D; Leach, R M

    2007-03-01

    Genetic selection for rapid body growth in broiler chickens has resulted in adverse effects on the skeletal system exemplified by a higher rate of cortical fractures in leg bones. Strontium (Sr) has been reported to have beneficial effects on bone formation and strength. We supplemented the diet of 300-day-old chicks with increasing dosages of Sr (0%, 0.12%, or 0.24%) to study the capacity of the element to improve bone quality and mechanical integrity. Treatment with Sr increased cortical bone volume and reduced bone porosity as measured by micro-computed tomography. The higher level of Sr significantly reduced bone Ca content (34.7%) relative to controls (37.2%), suggesting that Sr replaced some of the Ca in bone. Material properties determined by the three-point bending test showed that bone in the Sr-treated groups withstood greater deformation prior to fracture. Load to failure and ultimate stress were similar across groups. Our results indicate that Sr treatment in rapidly growing chickens induced positive effects on bone volume but did not improve the breaking strength of long bones.

  3. Identification of a boron nitride nanosphere-binding peptide for the intracellular delivery of CpG oligodeoxynucleotides

    NASA Astrophysics Data System (ADS)

    Zhang, Huijie; Yamazaki, Tomohiko; Zhi, Chunyi; Hanagata, Nobutaka

    2012-09-01

    CpG oligonucleotides (CpG ODNs) interact with Toll-like receptor 9 (TLR9), which results in the induction of immunostimulatory cytokines. We delivered CpG ODNs intracellularly using boron nitride nanospheres (BNNS). To enhance the loading capacity of CpG ODNs on BNNS, we used a phage display technique to identify a 12-amino acid peptide designated as BP7, with specific affinity for BNNS, and used it as a linker to load CpG ODNs on BNNS. The tyrosine residue (Y) at the eighth position from the N-terminus played a crucial role in the affinity of BP7 to BNNS. BNNS that bound BP7 (BNNS-BP7) were taken up by cells and showed no cytotoxicity, and CpG ODNs were successfully crosslinked with BP7 to create BP7-CpG ODN conjugates. Using BP7 as a linker, the loading efficiency of CpG ODNs on BNNS increased 5-fold compared to the direct binding of CpG ODNs to BNNS. Furthermore, the BP7-CpG ODN conjugate-loaded BNNS had a greater capacity to induce interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) production from peripheral blood mononuclear cells (PBMCs) than that of CpG ODNs directly loaded on BNNS. The higher amount of cytokine induction by BP7-CpG ODN conjugate-loaded BNNS may be attributed to a higher loading capacity and stronger binding to BNNS of the linker BP7. The greater functionality of BP7-conjugated CpG ODNs on BNNS expands the potential of BNNS for drug delivery applications.CpG oligonucleotides (CpG ODNs) interact with Toll-like receptor 9 (TLR9), which results in the induction of immunostimulatory cytokines. We delivered CpG ODNs intracellularly using boron nitride nanospheres (BNNS). To enhance the loading capacity of CpG ODNs on BNNS, we used a phage display technique to identify a 12-amino acid peptide designated as BP7, with specific affinity for BNNS, and used it as a linker to load CpG ODNs on BNNS. The tyrosine residue (Y) at the eighth position from the N-terminus played a crucial role in the affinity of BP7 to BNNS. BNNS that bound BP7 (BNNS-BP7) were taken up by cells and showed no cytotoxicity, and CpG ODNs were successfully crosslinked with BP7 to create BP7-CpG ODN conjugates. Using BP7 as a linker, the loading efficiency of CpG ODNs on BNNS increased 5-fold compared to the direct binding of CpG ODNs to BNNS. Furthermore, the BP7-CpG ODN conjugate-loaded BNNS had a greater capacity to induce interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) production from peripheral blood mononuclear cells (PBMCs) than that of CpG ODNs directly loaded on BNNS. The higher amount of cytokine induction by BP7-CpG ODN conjugate-loaded BNNS may be attributed to a higher loading capacity and stronger binding to BNNS of the linker BP7. The greater functionality of BP7-conjugated CpG ODNs on BNNS expands the potential of BNNS for drug delivery applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31189e

  4. Method to Increase Performance of Foil Bearings Through Passive Thermal Management

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert

    2013-01-01

    This invention is a new approach to designing foil bearings to increase their load capacity and improve their reliability through passive thermal management. In the present case, the bearing is designed in such a way as to prevent the carryover of lubricant from the exit of one sector to the inlet of the ensuing sector of the foil bearing. When such passive thermal management techniques are used, bearing load capacity is improved by multiples, and reliability is enhanced when compared to current foil bearings. This concept has recently been tested and validated, and shows that load capacity performance of foil bearings can be improved by a factor of two at relatively low speeds with potentially greater relative improvements at higher speeds. Such improvements in performance with respect to speed are typical of foil bearings. Additionally, operation of these newly conceived bearings shows much more reliability and repeatable performance. This trait can be exploited in machine design to enhance safety, reliability, and overall performance. Finally, lower frictional torque has been demonstrated when operating at lower (non-load capacity) loads, thus providing another improvement above the current state of the art. The objective of the invention is to incorporate features into a foil bearing that both enhance passive thermal management and temperature control, while at the same time improve the hydrodynamic (load capacity) performance of the foil bearing. Foil bearings are unique antifriction devices that can utilize the working fluid of a machine as a lubricant (typically air for turbines and motors, liquids for pumps), and as a coolant to remove excess energy due to frictional heating. The current state of the art of foil bearings utilizes forced cooling of the bearing and shaft, which represents poor efficiency and poor reliability. This invention embodies features that utilize the bearing geometry in such a manner as to both support load and provide an inherent and passive cooling mechanism. This cooling mechanism functions in such a way as to prevent used (higher temperature) lubricant from being carried over from the exit of one sector into the entry of the next sector of the foil bearing. The disclosed innovation is an improved foil bearing design that reduces or eliminates the need for force cooling of the bearing, while at the same time improving the load capacity of the bearing by at least a factor of two. These improvements are due to the elimination of lubricant carryover from the trailing edge of one sector into the leading edge of the next, and the mixing of used lubricant with the surrounding ambient fluid.

  5. Reliability analysis of structures under periodic proof tests in service

    NASA Technical Reports Server (NTRS)

    Yang, J.-N.

    1976-01-01

    A reliability analysis of structures subjected to random service loads and periodic proof tests treats gust loads and maneuver loads as random processes. Crack initiation, crack propagation, and strength degradation are treated as the fatigue process. The time to fatigue crack initiation and ultimate strength are random variables. Residual strength decreases during crack propagation, so that failure rate increases with time. When a structure fails under periodic proof testing, a new structure is built and proof-tested. The probability of structural failure in service is derived from treatment of all the random variables, strength degradations, service loads, proof tests, and the renewal of failed structures. Some numerical examples are worked out.

  6. Assessment of PIV-based unsteady load determination of an airfoil with actuated flap

    NASA Astrophysics Data System (ADS)

    Sterenborg, J. J. H. M.; Lindeboom, R. C. J.; Simão Ferreira, C. J.; van Zuijlen, A. H.; Bijl, H.

    2014-02-01

    For complex experimental setups involving movable structures it is not trivial to directly measure unsteady loads. An alternative is to deduce unsteady loads indirectly from measured velocity fields using Noca's method. The ultimate aim is to use this method in future work to determine unsteady loads for fluid-structure interaction problems. The focus in this paper is first on the application and assessment of Noca's method for an airfoil with an oscillating trailing edge flap. To our best knowledge Noca's method has not been applied yet to airfoils with moving control surfaces or fluid-structure interaction problems. In addition, wind tunnel corrections for this type of unsteady flow problem are considered.

  7. Shear transfer capacity of reinforced concrete exposed to fire

    NASA Astrophysics Data System (ADS)

    Ahmad, Subhan; Bhargava, Pradeep; Chourasia, Ajay

    2018-04-01

    Shear transfer capacity of reinforced concrete elements is a function of concrete compressive strength and reinforcement yield strength. Exposure of concrete and steel to elevated temperature reduces their mechanical properties resulting in reduced shear transfer capacity of RC elements. The objective of present study is to find the effect of elevated temperature on shear transfer capacity of reinforced concrete. For this purpose pushoff specimens were casted using normal strength concrete. After curing, specimens were heated to 250°C and 500°C in an electric furnace. Cooled specimens were tested for shear transfer capacity in a universal testing machine. It was found that shear transfer capacity and stiffness (slope of load-slip curve) were reduced when the specimens were heated to 250°C and 500°C. Load level for the initiation of crack slip was found to be decreased as the temperature was increased. A simple analytical approach is also proposed to predict the shear transfer capacity of reinforced concrete after elevated temperature.

  8. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in themore » cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.« less

  9. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan

    Lithium (Li) metal batteries (LMBs) are regarded as the most promising power sources for electric vehicles. Besides the Li dendrite growth and low Li Coulombic efficiency, how to well match Li metal anode with a high loading (normally over 3.0 mAh cm-2) cathode is another key challenge to achieve the real high energy density battery. In this work, we systematically investigate the effects of the Li metal capacity usage in each cycle, manipulated by varying the cathode areal loading, on the stability of Li metal anode and the cycling performance of LMBs using the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and an additive-containingmore » dual-salt/carbonate-solvent electrolyte. It is demonstrated that the Li||NMC cells show decent long-term cycling performance even with NMC areal capacity loading up to ca. 4.0 mAh cm-2 and at a charge current density of 1.0 mA cm-2. The increase of the Li capacity usage in each cycle causes variation in the components of the solid electrolyte interphase (SEI) layer on Li metal anode and generates more ionic conductive species from this electrolyte. Further study reveals for the first time that the degradation of Li metal anode and the thickness of SEI layer on Li anode show linear relationship with the areal capacity of NMC cathode. Meanwhile, the expansion rate of consumed Li and the ratio of SEI thickness to NMC areal loading are kept almost the same value with increasing cathode loading, respectively. These fundamental findings provide new perspectives on the rational evaluation of Li metal anode stability for the development of rechargeable LMBs.« less

  10. Stress Analysis of B-52B and B-52H Air-Launching Systems Failure-Critical Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2005-01-01

    The operational life analysis of any airborne failure-critical structural component requires the stress-load equation, which relates the applied load to the maximum tangential tensile stress at the critical stress point. The failure-critical structural components identified are the B-52B Pegasus pylon adapter shackles, B-52B Pegasus pylon hooks, B-52H airplane pylon hooks, B-52H airplane front fittings, B-52H airplane rear pylon fitting, and the B-52H airplane pylon lower sway brace. Finite-element stress analysis was performed on the said structural components, and the critical stress point was located and the stress-load equation was established for each failure-critical structural component. The ultimate load, yield load, and proof load needed for operational life analysis were established for each failure-critical structural component.

  11. Highly Loaded Composite Strut Test Results

    NASA Technical Reports Server (NTRS)

    Wu, K. C.; Jegley, Dawn C.; Barnard, Ansley; Phelps, James E.; McKeney, Martin J.

    2011-01-01

    Highly loaded composite struts from a proposed truss-based Altair lunar lander descent stage concept were selected for development under NASA's Advanced Composites Technology program. Predicted compressive member forces during launch and ascent of over -100,000 lbs were much greater than the tensile loads. Therefore, compressive failure modes, including structural stability, were primary design considerations. NASA's industry partner designed and built highly loaded struts that were delivered to NASA for testing. Their design, fabricated on a washout mandrel, had a uniform-diameter composite tube with composite tapered ends. Each tapered end contained a titanium end fitting with facing conical ramps that are overlaid and overwrapped with composite materials. The highly loaded struts were loaded in both tension and compression, with ultimate failure produced in compression. Results for the two struts tested are presented and discussed, along with measured deflections, strains and observed failure mechanisms.

  12. Research on power source structure optimization for East China Power Grid

    NASA Astrophysics Data System (ADS)

    Xu, Lingjun; Sang, Da; Zhang, Jianping; Tang, Chunyi; Xu, Da

    2017-05-01

    The structure of east china power grid is not reasonable for the coal power takes a much higher proportion than hydropower, at present the coal power takes charge of most peak load regulation, and the pressure of peak load regulation cannot be ignored. The nuclear power, wind power, photovoltaic, other clean energy and hydropower, coal power and wind power from outside will be actively developed in future, which increases the pressure of peak load regulation. According to development of economic and social, Load status and load prediction, status quo and planning of power source and the characteristics of power source, the peak load regulation balance is carried out and put forward a reasonable plan of power source allocation. The ultimate aim is to optimize the power source structure and to provide reference for power source allocation in east china.

  13. Hygrothermal effects on the mechanical behaviour of graphite fibre-reinforced epoxy laminates beyond initial failure

    NASA Technical Reports Server (NTRS)

    Ishai, O.; Garg, A.; Nelson, H. G.

    1986-01-01

    The critical load levels and associated cracking beyond which a multidirectional laminate can be considered as structurally failed has been determined by loading graphite fiber-reinforced epoxy laminates to different strain levels up to ultimate failure. Transverse matrix cracking was monitored by acoustic and optical methods. The residual stiffness and strength parallel and perpendicular to the cracks were determined and related to the environmental/loading history. Within the range of experimental conditions studied, it is concluded that the transverse cracking process does not have a crucial effect on the structural performance of multidirectional composite laminates.

  14. Quantum-capacity-approaching codes for the detected-jump channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassl, Markus; Wei Zhaohui; Ji Zhengfeng

    2010-12-15

    The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasuresmore » and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.« less

  15. The effects of pin elasticity, clearance, and friction on the stresses in a pin-loaded orthotropic plate

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Klang, E. C.; Cooper, D. E.

