NASA Astrophysics Data System (ADS)
Sinthaworn, S.; Puengpaiboon, U.; Warasetrattana, N.; Wanapaisarn, S.
2018-01-01
Endodontically treated teeth were simulated by finite element analysis in order to estimate ultimate tensile strength of dentin. Structures of the endodontically treated tooth cases are flared root canal, restored with different number of fiber posts {i.e. resin composite core without fiber post (group 1), fiber post No.3 with resin composite core (group 2) and fiber post No.3 accessory 2 fiber posts No.0 with resin composite core (group 3)}. Elastic modulus and Poisson’s ratio of materials were selected from literatures. The models were loaded by the average fracture resistances load of each groups (group 1: 361.80 N, group 2: 559.46 N, group 3: 468.48 N) at 135 degree angulation in respect to the longitudinal axis of the teeth. The stress analysis and experimental confirm that fracture zone is at dentin area. To estimate ultimate tensile strength of dentin, trial and error of ultimate tensile strength were tested to obtain factor of safety (FOS) equal to 1.00. The result reveals that ultimate tensile strength of dentin of group 1, 2, 3 are 38.89, 30.96, 37.19 MPa, respectively.
Evaluation of the adhesion on the nano-scaled polymeric film systems.
Park, Tae Sung; Park, Ik Keun; Yoshida, Sanichiro
2017-04-01
We applied scanning acoustic microscopy known as the V(z) curve technique to photoresist thin-film systems for the evaluation of the adhesive strength at the film-substrate interface. Through the measurement of the SAW (Surface Acoustic Wave) velocity, the V(z) curve analysis allows us to quantify the stiffness of the film-substrate interface. In addition, we conducted a nano-scratch test to quantify the ultimate strength of the adhesion through the evaluation of the critical load. To vary the adhesive conditions, we prepared thin-film specimens with three different types of pre-coating surface treatments, i.e., oxygen-plasma bombardment, HMDS (Hexametyldisilazane) treatment and untreated. The magnitudes of the quantified stiffness and ultimate strength are found consistent with each other for all the specimens tested, indicating that the pre-coating surface treatment can strengthen both the stiffness and ultimate strength of the adhesion. The results of this study demonstrate the usefulness of the V(Z) analysis as a nondestructive method to evaluate the adhesion strength of nano-structured thin-film systems. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ovcharenko, V. E.; Ivanov, K. V.; Boyangin, E. N.; Krylova, T. A.; Pshenichnikov, A. P.
2018-01-01
The impact of the preliminary load on 3Ni+Al powder mixture and the impact of the duration of the delay in application of compacting pressure to synthesis product under the conditions of continuous heating of the mixture up to its self-ignition on the grain size and strength properties of the synthesized Ni3Al intermetallide material have been studied. The grain structure of the intermetallide synthesized under pressure was studied by means of metallography, transmission electron microscopy and EBSD analysis, with the dependence of ultimate tensile strength on the grain size in the synthesized intermetallide having been investigated at room temperature and at temperatures up to 1000°C. It is shown that an increase in the pressure preliminarily applied to the initial mixture compact results in reduced grain size of the final intermetallide, whereas an increase in pre-compaction time makes the grain size increased. A decrease in the grain size increases the ultimate tensile strength of the intermetallide. The maximum value of the ultimate tensile strength in the observed anomalous temperature dependence of this strength exhibits a shift by 200°C toward higher temperatures, and the ultimate strength of the synthesized intermetallide at 1000°C increases roughly two-fold.
NASA Astrophysics Data System (ADS)
Niitsu, G. T.; Lopes, C. M. A.
2013-08-01
The purpose of this work is to evaluate the influences of fatigue and environmental conditions (-55 °C, 23 °C, and 82 °C/Wet) on the ultimate compression strength of notched carbon-fiber-reinforced poly(phenylene sulfide) composites by performing open-hole compression (OHC) tests. Analysis of the fatigue effect showed that at temperatures of -55 and 23 °C, the ultimate OHC strengths were higher for fatigued than for not-fatigued specimens; this could be attributed to fiber splitting and delamination during fatigue cycling, which reduces the stress concentration at the hole edge, thus increasing the composite strength. This effect of increasing strength for fatigued specimens was not observed under the 82 °C/Wet conditions, since the test temperature near the matrix glass transition temperature ( T g) together with moisture content resulted in matrix softening, suggesting a reduction in fiber splitting during cycling; similar OHC strengths were verified for fatigued and not-fatigued specimens tested at 82 °C/Wet. Analysis of the temperature effect showed that the ultimate OHC strengths decreased with increasing temperature. A high temperature together with moisture content (82 °C/Wet condition) reduced the composite compressive strengths, since a temperature close to the matrix T g resulted in matrix softening, which reduced the lateral support provided by the resin to the 0° fibers, leading to fiber instability failure at reduced applied loads. On the other hand, a low temperature (-55 °C) improved the compressive strength because of possible fiber-matrix interfacial strengthening, increasing the fiber contribution to compressive strength.
NASA Technical Reports Server (NTRS)
Sawyer, J. W.
1981-01-01
The effect of load eccentricity and substructure deformation on the ultimate strength and stress displacement properties of the shuttle orbiter thermal protection system (TPS) was determined. The LI-900 Reusable Surface Insulation (RSI) tiles mounted on the .41 cm thick Strain Isolator Pad (SIP) were investigated. Substructure deformations reduce the ultimate strength of the SIP/tile TPS and increase the scatter in the ultimate strength data. Substructure deformations that occur unsymmetric to the tile can cause the tile to rotate when subjected to a uniform applied load. Load eccentricity reduces SIP/tile TPS ultimate strength and causes tile rotation.
Neural Network Prediction of Aluminum-Lithium Weld Strengths from Acoustic Emission Amplitude Data
NASA Technical Reports Server (NTRS)
Hill, Eric v. K.; Israel, Peggy L.; Knotts, Gregory L.
1993-01-01
Acoustic Emission (AE) flaw growth activity was monitored in aluminum-lithium weld specimens from the onset tensile loading to failure. Data on actual ultimate strengths together with AE data from the beginning of loading up to 25 percent of the expected ultimate strength were used to train a backpropagation neural network to predict ultimate strengths. Architecturally, the fully interconnected network consisted of an input layer for the AE amplitude data, a hidden layer to accommodate failure mechanism mapping, and an output layer for ultimate strength prediction. The trained network was the applied to the prediction of ultimate strengths in the remaining six specimens. The worst case prediction error was found to be +2.6 percent.
NASA Astrophysics Data System (ADS)
Chen, Bai-Qiao; Guedes Soares, C.
2018-03-01
The present work investigates the compressive axial ultimate strength of fillet-welded steel-plated ship structures subjected to uniaxial compression, in which the residual stresses in the welded plates are calculated by a thermo-elasto-plastic finite element analysis that is used to fit an idealized model of residual stress distribution. The numerical results of ultimate strength based on the simplified model of residual stress show good agreement with those of various methods including the International Association of Classification Societies (IACS) Common Structural Rules (CSR), leading to the conclusion that the simplified model can be effectively used to represent the distribution of residual stresses in steel-plated structures in a wide range of engineering applications. It is concluded that the widths of the tension zones in the welded plates have a quasi-linear behavior with respect to the plate slenderness. The effect of residual stress on the axial strength of the stiffened plate is analyzed and discussed.
Gupt, Parikshit; Nagpal, Archana; Samra, Rupandeep Kaur; Verma, Ramit; Kaur, Jasjeet; Abrol, Surbhi
2017-01-01
The purpose of the study was to evaluate the fracture strength of provisional fixed partial dentures made of autopolymerizing polymethylmethacrylate (PMMA) resin using different types of reinforcement materials to determine the best among them. Fifty samples were made (10 samples for each group) with autopolymerizing PMMA resin using reinforcement materials (stainless steel wire: looped and unlooped and glass fiber: loose and unidirectional) as 3-unit posterior bridge. The test specimens were divided into five groups depending on the reinforcing material as Group I, II, III, IV, and V; Group I: PMMA unreinforced (control group), Group II: PMMA reinforced with stainless steel wire (straight ends), Group III: PMMA reinforced with stainless steel wire (looped ends), Group IV: PMMA reinforced with unidirectional glass fibers, and Group V: PMMA reinforced with randomly distributed glass fibers. Universal testing machine was used to evaluate and compare the fracture strength of samples. Comparison of mean ultimate force and ultimate stress was done employing one-way analysis of variance and Tukey's post hoc tests. The highest and lowest mean ultimate force and mean ultimate stress were of Group IV and I, respectively. Tukey's post hoc honestly significant difference multiple comparison for mean ultimate force and stress shows the increase in strength to be statistically significant ( P < 0.05) except for the samples reinforced with randomly distributed glass fibers ( P > 0.05). Unidirectional glass fibers showed the maximum strength, which was comparable to mean values of both stainless steel wire groups. Low cost and easy technique of using stainless steel wire make it the material of choice over the unidirectional glass fiber for reinforcement in nonesthetic areas where high strength is required.
Reliability of Hull Girder Ultimate Strength of Steel Ships
NASA Astrophysics Data System (ADS)
Da-wei, Gao; Gui-jie, Shi
2018-03-01
Hull girder ultimate strength is an evaluation index reflecting the true safety margin or structural redundancy about container ships. Especially, after the hull girder fracture accident of the MOL COMFORT, the 8,000TEU class large container ship, on June 17 2013, larger container ship safety has been paid on much more attention. In this paper, different methods of calculating hull girder ultimate strength are firstly discussed and compared with. The bending ultimate strength can be analyzed by nonlinear finite element method (NFEM) and increment-iterative method, and also the shear ultimate strength can be analyzed by NFEM and simple equations. Then, the probability distribution of hull girder wave loads and still water loads of container ship are summarized. At last, the reliability of hull girder ultimate strength under bending moment and shear forces for three container ships is analyzed by using a first order method. The conclusions can be applied to give guidance for ship design and safety evaluation.
NASA Astrophysics Data System (ADS)
Pichumani, Sivachidambaram; Srinivasan, Raghuraman; Ramamoorthi, Venkatraman
2018-02-01
Aluminium - silicon carbide (Al - SiC) metal matrix composite is produced with following wt % of SiC reinforcement (4%, 8% & 12%) using stir casting method. Mechanical testing such as micro hardness, tensile testing and bend testing were performed. Characterizations, namely micro structure, X-ray diffraction (XRD) analysis, inductive coupled plasma - optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM) analysis, were carried out on Al - SiC composites. The presence of SiC on Al - SiC composite is confirmed through XRD technique and microstructure. The percentage of SiC was confirmed through ICP-OES technique. Increase in weight percentage of SiC tends to increase micro hardness, ultimate strength & yield strength but it reduces the bend strength and elongation (%) of the material. SEM factrography of tensile tested fractured samples of Al - 8% SiC & Al - 12% SiC showed fine dimples on fractured surface & coarse dimples fractured surface respectively. This showed significant fracture differences between Al - 8% SiC & Al - 12% SiC. From the above experiment, Al - 8% SiC had good micro hardness, ultimate strength & yield strength without significant loss in elongation (%) & bend strength.
Effects of joint configuration for the arc welding of cast Ti-6Al-4V alloy rods in argon.
Taylor, J C; Hondrum, S O; Prasad, A; Brodersen, C A
1998-03-01
Titanium and its alloys are more commonly used in prosthodontics and welding has become the most common modality for their joining. Studies on the welding of titanium and its alloys have not quantified this value, though its importance has been suggested. This study compared the strength and properties of the joint achieved at various butt joint gaps by the arc-welding of cast Ti-6Al-4V alloy tensile bars in an argon atmosphere. Forty of 50 specimens were sectioned and welded at four gaps. All specimens underwent tensile testing to determine ultimate tensile strength and percentage elongation, then oxygen analysis and scanning electron microscopy. As no more than 3 samples in any group of 10 actually fractured in the weld itself, a secondary analysis that involved fracture location was initiated. There were no differences in ultimate tensile strength or percentage elongation between specimens with weld gaps of 0.25, 0.50, 0.75, and 1.00 mm and the as-cast specimens. There were no differences in ultimate tensile strength between specimens fracturing in the weld and those fracturing in the gauge in welded specimens; however, as-cast specimens demonstrated a higher ultimate tensile strength than welded specimens that fractured in the weld. Specimens that fractured in the weld site demonstrated less ductility than those that fractured in the gauge in both welded and as-cast specimens, as confirmed by scanning electron microscopy examination. The weld wire showed an oxygen scavenging effect from the as-cast parent alloy. The effects of the joint gap were not significant, whereas the characteristics of the joint itself were, which displayed slightly lower strength and significantly lower ductility (and thus decreased toughness). The arc-welding of cast titanium alloy in argon atmosphere appears to be a reliable and efficient prosthodontic laboratory modality producing predictable results, although titanium casting and joining procedures must be closely controlled to minimize heat effects and oxygen contamination.
Duan, Yonghong; Zhu, Shu; Guo, Fei; Zhu, Jinyu; Li, Mao; Ma, Jie
2012-01-01
Introduction With the increase in joint revision surgery after arthroplasty, defects of hydroxyapatite (HA)-coated prostheses have been observed increasingly often. These defects adversely affect the prosthetic stability in vivo. This study has analyzed the potential effect of the adhesive strength of HA coating on the stability of HA-coated prostheses in vivo after its implantation. Material and methods Sixty experimental rabbits were divided into HA- and Ti-coated groups. HA-coated prostheses were implanted into the bilateral epicondyle of rabbits femurs. Ti-coated prostheses were implanted as control. At different time points(4, 9, and 15 weeks) after implantation, bone tissue samples were fetched out respectively for histomorphometric analysis. Push-out testing was used to detect the ultimate shear strength at the bone-prosthesis interface. Scanning electron microscope (SEM) observation and energy-dispersive X-ray spectroscopy (EDX) analysis were used to observe the changes in surface composition of the prostheses after the ultimate shear strength testing. The coating adhesive strength of two kinds of coatings were also examined by scratch testing. Results Hydroxyapatite coating has an obvious advantage in facilitating osteogenesis and its plays a critical role in the stability of prostheses. However, the ultimate shear strength of HA-coated prostheses is much lower than that of Ti-coated implants (p < 0.01). Further study has demonstrated that the stability of HA-coated prostheses in vivo is affected by the relatively low adhesive strength between coating and substrate. Conclusions Obvious advantage in facilitating osteogenesis around HA-coated prostheses is not the only factor that determines the stability of prostheses in vivo. PMID:22661990
76 FR 52379 - Buy America Waiver Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... 0.008 steel fiber with ultimate tensile strength of 290ksi for experimental use in Ultra High... for \\1/2\\'' x 0.008 steel fiber with ultimate tensile strength of 290ksi for experimental use in UHPC... there are no domestic manufacturers of \\1/2\\'' x 0.008 steel fiber with ultimate tensile strength of...
NASA Technical Reports Server (NTRS)
Lovoy, C. V.
1978-01-01
Fillet size is discussed in terms of theoretical or design dimensions versus as-welded dimensions, drawing attention to the inherent conservatism in the design load sustaining capabilities of fillet welds. Emphasis is placed on components for the solid rocket motor, external tank, and other aerospace applications. Problems associated with inspection of fillet welds are addresses and a comparison is drawn between defect counts obtained by radiographic inspection and by visual examination of the fracture plane. Fillet weld quality is related linearly to ultimate shear strength. Correlation coefficients are obtained by simple straight line regression analysis between the variables of ultimate shear strength and accumulative discontinuity summation. Shear strength allowables are found to be equivalent to 57 percent of butt weld A allowables (F sub tu.)
The Effects of Torsional Preloading on the Torsional Resistance of Nickel-titanium Instruments.
Oh, Seung-Hei; Ha, Jung-Hong; Kwak, Sang Won; Ahn, Shin Wook; Lee, WooCheol; Kim, Hyeon-Cheol
2017-01-01
This study evaluated the effect of torsional preloading on the torsional resistance of nickel-titanium (NiTi) endodontic instruments. WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland) and ProTaper Universal F2 (Dentsply Maillefer) files were used. The ultimate torsional strength until fracture was determined for each instrument. In the phase 1 experiment, the ProTaper and WaveOne files were loaded to have a maximum load from 2.0 up to 2.7 or 2.8 Ncm, respectively. In the phase 2 experiment, the number of repetitions of preloading for each file was increased from 50 to 200, whereas the preloading torque was fixed at 2.4 Ncm. Using torsionally preloaded specimens from phase 1 and 2, the torsional resistances were calculated to determine the ultimate strength, distortion angle, and toughness. The results were analyzed using 1-way analysis of variance and Duncan post hoc comparison. The fracture surfaces and longitudinal aspect of 5 specimens per group were examined under a scanning electron microscope. All preloaded groups showed significantly higher ultimate strength than the unpreloaded groups (P < .05). There was no significant difference among all groups for distortion angle and toughness. Although WaveOne had no significant difference between the repetition groups for ultimate strength, fracture angle, and toughness, ProTaper had a higher distortion angle and toughness in the 50-repetition group compared with the other repetition groups (P < .05). Scanning electron microscopic examinations of the fractured surface showed typical features of torsional fracture. Torsional preloading within the ultimate values could enhance the torsional strength of NiTi instruments. The total energy until fracture was maintained constantly, regardless of the alloy type. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
76 FR 60582 - Buy America Waiver Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
... 1/ 2'' x 0.008 steel fiber with ultimate tensile strength of 290ksi for experimental use in Ultra... 0.008 steel fiber with ultimate tensile strength of 290ksi for experimental use in UHPC in Iowa. In... potential domestic manufacturers for 1/2'' x 0.008 steel fiber with ultimate tensile strength of 290ksi for...
78 FR 63563 - Buy America Waiver Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
.... steel fibers with ultimate tensile strength of 290 ksi. in Ultra High Performance Concrete (UHPC) at the... appropriate to use UHPC 0.5 in. x 0.008 in. steel fibers with ultimate tensile strength 290 ksi. on Federal... for the use of non-domestic UHPC 0.5 in. x 0.008 in. steel fibers with ultimate tensile strength of...
Brown, Christopher U; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan
2016-08-01
Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser-powder-bed-fusion additive manufacturing machines. The tensile specimens were heat treated and tensile tests conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to 4 times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure.
Brown, Christopher U.; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan
2017-01-01
Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser-powder-bed-fusion additive manufacturing machines. The tensile specimens were heat treated and tensile tests conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to 4 times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure. PMID:28243032
NASA Astrophysics Data System (ADS)
Brown, Christopher U.; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan
2016-08-01
Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser powder bed fusion-additive manufacturing machines. The tensile specimens were heat treated and tensile tests were conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to four times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure.
Teng, Zhongzhao; Feng, Jiaxuan; Zhang, Yongxue; Sutcliffe, Michael P F; Huang, Yuan; Brown, Adam J; Jing, Zaiping; Lu, Qingsheng; Gillard, Jonathan H
2015-11-05
Atherosclerotic plaque rupture occurs when mechanical loading exceeds its material strength. Mechanical analysis has been shown to be complementary to the morphology and composition for assessing vulnerability. However, strength and stretch thresholds for mechanics-based assessment are currently lacking. This study aims to quantify the ultimate material strength and extreme extensibility of atherosclerotic components from human carotid plaques. Tissue strips of fibrous cap, media, lipid core and intraplaque hemorrhage/thrombus were obtained from 21 carotid endarterectomy samples of symptomatic patients. Uni-extension test with tissue strips was performed until they broke or slid. The Cauchy stress and stretch ratio at the peak loading of strips broken about 2mm away from the clamp were used to characterize their ultimate strength and extensibility. Results obtained indicated that ultimate strength of fibrous cap and media were 158.3 [72.1, 259.3] kPa (Median [Inter quartile range]) and 247.6 [169.0, 419.9] kPa, respectively; those of lipid and intraplaque hemorrhage/thrombus were 68.8 [48.5, 86.6] kPa and 83.0 [52.1, 124.9] kPa, respectively. The extensibility of each tissue type were: fibrous cap - 1.18 [1.10, 1.27]; media - 1.21 [1.17, 1.32]; lipid - 1.25 [1.11, 1.30] and intraplaque hemorrhage/thrombus - 1.20 [1.17, 1.44]. Overall, the strength of fibrous cap and media were comparable and so were lipid and intraplaque hemorrhage/thrombus. Both fibrous cap and media were significantly stronger than either lipid or intraplaque hemorrhage/thrombus. All atherosclerotic components had similar extensibility. Moreover, fibrous cap strength in the proximal region (closer to the heart) was lower than that of the distal. These results are helpful in understanding the material behavior of atherosclerotic plaques. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Relationship between mechanical properties of one-step self-etch adhesives and water sorption.
Hosaka, Keiichi; Nakajima, Masatoshi; Takahashi, Masahiro; Itoh, Shima; Ikeda, Masaomi; Tagami, Junji; Pashley, David H
2010-04-01
The purpose of this study was to evaluate the relationship between changes in the modulus of elasticity and ultimate tensile strength of one-step self-etch adhesives, and their degree of water sorption. Five one-step self-etch adhesives, Xeno IV (Dentsply Caulk), G Bond (GC Corp.), Clearfil S3 Bond (Kuraray Medical Inc.), Bond Force (Tokuyama Dental Corp.), and One-Up Bond F Plus (Tokuyama Dental Corp.) were used. Ten dumbelled-shaped polymers of each adhesive were used to obtain the modulus of elasticity by the three-point flexural bending test and the ultimate tensile strength by microtensile testing. The modulus of elasticity and the ultimate tensile strength were measured in both dry and wet conditions before/after immersion in water for 24h. Water sorption was measured, using a modification of the ISO-4049 standard. Each result of the modulus of elasticity and ultimate tensile strength was statistically analyzed using a two-way ANOVA and the result of water sorption was statistically analyzed using a one-way ANOVA. Regression analyses were used to determine the correlations between the modulus of elasticity and the ultimate tensile strength in dry or wet states, and also the percent decrease in these properties before/after immersion of water vs. water sorption. In the dry state, the moduli of elasticity of the five adhesive polymers varied from 948 to 1530 MPa, while the ultimate tensile strengths varied from 24.4 to 61.5 MPa. The wet specimens gave much lower moduli of elasticity (from 584 to 1073 MPa) and ultimate tensile strengths (from 16.5 to 35.0 MPa). Water sorption varied from 32.1 to 105.8 g mm(-3). The moduli of elasticity and ultimate tensile strengths of the adhesives fell significantly after water-storage. Water sorption depended on the constituents of the adhesive systems. The percent decreases in the ultimate tensile strengths of the adhesives were related to water sorption, while the percent reductions in the moduli of elasticity of the adhesives were not related to water sorption. Copyright (c) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
Bonding Effectiveness of Luting Composites to Different CAD/CAM Materials.
Peumans, Marleen; Valjakova, Emilija Bajraktarova; De Munck, Jan; Mishevska, Cece Bajraktarova; Van Meerbeek, Bart
To evaluate the influence of different surface treatments of six novel CAD/CAM materials on the bonding effectiveness of two luting composites. Six different CAD/CAM materials were tested: four ceramics - Vita Mark II; IPS Empress CAD and IPS e.max CAD; Celtra Duo - one hybrid ceramic, Vita Enamic, and one composite CAD/CAM block, Lava Ultimate. A total of 60 blocks (10 per material) received various mechanical surface treatments: 1. 600-grit SiC paper; 2. sandblasting with 30-μm Al2O3; 3. tribochemical silica coating (CoJet). Subsequent chemical surface treatments involved either no further treatment (control), HF acid etching (HF), silanization (S, or HF acid etching followed by silanization (HF+S). Two specimens with the same surface treatment were bonded together using two dual-curing luting composites: Clearfil Esthetic Cement (self-etching) or Panavia SA Cement (self-adhesive). After 1 week of water storage, the microtensile bond strength of the sectioned microspecimens was measured and the failure mode was evaluated. The bonding performance of the six CAD/CAM materials was significantly influenced by surface treatment (linear mixed models, p < 0.05). The luting cement had a significant influence on bond strength for Celtra Duo and Lava Ultimate (linear mixed models, p < 0.05). Mechanical surface treatment significantly influenced the bond strength for Celtra Duo (p = 0.0117), IPS e.max CAD (p = 0.0115), and Lava Ultimate (p < 0.0001). Different chemical surface treatments resulted in the highest bond strengths for the six CAD/CAM materials: Vita Mark II and IPS Empress CAD: S, HF+S; Celtra Duo: HF, HF+S; IPS e.max CAD: HF+S; Vita Enamic: HF+S, S. For Lava Ultimate, the highest bond strengths were obtained with HF, S, HF+S. Failure analysis showed a relation between bond strength and failure type: more mixed failures were observed with higher bond strengths. Mainly adhesive failures were noticed if no further surface treatment was done. The percentage of adhesive failures was higher for CAD/CAM materials with higher flexural strength (Celtra Duo, IPS e.max CAD, and Lava Ultimate). The bond strength of luting composites to novel CAD/CAM materials is influenced by surface treatment. For each luting composite, an adhesive cementation protocol can be specified in order to obtain the highest bond to the individual CAD/CAM materials.
Analysis and Tests of Reinforced Carbon-Epoxy/Foam-Core Sandwich Panels with Cutouts
NASA Technical Reports Server (NTRS)
Baker, Donald J.; Rogers, Charles
1996-01-01
The results of a study of a low-cost structurally efficient minimum-gage shear-panel design that can be used in light helicopters are presented. The shear-panel design is based on an integrally stiffened syntactic-foam stabilized-skin with an all-bias-ply tape construction for stabilized-skin concept with an all-bias-ply tape construction for the skins. This sandwich concept is an economical way to increase the panel bending stiffness weight penalty. The panels considered in the study were designed to be buckling resistant up to 100 lbs/in. of shear load and to have an ultimate strength of 300 lbs/in. The panel concept uses unidirectional carbon-epoxy tape on a syntactic adhesive as a stiffener that is co-cured with the skin and is an effective concept for improving panel buckling strength. The panel concept also uses pultruded carbon-epoxy rods embedded in a syntactic adhesive and over-wrapped with a bias-ply carbon-epoxy tape to form a reinforcing beam which is an effective method for redistributing load around rectangular cutout. The buckling strength of the reinforced panels is 83 to 90 percent of the predicted buckling strength based on a linear buckling analysis. The maximum experimental deflection exceeds the maximum deflection predicted by a nonlinear analysis by approximately one panel thickness. The failure strength of the reinforced panels was two and a half to seven times of the buckling strength. This efficient shear-panel design concept exceeds the required ultimate strength requirement of 300 lbs/in by more than 100 percent.
Acoustic emission analysis of fiber-reinforced composite in flexural testing.
Alander, Pasi; Lassila, Lippo V J; Tezvergil, Arzu; Vallittu, Pekka K
2004-05-01
The aim of this study was to examine the emission of acoustic signals from six commercially available fiber-reinforced composites (FRC) used in the frameworks of fixed partial dentures in material bending. FRC test specimens were made of six commercially available fiber products of polyethylene or glass and five light-curing resins. FRC test specimens were polymerized with a hand light-curing unit or with a light-curing oven. The flexural test for determination of ultimate flexural strength of test specimens (n = 6) was based on the ISO 10477 standard after the specimens were stored in air or in water for two weeks. The acoustic emission (AE) signals were monitored during three-point loading test of the test specimens using a test with increasing loading levels until the specimens fractured. Generally, stress level required for the AE activity initiation ranged from 107 MPa (Ribbond) to 579 MPa (everStick). The ultimate flexural strength of FRC specimens were higher, ranging from 132 to 764 MPa, being highest with everStick and Vectris FRC, and lowest with Ribbond FRC. ANOVA showed a statistically significant difference between the initiation of AE activity and the ultimate flexural strength according to the brand (p < 0.001) storing conditions (p < 0.001) and polymerization procedure (p < 0.001). AE activity and ultimate flexural strength correlated significantly (p < 0.010, r = 0.887). The result of this study suggested that AE activity in FRC specimens started at a 19-32% lower stress level than occurred at final fracture.
Duan, Yonghong; Liu, Lie; Wang, Ling; Guo, Fei; Li, Haoping; Shi, Lei; Li, Mao; Yin, Dayu; Jiang, Chi; Zhu, Qingsheng
2012-03-01
Use of Ta biomaterials in medicine started in the middle of the last century. The good biocompatibility and chemical stability, and the unique physical characteristics of Ta metal have resulted in many possible developments of Ta biomaterials. In this study, histopathological observation, histomorphometric analysis, scanning electron microscope (SEM) observation, energy-dispersive X-ray spectroscopy (EDX) analysis, biomechanical testing, and examination of the coating's mechanical strength have been used to evaluate the value of clinical application of Ta-coated prostheses prepared by a plasma-spraying process. Histopathological observation has demonstrated that the periprosthetic new bone tissues tightly and stably adhere to the Ta coating after the implantation, with no signs of loosening. Early after implantation, there is no significant difference in periprosthetic bone volume and ultimate shear strength between Ta-coated and Ti-coated prostheses (P > 0.05). EDX analysis suggests that the ultimate shear stress does not damage Ta coating. Mechanical strength testing shows that the adhesive strength and Vicker's surface hardness (HV) of the Ta coating are significantly higher than those of the Ti coating (P < 0.01). Ta coating has good stability and bone biocompatibility; the extraordinary physical characteristics of Ta coating have great significance in maintaining prosthetic stability and surface porosity after implantation.
Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover
2012-06-01
The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.
Cryogenic Properties of Aluminum Beryllium and Beryllium Materials
NASA Technical Reports Server (NTRS)
Gamwell, Wayne R.; McGill, Preston B.
2003-01-01
Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-320 F) and (-252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMetl62 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions." O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMetl62 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.
Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding.
Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit
2015-01-01
We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10-20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%.
Ultimate pier and contraction scour prediction in cohesive soils at selected bridges in Illinois
Straub, Timothy D.; Over, Thomas M.; Domanski, Marian M.
2013-01-01
The Scour Rate In COhesive Soils-Erosion Function Apparatus (SRICOS-EFA) method includes an ultimate scour prediction that is the equilibrium maximum pier and contraction scour of cohesive soils over time. The purpose of this report is to present the results of testing the ultimate pier and contraction scour methods for cohesive soils on 30 bridge sites in Illinois. Comparison of the ultimate cohesive and noncohesive methods, along with the Illinois Department of Transportation (IDOT) cohesive soil reduction-factor method and measured scour are presented. Also, results of the comparison of historic IDOT laboratory and field values of unconfined compressive strength of soils (Qu) are presented. The unconfined compressive strength is used in both ultimate cohesive and reduction-factor methods, and knowing how the values from field methods compare to the laboratory methods is critical to the informed application of the methods. On average, the non-cohesive method results predict the highest amount of scour, followed by the reduction-factor method results; and the ultimate cohesive method results predict the lowest amount of scour. The 100-year scour predicted for the ultimate cohesive, noncohesive, and reduction-factor methods for each bridge site and soil are always larger than observed scour in this study, except 12% of predicted values that are all within 0.4 ft of the observed scour. The ultimate cohesive scour prediction is smaller than the non-cohesive scour prediction method for 78% of bridge sites and soils. Seventy-six percent of the ultimate cohesive predictions show a 45% or greater reduction from the non-cohesive predictions that are over 10 ft. Comparing the ultimate cohesive and reduction-factor 100-year scour predictions methods for each bridge site and soil, the scour predicted by the ultimate cohesive scour prediction method is less than the reduction-factor 100-year scour prediction method for 51% of bridge sites and soils. Critical shear stress remains a needed parameter in the ultimate scour prediction for cohesive soils. The unconfined soil compressive strength measured by IDOT in the laboratory was found to provide a good prediction of critical shear stress, as measured by using the erosion function apparatus in a previous study. Because laboratory Qu analyses are time-consuming and expensive, the ability of field-measured Rimac data to estimate unconfined soil strength in the critical shear–soil strength relation was tested. A regression analysis was completed using a historic IDOT dataset containing 366 data pairs of laboratory Qu and field Rimac measurements from common sites with cohesive soils. The resulting equations provide a point prediction of Qu, given any Rimac value with the 90% confidence interval. The prediction equations are not significantly different from the identity Qu = Rimac. The alternative predictions of ultimate cohesive scour presented in this study assume Qu will be estimated using Rimac measurements that include computed uncertainty. In particular, the ultimate cohesive predicted scour is greater than observed scour for the entire 90% confidence interval range for predicting Qu at the bridges and soils used in this study, with the exception of the six predicted values that are all within 0.6 ft of the observed scour.
Design variables for mechanical properties of bone tissue scaffolds.
Howk, Daniel; Chu, Tien-Min G
2006-01-01
The reconstruction of segmental defect in long bone is a clinical challenge. Multiple surgeries are typically required to restore the structure and function of the affected defect site. In order to overcome this defect a biodegradable bone tissue engineering scaffold is used. This scaffold acts as a carrier of proteins and growth factors, while also supporting the load that the bone would normally sustain, until the natural bone can regenerate in its place. Work was done to optimize an existing solid free-form scaffold design. The goal of the optimization was to increase the porosity of the scaffold while maintaining the strength of a previously-tested prototype design. With this in mind, eight new designs were created. These designs were drawn using CAD software and then through the use of finite element analysis the theoretical ultimate compressive strength of each design was obtained. Each scaffold design was constructed by casting a thermal-curable poly(propylene fumarate)/tricalcium phosphate (PPF/TCP) suspension into wax molds fabricated on inkjet printing rapid prototyping machine. The constructs were then experimentally tested by applying a uniaxial compressive load. The theoretical and experimental values of ultimate compressive strength and specific strength of each design were compared. Theoretically, the best scaffold design produced from this work improved upon the current design by increasing the porosity by 46% and also increasing the ultimate compressive strength by 27%. The experimental data was found to match the theoretical strength in four designs, but deviate from the theoretical strength in five designs. The reasons for the deviations and their relation to the rapid prototyping manufacturing technique were discussed. The results of this work show that it is possible to increase the porosity and strength of a bone tissue engineering scaffold through simple iterations in architectural design.
Reliability analysis of structures under periodic proof tests in service
NASA Technical Reports Server (NTRS)
Yang, J.-N.
1976-01-01
A reliability analysis of structures subjected to random service loads and periodic proof tests treats gust loads and maneuver loads as random processes. Crack initiation, crack propagation, and strength degradation are treated as the fatigue process. The time to fatigue crack initiation and ultimate strength are random variables. Residual strength decreases during crack propagation, so that failure rate increases with time. When a structure fails under periodic proof testing, a new structure is built and proof-tested. The probability of structural failure in service is derived from treatment of all the random variables, strength degradations, service loads, proof tests, and the renewal of failed structures. Some numerical examples are worked out.
Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan
2014-07-01
The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a “sandwich structure” as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50–55% of ultimate tensile strength). The dynamic modulus (E⁎) was found to stay almost constant at 47 GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials.
Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan
2014-07-01
The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a "sandwich structure" as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50-55% of ultimate tensile strength). The dynamic modulus (E(⁎)) was found to stay almost constant at 47GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Ultimate Strength of Double Hull Oil Tanker Due to Grounding and Collision
NASA Astrophysics Data System (ADS)
Izaak Latumahina, Samuel; Zubair Muis Alie, Muhammad; Sitepu, Ganding
2018-02-01
The damaged tanker by grounding and collision may totally collapse if loss its buoyancy, stability and suffer structural failure. The objective of the present study is to investigate the ultimate strength of double hull oil tanker under vertical bending moments due to grounding and collision. The damages are modelled by removing the elements consist of stiffened and unstiffened plates from the damages part. One-frame space of the double hull oil tanker is taken to be analysed. Two damages cases are considered in the analyses those are grounding and collision. The transversal damage extent for grounding are 10%, 25%, 40% and 55%. The groundings are placed at symmetric position on the outer bottom part. For the case of collision, the vertical damage extent are taken as 10%, 20%, 40% and 60%. The transversal damages extent is taken to be B/16 and it is constant for all collision damages. The investigation of the ultimate strength is performed by the Non-Linear Finite Element Analysis method under moment control. The boundary condition is applied with fully constrained on all nodes at the aft-end, while the rigid linked on all nodes is attached at the fore-end with respect to the reference point on the neutral axis. The initial imperfection, welding residual stress and crack are not considered in the analyses. The results obtained by Non-Linear Finite Element Analyses for the ultimate strength are compared with the in-house program using Smith’s method implemented in HULLST. The stress distribution and deformation for every case of damages including intact are also discussed in the present study.
Evaluation of the Elastic Properties of Thirteen Silicone Interocclusal Recording Materials
Zietek, Marek
2016-01-01
Background. Addition silicones are popular as dental impression materials and are used in bite registration procedures. Objective. This study aimed to compare the postsetting elasticities and other mechanical properties of thirteen addition silicone interocclusal recording materials. Materials and Methods. The following materials were investigated: Colorbite D, Futar D, Genie Bite, Jet Blue Bite fast, Memoreg 2, O-Bite, Occlufast Rock, Omni-Bite Plus, Regidur i, Registrado X-tra, Regofix transparent, StoneBite, and Variotime Bite. Thirty specimens of each material were tested. The elasticities and strengths of the materials were measured with a universal testing machine, and computer software was used to determine the E-moduli, ultimate tensile strengths, and ultimate elongations of the specimens. Results. The results were subjected to statistical analysis using the Kruskal-Wallis test (p ≤ 0.05). The statistics revealed that the mean E-modulus values varied significantly across the materials (p = 0.000) and were highest for the StoneBite and Registrado X-tra and lowest for the Regofix transparent. The ultimate tensile strengths were highest for the Regofix transparent and Registrado X-tra (p = 0.000) and lowest for the Jet Blue Bite fast and Memoreg 2 (p = 0.000). The elongation percentages at the point of breaking varied significantly across the materials (p = 0.000); the lowest value was observed for the StoneBite, whereas the Regofix transparent nearly doubled original length. Conclusions. The authors concluded that materials with the high E-moduli and great ultimate tensile strengths may be most useful clinically. Registrado X-tra and StoneBite best met these criteria. PMID:27747239
Test and Analysis of a Hyper-X Carbon-Carbon Leading Edge Chine
NASA Technical Reports Server (NTRS)
Smith, Russell W.; Sikora, Joseph G.; Lindell, Michael C.
2005-01-01
During parts production for the X43A Mach 10 hypersonic vehicle nondestructive evaluation (NDE) of a leading edge chine detected on imbedded delamination near the lower surface of the part. An ultimate proof test was conducted to verify the ultimate strength of this leading edge chine part. The ultimate proof test setup used a pressure bladder design to impose a uniform distributed pressure field over the bi-planar surface of the chine test article. A detailed description of the chine test article and experimental test setup is presented. Analysis results from a linear status model of the test article are also presented and discussed. Post-test inspection of the specimen revealed no visible failures or areas of delamination.
Long Term Displacement Data of Woven Fabric Webbings Under Constant Load for Inflatable Structures
NASA Technical Reports Server (NTRS)
Kenner, Winfred S.; Jones, Thomas C.; Doggett, William R.; Lucy, Melvin H.; Grondin, Trevor A.; Whitley, Karen S.; Duncan, Quinton; Plant, James V.
2014-01-01
Inflatable modules for space applications offer weight and launch volume savings relative to current metallic modules. Limited data exist on the creep behavior of the restraint layer of inflatable modules. Long-term displacement and strain data of two high strength woven fabric webbings, Kevlar and Vectran, under constant load is presented. The creep behavior of webbings is required by designers to help determine service life parameters of inflatable modules. Four groups of different webbings with different loads were defined for this study. Group 1 consisted of 4K Kevlar webbings loaded to 33% ultimate tensile strength and 6K Vectran webbings loaded to 27% ultimate tensile strength, group 2 consisted of 6K Kevlar webbings loaded to 40% and 43% ultimate tensile strength, and 6K Vectran webbings loaded to 50% ultimate tensile strength, group 3 consisted of 6K Kevlar webbings loaded to 52% ultimate tensile strength and 6K Vectran webbings loaded to 60% ultimate tensile strength, and group 4 consisted of 12.5K Kevlar webbings loaded to 22% ultimate tensile strength, and 12.5K Vectran webbings loaded to 22% ultimate tensile strength. The uniquely designed test facility, hardware, displacement measuring devices, and test data are presented. Test data indicate that immediately after loading all webbings stretch an inch or more, however as time increases displacement values significantly decrease to fall within a range of several hundredth of an inch over the remainder of test period. Webbings in group 1 exhibit near constant displacements and strains over a 17-month period. Data acquisition was suspended after the 17th month, however webbings continue to sustain load without any local webbing damage as of the 21st month of testing. Webbings in group 2 exhibit a combination of initial constant displacement and subsequent increases in displacement rates over a 16-month period. Webbings in group 3 exhibit steady increases in displacement rates leading to webbing failure over a 3-month period. Five of six webbings experienced local damage and subsequent failure in group 3. Data from group 4 indicates increasing webbing displacements over a 7-month period. All webbings in groups 1, 2, and 4 remain suspended without any local damage as of the writing of this paper. Variations in facility temperatures over test period seem to have had limited effect on long-term webbing displacement data.
Ultimate strength analysis of inland tank barges
DOT National Transportation Integrated Search
1997-06-16
In an effort to understand the cause of recent catastrophic failures of inland tank barges and reduce the possibility of future casualties, the Coast Guard Marine Safety Center (MSC) studied the buckling" phenomenon. In conclusion, inland tank barges...
Improved stud configurations for attaching laminated wood wind turbine blades
NASA Technical Reports Server (NTRS)
Fadoul, J. R.
1985-01-01
A series of bonded stud design configurations was screened on the basis of tension-tension cyclic tests to determine the structural capability of each configuration for joining a laminated wood structure (wind turbine blade) to a steel flange (wind turbine hub). Design parameters which affected the joint strength (ultimate and fatigue) were systematically varied and evaluated through appropriate testing. Two designs showing the most promise were used to fabricate addiate testing. Two designs showing the most promise were used to fabricate additional test specimens to determine ultimate strength and fatigue curves. Test results for the bonded stud designs demonstrated that joint strengths approaching the 10,000 to 12,000 psi ultimate strength and 5000 psi high cycle fatigue strength of the wood epoxy composite could be achieved.
Flury, Simon; Schmidt, Stefanie Zita; Peutzfeldt, Anne; Lussi, Adrian
2016-10-01
The aim was to investigate dentin bond strength of two resin-ceramic materials and five cements after 24 h and six months storage. Cylinders (n=15/group) of Lava Ultimate (3M ESPE) and VITA ENAMIC (VITA Zahnfabrik) were cemented to mid-coronal dentin of 300 extracted human molars with RelyX Ultimate (3M ESPE), PANAVIA F2.0 (Kuraray), Variolink II (Ivoclar Vivadent), els cem (Saremco Dental), or Ketac Cem Plus (3M ESPE). Shear bond strength (SBS) was measured after 24 h or six months storage (37°C, 100% humidity) and statistically analyzed (significance level: α=0.05). SBS varied markedly between Lava Ultimate and VITA ENAMIC, between the five cements, and between storage of either 24 h or six months. After six months, SBS was highest when Lava Ultimate was cemented with RelyX Ultimate and when VITA ENAMIC was cemented with RelyX Ultimate or with Variolink II. Lava Ultimate was somewhat more sensitive to storage than was VITA ENAMIC.
Probabilistic Modeling of Ceramic Matrix Composite Strength
NASA Technical Reports Server (NTRS)
Shan, Ashwin R.; Murthy, Pappu L. N.; Mital, Subodh K.; Bhatt, Ramakrishna T.
1998-01-01
Uncertainties associated with the primitive random variables such as manufacturing process (processing temperature, fiber volume ratio, void volume ratio), constituent properties (fiber, matrix and interface), and geometric parameters (ply thickness, interphase thickness) have been simulated to quantify the scatter in the first matrix cracking strength (FMCS) and the ultimate tensile strength of SCS-6/RBSN (SiC fiber (SCS-6) reinforced reaction-bonded silicon nitride composite) ceramic matrix composite laminate at room temperature. Cumulative probability distribution function for the FMCS and ultimate tensile strength at room temperature (RT) of (0)(sub 8), (0(sub 2)/90(sub 2), and (+/-45(sub 2))(sub S) laminates have been simulated and the sensitivity of primitive variables to the respective strengths have been quantified. Computationally predicted scatter of the strengths for a uniaxial laminate have been compared with those from limited experimental data. Also the experimental procedure used in the tests has been described briefly. Results show a very good agreement between the computational simulation and the experimental data. Dominating failure modes in (0)(sub 8), (0/90)(sub s) and (+/-45)(sub S) laminates have been identified. Results indicate that the first matrix cracking strength for the (0)(sub S), and (0/90)(sub S) laminates is sensitive to the thermal properties, modulus and strengths of both the fiber and matrix whereas the ultimate tensile strength is sensitive to the fiber strength and the fiber volume ratio. In the case of a (+/-45)(sub S), laminate, both the FMCS and the ultimate tensile strengths have a small scatter range and are sensitive to the fiber tensile strength as well as the fiber volume ratio.
Prediction of Composite Laminate Strength Properties Using a Refined Zigzag Plate Element
NASA Technical Reports Server (NTRS)
Barut, Atila; Madenci, Erdogan; Tessler, Alexander
2013-01-01
This study presents an approach that uses the refined zigzag element, RZE(exp2,2) in conjunction with progressive failure criteria to predict the ultimate strength of composite laminates based on only ply-level strength properties. The methodology involves four major steps: (1) Determination of accurate stress and strain fields under complex loading conditions using RZE(exp2,2)-based finite element analysis, (2) Determination of failure locations and failure modes using the commonly accepted Hashin's failure criteria, (3) Recursive degradation of the material stiffness, and (4) Non-linear incremental finite element analysis to obtain stress redistribution until global failure. The validity of this approach is established by considering the published test data and predictions for (1) strength of laminates under various off-axis loading, (2) strength of laminates with a hole under compression, and (3) strength of laminates with a hole under tension.
Effects of porosity on weld-joint tensile strength of aluminum alloys
NASA Technical Reports Server (NTRS)
Lovoy, C. V.
1974-01-01
Tensile properties in defect-free weldments of aluminum alloys 2014-T6 and 2219-T87 (sheet and plate) are shown to be related to the level or concentration of induced simulated porosity. The scatter diagram shows that the ultimate tensile strength of the weldments displays the most pronounced linear relationship with the level of porosity. The relationships between yield strength or elongation and porosity are either trivial or inconsequential in the lower and intermediate levels of porosity content. In highly concentrated levels of porosity, both yield strength and elongation values decrease markedly. Correlation coefficients were obtained by simple straight line regression analysis between the variables of ultimate tensile strength and pore level. The coefficients were greater, indicating a better correlation, using a pore area accumulation concept or pore volume accumulation than the accumulation of the pore diameters. These relationships provide a useful tool for assessing the existing aerospace radiographic acceptance standards with respect to permissible porosity. In addition, these relationships, in combination with known design load requirements, will serve as an engineering guideline in determining when a weld repair is necessary based on accumulative pore level as detected by radiographic techniques.
Torsion Tests of 24S-T Aluminum-alloy Noncircular Bar and Tubing
NASA Technical Reports Server (NTRS)
Moore, R L; Paul, D A
1943-01-01
Tests of 24S-T aluminum alloy have been made to determine the yield and ultimate strengths in torsion of noncircular bar and tubing. An approximate basis for predicting these torsional strength characteristics has been indicated. The results show that the torsional stiffness and maximum shearing stresses within the elastic range may be computed quite closely by means of existing formulas based on mathematical analysis and the membrane analogy.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.
2002-01-01
Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.
Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.
Wu, Yue; Nan, Bo; Chen, Liang
2014-01-01
3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N.
Ultimate Strength of Ferro-Geopolymer Composite Built-Up I Joist
NASA Astrophysics Data System (ADS)
Vipin, K. T.; Ganesan, N.; Indira, P. V.
2017-07-01
An experimental study was carried out to study the behaviour of ferro-geopolymer built-up I- joist with different types of mesh reinforcements under flexure. Mesh reinforcements considered in this study are square welded meshes, square woven meshes and hexagonal meshes. First crack load as well as ultimate strength of ferro-geopolymer built-up I-joist in flexure was obtained. An attempt was made to predict the first crack load and ultimate moment capacity of the specimen.
High Temperature Mechanical Characterization of Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.
1998-01-01
A high temperature mechanical characterization laboratory has been assembled at NASA Lewis Research Center. One contribution of this work is to test ceramic matrix composite specimens in tension in environmental extremes. Two high temperature tensile testing systems were assembled. The systems were assembled based on the performance and experience of other laboratories and meeting projected service conditions for the materials in question. The systems use frames with an electric actuator and a center screw. A PC based data acquisition and analysis system is used to collect and analyze the data. Mechanical extensometers are used to measure specimen strain. Thermocouples, placed near the specimen, are used to measure the specimen gage section temperature. The system for testing in air has a resistance element furnace with molybdenum disilicide elements and pneumatic grips with water cooling attached to hydraulic alignment devices. The system for testing in an inert gas has a graphite resistance element furnace in a chamber with rigidly mounted, water cooled, hydraulically actuated grips. Unidirectional SiC fiber reinforced reaction bonded Si3N4 and triaxially woven, two dimensional, SiC fiber reinforced enhanced SiC composites were tested in unidirectional tension. Theories for predicting the Young's modulus, modulus near the ultimate strength, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of SiC/RBSN and enhanced SiC/SiC composites. The SiC/RBSN composite exhibited pseudo tough behavior (increased area under the stress/strain curve) from 22 C to 1500 C. The rule of mixtures provides a good estimate of the Young's modulus of the SiC/RBSN composite using the constituent properties from room temperature to 1440 C for short term static tensile tests in air or nitrogen. The rule of mixtures significantly overestimates the secondary modulus near the ultimate strength. The ACK theory provides the best approximation of the first matrix cracking stress when residual stresses are ignored. The theory of Cao and Thouless, based on Weibull statistics, gave the best prediction for the composite ultimate strength. The enhanced SiC/SiC composite exhibited nonlinear stress/strain behavior from 24 C to 1370 C in air with increased ultimate strain when compared to monolithic SiC. The theory of Yang and Chou with the assumption of a frictional fiber/matrix interface provided the best estimate of the Young's modulus. The theory of Cao and Thouless gave the best estimate for the ultimate strength.
14 CFR 23.572 - Metallic wing, empennage, and associated structures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... principal structural element, and that the remaining structure is able to withstand a static ultimate load... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES... experience: (1) A fatigue strength investigation in which the structure is shown by tests, or by analysis...
14 CFR 23.572 - Metallic wing, empennage, and associated structures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... principal structural element, and that the remaining structure is able to withstand a static ultimate load... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES... experience: (1) A fatigue strength investigation in which the structure is shown by tests, or by analysis...
14 CFR 23.572 - Metallic wing, empennage, and associated structures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... principal structural element, and that the remaining structure is able to withstand a static ultimate load... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES... experience: (1) A fatigue strength investigation in which the structure is shown by tests, or by analysis...
14 CFR 23.572 - Metallic wing, empennage, and associated structures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... principal structural element, and that the remaining structure is able to withstand a static ultimate load... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES... experience: (1) A fatigue strength investigation in which the structure is shown by tests, or by analysis...
14 CFR 23.572 - Metallic wing, empennage, and associated structures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... principal structural element, and that the remaining structure is able to withstand a static ultimate load... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES... experience: (1) A fatigue strength investigation in which the structure is shown by tests, or by analysis...
NASA Astrophysics Data System (ADS)
Ghosh, Nabendu; Kumar, Pradip; Nandi, Goutam
2016-10-01
Welding input process parameters play a very significant role in determining the quality of the welded joint. Only by properly controlling every element of the process can product quality be controlled. For better quality of MIG welding of Ferritic stainless steel AISI 409, precise control of process parameters, parametric optimization of the process parameters, prediction and control of the desired responses (quality indices) etc., continued and elaborate experiments, analysis and modeling are needed. A data of knowledge - base may thus be generated which may be utilized by the practicing engineers and technicians to produce good quality weld more precisely, reliably and predictively. In the present work, X-ray radiographic test has been conducted in order to detect surface and sub-surface defects of weld specimens made of Ferritic stainless steel. The quality of the weld has been evaluated in terms of yield strength, ultimate tensile strength and percentage of elongation of the welded specimens. The observed data have been interpreted, discussed and analyzed by considering ultimate tensile strength ,yield strength and percentage elongation combined with use of Grey-Taguchi methodology.
NASA Astrophysics Data System (ADS)
Kala, Jiří; Kala, Zdeněk
2011-09-01
The objective of the paper is to analyze the influence of initial imperfections on the behaviour of thin-walled girders welded of slender plate elements. In parallel with experiments, one of the ultimate load tests was computer modelled. In so doing, the girder was modelled, using the geometrically and materially non-linear variant of the shell finite element method, by the ANSYS program. The shape changing during loading process is often accompanying with sudden "snap-through" i. e. rapid curvature change.
NASA Astrophysics Data System (ADS)
Abdul Hakeem, Z.; Noorsuhada, M. N.; Azmi, I.; Noor Syafeekha, M. S.; Soffian Noor, M. S.
2017-12-01
In this study, steel fibre reinforced concrete (SFRC) beams strengthened with carbon fibre reinforced polymer (CFRP) were investigated using acoustic emission (AE) technique. Three beams with dimension of 150 mm width, 200 mm depth and 1500 mm length were fabricated. The results generated from AE parameters were analysed as well as signal strength and cumulative signal strength. Three relationships were produced namely load versus deflection, signal strength versus time and cumulative signal strength with respect to time. Each relationship indicates significant physical behaviour as the crack propagated in the beams. It is found that an addition of steel fibre in the concrete mix and strengthening of CFRP increase the ultimate load of the beam and the activity of signal strength. Moreover, the highest signal strength generated can be identified. From the study, the occurrence of crack in the beam can be predicted using AE signal strength.
Structural analysis of a ship on global aspect using ANSYS
NASA Astrophysics Data System (ADS)
Rahman, M. Muzibur; Kamol, Rajia Sultana; Islam, Reyana
2017-12-01
Ship is a complex geometry which undergoes a combination of loadings such as hydrostatic, hydrodynamic, wind, wave etc. at sea and thus adequate strength in a ship has always been one of the most challenging tasks for the ship designers. International Maritime Organization (IMO) and classification societies are providing the standards to ensure the adequacy of strength for the ship against all demands throughout its service life. Thus, structural analysis is needed to assess the overall strength of hull, and the means in this regard are based on finite element method which may be applied either local or global aspect of the ship. This paper is an attempt to carry out the structural analysis of a ship in global aspect using ANSYS software to locate the most stress concentration and deformed area, which will have ultimate effect on fatigue fracture.
NASA Astrophysics Data System (ADS)
Lee, Tae-Hyuk; Suh, Ho-Young; Han, Seul-Ki; Noh, Jae-Soo; Lee, Jong-Hyeon
2016-10-01
The intergranular carbide precipitation behavior and its effect on the tensile properties were investigated in alloy 690. The precipitation of intergranular carbides, identified as Cr-rich M23C6, was retarded on the low-angle grain boundaries and the coincidence-site lattice boundaries. The M23C6 carbides have a cube-cube orientation relationship with the matrix. The ultimate tensile strength, yield strength, and elongation of the solution annealed alloy 690 are 648.2 ± 8.2 MPa, 242.8 ± 10.5 MPa and 44.9 ± 2.3%, respectively. The ultimate tensile strength and the yield strength increased to 764.8 ± 7.8 MPa and 364.8 ± 10.2 MPa until the aging time reached 16 h. This increase is ascribed to the M23C6 carbide acting as reinforcements. However, when the aging time exceed 16 h, these properties gradually decreased with increasing aging time. The decrease in ultimate tensile strength, yield strength, and elongation were mainly caused by the intergranular cracking due to the low bond strength between the carbide and the matrix.
Ultimate Longitudinal Strength of Composite Ship Hulls
NASA Astrophysics Data System (ADS)
Zhang, Xiangming; Huang, Lingkai; Zhu, Libao; Tang, Yuhang; Wang, Anwen
2017-01-01
A simple analytical model to estimate the longitudinal strength of ship hulls in composite materials under buckling, material failure and ultimate collapse is presented in this paper. Ship hulls are regarded as assemblies of stiffened panels which idealized as group of plate-stiffener combinations. Ultimate strain of the plate-stiffener combination is predicted under buckling or material failure with composite beam-column theory. The effects of initial imperfection of ship hull and eccentricity of load are included. Corresponding longitudinal strengths of ship hull are derived in a straightforward method. A longitudinally framed ship hull made of symmetrically stacked unidirectional plies under sagging is analyzed. The results indicate that present analytical results have a good agreement with FEM method. The initial deflection of ship hull and eccentricity of load can dramatically reduce the bending capacity of ship hull. The proposed formulations provide a simple but useful tool for the longitudinal strength estimation in practical design.
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Bigelow, C. A.; Bahei-El-din, Y. A.
1983-01-01
Experimental results for five laminate orientations of boron/aluminum composites containing either circular holes or crack-like slits are presented. Specimen stress-strain behavior, stress at first fiber failure, and ultimate strength were determined. Radiographs were used to monitor the fracture process. The specimens were analyzed with a three-dimensional elastic-elastic finite-element model. The first fiber failures in notched specimens with laminate orientation occurred at or very near the specimen ultimate strength. For notched unidirectional specimens, the first fiber failure occurred at approximately one-half of the specimen ultimate strength. Acoustic emission events correlated with fiber breaks in unidirectional composites, but did not for other laminates. Circular holes and crack-like slits of the same characteristic length were found to produce approximately the same strength reduction. The predicted stress-strain responses and stress at first fiber failure compared very well with test data for laminates containing 0 deg fibers.
Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco
2016-01-01
Background: The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. Materials and Methods: In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Results: Post-hoc Tukey testing showed that the highest shear strength values (P < 0.001) were reported in Group 2. The lowest data (P < 0.001) were recorded in Group 3. Conclusion: Within the limitations of this in vitro study, conventional resin cements (coupled with etch and rinse or self-etch adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion. PMID:27076822
Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco
2016-01-01
The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Post-hoc Tukey testing showed that the highest shear strength values (P < 0.001) were reported in Group 2. The lowest data (P < 0.001) were recorded in Group 3. Within the limitations of this in vitro study, conventional resin cements (coupled with etch and rinse or self-etch adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion.
The Assessment of the Ultimate Hull Girder Strength of RO-RO Ship after Damages
NASA Astrophysics Data System (ADS)
Zubair Muis Alie, Muhammad; Sitepu, Ganding; Izaak Latumahin, Samuel
2018-03-01
Many accidents of Ro-Ro ships happen in Indonesia such as collision and grounding. When the collision or grounding takes place on the Ro-Ro ship, the ultimate strength of hull structure after damage becomes decrease. Car and passenger decks are critical location since collision and/or grounding occur. In the present study, the assessment of the ultimate hull girder strength is conducted. The cross section of Ro-Ro ship is taken to be analyzed. The collision and grounding damages are assumed to be palced on the side and bottom area, respectively. The damages are created by removing the element from the side shell and bottom part. Finally, the result obtained is compared with one another.
NASA Astrophysics Data System (ADS)
Golub, V. P.; Pogrebniak, A. D.; Kochetkova, E. S.
2008-01-01
The prediction of the high-cycle fatigue strength of polymeric and composite materials in asymmetric loading is considered. The problem is solved on the basis of a nonlinear model of ultimate state allowing us to describe all typical forms of the diagrams of ultimate stresses. The material constants of the model are determined from the results of fatigue tests in symmetric reversed cycling, in a single fatigue test with the minimum stress equal to zero, and in a short-term strength test. The fatigue strength characteristics of some polymers, glass-fiber laminates, glass-fiber-reinforced plastics, organic-fiber-reinforced plastics, and wood laminates in asymmetric tension-compression, bending, and torsion have been calculated and approved experimentally.
Sonmez, Nesrin; Gultekin, Pinar; Turp, Volkan; Akgungor, Gokhan; Sen, Deniz; Mijiritsky, Eitan
2018-01-08
Polymer infiltrated ceramics and nano-ceramic resins are the new restorative materials which have been developed in order to enhance the adverse properties of glass-matrix ceramics and resin composites. The aim of the present in vitro study was to evaluate the characteristics of various CAD/CAM materials through mechanical, microstructural, and SEM analysis. Five test groups (n = 22) were formed by using the indicated CAD/CAM blocks: VITA Enamic (VITA Zahnfabrik), Lava Ultimate (3 M ESPE), IPS e.max CAD (Ivoclar Vivadent), IPS Empress CAD (Ivoclar Vivadent), and VITA Mark II (VITA Zahnfabrik). Two specimens from each test group were used for XRD and EDS analysis. Remaining samples were divided into two subgroups (n = 10). One subgroup specimens were thermocycled (5 °C to 55 °C, 30s, 10,000 cycles) whereas the other were not. All of the specimens were evaluated in terms of flexural strength, Vickers hardness, and fracture toughness. Results were statistically analyzed using two-way ANOVA, one-way ANOVA, Tukey's HSD, and Student's t tests (α = .05). Fractured specimens were evaluated using SEM. The highest Vickers microhardness value was found for VITA Mark II (p < .001), however flexural strength and fracture toughness results were lowest conversely (p < .05). IPS e.max CAD was found to have the highest flexural strength (p < .001). Fracture toughness of IPS e.max CAD was also higher than other tested block materials (p < .001). Lava Ultimate and VITA Enamic's mechanical properties were affected negatively from thermocycling (p < .05). Microhardness, flexural strength, and fracture toughness values of Lava Ultimate and VITA Enamic were found to be similar to VITA Mark II and IPS Empress CAD groups. It should be realised that simulated aging process seem to affect ceramic-polymer composite materials more significantly than glass ceramics.
NASA Astrophysics Data System (ADS)
Soltani, Mohammadreza; Atrian, Amir
2018-02-01
This paper investigates the high-temperature tensile behavior of Al-SiC nanocomposite reinforced with 0, 1.5, and 3 vol% SiC nano particles. To fabricate the samples, SiC nano reinforcements and aluminum (Al) powders were milled using an attritor milling and then were cold pressed and hot extruded at 500 °C. Afterward, mechanical and microstructural characteristics were studied in different temperatures. To this end, tensile and compressive tests, micro-hardness test, microscopic examinations, and XRD analysis were performed. The results showed significant improvement of mechanical properties of Al-SiC nanocomposite in room temperature including 40% of ultimate tensile strength (UTS), 36% of ultimate compressive strength (UCS), and 44% of micro-hardness. Moreover, performing tensile tests at elevated temperatures (up to 270 °C) decreased the tensile strength by about 53%, 46%, and 45% for Al-0 vol% SiC, Al-1.5 vol% SiC, and Al-3 vol% SiC, respectively. This temperature rise also enhanced the elongation by about 11% and 133% for non-reinforced Al and Al-3 vol% SiC, respectively.
Kurutz, Márta; Donáth, Judit; Gálos, Miklós; Varga, Péter; Fornet, Béla
2008-01-01
Objective To obtain the compressive load bearing and energy absorption capacity of lumbar vertebrae of osteoporotic elderly for the everyday medical praxis in terms of the simple diagnostic data, like computed tomography (CT), densitometry, age, and sex. Methods Compressive test of 54 osteoporotic cadaver vertebrae L1 and L2, 16 males and 38 females (age range 43–93, mean age 71.6 ± 13.3 years, mean bone mineral density (BMD) 0.377 ± 0.089 g/cm2, mean T-score −5.57 ± 0.79, Z-score −4.05 ± 0.77) was investigated. Based on the load-displacement diagrams and the measured geometrical parameters of vertebral bodies, proportional, ultimate and yield stresses and strains, Young’s modulus, ductility and energy absorption capacity were determined. Three vertebral regions were distinguished: superior, central and inferior regions, but certain parameters were calculated for the upper/ lower intermediate layers, as well. Cross-sectional areas, and certain bone tissue parameters were determined by image analysis of CT pictures of vertebrae. Sex- and age-related decline functions and trends of strength characteristics were determined. Results Size-corrected failure load was 15%–25% smaller in women, proportional and ultimate stresses were about 30%–35% smaller for women in any region, and 20%–25% higher in central regions for both sexes. Young’s moduli were about 30% smaller in women in any region, and 20%–25% smaller in the central region for both sexes. Small strains were higher in males, large strains were higher in females, namely, proportional strains were about 25% larger in men, yield and ultimate strains were quasi equal for sexes, break strains were 10% higher in women. Ultimate energy absorption capacity was 10%–20% higher in men; the final ductile energy absorption capacity was quasi equal for sexes in all levels. Age-dependence was stronger for men, mainly in central regions (ultimate load, male: r = −0.66, p < 0.01, female: r = −0.52, p < 0.005; ultimate stress, male: r = −0.69, p < 0.01, female: r = −0.50, p < 0.005; Young’s modulus, male: r = −0.55, p < 0.05, female: r = −0.52, p < 0.005, ultimate stiffness, male: r = −0.58, p < 0.05, female: r = −0.35, p < 0.03, central ultimate absorbed energy density, male: r = −0.59, p < 0.015, female: r = −0.29, p < 0.08). Conclusions For the strongly osteoporotic population (BMD < 0.4 g/cm2, T-score < −4) the statical variables (loads, stresses) showed significant correlation; mixed variables (stiffness, Young’s modulus, energy) showed moderate correlation; kinematical variables (displacements, strains) showed no correlation with age. The strong correlation of men between BMD and aging (r = −0.82, p < 0.001) and betwen BMD and strength parameters (r = 0.8–0.9, p < 0.001) indicated linear trends in age-related strength loss for men; however, the moderate correlation of women between BMD and aging (r = −0.47, p < 0.005) and between BMD and strength parameters (r = 0.4–0.5, p < 0.005) suggested the need of nonlinear (quadratic) approximation that provided the better fit in age-related strength functions of females modelling postmenopausal disproportionalities. PMID:21197342
Temperature effects on the mechanical properties of annealed and HERF 304L stainless steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoun, Bonnie R.
2004-11-01
The effect of temperature on the tensile properties of annealed 304L stainless steel and HERF 304L stainless steel forgings was determined by completing experiments over the moderate range of -40 F to 160 F. Temperature effects were more significant in the annealed material than the HERF material. The tensile yield strength of the annealed material at -40 F averaged twenty two percent above the room temperature value and at 160 F averaged thirteen percent below. The tensile yield strength for the three different geometry HERF forgings at -40 F and 160 F changed less than ten percent from room temperature.more » The ultimate tensile strength was more temperature dependent than the yield strength. The annealed material averaged thirty six percent above and fourteen percent below the room temperature ultimate strength at -40 F and 160 F, respectively. The HERF forgings exhibited similar, slightly lower changes in ultimate strength with temperature. For completeness and illustrative purposes, the stress-strain curves are included for each of the tensile experiments conducted. The results of this study prompted a continuation study to determine tensile property changes of welded 304L stainless steel material with temperature, documented separately.« less
NASA Astrophysics Data System (ADS)
Pelekh, B. L.; Marchuk, M. V.; Kogut, I. S.
1992-06-01
The stress-strain state of an adhesive joint between cylindrical components made of a metal (steel) and a cross-reinforced filament-wound composite (glass/polymer or basalt/polymer) was investigated under static axial loading using newly proposed experimental techniques and a refined mathematical model. Analytical expressions are obtained for contact stresses in the adhesive joint. The maximum permissible load and the ultimate shear strength of the joint are determined. The experimental results are found to be in satisfactory agreement with model predictions.
The strength of polyaxial locking interfaces of distal radius plates.
Hoffmeier, Konrad L; Hofmann, Gunther O; Mückley, Thomas
2009-10-01
Currently available polyaxial locking plates represent the consequent enhancement of fixed-angle, first-generation locking plates. In contrast to fixed-angle locking plates which are sufficiently investigated, the strength of the new polyaxial locking options has not yet been evaluated biomechanically. This study investigates the mechanical strength of single polyaxial interfaces of different volar radius plates. Single screw-plate interfaces of the implants Palmar 2.7 (Königsee Implantate und Instrumente zur Osteosynthese GmbH, Allendorf, Germany), VariAx (Stryker Leibinger GmbH & Co. KG, Freiburg, Germany) und Viper (Integra LifeSciences Corporation, Plainsboro, NJ, USA) were tested by cantilever bending. The strength of 0 degrees, 10 degrees and 20 degrees screw locking angle was obtained during static and dynamic loading. The Palmar 2.7 interfaces showed greater ultimate strength and fatigue strength than the interfaces of the other implants. The strength of the VariAx interfaces was about 60% of Palmar 2.7 in both, static and dynamic loading. No dynamic testing was applied to the Viper plate because of its low ultimate strength. By static loading, an increase in screw locking angle caused a reduction of strength for the Palmar 2.7 and Viper locking interfaces. No influence was observed for the VariAx locking interfaces. During dynamic loading; angulation had no influence on the locking strength of Palmar 2.7. However, reduction of locking strength with increasing screw angulation was observed for VariAx. The strength of the polyaxial locking interfaces differs remarkably between the examined implants. Depending on the implant an increase of the screw locking angle causes a reduction of ultimate or fatigue strength, but not in all cases a significant impact was observed.
Schoenfeld, Brad J; Grgic, Jozo; Ogborn, Dan; Krieger, James W
2017-12-01
Schoenfeld, BJ, Grgic, J, Ogborn, D, and Krieger, JW. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res 31(12): 3508-3523, 2017-The purpose of this article was to conduct a systematic review of the current body of literature and a meta-analysis to compare changes in strength and hypertrophy between low- vs. high-load resistance training protocols. Searches of PubMed/MEDLINE, Cochrane Library, and Scopus were conducted for studies that met the following criteria: (a) an experimental trial involving both low-load training [≤60% 1 repetition maximum (1RM)] and high-load training (>60% 1RM); (b) with all sets in the training protocols being performed to momentary muscular failure; (c) at least one method of estimating changes in muscle mass or dynamic, isometric, or isokinetic strength was used; (d) the training protocol lasted for a minimum of 6 weeks; (e) the study involved participants with no known medical conditions or injuries impairing training capacity. A total of 21 studies were ultimately included for analysis. Gains in 1RM strength were significantly greater in favor of high- vs. low-load training, whereas no significant differences were found for isometric strength between conditions. Changes in measures of muscle hypertrophy were similar between conditions. The findings indicate that maximal strength benefits are obtained from the use of heavy loads while muscle hypertrophy can be equally achieved across a spectrum of loading ranges.