    1987-01-01

    The effects of pin elasticity, clearance, and friction on the stresses in a pin loaded orthotropic plate are studied. The effects are studied by posing the problem as a planar contact elasticity problem, the pin and the plate being two elastic bodies which interact through contact. Coulomb friction is assumed, the pin loads the plate in one of its principal material directions, and the plate is infinite in extent. A collocation scheme and interaction, in conjunction with a complex variable series solution, are used to obtain numerical results. The contact region between the plate and pin is unknown and must be solved for as part of the solution. The same is true of the region of friction induced no slip. Two pin stiffnesses, two clearance levels, two friction levels and two laminates, a (0/+ or - 45/90)s and a (02/+ or - 45)s, are studied. The effects of pin elasticity, clearance, and friction on the load capacity of the plate are assessed by comparing the load capacity of the plate with the capacity when the pin is rigid, perfectly fitting, and frictionless.

  16. Optimizing the robustness of electrical power systems against cascading failures.

    PubMed

    Zhang, Yingrui; Yağan, Osman

    2016-06-21

    Electrical power systems are one of the most important infrastructures that support our society. However, their vulnerabilities have raised great concern recently due to several large-scale blackouts around the world. In this paper, we investigate the robustness of power systems against cascading failures initiated by a random attack. This is done under a simple yet useful model based on global and equal redistribution of load upon failures. We provide a comprehensive understanding of system robustness under this model by (i) deriving an expression for the final system size as a function of the size of initial attacks; (ii) deriving the critical attack size after which system breaks down completely; (iii) showing that complete system breakdown takes place through a first-order (i.e., discontinuous) transition in terms of the attack size; and (iv) establishing the optimal load-capacity distribution that maximizes robustness. In particular, we show that robustness is maximized when the difference between the capacity and initial load is the same for all lines; i.e., when all lines have the same redundant space regardless of their initial load. This is in contrast with the intuitive and commonly used setting where capacity of a line is a fixed factor of its initial load.

  17. The capacity credit of grid-connected photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Alsema, E. A.; van Wijk, A. J. M.; Turkenburg, W. C.

    The capacity credit due photovoltaic (PV) power plants if integrated into the Netherlands grid was investigated, together with an estimate of the total allowable penetration. An hourly simulation was performed based on meteorological data from five stations and considering tilted surfaces, the current grid load pattern, and the load pattern after PV-power augmentation. The reliability of the grid was assessed in terms of a loss of load probability analysis, assuming power drops were limited to 1 GW. A projected tolerance for 2.5 GW of PV power was calculated. Peak demands were determined to be highest in winter, contrary to highest insolation levels; however, daily insolation levels coincided with daily peak demands. Combining the PV input with an equal amount of wind turbine power production was found to augment the capacity credit for both at aggregate outputs of 2-4 GW.

  18. An Applied Method for Predicting the Load-Carrying Capacity in Compression of Thin-Wall Composite Structures with Impact Damage

    NASA Astrophysics Data System (ADS)

    Mitrofanov, O.; Pavelko, I.; Varickis, S.; Vagele, A.

    2018-03-01

    The necessity for considering both strength criteria and postbuckling effects in calculating the load-carrying capacity in compression of thin-wall composite structures with impact damage is substantiated. An original applied method ensuring solution of these problems with an accuracy sufficient for practical design tasks is developed. The main advantage of the method is its applicability in terms of computing resources and the set of initial data required. The results of application of the method to solution of the problem of compression of fragments of thin-wall honeycomb panel damaged by impacts of various energies are presented. After a comparison of calculation results with experimental data, a working algorithm for calculating the reduction in the load-carrying capacity of a composite object with impact damage is adopted.

  19. Thermal shaft effects on load-carrying capacity of a fully coupled, variable-properties cryogenic journal bearing

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.

    1986-01-01

    The purpose of this work was to perform a rather complete analysis for a cryogenic (oxygen) journal bearing. The Reynolds equation required coupling and simultaneous solution with the fluid energy equation. To correctly account for the changes in the fluid viscosity, the fluid energy equation was coupled with the shaft and bearing heat conduction energy equations. The effects of pressure and temperature on the density, viscosity, and load-carrying capacity were further discussed as analysis parameters, with respect to relative eccentricity and the angular velocity. The isothermal fluid case and the adiabatic fluid case represented the limiting boundaries. The discussion was further extrapolated to study the Sommerfeld number dependency on the fluid Nusselt number and its consequence on possible total loss of load-carrying capacity and/or seizure (catastrophic failure).

  20. When cognition kicks in: working memory and speech understanding in noise.

    PubMed

    Rönnberg, Jerker; Rudner, Mary; Lunner, Thomas; Zekveld, Adriana A

    2010-01-01

    Perceptual load and cognitive load can be separately manipulated and dissociated in their effects on speech understanding in noise. The Ease of Language Understanding model assumes a theoretical position where perceptual task characteristics interact with the individual's implicit capacities to extract the phonological elements of speech. Phonological precision and speed of lexical access are important determinants for listening in adverse conditions. If there are mismatches between the phonological elements perceived and phonological representations in long-term memory, explicit working memory (WM)-related capacities will be continually invoked to reconstruct and infer the contents of the ongoing discourse. Whether this induces a high cognitive load or not will in turn depend on the individual's storage and processing capacities in WM. Data suggest that modulated noise maskers may serve as triggers for speech maskers and therefore induce a WM, explicit mode of processing. Individuals with high WM capacity benefit more than low WM-capacity individuals from fast amplitude compression at low or negative input speech-to-noise ratios. The general conclusion is that there is an overarching interaction between the focal purpose of processing in the primary listening task and the extent to which a secondary, distracting task taps into these processes.

  1. Some Remarks on Foundation Pile Testing Procedures

    NASA Astrophysics Data System (ADS)

    Rybak, Jarosław

    2017-10-01

    This work presents the review of pile capacity testing techniques. In an overview, the key points in pile designing are: determination of the appropriate computational schemes, reliable data on loads and the properties of structural materials (in particular, of the soil mass, which is marked by the greatest variability). The procedure of constructing a pile foundation should include: carrying out soil tests in the scope that ensures safe designing, selecting a piling technology that is relevant both to geotechnical conditions and expected loads, drafting a piling design together with the design of load tests, setting up a testing station for further load tests, static and/or dynamic tests of pile load capacity, preceded by supplementary soil tests when the conditions of test pile installation fail to comply with the design assumptions or when the pile length exceeds the depth of the previously investigated soil, making documentation of load capacity tests (with an additional correction of the piling design), the actual piling (ongoing analysis of pile driving logs and, if necessary, testing the piles’ integrity), drawing up the as-built documentation. Unfortunately, the design is corrected after the load test have been conducted only if the piles fail to show the designed bearing capacity. The designer is then obliged to revise the design assumptions on the basis of tests results. If the test results account for the a greater bearing capacity than necessary and it would be recommendable to limit the extent of the planned (i.e. set out in the contract) piling works, usually neither the contractor nor the designer, nor even the Construction Site Supervisor, acting for the benefit of the Investor, are willing to take on the responsibility for reducing the scope of the piling works. The necessity of conducting additional control tests before and during the implementation of the construction project is often treated by the investors as an attempt at extorting extra financial resources or at delaying the project implementation. The designer, however, has no other possibility (and often - he/she does not have required qualifications) to verify the obtained test results.

  2. Stiffness and ultimate load of osseointegrated prosthesis fixations in the upper and lower extremity.

    PubMed

    Welke, Bastian; Hurschler, Christof; Föller, Marie; Schwarze, Michael; Calliess, Tilman

    2013-07-11

    Techniques for the skeletal attachment of amputation-prostheses have been developed over recent decades. This type of attachment has only been performed on a small number of patients. It poses various potential advantages compared to conventional treatment with a socket, but is also associated with an increased risk of bone or implant-bone interface fracture in the case of a fall. We therefore investigated the bending stiffness and ultimate bending moment of such devices implanted in human and synthetic bones. Eight human specimens and 16 synthetic models of the proximal femora were implanted with lower extremity prostheses and eight human specimens and six synthetic humeri were implanted with upper extremity prostheses. They were dissected according to typical amputation levels and underwent loading in a material testing machine in a four-point bending setup. Bending stiffness, ultimate bending moment and fracture modes were determined in a load to failure experiment. Additionally, axial pull-out was performed on eight synthetic specimens of the lower extremity. Maximum bending moment of the synthetic femora was 160.6±27.5 Nm, the flexural rigidity of the synthetic femora was 189.0±22.6 Nm2. Maximum bending moment of the human femora was 100.4±38.5 Nm, and the flexural rigidity was 137.8±29.4 Nm2. The maximum bending moment of the six synthetic humeri was 104.9±19.0 Nm, and the flexural rigidity was 63.7±3.6 Nm2. For the human humeri the maximum bending moment was 36.7±11.0 Nm, and the flexural rigidity at was 43.7±10.5 Nm2. The maximum pull-out force for the eight synthetic femora was 3571±919 N. Significant differences were found between human and synthetic specimens of the lower and upper extremity regarding maximum bending moment, bending displacement and flexural rigidity. The results of this study are relevant with respect to previous finding regarding the load at the interfaces of osseointegrated prosthesis fixation devices and are crucial for the development of safety devices intended to protect the bone-implant interface from damaging loadings.

  3. Stiffness and ultimate load of osseointegrated prosthesis fixations in the upper and lower extremity

    PubMed Central

    2013-01-01

    Background Techniques for the skeletal attachment of amputation-prostheses have been developed over recent decades. This type of attachment has only been performed on a small number of patients. It poses various potential advantages compared to conventional treatment with a socket, but is also associated with an increased risk of bone or implant-bone interface fracture in the case of a fall. We therefore investigated the bending stiffness and ultimate bending moment of such devices implanted in human and synthetic bones. Methods Eight human specimens and 16 synthetic models of the proximal femora were implanted with lower extremity prostheses and eight human specimens and six synthetic humeri were implanted with upper extremity prostheses. They were dissected according to typical amputation levels and underwent loading in a material testing machine in a four-point bending setup. Bending stiffness, ultimate bending moment and fracture modes were determined in a load to failure experiment. Additionally, axial pull-out was performed on eight synthetic specimens of the lower extremity. Results Maximum bending moment of the synthetic femora was 160.6±27.5 Nm, the flexural rigidity of the synthetic femora was 189.0±22.6 Nm2. Maximum bending moment of the human femora was 100.4±38.5 Nm, and the flexural rigidity was 137.8±29.4 Nm2. The maximum bending moment of the six synthetic humeri was 104.9±19.0 Nm, and the flexural rigidity was 63.7±3.6 Nm2. For the human humeri the maximum bending moment was 36.7±11.0 Nm, and the flexural rigidity at was 43.7±10.5 Nm2. The maximum pull-out force for the eight synthetic femora was 3571±919 N. Conclusion Significant differences were found between human and synthetic specimens of the lower and upper extremity regarding maximum bending moment, bending displacement and flexural rigidity. The results of this study are relevant with respect to previous finding regarding the load at the interfaces of osseointegrated prosthesis fixation devices and are crucial for the development of safety devices intended to protect the bone-implant interface from damaging loadings. PMID:23844992

  4. Cognitive Load Theory: An Empirical Study of Anxiety and Task Performance in Language Learning

    ERIC Educational Resources Information Center

    Chen, I-Jung; Chang, Chi-Cheng

    2009-01-01

    Introduction: This study explores the relationship among three variables--cognitive load, foreign language anxiety, and task performance. Cognitive load refers to the load imposed on working memory while performing a particular task. The authors hypothesized that anxiety consumes the resources of working memory, leaving less capacity for cognitive…

  5. Load carrying capacity of RCC beams by replacing steel reinforcement bars with shape memory alloy bars

    NASA Astrophysics Data System (ADS)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2016-04-01

    In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under two point loading system has been numerically studied, using Finite Element Method. The material used in this study is Super-elastic Shape Memory Alloys (SE SMAs) which contains nickel and titanium. In this study, different quantities of steel and SMA rebars have been used for reinforcement and the behavior of these models under two point bending loading system is studied. A comparison of load carrying capacity for the model between steel reinforced concrete beam and the beam reinforced with S.M.A and steel are performed. The results show that RC beams reinforced with combination of shape memory alloy and steel show better performance.

  6. Tailored metal matrix composites for high-temperature performance

    NASA Technical Reports Server (NTRS)

    Morel, M. R.; Saravanos, D. A.; Chamis, C. C.

    1992-01-01

    A multi-objective tailoring methodology is presented to maximize stiffness and load carrying capacity of a metal matrix cross-ply laminated at elevated temperatures. The fabrication process and fiber volume ratio are used as the design variables. A unique feature is the concurrent effects from fabrication, residual stresses, material nonlinearity, and thermo-mechanical loading on the laminate properties at the post-fabrication phase. For a (0/90)(sub s) graphite/copper laminate, strong coupling was observed between the fabrication process, laminate characteristics, and thermo-mechanical loading. The multi-objective tailoring was found to be more effective than single objective tailoring. Results indicate the potential to increase laminate stiffness and load carrying capacity by controlling the critical parameters of the fabrication process and the laminate.