Mechanical properties of Ti-6Al-4V specimens produced by shaped metal deposition
Baufeld, Bernd; van der Biest, Omer
2009-01-01
Shaped metal deposition is a novel technique to build near net-shape components layer by layer by tungsten inert gas welding. Especially for complex shapes and small quantities, this technique can significantly lower the production cost of components by reducing the buy-to-fly ratio and lead time for production, diminishing final machining and preventing scrap. Tensile testing of Ti-6Al-4V components fabricated by shaped metal deposition shows that the mechanical properties are competitive to material fabricated by conventional techniques. The ultimate tensile strength is between 936 and 1014 MPa, depending on the orientation and location. Tensile testing vertical to the deposition layers reveals ductility between 14 and 21%, whereas testing parallel to the layers gives a ductility between 6 and 11%. Ultimate tensile strength and ductility are inversely related. Heat treatment within the α+β phase field does not change the mechanical properties, but heat treatment within the β phase field increases the ultimate tensile strength and decreases the ductility. The differences in ultimate tensile strength and ductility can be related to the α lath size and orientation of the elongated, prior β grains. The micro-hardness and Young’s modulus are similar to conventional Ti-6Al-4V with low oxygen content. PMID:27877271
Double row equivalent for rotator cuff repair: A biomechanical analysis of a new technique.
Robinson, Sean; Krigbaum, Henry; Kramer, Jon; Purviance, Connor; Parrish, Robin; Donahue, Joseph
2018-06-01
There are numerous configurations of double row fixation for rotator cuff tears however, there remains to be a consensus on the best method. In this study, we evaluated three different double-row configurations, including a new method. Our primary question is whether the new anchor and technique compares in biomechanical strength to standard double row techniques. Eighteen prepared fresh frozen bovine infraspinatus tendons were randomized to one of three groups including the New Double Row Equivalent, Arthrex Speedbridge and a transosseous equivalent using standard Stabilynx anchors. Biomechanical testing was performed on humeri sawbones and ultimate load, strain, yield strength, contact area, contact pressure, and a survival plots were evaluated. The new double row equivalent method demonstrated increased survival as well as ultimate strength at 415N compared to the remainder testing groups as well as equivalent contact area and pressure to standard double row techniques. This new anchor system and technique demonstrated higher survival rates and loads to failure than standard double row techniques. This data provides us with a new method of rotator cuff fixation which should be further evaluated in the clinical setting. Basic science biomechanical study.
[Design and fabrication of the custom-made titanium condyle by selective laser melting technology].
Chen, Jianyu; Luo, Chongdai; Zhang, Chunyu; Zhang, Gong; Qiu, Weiqian; Zhang, Zhiguang
2014-10-01
To design and fabricate the custom-made titanium mandibular condyle by the reverse engineering technology combined with selective laser melting (SLM) technology and to explore the mechanical properties of the SLM-processed samples and the application of the custom-made condyle in the temporomandibular joint (TMJ) reconstruction. The three-dimensional model of the mandibular condyle was obtained from a series of CT databases. The custom-made condyle model was designed by the reverse engineering software. The mandibular condyle was made of titanium powder with a particle size of 20-65 µm as the basic material and the processing was carried out in an argon atmosphere by the SLM machine. The yield strength, ultimate strength, bending strength, hardness, surface morphology and roughness were tested and analyzed. The finite element analysis (FEA) was used to analyze the stress distribution. The complex geometry and the surface of the custom-made condyle can be reproduced precisely by the SLM. The mechanical results showed that the yield strength, ultimate strength, bending strength and hardness were (559±14) MPa, (659±32) MPa, (1 067±42) MPa, and (212±4)HV, respectively. The surface roughness was reduced by sandblast treatment. The custom-made titanium condyle can be fabricated by SLM technology which is time-saving and highly digitized. The mechanical properties of the SLM sample can meet the requirements of surgical implant material in the clinic. The possibility of fabricating custom-made titanium mandibular condyle combined with the FEA opens new interesting perspectives for TMJ reconstruction.
Parametric Methods for Determining the Characteristics of Long-Term Metal Strength
NASA Astrophysics Data System (ADS)
Nikitin, V. I.; Rybnikov, A. I.
2018-06-01
A large number of parametric methods were proposed to calculate the characteristics of the long-term strength of metals. All of them are based on the fact that temperature and time are mutually compensating factors in the processes of metal degradation at high temperature under the action of a constant stress. The analysis of the well-known Larson-Miller, Dorn-Shcherby, Menson-Haferd, Graham-Wallace, and Trunin parametric equations is performed. The widely used Larson-Miller parameter was subjected to a detailed analysis. The application of this parameter to the calculation of ultimate long-term strength for steels and alloys is substantiated provided that the laws of exponential dependence on temperature and power dependence on strength for the heat resistance are observed. It is established that the coefficient C in the Larson- Miller equation is a characteristic of the heat resistance and is different for each material. Therefore, the use of a universal constant C = 20 in parametric calculations, as well as an a priori presetting of numerical C values for each individual group of materials, is unacceptable. It is shown in what manner it is possible to determine an exact value of coefficient C for any material of interest as well as to obtain coefficient C depending on stress in case such a dependence is manifested. At present, the calculation of long-term strength characteristics can be performed to a sufficient accuracy using Larson-Miller's parameter and its refinements described therein as well as on the condition that a linear law in logσ- P dependence is observed and calculations in the interpolation range is performed. The use of the presented recommendations makes it possible to obtain a linear parametric logσ- P dependence, which makes it possible to determine to a sufficient accuracy the values of ultimate long-term strength for different materials.
NASA Astrophysics Data System (ADS)
Al-Rousan, R. Z.
2015-09-01
The main objective of this study was to assess the effect of the number and schemes of carbon-fiber-reinforced polymer (CFRP) sheets on the capacity of bending moment, the ultimate displacement, the ultimate tensile strain of CFRP, the yielding moment, concrete compression strain, and the energy absorption of RC beams and to provide useful relationships that can be effectively utilized to determine the required number of CFRP sheets for a necessary increase in the flexural strength of the beams without a major loss in their ductility. To accomplish this, various RC beams, identical in their geometric and reinforcement details and having different number and configurations of CFRP sheets, are modeled and analyzed using the ANSYS software and a nonlinear finite-element analysis.
NASA Astrophysics Data System (ADS)
Kori, P. S.; Vanarotti, Mohan; Angadi, B. M.; Nagathan, V. V.; Auradi, V.; Sakri, M. I.
2017-08-01
Experimental investigations are carried out to study the influence of copper coated Silicon carbide (SiC) reinforcements in Aluminum (Al) based Al-SiC composites. Wear behavior and mechanical Properties like, ultimate tensile strength (UTS) and hardness are studied in the present work. Experimental results clearly revealed that, an addition of SiC particles (5, 10 and 15 Wt %) has lead in the improvement of hardness and ultimate tensile strength. Al-SiC composites containing the Copper coated SiC reinforcements showed better improvement in mechanical properties compared to uncoated ones. Characterization of Al-SiC composites are carried out using optical photomicrography and SEM analysis. Wear tests are carried out to study the effects of composition and normal pressure using Pin-On Disc wear testing machine. Results suggested that, wear rate decreases with increasing SiC composition, further an improvement in wear resistance is observed with copper coated SiC reinforcements in the Al-SiC metal matrix composites (MMC’s).
Design and fabrication of a micron scale free-standing specimen for uniaxial micro-tensile tests
NASA Astrophysics Data System (ADS)
Tang, Jun; Wang, Hong; Li, Shi Chen; Liu, Rui; Mao, Sheng Ping; Li, Xue Ping; Zhang, Cong Chun; Ding, Guifu
2009-10-01
This paper presents a novel design and fabrication of test chips with a nickel free-standing specimen for the micro uniaxial tensile test. To fabricate test chips on the quartz substrate significantly reduces the fabrication time, minimizes the number of steps and eliminates the effect of the wet anisotropic etching process on mechanical properties. The test chip can be gripped tightly to the test machine and aligned accurately in the pulling direction; furthermore, the approximately straight design of the specimen rather than the traditional dog-bone structure enables the strain be directly measured by a displacement sensor. Both finite-element method (FEM) analysis and experimental results indicate the reliability of the new design. The test chip can also be extended to other materials. The experimental measured Young's modulus of a thin nickel film and the ultimate tensile strength are approximately 94.5 Gpa and 1.76 Gpa, respectively. The results were substantially supported by the experiment on larger gauge specimens by a commercial dynamic mechanical analysis (DMA) instrument. These specimens were electroplated under the same conditions. The low Young's modulus and the high ultimate tensile strength might be explained by the fine grain in the electroplated structure.
NASA Astrophysics Data System (ADS)
Gholamhoseini, Alireza
2018-03-01
Composite one-way concrete slabs with profiled steel decking as permanent formwork are commonly used in the construction industry. The steel decking supports the wet concrete of a cast in situ reinforced or post-tensioned concrete slab and, after the concrete sets, acts as external reinforcement. In this type of slab, longitudinal shear failure between the concrete and the steel decking is the most common type of failure at the ultimate load stage. Design codes require the experimental evaluation of the ultimate load capacity and longitudinal shear strength of each type of steel decking using full-scale tests on simple-span slabs. There is also no procedure in current design codes to evaluate the ultimate load capacity and longitudinal shear strength of continuous composite slabs and this is often assessed experimentally by full-scale tests. This paper presents the results of three full-scale tests up to failure on continuous composite concrete slabs cast with trapezoidal steel decking profile (KF70) that is widely used in Australia. Slab specimens were tested in four-point bending at each span with shear spans of span/4. The longitudinal shear failure of each slab is evaluated and the measured mid-span deflection, the end slip and the mid-span steel and concrete strains are also presented and discussed. Redistribution of bending moment in each slab is presented and discussed. A finite element model is proposed and verified by experimental data using interface element to model the bond properties between steel decking and concrete slab and investigate the ultimate strength of continuous composite concrete slabs.
Pfrommer, Andreas; Henning, Anke
2017-05-01
The ultimate intrinsic signal-to-noise ratio (SNR) is a coil independent performance measure to compare different receive coil designs. To evaluate this benchmark in a sample, a complete electromagnetic basis set is required. The basis set can be obtained by curl-free and divergence-free surface current distributions, which excite linearly independent solutions to Maxwell's equations. In this work, we quantitatively investigate the contribution of curl-free current patterns to the ultimate intrinsic SNR in a spherical head-sized model at 9.4 T. Therefore, we compare the ultimate intrinsic SNR obtained with having only curl-free or divergence-free current patterns, with the ultimate intrinsic SNR obtained from a combination of curl-free and divergence-free current patterns. The influence of parallel imaging is studied for various acceleration factors. Moreover results for different field strengths (1.5 T up to 11.7 T) are presented at specific voxel positions and acceleration factors. The full-wave electromagnetic problem is analytically solved using dyadic Green's functions. We show, that at ultra-high field strength (B 0 ⩾7T) a combination of curl-free and divergence-free current patterns is required to achieve the best possible SNR at any position in a spherical head-sized model. On 1.5- and 3T platforms, divergence-free current patterns are sufficient to cover more than 90% of the ultimate intrinsic SNR. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Berry, David M.; Stansberry, Mark
1989-01-01
Using the ANSYS finite element program, a global model of the aft skirt and a detailed nonlinear model of the failure region was made. The analysis confirmed the area of failure in both STA-2B and STA-3 tests as the forging heat affected zone (HAZ) at the aft ring centerline. The highest hoop strain in the HAZ occurs in this area. However, the analysis does not predict failure as defined by ultimate elongation of the material equal to 3.5 percent total strain. The analysis correlates well with the strain gage data from both the Wyle influence test of the original design aft sjirt and the STA-3 test of the redesigned aft skirt. it is suggested that the sensitivity of the failure area material strength and stress/strain state to material properties and therefore to small manufacturing or processing variables is the most likely cause of failure below the expected material ultimate properties.
Evaluation of Rhenium Joining Methods
NASA Technical Reports Server (NTRS)
Reed, Brian D.; Morren, Sybil H.
1995-01-01
Coupons of rhenium-to-Cl03 flat plate joints, formed by explosive and diffusion bonding, were evaluated in a series of shear tests. Shear testing was conducted on as-received, thermally-cycled (100 cycles, from 21 to 1100 C), and thermally-aged (3 and 6 hrs at 1100 C) joint coupons. Shear tests were also conducted on joint coupons with rhenium and/or Cl03 electron beam welded tabs to simulate the joint's incorporation into a structure. Ultimate shear strength was used as a figure of merit to assess the effects of the thermal treatment and the electron beam welding of tabs on the joint coupons. All of the coupons survived thermal testing intact and without any visible degradation. Two different lots of as-received, explosively-bonded joint coupons had ultimate shear strengths of 281 and 310 MPa and 162 and 223 MPa, respectively. As-received, diffusion-bonded coupons had ultimate shear strengths of 199 and 348 MPa. For the most part, the thermally-treated and rhenium weld tab coupons had shear strengths slightly reduced or within the range of the as-received values. Coupons with Cl03 weld tabs experienced a significant reduction in shear strength. The degradation of strength appeared to be the result of a poor heat sink provided during the electron beam welding. The Cl03 base material could not dissipate heat as effectively as rhenium, leading to the formation of a brittle rhenium-niobium intermetallic.
Tendon material properties vary and are interdependent among turkey hindlimb muscles
Matson, Andrew; Konow, Nicolai; Miller, Samuel; Konow, Pernille P.; Roberts, Thomas J.
2012-01-01
SUMMARY The material properties of a tendon affect its ability to store and return elastic energy, resist damage, provide mechanical feedback and amplify or attenuate muscle power. While the structural properties of a tendon are known to respond to a variety of stimuli, the extent to which material properties vary among individual muscles remains unclear. We studied the tendons of six different muscles in the hindlimb of Eastern wild turkeys to determine whether there was variation in elastic modulus, ultimate tensile strength and resilience. A hydraulic testing machine was used to measure tendon force during quasi-static lengthening, and a stress–strain curve was constructed. There was substantial variation in tendon material properties among different muscles. Average elastic modulus differed significantly between some tendons, and values for the six different tendons varied nearly twofold, from 829±140 to 1479±106 MPa. Tendons were stretched to failure, and the stress at failure, or ultimate tensile stress, was taken as a lower-limit estimate of tendon strength. Breaking tests for four of the tendons revealed significant variation in ultimate tensile stress, ranging from 66.83±14.34 to 112.37±9.39 MPa. Resilience, or the fraction of energy returned in cyclic length changes was generally high, and one of the four tendons tested was significantly different in resilience from the other tendons (range: 90.65±0.83 to 94.02±0.71%). An analysis of correlation between material properties revealed a positive relationship between ultimate tensile strength and elastic modulus (r2=0.79). Specifically, stiffer tendons were stronger, and we suggest that this correlation results from a constrained value of breaking strain, which did not vary significantly among tendons. This finding suggests an interdependence of material properties that may have a structural basis and may explain some adaptive responses observed in studies of tendon plasticity. PMID:22771746
Tendon material properties vary and are interdependent among turkey hindlimb muscles.
Matson, Andrew; Konow, Nicolai; Miller, Samuel; Konow, Pernille P; Roberts, Thomas J
2012-10-15
The material properties of a tendon affect its ability to store and return elastic energy, resist damage, provide mechanical feedback and amplify or attenuate muscle power. While the structural properties of a tendon are known to respond to a variety of stimuli, the extent to which material properties vary among individual muscles remains unclear. We studied the tendons of six different muscles in the hindlimb of Eastern wild turkeys to determine whether there was variation in elastic modulus, ultimate tensile strength and resilience. A hydraulic testing machine was used to measure tendon force during quasi-static lengthening, and a stress-strain curve was constructed. There was substantial variation in tendon material properties among different muscles. Average elastic modulus differed significantly between some tendons, and values for the six different tendons varied nearly twofold, from 829±140 to 1479±106 MPa. Tendons were stretched to failure, and the stress at failure, or ultimate tensile stress, was taken as a lower-limit estimate of tendon strength. Breaking tests for four of the tendons revealed significant variation in ultimate tensile stress, ranging from 66.83±14.34 to 112.37±9.39 MPa. Resilience, or the fraction of energy returned in cyclic length changes was generally high, and one of the four tendons tested was significantly different in resilience from the other tendons (range: 90.65±0.83 to 94.02±0.71%). An analysis of correlation between material properties revealed a positive relationship between ultimate tensile strength and elastic modulus (r(2)=0.79). Specifically, stiffer tendons were stronger, and we suggest that this correlation results from a constrained value of breaking strain, which did not vary significantly among tendons. This finding suggests an interdependence of material properties that may have a structural basis and may explain some adaptive responses observed in studies of tendon plasticity.
Huang, Zhen
2017-01-01
This paper uses experimental investigation and theoretical derivation to study the unified failure mechanism and ultimate capacity model of reinforced concrete (RC) members under combined axial, bending, shear and torsion loading. Fifteen RC members are tested under different combinations of compressive axial force, bending, shear and torsion using experimental equipment designed by the authors. The failure mechanism and ultimate strength data for the four groups of tested RC members under different combined loading conditions are investigated and discussed in detail. The experimental research seeks to determine how the ultimate strength of RC members changes with changing combined loads. According to the experimental research, a unified theoretical model is established by determining the shape of the warped failure surface, assuming an appropriate stress distribution on the failure surface, and considering the equilibrium conditions. This unified failure model can be reasonably and systematically changed into well-known failure theories of concrete members under single or combined loading. The unified calculation model could be easily used in design applications with some assumptions and simplifications. Finally, the accuracy of this theoretical unified model is verified by comparisons with experimental results. PMID:28414777
COTS Ceramic Chip Capacitors: An Evaluation of the Parts and Assurance Methodologies
NASA Technical Reports Server (NTRS)
Sampson, Michael J.
2004-01-01
This viewgraph presentation profiles an experiment to evaluate the suitability of commercial off-the-shelf (COTS) ceramic chip capacitors for NASA spaceflight applications. The experiment included: 1) Voltage Conditioning ('Burn-In'); 2) Highly Accelerated Life Test (HALT); 3) Destructive Physical Analysis (DPA); 4) Ultimate Voltage Breakdown Strength. The presentation includes results for each of the capacitors used in the experiment.
Tamboli, Mallika; Mihata, Teruhisa; Hwang, James; McGarry, Michelle H; Kang, Yangmi; Lee, Thay Q
2014-03-01
We investigated the effects of bite-size horizontal mattress stitch (distance between the limbs passed through the tendon) on the biomechanical properties of the repaired tendon. We anchored 20 bovine Achilles tendons to bone using no. 2 high-strength suture and 5-mm titanium suture anchors in a mattress-suture technique. Tendons were allocated randomly into two groups of ten each to receive stitches with a 4- or 10-mm bite. Specimens underwent cyclic loading from 5 to 30 N at 1 mm/s for 30 cycles, followed by tensile testing to failure. Gap formation, tendon strain, hysteresis, stiffness, yield load, ultimate load, energy to yield load, and energy to ultimate load were compared between groups using unpaired t tests. The 4-mm group had less (p < 0.05) gap formation and less (p < 0.05) longitudinal strain than did the 10-mm group. Ultimate load (293.6 vs. 148.9 N) and energy to ultimate load (2,563 vs. 1,472 N-mm) were greater (p < 0.001) for the 10-mm group than the 4-mm group. All tendons repaired with 4-mm suturing failed at the suture-tendon interface, with sutures pulling through the tendon, whereas the suture itself failed before the tendon did in seven of the ten specimens in the 10-mm group. Whereas a 4-mm bite fixed the tendon more tightly but at the cost of decreased ultimate strength, a 10-mm bite conveyed greater ultimate strength but with increased gap and strain. These results suggest that for the conventional double-row repair, small mattress stitches provide a tighter repair, whereas large stitches are beneficial to prevent sutures from pulling through the tendon after surgery. For suture-bridge rotator cuff repair, large stitches are beneficial because the repaired tendon has a higher strength, and the slightly mobile medial knot can be tightened by lateral fixation.
Bieńko, Marek; Radzki, Radosław Piotr; Wolski, Dariusz
2017-09-21
This study evaluates the effects of three different doses of chromium sulphate on bone density and the tomographic parameters of skeletal tissue of rats. The experiment was performed on 40 male Wistar rats which received, by gavage, during 90 days, a chromium sulphate in either a daily dose of 400, 600 or 800 µg/kg BW. At the end of experiment, the rats were scanned using the densitometry method (DXA) to determine the bone mineral density, bone mineral content of total skeleton and vertebral column (L2-L4) and parameters of body composition (Lean Mass and Fat Mass). The isolated femora were scanned using peripheral a quantitative computed tomography method (pQCT) for a separate analysis of the trabecular and cortical bone tissue. The ultimate strength, work to ultimate and the Young modulus of femora was also investigated by the three-point bending test. The negative impact of chromium was observed in relation to bone tissue. All doses significantly decreased total skeleton density and mineral content, and also had impact upon the isolated femora and vertebral column. Trabecular volumetric bone mineral density and trabecular bone mineral content measured by pQCT in distal femur metaphysis were significantly lower in the experimental groups than in the control. Higher doses of chromium also significantly decreased values of ultimate strength and Young modulus in the investigated femora. The results of the experiment demonstrate that chromium sulphate is dose dependent, and exerts a disadvantageous effect on the skeleton, as it decreases bone density and resistance.
An investigation of the compressive strength of Kevlar 49/epoxy composites
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.; Rosen, B. W.; Rice, J. S.
1975-01-01
Tests were performed to evaluate the effect of a wide range of variables including matrix properties, interface properties, fiber prestressing, secondary reinforcement, and others on the ultimate compressive strength of Kevlar 49/epoxy composites. Scanning electron microscopy is used to assess the resulting failure surfaces. In addition, a theoretical study is conducted to determine the influence of fiber anisotropy and lack of perfect bond between fiber and matrix on the shear mode microbuckling. The experimental evaluation of the effect of various constituent and process characteristics on the behavior of these unidirectional composites in compression did not reveal any substantial increase in strength. However, theoretical evaluations indicate that the high degree of fiber anisotropy results in a significant drop in the predicted stress level for internal instability. Scanning electron microscope data analysis suggests that internal fiber failure and smooth surface debonding could be responsible for the measured low compressive strengths.
Effects of Welding Parameters on Mechanical Properties in Electron Beam Welded CuCrZr Alloy Plates
NASA Astrophysics Data System (ADS)
Jaypuria, Sanjib; Doshi, Nirav; Pratihar, Dilip Kumar
2018-03-01
CuCrZr alloys are attractive structural materials for plasma-facing components (PFC) and heat sink element in the International Thermonuclear Experimental Reactor (ITER) fusion reactors. This material has gained so much attention because of its high thermal conductivity and fracture toughness, high resistance to radiation damage and stability at elevated temperatures. The objective of this work is to study the effects of electron beam welding parameters on the mechanical strength of the butt welded CuCrZr joint. Taguchi method is used as the design of experiments to optimize the input parameters, such as accelerating voltage, beam current, welding speed, oscillation amplitude and frequency. The joint strength and ductility are the desired responses, which are measured through ultimate tensile strength and percent elongation, respectively. Accelerating voltage and welding speed are found to have significant influence on the strength. A combination of low amplitude and high-frequency oscillation is suggested for the higher joint strength and ductility. There is a close agreement between Taguchi predicted results and experimental ones. Fractographic analysis of joint and weld zone analysis are carried out to study the failure behaviour and microstructural variation in the weld zone, respectively.
NASA Technical Reports Server (NTRS)
Sikora, Paul F.; Hall, Robert W.
1961-01-01
Specimens of wrought sintered commercially pure tungsten were made from 1/8-inch swaged rods. All the specimens were recrystallized at 4050 F for 1 hour prior to testing at temperatures from 2500 to 4000 F at various strain rates from 0.002 to 20 inches per inch per minute. Results showed that, at a constant temperature, increasing the strain rate increased the ultimate tensile strength significantly. The effects of both strain rate and temperature on the ultimate tensile strength of tungsten may be correlated by the linear parameter method of Manson and Haferd and may be used to predict the ultimate tensile strength at higher temperatures, 4500 and 5000 F. As previously reported, ductility, as measured by reduction of area in a tensile test, decreases with increasing temperature above about 3000 F. Increasing the strain rate at temperatures above 3000 F increases the ductility. Fractures are generally transgranular at the higher strain rates and intergranular at the lower strain rates.
Joshua, Opeyemi; Olusola, Kolapo O; Oyeyemi, Kehinde D; Ogunde, Ayodeji O; Amusan, Lekan M; Nduka, David O; Abuka-Joshua, Joyce
2018-04-01
The data presented herein are compilations of the research summary of "Assessment of the Quality of Steel Reinforcement Bars Available in Nigerian Market" (Joshua et al., 2013) [1]. This data article provides information on the properties and cost of steel rebars used in reinforced concrete in Lagos, Nigeria. The data is based on the properties of 12 mm rebar brands which are the most used steel diameter in construction and they include actual diameters, yield strengths, ultimate strengths, ultimate/yield strength ratio, ductility and the cost of each brand. This data also contains the limiting standard properties of the highlighted properties in this data.
Study on the Connecting Length of CFRP
NASA Astrophysics Data System (ADS)
Liu, Xiongfei; Li, Yue; Li, Zhanguo
2018-05-01
The paper studied the varying mode of shear stress in the connecting zone of CFRP. Using epoxy resin (EP) as bond material, performance of specimens with different connecting length of CFRP was tested to obtain the conclusion. CFRP-confined concrete column was tested subsequently to verify the conclusion. The results show that: (1) The binding properties of modified epoxy resin with CFRP is good; (2) As the connecting length increased, the ultimate tensile strength of CFRP increased as well in the range of the experiment parameters; (3) Tensile strength of CFRP can reach the ultimate strength when the connecting length is 90mm;(4) The connecting length of 90mm of CFRP meet the reinforcement requirements.
Ultimate strength capacity of a square hollow section filled with fibrous foamed concrete
NASA Astrophysics Data System (ADS)
Amirah Azra Khairuddin, Siti; Rahman, Norashidah Abd; Jamaluddin, Norwati; Jaini, Zainorizuan Mohd; Ali, Noorwirdawati
2017-11-01
Concrete-filled sections used as building columns have become popular due to their architectural and structural elements. In recent years, there has been a renewed call for the improvement of materials used as concrete to fill the composite columns. Among these materials, foamed concrete has received great attention due to its structural characteristics and its potential as a construction material used in hollow sections. However, its behaviors as infill material in a hollow section, such as its strength and failure mode, should be investigated. In this study, experimental research was conducted to compare the experimental and theoretical values of its ultimate strength capacity. Eight specimens of hollow steel sections with two different thicknesses were filled with fibrous foamed concrete and then subjected to compression load. The obtained results were compared with those obtained from a hollow section with the same thicknesses, but were filled with normal foamed concrete. Results show that the ultimate strength capacity of the experimental value is the same as that of the theoretical value based on Eurocode 4. The largest percentage values between theoretical and experimental results for thicknesses of 2 and 4 mm are 58% and 55%, respectively.
NASA Astrophysics Data System (ADS)
Adalarasan, R.; Santhanakumar, M.
2015-01-01
In the present work, yield strength, ultimate strength and micro-hardness of the lap joints formed with Al 6061 alloy sheets by using the processes of Tungsten Inert Gas (TIG) welding and Metal Inert Gas (MIG) welding were studied for various combinations of the welding parameters. The parameters taken for study include welding current, voltage, welding speed and inert gas flow rate. Taguchi's L9 orthogonal array was used to conduct the experiments and an integrated technique of desirability grey relational analysis was disclosed for optimizing the welding parameters. The ignored robustness in desirability approach is compensated by the grey relational approach to predict the optimal setting of input parameters for the TIG and MIG welding processes which were validated through the confirmation experiments.
[Global Atmospheric Chemistry/Transport Modeling and Data-Analysis
NASA Technical Reports Server (NTRS)
Prinn, Ronald G.
1999-01-01
This grant supported a global atmospheric chemistry/transport modeling and data- analysis project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for trace gases; (b) utilization of these inverse methods which use either the Model for Atmospheric Chemistry and Transport (MATCH) which is based on analyzed observed winds or back- trajectories calculated from these same winds for determining regional and global source and sink strengths for long-lived trace gases important in ozone depletion and the greenhouse effect; (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple "titrating" gases; and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important ultimate goals included determination of regional source strengths of important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements, and hydrohalocarbons now used as alternatives to the above restricted halocarbons.
Increase in Ductility of High Carbon Steel Due to Accelerated Precipitation of Cementite
NASA Astrophysics Data System (ADS)
Ali, Muhammad; UlHaq, Ehsan; Ibrahim, Ather; Abdul Karim, Muhammad Ramzan; Ali, A.; Fayyaz, M.; Khera, F. K.
2017-09-01
Eutectoid steel AISI 1080 is studied after annealing at 850°C and thermal cycling treatment (TCT) that involves heating at a rate of 10 K/min to 775°C, holding for 10 min, and cooling at a rate of 95 K/min. An increase is established in the content of cementite precipitating over austenite grain boundaries, and relative elongation with retention of yield and ultimate strengths with an increase in number of TCT cycles. After five cycles relative elongation reaches 29% with ultimate strength of 670 MPa.
EXPERIMENTAL MODELLING OF AORTIC ANEURYSMS
Doyle, Barry J; Corbett, Timothy J; Cloonan, Aidan J; O’Donnell, Michael R; Walsh, Michael T; Vorp, David A; McGloughlin, Timothy M
2009-01-01
A range of silicone rubbers were created based on existing commercially available materials. These silicones were designed to be visually different from one another and have distinct material properties, in particular, ultimate tensile strengths and tear strengths. In total, eleven silicone rubbers were manufactured, with the materials designed to have a range of increasing tensile strengths from approximately 2-4MPa, and increasing tear strengths from approximately 0.45-0.7N/mm. The variations in silicones were detected using a standard colour analysis technique. Calibration curves were then created relating colour intensity to individual material properties. All eleven materials were characterised and a 1st order Ogden strain energy function applied. Material coefficients were determined and examined for effectiveness. Six idealised abdominal aortic aneurysm models were also created using the two base materials of the study, with a further model created using a new mixing technique to create a rubber model with randomly assigned material properties. These models were then examined using videoextensometry and compared to numerical results. Colour analysis revealed a statistically significant linear relationship (p<0.0009) with both tensile strength and tear strength, allowing material strength to be determined using a non-destructive experimental technique. The effectiveness of this technique was assessed by comparing predicted material properties to experimentally measured methods, with good agreement in the results. Videoextensometry and numerical modelling revealed minor percentage differences, with all results achieving significance (p<0.0009). This study has successfully designed and developed a range of silicone rubbers that have unique colour intensities and material strengths. Strengths can be readily determined using a non-destructive analysis technique with proven effectiveness. These silicones may further aid towards an improved understanding of the biomechanical behaviour of aneurysms using experimental techniques. PMID:19595622
Tensile stress-strain behavior of graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Garber, D. P.
1982-01-01
The tensile stress-strain behavior of a variety of graphite/epoxy laminates was examined. Longitudinal and transverse specimens from eleven different layups were monotonically loaded in tension to failure. Ultimate strength, ultimate strain, and strss-strain curves wee obtained from four replicate tests in each case. Polynominal equations were fitted by the method of least squares to the stress-strain data to determine average curves. Values of Young's modulus and Poisson's ratio, derived from polynomial coefficients, were compared with laminate analysis results. While the polynomials appeared to accurately fit the stress-strain data in most cases, the use of polynomial coefficients to calculate elastic moduli appeared to be of questionable value in cases involving sharp changes in the slope of the stress-strain data or extensive scatter.
Tensile stress-strain behavior of hybrid composite laminates
NASA Technical Reports Server (NTRS)
Kennedy, J. M.
1983-01-01
A study was made of the stress-strain response of several hybrid laminates, and the damage was correlated with nonlinear stress-strain response and ultimate strength. The fibers used in the laminates were graphite, S-glass, and Kevlar. Some laminates with graphite fibers had perforated Mylar film between plies, which lowered the interlaminar bond strength. The laminate configurations were chosen to be like those of buffer strips in large panels and fracture coupons. Longitudinal and transverse specimens were loaded in tension to failure. Some specimens were radiographed to reveal damage due to edge effects. Stress-strain response is discussed in terms of damage shown by the radiographs. Ultimate strengths are compared with simple failure criteria, one of which account for damage.
Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments
NASA Astrophysics Data System (ADS)
Zhu, Yong; Qin, Qingquan; Xu, Feng; Fan, Fengru; Ding, Yong; Zhang, Tim; Wiley, Benjamin J.; Wang, Zhong Lin
2012-01-01
This paper reports the quantitative measurement of a full spectrum of mechanical properties of fivefold twinned silver (Ag) nanowires (NWs), including Young's modulus, yield strength, and ultimate tensile strength. In-situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a scanning electron microscope (SEM). Young's modulus, yield strength, and ultimate tensile strength all increased as the NW diameter decreased. The maximum yield strength in our tests was found to be 2.64 GPa, which is about 50 times the bulk value and close to the theoretical value of Ag in the 110 orientation. The size effect in the yield strength is mainly due to the stiffening size effect in the Young's modulus. Yield strain scales reasonably well with the NW surface area, which reveals that yielding of Ag NWs is due to dislocation nucleation from surface sources. Pronounced strain hardening was observed for most NWs in our study. The strain hardening, which has not previously been reported for NWs, is mainly attributed to the presence of internal twin boundaries.
The influence of the compression interface on the failure behavior and size effect of concrete
NASA Astrophysics Data System (ADS)
Kampmann, Raphael
The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.
Indirect and direct tensile behavior of Devonian oil shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, K.P.; Chen, J.L.; Dana, G.F.
1984-03-01
Ultimate indirect tensile strengths of Devonian oil shales across the bedding planes is a mechanical property parameter important to predicting how oil shale will break. This is particularly important to in-situ fragmentation. The Split Cylinder Test was used to determine the indirect tensile strengths between the bedding planes. Test specimens, cored perpendicular to the bedding planes, representing oil shales of different oil yields taken from Silver Point Quad in DeKalb County, Tennessee and Friendship in Scioto County, Ohio, were subjected to the Split Cylinder Test. Linear regression equations relating ultimate tensile strength across the bedding planes to volume percent ofmore » organic matter in the rock were developed from the test data. In addition, direct tensile strengths were obtained between the bedding planes for the Tennessee oil shales. This property is important for the design of horizontal fractures in oil shales. Typical results were presented.« less
Effect of heat treatment on microstructure and mechanical properties of Mg-4Y-1.6Nd-1Sm-0.5Zr alloy
NASA Astrophysics Data System (ADS)
Jia, Guilong; Guo, Erjun; Feng, Yicheng; Wang, Liping; Wang, Changliang
2018-03-01
Microstructure and mechanical properties of Mg-4Y-1.6Nd-1Sm-0.5Zr alloy during heat treatments were investigated, while the room-temperature tensile fractographs were observed and analyzed. The results show that the eutectic phases almost dissolve into the matrix after being solutionized at 525 °C for 8 h. The ultimate tensile strength, yield strength and elongation reach 300 MPa, 219 MPa, 6.5% respectively after being under-aged at 200 °C for 16 h. The ultimate tensile strength and yield strength of the alloy decrease gradually, while the elongation increases gradually with increasing the test temperatures. The room-temperature tensile fracture modes of the as-cast alloy, solutionized alloy, aged alloy are mixed fracture of transgranular and intergranular, transgranular cleavage fracture, transgranular fracture, respectively.
[Influence of sterilization treatments on continuous carbon-fiber reinforced polyolefin composite].
Guan, Shi-bing; Hou, Chun-lin; Chen, Ai-min; Zhang, Wei; Wang, Ji-e
2007-08-21
To evaluate the influence of sterilization treatment on continuous carbon-fiber reinforced polyolefin composite (CFRP) so as to provide experimental reference for selection of sterilization method for CFRP. Seventy bars of CFRP were divided into 7 equal groups to undergo sterilization by autoclave, 2% glutaraldehyde soaking, 75% alcohol soaking, ethylene oxide sterilization, and Co-60 gamma ray irradiation of the dosages 11 kGy, 25 kGy, and 18 kGy respectively, and another 10 bars were used as blank controls. Then the bars underwent three-point bending test and longitudinal compression test so as to measure the biomechanical changes after sterilization treatment, including the maximum load, ultimate strength, and elastic modulus. Three-point bending test showed that the levels of maximum load of the all experimental groups were lower than that of the control group, however, only those of the 3 Co-60 irradiation groups were significantly lower than that of the control group and that Co-60 radiation lowered the level of maximum load dose-dependently; and that the levels of ultimate strength of all the all experimental groups were lower than that of the control group, however, only those of the 3 Co-60 groups were significantly lower than that of the control group and that the higher the dosage of Co-60 radiation the lower the level of ultimate strength, however, not dose-dependently. The elastic modulus of the Co-60 25 KGy group was significantly higher than that of the control group, and there was no significant difference in the level of ultimate strength among the other groups. Longitudinal compression test showed that the levels of maximum load and ultimate strength of the 3 Co-60 irradiation groups, autoclave group, and circular ethylene groups were significantly lower than that of the control group, and there was no significant difference in elastic modulus among different groups. During sterilized package of CFRP products produced in quantity autoclave sterilization and Co-60 gamma ray irradiation sterilization should be avoided. Ethylene oxide is proposed as the best sterilization method. If gamma ray irradiation is to be used further technology improvement is necessary.
NASA Astrophysics Data System (ADS)
Larochelle, Kevin J.
This study focused on moisture and intermediate temperature effects on the embrittlement phenomenon and stress rupture life of the ceramic matrix composite (CMC) made of Sylramic(TM) fibers with an in-situ layer of boron nitride (Syl-iBN), boron nitride interphase (BN), and SiC matrix (Syl-iBN/BN/SiC). Stress rupture tests were performed at 550°C or 750°C with moisture contents of 0.0, 0.2, or 0.6 atm partial pressure of water vapor, pH 2O. The CMC stress rupture strengths at 100 hrs at 550°C with 0.0, 0.2, or 0.6 atm pH2O were 75%, 65% and 51% of the monotonic room temperature tensile strength, respectively. At 750°C, the corresponding strengths were 67%, 51%, and 49%, respectively. Field Emission Scanning Electron Microscopy (FESEM) analysis showed that the amount of pesting by glass formations increased with time, temperature, and pH2O leading to embrittlement. Total embrittlement times for 550°C were estimated to be greater than 63 hrs for 0.0 atm pH2O greater than 38 hrs for 0.2 atm pH 2O and between 8 and 71 hrs for 0.6 atm pH2O. Corresponding estimated embrittlement times for the 750°C were greater than 83 hrs, between 13 and 71 hrs, and between 1 and 6 hrs. A time-dependent, phenomenological, Monte Carlo-type simulation of composite failure was developed. The simulated total embrittlement times for the 550°C cases were 300 hrs, 100 hrs, and 25 hrs for 0.0, 0.2, and 0.6 atm pH 2O, respectively. The corresponding embrittlement times for the 750°C cases were 300 hrs, 20 hrs, and 3 hrs. A detailed sensitivity analysis on the variables used in the model was conducted. The model was most sensitive to variation in the ultimate strength of the CMC at room temperature, the ultimate strength of the CMC at elevated temperature, and the reference strength of a fiber and it was least sensitive to variation in the modulus of elasticity of the matrix and fiber. The sensitivity analysis showed that the stress ruptures curves generated by variation in the total embrittlement time simulate the trends in the experimental data. This research showed that the degree of stress rupture strength degradation increases with temperature, moisture content level, and exposure time.
Latour, R A; Black, J
1992-05-01
Fiber reinforced polymer (FRP) composites are being developed as alternatives to metals for structural orthopedic implant applications. FRP composite fracture behavior and environmental interactions are distinctly different from those which occur in metals. These differences must be accounted for in the design and evaluation of implant performance. Fiber/matrix interfacial bond strength in a FRP composite is known to strongly influence fracture behavior. The interfacial bond strength of four candidate fiber/matrix combinations (carbon fiber/polycarbonate, carbon fiber/polysulfone, polyaramid fiber/polycarbonate, polyaramid fiber/polysulfone) were investigated at 37 degrees C in dry and in vivo simulated (saline, exudate) environments. Ultimate bond strength was measured by a single fiber-microdroplet pull-out test. Dry bond strengths were significantly decreased following exposure to either saline or exudate with bond strength loss being approximately equal in both the saline and exudate. Bond strength loss is attributed to the diffusion of water and/or salt ions into the sample and their interaction with interfacial bonding. Because bond degradation is dependent upon diffusion, diffusional equilibrium must be obtained in composite test samples before the full effect of the test environment upon composite mechanical behavior can be determined.
NASA Astrophysics Data System (ADS)
Obraztsov, S. M.; Konobeev, Yu. V.; Birzhevoy, G. A.; Rachkov, V. I.
2006-12-01
The dependence of mechanical properties of ferritic/martensitic (F/M) steels on irradiation temperature is of interest because these steels are used as structural materials for fast, fusion reactors and accelerator driven systems. Experimental data demonstrating temperature peaks in physical and mechanical properties of neutron irradiated pure iron, nickel, vanadium, and austenitic stainless steels are available in the literature. A lack of such an information for F/M steels forces one to apply a computational mathematical-statistical modeling methods. The bootstrap procedure is one of such methods that allows us to obtain the necessary statistical characteristics using only a sample of limited size. In the present work this procedure is used for modeling the frequency distribution histograms of ultimate strength temperature peaks in pure iron and Russian F/M steels EP-450 and EP-823. Results of fitting the sums of Lorentz or Gauss functions to the calculated distributions are presented. It is concluded that there are two temperature (at 360 and 390 °C) peaks of the ultimate strength in EP-450 steel and single peak at 390 °C in EP-823.
NASA Technical Reports Server (NTRS)
Beil, R. J.
1982-01-01
A theoretical model representing blunting of a crack tip radius through diffusion of vacancies is presented. The model serves as the basis for a computer program which calculates changes, due to successive weld heat passes, in the ultimate tensile strength of 2219-T81 aluminum. In order for the model to yield changes of the same order in the ultimate tensile strength as that observed experimentally, a crack tip radius of the order of .001 microns is required. Such sharp cracks could arise in the fusion zone of a weld from shrinkage cavities or decohered phase boundaries between dendrites and the eutectic phase, or, possibly, from plastic deformation due to thermal stresses encountered during the welding process. Microstructural observations up to X2000 (resolution of about .1 micron) did not, in the fusion zone, show structural details which changed significantly under the influence of a heat pass, with the exception of possible small changes in the configuration of the interdendritic eutectic and in porosity build-up in the remelt zone.
Stawarczyk, Bogna; Teuss, Simona; Eichberger, Marlis; Roos, Malgorzata; Keul, Christine
2015-01-01
Computer aided design/computer aided manufacturing (CAD/CAM) polymers for long-term dental restorations benefit from enhanced mechanical properties. However, the quantification of their bonding properties on teeth is lacking. Therefore, the aim of this study was to determine the retention strength (RS) of differently pretreated new developed polymethylmethacrylate/urethanedimethacrylate-based CAD/CAM polymer bonded on dentin. In summary, 120 human caries-free molars were prepared, and polymeric crowns were milled and pretreated (n = 20): visio.link (VL), Scotchbond Universal (SU), Monobond Plus/Heliobond (MH), Margin Bond (MB), Margin Bond mixed with acetone (1:1) (MBA) or not pretreated (CG). Half of the specimens were cemented using Variolink II and the other half with RelyX Ultimate. Specimens were stored for 24 h in distilled water and thermal cycled (5000 ×, 5 °C/55 °C). The retention load was measured and failure types were defined. RS was calculated and analyzed using both two- and one-way ANOVA with a post-hoc Scheffé-test, unpaired t-test, Kaplan–Meier with Breslow–Gehan test and chi-squared test (p < 0.05). Crowns bonded using RelyX Ultimate showed higher RS than those bonded using Variolink II. The pretreatment showed no impact on the RS. However, survival analysis within Variolink II found an impact of pretreatment. The median RS for MH was the lowest and statistically different from MB, MBA and CG. For Variolink II MH had the poorest survival as the estimated cumulative failure function of the debonded crown increased very quickly with increasing TBS. Within the RelyX Ultimate groups, no significant differences were determined. The newly developed CAD/CAM polymer showed the highest bonding properties after cementation using RelyX Ultimate. PMID:28793651
Characterization of a Ultra-high Temperature Ceramic Composite
NASA Technical Reports Server (NTRS)
Levine, Stanley R.; Opila, Elizabeth J.; Robinson, Raymond C.; Lorincz, Jonathan A.
2003-01-01
Ultra-high temperature ceramics (UHTC) are of interest for hypersonic vehicle leading edge applications. Monolithic UHTCs are of concern because of their low fracture toughness and brittle behavior. UHTC composites (UHTCC) are being investigated as a possible approach to overcome these deficiencies. In this study a small sample of a UHTCC was evaluated by limited mechanical property tests, furnace oxidation exposures, and oxidation exposures in a flowing environment. The composite was prepared from a carbon fiber perform using ceramic particulates and a preceramic polymer. The as-received composite plate was non-uniform from front to back surface. Plate dimensions were 150 x 150 x 6 mm. The back surface had a fibrous, uniform appearance; XRD analysis revealed the presence of Sic and C. The front surface was smooth and non-uniform in appearance with evidence of a coarse grain structure produced by a liquid phase; XRD analysis revealed the presence of HfB2. Microcracks were present throughout the thickness as one might expect from a carbon fiber reinforced composite with attendant large thermal expansion mismatch between the matrix phases and the fibers. The HfB2 phase on the front surface was comparable in thickness to a fiber ply or about 0.6 mm, and surface microcracks were evident. Limited four point flexural tests were carried out at span to depth ratios of approximately 14 and 16 with markedly different results. Tests were run with the front or the back surface in tension. At the shorter span to depth failures occurred under a loading pin for both orientations. At a span to depth of 16 failures occurred in the center of the span with fracture clearly initiating from a tensile failure. Ultimate flexural strength, strain at ultimate stress, stress and strain at deviation from linear elastic behavior are reported. Strains at ultimate stress ranged from about 0.6 to 0.7 % for the back surface in tension, and 0.4 to 0.6 for the front surface in tension. At constant span to depth the strain at ultimate stress was about 0.2% greater for the back surface in tension and the ultimate strength was also higher. Strengths were in line with predictions from theory. Furnace oxidation studies were carried out at 1627 and 1927OC in a static furnace environment using ten minute cycles and one, five, and ten cycles. Limited oxidation studies were also carried out in a flowing oxyacetylene torch environment. Specimens were photographed, and weight and dimensional changes were determined. XRD and SEM characterizations were performed. Weight losses were attributed primarily to carbon fiber oxidation. The composite survived the torch test with little visible distress. Further details will be determined once metallographic studies are completed.
Buyuk, S Kutalmış; Kucukekenci, Ahmet Serkan
2018-03-01
To investigate the shear bond strength (SBS) of orthodontic metal brackets applied to different types of ceramic surfaces treated with different etching procedures and bonding agents. Monolithic CAD/CAM ceramic specimens (N = 120; n = 40 each group) of feldspathic ceramic Vita Mark II, resin nanoceramic Lava Ultimate, and hybrid ceramic Vita Enamic were fabricated (14 × 12 × 3 mm). Ceramic specimens were separated into four subgroups (n = 10) according to type of surface treatment and bonding onto the ceramic surface. Within each group, four subgroups were prepared by phosphoric acid, hydrofluoric acid, Transbond XT primer, and Clearfill Ceramic primer. Mandibular central incisor metal brackets were bonded with light-cure composite. The SBS data were analyzed using three-way analysis of variance (ANOVA) and Tukey HSD tests. The highest SBS was found in the Vita Enamic group, which is a hybrid ceramic, etched with hydrofluoric acid and applied Transbond XT Adhesive primer (7.28 ± 2.49 MPa). The lowest SBS was found in the Lava Ultimate group, which is a resin nano-ceramic etched with hydrofluoric acid and applied Clearfill ceramic primer (2.20 ± 1.21 MPa). CAD/CAM material types and bonding procedures affected bond strength ( P < .05), but the etching procedure did not ( P > .05). The use of Transbond XT as a primer bonding agent resulted in higher SBS.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
2012-01-01
In order to practically utilize ceramic matrix composites in aircraft engine components, robust analysis tools are required that can simulate the material response in a computationally efficient manner. The MAC/GMC software developed at NASA Glenn Research Center, based on the Generalized Method of Cells micromechanics method, has the potential to meet this need. Utilizing MAC/GMC, the effective stiffness properties, proportional limit stress and ultimate strength can be predicted based on the properties and response of the individual constituents. In this paper, the effective stiffness and strength properties for a representative laminated ceramic matrix composite with a large diameter fiber are predicted for a variety of fiber orientation angles and laminate orientations. As part of the analytical study, methods to determine the in-situ stiffness and strength properties of the constituents required to appropriately simulate the effective composite response are developed. The stiffness properties of the representative composite have been adequately predicted for all of the fiber orientations and laminate configurations examined in this study. The proportional limit stresses and strains and ultimate stresses and strains were predicted with varying levels of accuracy, depending on the laminate orientation. However, for the cases where the predictions did not have the desired level of accuracy, the specific issues related to the micromechanics theory were identified which could lead to difficulties that were encountered that could be addressed in future work.
Design optimization of continuous partially prestressed concrete beams
NASA Astrophysics Data System (ADS)
Al-Gahtani, A. S.; Al-Saadoun, S. S.; Abul-Feilat, E. A.
1995-04-01
An effective formulation for optimum design of two-span continuous partially prestressed concrete beams is described in this paper. Variable prestressing forces along the tendon profile, which may be jacked from one end or both ends with flexibility in the overlapping range and location, and the induced secondary effects are considered. The imposed constraints are on flexural stresses, ultimate flexural strength, cracking moment, ultimate shear strength, reinforcement limits cross-section dimensions, and cable profile geometries. These constraints are formulated in accordance with ACI (American Concrete Institute) code provisions. The capabilities of the program to solve several engineering problems are presented.
The Strength and Characteristics of VPPA Welded 2219-T87 Aluminum Alloy
NASA Technical Reports Server (NTRS)
Jemian, W. A.
1985-01-01
A study of the variable polarity plasma arc (VPPA) welding process and those factors that control the structure and properties of VPPA welded aluminum alloy 2219-T87 was conducted. The importance of joint preparation, alignment of parts and welding process variables are already established. Internal weld defects have been eliminated. However, a variation of properties was found to be due to the size variation of interdendritic particles in the fusion zone. These particles contribute to the void formation process, which controls the ultimate tensile strength of the welded alloy. A variation of 150 microns in particle size correlated with a 10 ksi variation of ultimate tensile strength. It was found that all fracture surfaces were of the dimple rupture type, with fracture initiating within the fusion zone.
Riveting in metal airplane construction. Part II : riveting methods and equipment (concluded)
NASA Technical Reports Server (NTRS)
Pleines, Wilhelm
1930-01-01
This report includes descriptive material on rivet inspection, types of rivets and sizes. Tabular data on shearing strength of rivets at failure, ultimate shear of various rivets, tensile tests of rivet plate, and tensile strength values of riveted joints.
Comparison of Finite Element Modeling and Experimental Pressure Distribution in a Diamond Anvil Cell
NASA Astrophysics Data System (ADS)
Kondrat'yev, Andreiy I.; Murphy, Michael J.; Weir, Samuel T.; Vohra, Yogesh K.
2002-10-01
Ultra high pressures can be obtained in a Diamond Anvil Cell (DAC) device by optimizing the geometrical shape of diamond anvil and by use of high strength gasket materials. Radial pressure distribution in a diamond-coated rhenium gasket was measured by the micro-collimated X-ray diffraction techniques at NSLS, Brookhaven National Laboratory up to peak pressure of 220 GPa. The process of DAC compression was described by finite element analysis using NIKE-2D software. The mechanical properties of the diamond-coated gasket material were modeled and radial pressure distribution obtained was in good agreement with the experimental data. The calculated shear stress in diamond in the axial direction was shown to depend strongly on the yield strength of the gasket material and may limit the ultimate pressure that can be obtained with the use of high strength gasket materials. Supported by the National Science Foundation (NSF) Grant No. DMR-0203779.
Does artificial aging affect mechanical properties of CAD/CAM composite materials.
Egilmez, Ferhan; Ergun, Gulfem; Cekic-Nagas, Isil; Vallittu, Pekka K; Lassila, Lippo V J
2018-01-01
The purpose of this study was to determine the flexural strength and Weibull characteristics of different CAD/CAM materials after different in vitro aging conditions. The specimens were randomly assigned to one of the six in vitro aging conditions: (1) water storage (37°C, 3 weeks), (2) boiling water (24h), (3) hydrochloric acid exposure (pH: 1.2, 24h), (4) autoclave treatment (134°C, 200kPa, 12h), (5) thermal cycling (5000 times, 5-55°C), (6) cyclic loading (100N, 50,000 cycles). No treatment was applied to the specimens in control group. Three-point bending test was used for the calculation of flexural strength. The reliability of the strength was assessed by Weibull distribution. Surface roughness and topography was examined by coherence scanning interferometry. Evaluated parameters were compared using the Kruskall-Wallis or Mann-Whitney U test. Water storage, autoclave treatment and thermal cycling significantly decreased the flexural strength of all materials (p<0.05), whereas HCl exposure or cyclic loading did not affect the properties (p>0.05). Weibull moduli of Cerasmart™ and Lava™ Ultimate were similar with control. Vita Enamic ® exhibited similar Weibull moduli in all aging groups except the HCl treated group (p>0.05). R a values of Cerasmart™ and Lava™ Ultimate were in the range of 0.053-0.088μm in the aged groups. However R a results of Vita Enamic ® were larger than 0.2μm. Flexural strength of newly developed restorative CAD/CAM materials was significantly decreased by artificial aging. Cyclic loading or HCl exposure does not affect to the flexural strength and structural reliability of Cerasmart™ and Lava™ Ultimate. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Mechanical properties of untreated and alkaline treated fibers from zalacca midrib wastes
NASA Astrophysics Data System (ADS)
Raharjo, Wahyu Purwo; Soenoko, Rudy; Purnowidodo, Anindito; Choiron, Mochammad Agus; Triyono
2016-03-01
The environmental concern has been raised due to the abundance of waste from synthetic materials which cannot be biodegraded after their life-time. It provides opportunity to exploit natural resources which are neglected. For example, midrib wastes from zalacca plants after cutting are able to utilize as composite reinforcement. The aim of this research was to characterize the mechanical properties of zalacca midrib fibers. As other ones, zalacca midrib fibers consisted of cellulose, hemicellulose and lignin, which their compositions were 42.54, 34.35 and 28.01 % respectively. To raise their cellulose content, the zalacca fibers were alkaline treated by immersion in the sodium hydroxide for 2 hours and rinsing in the distilled water. The concentration of sodium hydroxide was varied 1 and 5%. To investigate the influence of alkaline treatment, the mechanical testing and morphological analysis was performed. The tensile testing was done to obtain ultimate strength, elastic modulus and strain to fracture. The surface morphology of fibers was observed by SEM. The average ultimate tensile strength of zalacca fibers ranged from 182.12 MPa (untreated) to 417.94 MPa (5%NaOH treated). The diameter measurement showed that the alkaline treatment reduce the average fiber diameters due to the decline of the hemicellulose and lignin content as fiber matrix. This caused the increase of the tensile strength and elastic modulus due to the reduction of diameters as divider meanwhile the cellulose content as structural supporter of the fibers was relatively constant. From the SEM analysis, it was shown that the alkaline treatment reduced the fiber matrix so that its surface morphology became rougher due to the microfibrils appearance.
Tensile strength and failure mechanisms of tantalum at extreme strain rates
NASA Astrophysics Data System (ADS)
Hahn, Eric; Fensin, Saryu; Germann, Timothy; Meyers, Marc
Non-equilibrium molecular dynamics simulations are used to probe the tensile response of monocrystalline, bicrystalline, and nanocrystalline tantalum over six orders of magnitude of strain rate. Our analysis of the strain rate dependence of strength is extended to over nine orders of magnitude by bridging the present simulations to recent laser-driven shock experiments. Tensile strength shows a power-law dependence with strain rate over this wide range, with different relationships depending on the initial microstructure and active deformation mechanism. At high strain rates, multiple spall events occur independently and continue to occur until communication occurs by means of relaxation waves. Temperature plays a significant role in the reduction of spall strength as the initial shock required to achieve such large strain rates also contributes to temperature rise, through pressure-volume work as well as visco-plastic heating, which leads to softening and sometimes melting upon release. At ultra-high strain rates, those approaching or exceeding the atomic vibrational frequency, spall strength saturates at the ultimate cohesive strength of the material. UC Research Laboratories Grant (09-LR-06-118456-MEYM); Department of Energy NNSA/SSAP (DE-NA0002080); DOE ASCR Exascale Co-design Center for Materials in Extreme Environments.
Muon catalyzed fusion beam window mechanical strength testing and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ware, A.G.; Zabriskie, J.M.
A thin aluminum window (0.127 mm (0.005-inch) thick x 146 mm (5 3/4-inch) diameter) of 2024-T6 alloy was modeled and analyzed using the ABAQUS non-linear finite element analysis code. A group of windows was fabricated, heat-treated and subsequently tested. Testing included both ultimate burst pressure and fatigue. Fatigue testing cycles involved ''oil-canning'' behavior representing vacuum purge and reversal to pressure. Test results are compared to predictions and the mode of failure is discussed. Operational requirements, based on the above analysis and correlational testing, for the actual beam windows are discussed. 1 ref., 3 figs.
Length and temperature dependence of the mechanical properties of finite-size carbyne
NASA Astrophysics Data System (ADS)
Yang, Xueming; Huang, Yanhui; Cao, Bingyang; To, Albert C.
2017-09-01
Carbyne is an ideal one-dimensional conductor and the thinnest interconnection in an ultimate nano-device and it requires an understanding of the mechanical properties that affect device performance and reliability. Here, we report the mechanical properties of finite-size carbyne, obtained by a molecular dynamics simulation study based on the adaptive intermolecular reactive empirical bond order potential. To avoid confusion in assigning the effective cross-sectional area of carbyne, the value of the effective cross-sectional area of carbyne (4.148 Å2) was deduced via experiment and adopted in our study. Ends-constraints effects on the ultimate stress (maximum force) of the carbyne chains are investigated, revealing that the molecular dynamics simulation results agree very well with the experimental results. The ultimate strength, Young's Modulus and maximum strain of carbyne are rather sensitive to the temperature and all decrease with the temperature. Opposite tendencies of the length dependence of the overall ultimate strength and maximum strain of carbyne at room temperature and very low temperature have been found, and analyses show that this originates in the ends effect of carbyne.
Effects of electron irradiation on LDPE/MWCNT composites
NASA Astrophysics Data System (ADS)
Yang, Jianqun; Li, Xingji; Liu, Chaoming; Rui, Erming; Wang, Liqin
2015-12-01
In this study, mutiwalled carbon nanotubes (MWCNTs) were incorporated into low density polyethylene (LDPE) in different concentrations (2%, 4% and 8%) using a melt blending process. Structural, thermal stability and tensile property of the unirradiated/irradiated LDPE/MWCNT composites by 110 keV electrons were investigated by means of scanning electron microscopy (SEM), small angle X-ray scattering (SAXS), Raman spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, thermogravimetric analysis (TGA) and uniaxial tensile techniques. Experimental results show that the addition of MWCNTs obviously increases the ultimate tensile strength of LDPE and decreases the elongation at break, which is attributed to the homogeneous distribution of the MWCNTs in LDPE and intense interaction between MWCNTs and LDPE matrix. Also, the electron irradiation further increases the ultimate tensile strength of LDPE/MWCNT composites, which can be ascribed to the more intense interaction between MWCNTs and LDPE matrix, and the formation of crosslinking sites in LDPE matrix induced by the electron irradiation. The addition of MWCNTs significantly enhances thermal stability of the LDPE due to the hindering effect and the scavenging free radicals, while the electron irradiation decreases thermal stability of the LDPE/MWCNT composites since the structure of the MWCNTs and LDPE matrix damages.
Yttria Nanoparticle Reinforced Commercially Pure (CP) Titanium
2011-09-01
nanoparticles as well as titanium boride (TiB) reinforcements were produced through gas atomization. After consolidation and extrusion, room temperature...pure FE iron O oxygen Ti titanium TiB titanium boride TYS tensile yield strength UTS ultimate tensile strength wt% weight percent Y2O3
NASA Technical Reports Server (NTRS)
Lovoy, C. V.
1979-01-01
The results of a study to determine the degree to which the ductility and tensile properties of peaked welds could be enhanced by removing the reinforcing bead and fairing the weld nugget into the adjacent parent metal are presented. The study employed 2219-T87 aluminum alloy plate, tungsten inert gas (TIG) welding, and 2319 filler wire. The study concluded that significant improvements in peak weld, ultimate strength, and ductility can be obtained through removal and fairing of the weld reinforcing bead. The specimens so treated and tested in this program exhibited ultimate strength improvements of 2 to 3 percent for peak angles of 5.8 to 10 degrees and 10 to 22 percent for welds with peak angles of 11.7 to 16.9 degrees. It was also determined that removal of the weld bead enhanced the ability of peaked welds to straighten when exposed to cyclic loading at stress levels above the yield strength.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.
2001-01-01
The strengths of three continuous fiber-reinforced ceramic composites, including SiC/CAS-II, SiC/MAS-5 and SiC/SiC, were determined as a function of test rate in air at 1100 to 1200 C. All three composite materials exhibited a strong dependency of strength on test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress loading) suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology even for composite materials, at least for short range of lifetimes and when ultimate strength is used as the failure criterion.
Flexural Behavior of HPFRCC Members with Inhomogeneous Material Properties.
Shin, Kyung-Joon; Jang, Kyu-Hyeon; Choi, Young-Cheol; Lee, Seong-Cheol
2015-04-21
In this paper, the flexural behavior of High-performance Fiber-Reinforced Cementitious Composite (HPFRCC) has been investigated, especially focusing on the localization of cracks, which significantly governs the flexural behavior of HPFRCC members. From four points bending tests with HPFRCC members, it was observed that almost evenly distributed cracks formed gradually, followed by a localized crack that determined the failure of the members. In order to investigate the effect of a localized crack on the flexural behavior of HPFRCC members, an analytical procedure has been developed with the consideration of intrinsic inhomogeneous material properties of HPFRCC such as cracking and ultimate tensile strengths. From the comparison, while the predictions with homogeneous material properties overestimated flexural strength and ductility of HPFRCC members, it was found that the analysis results considering localization effect with inhomogeneous material properties showed good agreement with the test results, not only the flexural strength and ductility but also the crack widths. The test results and the developed analysis procedure presented in this paper can be usefully applied for the prediction of flexural behaviors of HPFRCC members by considering the effect of localized cracking behavior.
Development of Testing Methodologies for the Mechanical Properties of MEMS
NASA Technical Reports Server (NTRS)
Ekwaro-Osire, Stephen
2003-01-01
This effort is to investigate and design testing strategies to determine the mechanical properties of MicroElectroMechanical Systems (MEMS) as well as investigate the development of a MEMS Probabilistic Design Methodology (PDM). One item of potential interest is the design of a test for the Weibull size effect in pressure membranes. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. However, the primary area of investigation will most likely be analysis and modeling of material interfaces for strength as well as developing a strategy to handle stress singularities at sharp corners, filets, and material interfaces. This will be a continuation of the previous years work. The ultimate objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads.
The mechanical behavior of cross-rolled beryllium sheet
NASA Technical Reports Server (NTRS)
Henkener, J. A.; Spiker, I. K.; Castner, W. L.
1992-01-01
In response to the failure of a conical section of the Insat C satellite during certification testing, the use of beryllium for payload structures, particularly in sheet product form, is being reevaluated. A test program was initiated to study the tensile, shear, and out-of-plane failure modes of beryllium cross-rolled sheet and to apply data to the development of an appropriate failure criterion. Tensile test results indicated that sanding the surface of beryllium sheet has no significant effect on yield strength but can produce a profound reduction in ultimate strength and results obtained by finite element analysis. Critical examination of these test results may contribute to the modification of a JSC policy for the use of beryllium in orbiter and payload structures.
Static behavior and the effects of thermal cycling in hybrid laminates
NASA Technical Reports Server (NTRS)
Liber, T. M.; Daniel, I. M.; Chamis, C. C.
1977-01-01
Static stiffness, strength and ultimate strain after thermal cycling were investigated for graphite/Kevlar 49/epoxy and graphite/S-glass/epoxy angle-ply laminates. Tensile stress-strain curves to failure and uniaxial tensile properties were determined, and theoretical predictions of modulus, Poisson's ratio and ultimate strain, based on linear lamination theory, constituent ply properties and measured strength, were made. No significant influence on tensile stress properties due to stacking sequence variations was observed. In general, specimens containing two 0-degree Kevlar or S-glass plies were found to behave linearly to failure, while specimens containing 4 0-degree Kevlar or S-glass plies showed some nonlinear behavior.
Al2O3 Nanoparticle Addition to Commercial Magnesium Alloys: Multiple Beneficial Effects
Paramsothy, Muralidharan; Chan, Jimmy; Kwok, Richard; Gupta, Manoj
2012-01-01
The multiple beneficial effects of Al2O3 nanoparticle addition to cast magnesium based systems (followed by extrusion) were investigated, constituting either: (a) enhanced strength; or (b) simultaneously enhanced strength and ductility of the corresponding magnesium alloys. AZ31 and ZK60A nanocomposites containing Al2O3 nanoparticle reinforcement were each fabricated using solidification processing followed by hot extrusion. Compared to monolithic AZ31 (tension levels), the corresponding nanocomposite exhibited higher yield strength (0.2% tensile yield strength (TYS)), ultimate strength (UTS), failure strain and work of fracture (WOF) (+19%, +21%, +113% and +162%, respectively). Compared to monolithic AZ31 (compression levels), the corresponding nanocomposite exhibited higher yield strength (0.2% compressive yield strength (CYS)) and ultimate strength (UCS), lower failure strain and higher WOF (+5%, +5%, −4% and +11%, respectively). Compared to monolithic ZK60A (tension levels), the corresponding nanocomposite exhibited lower 0.2% TYS and higher UTS, failure strain and WOF (−4%, +13%, +170% and +200%, respectively). Compared to monolithic ZK60A (compression levels), the corresponding nanocomposite exhibited lower 0.2% CYS and higher UCS, failure strain and WOF (−10%, +7%, +15% and +26%, respectively). The capability of Al2O3 nanoparticles to enhance the properties of cast magnesium alloys in a way never seen before with micron length scale reinforcements is clearly demonstrated. PMID:28348301
Ultimate strength performance of tankers associated with industry corrosion addition practices
NASA Astrophysics Data System (ADS)
Kim, Do Kyun; Kim, Han Byul; Zhang, Xiaoming; Li, Chen Guang; Paik, Jeom Kee
2014-09-01
In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR), Common Structural Rules (CSR), and harmonised Common Structural Rules (CSRH) are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS), and Time-Dependent Corrosion Wastage Model (TDCWM). To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures
A “fullerene-carbon nanotube” structure with tunable mechanical properties
NASA Astrophysics Data System (ADS)
Ji, W. M.; Zhang, L. W.; Liew, K. M.
2018-03-01
Carbon-based nanostructures have drawn tremendous research interest and become promising building blocks for the new generation of smart sensors and devices. Utilizing a bottom-up strategy, the chemical interconnecting sp 3 covalent bond between carbon building blocks is an efficient way to enhance its Young's modulus and ductility. The formation of sp 3 covalent bond, however, inevitably degrades its ultimate tensile strength caused by stress concentration at the junction. By performing a molecular dynamics simulation of tensile deformation for a fullerene-carbon nanotube (FCNT) structure, we propose a tunable strategy in which fullerenes with various angle energy absorption capacities are utilized as building blocks to tune their ductile behavior, while still maintaining a good ultimate tensile strength of the carbon building blocks. A higher ultimate tensile strength is revealed with the reduction of stress concentration at the junction. A brittle-to-ductile transition during the tensile deformation is detected through the structural modification. The development of ductile behavior is attributed to the improvement of energy propagation ability during the fracture initiation, in which the released energy from bonds fracture is mitigated properly, leading to the further development of mechanical properties.
NASA Astrophysics Data System (ADS)
Fakir, Rachid; Barka, Noureddine; Brousseau, Jean
2018-03-01
This paper proposes a statistical approach to analyze the mechanical properties of a standard test specimen, of cylindrical geometry and in steel 4340, with a diameter of 6 mm, heat-treated and quenched in three different fluids. Samples were evaluated in standard tensile test to access their characteristic quantities: hardness, modulus of elasticity, yield strength, tensile strength and ultimate deformation. The proposed approach is gradually being built (a) by a presentation of the experimental device, (b) a presentation of the experimental plan and the results of the mechanical tests, (c) anova analysis of variance and a representation of the output responses using the RSM response surface method, and (d) an analysis of the results and discussion. The feasibility and effectiveness of the proposed approach leads to a precise and reliable model capable of predicting the variation of mechanical properties, depending on the tempering temperature, the tempering time and the cooling capacity of the quenching medium.
Testing and analysis of flat and curved panels with multiple cracks
NASA Technical Reports Server (NTRS)
Broek, David; Jeong, David Y.; Thomson, Douglas
1994-01-01
An experimental and analytical investigation of multiple cracking in various types of test specimens is described in this paper. The testing phase is comprised of a flat unstiffened panel series and curved stiffened and unstiffened panel series. The test specimens contained various configurations for initial damage. Static loading was applied to these specimens until ultimate failure, while loads and crack propagation were recorded. This data provides the basis for developing and validating methodologies for predicting linkup of multiple cracks, progression to failure, and overall residual strength. The results from twelve flat coupon and ten full scale curved panel tests are presented. In addition, an engineering analysis procedure was developed to predict multiple crack linkup. Reasonable agreement was found between predictions and actual test results for linkup and residual strength for both flat and curved panels. The results indicate that an engineering analysis approach has the potential to quantitatively assess the effect of multiple cracks in the arrest capability of an aircraft fuselage structure.