  7. An information processing/associative learning account of behavioral disinhibition in externalizing psychopathology.

    PubMed

    Endres, Michael J; Donkin, Chris; Finn, Peter R

    2014-04-01

    Externalizing psychopathology (EXT) is associated with low executive working memory (EWM) capacity and problems with inhibitory control and decision-making; however, the specific cognitive processes underlying these problems are not well known. This study used a linear ballistic accumulator computational model of go/no-go associative-incentive learning conducted with and without a working memory (WM) load to investigate these cognitive processes in 510 young adults varying in EXT (lifetime problems with substance use, conduct disorder, ADHD, adult antisocial behavior). High scores on an EXT factor were associated with low EWM capacity and higher scores on a latent variable reflecting the cognitive processes underlying disinhibited decision-making (more false alarms, faster evidence accumulation rates for false alarms [vFA], and lower scores on a Response Precision Index [RPI] measure of information processing efficiency). The WM load increased disinhibited decision-making, decisional uncertainty, and response caution for all subjects. Higher EWM capacity was associated with lower scores on the latent disinhibited decision-making variable (lower false alarms, lower vFAs and RPI scores) in both WM load conditions. EWM capacity partially mediated the association between EXT and disinhibited decision-making under no-WM load, and completely mediated this association under WM load. The results underline the role that EWM has in associative-incentive go/no-go learning and indicate that common to numerous types of EXT are impairments in the cognitive processes associated with the evidence accumulation-evaluation-decision process. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. An information processing/associative learning account of behavioral disinhibition in externalizing psychopathology

    PubMed Central

    Endres, Michael J.; Donkin, Chris; Finn, Peter R.

    2014-01-01

    Externalizing psychopathology (EXT) is associated with low executive working memory (EWM) capacity and problems with inhibitory control and decision-making; however, the specific cognitive processes underlying these problems are not well known. This study used a linear ballistic accumulator computational model of go/no-go associative-incentive learning conducted with and without a working memory (WM) load to investigate these cognitive processes in 510 young adults varying in EXT (lifetime problems with substance use, conduct disorder, ADHD, adult antisocial behavior). High scores on an EXT factor were associated with low EWM capacity and higher scores on a latent variable reflecting the cognitive processes underlying disinhibited decision making (more false alarms, faster evidence accumulation rates for false alarms (vFA), and lower scores on a Response Precision Index (RPI) measure of information processing efficiency). The WM load increased disinhibited decision making, decisional uncertainty, and response caution for all subjects. Higher EWM capacity was associated with lower scores on the latent disinhibited decision making variable (lower false alarms, lower vFAs and RPI scores) in both WM load conditions. EWM capacity partially mediated the association between EXT and disinhibited decision making under no-WM load, and completely mediated this association under WM load. The results underline the role that EWM has in associative – incentive go/no-go learning and indicate that common to numerous types of EXT are impairments in the cognitive processes associated with the evidence accumulation – evaluation – decision process. PMID:24611834

  9. Independent Suture Tape Reinforcement of Small and Standard Diameter Grafts for Anterior Cruciate Ligament Reconstruction: A Biomechanical Full Construct Model.

    PubMed

    Bachmaier, Samuel; Smith, Patrick A; Bley, Jordan; Wijdicks, Coen A

    2018-02-01

    To compare the dynamic elongation, stiffness behavior, and ultimate failure load of standard with small diameter soft tissue grafts for anterior cruciate ligament (ACL) reconstruction with and without high-strength suture tape reinforcement. Both a tripled "small" diameter and a "standard" quadrupled tendon graft with and without suture tape reinforcement were tested using suspensory fixation (n = 8 each group). The suture tape was passed through the suspensory fixation button on the femur and tibia to ensure independent (safety belt) fixation from the graft in vitro. The testing of the constructs included position-controlled cyclic loading, force-controlled cyclic loading at 250 N and 400 N as well as pull to failure (50 mm/min). Reinforcement of a small diameter graft significantly reduced dynamic elongation of 38% (1.46 ± 0.28 mm vs 2.34 ± 0.44 mm, P < .001) and 50% (2.55 ± 0.44 mm vs 5.06 ± 0.67 mm, P < .001) after the 250 N and 400 N load protocol, respectively. Reinforcement of a standard diameter tendon graft decreased dynamic elongation of 15% (1.59 ± 0.34 mm vs 1.86 ± 0.17 mm, P = .066) and 26% (2.62 ± 0.44 mm vs 3.55 ± 0.44 mm, P < .001). No significant difference was found between both reinforced models. The ultimate failure loads of small and standard diameter reinforced grafts were 1592 ± 105 N and 1585 ± 265 N, resulting in a 64% (P < .001) and 40% (P < .001) increase compared with their respective controls. Independent suture tape reinforcement of soft tissue grafts for ACL reconstruction leads to significantly reduced elongation and higher ultimate failure load according to in vivo native ACL function data without stress-shielding the soft tissue graft. If in vitro results are translational to human knees in vivo, the suture tape reinforcement technique for ACL reconstruction may decrease the risk of graft tears, particularly in the case of small diameter soft tissue grafts. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  10. 33 CFR 183.41 - Persons capacity: Outboard boats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Persons capacity: Outboard boats... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.41 Persons capacity: Outboard boats. (a) The persons capacity in pounds marked on a boat that is designed to use one or more outboard...

  11. 33 CFR 183.41 - Persons capacity: Outboard boats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Persons capacity: Outboard boats... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.41 Persons capacity: Outboard boats. (a) The persons capacity in pounds marked on a boat that is designed to use one or more outboard...

  12. 33 CFR 183.41 - Persons capacity: Outboard boats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Persons capacity: Outboard boats... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.41 Persons capacity: Outboard boats. (a) The persons capacity in pounds marked on a boat that is designed to use one or more outboard...

  13. 33 CFR 183.41 - Persons capacity: Outboard boats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Persons capacity: Outboard boats... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.41 Persons capacity: Outboard boats. (a) The persons capacity in pounds marked on a boat that is designed to use one or more outboard...

  14. Study of stiffness and bearing capacity degradation of reinforced concrete beams under constant-amplitude fatigue

    PubMed Central

    Zhou, Jianting; Yan, Lei

    2018-01-01

    For a reinforced concrete beam subjected to fatigue loads, the structural stiffness and bearing capacity will gradually undergo irreversible degeneration, leading to damage. Moreover, there is an inherent relationship between the stiffness and bearing capacity degradation and fatigue damage. In this study, a series of fatigue tests are performed to examine the degradation law of the stiffness and bearing capacity. The results pertaining to the stiffness show that the stiffness degradation of a reinforced concrete beam exhibits a very clear monotonic decreasing "S" curve, i.e., the stiffness of the beam decreases significantly at the start of the fatigue loading, it undergoes a linear decline phase in the middle for a long loading period, and before the failure, the bearing capacity decreases drastically again. The relationship between the residual stiffness and residual bearing capacity is determined based on the assumption that the residual stiffness and residual bearing capacity depend on the same damage state, and then, the bearing capacity degradation model of the reinforced concrete beam is established based on the fatigue stiffness. Through the established model and under the premise of the known residual stiffness degradation law, the degradation law of the bearing capacity is determined by using at least one residual bearing capacity test data, for which the parameters of the stiffness degradation function are considered as material constants. The results of the bearing capacity show that the bearing capacity degradation of the reinforced concrete beam also exhibits a very clear monotonic decreasing "S" curve, which is consistent with the stiffness degradation process and in good agreement with the experiment. In this study, the stiffness and bearing capacity degradation expressions are used to quantitatively describe their occurrence in reinforced concrete beams. In particular, the expression of the bearing capacity degradation can mitigate numerous destructive tests and save cost. The stiffness and bearing capacity degradation expressions for a reinforced concrete beam can be used to predict the deformation and bearing capacity of a structure during the service process and determine the structural fatigue damage and degree of degradation. PMID:29522572

  15. Study of stiffness and bearing capacity degradation of reinforced concrete beams under constant-amplitude fatigue.

    PubMed

    Liu, Fangping; Zhou, Jianting; Yan, Lei

    2018-01-01

    For a reinforced concrete beam subjected to fatigue loads, the structural stiffness and bearing capacity will gradually undergo irreversible degeneration, leading to damage. Moreover, there is an inherent relationship between the stiffness and bearing capacity degradation and fatigue damage. In this study, a series of fatigue tests are performed to examine the degradation law of the stiffness and bearing capacity. The results pertaining to the stiffness show that the stiffness degradation of a reinforced concrete beam exhibits a very clear monotonic decreasing "S" curve, i.e., the stiffness of the beam decreases significantly at the start of the fatigue loading, it undergoes a linear decline phase in the middle for a long loading period, and before the failure, the bearing capacity decreases drastically again. The relationship between the residual stiffness and residual bearing capacity is determined based on the assumption that the residual stiffness and residual bearing capacity depend on the same damage state, and then, the bearing capacity degradation model of the reinforced concrete beam is established based on the fatigue stiffness. Through the established model and under the premise of the known residual stiffness degradation law, the degradation law of the bearing capacity is determined by using at least one residual bearing capacity test data, for which the parameters of the stiffness degradation function are considered as material constants. The results of the bearing capacity show that the bearing capacity degradation of the reinforced concrete beam also exhibits a very clear monotonic decreasing "S" curve, which is consistent with the stiffness degradation process and in good agreement with the experiment. In this study, the stiffness and bearing capacity degradation expressions are used to quantitatively describe their occurrence in reinforced concrete beams. In particular, the expression of the bearing capacity degradation can mitigate numerous destructive tests and save cost. The stiffness and bearing capacity degradation expressions for a reinforced concrete beam can be used to predict the deformation and bearing capacity of a structure during the service process and determine the structural fatigue damage and degree of degradation.

  16. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    NASA Astrophysics Data System (ADS)

    Alameri, Saeed A.

    Nuclear power plants usually provide base-load electric power and operate most economically at a constant power level. In an energy grid with a high fraction of renewable energy sources, future nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling the reactor to a large Thermal Energy Storage (TES) block will allow the reactor to better respond to variable power demands. In the system described in this thesis, a Prismatic-core Advanced High Temperature Reactor (PAHTR) operates at constant power with heat provided to a TES block that supplies power as needed to a secondary energy conversion system. The PAHTR is designed to have a power rating of 300 MW th, with 19.75 wt% enriched Tri-Structural-Isotropic UO 2 fuel and a five year operating cycle. The passive molten salt TES system will operate in the latent heat region with an energy storage capacity of 150 MWd. Multiple smaller TES blocks are used instead of one large block to enhance the efficiency and maintenance complexity of the system. A transient model of the coupled reactor/TES system is developed to study the behavior of the system in response to varying load demands. The model uses six-delayed group point kinetics and decay heat models coupled to thermal-hydraulic and heat transfer models of the reactor and TES system. Based on the transient results, the preferred TES design consists of 1000 blocks, each containing 11000 LiCl phase change material tubes. A safety assessment of major reactor events demonstrates the inherent safety of the coupled system. The loss of forced circulation study determined the minimum required air convection heat removal rate from the reactor core and the lowest possible reduced primary flow rate that can maintain the reactor in a safe condition. The loss of ultimate heat sink study demonstrated the ability of the TES to absorb the decay heat of the reactor fuel while cooling the PAHTR after an emergency shutdown. The simulated reactivity insertion accident assessment determined the maximum allowable reactivity insertion to the PAHTR as a function of shutdown response times.

  17. Abduction of Toe-excavation Induced Failure Process from LEM and FDM for a Dip Slope with Rock Anchorage in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, W.-S.; Lin, M.-L.; Liu, H.-C.; Lin, H.-H.

    2012-04-01

    On April 25, 2010, without rainfall and earthquake triggering a massive landslide (200000 m3) covered a 200m stretch of Taiwan's National Freeway No. 3, killing 4 people, burying three cars and destroying a bridge. The failure mode appears to be a dip-slope type failure occurred on a rock anchorage cut slope. The strike of Tertiary sedimentary strata is northeast-southwest and dip 15˚ toward southeast. Based on the investigations of Taiwan Geotechnical Society, there are three possible factors contributing to the failure mechanism as follow:(1) By toe-excavation during construction in 1998, the daylight of the sliding layer had induced the strength reduction in the sliding layer. It also caused the loadings of anchors increased rapidly and approached to their ultimate capacity; (2) Although the excavated area had stabilized soon with rock anchors and backfills, the weathering and groundwater infiltration caused the strength reduction of overlying rock mass; (3) The possible corrosion and age of the ground anchors deteriorate the loading capacity of rock anchors. Considering the strength of sliding layer had reduced from peak to residual strength which was caused by the disturbance of excavation, the limit equilibrium method (LEM) analysis was utilized in the back analysis at first. The results showed the stability condition of slope approached the critical state (F.S.≈1). The efficiency reduction of rock anchors and strength reduction of overlying stratum (sandstone) had been considered in following analysis. The results showed the unstable condition (F.S. <1). This research also utilized the result of laboratory test, geological strength index(GSI) and finite difference method (FDM, FLAC 5.0) to discuss the failure process with the interaction of disturbance of toe-excavation, weathering of rock mass, groundwater infiltration and efficiency reduction of rock anchors on the stability of slope. The analysis indicated that the incremental load of anchors have similar tendency comparing to the monitoring records in toe-excavation stages. This result showed that the strength of the sliding layer was significantly influenced by toe-excavation. The numerical model which calibrated with monitoring records in excavation stage was then used to discuss the failure process after backfilling. The results showed the interaction of different factors into the failure process. Keyword: Dip slope failure, rock anchor, LEM, FDM, GSI, back analysis

  18. A finite element formulation with combined loadings for shear dominant RC structures.

    DOT National Transportation Integrated Search

    2008-08-01

    Inelastic failure of reinforced concrete (RC) structures under seismic loadings can be due either to loss of flexural, shear or bond : capacity. Specifically, the effect of combined loadings can lead to a complex failure mechanism that plays a vital ...