Nagel, Katrin; Bishop, Nicholas E; Schlegel, Ulf J; Püschel, Klaus; Morlock, Michael M
2017-02-01
The strength of the cement-bone interface in tibial component fixation depends on the morphology of the cement mantle. The purpose of this study was to identify thresholds of cement morphology parameters to maximize fixation strength using a minimum amount of cement. Twenty-three cadaveric tibiae were analyzed that had been implanted with tibial trays in previous studies and for which the pull-out strength of the tray had been measured. Specimens were separated into a group failing at the cement-bone interface (INTERFACE) and one failing in the bulk bone (BULK). Maximum pull-out strength corresponds to the ultimate strength of the bulk bone if the cement-bone interface is sufficiently strong. 3D models of the cement mantle in situ were reconstructed from computed tomography scans. The influences of bone mineral density and 6 cement morphology parameters (reflecting cement penetration, bone-cement interface, cement volume) on pull-out strength of the BULK group were determined using multiple regression analysis. The threshold of each parameter for classification of the specimens into either group was determined using receiver operating characteristic analysis. Cement penetration exceeding a mean of 1.1 mm or with a maximum of 5.6 mm exclusively categorized all BULK bone failure specimens. Failure strength of BULK failure specimens increased with bone mineral density (R 2 = 0.67, P < .001) but was independent of the cement morphology parameters. To maximize fixation strength, a mean cement penetration depth of at least 1.1 mm should be achieved during tibial tray cementing. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Draper, Susan L.; Aiken, Beverly J. M.
1998-01-01
Continuous single-crystal Al2O3 fibers have been incorporated into a variety of metal and intermetallic matrices and the results have consistently indicated that the fiber strength had been reduced by 32 to 50% during processing. Two iron-based alloys, FeNiCoCrAl and FeAlVCMn, were chosen as matrices for Al2O3 fiber reinforced metal matrix composites (MMC) with the goal of maintaining Al2O3 fiber strength after composite processing. The feasibility of Al2O3/FeNiCoCrAl and Al2O3/FeAlVCMn composite systems for high temperature applications were assessed in terms of fiber-matrix chemical compatibility, interfacial bond strength, and composite tensile properties. The strength of etched-out fibers was significantly improved by choosing matrices containing less reactive elements. The ultimate tensile strength (UTS) values of the composites could generally be predicted with existing models using the strength of etched-out fibers. However, the UTS of the composites were less than desired due to a low fiber Weibull modulus. Acoustic emission analysis during tensile testing was a useful tool for determining the efficiency of the fibers in the composite and for determining the failure mechanism of the composites.
NASA Astrophysics Data System (ADS)
Preiss, Bruce; Greene, Lloyd; Kriebel, Jamie; Wasson, Robert
2006-05-01
The Air Force Research Laboratory utilizes a value model as a primary input for space technology planning and budgeting. The Space Sector at AFRL headquarters manages space technology investment across all the geographically disparate technical directorates and ensures that integrated planning is achieved across the space community. The space investment portfolio must ultimately balance near, mid, and far-term investments across all the critical space mission areas. Investment levels and growth areas can always be identified by a typical capability analysis or gap analysis, but the value model approach goes one step deeper and helps identify the potential payoff of technology investments by linking the technology directly to an existing or potential concept. The value of the technology is then viewed from the enabling performance perspective of the concept that ultimately fulfills the Air Force mission. The process of linking space technologies to future concepts and technology roadmaps will be reviewed in this paper, along with representative results from this planning cycle. The initial assumptions in this process will be identified along with the strengths and weaknesses of this planning methodology.
Effect of Annealing on Microstructure, Texture and Tensile Properties of Twin-Roll Cast AZ31B
NASA Astrophysics Data System (ADS)
Masoumi, Mohsen; Zarandi, Faramarz; Pekguleryuz, Mihriban O.
Twin-roll cast (TRC) AZ31 alloy (Mg-3wt.%Al-1wt.%Zn) was subjected to heat treatment at 420 °C. As a result, the intensity of the original basal texture was reduced considerably. Crystallographic orientation analysis revealed that such a change in the texture is due to particle-stimulated nucleation of new grains with random orientations. The tensile test results indicate that annealing slightly increases ultimate tensile strength (UTS), however, dramatically improves the elongation.
Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour
NASA Astrophysics Data System (ADS)
Smarzewski, Piotr; Stolarski, Adam
2017-10-01
Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.
Wear, strength, modulus and hardness of CAD/CAM restorative materials.
Lawson, Nathaniel C; Bansal, Ritika; Burgess, John O
2016-11-01
To measure the mechanical properties of several CAD/CAM materials, including lithium disilicate (e.max CAD), lithium silicate/zirconia (Celtra Duo), 3 resin composites (Cerasmart, Lava Ultimate, Paradigm MZ100), and a polymer infiltrated ceramic (Enamic). CAD/CAM blocks were sectioned into 2.5mm×2.5mm×16mm bars for flexural strength and elastic modulus testing and 4mm thick blocks for hardness and wear testing. E.max CAD and half the Celtra Duo specimens were treated in a furnace. Flexural strength specimens (n=10) were tested in a three-point bending fixture. Vickers microhardness (n=2, 5 readings per specimen) was measured with a 1kg load and 15s dwell time. The CAD/CAM materials as well as labial surfaces of human incisors were mounted in the UAB wear device. Cusps of human premolars were mounted as antagonists. Specimens were tested for 400,000 cycles at 20N force, 2mm sliding distance, 1Hz frequency, 24°C, and 33% glycerin lubrication. Volumetric wear and opposing enamel wear were measured with non-contact profilometry. Data were analyzed with 1-way ANOVA and Tukey post-hoc analysis (alpha=0.05). Specimens were observed with SEM. Properties were different for each material (p<0.01). E.max CAD and Celtra Duo were generally stronger, stiffer, and harder than the other materials. E.max CAD, Celtra Duo, Enamic, and enamel demonstrated signs of abrasive wear, whereas Cerasmart, Lava Ultimate, Paradigm MZ100 demonstrated signs of fatigue. Resin composite and resin infiltrated ceramic materials have demonstrated adequate wear resistance for load bearing restorations, however, they will require at least similar material thickness as lithium disilicate restorations due to their strength. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Hurst, Janet; Brewer, David
1999-01-01
Woven Hi-Nicalon (TM) reinforced melt-infiltrated SiC matrix composites were tested under tensile stress-rupture conditions in air at intermediate temperatures. A comprehensive examination of the damage state and the fiber properties at failure was performed. Modal acoustic emission analysis was used to monitor damage during the experiment. Extensive microscopy of the composite fracture surfaces and the individual fiber fracture surfaces was used to determine the mechanisms leading to ultimate failure. The rupture properties of these composites were significantly worse than expected compared to the fiber properties under similar conditions. This was due to the oxidation of the BN interphase. Oxidation occurred through the matrix cracks that intersected the surface or edge of a tensile bar. These oxidation reactions resulted in minor degradation to fiber strength and strong bonding of the fibers to one another at regions of near fiber-to-fiber contact. It was found that two regimes for rupture exist for this material: a high stress regime where rupture occurs at a fast rate and a low stress regime where rupture occurs at a slower rate. For the high stress regime, the matrix damage state consisted of through thickness cracks. The average fracture strength of fibers that were pulled-out (the final fibers to break before ultimate failure) was controlled by the slow-crack growth rupture criterion in the literature for individual Hi-Nicalon (TM) fibers. For the low stress regime, the matrix damage state consisted of microcracks which grew during the rupture test. The average fracture strength of fibers that were pulled-out in this regime was the same as the average fracture strength of individual fibers pulled out in as-produced composites tested at room temperature.
Ramdev, Poojya; Shruthi, C S
2017-01-01
Introduction Yttria stabilised tetragonal zirconia opens new vistas for all ceramic restoration by the mechanism of transformation toughening, making it much stronger compared to all other ceramic materials. Currently, it is the most recent core material for all ceramic fixed partial dentures due to its ability to withstand high simulated masticatory loads. Problems which have been reported with zirconia restorations involve the core cement interface leading to loss of retention of the prosthesis. Different reasons which have been reported for the same include the lack of adhesion between zirconia and commonly used cements due to absence of silica phase which makes zirconia not etchable. In addition, the hydrophobic nature of zirconia causes low wettability of zirconia surface by the adhesive cements which are commonly used. Aim The purpose of this in vitro study was to compare and evaluate the effect of two pre-treatments of zirconia, using plasma of argon and silane, on the shear bond strength values of two composite resin cements to zirconia and to evaluate the failure pattern of the debonded areas using stereomicroscopic analysis. Materials and Methods Sixty zirconia discs (10 mm×2 mm) were randomly divided into three groups (n=20), following surface treatment, with airborne particle abrasion, using 110 µm Al2O3: Group I (control), Group II (plasma of argon cleaning), and Group III (application of silane primer). Each group had two subgroups based on the type of resin cement used for bonding: subgroup A; Rely X Ultimate (3M ESPE) and subgroup B; Panavia F (Kuraray). In subgroup A, Rely X universal silane primer and in subgroup B Clearfil ceramic primer was used. Shear bond strengths were determined after water storage for one day and thermocycling for 5000 cycles. Data (megapascal) were analyzed using ANOVA and Bonferroni test. Specimens were subjected to stereomicroscopic analysis, for evaluation of failure pattern. Results Group III produced the highest shear bond strength followed by Group II and Group I. Subgroup A showed higher shear bond strength than Subgroup B. Stereomicroscopic analysis showed cohesive failure in Group III, while in Group I adhesive failure was seen. Conclusion Silane primer application caused maximum increase in shear bond strength due to increased wettability. Argon plasma treatment was less effective in comparison to silane treatment. Air abrasion when used alone resulted in lower bond strength values, thereby making it necessary to use a combination of surface treatments. Rely X Ultimate cement was superior to Panavia F in terms of adhesive bonding to zirconia. PMID:28969271
Sadat, Mohammad Rafat; Bringuier, Stefan; Asaduzzaman, Abu; Muralidharan, Krishna; Zhang, Lianyang
2016-10-07
In this paper, molecular dynamics simulations are used to study the effect of molecular water and composition (Si/Al ratio) on the structure and mechanical properties of fully polymerized amorphous sodium aluminosilicate geopolymer binders. The X-ray pair distribution function for the simulated geopolymer binder phase showed good agreement with the experimentally determined structure in terms of bond lengths of the various atomic pairs. The elastic constants and ultimate tensile strength of the geopolymer binders were calculated as a function of water content and Si/Al ratio; while increasing the Si/Al ratio from one to three led to an increase in the respective values of the elastic stiffness and tensile strength, for a given Si/Al ratio, increasing the water content decreased the stiffness and strength of the binder phase. An atomic-scale analysis showed a direct correlation between water content and diffusion of alkali ions, resulting in the weakening of the AlO 4 tetrahedral structure due to the migration of charge balancing alkali ions away from the tetrahedra, ultimately leading to failure. In the presence of water molecules, the diffusion behavior of alkali cations was found to be particularly anomalous, showing dynamic heterogeneity. This paper, for the first time, proves the efficacy of atomistic simulations for understanding the effect of water in geopolymer binders and can thus serve as a useful design tool for optimizing composition of geopolymers with improved mechanical properties.
Improved Warm-Working Process For An Iron-Base Alloy
NASA Technical Reports Server (NTRS)
Cone, Fred P.; Cryns, Brendan J.; Miller, John A.; Zanoni, Robert
1992-01-01
Warm-working process produces predominantly unrecrystallized grain structure in forgings of iron-base alloy A286 (PWA 1052 composition). Yield strength and ultimate strength increased, and elongation and reduction of area at break decreased. Improved process used on forgings up to 10 in. thick and weighing up to 900 lb.
Behaviour of square FRP-Confined High-Strength Concrete Columns under Eccentric Compression
NASA Astrophysics Data System (ADS)
Fallah Pour, Ali; Gholampour, Aliakbar; Zheng, Junai; Ozbakkaloglu, Togay
2018-01-01
This paper presents the results of an experimental study on the effect of load eccentricity on the axial compressive behaviour of carbon fibre-reinforced polymer (CFRP)- confined high-strength concrete (HSC) columns with a square cross-section. The axial loading was applied to the specimens at six different load eccentricities ranging from zero to 50 mm. The results show that the load eccentricity significantly influences the axial load-displacement and axial stress-strain behaviour of FRP-confined HSC. Increasing the load eccentricity leads to an increase in the ultimate axial strain but a decrease in the ultimate axial stress and second branch slope of the axial stress-strain curve.
Matrix density effects on the mechanical properties of SiC/RBSN composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Kiser, James D.
1990-01-01
The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Kiser, Lames D.
1990-01-01
The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.
NASA Astrophysics Data System (ADS)
Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Shafizadeh, Mahdi; Nikzad, Siamak
2015-12-01
Semisolid stir joining has been under deliberation as a possible method for joining of copper alloys. In this study, the effect of temperature and rotational speed of stirrer on macrostructure evaluation and mechanical properties of samples were investigated. Optical microscopy and X-ray diffraction were performed for macro and microstructural analysis. A uniform micro-hardness profile was attained by semisolid stir joining method. The ultimate shear strength and bending strength of welded samples were improved in comparison with the cast sample. There is also lower area porosity in welded samples than the cast metal. The mechanical properties were improved by increasing temperature and rotational speed of the joining process.
NASA Technical Reports Server (NTRS)
Montano, J. W.
1973-01-01
The mechanical properties are presented of alloy steels, 4130, 4140, 4340, 6150, and 8740. Test specimens were manufactured from approximately 1.00 inch (2.54 cm) diameter bar stock which had been heat treated to two different hardness levels. The following mechanical tests were performed at temperatures of 80 F (+26.7 C), 0 F (-17.8 C), -100 F (-73 C), and -200 F (-129 C): (1) tensile test (Ultimate, yield, modulus, elongation, and reduction of area), (2) notched tensile test, (3) charpy V-notched impact test (impact energy), and (4) double shear strength test (ultimate and yield). The test data indicate excellent tensile strength, notched/unnotched tensile ratios, ductility, impact, and shear properties at all test temperatures, except at -200 F (-129 C) where the impact strength of the higher strength group of alloy steels, 4130 (Rc-37) and 4140 (Rc-44) decreased to approximately 9 ft. lbs. (12 joules) and 6 ft. lbs. (8 joules), respectively. Chemical, metallographic, and fractographic analyses were also performed to evaluate microstructure, microhardness and the effect of decrease in temperature on the ductile to brittle failure transition.
Effect of ZnO nanoparticles to mechanical properties of thixoformed Mg-Al-Zn alloy
NASA Astrophysics Data System (ADS)
Kusharjanto; Soepriyanto, Syoni; Ardian Korda, Akhmad; Adi Dwiwanto, Supono
2018-03-01
Magnesium alloys are lightweight metallic materials with low mechanical properties. Therefore, in order to meet the requirements in various industrial sector applications such as automotive, aerospace and electronic frame, improvement strength and ductility is required. The purpose of this research is to investigate the effect of adding ZnO nanoparticles to changes in microstructure, hardness, mechanical properties regarding with yield and ultimate strength. In this research, the molten Mg-Al-Zn alloy is added ZnO nanoparticles with a various range of 0, 1; 3 and 5 wt% and then cooling in the room temperature. Futhermore, Mg-Al-Zn-ZnO is heated at a temperature of 530 °C (in the semi-solid temperature range 470 °C–595 °C or 53% solid fraction) and then thixoforming process is performed. The characterization results of the thixoforming product show that, the microstructure is globular in shape with maximum hardness value of 107.14 VHN, the yield strength of 214.87 MPa, and the ultimate tensile strength of 311.25 MPa in 5 wt% ZnO nanoparticles.
Alloys For Corrosive, Hydrogen-Rich Environments
NASA Technical Reports Server (NTRS)
Mcpherson, William B.; Bhat, Biliyar N.; Chen, Po-Shou; Kuruvilla, A. K.; Panda, Binayak
1993-01-01
"NASA-23" denotes class of alloys resisting both embrittlement by hydrogen and corrosion. Weldable and castable and formed by such standard processes as rolling, forging, and wire drawing. Heat-treated to obtain desired combinations of strength and ductility in ranges of 100 to 180 kpsi yield strength, 120 to 200 kpsi ultimate tensile strength, and 10 to 30 percent elongation at break. Used in place of most common aerospace structural alloy, Inconel(R) 718.
Baums, M H; Buchhorn, G H; Spahn, G; Poppendieck, B; Schultz, W; Klinger, H-M
2008-11-01
The aim of the study was to evaluate the time zero mechanical properties of single- versus double-row configuration for rotator cuff repair in an animal model with consideration of the stitch technique and suture material. Thirty-two fresh-frozen sheep shoulders were randomly assigned to four repair groups: suture anchor single-row repair coupled with (1) braided, nonabsorbable polyester suture sized USP No. 2 (SRAE) or (2) braided polyblend polyethylene suture sized No. 2 (SRAH). The double-row repair was coupled with (3) USP No. 2 (DRAE) or (4) braided polyblend polyethylene suture No. 2 (DRAH). Arthroscopic Mason-Allen stitches were used (single-row) and combined with medial horizontal mattress stitches (double-row). Shoulders were cyclically loaded from 10 to 180 N. Displacement to gap formation of 5- and 10-mm at the repair site, cycles to failure, and the mode of failure were determined. The ultimate tensile strength was verified in specimens that resisted to 3,000 cycles. DRAE and DRAH had a lower frequency of 5- (P = 0.135) and 10-mm gap formation (P = 0.135). All DRAE and DRAH resisted 3,000 cycles while only three SRAE and one SRAH resisted 3,000 cycles (P < 0.001). The ultimate tensile strength in double-row specimens was significantly higher than in others (P < 0.001). There was no significant variation in using different suture material (P > 0.05). Double-row suture anchor repair with arthroscopic Mason-Allen/medial mattress stitches provides initial strength superior to single-row repair with arthroscopic Mason-Allen stitches under isometric cyclic loading as well as under ultimate loading conditions. Our results support the concept of double-row fixation with arthroscopic Mason-Allen/medial mattress stitches in rotator cuff tears with improvement of initial fixation strength and ultimate tensile load. Use of new polyblend polyethylene suture material seems not to increase the initial biomechanical aspects of the repair construct.
High Temperature Mechanical Characterization and Analysis of Al2O3 /Al2O3 Composition
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.; Jaskowiak, Martha H.
1999-01-01
Sixteen ply unidirectional zirconia coated single crystal Al2O3 fiber reinforced polycrystalline Al2O3 was tested in uniaxial tension at temperatures to 1400 C in air. Fiber volume fractions ranged from 26 to 31%. The matrix has primarily open porosity of approximately 40%. Theories for predicting the Young's modulus, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of Al2O3/Al2O3 composites. The composite exhibited pseudo tough behavior (increased area under the stress/strain curve relative to monolithic alumina) from 22 to 1400 C. The rule-of-mixtures provides a good estimate of the Young's modulus of the composite using the constituent properties from room temperature to approximately 1200 C for short term static tensile tests in air. The ACK theory provides the best approximation of the first matrix cracking stress while accounting for residual stresses at room temperature. Difficulties in determining the fiber/matrix interfacial shear stress at high temperatures prevented the accurate prediction of the first matrix cracking stress above room temperature. The theory of Cao and Thouless, based on Weibull statistics, gave the best prediction for the composite ultimate tensile strength.
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Eldridge, Jeffrey I.
1999-01-01
To evaluate the effects of fiber coatings on composite mechanical properties. unidirectional celsian matrix composites reinforced with uncoated Hi-Nicalon fibers and those precoated with a dual BN/SiC layer in two separate batches (batch 1 and batch 2) were tested in three-point flexure. The uncoated-fiber reinforced composites showed catastrophic failure with strength of 210+/-35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout and showed significantly higher ultimate strengths, 904 and 759 MPa for the batch 1 and 2 coatings. respectively. Fiber push-in tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interfaces that might be responsible for fiber strength degradation. Instead, the low strength of composite with uncoated fibers was due to degradation of the fiber strength from mechanical damage during composite processing. Despite identical processing, the first matrix cracking stresses (Sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were quite different, 436 and 122 MPa, respectively. The large difference in Sigma(sub mc) of the coated-fiber composites was attributed to differences in fiber sliding stresses (Tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively. for the two composites as determined by the fiber push-in method. Such a large difference in Tau(sub friction). for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN. and also between the BN and SiC coatings in the composite showing lower Tau(sub friction). This resulted in lower Sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites depended mainly on the fiber volume fraction and were not significantly effected by Tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.
NASA Technical Reports Server (NTRS)
Raju, B. B.; Camarda, C. J.; Cooper, P. A.
1979-01-01
Seventy-nine graphite/polyimide compression specimens were tested to investigate experimentally the IITRI test method for determining compressive properties of composite materials at room and elevated temperatures (589 K (600 F)). Minor modifications were made to the standard IITRI fixture and a high degree of precision was maintained in specimen fabrication and load alignment. Specimens included four symmetric laminate orientations. Various widths were tested to evaluate the effect of width on measured modulus and strength. In most cases three specimens of each width were tested at room and elevated temperature and a polynomial regression analysis was used to reduce the data. Scatter of replicate tests and back-to-back strain variations were low, and no specimens failed by instability. Variation of specimen width had a negligible effect on the measured ultimate strengths and initial moduli of the specimens. Measured compressive strength and stiffness values were sufficiently high for the material to be considered a usable structural material at temperatures as high as 589 K (600 F).
Over-Aging Effect on Fracture Toughness of Beryllium Copper Alloy C17200
NASA Astrophysics Data System (ADS)
Jen, Kei-Peng; Xu, Liqun; Hylinski, Steven; Gildersleeve, Nate
2008-10-01
This study experimentally increased the fracture toughness of Beryllium Copper (CuBe) UNS C17200 alloy using three different age hardening processes. At the same time, the micro- and macro-fracture behavior of this alloy were comprehensively studied. ASTM E399 fracture toughness, tensile, and Charpy impact tests were conducted for all three heat-treated rods. The fracture surfaces were examined under both an optical microscope and a scanning electron microscope to investigate the failure mechanisms. Multiple test orientations were considered to explore isotropy. Increasing the temperature and duration at which age hardening was performed increased fracture toughness while decreasing ultimate tensile strength. The maximum fracture toughness was reached on the most overaged specimen, while retaining a serviceable tensile strength. The specimen test data allowed a relationship to be established among Charpy impact toughness, fracture toughness, and yield strength. Analysis of fracture behavior revealed an interesting relationship between fracture toughness and pre-cracking fatigue propagation rate.
On thermal stress failure of the SNAP-19A RTG heat shield
NASA Technical Reports Server (NTRS)
Pitts, W. C.; Anderson, L. A.
1974-01-01
Results of a study on thermal stress problems in an amorphous graphite heat shield that is part of the launch-abort protect system for the SNAP-19A radio-isotope thermoelectric generators (RTG) that will be used on the Viking Mars Lander are presended. The first result is from a thermal stress analysis of a full-scale RTG heat source that failed to survive a suborbital entry flight test, possibly due to thermal stress failure. It was calculated that the maximum stress in the heat shield was only 50 percent of the ultimate strength of the material. To provide information on the stress failure criterion used for this calculation, some heat shield specimens were fractured under abort entry conditions in a plasma arc facility. It was found that in regions free of stress concentrations the POCO graphite heat shield material did fracture when the local stress reached the ultimate uniaxial stress of the material.
Finite element analysis of composites materials for aerospace applications
NASA Astrophysics Data System (ADS)
Nurhaniza, M.; Ariffin, M. K. A.; Ali, Aidy; Mustapha, F.; Noraini, A. W.
2010-05-01
Composites materials are intended to be used more extensively as an alternative of aluminum structure in aircraft and aerospace applications. This is due to their attractive properties as high strength-to-weight ratio and stiffness-to-weight ratio. Besides that it clarifies the growing interest for composites materials due to advantages of lightweight, high strength, high stiffness, superior fatigue life, tremendous corrosion resistance and low cost manufacturing. In this study, a finite element analysis (FEA) of fiberglass unidirectional E-type was analyzed in the framework of ABAQUS finite element commercial software. The analysis was done to quantify the mechanical properties and response of unidirectional E-glass in term of tensile, compression and thermal responses. From the analysis, the maximum and minimum values of stress and strain for E-glass 21xK43 Gevetex and Silenka E-glass 1200tex were obtained and stress-strain curve is presented. The ultimate load of failure, elastic behavior, tensile strength and other properties for each laminated plates under tensile and thermal-stress are determined from stress-strain curves. The simulation will run twice for each material where the first simulation based on orientation angles of 45° for ply-1, -45° for ply-2 and 90° for ply-3 while the second simulation, the orientation angles is 0° for all plies. The simulation is successfully conducted and verified by experimental data.
Code of Federal Regulations, 2010 CFR
2010-10-01
... maximum stress thus calculated and the factor 4.25 shall not exceed the minimum ultimate strength of the... foot on hatchways in position 2 and the product of the maximum stress thus calculated and the factor 5... product of the maximum stress thus calculated and the factor 5 shall not exceed the minimum ultimate...
Code of Federal Regulations, 2011 CFR
2011-10-01
... maximum stress thus calculated and the factor 4.25 shall not exceed the minimum ultimate strength of the... foot on hatchways in position 2 and the product of the maximum stress thus calculated and the factor 5... product of the maximum stress thus calculated and the factor 5 shall not exceed the minimum ultimate...
Code of Federal Regulations, 2012 CFR
2012-10-01
... maximum stress thus calculated and the factor 4.25 shall not exceed the minimum ultimate strength of the... foot on hatchways in position 2 and the product of the maximum stress thus calculated and the factor 5... product of the maximum stress thus calculated and the factor 5 shall not exceed the minimum ultimate...
Code of Federal Regulations, 2014 CFR
2014-10-01
... maximum stress thus calculated and the factor 4.25 shall not exceed the minimum ultimate strength of the... foot on hatchways in position 2 and the product of the maximum stress thus calculated and the factor 5... product of the maximum stress thus calculated and the factor 5 shall not exceed the minimum ultimate...
Code of Federal Regulations, 2013 CFR
2013-10-01
... maximum stress thus calculated and the factor 4.25 shall not exceed the minimum ultimate strength of the... foot on hatchways in position 2 and the product of the maximum stress thus calculated and the factor 5... product of the maximum stress thus calculated and the factor 5 shall not exceed the minimum ultimate...
Gibbs, Jenna C; Giangregorio, Lora M; Wong, Andy K O; Josse, Robert G; Cheung, Angela M
2017-10-01
The purpose of this cross-sectional study was to determine how appendicular lean mass index (ALMI), and whole body lean (LMI) and fat mass indices (FMI) associate with estimated bone strength outcomes at the distal radius and tibia in adults aged 40 years and older. Dual energy X-ray absorptiometry (DXA) scans were performed to determine body composition, including whole body lean and fat mass, and appendicular lean mass. ALMI (appendicular lean mass/height 2 ), LMI (lean tissue mass/height 2 ) and FMI (fat mass/height 2 ) were calculated. High-resolution peripheral quantitative computed tomography (HRpQCT) scans were performed to assess bone structural properties at the distal radius and tibia. Using finite element analysis, failure load (N), stiffness (N/mm), ultimate stress (MPa), and cortical-to-trabecular load ratio were estimated from HRpQCT scans. The associations between body composition (ALMI, LMI, FMI) and estimated bone strength were examined using bivariate and multivariable linear regression analyses adjusting for age, sex, and other confounding variables. In 197 participants (127 women; mean±SD, age: 69.5±10.3y, body mass index: 27.95±4.95kg/m 2 , ALMI: 7.31±1.31kg/m 2 ), ALMI and LMI were significantly associated with failure load at the distal radius and tibia (explained 39%-48% of the variance) and remained significant after adjusting for confounding variables and multiple testing (R 2 =0.586-0.645, p<0.001). ALMI, LMI, and FMI did not have significant associations with ultimate stress in our multivariable models. FMI was significantly associated with cortical-to-trabecular load ratio at the distal radius and tibia (explained 6%-12% of the variance) and remained significant after adjusting for confounders and multiple testing (R 2 =0.208-0.243, p<0.001). FMI was no longer significantly associated with failure load after adjusting for confounders. These findings suggest that ALMI and LMI are important determinants of estimated bone strength, particularly failure load, at the distal radius and tibia, and may contribute to preservation of bone strength in middle-to-late adulthood. Copyright © 2017 Elsevier Inc. All rights reserved.
Mechanical properties of contemporary composite resins and their interrelations.
Thomaidis, Socratis; Kakaboura, Afrodite; Mueller, Wolf Dieter; Zinelis, Spiros
2013-08-01
To characterize a spectrum of mechanical properties of four representative types of modern dental resin composites and to investigate possible interrelations. Four composite resins were used, a microhybrid (Filtek Z-250), a nanofill (Filtek Ultimate), a nanohybrid (Majesty Posterior) and an ormocer (Admira). The mechanical properties investigated were Flexural Modulus and Flexural Strength (three point bending), Brinell Hardness, Impact Strength, mode I and mode II fracture toughness employing SENB and Brazilian tests and Work of Fracture. Fractographic analysis was carried out in an SEM to determine the origin of fracture for specimens subjected to SENB, Brazilian and Impact Strength testing. The results were statistically analyzed employing ANOVA and Tukey post hoc test (a=0.05) while Pearson correlation was applied among the mechanical properties. Significant differences were found between the mechanical properties of materials tested apart from mode I fracture toughness measured by Brazilian test. The latter significantly underestimated the mode I fracture toughness due to analytical limitations and thus its validity is questionable. Fractography revealed that the origin of fracture is located at notches for fracture toughness tests and contact surface with pendulum for Impact Strength testing. Pearson analysis illustrated a strong correlation between modulus of elasticity and hardness (r=0.87) and a weak negative correlation between Work of Fracture and Flexural Modulus (r=-0.46) and Work of Fracture and Hardness (r=-0.44). Weak correlations were also allocated between Flexural Modulus and Flexural Strength (r=0.40), Flexural Strength and Hardness (r=0.39), and Impact Strength and Hardness (r=0.40). Since the four types of dental resin composite tested exhibited large differences among their mechanical properties differences in their clinical performance is also anticipated. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choo, Ching Chiaw
Fiber reinforced polymer (FRP) composites have been increasingly used in concrete construction. This research focused on the behavior of concrete columns reinforced with FRP bars, or prestressed with FRP tendons. The methodology was based the ultimate strength approach where stress and strain compatibility conditions and material constitutive laws were applied. Axial strength-moment (P-M) interaction relations of reinforced or prestressed concrete columns with FRP, a linearly-elastic material, were examined. The analytical results identified the possibility of premature compression and/or brittle-tension failure occurring in FRP reinforced and prestressed concrete columns where sudden and explosive type failures were expected. These failures were related to the rupture of FRP rebars or tendons in compression and/or in tension prior to concrete reaching its ultimate strain and strength. The study also concluded that brittle-tension failure was more likely to occur due to the low ultimate tensile strain of FRP bars or tendons as compared to steel. In addition, the failures were more prevalent when long term effects such as creep and shrinkage of concrete, and creep rupture of FRP were considered. Barring FRP failure, concrete columns reinforced with FRP, in some instances, gained significant moment resistance. As expected the strength interaction of slender steel or FRP reinforced concrete columns were dependent more on column length rather than material differences between steel and FRP. Current ACI minimum reinforcement ratio for steel (rhomin) reinforced concrete columns may not be adequate for use in FRP reinforced concrete columns. Design aids were developed in this study to determine the minimum reinforcement ratio (rhof,min) required for rectangular reinforced concrete columns by averting brittle-tension failure to a failure controlled by concrete crushing which in nature was a less catastrophic and more gradual type failure. The proposed method using rhof,min enabled the analysis of FRP reinforced concrete columns to be carried out in a manner similar to steel reinforced concrete columns since similar provisions in ACI 318 were consistently used in developing these aids. The design aids produced accurate estimates of rhof,min. When creep and shrinkage effects of concrete were considered, conservative rhof,min values were obtained in order to preserve an adequate margin of safety due to their unpredictability.
A Micromechanics-Based Damage Model for [+/- Theta/90n]s Composite Laminates
NASA Technical Reports Server (NTRS)
Mayugo, Joan-Andreu; Camanho, Pedro P.; Maimi, Pere; Davila, Carlos G.
2006-01-01
A new damage model based on a micromechanical analysis of cracked [+/- Theta/90n]s laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumulation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic properties of several laminates and multiaxial loads are presented.
[The effects of different welding wires on the mechanical properties of laser welding joints].
Huang, Qing-feng; Zhang, Jian-zhong; Jiang, Wei-dong; Li, Quan; Yu, Jin-xing
2006-08-01
To evaluate the mechanical properties and microstructure of laser-welded joints with different welding wires for clinical use of welding wire. The standard tensile test and three-point bending test rods were made from Co-Cr and Ni-Cr alloy, and were laser-welded with different welding wire (commercially welding wire and casting wire). Then the tensile rods were tested for the ultimate tensile strength (UTS), and the bending rods for the ultimate bending strength (UBS). The results was analyzed by one-way ANOVA. The tensile fracture surface were examined by scanning electron microscopy (SEM). Metallurgical analysis were also performed on polished longitudinal sectioned samples. For Co-Cr alloy, the UTS of casting wire group and commercially welding wire group was respectively (606.40+/-82.53)MPa and (693.61+/-47.68)MPa; the UBS was respectively (997.95+/-88.89)MPa and (1160.76+/-91.59)MPa. ANOVA showed a significant difference of UTS and UBS between the two groups at the 0.05 level (P<0.05). For Ni-Cr alloy, the UTS of casting wire group and commercially welding wire group was respectively (558.14+/-46.75)MPa and (582.32+/-35.43)MPa; the UBS was respectively (1084.75+/-46.02)MPa and (1078.29+/-36.25)MPa. There was no significant difference between the two groups (P>0.05). SEM and metallurgical examination showed the welded zone exhibiting more cracks in the casting wire group than in the commercially welding wire group. It would be advisable to work with commercially welding wire for the joints that need better strength.
The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy
NASA Technical Reports Server (NTRS)
Gamwell, W. R.
2002-01-01
Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."
Hypersonic Wind Tunnel Nozzle Survivability for T&E
2007-03-01
Room-Temperature Compression Tests ..............................................................43 10. Strength of Hot-Rolled Inconel 600 (Ni-16Cr...6Fe, wt %) ...................................................45 11. Physical Properties of Inconel 600...Table 10. Strength of Hot-Rolled Inconel 600 (Ni-16Cr-6Fe, wt%) T, °C 0.2% Yield Stress (MPa) Ultimate Tensile Stress (MPa) 20 250 590 400 185 560
Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati
2015-01-01
To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC(®) Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink(®) II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus(®) (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Combination of CEREC(®) Blocs PC and Variolink(®) II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Variolink(®) II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used.
High Temperature Tensile Properties of Unidirectional Hi-Nicalon/Celsian Composites In Air
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.; Bansal, Narottam P.
2000-01-01
High temperature tensile properties of unidirectional BN/SiC-coated Hi-Nicalon SiC fiber reinforced celsian matrix composites have been measured from room temperature to 1200 C (2190 F) in air. Young's modulus, the first matrix cracking stress, and the ultimate strength decreased from room temperature to 1200 C (2190 F). The applicability of various micromechanical models, in predicting room temperature values of various mechanical properties for this CMC, has also been investigated. The simple rule of mixtures produced an accurate estimate of the primary composite modulus. The first matrix cracking stress estimated from ACK theory was in good agreement with the experimental value. The modified fiber bundle failure theory of Evans gave a good estimate of the ultimate strength.
Behaviour of concrete beams reinforced withFRP prestressed concrete prisms
NASA Astrophysics Data System (ADS)
Svecova, Dagmar
The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the same ultimate capacity, but reinforced with either steel, PCP or FRP rebars, the service load deflections of beams reinforced with PCP are comparable to that of a steel reinforced concrete beam, and are four times smaller than the deflection of the companion FRP reinforced beam. Similarly, the crack width of the PCP reinforced beams under service loads is comparable to that of the steel reinforced beam while the FRP reinforced beam developed unacceptably wide cracks. In the analytical part comprehensive analysis of the experimental data in both flexure and shear is performed. It is determined that the existing design expressions for ultimate flexural strength and service load deflection calculation cannot accurately predict the response of PCP reinforced beams. Accordingly, new expressions for calculation of deflection, crack width, tension stiffening, and ultimate capacity of the PCP reinforced beams are proposed. The predictions of the proposed methods of analysis agree very well with the corresponding experimental data. Based on the results of the current study, it is concluded that high strength concrete prisms prestressed with carbon fibre reinforced plastic bars can be used as reinforcement in concrete structures to avoid the problems of large deflections and wide cracks under service loads.
Henn, Sandrina; de Carvalho, Rodrigo Varella; Ogliari, Fabrício Aulo; de Souza, Ana Paula; Line, Sergio Roberto Peres; da Silva, Adriana Fernandes; Demarco, Flávio Fernando; Etges, Adriana; Piva, Evandro
2012-04-01
This study evaluated the effect of zinc methacrylate (ZM) on the inhibition of matrix metalloproteinase 2 (MMP-2) and the ultimate tensile strength (UTS) of an experimental polymer. Enzymes secreted from mouse gingival tissues were analyzed by gelatin zymography in buffers containing 5 mM CaCl(2) (Tris-CaCl(2)) in 50 mM Tris-HCl buffer with various concentrations of ZM (0.5, 1, 2, 4, 8, and 16 mM). The matrix metalloproteinases present in the conditioned media were characterized by immunoprecipitation. The polymer UTS evaluation was performed in eight groups with various concentrations of ZM (0, 0.5, 1, 2.5, 5, 10, 20, and 30 wt.%), in a mechanical testing machine. MMP-2 (62 kDa) was detected in the zymographic assays and inhibited by ZM in all tested concentrations. UTS data were submitted to one-way ANOVA and Tukey's test (α = 0.05), and no significant differences were observed among groups, except in the polymer containing 30% ZM, presenting a significantly lower value when compared with the control group (p < 0.05). The results suggest that ZM inhibits MMP-2 expression in all concentrations tested, while small concentrations did not affect the ultimate tensile strength of the polymer. Zinc methacrylate is a metalloproteinase inhibitor that can be copolymerized with other methacrylate monomers. Yet, the addition of ZM did not affect the resin bond strength. Thus, in vivo tests should be performed to evaluate the performance of this material.
NASA Astrophysics Data System (ADS)
Alejos, Martin Fernando
Additive manufacturing has become a highly researched topic in recent years all over the world. The current research evaluates the merits of additive manufacturing based on the mechanical, microstructural, and fracture properties of additive manufactured AlSi10Mg test specimens. The additive manufactured build plates consisted of tensile and fatigue test specimens. They were printed in the 0°, 30°, 60°, and 90° orientations relative to the build platform. Tensile and dynamic fatigue tests were conducted followed by microstructural characterization and fracture analysis. A wrought 6061 T6 aluminum alloy was also tested for comparison. Tensile tests revealed similar ultimate tensile strengths for all aluminum tensile specimens (350-380 MPa). Fatigue strength was greatest for wrought 6061 T6 aluminum (175 MPa). The fatigue behavior was a strong function of build orientation for the additive manufactured specimens. The 0°, 30°, and 60° orientations had fatigue strengths close to 104 MPa while the 90° orientation had a fatigue strength of 125 MPa. All test specimens failed primarily in a ductile manner. The effect of laser power, hatch spacing, and scan speed were also studied using microstructural analysis. Increasing laser power decreased grain size and void size. Increasing scan speed led to the formation of columnar grains. Increasing hatch spacing decreased grain size and the amount of voids present in the microstructure.
Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen
NASA Astrophysics Data System (ADS)
Cruz, P.; Shoemake, E. D.; Adam, P.; Leachman, J.
2015-12-01
Advances in additive manufacturing technology have made 3D printing a viable solution for many industries, allowing for the manufacture of designs that could not be made through traditional subtractive methods. Applicability of additive manufacturing in cryogenic applications is hindered, however, by a lack of accurate material properties information. Nylon is available for printing using fused deposition modeling (FDM) and selective laser sintering (SLS). We selected 5 SLS (DuraForm® EX, DuraForm® HST, DuraForm® PA, PA 640-GSL, and PA 840-GSL) and 2 FDM (Nylon 12, ULTEM) nylon variants based on the bulk material properties and printed properties at room temperature. Tensile tests were performed on five samples of each material while immersed in liquid nitrogen at approximately 77 Kelvin. Samples were tested in XY and, where available, Z printing directions to determine influence on material properties. Results show typical SLS and FDM nylon ultimate strength retention at 77 K, when compared to (extruded or molded) nylon ultimate strength.
Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels
NASA Astrophysics Data System (ADS)
Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish
2017-02-01
Laser welding is a potentially useful technique for joining two pieces of similar or dissimilar materials with high precision. In the present work, comparative studies on laser welding of similar metal of AISI 304SS and AISI 316SS have been conducted forming butt joints. A robotic control 600 W pulsed Nd:YAG laser source has been used for welding purpose. The effects of laser power, scanning speed and pulse width on the ultimate tensile strength and weld width have been investigated using the empirical models developed by RSM. The results of ANOVA indicate that the developed models predict the responses adequately within the limits of input parameters. 3-D response surface and contour plots have been developed to find out the combined effects of input parameters on responses. Furthermore, microstructural analysis as well as hardness and tensile behavior of the selected weld of 304SS and 316SS have been carried out to understand the metallurgical and mechanical behavior of the weld. The selection criteria are based on the maximum and minimum strength achieved by the respective weld. It has been observed that the current pulsation, base metal composition and variation in heat input have significant influence on controlling the microstructural constituents (i.e. phase fraction, grain size etc.). The result suggests that the low energy input pulsation generally produce fine grain structure and improved mechanical properties than the high energy input pulsation irrespective of base material composition. However, among the base materials, 304SS depict better microstructural and mechanical properties than the 316SS for a given parametric condition. Finally, desirability function analysis has been applied for multi-objective optimization for maximization of ultimate tensile strength and minimization of weld width simultaneously. Confirmatory tests have been conducted at optimum parametric conditions to validate the optimization techniques.
The compressive failure of graphite/epoxy plates with circular holes
NASA Technical Reports Server (NTRS)
Knauss, J. F.; Starnes, J. H., Jr.; Henneke, E. G., II
1978-01-01
The behavior of fiber reinforced composite plates containing a circular cutout was characterized in terms of geometry (thickness, width, hole diameter), and material properties (bending/extensional stiffness). Results were incorporated in a data base for use by designers in determining the ultimate strength of such a structure. Two thicknesses, 24 plies and 48 plies were chosen to differentiate between buckling and strength failures due to the presence of a cutout. Consistent post-buckling strength was exhibited by both laminate configurations.
Development of a High-Strength Ultrafine-Grained Ferritic Steel Nanocomposite
NASA Astrophysics Data System (ADS)
Rahmanifard, Roohollah; Farhangi, Hasan; Novinrooz, Abdul Javad; Moniri, Samira
2013-02-01
This article describes the microstructural and mechanical properties of 12YWT oxide-dispersion-strengthened (ODS)-ferritic steel nanocomposite. According to the annealing results obtained from X-ray diffraction line profile analysis on mechanically alloyed powders milled for 80 hours, the hot extrusion at 1123 K (850 °C) resulted in a nearly equiaxed ultrafine structure with an ultimate tensile strength of 1470 MPa, yield strength of 1390 MPa, and total elongation of 13 pct at room temperature comparable with high-strength 14YWT ODS steel. Maximum total elongation was found at 973 K (600 °C) where fractography of the tensile specimen showed a fully ductile dimple feature compared with the splitting cracks and very fine dimpled structure observed at room temperature. The presence of very small particles on the wall of dimples at 1073 K (800 °C) with nearly chemical composition of the matrix alloy was attributed to the activation of the boundaries decohesion mechanism as a result of diffusion of solute atoms. The results of Charpy impact test also indicated significant improvement of transition temperature with respect to predecessor 12YWT because of the decreased grain size and more homogeneity of grain size distribution. Hence, this alloy represented a good compromise between the strength and Charpy impact properties.
A method of calculating the ultimate strength of continuous beams
NASA Technical Reports Server (NTRS)
Newlin, J A; Trayer, George W
1931-01-01
The purpose of this study was to investigate the strength of continuous beams after the elastic limit has been passed. As a result, a method of calculation, which is applicable to maximum load conditions, has been developed. The method is simpler than the methods now in use and it applies properly to conditions where the present methods fail to apply.
Iwamoto, Jun; Sato, Yoshihiro; Matsumoto, Hideo
2014-01-01
Gastrectomy (GX) induces osteopenia in rats. The present study examined the skeletal effects of vitamin K2 in GX rats. Thirty male Sprague-Dawley rats (12 wk old) were randomized by the stratified weight method into the following three groups of 10 animals each: sham operation (control) group; GX group; and GX+oral vitamin K2 (menatetrenone, 30 mg/kg, 5 d/wk) group. Treatment was initiated at 1 wk after surgery. After 6 wk of treatment, the bone mineral content (BMC), bone mineral density (BMD), and mechanical strength of the femoral diaphysis and distal metaphysis were determined by peripheral quantitative computed tomography and mechanical strength tests, respectively. GX induced decreases in the BMC, BMD, and ultimate force of the femoral diaphysis and distal metaphysis. Vitamin K2 did not significantly influence the BMC or BMD of the femoral diaphysis or distal metaphysis in GX rats, but attenuated the decrease in the ultimate force and increased the stiffness of the femoral diaphysis. The present study showed that administration of vitamin K2 to GX rats improved the bone strength of the femoral diaphysis without altering the BMC or BMD, suggesting effects of vitamin K2 on the cortical bone quality.
Immobilization in cement mortar of chromium removed from water using titania nanoparticles.
Husnain, Ahmed; Qazi, Ishtiaq Ahmed; Khaliq, Wasim; Arshad, Muhammad
2016-05-01
Because of the high toxicity of chromium, particularly as Cr (VI), it is removed from industrial effluents before their discharge into water bodies by a variety of techniques, including adsorption. Ultimate disposal of the sludge or the adsorbate, however, is a serious problem. While titania, in nanoparticle form, serves as a very good adsorbent for chromium, as an additive, it also helps to increase the compressive strength of mortar and concrete. Combining these two properties of the material, titania nanoparticles were used to adsorb chromium and then added to mortar up to a concentration of 20% by weight. The compressive strength of the resulting mortar specimens that replaced 15% of cement with chromium laden titania showed an improved strength than that without titania, thus confirming that this material had positive effect on the mortar strength. Leachate tests using the Toxicity Characteristics Leaching Procedure (TCLP) confirmed that the mortar sample chromium leachate was well within the permissible limits. The proposed technique thus offers a safe and viable method for the ultimate disposal of toxic metal wastes, in general, and those laden waste chromium, in particular. Copyright © 2016 Elsevier Ltd. All rights reserved.
Post-Buckling and Ultimate Strength Analysis of Stiffened Composite Panel Base on Progressive Damage
NASA Astrophysics Data System (ADS)
Zhang, Guofan; Sun, Xiasheng; Sun, Zhonglei
Stiffened composite panel is the typical thin wall structure applied in aerospace industry, and its main failure mode is buckling subjected to compressive loading. In this paper, the development of an analysis approach using Finite Element Method on post-buckling behavior of stiffened composite structures under compression was presented. Then, the numerical results of stiffened panel are obtained by FE simulations. A thorough comparison were accomplished by comparing the load carrying capacity and key position strains of the specimen with test. The comparison indicates that the FEM results which adopted developed methodology could meet the demand of engineering application in predicting the post-buckling behavior of intact stiffened structures in aircraft design stage.
NASA Technical Reports Server (NTRS)
Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.
2011-01-01
A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.
Wang, Yaohui; Ural, Ani
2018-06-01
A key length scale of interest in assessing the fracture resistance of bone is the submicroscale which is composed of mineralized collagen fibrils (MCF) and extra-fibrillar matrix (EFM). Although the processes through which the submicroscale constituents of bone contribute to the fracture resistance in bone have been identified, the extent of the modifications in submicroscale mechanical response due to the changes in individual properties of MCFs and EFM has not been determined. As a result, this study aims to quantify the influence of individual MCF and EFM material property modifications on the mechanical behavior (elastic modulus, ultimate strength, and resistance to failure) of bone at the submicroscale using a novel finite element modeling approach that incorporate 3D networks of MCFs with three different orientations as well as explicit representation of EFM. The models were evaluated under tensile loading in transverse (representing MCF separation) and longitudinal (representing MCF rupture) directions. The results showed that the apparent elastic modulus at the submicroscale under both loading directions for all orientations was only affected by the change in the elastic modulus of MCFs. MCF separation and rupture strengths were mainly dependent on the ultimate strength of EFM and MCFs, respectively, with minimal influence of other material properties. The extent of damage during MCF separation increased with increasing ultimate strength of EFM and decreased with increasing fracture energy of EFM with minimal contribution from elastic modulus of MCFs. For MCF rupture, there was an almost one-to-one linear relationship between the percent change in fracture energy of MCFs and the percent change in the apparent submicroscale fracture energy. The ultimate strength and elastic modulus of MCFs had moderate to limited influence on the MCF rupture fracture energy. The results of this study quantified the extent of changes that may be seen in the energy dissipation processes during MCF rupture and separation relative to the changes in the individual constituents of the tissue. This new knowledge significantly contributes to improving the understanding of how the material property alterations at the submicroscale that can occur due to diseases, age-related changes, and treatments affect the fracture processes at larger length scales. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhao, Qilin; Chen, Li; Shao, Guojian
2014-01-01
The axial compressive strength of unidirectional FRP made by pultrusion is generally quite lower than its axial tensile strength. This fact decreases the advantages of FRP as main load bearing member in engineering structure. A theoretical iterative calculation approach was suggested to predict the ultimate axial compressive stress of the combined structure and analyze the influences of geometrical parameters on the ultimate axial compressive stress of the combined structure. In this paper, the experimental and theoretical research on the CFRP sheet confined GFRP short pole was extended to the CFRP sheet confined GFRP short pipe, namely, a hollow section pole. Experiment shows that the bearing capacity of the GFRP short pipe can also be heightened obviously by confining CFRP sheet. The theoretical iterative calculation approach in the previous paper is amended to predict the ultimate axial compressive stress of the CFRP sheet confined GFRP short pipe, of which the results agree with the experiment. Lastly the influences of geometrical parameters on the new combined structure are analyzed. PMID:24672288
Gao, Wentong; Bie, Mengyao; Liu, Fu; Chang, Pengshan; Quan, Yiwu
2017-05-10
Polysulfide sealants have been commercially applied in many industrial fields. In this article, we study the self-healing property of the epoxy resin-cured polysulfide sealants for the first time. The obtained sealants showed a flexible range of ultimate elongation of 157-478% and a tensile strength of 1.02-0.75 MPa corresponding to different polysulfide oligomers. By taking advantage of the dynamic reversible exchange of disulfide bonds, polysulfide sealants exhibited good self-healing ability under a moderate thermal stimulus. A higher molecular weight and a lower degree of cross-linking of polysulfide oligomer were helpful in improving the ultimate elongation and healing efficiency of the polysulfide sealants. After subjecting to a temperature of 75 °C for 60 min, both the tensile strength and ultimate elongation of a fully cut sample, LP55-F, were restored to 91% of the original values, without affecting the sealing property. Furthermore, the sample exhibited excellent reshaping and reprocessing abilities. These outcomes offer a paradigm toward sustainable industrial applications of the polysulfide-based sealants.
Thermal degradation of the tensile strength of unidirectional boron/aluminum composites
NASA Technical Reports Server (NTRS)
Grimes, H. H.; Lad, R. A.; Maisel, J. E.
1977-01-01
The variation of ultimate tensile strength with thermal treatment of B-Al composite materials and of boron fibers chemically removed from these composites in an attempt to determine the mechanism of the resulting strength degradation was studied. Findings indicate that thermally cycling B-Al represents a more severe condition than equivalent time at temperature. Degradation of composite tensile strength from about 1.3 GN/m squared to as low as 0.34 GN/m squared was observed after 3,000 cycles to 420 C for 203 micrometers B-1100 Al composite. In general, the 1100 Al matrix composites degraded somewhat more than the 6061 matrix material studied. Measurement of fiber strengths confirmed a composite strength loss due to the degradation of fiber strength. Microscopy indicated a highly flawed fiber surface.
Effect of different surface treatments on shear bond strength of zirconia to three resin cements
NASA Astrophysics Data System (ADS)
Dadjoo, Nisa
Statement of problem: There are no standard guidelines for material selection to obtain acceptable bonding to high-strength zirconium oxide ceramic. Studies suggest resin cements in combination with MDP-containing primer is a reasonable choice, however, the other cements cannot be rejected and need further investigation. Objective: The purpose of this in vitro study was the evaluation of the shear bond strength of three composite resin cements to zirconia ceramic after using different surface conditioning methods. Materials and methods: One hundred and twenty sintered Y-TZP ceramic (IPS e.max ZirCAD) squares (8 x 8 x 4 mm) were embedded in acrylic molds, then divided into three groups (n=40) based on the type of cement used. Within each group, the specimens were divided into four subgroups (n=10) and treated as follows: (1) Air abrasion with 50microm aluminum oxide (Al2O 3) particles (ALO); (2) Air abrasion + Scotchbond Universal adhesive (SBU); (3) Air abrasion + Monobond Plus (MBP); (4) Air abrasion + Z-Prime Plus (ZPP). Composite cylinders were used as carriers to bond to conditioned ceramic using (1) RelyX Ultimate adhesive resin cement (RX); (2) Panavia SA self-adhesive resin cement (PSA); (3) Calibra esthetic cement (CAL). The bonded specimens were submerged in distilled water and subjected to 24-hour incubation period at 37°C. All specimens were stressed in shear at a constant crosshead speed of 0.5 mm/min until failure. Statistical analysis was performed by ANOVA. The bond strength values (MPa), means and standard deviations were calculated and data were analyzed using analysis of variance with Fisher's PLSD multiple comparison test at the 0.05 level of significance. The nature of failure was recorded. Results: The two-way ANOVA showed Panavia SA to have the highest strength at 44.3 +/- 16.9 MPa (p<0.05). The combination of Scotchbond Universal surface treatment with Panavia SA cement showed statistically higher bond strength (p=0.0054). The highest bond strengths for all three cements were observed with Scotchbond Universal surface treatment (p=0.0041). Calibra in combination with aluminum oxide air abrasion resulted in statistically lowest bond strength at 12.0 +/- 3.9 MPa. The predominant mode of failure was cohesive with cement remaining principally on the zirconium oxide samples in 57.5% of the specimens, followed by cement found on both the zirconium oxide samples and composite rods (mixed) in 32.5% of the samples. Only 10% of the specimens were found with cement on the composite rods (adhesive failure). Conclusions: Within the limitations of this in vitro study, the MDP-containing resin cement, Panavia SA, yielded the strongest bond to Y-TZP ceramic when compared to adhesive (RelyX Ultimate) or esthetic (Calibra) resin cements. Air abrasion particle + Scotchbond Universal surface treatment demonstrated the highest bond strength regardless of the cement. Significance: The variation of surface conditioning methods yielded different results in accordance with the cement types. Overall, Scotchbond Universal adhesive + air abrasion yielded the highest bond strengths among all three surface treatments. The phosphate monomer-containing luting system, Panavia SA, is acceptable for bonding to zirconia ceramics.
Reliability, failure probability, and strength of resin-based materials for CAD/CAM restorations
Lim, Kiatlin; Yap, Adrian U-Jin; Agarwalla, Shruti Vidhawan; Tan, Keson Beng-Choon; Rosa, Vinicius
2016-01-01
ABSTRACT Objective: This study investigated the Weibull parameters and 5% fracture probability of direct, indirect composites, and CAD/CAM composites. Material and Methods: Discshaped (12 mm diameter x 1 mm thick) specimens were prepared for a direct composite [Z100 (ZO), 3M-ESPE], an indirect laboratory composite [Ceramage (CM), Shofu], and two CAD/CAM composites [Lava Ultimate (LU), 3M ESPE; Vita Enamic (VE), Vita Zahnfabrik] restorations (n=30 for each group). The specimens were polished, stored in distilled water for 24 hours at 37°C. Weibull parameters (m= modulus of Weibull, σ0= characteristic strength) and flexural strength for 5% fracture probability (σ5%) were determined using a piston-on-three-balls device at 1 MPa/s in distilled water. Statistical analysis for biaxial flexural strength analysis were performed either by both one-way ANOVA and Tukey's post hoc (α=0.05) or by Pearson's correlation test. Results: Ranking of m was: VE (19.5), LU (14.5), CM (11.7), and ZO (9.6). Ranking of σ0 (MPa) was: LU (218.1), ZO (210.4), CM (209.0), and VE (126.5). σ5% (MPa) was 177.9 for LU, 163.2 for CM, 154.7 for Z0, and 108.7 for VE. There was no significant difference in the m for ZO, CM, and LU. VE presented the highest m value and significantly higher than ZO. For σ0 and σ5%, ZO, CM, and LU were similar but higher than VE. Conclusion: The strength characteristics of CAD/ CAM composites vary according to their composition and microstructure. VE presented the lowest strength and highest Weibull modulus among the materials. PMID:27812614
Dogramaci, Yunus; Kalaci, Aydiner; Sevinç, Teoman Toni; Esen, Erdinc; Komurcu, Mahmut; Yanat, Ahmet Nedim
2008-09-01
This study compares the mechanical properties of modified Kessler and double-modified Kessler flexor tendon repair techniques and evaluates simple modifications on both methods. Forty fresh sheep flexor tendons were divided equally into four groups. A transverse sharp cut was done in the middle of each tendon and then repaired with modified Kessler technique, modified Kessler with additional purchase point in the midpoint of each longitudinal strand, double-modified Kessler technique, or a combination of outer Kessler and inner cruciate configuration based on double-modified Kessler technique. The tendons were tested in a tensile testing machine to assess the mechanical performance of the repairs. Outcome measures included gap formation and ultimate forces. The gap strengths of the double-modified Kessler technique (30.85 N, SD 1.90) and double-modified Kessler technique with inner cruciate configuration (33.60 N, SD 4.64) were statistically significantly greater than that of the two-strand modified Kessler (22.56 N, SD 3.44) and modified Kessler with additional purchase configuration (21.75 N, SD 4.03; Tukey honestly significant difference test, P < 0.000). There were statistically significant differences in failure strengths of the all groups (analysis of variance, P < 0.000). With an identical number of strands, the gap formation and ultimate forces of the repairs were not changed by additional locking purchase point in modified Kessler repair or changing the inner strand configuration in double-modified Kessler repair. The results of this study show that the number of strands across the repair site together with the number of locking loops clearly affects the strength of the repair; meanwhile, the longitudinal strand orientation and number of purchase points in a single loop did not affect its strength.
Karacan, C Özgen; Olea, Ricardo A
2018-03-01
Chemical properties of coal largely determine coal handling, processing, beneficiation methods, and design of coal-fired power plants. Furthermore, these properties impact coal strength, coal blending during mining, as well as coal's gas content, which is important for mining safety. In order for these processes and quantitative predictions to be successful, safer, and economically feasible, it is important to determine and map chemical properties of coals accurately in order to infer these properties prior to mining. Ultimate analysis quantifies principal chemical elements in coal. These elements are C, H, N, S, O, and, depending on the basis, ash, and/or moisture. The basis for the data is determined by the condition of the sample at the time of analysis, with an "as-received" basis being the closest to sampling conditions and thus to the in-situ conditions of the coal. The parts determined or calculated as the result of ultimate analyses are compositions, reported in weight percent, and pose the challenges of statistical analyses of compositional data. The treatment of parts using proper compositional methods may be even more important in mapping them, as most mapping methods carry uncertainty due to partial sampling as well. In this work, we map the ultimate analyses parts of the Springfield coal from an Indiana section of the Illinois basin, USA, using sequential Gaussian simulation of isometric log-ratio transformed compositions. We compare the results with those of direct simulations of compositional parts. We also compare the implications of these approaches in calculating other properties using correlations to identify the differences and consequences. Although the study here is for coal, the methods described in the paper are applicable to any situation involving compositional data and its mapping.
Tensile strength comparison of presoldered and postsoldered joints.
Monday, J J; Asgar, K
1986-01-01
Twenty half-dumbbell shaped rods were cast in a silverless gold-palladium alloy that contained a minimum of 42% fresh alloy and the rest once-melted alloy. Each pair of half-dumbbells was assembled and either presoldered or postsoldered using a vacuum-oven and a torch-soldering technique. There was no significant difference in the ultimate tensile strength values between the presoldered and postsoldered joints within the same technique group, but the torch-soldered joints for the same solder were significantly stronger (p less than .01). It was believed that slow heating and cooling has deleterious effects on the ultimate tensile strength joints (UTS) possibly because of the microstructural changes and the highly oxidizable content of the postsolder used. Another 15 samples cast using once, twice, and three-times remelted parent alloy were presoldered and postsoldered with the torch only. In each of these groups, specimens joined by presolder showed significantly higher strength than those joined by postsolder (p less than .02). Remelting the parent alloy affected the strength differences between the presoldered and postsoldered joints. It was assumed that on remelting, the nature of the parent alloy is changed because some original elements are volatilized and newly formed oxides dissolved into it. Because it contains copper, the postsolder is more affected by this contamination than presolder. The UTS of the parent alloy, as well as that of the presolder and postsolder, were also determined. As expected, the parent alloy possessed the highest strength and the postsolder, the lowest.
TEXCAD: Textile Composite Analysis for Design. Version 1.0: User's manual
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.
1994-01-01
The Textile Composite Analysis for Design (TEXCAD) code provides the materials/design engineer with a user-friendly desktop computer (IBM PC compatible or Apple Macintosh) tool for the analysis of a wide variety of fabric reinforced woven and braided composites. It can be used to calculate overall thermal and mechanical properties along with engineering estimates of damage progression and strength. TEXCAD also calculates laminate properties for stacked, oriented fabric constructions. It discretely models the yarn centerline paths within the textile repeating unit cell (RUC) by assuming sinusoidal undulations at yarn cross-over points and uses a yarn discretization scheme (which subdivides each yarn not smaller, piecewise straight yarn slices) together with a 3-D stress averaging procedure to compute overall stiffness properties. In the calculations for strength, it uses a curved beam-on-elastic foundation model for yarn undulating regions together with an incremental approach in which stiffness properties for the failed yarn slices are reduced based on the predicted yarn slice failure mode. Nonlinear shear effects and nonlinear geometric effects can be simulated. Input to TEXCAD consists of: (1) materials parameters like impregnated yarn and resin properties such moduli, Poisson's ratios, coefficients of thermal expansion, nonlinear parameters, axial failure strains and in-plane failure stresses; and (2) fabric parameters like yarn sizes, braid angle, yarn packing density, filament diameter and overall fiber volume fraction. Output consists of overall thermoelastic constants, yarn slice strains/stresses, yarn slice failure history, in-plane stress-strain response and ultimate failure strength. Strength can be computed under the combined action of thermal and mechanical loading (tension, compression and shear).
Impact Melt Emplacement on Mercury
NASA Astrophysics Data System (ADS)
Daniels, J. W.; Neish, C. D.
2018-05-01
This work proposes that fresh craters on rocky bodies may deposit impact melt externally ultimately according to the strength of its surface gravity, regardless of the body's surface topography and melt abundance.
Mechanical design of mussel byssus: material yield enhances attachment strength
Bell; Gosline
1996-01-01
The competitive dominance of mussels in the wave-swept rocky intertidal zone is in part due to their ability to maintain a secure attachment. Mussels are tethered to the substratum by a byssus composed of numerous extracellular, collagenous threads secreted by the foot. Each byssal thread has three serially arranged parts: a corrugated proximal region, a smooth distal region and an adhesive plaque. This study examines the material and structural properties of the byssal threads of three mussel species: Mytilus californianus, M. trossulus, and M. galloprovincialis. Tensile tests in general reveal similar material properties among species: the proximal region has a lower initial modulus, a lower ultimate stress and a higher ultimate strain than the distal region. The distal region also yields at a stress well below its ultimate value. In whole thread tests, the proximal region and adhesive plaque are common sites of structural failure and are closely matched in strength, while the distal region appears to be excessively strong. We propose that the high strength of the distal region is the byproduct of a material designed to yield and extend before structural failure occurs. Experimental and theoretical evidence is presented suggesting that thread yield and extensibility provide two important mechanisms for increasing the overall attachment strength of the mussel: (1) the reorientation of threads towards the direction of applied load, and (2) the 'recruitment' of more threads into tension and the consequent distribution of applied load over a larger cross-sectional area, thereby reducing the stress on each thread. This distal region yield behavior is most striking for M. californianus and may be a key to its success in extreme wave-swept environments.
Microstructures and properties of aluminum die casting alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. M. Makhlouf; D. Apelian; L. Wang
1998-10-01
This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.
Time-Dependent Behavior of High-Strength Kevlar and Vectran Webbing
NASA Technical Reports Server (NTRS)
Jones, Thomas C.; Doggett, William R.
2014-01-01
High-strength Kevlar and Vectran webbings are currently being used by both NASA and industry as the primary load-bearing structure in inflatable space habitation modules. The time-dependent behavior of high-strength webbing architectures is a vital area of research that is providing critical material data to guide a more robust design process for this class of structures. This paper details the results of a series of time-dependent tests on 1-inch wide webbing including an initial set of comparative tests between specimens that underwent realtime and accelerated creep at 65 and 70% of their ultimate tensile strength. Variability in the ultimate tensile strength of the webbings is investigated and compared with variability in the creep life response. Additional testing studied the effects of load and displacement rate, specimen length and the time-dependent effects of preconditioning the webbings. The creep test facilities, instrumentation and test procedures are also detailed. The accelerated creep tests display consistently longer times to failure than their real-time counterparts; however, several factors were identified that may contribute to the observed disparity. Test setup and instrumentation, grip type, loading scheme, thermal environment and accelerated test postprocessing along with material variability are among these factors. Their effects are discussed and future work is detailed for the exploration and elimination of some of these factors in order to achieve a higher fidelity comparison.
Effect of evaporation on the shelf life of a universal adhesive.
Pongprueksa, P; Miletic, V; De Munck, J; Brooks, N R; Meersman, F; Nies, E; Van Meerbeek, B; Van Landuyt, K L
2014-01-01
The purpose of this study was to evaluate how evaporation affects the shelf life of a one-bottle universal adhesive. Three different versions of Scotchbond Universal (SBU, 3M ESPE, Seefeld, Germany) were prepared using a weight-loss technique. SBU0 was left open to the air until maximal weight loss was obtained, whereas SBU50 was left open until 50% of evaporation occurred. In contrast, SBU100 was kept closed and was assumed to contain the maximum concentration of all ingredients. The degree of conversion (DC) was determined by using Fourier transform infrared spectroscopy on different substrates (on dentin or glass plate and mixed with dentin powder); ultimate microtensile strength and microtensile bond strength to dentin were measured as well. DC of the 100% solvent-containing adhesive (SBU100) was higher than that of the 50% (SBU50) and 0% (SBU0) solvent-containing adhesives for all substrates. DC of the adhesive applied onto glass and dehydrated dentin was higher than that applied onto dentin. Even though the ultimate microtensile strength of SBU0 was much higher than that of SBU50 and SBU100, its bond strength to dentin was significantly lower. Evaporation of adhesive ingredients may jeopardize the shelf life of a one-bottle universal system by reducing the degree of conversion and impairing bond strength. However, negative effects only became evident after more than 50% evaporation.
Pfrommer, Andreas; Henning, Anke
2018-03-13
The ultimate intrinsic signal-to-noise ratio (UISNR) represents an upper bound for the achievable SNR of any receive coil. To reach this threshold a complete basis set of equivalent surface currents is required. This study systematically investigated to what extent either loop- or dipole-like current patterns are able to reach the UISNR threshold in a realistic human head model between 1.5 T and 11.7 T. Based on this analysis, we derived guidelines for coil designers to choose the best array element at a given field strength. Moreover, we present ideal current patterns yielding the UISNR in a realistic body model. We distributed generic current patterns on a cylindrical and helmet-shaped surface around a realistic human head model. We excited electromagnetic fields in the human head by using eigenfunctions of the spherical and cylindrical Helmholtz operator. The electromagnetic field problem was solved by a fast volume integral equation solver. At 7 T and above, adding curl-free current patterns to divergence-free current patterns substantially increased the SNR in the human head (locally >20%). This was true for the helmet-shaped and the cylindrical surface. On the cylindrical surface, dipole-like current patterns had high SNR performance in central regions at ultra-high field strength. The UISNR increased superlinearly with B0 in most parts of the cerebrum but only sublinearly in the periphery of the human head. The combination of loop and dipole elements could enhance the SNR performance in the human head at ultra-high field strength. © 2018 International Society for Magnetic Resonance in Medicine.
Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun
2014-08-19
Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.
Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun
2014-01-01
Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied. PMID:28788170
Progress in multidisciplinary design optimization at NASA Langley
NASA Technical Reports Server (NTRS)
Padula, Sharon L.
1993-01-01
Multidisciplinary Design Optimization refers to some combination of disciplinary analyses, sensitivity analysis, and optimization techniques used to design complex engineering systems. The ultimate objective of this research at NASA Langley Research Center is to help the US industry reduce the costs associated with development, manufacturing, and maintenance of aerospace vehicles while improving system performance. This report reviews progress towards this objective and highlights topics for future research. Aerospace design problems selected from the author's research illustrate strengths and weaknesses in existing multidisciplinary optimization techniques. The techniques discussed include multiobjective optimization, global sensitivity equations and sequential linear programming.
Optimization of Thixoforging Parameters for C70S6 Steel Connecting Rods
NASA Astrophysics Data System (ADS)
Özkara, İsa Metin; Baydoğan, Murat
2016-11-01
A microalloyed steel, C70S6, with a solidification interval of 1390-1479 °C, was thixoforged in the semisolid state in a closed die at temperatures in the range 1400-1475 °C to form a 1/7 scaled-down model of a passenger vehicle connecting rod. Die design and an optimized thixoforging temperature eliminated the excessive flash and other problems during forging. Tension test samples from connecting rods thixoforged at the optimum temperature of 1440 °C exhibited nearly the same hardness, yield strength, and ultimate tensile strength as conventional hot forged samples but ductility decreased by about 45% due to grain boundary ferrite network formed during cooling from the thixoforging temperature. Thus, C70S6-grade steel can be thixoforged at 1440 °C to form flash-free connecting rods. This conclusion was also validated using FEA analysis.
Enhancing Ultimate Compressive Strength of Notch Embedded Steel Cylinders Using Overwrap CFRP Patch
NASA Astrophysics Data System (ADS)
Kabir, Mohammad Z.; Nazari, Alireza
2012-06-01
In this study, the application of Fiber Reinforced Polymer (FRP) patch for strengthening of the damaged area in thin walled steel cylinders under compression loading was investigated. In this direction, some experimental tests were carried out on the selected notch induced specimens with unique diameter-to-thickness ratio (D/t). The obtained results were compared to the intact cylinder in order to find out the reduction effect of notch on the buckling load of cylinders. Following that, the notched specimens were treated using externally FRP by wrapping around the notched area and the stability strength of the retrofitted specimens was measured experimentally. The investigation was also carried out in numerical analysis using FEM in order to develop the proposed technique for determination of optimum FRP configurations and also better understanding of the experimental observations considering the nonlinear behavior and failure modes for composite member.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yi., E-mail: zhaoyi091218@163.com; Xu, Li. Hua.