  19. Acoustic emission monitoring of low velocity impact damage in graphite/epoxy laminates during tensile loading

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.

    1992-01-01

    An acoustic emission (AE) system was set up in a linear location data acquisition mode to monitor the tensile loading of eight-ply quasi-isotropic graphite/epoxy specimens containing low velocity impact damage. The impact damage was induced using an instrumented drop weight tower. During impact, specimens were supported by either an aluminum plate or a membrane configuration. Cross-sectional examinations revealed that the aluminum plate configuration resulted in primarily matrix cracking and back surface fiber failure. The membrane support resulted in only matrix cracking and delamination damage. Penetrant enhanced radiography and immersion ultrasonics were used in order to assess the amount of impact damage in each tensile specimen. During tensile loading, AE reliably detected and located the damage sites which included fiber failure. All specimens with areas of fiber breakage ultimately failed at the impact site. AE did not reliably locate damage which consisted of only delaminations and matrix cracking. Specimens with this type of damage did not ultimately fail at the impact site. In summary, AE demonstrated the ability to increase the reliability of structural proof tests; however, the successful use of this technique requires extensive baseline testing.

  20. Options and limits of quantitative and qualitative online-monitoring of industrial discharges into municipal sewage systems.

    PubMed

    Hoppe, H; Messmann, S; Giga, A; Grüning, H

    2009-01-01

    In some cities, industrial enterprises' discharges into municipal sewage systems have a major impact on the quantity and quality of inflows to the municipal treatment plants. In many cases, industrial discharges stand out on account of the great fluctuations in their volumetric rates of flow, pollution loads and temperatures. As a result, these discharges put a great strain on the sewage system, the treatment plant, and ultimately the receiving waters. The enterprises concerned have to pay the treatment plant operators fees based on the load and/or volume discharged. In most cases, qualitative monitoring operations merely consist of spot checks. This means that continuously surveillance is not possible and infringements of the permissible limit values are only discovered by accident. If impermissible discharges are carried out that may be susceptible to causing a treatment plant failure, the rapid initiation of countermeasures is not possible. Hence, spectrometer probes and mobile flowmeters were used in order to determine volumetric rates of flow, COD concentrations, and ultimately the loads discharged. The possibilities for, and limits to, online monitoring as well as shortcomings of spot-checks are discussed in the course of this paper, which also includes an uncertainty analysis.

  1. Instabilities of Damage and Surface Degradation Mechanisms in Brittle Material Structural Systems

    DTIC Science & Technology

    1992-03-15

    I INTRODUCTION AND SCOPE 1.1 General Brittle materials such as rock and concrete contain a multitude of defects in the form of micro-voids and/or...micro-cracks even before any external load is applied. The term "structure" is associated with such defects . During a loading- unloading process, these...voids/cracks may undergo irreversible growth and new ones may nucleate. The ultimate coalescence of such defects may result in macro- crack initiation

  2. A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium–Sulfur Batteries

    DOE PAGES

    Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam

    2016-10-26

    Sulfur exhibits a high theoretical capacity of 1675 mA h g -1 via a distinct conversion reaction, which is different from the insertion reactions in commercial lithium-ion batteries. In consideration of its conversion reaction battery chemistry, a custom design for electrode materials could establish the way for attaining high-loading capability while simultaneously maintaining high electrochemical utilization and stability. In this study, this process is undertaken by introducing carbon cotton as an attractive electrode-containment material for enhancing the dynamic and static stabilities of lithium-sulfur (Li-S) batteries. The carbon cotton possessing a hierarchical macro-/microporous architecture exhibits a high surface area of 805more » m 2 g -1 and high microporosity with a micropore area of 557 m 2 g -1. The macroporous channels allow the carbon cotton to load and stabilize a high amount of active material. The abundant microporous reaction sites spread throughout the carbon cotton facilitate the redox chemistry of the high-loading/content Li-S system. As a result, the high-loading carbon-cotton cathode exhibits (i) enhanced cycle stability with a good dynamic capacity retention of 70% after 100 cycles and (ii) improved cellstorage stability with a high static capacity retention of above 93% and a low time-dependent self-discharge rate of 0.12% per day after storing for a long period of 60 days. In conclusion, these carbon-cotton cathodes with the remarkably highest values reported so far of both sulfur loading (61.4 mg cm -2) and sulfur content (80 wt %) demonstrate enhanced electrochemical utilization with the highest areal, volumetric, and gravimetric capacities simultaneously.« less

  3. A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium–Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam

    Sulfur exhibits a high theoretical capacity of 1675 mA h g -1 via a distinct conversion reaction, which is different from the insertion reactions in commercial lithium-ion batteries. In consideration of its conversion reaction battery chemistry, a custom design for electrode materials could establish the way for attaining high-loading capability while simultaneously maintaining high electrochemical utilization and stability. In this study, this process is undertaken by introducing carbon cotton as an attractive electrode-containment material for enhancing the dynamic and static stabilities of lithium-sulfur (Li-S) batteries. The carbon cotton possessing a hierarchical macro-/microporous architecture exhibits a high surface area of 805more » m 2 g -1 and high microporosity with a micropore area of 557 m 2 g -1. The macroporous channels allow the carbon cotton to load and stabilize a high amount of active material. The abundant microporous reaction sites spread throughout the carbon cotton facilitate the redox chemistry of the high-loading/content Li-S system. As a result, the high-loading carbon-cotton cathode exhibits (i) enhanced cycle stability with a good dynamic capacity retention of 70% after 100 cycles and (ii) improved cellstorage stability with a high static capacity retention of above 93% and a low time-dependent self-discharge rate of 0.12% per day after storing for a long period of 60 days. In conclusion, these carbon-cotton cathodes with the remarkably highest values reported so far of both sulfur loading (61.4 mg cm -2) and sulfur content (80 wt %) demonstrate enhanced electrochemical utilization with the highest areal, volumetric, and gravimetric capacities simultaneously.« less

  4. Full-Scale Test and Analysis Results of a PRSEUS Fuselage Panel to Assess Damage Containment Features

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew; Bakuckas, John G., Jr.; Lovejoy, Andrew; Jegley, Dawn; Linton, Kim; Neal, Bert; Korkosz, Gregory; Awerbuch, Jonathan; Tan, Tein-Min

    2012-01-01

    Integrally stitched composite technology is an area that shows promise in enhancing the structural integrity of aircraft and aerospace structures. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. The goal of the PRSEUS concept relevant to this test is to provide damage containment capability for composite structures while reducing overall structural weight. The National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), and The Boeing Company have partnered in an effort to assess the damage containment features of a full-scale curved PRSEUS panel using the FAA Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility. A single PRSEUS test panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure loads. The test results showed excellent performance of the PRSEUS concept. No growth of Barely Visible Impact Damage (BVID) was observed after ultimate loads were applied. With a two-bay notch severing the central stringer, damage was contained within the two-bay region well above the required limit load conditions. Catastrophic failure was well above the ultimate load level. Information describing the test panel and procedure has been previously presented, so this paper focuses on the experimental procedure, test results, nondestructive inspection results, and preliminary test and analysis correlation.

  5. The temporal evolution of electromagnetic markers sensitive to the capacity limits of visual short-term memory.

    PubMed

    Mitchell, Daniel J; Cusack, Rhodri

    2011-01-01

    An electroencephalographic (EEG) marker of the limited contents of human visual short-term memory (VSTM) has previously been described. Termed contralateral delay activity, this consists of a sustained, posterior, negative potential that correlates with memory load and is greatest contralateral to the remembered hemifield. The current investigation replicates this finding and uses magnetoencephalography (MEG) to characterize its magnetic counterparts and their neural generators as they evolve throughout the memory delay. A parametric manipulation of memory load, within and beyond capacity limits, allows separation of signals that asymptote with behavioral VSTM performance from additional responses that contribute to a linear increase with set-size. Both EEG and MEG yielded bilateral signals that track the number of objects held in memory, and contralateral signals that are independent of memory load. In MEG, unlike EEG, the contralateral interaction between hemisphere and item load is much weaker, suggesting that bilateral and contralateral markers of memory load reflect distinct sources to which EEG and MEG are differentially sensitive. Nonetheless, source estimation allowed both the bilateral and the weaker contralateral capacity-limited responses to be localized, along with a load-independent contralateral signal. Sources of global and hemisphere-specific signals all localized to the posterior intraparietal sulcus during the early delay. However the bilateral load response peaked earlier and its generators shifted later in the delay. Therefore the hemifield-specific response may be more closely tied to memory maintenance while the global load response may be involved in initial processing of a limited number of attended objects, such as their individuation or consolidation into memory.

  6. Forward Skirt Structural Testing on the Space Launch System (SLS) Program

    NASA Technical Reports Server (NTRS)

    Lohrer, J. D.; Wright, R. D.

    2016-01-01

    Structural testing was performed to evaluate heritage forward skirts from the Space Shuttle program for use on the Space Launch System (SLS) program. One forward skirt is located in each solid rocket booster. Heritage forward skirts are aluminum 2219 welded structures. Loads are applied at the forward skirt thrust post and ball assembly. Testing was needed because SLS ascent loads are roughly 40% higher than Space Shuttle loads. Testing objectives were to determine margins of safety, demonstrate reliability, and validate analytical models. Two forward skirts were structurally tested using the test configuration. The test stand applied loads to the thrust post. Four hydraulic actuators were used to apply axial load and two hydraulic actuators were used to apply radial and tangential loads. The first test was referred to as FSTA-1 (Forward Skirt Structural Test Article) and was performed in April/May 2014. The purpose of FSTA-1 was to verify the ultimate capability of the forward skirt subjected to ascent ultimate loads. Testing consisted of two liftoff load cases taken to 100% limit load followed by an ascent load case taken to 110% limit load. The forward skirt was unloaded to no load after each test case. Lastly, the forward skirt was tested to 140% limit and then to failure using the ascent loads. The second test was referred to as FSTA-2 and performed in July/August of 2014. The purpose of FSTA-2 was to verify the ultimate capability of the forward skirt subjected to liftoff ultimate loads. Testing consisted of six liftoff load cases taken to 100% limit load followed by the six liftoff cases taken to 140% limit load. Two ascent load cases were then tested to 100% limit load. The forward skirt was unloaded to no load after each test case. Lastly, the forward skirt was tested to 140% limit and then to failure using the ascent loads. The forward skirts on FSTA-1 and FSTA-2 successfully carried all applied liftoff and ascent load cases. Both FSTA-1 and FSTA-2 were tested to failure by increasing the ascent loads. Failure occurred in the forward skirt thrust post radius. The forward skirts on FSTA-1 and FSTA-2 had nearly identical failure modes. FSTA-1 failed at 1.72 times limit load and FSTA-2 failed at 1.62 times limit load. This difference is primarily attributed to variation in material properties in the thrust post region. Test data were obtained from strain gages, deflection gages, ARAMIS digital strain measurement, acoustic emissions, and high-speed video. Strain gage data and ARAMIS strain were compared to finite element (FE) analysis predictions. Both the forward skirt and tooling were modeled. This allows the analysis to simulate the loading as close as possible to actual test configuration. FSTA-1 and FSTA-2 were instrumented with over 200 strain gages to ensure all possible failure modes could be captured. However, it turned out that three gages provided critical strain data. One was located in the post bore and two on the post radius. More gages were not specified due to space limitations and the desire to not interfere with the use of the ARAMIS system on the post radius. Measured strains were compared to analysis results for the load cycle to failure. Note that FSTA-1 gages were lost before failure was reached. FSTA-2 gages made it to the failure load but one of the radius gages was lost before testing began. This gage was not replaced because of the time and cost associated with disassembly of the test structure. Correlation to analysis was excellent for FSTA-1. FSTA-2 was not quite as good because there was more residual strain from previous load cycles. FSTA-2 was loaded and unloaded with 12 liftoff cases and two ascent cases before taking the skirt to failure. FSTA-1 only had two liftoff cases and one ascent case before taking the skirt to failure. The ARAMIS system was used to determine strain at the post radius by processing digital images of a speckled paint pattern. Digital cameras recorded images of the speckled paint pattern. ARAMIS strain results for FSTA-2 just prior to failure. Note a high strain location develops near the left side. This high strain compares well to analysis prediction for both FSTA-1 and FSTA-2. The strain at this location was also plotted versus limit load. Both FSTA-1 and FSTA-2 had excellent correlation between ARAMIS and analysis strains. Acoustic emission (AE) sensors were used to monitor for damage formation that may occur during testing (e.g., crack formation and growth or propagation). AE was very important because after disassembly of FSTA-1, a crack was observed in the ball fitting radius. The ball fitting did not crack on FSTA-2. AE data was used to reconstruct when the crack occurred. The AE energy versus time plot for FSTA. The energy increased considerably at 850 seconds (152% limit load), indicating a crack could have formed at this point. The only visual evidence found that could have corresponded to this was the crack that initiated in the ball fitting. The cracks in the forward skirt aluminum structures would likely have been lower energy due to a lower modulus and all that were found after failure correlated to occurring after the initial crack in the post radius. This was verified by high-speed cameras used to record the failure.