This paper presents numerical study of the seismic behavior of reinforced concrete beam to concrete filled steel tube column connections with ring-beam. The material stress-strain relations, element type and boundary condition are selected, which are consistent with actual situation. Then the seismic behavior of this type of joint are researched by ABAQUS, and finite element analyses are conducted under cyclic loading. Its parameters are discussed including thickness of steel tubular column wall, sectional dimension of the ring-beam and strength of the core concrete. The results show that the ultimate capacity of the connections is improved with sectional dimension of themore » ring-beam increased. In the meanwhile, the influence on skeleton curve of the joints is slight of which included thickness of steel tubular column wall and strength of the core concrete.« less
NASA Astrophysics Data System (ADS)
Li, Y.; Huang, Q.; Wu, Y.; Nagasaka, T.; Muroga, T.
2007-08-01
The tensile and impact properties of CLAM steel are compared to those of JLF-1 steel. Tensile testing revealed that the ultimate and yield strengths of the CLAM steel are 670 MPa and 512 MPa at room temperature, and 373 MPa and 327 MPa at 873 K, respectively. These values are higher than those measured for JLF-1. The ductile-to-brittle transition temperature (DBTT) of CLAM was found to be 171 K using one-third size Charpy V-notch specimens, which is 16 K lower than that of JLF-1. Microstructural analysis by SEM and TEM indicated that the prior austenite grain size and lath width for CLAM are smaller than those for JLF-1. The finer grain and lath structure is considered to be one of the main reasons for the higher strength and lower DBTT of the CLAM steel.
NASA Astrophysics Data System (ADS)
Perrier, Frédéric; Desrayaud, Christophe; Bouvier, Véronique
Aluminum casting/forging processes are used to produce parts for the automotive industry. In this study, we examined the influence of the forging step on the microstructure and the mechanical properties of an A356 aluminum alloy modified with strontium. Firstly, a design of samples which allows us to test mechanically the alloy before and after forging was created. A finite element analysis with the ABAQUS software predicts a maximum of strain in the core of the specimens. Observations with the EBSD technique confirm a more intense sub-structuration of the dendrite cells in this zone. Yield strength, ultimate tensile strength, elongation and fatigue lives were then improved for the casting/forging samples compared to the only cast specimens. The closure of the porosities and the improvement of the surface quality during the forging step enhance also the fatigue resistance of the samples.
NASA Astrophysics Data System (ADS)
Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.; Moskvichev, E. N.; Borodulin, D. A.
2017-12-01
This paper presents the results of studies into the effect of severe plastic deformation on the microstructure, physical and mechanical properties of coarse-grained Al-Mg alloy 1560 in the as-received state with an average grain size of 50 µm. Severe plastic deformation is performed by four-pass equal channel angular pressing (ECAP), which results in the formation of an ultrafine-grained structure with an average grain size of 3 µm in the alloy. Analysis of experimental data revealed that the physical and mechanical properties change significantly after severe plastic deformation. The microhardness of the ECAPed alloy increases by 50%, tensile yield strength by 80%, and ultimate strength by 44% in comparison with these parameters in the as-received state. The constants of approximating functions have been determined for the experimental stress-strain curves of the alloy specimens in the as-received and ECAPed states.
Effects of soldering methods on tensile strength of a gold-palladium metal ceramic alloy.
Ghadhanfari, Husain A; Khajah, Hasan M; Monaco, Edward A; Kim, Hyeongil
2014-10-01
The tensile strength obtained by conventional postceramic application soldering and laser postceramic welding may require more energy than microwave postceramic soldering, which could provide similar tensile strength values. The purpose of the study was to compare the tensile strength obtained by microwave postceramic soldering, conventional postceramic soldering, and laser postceramic welding. A gold-palladium metal ceramic alloy and gold-based solder were used in this study. Twenty-seven wax specimens were cast in gold-palladium noble metal and divided into 4 groups: laser welding with a specific postfiller noble metal, microwave soldering with a postceramic solder, conventional soldering with the same postceramic solder used in the microwave soldering group, and a nonsectioned control group. All the specimens were heat treated to simulate a normal porcelain sintering sequence. An Instron Universal Testing Machine was used to measure the tensile strength for the 4 groups. The means were analyzed statistically with 1-way ANOVA. The surface and fracture sites of the specimens were subjectively evaluated for fracture type and porosities by using a scanning electron microscope. The mean (standard deviation) ultimate tensile strength values were as follows: nonsectioned control 818 ±30 MPa, microwave 516 ±34 MPa, conventional 454 ±37 MPa, and laser weld 191 ±39 MPa. A 1-way ANOVA showed a significant difference in ultimate tensile strength among the groups (F3,23=334.5; P<.001). Follow-up multiple comparisons showed a significant difference among all the groups. Microwave soldering resulted in a higher tensile strength for gold and palladium noble metals than either conventional soldering or laser welding. Conventional soldering resulted in a higher tensile strength than laser welding. Under the experimental conditions described, either microwave or conventional postceramic soldering would appear to satisfy clinical requirements related to tensile strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Properties of a porous Ti-6Al-4V implant with a low stiffness for biomedical application.
Li, X; Wang, C-T; Zhang, W-G; Li, Y-C
2009-02-01
Porous Ti-6Al-4V alloy was fabricated using the electron beam melting (EBM) process. The phases of the as-received powder and fabricated samples were characterized using X-ray diffraction (XRD) analysis. The XRD peaks of both diffraction patterns agree well, which indicated that the EBM process has not changed the composition of Ti-6Al-4V. The fabricated samples exhibited a Vickers microhardness value of around 428 HV. The compression and three-point bending tests were performed to evaluate the mechanical properties of the porous Ti-6Al-4V implant with a porosity of around 60 per cent. The compressive yield strength, Young's modulus, and ultimate compressive strength were 194.6 MPa, 4.25 GPa, and 222.6 MPa respectively. The bending stiffness and bending strength were 3.7 GPa and 126.3 MPa respectively. These results demonstrated that the porous Ti-6Al-4V implant with a low stiffness and high porosity could be a promising biomaterial for biomedical applications.
NASA Astrophysics Data System (ADS)
Marshaline Seles, M.; Suryanarayanan, R.; Vivek, S. S.; Dhinakaran, G.
2017-07-01
The conventional concrete when used for structures having dense congested reinforcement, the problems such as external compaction and vibration needs special attention. In such case, the self compacting concrete (SCC) which has the properties like flow ability, passing and filling ability would be an obvious answer. All those SCC flow behavior was governed by EFNARC specifications. In present study, the combination type of SCC was prepared by replacing cement with silica fume (SF) and metakaolin (MK) along with optimum dosages of chemical admixtures. From the fresh property test, cube compressive strength and cylinder split tensile strength, optimum ternary mix was obtained. In order to study the flexural behavior, the optimum ternary mix was taken in which beam specimens of size 1200 mm x 100 mm x 200 mm was designed as singly reinforced section according to IS: 456-2000, Limit state method. Finally the comparative experimental analysis was made between conventional RCC and SCC beams of same grade in terms of flexural strength namely yield load & ultimate load, load- deflection curve, crack size and pattern respectively.
Floating Breakwaters: State-of-the-Art Literature Review.
1981-10-01
transmission Mooring loads 20. / . 20. STR ACT (Continue on reverse ide If necessary and Identify by block number) A multitude of conceptual models of...are designed by finding the ultimate lateral resistance of the pile-soil system and increasing the lateral mooring load , Ft, by a fac- tor of safety...Fs, to determine the design lateral load on the pile. The ultimate lateral resistance of the anchor pile is reached when either the passive strength of
Tensile properties of titanium electrolytically charged with hydrogen
NASA Technical Reports Server (NTRS)
Smith, R. J.; Otterson, D. A.
1971-01-01
Yield strength, ultimate tensile strength, and elongation were studied for annealed titanium electrolytically charged with hydrogen. The hydrogen was present as a surface hydride layer. These tensile properties were generally lower for uncharged titanium than for titanium with a continuous surface hydride; they were greater for uncharged titanium than for titanium with an assumed discontinuous surface hydride. We suggest that the interface between titanium and titanium hydride is weak. And the hydride does not necessarily impair strength and ductility of annealed titanium. The possibility that oxygen and/or nitrogen can embrittle titanium hydride is discussed.
NASA Astrophysics Data System (ADS)
Huang, W.-S.; Lin, M.-L.; Liu, H.-C.; Lin, H.-H.
2012-04-01
On April 25, 2010, without rainfall and earthquake triggering a massive landslide (200000 m3) covered a 200m stretch of Taiwan's National Freeway No. 3, killing 4 people, burying three cars and destroying a bridge. The failure mode appears to be a dip-slope type failure occurred on a rock anchorage cut slope. The strike of Tertiary sedimentary strata is northeast-southwest and dip 15˚ toward southeast. Based on the investigations of Taiwan Geotechnical Society, there are three possible factors contributing to the failure mechanism as follow:(1) By toe-excavation during construction in 1998, the daylight of the sliding layer had induced the strength reduction in the sliding layer. It also caused the loadings of anchors increased rapidly and approached to their ultimate capacity; (2) Although the excavated area had stabilized soon with rock anchors and backfills, the weathering and groundwater infiltration caused the strength reduction of overlying rock mass; (3) The possible corrosion and age of the ground anchors deteriorate the loading capacity of rock anchors. Considering the strength of sliding layer had reduced from peak to residual strength which was caused by the disturbance of excavation, the limit equilibrium method (LEM) analysis was utilized in the back analysis at first. The results showed the stability condition of slope approached the critical state (F.S.≈1). The efficiency reduction of rock anchors and strength reduction of overlying stratum (sandstone) had been considered in following analysis. The results showed the unstable condition (F.S. <1). This research also utilized the result of laboratory test, geological strength index(GSI) and finite difference method (FDM, FLAC 5.0) to discuss the failure process with the interaction of disturbance of toe-excavation, weathering of rock mass, groundwater infiltration and efficiency reduction of rock anchors on the stability of slope. The analysis indicated that the incremental load of anchors have similar tendency comparing to the monitoring records in toe-excavation stages. This result showed that the strength of the sliding layer was significantly influenced by toe-excavation. The numerical model which calibrated with monitoring records in excavation stage was then used to discuss the failure process after backfilling. The results showed the interaction of different factors into the failure process. Keyword: Dip slope failure, rock anchor, LEM, FDM, GSI, back analysis
Experimental Study of Axially Tension Cold Formed Steel Channel Members
NASA Astrophysics Data System (ADS)
Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia
2017-12-01
Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971-2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the minimum melting point value of 550 MPa required for standard mild steel materials in accordance with the code SNI 03-7971-2013 about Cold formed steel.
Experimental Study of Axially Tension Cold Formed Steel Channel Members
NASA Astrophysics Data System (ADS)
Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia
2017-12-01
Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971- 2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the minimum melting point value of 550 MPa required for standard mild steel materials in accordance with the code SNI 03- 7971-2013 about Cold formed steel.
NASA Technical Reports Server (NTRS)
Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.
1992-01-01
Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.
Mechanical Behavior of Commercially Pure Titanium Weldments at Lower Temperatures
NASA Astrophysics Data System (ADS)
Gupta, R. K.; Anil Kumar, V.; Xavier, X. Roshan
2018-05-01
Commercially pure titanium is used for low-temperature applications due to good toughness attributed to single-phase microstructure (α). Electron beam welding (EBW) and gas tungsten arc welding (GTAW) processes have been used for welding two grades of commercially pure titanium (Grade 2 and Grade 4). Martensitic microstructure is found to be finer in the case of EBW joint as compared to GTAW joint due to faster rate of cooling in the former process. Weldments have been characterized to study the mechanical behavior at ambient (298 K) and cryogenic temperatures (20 and 77 K). Strength of weldments increases with the decrease in temperature, which is found to be more prominent in case of Grade 4 titanium as compared to Grade 2. Weld efficiency of Grade 4 is found to be higher at all the temperatures (ambient, 77 and 20 K). However, ultimate tensile strength/yield strength ratio is higher for Grade 2 as compared to Grade 4. % Elongation is found to increase/retained at cryogenic temperatures for Grade 2, and it is found to decrease for Grade 4. Electron backscattered diffraction analysis and transmission electron microscopy of deformed samples confirmed the presence of extensive twinning in Grade 2 and the presence of finer martensitic structure in Grade 4. Fractography analysis of tested specimens revealed the presence of cleavage facets in Grade 4 and dimples in specimens of Grade 2. Higher strength in Grade 4 is attributed to higher oxygen restricting the twin-assisted slip, which is otherwise prominent in Grade 2 titanium.
Code of Federal Regulations, 2010 CFR
2010-01-01
... to withstand the ultimate loads for at least three seconds without failure. For the envelope, a test... conditions. There must be no distortion or failure that is likely to cause serious injury to the occupants. A...
NASA Astrophysics Data System (ADS)
Arakcheev, A. S.; Skovorodin, D. I.; Burdakov, A. V.; Shoshin, A. A.; Polosatkin, S. V.; Vasilyev, A. A.; Postupaev, V. V.; Vyacheslavov, L. N.; Kasatov, A. A.; Huber, A.; Mertens, Ph; Wirtz, M.; Linsmeier, Ch; Kreter, A.; Löwenhoff, Th; Begrambekov, L.; Grunin, A.; Sadovskiy, Ya
2015-12-01
A mathematical model of surface cracking under pulsed heat load was developed. The model correctly describes a smooth brittle-ductile transition. The elastic deformation is described in a thin-heated-layer approximation. The plastic deformation is described with the Hollomon equation. The time dependence of the deformation and stresses is described for one heating-cooling cycle for a material without initial plastic deformation. The model can be applied to tungsten manufactured according to ITER specifications. The model shows that the stability of stress-relieved tungsten deteriorates when the base temperature increases. This proved to be a result of the close ultimate tensile and yield strengths. For a heat load of arbitrary magnitude a stability criterion was obtained in the form of condition on the relation of the ultimate tensile and yield strengths.
Fractography of the high temperature hydrogen attack of a medium carbon steel
NASA Technical Reports Server (NTRS)
Nelson, H. G.; Moorhead, R. D.
1976-01-01
Results are reported for an experimental study of the microscopic fracture processes associated with hydrogen attack of a commercially produced plain carbon steel in a well-controlled high-temperature hydrogen environment of high purity. In the experiments, sheet samples were exposed to laboratory-grade hydrogen at a pressure of 3.5 MN/sq m and a temperature of 575 C. The fractography of gas-filled fissures and failed tension specimens is analyzed in an effort to identify any predominant microstructural defect associated with fissure formation, the prevalent modes of fracture, and the contribution of gas-filled fissures to the overall failure process. It is found that the tensile properties of the examined steel were significantly degraded after as few as 136 hr of exposure to a high-purity hydrogen atmosphere at 575 C; that the yield strength, ultimate strength, and elongation at fracture were all reduced progressively with increasing exposure time; and that the yield and ultimate strengths were reduced more than 40% after 408 hr while elongation was reduced to less than 2%.
Low-velocity impact tests on fibrous composite sandwich structures
NASA Technical Reports Server (NTRS)
Sharma, A. V.
1981-01-01
The effect of low-velocity projectile impact on the load-carrying ability of the composite sandwich structural components is investigated experimentally, the impact simulating the damage caused by runway debris and the accidental dropping of hand tools during servicing on secondary aircraft structures made with composites. The sandwich-type beam specimens were fabricated with graphite/epoxy face sheets, aluminum honeycomb core, and a steel (back) plate. A four-point beam-loading apparatus was used, and the ultimate strength, ultimate strain, and residual strength of the composites were determined. A faired curve is presented indicating the lower bound of the failure threshold for each of the laminate configurations tested in compression and tension as a function of the projectile impact energy. It is shown that strength degradation due to impact is dependent on the laminate configuration and the fiber/matrix combination. The laminates having more angle plies near the impact surface and unidirectional plies elsewhere seem to show extensive interply and intraply fiber delaminations at failure relative to the laminates with a cross-ply on the impact surface.
Line defects in graphene: How doping affects the electronic and mechanical properties
NASA Astrophysics Data System (ADS)
Berger, Daniel; Ratsch, Christian
2016-06-01
Graphene and carbon nanotubes have extraordinary mechanical and electronic properties. Intrinsic line defects such as local nonhexagonal reconstructions or grain boundaries, however, significantly reduce the tensile strength, but feature exciting electronic properties. Here, we address the properties of line defects in graphene from first principles on the level of full-potential density-functional theory, and assess doping as one strategy to strengthen such materials. We carefully disentangle the global and local effect of doping by comparing results from the virtual crystal approximation with those from local substitution of chemical species, in order to gain a detailed understanding of the breaking and stabilization mechanisms. We find that doping primarily affects the occupation of the frontier orbitals. Occupation through n -type doping or local substitution with nitrogen increases the ultimate tensile strength significantly. In particular, it can stabilize the defects beyond the ultimate tensile strength of the pristine material. We therefore propose this as a key strategy to strengthen graphenic materials. Furthermore, we find that doping and/or applying external stress lead to tunable and technologically interesting metal/semiconductor transitions.
Facile Fabrication of Multifunctional Aramid Nanofiber Films by Spin Coating
NASA Astrophysics Data System (ADS)
Lyu, Jing; Liu, Lehao; Zhao, Xing; Shang, Yudong; Zhao, Tingkai; Li, Tiehu
2016-11-01
Polymer matrices with excellent mechanical properties, thermal stability and other features are highly demanded for the effective utilization within nanocomposites. Here, we fabricate free-standing aramid nanofiber films via spin coating of an aramid nanofiber/dimethyl sulfoxide solution. Compared with traditional film fabrication methods, this process is time-saving and also able to easily tune the thickness of the films. The resultant films show greatly improved stretchability than that of Kevlar threads and relatively high mechanical strength. Typically, these films with a thickness of 5.5 µm show an ultimate strength of 182 MPa with an ultimate tensile strain of 10.5%. We also apply a finite element modeling to simulate the strain and strength distributions of the films under uniaxial tension, and the results of the simulation are in accordance with the experimental data. Furthermore, the aramid nanofiber films exhibit outstanding thermostability (decomposition at 550 °C under N2 atmosphere and 500 °C in air) and chemical inertness, which would endure acid and alkali. The simple method demonstrated here provides an important way to prepare high-performance aramid nanofiber films for designing new composite systems.
Damage Tolerance of Sandwich Plates with Debonded Face Sheets
NASA Technical Reports Server (NTRS)
Avery, John L., III; Sankar, Bhavani V.
1998-01-01
Axial compression tests were performed on debonded sandwich composites made of graphite/epoxy face-sheets and aramid fiber honeycomb core. The sandwich beams were manufactured using a vacuum baccrin2 process. The face-sheet and the sandwich beam were co-cured. Delamination between one of the face sheets and the core was introduced by using a Teflon layer during the curing process. Axial compression tests were performed to determine the ultimate load carrying capacity of the debonded beams. Flatwise tension tests and Double Cantilever Beam tests were performed to determine. respectively, the strength and fracture toughness of the face-sheet/core interface. From the test results semi-empirical formulas were derived for the fracture toughness and ultimate compressive load carrying capacity in terms of the core density. core thickness. face-sheet thickness and debond length. Four different failure modes and their relation to the structural properties were identified. Linear buckling analysis was found to be inadequate in predicting the compressive load carrying capacity of the debonded sandwich composites.
Land-atmosphere coupling strength determines impact of land cover change in South-East Asia
NASA Astrophysics Data System (ADS)
Toelle, M. H.
2017-12-01
In a previous modeling study of large-scale deforestation in South-East Asia, between 20° S and 20° N, a decrease of latent heat flux and an increase of sensible heat flux is found. This induced higher temperatures, and ultimately deepened the boundary layer with leading to less rainfall, but higher rainfall amounts and extreme temperatures. In order to attribute these differences to a feedback mechanism, a correlation analysis is performed. Therefore, the land-atmosphere coupling strength is compared with the impact of land cover change during seasonal periods and ENSO events. Hereby, ERA-Interim-driven COSMO-CLM simulations are analyzed for the period 1990 to 2004. The regional climate model is able to reproduce the overall soil moisture spatial pattern suggested by the observational Global Land Evaporation Amsterdam Model. However, COSMO-CLM shows more spatial variability and strength. By deforestation, the coupling strength between land and atmosphere is increased. Major changes in coupling strength occur during La Niña events. The impact due to deforestation depends non-linearly on the coupling strength exemplified by maximum temperature and evapotranspiration. It is shown that the magnitude of change in extreme temperature due to deforestation depends on the former coupling strength over the region. The rise in extreme temperatures due to deforestation occurs mainly over the mainland, where the coupling strength is strongest. The impact is less pronounced over the maritime islands due to the oceanic influence. It is suggested that the regional-scale impact depends on the model-specific coupling strength besides the physical reasoning over this region. Deforestation over South-East Asia will likely have consequences for the agricultural output and increase socio-economic vulnerability.
NASA Astrophysics Data System (ADS)
Chanyshev, AI; Belousova, OE
2018-03-01
The authors determine stress and deformation in a heterogeneous rock mass at the preset displacement and Cauchy stress vector at the boundary of an underground excavation. The influence of coordinates on Young’s modulus, shear modulus and ultimate strength is shown. It is found that regions of tension and compression alternate at the excavation boundary—i.e. zonal rock disintegration phenomenon is observed.
Zhang, Xiaobo; Yuan, Guangyin; Mao, Lin; Niu, Jialin; Fu, Penghuai; Ding, Wenjiang
2012-03-01
Mechanical properties at room temperature and biocorrosion behaviors in simulated body fluid (SBF) at 37 °C of a new type of patented Mg-3Nd-0.2Zn-0.4Zr (hereafter, denoted as JDBM) alloy prepared at different extrusion temperatures, as well as heat treatment, were studied. The mechanical properties of this magnesium alloy at room temperature were improved significantly after extrusion and heat treatment compared to an as-cast alloy. The results of mechanical properties show that the yield strength (YS) decreases with increasing extrusion temperature. The tensile elongation decreases a little while the ultimate tensile strength (UTS) has no obvious difference. The yield strength and ultimate tensile strength were improved clearly after heat treatment at 200 °C for 10 h compared with that at the extrusion state, which can be mainly contributed to the precipitation strengthening. The biocorrosion behaviors of the JDBM alloy were studied using immersion tests and electrochemical tests. The results reveal that the extruded JDBM alloy and the aging treatment on the extruded alloy show much better biocorrosion resistance than that at solid solution state (T4 treatment), and the JDBM exhibited favorable uniform corrosion mode in SBF. Copyright © 2011 Elsevier Ltd. All rights reserved.
Strengthening of σ phase in a Fe20Cr9Ni cast austenite stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.Q., E-mail: yqwang@ahut.edu.cn; School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui, 243002; Han, J.
2013-10-15
The strengthening mechanism of σ phase in a Fe20Cr9Ni cast austenite stainless steel used for primary coolant pipes of nuclear power plants has been investigated. The yield and ultimate tensile strengths of aged specimens increased comparing with those of the unaged ones. It was found that the increase of strengths is due to the hard and brittle (σ + γ{sub 2}) structure which decomposed from α phase in the steel. Fracture surfaces of specimens after in situ tensile test showed that the inhibition of (σ + γ{sub 2}) structure on the dislocation movements was more significant than ferrite although cracksmore » started predominately at σ/γ{sub 2} interfaces. The (σ + γ{sub 2}) structure behaves like a fiber reinforced composite material. - Highlights: • The strengthening mechanism of σ phase in a Fe20Cr9Ni CASS is investigated. • The yield and ultimate tensile strengths increase with increasing of σ phase. • The increase of strengths is due to hard and brittle (σ + γ{sub 2}) structure. • The (σ + γ{sub 2}) structure in CASS behaves like a fibre reinforced composite material. • The σ/γ{sub 2} and α/σ/γ{sub 2} boundaries hinder the movement of dislocation.« less
NASA Astrophysics Data System (ADS)
McIntire, John P.; Osesina, O. Isaac; Bartley, Cecilia; Tudoreanu, M. Eduard; Havig, Paul R.; Geiselman, Eric E.
2012-06-01
Ensuring the proper and effective ways to visualize network data is important for many areas of academia, applied sciences, the military, and the public. Fields such as social network analysis, genetics, biochemistry, intelligence, cybersecurity, neural network modeling, transit systems, communications, etc. often deal with large, complex network datasets that can be difficult to interact with, study, and use. There have been surprisingly few human factors performance studies on the relative effectiveness of different graph drawings or network diagram techniques to convey information to a viewer. This is particularly true for weighted networks which include the strength of connections between nodes, not just information about which nodes are linked to other nodes. We describe a human factors study in which participants performed four separate network analysis tasks (finding a direct link between given nodes, finding an interconnected node between given nodes, estimating link strengths, and estimating the most densely interconnected nodes) on two different network visualizations: an adjacency matrix with a heat-map versus a node-link diagram. The results should help shed light on effective methods of visualizing network data for some representative analysis tasks, with the ultimate goal of improving usability and performance for viewers of network data displays.
Failure models for textile composites
NASA Technical Reports Server (NTRS)
Cox, Brian
1995-01-01
The goals of this investigation were to: (1) identify mechanisms of failure and determine how the architecture of reinforcing fibers in 3D woven composites controlled stiffness, strength, strain to failure, work of fracture, notch sensitivity, and fatigue life; and (2) to model composite stiffness, strength, and fatigue life. A total of 11 different angle and orthogonal interlock woven composites were examined. Composite properties depended on the weave architecture, the tow size, and the spatial distributions and strength of geometrical flaws. Simple models were developed for elastic properties, strength, and fatigue life. A more complicated stochastic model, called the 'Binary Model,' was developed for damage tolerance and ultimate failure. These 3D woven composites possessed an extraordinary combination of strength, damage tolerance, and notch insensitivity.
Development of the Main Wing Structure of a High Altitude Long Endurance UAV
NASA Astrophysics Data System (ADS)
Park, Sang Wook; Shin, Jeong Woo; Kim, Tae-Uk
2018-04-01
To enhance the flight endurance of a HALE UAV, the main wing of the UAV should have a high aspect ratio and low structural weight. Since a main wing constructed with the thin walled and slender components needed for low structural weight can suffer catastrophic failure during flight, it is important to develop a light-weight airframe without sacrificing structural integrity. In this paper, the design of the main wing of the HALE UAV was conducted using spars which were composed of a carbon-epoxy cylindrical tube and bulkheads to achieve both the weight reduction and structural integrity. The spars were sized using numerical analysis considering non-linear deformation under bending moment. Static strength testing of the wing was conducted under the most critical load condition. Then, the experimental results obtained for the wing were compared to the analytical result from the non-linear finite-element analysis. It was found that the developed main wing reduced its structural weight without any failure under the ultimate load condition of the static strength testing.
The influence of cyclic shear fatigue on the bracket-adhesive-enamel complex: an in vitro study.
Daratsianos, Nikolaos; Musabegovic, Ena; Reimann, Susanne; Grüner, Manfred; Jäger, Andreas; Bourauel, Christoph
2013-05-01
To describe the effect of fatigue on the strength of the bracket-adhesive-enamel complex and characterize the fatigue behavior of the materials tested. Upper central incisor brackets (Discovery(®), Dentaurum) were bonded with a light-curing (Transbond XT™, 3M Unitek) and a chemically-curing adhesive (Concise™, 3M Unitek) on bovine teeth embedded in cylindrical resign bases and stored in water at 37(±2)°C for 24 (±2)h. The first 15 specimens were tested with a universal testing machine ZMART.PRO(®) (Zwick GmbH & Co. KG, Ulm, Germany) for ultimate shear bond strength according to the DIN-13990-2-standard. The remaining three groups of 20 specimens underwent fatigue staircase testing of 100, 1000 and 3000 cycles at 1Hz with a self-made testing machine. The survived specimens were subjected to shear strength testing. The fatigued specimens showed decreased shear strength with both adhesives at all cycle levels. The shear strength after fatigue for 100, 1000 and 3000 cycles was in the Concise™-groups 34.8%, 59.0%, 47.3% and in the Transbond™ XT-groups 33.6%, 23.1%, 27.3% relative to the ultimate shear strength. The fatigue life of the Concise™-groups decreased with increasing stress and Transbond™ XT showed lower fatigue ratio with no obvious trend. The specimens bonded with Transbond™ XT showed typically favorable fracture modes in contrary to Concise™. Fatigue of the bracket-adhesive-enamel complex decreased its shear strength. The staircase method can provide a standardized experimental protocol for fatigue studies, however testing at various cycle numbers is recommended. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Strength training for the warfighter.
Kraemer, William J; Szivak, Tunde K
2012-07-01
Optimizing strength training for the warfighter is challenged by past training philosophies that no longer serve the modern warfighter facing the "anaerobic battlefield." Training approaches for integration of strength with other needed physical capabilities have been shown to require a periodization model that has the flexibility for changes and is able to adapt to ever-changing circumstances affecting the quality of workouts. Additionally, sequencing of workouts to limit over-reaching and development of overtraining syndromes that end in loss of duty time and injury are paramount to long-term success. Allowing adequate time for rest and recovery and recognizing the negative influences of extreme exercise programs and excessive endurance training will be vital in moving physical training programs into a more modern perspective as used by elite strength-power anaerobic athletes in sports today. Because the warfighter is an elite athlete, it is time that training approaches that are scientifically based are updated within the military to match the functional demands of modern warfare and are given greater credence and value at the command levels. A needs analysis, development of periodized training modules, and individualization of programs are needed to optimize the strength of the modern warfighter. We now have the knowledge, professional coaches and nonprofit organization certifications with continuing education units, and modern training technology to allow this to happen. Ultimately, it only takes command decisions and implementation to make this possible.
Caxaj, C Susana; Berman, Helene; Ray, Susan L; Restoule, Jean-Paul; Varcoe, Coleen
2014-11-01
The influence of large-scale mining on the psychosocial wellbeing and mental health of diverse Indigenous communities has attracted increased attention. In previous reports, we have discussed the influence of a gold mining operation on the health of a community in the Western highlands of Guatemala. Here, we discuss the community strengths, and acts of resistance of this community, that is, community processes that promoted mental health amidst this context. Using an anti-colonial narrative methodology that incorporated participatory action research principles, we developed a research design in collaboration with community leaders and participants. Data collection involved focus groups, individual interviews and photo-sharing with 54 men and women between the ages of 18 and 67. Data analysis was guided by iterative and ongoing conversations with participants and McCormack's narrative lenses. Study findings revealed key mechanisms and sources of resistance, including a shared cultural identity, a spiritual knowing and being, 'defending our rights, defending our territory,' and, speaking truth to power. These overlapping strengths were identified by participants as key protective factors in facing challenges and adversity. Yet ultimately, these same strengths were often the most eroded or endangered due the influence of large-scale mining operations in the region. These community strengths and acts of resistance reveal important priorities for promoting mental health and wellbeing for populations impacted by large-scale mining operations. Mental health practitioners must attend to both the strengths and parallel vulnerabilities that may be occasioned by large-scale projects of this nature.
Body Composition, Strength, and Dietary Intake of Patients with Hip or Knee Osteoarthritis.
Purcell, Sarah; Thornberry, Robert; Elliott, Sarah A; Panton, Lynn; Ormsbee, Michael J; Vieira, Edgar R; Kim, Jeong-Su; Prado, Carla M
2016-06-01
To describe body composition (fat mass (FM) and fat-free mass (FFM)), strength, and nutritional characteristics of patients with hip or knee osteoarthritis undergoing total joint arthroplasty. In this prospective pilot study, osteoarthritic patients underwent body composition assessment using bioelectrical impedance analysis, grip strength measurement, and completed a 24-h dietary recall during their pre-operative assessment. Fifty-five patients were included (∼66% females, age 43-89 years). Mean ± SD body mass index (BMI) was 32.79 ± 6.48 kg/m(2) and 62% were obese. Compared with hip osteoarthritis patients, knee osteoarthritis patients had a higher BMI (P = 0.018) and males with knee osteoarthritis had a lower grip strength (P = 0.028). There was a wide range in FM and FFM values across the BMI spectrum. Patients with a higher FM index (FMI, FM/height in m(2)) had higher levels of pain (P = 0.036) and females with higher FMI had a lower grip strength (P = 0.048). Dietary under-reporting was common and many patients did not meet recommendations for protein, vitamins C and E, or omega-3 fatty acids. Those who consumed less protein than the recommended dietary allowance were older (P = 0.018). A wide variability of body composition and dietary intake was observed which may impact strength and ultimately affect physical function. As such, patients with osteoarthritis may benefit from targeted nutrition and physical activity interventions before and after surgery.
The influence of heat treatments on several types of base-metal removable partial denture alloys.
Morris, H F; Asgar, K; Rowe, A P; Nasjleti, C E
1979-04-01
Four removable partial denture alloys, Vitallium (Co-Cr alloy), Dentillium P.D. (Fe-Cr alloy), Durallium L.G. (Co-Cr-Ni alloy), and Ticonium 100 (Ni-Cr alloy), were evaluated in the as-cast condition and after heat treatment for 15 minutes at 1,300 degrees, 1,600 degrees, 1,900 degrees, and 2,200 degrees F followed by quenching in water. The following properties were determined and compared for each alloy at each heat treatment condition: the yield strengths at 0.01%, 0.1%, and 0.2% offsets, the ultimate tensile strength, the percent elongation, the modulus of elasticity, and the Knoop microhardness. The results were statistically analyzed. Photomicrographs were examined for each alloy and test condition. The following conclusions were made: 1. The "highest values" were exhibited by the as-cast alloy. 2. Heat treatment of the partial denture alloys tested resulted in reductions in strength, while the elongations varied. This study demonstrates that, in practice, one should avoid (a) prolonged "heat-soaking" while soldering and (b) grinding or polishing of the casting until the alloy is "red hot". 3. Durallium L.G. was the least affected by the various heat treatment conditions. 4. Conventional reporting of the yield strength at 0.2% offset, the ultimate tensile strength, and percent elongation are not adequate to completely describe and compare the mechanical behavior of alloys. The reporting of the yield strength at 0.01% offset, in addition to the other reported properties, will provide a more complete description of the behavior of the dental alloys.