  7. Relation between aerobic capacity and walking ability in older adults with a lower-limb amputation.

    PubMed

    Wezenberg, Daphne; van der Woude, Lucas H; Faber, Willemijn X; de Haan, Arnold; Houdijk, Han

    2013-09-01

    To determine the relative aerobic load, walking speed, and walking economy of older adults with a lower-limb prosthesis, and to predict the effect of an increased aerobic capacity on their walking ability. Cross-sectional. Human motion laboratory at a rehabilitation center. Convenience sample of older adults (n=36) who underwent lower-limb amputation because of vascular deficiency or trauma and able-bodied controls (n=21). Not applicable. Peak aerobic capacity and oxygen consumption while walking were determined. The relative aerobic load and walking economy were assessed as a function of walking speed, and a data-based model was constructed to predict the effect of an increased aerobic capacity on walking ability. People with a vascular amputation walked at a substantially higher (45.2%) relative aerobic load than people with an amputation because of trauma. The preferred walking speed in both groups of amputees was slower than that of able-bodied controls and below their most economical walking speed. We predicted that a 10% increase in peak aerobic capacity could potentially result in a reduction in the relative aerobic load of 9.1%, an increase in walking speed of 17.3% and 13.9%, and an improvement in the walking economy of 6.8% and 2.9%, for people after a vascular or traumatic amputation, respectively. Current findings corroborate the notion that, especially in people with a vascular amputation, the peak aerobic capacity is an important determinant for walking ability. The data provide quantitative predictions on the effect of aerobic training; however, future research is needed to experimentally confirm these predictions. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Moving in extreme environments: extreme loading; carriage versus distance.

    PubMed

    Lucas, Samuel J E; Helge, Jørn W; Schütz, Uwe H W; Goldman, Ralph F; Cotter, James D

    2016-01-01

    This review addresses human capacity for movement in the context of extreme loading and with it the combined effects of metabolic, biomechanical and gravitational stress on the human body. This topic encompasses extreme duration, as occurs in ultra-endurance competitions (e.g. adventure racing and transcontinental races) and expeditions (e.g. polar crossings), to the more gravitationally limited load carriage (e.g. in the military context). Juxtaposed to these circumstances is the extreme metabolic and mechanical unloading associated with space travel, prolonged bedrest and sedentary lifestyle, which may be at least as problematic, and are therefore included as a reference, e.g. when considering exposure, dangers and (mal)adaptations. As per the other reviews in this series, we describe the nature of the stress and the associated consequences; illustrate relevant regulations, including why and how they are set; present the pros and cons for self versus prescribed acute and chronic exposure; describe humans' (mal)adaptations; and finally suggest future directions for practice and research. In summary, we describe adaptation patterns that are often U or J shaped and that over time minimal or no load carriage decreases the global load carrying capacity and eventually leads to severe adverse effects and manifest disease under minimal absolute but high relative loads. We advocate that further understanding of load carrying capacity and the inherent mechanisms leading to adverse effects may advantageously be studied in this perspective. With improved access to insightful and portable technologies, there are some exciting possibilities to explore these questions in this context.

  9. Bayesian Modeling of the Assimilative Capacity Component of Stream Nutrient Export

    EPA Science Inventory

    Implementing stream restoration techniques and best management practices to reduce nonpoint source nutrients implies enhancement of the assimilative capacity for the stream system. In this paper, a Bayesian method for evaluating this component of a TMDL load capacity is developed...

  10. Biomechanical Comparison of Standard and Linked Single-Row Rotator Cuff Repairs in a Human Cadaver Model.

    PubMed

    Meisel, Adam F; Henninger, Heath B; Barber, F Alan; Getelman, Mark H

    2017-05-01

    The purpose of this study was to evaluate the time zero cyclic and failure loading properties of a linked single-row rotator cuff repair compared with a standard simple suture single-row repair using triple-loaded suture anchors. Eighteen human cadaveric shoulders from 9 matched pairs were dissected, and full-thickness supraspinatus tears were created. The tendon cross-sectional area was recorded. In each pair, one side was repaired with a linked single-row construct and the other with a simple suture single-row construct, both using 2 triple-loaded suture anchors. After preloading, specimens were cycled to 1 MPa of effective stress at 1 Hz for 500 cycles, and gap formation was recorded with a digital video system. Samples were then loaded to failure, and modes of failure were recorded. There was no statistical difference in peak gap formation between the control and linked constructs (3.6 ± 0.9 mm and 3.6 ± 1.2 mm, respectively; P = .697). Both constructs averaged below a 5-mm cyclic failure threshold. There was no statistical difference in ultimate load to failure between the control and linked repair (511.1 ± 139.0 N and 561.2 ± 131.8 N, respectively; P = .164), and both groups reached failure at loads similar to previous studies. Constructs failed predominantly via tissue tearing parallel to the medial suture line. The linked repair performed similarly to the simple single-row repair. Both constructs demonstrated high ultimate load to failure and good resistance to gap formation with cyclic loading, validating the time zero strength of both constructs in a human cadaveric model. The linked repair provided equivalent resistance to gap formation and failure loads compared with simple suture single-row repairs with triple-loaded suture anchors. This suggests that the linked repair is a simplified rip-stop configuration using the existing suture that may perform similarly to current rotator cuff repair techniques. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. Spatial working memory load affects counting but not subitizing in enumeration.

    PubMed

    Shimomura, Tomonari; Kumada, Takatsune

    2011-08-01

    The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.

  12. Integrity of Bolted Angle Connections Subjected to Simulated Column Removal

    PubMed Central

    Weigand, Jonathan M.; Berman, Jeffrey W.

    2016-01-01

    Large-scale tests of steel gravity framing systems (SGFSs) have shown that the connections are critical to the system integrity, when a column suffers damage that compromises its ability to carry gravity loads. When supporting columns were removed, the SGFSs redistributed gravity loads through the development of an alternate load path in a sustained tensile configuration resulting from large vertical deflections. The ability of the system to sustain such an alternate load path depends on the capacity of the gravity connections to remain intact after undergoing large rotation and axial extension demands, for which they were not designed. This study experimentally evaluates the performance of steel bolted angle connections subjected to loading consistent with an interior column removal. The characteristic connection behaviors are described and the performance of multiple connection configurations are compared in terms of their peak resistances and deformation capacities. PMID:27110059

  13. The National Aeronautics and Space Administration's Gilmore Load Cell Machine: Load Cell Calibrations to 2.22 x 10(exp 7) Newtons

    NASA Technical Reports Server (NTRS)

    Haynes, Michael W.

    2000-01-01

    Designed in 1964 and erected in 1966, the mission of the Gilmore Load Cell Machine was to provide highly accurate calibrations for large capacity load cells in support of NASA's Apollo Program. Still in use today, the Gilmore Machine is a national treasure with no equal.

  14. Decreasing Cognitive Load for Learners: Strategy of Web-Based Foreign Language Learning

    ERIC Educational Resources Information Center

    Zhang, Jianfeng

    2013-01-01

    Cognitive load is one of the important factors that influence the effectiveness and efficiency of web-based foreign language learning. Cognitive load theory assumes that human's cognitive capacity in working memory is limited and if it overloads, learning will be hampered, so that high level of cognitive load can affect the performance of learning…

  15. Model-centric distribution automation: Capacity, reliability, and efficiency

    DOE PAGES

    Onen, Ahmet; Jung, Jaesung; Dilek, Murat; ...

    2016-02-26

    A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less

  16. Model-centric distribution automation: Capacity, reliability, and efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onen, Ahmet; Jung, Jaesung; Dilek, Murat

    A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less

  17. A tracked robot with novel bio-inspired passive "legs".

    PubMed

    Sun, Bo; Jing, Xingjian

    2017-01-01

    For track-based robots, an important aspect is the suppression design, which determines the trafficability and comfort of the whole system. The trafficability limits the robot's working capability, and the riding comfort limits the robot's working effectiveness, especially with some sensitive instruments mounted on or operated. To these aims, a track-based robot equipped with a novel passive bio-inspired suspension is designed and studied systematically in this paper. Animal or insects have very special leg or limb structures which are good for motion control and adaptable to different environments. Inspired by this, a new track-based robot is designed with novel "legs" for connecting the loading wheels to the robot body. Each leg is designed with passive structures and can achieve very high loading capacity but low dynamic stiffness such that the robot can move on rough ground similar to a multi-leg animal or insect. Therefore, the trafficability and riding comfort can be significantly improved without losing loading capacity. The new track-based robot can be well applied to various engineering tasks for providing a stable moving platform of high mobility, better trafficability and excellent loading capacity.

  18. Vertical load capacities of roof truss cross members.

    PubMed

    Gearhart, David F; Morsy, Mohamed Khaled

    2016-05-01

    Trusses used for roof support in coal mines are constructed of two grouted bolts installed at opposing forty-five degree angles into the roof and a cross member that ties the angled bolts together. The load on the cross member is vertical, which is transverse to the longitudinal axis, and therefore the cross member is loaded in the weakest direction. Laboratory tests were conducted to determine the vertical load capacity and deflection of three different types of cross members. Single-point load tests, with the load applied in the center of the specimen and double-point load tests, with a span of 2.4 m, were conducted. For the single-point load configuration, the yield of the 25 mm solid bar cross member was nominally 98 kN of vertical load, achieved at 42 cm of deflection. For cable cross members, yield was not achieved even after 45 cm of deflection. Peak vertical loads were about 89 kN for 17 mm cables and 67 kN for the 15 mm cables. For the double-point load configurations, the 25 mm solid bar cross members yielded at 150 kN of vertical load and 25 cm of deflection. At 25 cm of deflection individual cable strands started breaking at 133 and 111 kN of vertical load for the 17 and 15 mm cable cross members respectively.

  19. Morphology effect of nano-hydroxyapatite as a drug carrier of methotrexate.

    PubMed

    Sun, Haina; Liu, Shanshan; Zeng, Xiongfeng; Meng, Xianguang; Zhao, Lina; Wan, Yizao; Zuo, Guifu

    2017-09-13

    In this study, morphology effect of nano-hydroxyapatite as a drug carrier was investigated for the first time. Hydroxyapatite/methotrexate (HAp/MTX) hybrids with different morphologies were successfully prepared in situ using polyethylene glycol (PEG) as a template. SEM, TEM, XRD and FTIR results confirmed that the hybrids of different morphologies (laminated, rod-like and spherical) with similar phase composition and functional groups were obtained by changing the preparation parameters. UV-Vis spectroscopy was used to identify the drug loading capacity and drug release mechanism of the three hybrids with different morphologies. It is concluded that the laminated hybrid exhibits a higher drug loading capacity compared to the other two hybrids, and all the three hybrids showed a sustained slow release which were fitted well by Bhaskar equation. Additionally, the result of in vitro bioassay test confirms that the inhibition efficacy of the three hybrids showed a positive correlation to the drug loading capacity.

  20. Optimization Research on Ampacity of Underground High Voltage Cable Based on Interior Point Method

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Li, Jing

    2017-12-01

    The conservative operation method which takes unified current-carrying capacity as maximum load current can’t make full use of the overall power transmission capacity of the cable. It’s not the optimal operation state for the cable cluster. In order to improve the transmission capacity of underground cables in cluster, this paper regards the maximum overall load current as the objective function and the temperature of any cables lower than maximum permissible temperature as constraint condition. The interior point method which is very effective for nonlinear problem is put forward to solve the extreme value of the problem and determine the optimal operating current of each loop. The results show that the optimal solutions obtained with the purposed method is able to increase the total load current about 5%. It greatly improves the economic performance of the cable cluster.

  1. Synergistic Combinations of Multiple Chemotherapeutic Agents in High Capacity Poly(2-oxazoline) Micelles

    PubMed Central

    Han, Yingchao; He, Zhijian; Schulz, Anita; Bronich, Tatiana K.; Jordan, Rainer; Luxenhofer, Robert; Kabanov, Alexander V.

    2012-01-01

    Many effective drugs for cancer treatment are poorly water-soluble. In combination chemotherapy, needed excipients in additive formulations are often toxic and restrict their applications in clinical intervention. Here, we report on amphiphilic poly(2-oxazoline)s (POx) micelles as a promising high capacity delivery platform for multi-drug cancer chemotherapy. A variety of binary and ternary drugs combinations of paclitaxel (PTX), docetaxel (DTX), 17-allylamino-17-demethoxygeldanamycin (17-AAG), etoposide (ETO) and bortezomib (BTZ) were solubilized in defined polymeric micelles achieving unprecedented high total loading capacities of up to 50 wt.% drug per final formulation. Multi-drug loaded POx micelles showed enhanced stability in comparison to single-drug loaded micelles. Drug ratio dependent synergistic cytotoxicity of micellar ETO/17-AAG was observed in MCF-7 cancer cells and of micellar BTZ/17-AAG in MCF-7, PC3, MDA-MB-231 and HepG2 cells. PMID:22681126

  2. Management of marine cage aquaculture. Environmental carrying capacity method based on dry feed conversion rate.

    PubMed

    Cai, Huiwen; Sun, Yinglan

    2007-11-01

    Marine cage aquaculture produces a large amount of waste that is released directly into the environment. To effectively manage the mariculture environment, it is important to determine the carrying capacity of an aquaculture area. In many Asian countries trash fish is dominantly used in marine cage aquaculture, which contains more water than pellet feed. The traditional nutrient loading analysis is for pellet feed not for trash fish feed. So, a more critical analysis is necessary in trash fish feed culturing areas. Corresponding to FCR (feed conversion rate), dry feed conversion rate (DFCR) was used to analyze the nutrient loadings from marine cage aquaculture where trash fish is used. Based on the hydrodynamic model and the mass transport model in Xiangshan Harbor, the relationship between the water quality and the waste discharged from cage aquaculture has been determined. The environmental carrying capacity of the aquaculture sea area was calculated by applying the models noted above. Nitrogen and phosphorus are the water quality parameters considered in this study. The simulated results show that the maximum nitrogen and phosphorus concentrations were 0.216 mg/L and 0.039 mg/L, respectively. In most of the sea area, the nutrient concentrations were higher than the water quality standard. The calculated environmental carrying capacity of nitrogen and phosphorus in Xiangshan Harbor were 1,107.37 t/yr and 134.35 t/yr, respectively. The waste generated from cage culturing in 2000 has already exceeded the environmental carrying capacity. Unconsumed feed has been identified as the most important origin of all pollutants in cage culturing systems. It suggests the importance of increasing the feed utilization and improving the feed composition on the basis of nutrient requirement. For the sustainable development of the aquaculture industry, it is an effective management measure to keep the stocking density and pollution loadings below the environmental carrying capacity. The DFCR-based nutrient loadings analysis indicates, in trash fish feed culturing areas, that it is more critical and has been proved to be a valuable loading calculation method. The modeling approach for Xiangshan Harbor presented in this paper is a cost-effective method for assessing the environmental impact and determining the capacity. Carrying capacity information can give scientific suggestions for the sustainable management of aquaculture environments. It has been proved that numerical models were convenient tools to predict the environmental carrying capacity. The development of models coupled with dynamic and aquaculture ecology is a requirement of further research. Such models can also be useful in monitoring the ecological impacts caused by mariculture activities.

  3. Estimating design flood and HEC-RAS modelling approach for flood analysis in Bojonegoro city

    NASA Astrophysics Data System (ADS)

    Prastica, R. M. S.; Maitri, C.; Hermawan, A.; Nugroho, P. C.; Sutjiningsih, D.; Anggraheni, E.

    2018-03-01

    Bojonegoro faces flood every year with less advanced prevention development. Bojonegoro city development could not peak because the flood results material losses. It affects every sectors in Bojonegoro: education, politics, economy, social, and infrastructure development. This research aims to analyse and to ensure that river capacity has high probability to be the main factor of flood in Bojonegoro. Flood discharge analysis uses Nakayasu synthetic unit hydrograph for period of 5 years, 10 years, 25 years, 50 years, and 100 years. They would be compared to the water maximum capacity that could be loaded by downstream part of Bengawan Solo River in Bojonegoro. According to analysis result, Bengawan Solo River in Bojonegoro could not able to load flood discharges. Another method used is HEC-RAS analysis. The conclusion that shown by HEC-RAS analysis has the same view. It could be observed that flood water loading is more than full bank capacity elevation in the river. To conclude, the main factor that should be noticed by government to solve flood problem is river capacity.

  4. Aggregate Effect on the Concrete Cone Capacity of an Undercut Anchor under Quasi-Static Tensile Load

    PubMed Central

    Marcon, Marco; Ninčević, Krešimir; Boumakis, Ioannis; Czernuschka, Lisa-Marie

    2018-01-01

    In the last decades, fastening systems have become an essential part of the construction industry. Post-installed mechanical anchors are frequently used in concrete members to connect them with other load bearing structural members, or to attach appliances. Their performance is limited by the concrete related failure modes which are highly influenced by the concrete mix design. This paper aims at investigating the effect that different aggregates used in the concrete mix have on the capacity of an undercut anchor under tensile quasi-static loading. Three concrete batches were cast utilising three different aggregate types. For two concrete ages (28 and 70 days), anchor tensile capacity and concrete properties were obtained. Concrete compressive strength, fracture energy and elastic modulus are used to normalize and compare the undercut anchor concrete tensile capacity employing some of the most widely used prediction models. For a more insightful comparison, a statistical method that yields also scatter information is introduced. Finally, the height and shape of the concrete cones are compared by highly precise and objective photogrammetric means. PMID:29723972

  5. Aggregate Effect on the Concrete Cone Capacity of an Undercut Anchor under Quasi-Static Tensile Load.

    PubMed

    Marcon, Marco; Ninčević, Krešimir; Boumakis, Ioannis; Czernuschka, Lisa-Marie; Wan-Wendner, Roman

    2018-05-01

    In the last decades, fastening systems have become an essential part of the construction industry. Post-installed mechanical anchors are frequently used in concrete members to connect them with other load bearing structural members, or to attach appliances. Their performance is limited by the concrete related failure modes which are highly influenced by the concrete mix design. This paper aims at investigating the effect that different aggregates used in the concrete mix have on the capacity of an undercut anchor under tensile quasi-static loading. Three concrete batches were cast utilising three different aggregate types. For two concrete ages (28 and 70 days), anchor tensile capacity and concrete properties were obtained. Concrete compressive strength, fracture energy and elastic modulus are used to normalize and compare the undercut anchor concrete tensile capacity employing some of the most widely used prediction models. For a more insightful comparison, a statistical method that yields also scatter information is introduced. Finally, the height and shape of the concrete cones are compared by highly precise and objective photogrammetric means.

  6. Adding concentrated solar power plants to wind farms to achieve a good utility electrical load match

    USDA-ARS?s Scientific Manuscript database

    Texas has the greatest installed wind turbine capacity of any state in the United States, the percentage of wind capacity approaches 10% of the utilities capacity (in 2010 the total wind generated capacity in Texas was 8%). It is becomimg increasingly difficult for the utility to balance the elec...

  7. Use of pile driving analysis for assessment of axial load capacity of piles.

    DOT National Transportation Integrated Search

    2012-05-01

    Driven piles are commonly used in foundation engineering. Pile driving formulae, which directly relate the pile set per blow : to the capacity of the pile, are commonly used to decide whether an installed pile will have the designed capacity. However...

  8. Use of Pile Driving Analysis for Assessment of Axial Load Capacity of Piles

    DOT National Transportation Integrated Search

    2012-05-01

    Driven piles are commonly used in foundation engineering. Pile driving formulae, which directly relate the pile set per blow : to the capacity of the pile, are commonly used to decide whether an installed pile will have the designed capacity. However...

  9. Co-precipitation of asiatic acid and poly( l-lactide) using rapid expansion of subcritical solutions into liquid solvents

    NASA Astrophysics Data System (ADS)

    Sane, Amporn; Limtrakul, Jumras

    2011-09-01

    Poly( l-lactide) (PLLA) nanoparticles loaded with asiatic acid (AA) were successfully produced by rapid expansion of a subcritical solution into an aqueous receiving solution containing a dispersing agent. A mixture of carbon dioxide (CO2) and ethanol (EtOH) with a weight ratio of 1:1 was used as the solvent for AA and PLLA. Two surfactants, Pluronic F127 and sodium dodecyl sulfate were employed. The former was found to be more effective for stabilizing AA-loaded PLLA nanoparticles, as a rapid expansion into a 0.1 wt% Pluronic F127 solution produced a stable nanosuspension consisting mainly of well-dispersed, individual nanoparticles. The effects of rapid expansion-processing conditions—AA to PLLA weight ratio and pre-expansion temperature (Tpre)—on the size and morphology of composite nanoparticles, and the loading capacity and entrapment efficiency of AA in PLLA nanoparticles, were systematically investigated. It was found that AA-loaded PLLA nanoparticles with a size range of 30-100 nm were consistently fabricated by rapid expansion at Tpre of 70-100 °C and AA to PLLA weight ratios of 1:2 and 1:4, and with a constant pre-expansion pressure of 330 bar. The Tpre and AA to PLLA weight ratio had no significant effects on the size of the nanoparticles. The AA to PLLA weight ratio is a controlling parameter for both the loading capacity and the entrapment efficiency of AA in PLLA nanoparticles. The loading capacity and entrapment efficiency increased from 8-11 to 16-21 wt%, and 38-57 to 50-62 wt%, respectively, when the AA to PLLA weight ratio changed from 1:4 to 1:2. However, increasing the Tpre from 70 to 100 °C decreased both the loading capacity and entrapment efficiency of AA in PLLA nanoparticles by 20-30%.

  10. Design and fabrication of graphite-epoxy bolted wing skin splice specimens

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Mccarty, J. E.

    1977-01-01

    Graphite-epoxy bolted joint specimens were designed and fabricated. These specimens were to be representative of a side-of-body wing skin splice with a 20-year life expectancy in a commercial transport environment. Preliminary tests were performed to determine design values of bearing and net tension stresses. Based upon the information developed, a three-fastener-wide representative wing skin splice was designed for a load of 2627 KN/m (15,000 lbf/in.). One joint specimen was fabricated and tested at NASA. The wing skin splice failed at 106 percent of design ultimate load. This joint design achieved all static load objectives. Fabrication of six specimens, together with their loading fixtures, was completed, and the specimens were delivered to NASA-LRC.

  11. Storage peak gas-turbine power unit

    NASA Technical Reports Server (NTRS)

    Tsinkotski, B.

    1980-01-01

    A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.

  12. 8760-Based Method for Representing Variable Generation Capacity Value in Capacity Expansion Models: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frew, Bethany A; Cole, Wesley J; Sun, Yinong

    Capacity expansion models (CEMs) are widely used to evaluate the least-cost portfolio of electricity generators, transmission, and storage needed to reliably serve demand over the evolution of many years or decades. Various CEM formulations are used to evaluate systems ranging in scale from states or utility service territories to national or multi-national systems. CEMs can be computationally complex, and to achieve acceptable solve times, key parameters are often estimated using simplified methods. In this paper, we focus on two of these key parameters associated with the integration of variable generation (VG) resources: capacity value and curtailment. We first discuss commonmore » modeling simplifications used in CEMs to estimate capacity value and curtailment, many of which are based on a representative subset of hours that can miss important tail events or which require assumptions about the load and resource distributions that may not match actual distributions. We then present an alternate approach that captures key elements of chronological operation over all hours of the year without the computationally intensive economic dispatch optimization typically employed within more detailed operational models. The updated methodology characterizes the (1) contribution of VG to system capacity during high load and net load hours, (2) the curtailment level of VG, and (3) the potential reductions in curtailments enabled through deployment of storage and more flexible operation of select thermal generators. We apply this alternate methodology to an existing CEM, the Regional Energy Deployment System (ReEDS). Results demonstrate that this alternate approach provides more accurate estimates of capacity value and curtailments by explicitly capturing system interactions across all hours of the year. This approach could be applied more broadly to CEMs at many different scales where hourly resource and load data is available, greatly improving the representation of challenges associate with integration of variable generation resources.« less

  13. Field validation of polyurethane technology in remediating rail substructure and enhancing rail freight capacity.

    DOT National Transportation Integrated Search

    2016-10-01

    Railways are an important component of a multi-modal freight transport network. The structural integrity of rail substructure and problematic railway elements can be compromised leading to track instability and ultimately, train derailments. Because ...

  14. The Load-Bearing Capacity of Timber-Glass Composite I-Beams Made with Polyurethane Adhesives

    NASA Astrophysics Data System (ADS)

    Rodacki, Konrad

    2017-12-01

    This article discusses the issue of composite timber-glass I-beams, which are an interesting alternative for load-bearing beams of ceilings and roofs. The reasoning behind the use of timber-glass I-beams is the combination of the best features of both materials - this enables the creation of particularly safe beams with regard to structural stability and post-breakage load capacity. Due to the significant differences between the bonding surfaces of timber and glass, a study on the adhesion of various adhesives to both surfaces is presented at the beginning of the paper. After examination, two adhesives were selected for offering the best performance when used with composite beams. The beams were investigated using a four-point bending test under quasi-static loading.

  15. Development and validation of a canine radius replica for mechanical testing of orthopedic implants.

    PubMed

    Little, Jeffrey P; Horn, Timothy J; Marcellin-Little, Denis J; Harrysson, Ola L A; West, Harvey A

    2012-01-01

    To design and fabricate fiberglass-reinforced composite (FRC) replicas of a canine radius and compare their mechanical properties with those of radii from dog cadavers. Replicas based on 3 FRC formulations with 33%, 50%, or 60% short-length discontinuous fiberglass by weight (7 replicas/group) and 5 radii from large (> 30-kg) dog cadavers. Bones and FRC replicas underwent nondestructive mechanical testing including 4-point bending, axial loading, and torsion and destructive testing to failure during 4-point bending. Axial, internal and external torsional, and bending stiffnesses were calculated. Axial pullout loads for bone screws placed in the replicas and cadaveric radii were also assessed. Axial, internal and external torsional, and 4-point bending stiffnesses of FRC replicas increased significantly with increasing fiberglass content. The 4-point bending stiffness of 33% and 50% FRC replicas and axial and internal torsional stiffnesses of 33% FRC replicas were equivalent to the cadaveric bone stiffnesses. Ultimate 4-point bending loads did not differ significantly between FRC replicas and bones. Ultimate screw pullout loads did not differ significantly between 33% or 50% FRC replicas and bones. Mechanical property variability (coefficient of variation) of cadaveric radii was approximately 2 to 19 times that of FRC replicas, depending on loading protocols. Within the range of properties tested, FRC replicas had mechanical properties equivalent to and mechanical property variability less than those of radii from dog cadavers. Results indicated that FRC replicas may be a useful alternative to cadaveric bones for biomechanical testing of canine bone constructs.

  16. Simultaneous trapping of rubidium-85 and rubidium-87 in a far off resonant trap

    NASA Astrophysics Data System (ADS)

    Gorges, Anthony R.

    The experiments described in this thesis were focused on the physics of simultaneous trapping of 85Rb and 87 Rb into a Far Off Resonant Trap (FORT), with a view towards the implementation of a nonevaporative cooling scheme. Atoms were first trapped in a Magneto Optical Trap (MOT) and from there loaded into the FORT. We investigated the effects of loading the FORT from a MOT vs. an optical molasses; observing that the molasses significantly improved the trapped atom number. The ultimate number of atoms trapped is determined by a balance between efficient laser cooling into the FORT and light-assisted collisional losses from the FORT. We have studied and measured the loss rates associated with light-assisted collisions for our FORT, measuring both heteronuclear and homonuclear collisions. It was discovered that induced long range dipole-dipole interactions between 85Rb and 87Rb have a significant impact on FORT loading. This interaction interferes with the loading into the trap and thus limits the number of atoms which can be trapped in the FORT under simultaneous load conditions. Despite this limitation, all required experimental parameters for our future measurements have been met. In addition to these FORT studies, we have found a technique which can successfully mitigate the effects of reabsorption in optically thick clouds, which is a limitation to the ultimate temperature an atom cloud will reach during light-based cooling. Planned future measurements for this project include the creation of a variable aspect ratio FORT; along with investigating collision assisted Zeeman cooling.

  17. Continuum modeling of neuronal cell under blast loading

    PubMed Central

    Jérusalem, Antoine; Dao, Ming

    2012-01-01

    Traumatic brain injuries have recently been put under the spotlight as one of the most important causes of accidental brain dysfunctions. Significant experimental and modeling efforts are thus ongoing to study the associated biological, mechanical and physical mechanisms. In the field of cell mechanics, progresses are also being made at the experimental and modeling levels to better characterize many of the cell functions such as differentiation, growth, migration and death, among others. The work presented here aims at bridging both efforts by proposing a continuum model of neuronal cell submitted to blast loading. In this approach, cytoplasm, nucleus and membrane (plus cortex) are differentiated in a representative cell geometry, and different material constitutive models are adequately chosen for each one. The material parameters are calibrated against published experimental work of cell nanoindentation at multiple rates. The final cell model is ultimately subjected to blast loading within a complete fluid-structure interaction computational framework. The results are compared to the nanoindentation simulation and the specific effects of the blast wave on the pressure and shear levels at the interfaces are identified. As a conclusion, the presented model successfully captures some of the intrinsic intracellular phenomena occurring during its deformation under blast loading and potentially leading to cell damage. It suggests more particularly the localization of damage at the nucleus membrane similarly to what has already been observed at the overall cell membrane. This degree of damage is additionally predicted to be worsened by a longer blast positive phase duration. As a conclusion, the proposed model ultimately provides a new three dimensional computational tool to evaluate intracellular damage during blast loading. PMID:22562014

  18. Multimodal nanoporous silica nanoparticles functionalized with aminopropyl groups for improving loading and controlled release of doxorubicin hydrochloride.

    PubMed

    Wang, Xin; Li, Chang; Fan, Na; Li, Jing; He, Zhonggui; Sun, Jin

    2017-09-01

    The purpose of this study was to develop amino modified multimodal nanoporous silica nanoparticles (M-NSNs-NH 2 ) loaded with doxorubicin hydrochloride (DOX), intended to enhance the drug loading capacity and to achieve controlled release effect. M-NSNs were functionalized with aminopropyl groups through post-synthesis. The contribution of large pore sizes and surface chemical groups on DOX loading and release were systemically studied using transmission electron microscope (TEM), nitrogen adsorption/desorption measurement, Fourier transform infrared spectroscopy (FTIR), zeta potential analysis, X-ray photoelectron spectroscopy (XPS) and ultraviolet spectrophotometer (UV). The results demonstrated that the NSNs were functionalized with aminopropyl successfully and the DOX molecules were adsorbed inside the nanopores by the hydrogen bonding. The release performance indicated that DOX loaded M-NSNs significantly controlled DOX release, furthermore DOX loaded M-NSNs-NH 2 performed slower controlled release, which was mainly attributed to its stronger hydrogen bonding forces. As expected, we developed a novel carrier with high drug loading capacity and controlled release for DOX. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Preparation and Optimization OF Palm-Based Lipid Nanoparticles Loaded with Griseofulvin.

    PubMed

    Huei Lim, Wen; Jean Tan, Yann; Sin Lee, Choy; Meng Er, Hui; Fung Wong, Shew

    2017-01-01

    Palm-based lipid nanoparticle formulation loaded with griseofulvin was prepared by solvent-free hot homogenization method. The griseofulvin loaded lipid nanoparticles were prepared via stages of optimisation, by altering the high pressure homogenisation (HPH) parameters, screening on palm-based lipids and Tween series surfactants and selection of lipid to surfactant ratios. A HPLC method has been validated for the drug loading capacity study. The optimum HPH parameter was determined to be 1500 bar with 5 cycles and among the palm-based lipid materials; Lipid C (triglycerides) was selected for the preparation of lipid nanoparticles. Tween 80 was chosen from the Tween series surfactants for its highest saturated solubility of griseofulvin at 53.1 ± 2.16 µg/mL. The optimum formulation of the griseofulvin loaded lipid nanoparticles demonstrated nano-range of particle size (179.8 nm) with intermediate distribution index (PDI) of 0.306, zeta potential of -27.9 mV and drug loading of 0.77%. The formulation was stable upon storage for 1 month at room temperature (25 ° C) and 45 ° C with consistent drug loading capacity.

  20. Application of self-balanced loading test to socketed pile in weak rock

    NASA Astrophysics Data System (ADS)

    Cheng, Ye; Gong, Weiming; Dai, Guoliang; Wu, JingKun

    2008-11-01

    Method of self-balanced loading test differs from the traditional methods of pile test. The key equipment of the test is a cell. The cell specially designed is used to exert load which is placed in pile body. During the test, displacement values of the top plate and the bottom plate of the cell are recorded according to every level of load. So Q-S curves can be obtained. In terms of test results, the bearing capacity of pile can be judged. Equipments of the test are simply and cost of it is low. Under some special conditions, the method will take a great advantage. In Guangxi Province, tertiary mudstone distributes widely which is typical weak rock. It is usually chosen as the bearing stratum of pile foundation. In order to make full use of its high bearing capacity, pile is generally designed as belled pile. Foundations of two high-rise buildings which are close to each other are made up of belled socketed piles in weak rock. To obtain the bearing capacity of the belled socketed pile in weak rock, loading test in situ should be taken since it is not reasonable that experimental compression strength of the mudstone is used for design. The self-balanced loading test was applied to eight piles of two buildings. To get the best test effect, the assembly of cell should be taken different modes in terms of the depth that pile socketed in rock and the dimension of the enlarged toe. The assembly of cells had been taken three modes, and tests were carried on successfully. By the self-balanced loading test, the large bearing capacities of belled socketed piles were obtained. Several key parameters required in design were achieved from the tests. For the data of tests had been analyzed, the bearing performance of pile tip, pile side and whole pile was revealed. It is further realized that the bearing capacity of belled socketed pile in the mudstone will decrease after the mudstone it socketed in has been immerged. Among kinds of mineral ingredient in the mudstone, montmorillonite is much. And in the size composition, content of cosmid is high. For specific surface area of cosmid is large and water intake capacity of it is strong, water content has great effect on strength of the mudstone. Along with water content increasing, strength of the mudstone declines nonlinear apparently. Since effective measures had been taken, the mudstone was prohibited from being immerged during construction. And valuable experience has been accumulated for similar projects construction henceforth.

  1. Laterally loaded pile cap connections.

    DOT National Transportation Integrated Search

    2010-08-01

    This study investigated the moment capacity and load-displacement response of the pile-to-cap connection details. Lateral load tests were conducted on four pile caps (3 ft H x 3 ft W x 6.5 ft L) with two 40 foot-long steel pipe piles (12.75 inch OD) ...

  2. Multifunctional Structures for High-Energy Lightweight Load-Bearing Storage

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia L.

    2018-01-01

    This is a pull-up banner of the Multifunctional Structures for High-Energy Lightweight Load-bearing Storage (M-SHELLS) technology that will be on display at the SciTech Conference in January 2018. Efforts in Multifunctional Structures for High Energy Load-Bearing Storage (M-Shells) are pushing the boundaries of development for hybrid electric propulsion for future commercial aeronautical transport. The M-Shells hybrid material would serve as the power/energy storage of the vehicle and provide structural integrity, freeing up usable volume and mass typically occupied by bulky batteries. The ultimate goal is to demonstrate a system-level mass savings with a multifunctional structure with energy storage.

  3. Repair of earthquake damaged bridge columns with fractured bars.

    DOT National Transportation Integrated Search

    2013-07-01

    The objective of this study is to repair three, half-scale RC bridge columns that will be tested to failure under slow cyclic loading. : These columns will have fractured longitudinal and transverse steel. The ultimate goal is to develop repair metho...

  4. Effects of intelligibility on working memory demand for speech perception.

    PubMed

    Francis, Alexander L; Nusbaum, Howard C

    2009-08-01

    Understanding low-intelligibility speech is effortful. In three experiments, we examined the effects of intelligibility on working memory (WM) demands imposed by perception of synthetic speech. In all three experiments, a primary speeded word recognition task was paired with a secondary WM-load task designed to vary the availability of WM capacity during speech perception. Speech intelligibility was varied either by training listeners to use available acoustic cues in a more diagnostic manner (as in Experiment 1) or by providing listeners with more informative acoustic cues (i.e., better speech quality, as in Experiments 2 and 3). In the first experiment, training significantly improved intelligibility and recognition speed; increasing WM load significantly slowed recognition. A significant interaction between training and load indicated that the benefit of training on recognition speed was observed only under low memory load. In subsequent experiments, listeners received no training; intelligibility was manipulated by changing synthesizers. Improving intelligibility without training improved recognition accuracy, and increasing memory load still decreased it, but more intelligible speech did not produce more efficient use of available WM capacity. This suggests that perceptual learning modifies the way available capacity is used, perhaps by increasing the use of more phonetically informative features and/or by decreasing use of less informative ones.

  5. Free-Standing Porous Carbon Nanofiber/Carbon Nanotube Film as Sulfur Immobilizer with High Areal Capacity for Lithium-Sulfur Battery.

    PubMed

    Zhang, Ye-Zheng; Zhang, Ze; Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2018-03-14

    Low sulfur utilization and poor cycle life of the sulfur cathode with high sulfur loadings remain a great challenge for lithium-sulfur (Li-S) battery. Herein, the free-standing carbon film consisting of porous carbon nanofibers (PCNFs) and carbon nanotubes (CNTs) is successfully fabricated by the electrospinning technology. The PCNF/CNT film with three-dimensional and interconnected structure is promising for the uniformity of the high-loading sulfur, good penetration of the electrolyte, and reliable accommodation of volumetric expansion of the sulfur cathode. In addition, the abundant N/O-doped elements in PCNF/CNT film are helpful to chemically trap soluble polysulfides in the charge-discharge processes. Consequently, the obtained monolayer S/PCNF/CNT film as the cathode shows high specific capacity, excellent cycle stability, and rate stability with the sulfur loading of 3.9 mg cm -2 . Moreover, the high areal capacity of 13.5 mA h cm -2 is obtained for the cathode by stacking three S/PCNF/CNT layers with the high sulfur loading of 12 mg cm -2 . The stacking-layered cathode with high sulfur loading provides excellent cycle stability, which is beneficial to fabricate high-energy-density Li-S battery in future.

  6. Antibacterial Activity of Silver Nanoparticle-Loaded Soft Contact Lens Materials: The Effect of Monomer Composition.

    PubMed

    Shayani Rad, Maryam; Khameneh, Bahman; Sabeti, Zahra; Mohajeri, Seyed Ahmad; Fazly Bazzaz, Bibi Sedigheh

    2016-10-01

    In the present work, the effect of monomer composition on silver nanoparticles' (SNPs) binding capacity of hydrogels was investigated and their antibacterial efficacy was evaluated. Three series of poly-hydroxyethyl methacrylate (HEMA) hydrogels were prepared using methacrylic acid (MAA), methacrylamide (MAAM), and 4-vinylpyridine (4VP) as co-monomers, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. SNPs binding capacity of hydrogels was evaluated in different concentrations (2, 10, and 20 ppm). In vitro antibacterial activity of SNP-loaded hydrogels was studied against Pseudomonas aeruginosa (P. aeruginosa) isolated from patients' eyes. Then, inhibitory effect of hydrogels in biofilm formation was evaluated in the presence of Staphylococcus epidermidis (S. epidermidis) (DSMZ 3270). Our data indicated that poly(HEMA-co-MAA-co-EGDMA) had superior binding affinity for SNPs in comparison with other hydrogels. All SNP-loaded hydrogels demonstrated excellent antimicrobial effects at all times against P. aeruginosa and S. epidermidis after soaking in 10 and 20 ppm SNP suspensions. Scanning electron microscope (SEM) images revealed excellent inhibitory effect of SNPs against biofilm formation on the surface of the hydrogels. This study indicated the effect of monomer compositions in SNP loading capacity of poly(HEMA) hydrogels and antibacterial efficacy of SNP-loaded hydrogels against P. aeruginosa and S. epidermidis, but further in vivo evaluation is necessary.

  7. Effect of Load History on Fatigue Life.

    DTIC Science & Technology

    1980-06-01

    emission 166 6.4.4 Edge replication 176 6.4.5 Stiffness monitoring 177 6.4.6 Temperature monitoring 179 6.5 Selection of NDI Techniques for Tasks II and III...composites of T300/5208 and T300/934 in room temperature, laboratory at R = 0.0 139 66 Schematic of acoustic emission event 151 67 Schematic diagram of...acoustic emission system 152 68 Cross section in the 00 direction of a coupon loaded statically to 60% of the Average Ultimate Tensile Strength 158

  8. The Mechanics of Long Bone Fractures.

    DTIC Science & Technology

    1981-01-31

    r = .99) between wet density and ultimate bending strength for 37 specimens of human femoral bone. Evans (1973) studied embalmed human tibial...Work 2 2.2 Methods 6 2.2.1 Torsional Loading 6 2.2.2 The Effects of Combined Loading 10 2.2.3 Cancellous Bone Effects 11 2.3 Results 11 2.3.1...PROPERTIES 21 3.1 Previous Work 22 3.2 Methods 26 3.2.1 Cross Sectional Property Software 26 3.2.2 CT Scanning Procedure 28 3.2.3 Linear Dependency of

  9. Assessment of current AASHTO LRFD methods for static pile capacity analysis in Rhode Island soils.

    DOT National Transportation Integrated Search

    2013-07-01

    This report presents an assessment of current AASHTO LRFD methods for static pile capacity analysis in Rhode : Island soils. Current static capacity methods and associated resistance factors are based on pile load test data in sands : and clays. Some...

  10. The effect of short fiber composite base on microleakage and load-bearing capacity of posterior restorations

    PubMed Central

    Garoushi, Sufyan K.; Hatem, Marwa; Lassila, Lippo V. J.; Vallittu, Pekka K.

    2015-01-01

    Abstract Objectives: To determine the marginal microleakage of Class II restorations made with different composite base materials and the static load-bearing capacity of direct composite onlay restorations. Methods: Class II cavities were prepared in 40 extracted molars. They were divided into five groups (n = 8/group) depending on composite base material used (everX Posterior, SDR, Tetric EvoFlow). After Class II restorations were completed, specimens were sectioned mid-sagitally. For each group, sectioned restorations were immersed in dye. Specimens were viewed under a stereo-microscope and the percentage of cavity leakage was calculated. Ten groups of onlay restorations were fabricated (n = 8/group); groups were made with composite base materials (everX Posterior, SDR, Tetric EvoFlow, Gradia Direct LoFlo) and covered by 1 mm layer of conventional (Tetric N-Ceram) or bulk fill (Tetric EvoCeram Bulk Fill) composites. Groups made only from conventional, bulk fill and short fiber composites were used as control. Specimens were statically loaded until fracture. Data were analyzed using ANOVA (p = 0.05). Results: Microleakage of restorations made of plain conventional composite or short fiber composite base material showed statistically (p < 0.05) lower values compared to other groups. ANOVA revealed that onlay restorations made from short fiber-reinforced composite (FRC) as base or plain restoration had statistically significant higher load-bearing capacity (1593 N) (p < 0.05) than other restorations. Conclusion: Restorations combining base of short FRC and surface layer of conventional composite displayed promising performance related to microleakage and load-bearing capacity. PMID:28642894

  11. Parameterizing the Variability and Uncertainty of Wind and Solar in CEMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frew, Bethany

    We present current and improved methods for estimating the capacity value and curtailment impacts from variable generation (VG) in capacity expansion models (CEMs). The ideal calculation of these variability metrics is through an explicit co-optimized investment-dispatch model using multiple years of VG and load data. Because of data and computational limitations, existing CEMs typically approximate these metrics using a subset of all hours from a single year and/or using statistical methods, which often do not capture the tail-event impacts or the broader set of interactions between VG, storage, and conventional generators. In our proposed new methods, we use hourly generationmore » and load values across all hours of the year to characterize the (1) contribution of VG to system capacity during high load hours, (2) the curtailment level of VG, and (3) the reduction in VG curtailment due to storage and shutdown of select thermal generators. Using CEM model outputs from a preceding model solve period, we apply these methods to exogenously calculate capacity value and curtailment metrics for the subsequent model solve period. Preliminary results suggest that these hourly methods offer improved capacity value and curtailment representations of VG in the CEM from existing approximation methods without additional computational burdens.« less

  12. An estimation of finger-tapping rates and load capacities and the effects of various factors.

    PubMed

    Ekşioğlu, Mahmut; İşeri, Ali

    2015-06-01

    The aim of this study was to estimate the finger-tapping rates and finger load capacities of eight fingers (excluding thumbs) for a healthy adult population and investigate the effects of various factors on tapping rate. Finger-tapping rate, the total number of finger taps per unit of time, can be used as a design parameter of various products and also as a psychomotor test for evaluating patients with neurologic problems. A 1-min tapping task was performed by 148 participants with maximum volitional tempo for each of eight fingers. For each of the tapping tasks, the participant with the corresponding finger tapped the associated key in the standard position on the home row of a conventional keyboard for touch typing. The index and middle fingers were the fastest fingers for both hands, and little fingers the slowest. All dominant-hand fingers, except little finger, had higher tapping rates than the fastest finger of the nondominant hand. Tapping rate decreased with age and smokers tapped faster than nonsmokers. Tapping duration and exercise had also significant effect on tapping rate. Normative data of tapping rates and load capacities of eight fingers were estimated for the adult population. In designs of psychomotor tests that require the use of tapping rate or finger load capacity data, the effects of finger, age, smoking, and tapping duration need to be taken into account. The findings can be used for ergonomic designs requiring finger-tapping capacity and also as a reference in psychomotor tests. © 2015, Human Factors and Ergonomics Society.

  13. Does artificial aging affect mechanical properties of CAD/CAM composite materials.

    PubMed

    Egilmez, Ferhan; Ergun, Gulfem; Cekic-Nagas, Isil; Vallittu, Pekka K; Lassila, Lippo V J

    2018-01-01

    The purpose of this study was to determine the flexural strength and Weibull characteristics of different CAD/CAM materials after different in vitro aging conditions. The specimens were randomly assigned to one of the six in vitro aging conditions: (1) water storage (37°C, 3 weeks), (2) boiling water (24h), (3) hydrochloric acid exposure (pH: 1.2, 24h), (4) autoclave treatment (134°C, 200kPa, 12h), (5) thermal cycling (5000 times, 5-55°C), (6) cyclic loading (100N, 50,000 cycles). No treatment was applied to the specimens in control group. Three-point bending test was used for the calculation of flexural strength. The reliability of the strength was assessed by Weibull distribution. Surface roughness and topography was examined by coherence scanning interferometry. Evaluated parameters were compared using the Kruskall-Wallis or Mann-Whitney U test. Water storage, autoclave treatment and thermal cycling significantly decreased the flexural strength of all materials (p<0.05), whereas HCl exposure or cyclic loading did not affect the properties (p>0.05). Weibull moduli of Cerasmart™ and Lava™ Ultimate were similar with control. Vita Enamic ® exhibited similar Weibull moduli in all aging groups except the HCl treated group (p>0.05). R a values of Cerasmart™ and Lava™ Ultimate were in the range of 0.053-0.088μm in the aged groups. However R a results of Vita Enamic ® were larger than 0.2μm. Flexural strength of newly developed restorative CAD/CAM materials was significantly decreased by artificial aging. Cyclic loading or HCl exposure does not affect to the flexural strength and structural reliability of Cerasmart™ and Lava™ Ultimate. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. Tissue-engineered collateral ligament composite allografts for scapholunate ligament reconstruction: an experimental study.

    PubMed

    Endress, Ryan; Woon, Colin Y L; Farnebo, Simon J; Behn, Anthony; Bronstein, Joel; Pham, Hung; Yan, Xinrui; Gambhir, Sanjiv S; Chang, James

    2012-08-01

    In patients with chronic scapholunate (SL) dissociation or dynamic instability, ligament repair is often not possible, and surgical reconstruction is indicated. The ideal graft ligament would recreate both anatomical and biomechanical properties of the dorsal scapholunate ligament (dorsal SLIL). The finger proximal interphalangeal joint (PIP joint) collateral ligament could possibly be a substitute ligament. We harvested human PIP joint collateral ligaments and SL ligaments from 15 cadaveric limbs. We recorded ligament length, width, and thickness, and measured the biomechanical properties (ultimate load, stiffness, and displacement to failure) of native dorsal SLIL, untreated collateral ligaments, decellularized collateral ligaments, and SL repairs with bone-collateral ligament-bone composite collateral ligament grafts. As proof of concept, we then reseeded decellularized bone-collateral ligament-bone composite grafts with green fluorescent protein-labeled adipo-derived mesenchymal stem cells and evaluated them histologically. There was no difference in ultimate load, stiffness, and displacement to failure among native dorsal SLIL, untreated and decellularized collateral ligaments, and SL repairs with tissue-engineered collateral ligament grafts. With pair-matched untreated and decellularized scaffolds, there was no difference in ultimate load or stiffness. However, decellularized ligaments revealed lower displacement to failure compared with untreated ligaments. There was no difference in displacement between decellularized ligaments and native dorsal SLIL. We successfully decellularized grafts with recently described techniques, and they could be similarly reseeded. Proximal interphalangeal joint collateral ligament-based bone-collateral ligament-bone composite allografts had biomechanical properties similar to those of native dorsal SLIL. Decellularization did not adversely affect material properties. These tissue-engineered grafts may offer surgeons another option for reconstruction of chronic SL instability. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  15. Successful NEES Grand Challenge Tests on Non-Ductile Beam-Column Joints

    Science.gov Websites

    potential of existing gravity load designed RC buildings is a great concern during intense seismic events evaluate unreinforced corner joints shear strength and axial residual capacity under high axial load axial load is 0.20f ’c Ag , while the overturning axial loads vary with displacement reversals to range

  16. Classic debates in selective attention: early vs late, perceptual load vs dilution, mean RT vs measures of capacity.

    PubMed

    Nelson, Michael D; Crisostomo, Marisa; Khericha, Alifiya; Russo, Francis; Thorne, Gary L

    2012-01-01

    We briefly summarize two important debates regarding selective attention (early vs late selection; perceptual load vs distractor dilution). Also, we report the results of an attempt to replicate Lavie (1995, Journal of Experimental Psychology: Human Perception and Performance 21 451-468). We suggest that measures capable of characterizing the capacity of information processing systems (compared to reporting only mean reaction time) could add great clarity to this literature.

  17. Development and evaluation of N-naphthyl-N,O-succinyl chitosan micelles containing clotrimazole for oral candidiasis treatment.

    PubMed

    Tonglairoum, Prasopchai; Woraphatphadung, Thisirak; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Sajomsang, Warayuth; Opanasopit, Praneet

    2017-03-01

    Clotrimazole (CZ)-loaded N-naphthyl-N,O-succinyl chitosan (NSCS) micelles have been developed as an alternative for oral candidiasis treatment. NSCS was synthesized by reductive N-amination and N,O-succinylation. CZ was incorporated into the micelles using various methods, including the dropping method, the dialysis method, and the O/W emulsion method. The size and morphology of the CZ-loaded micelles were characterized using dynamic light scattering measurements (DLS) and a transmission electron microscope (TEM), respectively. The drug entrapment efficiency, loading capacity, release characteristics, and antifungal activity against Candida albicans were also evaluated. The CZ-loaded micelles prepared using different methods differed in the size of micelles. The micelles ranged in size from 120 nm to 173 nm. The micelles prepared via the O/W emulsion method offered the highest percentage entrapment efficiency and loading capacity. The CZ released from the CZ-loaded micelles at much faster rate compared to CZ powder. The CZ-loaded NSCS micelles can significantly hinder the growth of Candida cells after contact. These CZ-loaded NSCS micelles offer great antifungal activity and might be further developed to be a promising candidate for oral candidiasis treatment.

  18. Similar photosynthetic response to elevated carbon dioxide concentration in species with different phloem loading strategies.

    PubMed

    Bishop, Kristen A; Lemonnier, Pauline; Quebedeaux, Jennifer C; Montes, Christopher M; Leakey, Andrew D B; Ainsworth, Elizabeth A

    2018-06-02

    Species have different strategies for loading sugars into the phloem, which vary in the route that sugars take to enter the phloem and the energetics of sugar accumulation. Species with passive phloem loading are hypothesized to have less flexibility in response to changes in some environmental conditions because sucrose export from mesophyll cells is dependent on fixed anatomical plasmodesmatal connections. Passive phloem loaders also have high mesophyll sugar content, and may be less likely to exhibit sugar-mediated down-regulation of photosynthetic capacity at elevated CO 2 concentrations. To date, the effect of phloem loading strategy on the response of plant carbon metabolism to rising atmospheric CO 2 concentrations is unclear, despite the widespread impacts of rising CO 2 on plants. Over three field seasons, five species with apoplastic loading, passive loading, or polymer-trapping were grown at ambient and elevated CO 2 concentration in free air concentration enrichment plots. Light-saturated rate of photosynthesis, photosynthetic capacity, leaf carbohydrate content, and anatomy were measured and compared among the species. All five species showed significant stimulation in midday photosynthetic CO 2 uptake by elevated CO 2 even though the two passive loading species showed significant down-regulation of maximum Rubisco carboxylation capacity at elevated CO 2 . There was a trend toward greater starch accumulation at elevated CO 2 in all species, and was most pronounced in passive loaders. From this study, we cannot conclude that phloem loading strategy is a key determinant of plant response to elevated CO 2 , but compelling differences in response counter to our hypothesis were observed. A phylogenetically controlled experiment with more species may be needed to fully test the hypothesis.

  19. Influence of wheel load shape on vertical stress reaching subgrade through an aggregate layer

    DOT National Transportation Integrated Search

    2001-03-01

    The U.S. Army design procedure to stabilize low-bearing capacity soil with geotextiles is based on the assumption that the applied surface load (the wheel load) is in the shape of a circle. The maximum vertical stress that reaches the subgrade throug...

  20. Approach for establishing approximate load carrying capacity for bridges with unknown material and unknown design properties.

    DOT National Transportation Integrated Search

    2011-07-01

    There are 16 small to medium simple span bridges in Larimer County, Colorado that are currently load rated solely based on visual inspections. Most of these bridges are prestressed concrete bridges. The objective of this project is to load rate these...

Top