Zhang, Dongdong; Bai, Fang; Sun, Liping; Wang, Yong; Wang, Jinguo
2017-01-01
The compression properties and electrical conductivity of in-situ 20 vol.% nano-sized TiCx/Cu composites fabricated via combustion synthesis and hot press in Cu-Ti-CNTs system at various particles size and morphology were investigated. Cubic-TiCx/Cu composite had higher ultimate compression strength (σUCS), yield strength (σ0.2), and electric conductivity, compared with those of spherical-TiCx/Cu composite. The σUCS, σ0.2, and electrical conductivity of cubic-TiCx/Cu composite increased by 4.37%, 20.7%, and 17.8% compared with those of spherical-TiCx/Cu composite (526 MPa, 183 MPa, and 55.6% International Annealed Copper Standard, IACS). Spherical-TiCx/Cu composite with average particle size of ~94 nm exhibited higher ultimate compression strength, yield strength, and electrical conductivity compared with those of spherical-TiCx/Cu composite with 46 nm in size. The σUCS, σ0.2, and electrical conductivity of spherical-TiCx/Cu composite with average size of ~94 nm in size increased by 17.8%, 33.9%, and 62.5% compared with those of spherical-TiCx/Cu composite (417 MPa, 121 MPa, and 40.3% IACS) with particle size of 49 nm, respectively. Cubic-shaped TiCx particles with sharp corners and edges led to stress/strain localization, which enhanced the compression strength of the composites. The agglomeration of spherical-TiCx particles with small size led to the compression strength reduction of the composites. PMID:28772859
França, Flávio Álvares; Oliveira, Michele de; Rodrigues, José Augusto; Arrais, César Augusto Galvão
2011-01-01
This study evaluated the degree of conversion (DC) and ultimate tensile strength (UTS) of dual-cured resin cements heated to 50º C prior to and during polymerization. Disc- and hourglass-shaped specimens of Rely X ARC (RX) and Variolink II (VII) were obtained using addition silicon molds. The products were manipulated at 25º C or 50º C and were subjected to 3 curing conditions: light-activation through a glass slide or through a pre-cured 2-mm thick resin composite disc, or they were allowed to self-cure (SC). All specimens were dark-stored dry for 15 days. For DC analysis, the resin cements were placed into the mold located on the center of a horizontal diamond on the attenuated total reflectance element in the optical bench of a Fourier Transformed Infrared spectrometer. Infrared spectra (n = 6) were collected between 1680 and 1500 cm-1, and DC was calculated by standard methods using changes in ratios of aliphatic-to-aromatic C=C absorption peaks from uncured and cured states. For UTS test, specimens (n = 10) were tested in tension in a universal testing machine (crosshead speed of 1 mm/min) until failure. DC and UTS data were submitted to 2-way ANOVA, followed by Tukey's test (α= 5%). Both products showed higher DC at 50º C than at 25º C in all curing conditions. No significant difference in UTS was noted between most light-activated groups at 25º C and those at 50º C. VII SC groups showed higher UTS at 50º C than at 25º C (p < 0.05). Increased temperature led to higher DC, but its effects on resin cement UTS depended on the curing condition.
High-Strength Low-Alloy Steel Strengthened by Multiply Nanoscale Microstructures
NASA Astrophysics Data System (ADS)
Shen, Y. F.; Zuo, L.
Recently, we have being focused on improving the strength without sacrificing ductility of High-strength low-alloy (HSLA) steels by designing nanostructures. Several developments have been obtained, summarized as the following three parts: (a) Depressively nanoscale precipitates: A ferritic steel with finely dispersed precipitates reveals a yield strength of 760 MPa, approximately three times higher than that of conventional Ti-bearing high strength hot-rolled sheet steels, and its ultimate tensile strength reaches 850 MPa with an elongation-to-failure value of 18%. The finely dispersed TiC precipitates in the matrix provide matrix strengthening. The estimated magnitude of precipitation strengthening is around 458 MPa. The effects of the particle size, particle distribution and intrinsic particle strength have been investigated through dislocation dynamics (DD) simulations. The DD results show that strengthening is not only a function of the density of the nano-scale precipitates but also of their size. (b) Ultrafinely ferritic plate: An interstitial-free (IF) steel sheet with a cold-rolling reduction of 75% shows a high tensile strength (710MPa) while preserving a considerable plastic strain (13%). The ductility recovery with increasing the rolling reduction up to 75% is related with the decreasing both in lamellar spacings and cell blocks sizes. (c) Parallel nano-laminated austenite: A composite microstructure consisting of ferrite, bainitic ferrite (BF) laths and retained austenite (RA) platelets has been found for the steel with a chemical composition of 0.19C-0.30Si-1.76Mn-1.52Al (in mass fraction), processed with annealing and bainitic holding. The sample annealed at 820oC (for 120s) and partitioned at 400oC (for 300s) has the best combination of ultimate tensile strength (UTS, 682 MPa) and elongation to failure ( 70%) with about 26% of BF plates 16% RA in its microstructure.
Zeng, Xiaoliang; Yu, Shuhui; Lai, Maobai; Sun, Rong; Wong, Ching-Ping
2013-01-01
We demonstrate a new method that can simultaneously improve the strength and toughness of the glass fiber-reinforced bismaleimide–triazine (BT) resin composites by using polyethylene glycol (PEG) to construct a flexible bridge at the interface. The mechanical properties, including the elongation, ultimate tensile stress, Young’s modulus, toughness and dynamical mechanical properties were studied as a function of the length of PEG molecular chain. It was found that the PEG molecule acts as a bridge to link BT resin and glass fiber through covalent and non-covalent bondings, respectively, resulting in improved interfacial bonding. The incorporation of PEG produces an increase in elongation, ultimate tensile stress and toughness. The Young’s modulus and Tg were slightly reduced when the length of the PEG molecular chain was high. The elongation of the PEG-modified glass fiber-reinforced composites containing 5 wt% PEG-8000 increased by 67.1%, the ultimate tensile stress by 17.9% and the toughness by 78.2% compared to the unmodified one. This approach provides an efficient way to develop substrate material with improved strength and toughness for integrated circuit packaging applications. PMID:27877621
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Thomas E., Jr.; Bednarcyk, Brett A.; Arnold, Steven M.; Hutchins, John W.
2014-01-01
A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/finite element (FE) analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a unidirectional SCS-6/TIMETAL 21S metal matrix composite tensile dogbone specimen at 650 degC. Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite strengths and distribution of failure locations (predominately within the gage section) reasonably matched the experimentally observed failure behavior. The predicted composite failure behavior suggests that use of macroscale models that exploit global geometric symmetries are inappropriate for cases where the actual distribution of local fiber strengths displays no such symmetries. This issue has not received much attention in the literature. Moreover, the model discretization at a specific length scale can have a profound effect on the computational costs associated with multiscale simulations.models that yield accurate yet tractable results.
Modeling of high-strength concrete-filled FRP tube columns under cyclic load
NASA Astrophysics Data System (ADS)
Ong, Kee-Yen; Ma, Chau-Khun; Apandi, Nazirah Mohd; Awang, Abdullah Zawawi; Omar, Wahid
2018-05-01
The behavior of high-strength concrete (HSC) - filled fiber-reinforced-polymer (FRP) tubes (HSCFFTs) column subjected to cyclic lateral loading is presented in this paper. As the experimental study is costly and time consuming, a finite element analysis (FEA) is chosen for the study. Most of the previous studies have focused on examining the axial load behavior of HSCFFT column instead of seismic behavior. The seismic behavior of HSCFFT columns has been the main interest in the industry. The key objective of this research is to develop a reliable numerical non-linear FEA model to represent the seismic behavior of such column. A FEA model was developed using the Concrete Damaged Plasticity Model (CDPM) available in the finite element software package (ABAQUS). Comparisons between experimental results from previous research and the predicted results were made based on load versus displacement relationships and ultimate strength of the column. The results showed that the column increased in ductility and able to deform to a greater extent with the increase of the FRP confinement ratio. With the increase of confinement ratio, HSCFFT column achieved a higher moment resistance, thus indicated a higher failure strength in the column under cyclic lateral load. It was found that the proposed FEA model can regenerate the experimental results with adequate accuracy.
Ultrasonic Corrosion Fatigue Behavior of High Strength Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Ebara, R.; Yamaguchi, Y.; Kanei, D.; Yamamoto, Y.
Ultrasonic corrosion fatigue tests were conducted for high strength austenitic stainless steels such as YUS270 and SUS304N2 in 3%NaCl aqueous solution. The reduction of giga-cycle corrosion fatigue strength of YUS270 and SUS304N2 was not observed at all, while the reduction of corrosion fatigue life was observed at higher stress amplitude. Corrosion pit was observed on corrosion fatigue crack initiation area. Striation was predominantly observed on crack propagation area in air and in 3% NaCl aqueous solution. The reduction of corrosion fatigue strength of high strength austenitic stainless steels such as YUS270 and SUS304N2 is due to the corrosion pit formation at corrosion fatigue crack initiation area. It can be concluded that the higher the ultimate tensile strength of austenitic stainless steels the higher the giga-cycle corrosion fatigue strength in 3%NaCl aqueous solution is.
Shear Bond Strength of Metal Brackets to Zirconia Conditioned with Various Primer-Adhesive Systems
2016-07-01
Reynolds, 1979 ). Bonding orthodontic brackets to ceramic restorative materials poses a unique challenge. Abu et al. measured the strength between...forth by Reynolds and 34 others (Reynolds, 1979 ). The pertinent question is the following: should brackets be chemically bonded to zirconia...conditioned with a new silane coupling agent. Eur J Orthod. 2013 Feb;35(1):103-9. 40 Giannini M, Soares CJ, de Carvalho RM. Ultimate tensile
Exploratory Development of Improved Fatigue Strength Adhesives
1974-11-01
fiber reinforced adhesives. A fifty-fold in-j crease in fatigue life at equivalent stress levels was achieved when a woven high modulus graphite...the stress level which could survive 10’ fatigue cycles was increased from approximately 30 percent of the ultimate shear strength with nylor knit...supports to as much as fifty percent with the high modulus fiber bond line reinforcement. The stress level which could withstand 10’ fatigue cycles
Microhardness Testing of Aluminum Alloy Welds
NASA Technical Reports Server (NTRS)
Bohanon, Catherine
2009-01-01
A weld is made when two pieces of metal are united or fused together using heat or pressure, and sometimes both. There are several different types of welds, each having their own unique properties and microstructure. Strength is a property normally used in deciding which kind of weld is suitable for a certain metal or joint. Depending on the weld process used and the heat required for that process, the weld and the heat-affected zone undergo microstructural changes resulting in stronger or weaker areas. The heat-affected zone (HAZ) is the region that has experienced enough heat to cause solid-state microstructural changes, but not enough to melt the material. This area is located between the parent material and the weld, with the grain structure growing as it progresses respectively. The optimal weld would have a short HAZ and a small fluctuation in strength from parent metal to weld. To determine the strength of the weld and decide whether it is suitable for the specific joint certain properties are looked at, among these are ultimate tensile strength, 0.2% offset yield strength and hardness. Ultimate tensile strength gives the maximum load the metal can stand while the offset yield strength gives the amount of stress the metal can take before it is 0.2% longer than it was originally. Both of these are good tests, but they both require breaking or deforming the sample in some way. Hardness testing, however, provides an objective evaluation of weld strengths, and also the difference or variation in strength across the weld and HAZ which is difficult to do with tensile testing. Hardness is the resistance to permanent or plastic deformation and can be taken at any desired point on the specimen. With hardness testing, it is possible to test from parent metal to weld and see the difference in strength as you progress from parent material to weld. Hardness around grain boundaries and flaws in the material will show how these affect the strength of the metal while still retaining the sample. This makes hardness testing a good test for identifying grain size and microstructure.
NASA Astrophysics Data System (ADS)
Sabitov, L. S.; Kashapov, N. F.; Gilmanshin, I. R.; Gatiyatov, I. Z.; Kuznetsov, I. L.
2017-09-01
The feature of the stress state of the supports of the contact networks is the presence of a joint of pipes of different diameters, the ultimate state of which is determined, as a rule, the strength of the weld. The proposed unit allows to increase the reliability and strength of the connection and also exclude the presence of a weld bead on the outer surface of the pipe of smaller diameter in the place of its attachment to the upper end of the support ring.
High strain rate properties of off-axis composite laminates, part 2
NASA Technical Reports Server (NTRS)
Daniel, I. M.
1991-01-01
Unidirectional off-axis graphite/epoxy and graphite/S-glass/epoxy laminates were characterized in uniaxial tension at strain rates ranging from quasi-static to over 500 s(sup -1). Laminate ring specimens were loaded by internal pressure with the tensile stress at 22.5, 30, and 45 degrees relative to the fiber direction. Results were presented in the form of stress-strain curves to failure. Properties determined included moduli, Poisson's ratios, strength, and ultimate strain. In all three laminates of both materials the modulus and strength increase sharply with strain rate, reaching values roughly 100, 150, and 200 percent higher than corresponding static values for the 22.5(sub 8), 30(sub 8), and 45(sub 8) degree laminates, respectively. In the case of ultimate strain no definite trends could be established, but the maximum deviation from the average of any value for any strain rate was less than 18 percent.
Carbon fiber reinforced root canal posts. Mechanical and cytotoxic properties.
Torbjörner, A; Karlsson, S; Syverud, M; Hensten-Pettersen, A
1996-01-01
The aim of this study was to compare the mechanical properties of a prefabricated root canal post made of carbon fiber reinforced composites (CFRC) with metal posts and to assess the cytotoxic effects elicited. Flexural modulus and ultimate flexural strength was determined by 3 point loading after CRFC posts had been stored either dry or in water. The bending test was carried out with and without preceding thermocycling of the CFRC posts. The cytotoxicity was evaluated by an agar overlay method after dry and wet storage. The values of flexural modulus and ultimate flexural strength were for dry stored CFRC post 82 +/- 6 GPa and 1154 +/- 65 MPa respectively. The flexural values decreased significantly after water storage and after thermocycling. No cytotoxic effects were observed adjacent to any CFRC post. Although fiber reinforced composites may have the potential to replace metals in many clinical situations, additional research is needed to ensure a satisfying life-span.
NASA Astrophysics Data System (ADS)
Dubey, Shailendra Kumar Damodar; Kute, Sunil
2014-09-01
Due to earthquake, buildings are damaged partially or completely. Particularly structures with soft storey are mostly affected. In general, such damaged structures are repaired and reused. In this regard, an experimental investigation was planned and conducted on models of single-bay, single-storey of partial concrete infilled reinforced concrete (RC) frames up to collapse with corner, central and diagonal steel bracings. Such collapsed frames were repaired with epoxy resin and retested. The initiative was to identify the behaviour, extent of restored ultimate strength and deflection of epoxy-retrofitted frames in comparison to the braced RC frames. The performance of such frames has been considered only for lateral loads. In comparison to bare RC frames, epoxy repaired partial infilled frames have significant increase in the lateral load capacity. Central bracing is more effective than corner and diagonal bracing. For the same load, epoxy repaired frames have comparable deflection than similar braced frames.
Centaur Standard Shroud (CSS) static ultimate load structural tests
NASA Technical Reports Server (NTRS)
1975-01-01
A series of tests were conducted on the jettisonable metallic shroud used on the Titan/Centaur launch vehicle to verify its structural capabilities and to evaluate its structural interaction with the Centaur stage. A flight configured shroud and the interfacing Titan/Centaur structural assemblies were subjected to tests consisting of combinations of applied axial and shear loads to design ultimate values, including a set of tests on thermal conditions and two dynamic response tests to verify the analytical stiffness model. The strength capabilities were demonstrated at ultimate (125 percent of design limit) loads. It was also verified that the spring rate of the flight configured shroud-to-Centaur forward structural deflections of the specimen became nonlinear, as expected, above limit load values. This test series qualification program verified that the Titan/Centaur shroud and the Centaur and Titan interface components are qualified structurally at design ultimate loads.
High strength nickel-chromium-iron austenitic alloy
Gibson, Robert C.; Korenko, Michael K.
1980-01-01
A solid solution strengthened Ni-Cr-Fe alloy capable of retaining its strength at high temperatures and consisting essentially of 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminum, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06 zirconium, and the balance iron. After solution annealing at 1038.degree. C. for one hour, the alloy, when heated to a temperature of 650.degree. C., has a 2% yield strength of 307 MPa, an ultimate tensile strength of 513 MPa and a rupture strength of as high as 400 MPa after 100 hours.
Stanley, Sarah A; Hung, Deborah T
2009-12-16
Loss-of-function genetic screens have facilitated great strides in our understanding of the biology of model organisms but have not been possible in diploid human cells. A recent report by Brummelkamp's group in Science describes the use of insertional mutagenesis to generate loss-of-function alleles in a largely haploid human cell line and demonstrates the versatility of this method in screens designed to investigate the host/pathogen interaction. This approach has strengths that are complementary to existing strategies and will facilitate progress toward a systems-level understanding of infectious disease and ultimately the development of new therapeutics.
A Novel Preparation Method of SiC Reinforced Aluminum Composite Through Vertical Rotatory Furnace
NASA Astrophysics Data System (ADS)
Nassar, Amal Ebrahim; Nassar, Eman Ebrahim; Younis, Mona Ahmed
2018-04-01
The aluminum composite was prepared successfully by stirring using internal blade installed inside a vertical rotatory furnace. Pure aluminum was used as matrix and silicon carbide particles with 10 weight percentage as reinforcement. To evaluate the efficiency of the suggested stirrer, the microstructure of the samples was analyzed using scanning electron microscope, image analyzer software available with optical microscope and energy dispersive X-ray spectroscopy analysis. Furthermore, mechanical properties were studied by measuring ultimate and yield strength, wear resistance, hardness and porosity. It was found that the particle distribution was enhanced and consequently improved the mechanical properties of the composite.
CVD silicon carbide monofilament reinforced SrO-Al2O3-2SiO2 (SAS) glass-ceramic composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1995-01-01
Unidirectional CVD SiC fiber-reinforced SrO.Al2O3.2SiO2 (SAS) glass-ceramic matrix composites have been fabricated by hot pressing at various combinations of temperature, pressure and time. Both carbon-rich surface coated SCS-6 and uncoated SCS-0 fibers were used as reinforcements. Almost fully dense composites have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix from x-ray diffraction. During three point flexure testing of composites, a test span to thickness ratio of approximately 25 or greater was necessary to avoid sample delamination. Strong and tough SCS-6/SAS composites having a first matrix crack stress of approximately 300 MPa and an ultimate bend strength of approximately 825 MPa were fabricated. No chemical reaction between the SCS-6 fibers and the SAS matrix was observed after high temperature processing. The uncoated SCS-0 fiber-reinforced SAS composites showed only limited improvement in strength over SAS monolithic. The SCS-0/SAS composite having a fiber volume fraction of 0.24 and hot pressed at 1400 deg C exhibited a first matrix cracking stress of approximately 231 +/- 20 MPa and ultimate strength of 265 +/- 17 MPa. From fiber push-out tests, the fiber/matrix interfacial debonding strength (tau(sub debond)) and frictional sliding stress (tau(sub friction)) in the SCS-6/SAS system were evaluated to be approximately 6.7 +/- 2.3 MPa and 4.3 +/- 0.6 MPa, respectively, indicating a weak interface. However, for the SCS-0/SAS composite, much higher values of approximately 17.5 +/- 2.7 MPa for tau(sub debond) and 11.3 +/- 1.6 MPa for tau(sub friction) respectively, were observed; some of the fibers were so strongly bonded to the matrix that they could not be pushed out. Examination of fracture surfaces revealed limited short pull-out length of SCS-0 fibers. The applicability of various micromechanical models for predicting the values of first matrix cracking stress and ultimate strength of these composites were examined.
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.
2007-01-01
The tensile mechanical properties of ceramic matrix composites (CMC) in directions off the primary axes of the reinforcing fibers are important for architectural design of CMC components that are subjected to multi-axial stress states. In this study, 2D-woven melt-infiltrated (MI) SiC/SiC composite panels with balanced fiber content in the 0 degree and 90 degree directions were tensile loaded in-plane in the 0 degree direction and at 45 degree to this direction. In addition, a 2D triaxially-braided MI composite panel with balanced fiber content in the plus or minus 67 degree bias directions and reduced fiber content in the axial direction was tensile loaded perpendicular to the axial direction tows (i.e., 23 degrees from the bias fibers). Stress-strain behavior, acoustic emission, and optical microscopy were used to quantify stress-dependent matrix cracking and ultimate strength in the panels. It was observed that both off-axis loaded panels displayed higher composite onset stresses for through-thickness matrix cracking than the 2D-woven 0/90 panels loaded in the primary 0 degree direction. These improvements for off-axis cracking strength can in part be attributed to higher effective fiber fractions in the loading direction, which in turn reduces internal stresses on critical matrix flaws for a given composite stress. Also for the 0/90 panel loaded in the 45 degree direction, an improved distribution of matrix flaws existed due to the absence of fiber tows perpendicular to the loading direction. In addition, for the +67/0/-67 braided panel, the axial tows perpendicular to the loading direction were not only low in volume fraction, but were also were well separated from one another. Both off-axis oriented panels also showed relatively good ultimate tensile strength when compared to other off-axis oriented composites in the literature, both on an absolute strength basis as well as when normalized by the average fiber strength within the composites. Initial implications are discussed for constituent and architecture design to improve the directional cracking of SiC/SiC CMC components with MI matrices.
Study of a trussed girder composed of a reinforced plastic.
DOT National Transportation Integrated Search
1974-01-01
The structural behavior of a series of laboratory test specimens was investigated to determine the ultimate strength, the deformation characteristics, and the mode of failure of a trussed girder composed of glass fiber reinforced polyester resin. Com...
Study of high performance alloy electroforming
NASA Technical Reports Server (NTRS)
Malone, G. A.
1985-01-01
More panels electroformed with intentional variations of pulse plating parameters are being made. Pulse plating frequency was noted to have a significant effect regarding mechanical properties. The use of a high pulse frequency (assuming fixed duty cycles) results in an increase in ductility and a decrease in ultimate and yield strengths. Electroforming to intermediate frequencies is being done to obtain the best possible combination of ductility and strength. Results of some tests from high frequency specimens are tabulated.
NASA Technical Reports Server (NTRS)
Forrest, K.; Haehner, C.; Heslin, T.; Magida, M.; Uber, J.; Freiman, S.; Hicho, G.; Polvani, R.
1984-01-01
Mechanical and thermal properties, not available in the literature but necessary to structural design, using thallium doped sodium iodide and sodium doped cesium iodide were determined to be coefficient of linear thermal expansion, thermal conductivity, thermal shock resistance, heat capacity, elastic constants, ultimate strengths, creep, hardness, susceptibility to subcritical crack growth, and ingot variation of strength. These properties were measured for single and polycrystalline materials at room temperature.
Strength and Microstructure of Ceramics.
1987-11-01
triangular slab. 12-mm edge length and 2-mm thickness. to produce crack 7 mm long. Starter notch length portantly. the strength plateau at small flaw sizes...however. a tapered the starter notch tip. "Pop-in" behavior of this kind is not uncom- geometry was used. width increasing in the direction of ultimate...mon in notched specimens, of course: in such cases the initial crack propagation. The main crack was started at a sawcut notch fracture response can be
NASA Technical Reports Server (NTRS)
Yun, H. M.; Dicarlo, J. A.; Ogbuji, L. T.; Chen, Y. L.
2002-01-01
Tensile stress-strain curves were measured at room temperature and 1315 C for 2D-woven SiC/BN/SiC ceramic matrix composites (CMC) reinforced by two variations of Hi-Nicalon Type-S SiC fibers. These fibers, which contained a thin continuous carbon-rich layer on their as-produced surface, provided the as-fabricated CMC with good composite behavior and an ultimate strength and strain of -350 MPa and -0.5%, respectively. However, after un-stressed burner-rig exposure at 815 C for -100 hrs, CMC tensile specimens with cut edges and exposed interphases showed a significant decrease in ultimate properties with effectively no composite behavior. Microstructural observations show that the degradation was caused by internal fiber-fiber oxide bonding after removal of the carbon-rich fiber surface layer by the high-velocity combustion gases. On the other hand, SiC/BN/SiC CMC with Sylramic-iBN fibers without carbon-rich surfaces showed higher as-fabricated strength and no loss in strength after the same burner rig exposure. Based on the strong role of the carbon layer in these observations, a process method was developed and demonstrated for achieving better strength retention of Hi-Nicalon Type-S CMC during burner rig exposure. Other general approaches for minimizing this current deficiency with as-produced Type-S fibers are discussed.
NASA Astrophysics Data System (ADS)
Zuiko, I. S.; Gazizov, M. R.; Kaibyshev, R. O.
2016-09-01
The effect of the thermomechanical treatment on the microstructure, phase composition, and mechanical properties of heat-treatable AA2519 aluminum alloy (according to the classification of the Aluminum Association) has been considered. After solid-solution treatment, quenching, and artificial aging (T6 treatment) at 180°C for the peak strength, the yield stress, ultimate tensile strength, and elongation to failure are ~300 MPa, 435 MPa, and 21.7%, respectively. It has been shown that treatments that include intermediate plastic deformations with degrees of 7 and 15% (T87 and T815 treatments, respectively) have a significant effect on the phase composition and morphology of strengthening particles precipitated during peak aging T8X type, where X is pre-strain percent, treatments initiate the precipitation of significant amounts of particles of the θ'- and Ω-phases. After T6 treatment, predominantly homogeneously distributed particles of θ″-phase have been observed. Changes in the microstructure and phase composition of the AA2519 alloy, which are caused by intermediate deformation, lead to a significant increase in the yield stress and ultimate tensile strength (by ~40 and ~8%, respectively), whereas the plasticity decreases by 40-50%.
NASA Astrophysics Data System (ADS)
Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé
2018-03-01
Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1997-01-01
Unidirectional SrO Al2O3 2SiO2 glass-ceramic matrix composites reinforced with uncoated Chemical Vapor Deposited (CVD) SiC (SCS-0) fibers have been fabricated by hot-pressing under appropriate conditions using the glass-ceramic approach. Almost fully dense composites having a fiber volume fraction of 0.24 have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix by x-ray diffraction. No chemical reaction was observed between the fiber and the matrix after high temperature processing. In three-point flexure, the composite exhibited a first matrix cracking stress of approx. 231 +/- 20 MPa and an ultimate strength of 265 +/- 17 MPa. Examination of fracture surfaces revealed limited short length fiber pull-out. From fiber push-out, the fiber/matrix interfacial debonding and frictional strengths were evaluated to be approx. 17.5 +/- 2.7 MPa and 11.3 +/- 1.6 MPa, respectively. Some fibers were strongly bonded to the matrix and could not be pushed out. The micromechanical models were not useful in predicting values of the first matrix cracking stress as well as the ultimate strength of the composites.
Experimental Tests on the Composite Foam Sandwich Pipes Subjected to Axial Load
NASA Astrophysics Data System (ADS)
Li, Feng; Zhao, QiLin; Xu, Kang; Zhang, DongDong
2015-12-01
Compared to the composite thin-walled tube, the composite foam sandwich pipe has better local flexural rigidity, which can take full advantage of the high strength of composite materials. In this paper, a series of composite foam sandwich pipes with different parameters were designed and manufactured using the prefabricated polyurethane foam core-skin co-curing molding technique with E-glass fabric prepreg. The corresponding axial-load compressive tests were conducted to investigate the influence factors that experimentally determine the axial compressive performances of the tubes. In the tests, the detailed failure process and the corresponding load-displacement characteristics were obtained; the influence rules of the foam core density, surface layer thickness, fiber ply combination and end restraint on the failure modes and ultimate bearing capacity were studied. Results indicated that: (1) the fiber ply combination, surface layer thickness and end restraint have a great influence on the ultimate load bearing capacity; (2) a reasonable fiber ply combination and reliable interfacial adhesion not only optimize the strength but also transform the failure mode from brittle failure to ductile failure, which is vital to the fully utilization of the composite strength of these composite foam sandwich pipes.
Study on Predicting Axial Load Capacity of CFST Columns
NASA Astrophysics Data System (ADS)
Ravi Kumar, H.; Muthu, K. U.; Kumar, N. S.
2017-11-01
This work presents an analytical study and experimental study on the behaviour and ultimate load carrying capacity of axially compressed self-compacting concrete-filled steel tubular columns. Results of tests conducted by various researchers on 213 samples concrete-filled steel tubular columns are reported and present authors experimental data are reported. Two theoretical equations were derived for the prediction of the ultimate axial load strength of concrete-filled steel tubular columns. The results from prediction were compared with the experimental data. Validation to the experimental results was made.
Some physical and mechanical properties of recycled polyurethane foam blends
NASA Astrophysics Data System (ADS)
Bledzki, A. K.; Zicans, J.; Merijs Meri, R.; Kardasz, D.
2008-09-01
Blends of secondary rigid polyurethane foams (RPUFs) with soft polyurethane foams (SPUFs) were investigated. The effect of SPUF content and its chemical nature on some physical and mechanical properties of the blends was evaluated. Owing to the stronger intermolecular interaction and higher values of cohesion energy, the blends of RPUFs with polyester SPUFs showed higher mechanical properties than those with polyether SPUFs. The density, hardness, ultimate strength, and the tensile, shear, and flexural moduli increased, while the impact toughness, ultimate elongation, and damping characteristics decreased with increasing RPUF content in the blends.
Survival of resin infiltrated ceramics under influence of fatigue.
Aboushelib, Moustafa N; Elsafi, Mohamed H
2016-04-01
to evaluate influence of cyclic fatigue on two resin infiltrated ceramics and three all-ceramic crowns manufactured using CAD/CAM technology. CAD/CAM anatomically shaped crowns were manufactured using two resin infiltrated ceramics (Lava Ultimate and Vita Enamic), two reinforced glass ceramic milling blocks ((IPS)Empress CAD and (IPS)e.max CAD) and a veneered zirconia core ((IPS)Zir CAD). (IPS)e.max CAD and (IPS)Zir CAD were milled into 0.5mm thick anatomically shaped core structure which received standardized press-on veneer ceramic. The manufactured crowns were cemented on standardized resin dies using a resin adhesive (Panavia F2.0). Initial fracture strength of half of the specimens was calculated using one cycle load to failure in a universal testing machine. The remaining crowns were subjected to 3.7 million chewing cycles (load range 50-200N at 3s interval) in a custom made pneumatic fatigue tester. Survival statistics were calculated and Weibull modulus was measured from fitted load-cycle-failure diagrams. Scanning electron microscopy was performed to fractographically analyze fractured surfaces. Data were analyzed using two way analysis of variance and Bonferroni post hoc tests (α=0.05). Dynamic fatigue resulted in significant reduction (F=7.54, P<0.005) of the initial fracture strength of the tested specimens. Zirconia showed the highest deterioration percent (34% reduction in strength) followed by (IPS)Empress (32.2%), (IPS)e.max (27.1%) while Lava Ultimate and Vita Enamic showed the lowest percent of reduction in strength. The two types of resin infiltrated ceramics and (IPS)Empress demonstrated the highest percent of fracture incidences under the influence of fatigue (35-45% splitting). None of the tested veneered zirconia restorations were fractured during testing, however, chipping of the veneer ceramics was observed in 6 crowns. The lowest percent of failure was observed for (IPS)e.max crowns manifested as 3 cases of minor chipping in addition to two complete fracture incidences. SEM images demonstrated the internal structure of the tested materials and detected location and size of the critical crack. The internal structure of the tested materials significantly influenced their fatigue behavior. Resin infiltrated ceramics were least influenced by fatigue while the characteristic strength of zirconia prevented core fracture but failure still occurred from the weaker veneer ceramic. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Gong, Xiaohui; Xu, Xiaojuan; Lin, Sisi; Cheng, Yu; Tong, Jianhua; Li, Yongyu
2017-08-01
The aim of the current study was to investigate the effects of early-stage dextran sodium sulfate (DSS)-induced mouse colitis on the biomechanical properties and microstructure of colon walls. In the present study, colitis was induced in 8-week-old mice by the oral administration of DSS, and then 10 control and 10 experimental colitis samples were harvested. Uniaxial tensile tests were performed to measure the ultimate tensile strength and ultimate stretches of colon tissues. In addition, histological investigations were performed to characterize changes in the microstructure of the colon wall following treatment. The results revealed that the ultimate tensile stresses were 232±33 and 183±25 kPa for the control and DSS groups, respectively (P=0.001). Ultimate stretches at rupture for the control and DSS groups were 1.43±0.04 and 1.51±0.06, respectively (P=0.006). However, there was no statistically significant difference in tissue stiffness between the two groups. Histological analysis demonstrated high numbers of inflammatory cells infiltrated into the stroma in the DSS group, leading to significant submucosa edema. Hyperplasia was also identified in the DSS-treated submucosa, causing a disorganized microstructure within the colon wall. Furthermore, a large number of collagen fibers in the DSS-treated muscular layer were disrupted, and fiber bundles were thinner when compared with the control group. In conclusion, early-stage experimental colitis alters the mechanical properties and microstructural characteristics of the colon walls, further contributing to tissue remodeling in the pathological process.
Determination of Material Strengths by Hydraulic Bulge Test.
Wang, Hankui; Xu, Tong; Shou, Binan
2016-12-30
The hydraulic bulge test (HBT) method is proposed to determine material tensile strengths. The basic idea of HBT is similar to the small punch test (SPT), but inspired by the manufacturing process of rupture discs-high-pressure hydraulic oil is used instead of punch to cause specimen deformation. Compared with SPT method, the HBT method can avoid some of influence factors, such as punch dimension, punch material, and the friction between punch and specimen. A calculation procedure that is entirely based on theoretical derivation is proposed for estimate yield strength and ultimate tensile strength. Both conventional tensile tests and hydraulic bulge tests were carried out for several ferrous alloys, and the results showed that hydraulic bulge test results are reliable and accurate.
High strain rate properties of angle-ply composite laminates, part 3
NASA Technical Reports Server (NTRS)
Daniel, I. M.
1991-01-01
Angle-ply graphite/epoxy and graphite/S-glass/epoxy laminates were characterized in uniaxial tension at strain rates ranging from quasi-static to over 500 s(sup -1). Laminate ring specimens of +/-15(sub 2s), +/-22.5(sub 2s), +/-30(sub 2s), +/-45(sub 2s), +/-60(sub 2s), +/-67.5(sub 2s), and +/-75(sub 2s) degree layups were loaded under internal pressure. Results were presented in the form of stress-strain curves to failure. Properties determined included moduli, Poisson's ratios, strength, and ultimate strain. In all seven laminates for the two materials tested the modulus and strength increase with strain rate. The effect of strain rate varies with layup, being lowest for the fiber dominated +/-15(sub 2s) degree laminates and highest for the matrix dominated +/-75(sub 2s) degree laminates. The highest increments over the static values are 10 to 25 percent for the +/-15(sub 2s) degree layup and 200 to 275 percent for the +/-75(sub 2s) degree layup. Ultimate strains do not show any significant trends with strain rate. In almost all cases the ultimate strain values are within +/-20 percent of the mean value and in half of the cases the deviation from the mean are less than 10 percent.
Structural and seismic analyses of waste facility reinforced concrete storage vaults
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C.Y.
1995-07-01
Facility 317 of Argonne National Laboratory consists of several reinforced concrete waste storage vaults designed and constructed in the late 1940`s through the early 1960`s. In this paper, structural analyses of these concrete vaults subjected to various natural hazards are described, emphasizing the northwest shallow vault. The natural phenomenon hazards considered include both earthquakes and tornados. Because these vaults are deeply embedded in the soil, the SASSI (System Analysis of Soil-Structure Interaction) code was utilized for the seismic calculations. The ultimate strength method was used to analyze the reinforced concrete structures. In all studies, moment and shear strengths at criticalmore » locations of the storage vaults were evaluated. Results of the structural analyses show that almost all the waste storage vaults meet the code requirements according to ACI 349--85. These vaults also satisfy the performance goal such that confinement of hazardous materials is maintained and functioning of the facility is not interrupted.« less
NASA Astrophysics Data System (ADS)
Kumar, Rishi; Mevada, N. Ramesh; Rathore, Santosh; Agarwal, Nitin; Rajput, Vinod; Sinh Barad, AjayPal
2017-08-01
To improve Welding quality of aluminum (Al) plate, the TIG Welding system has been prepared, by which Welding current, Shielding gas flow rate and Current polarity can be controlled during Welding process. In the present work, an attempt has been made to study the effect of Welding current, current polarity, and shielding gas flow rate on the tensile strength of the weld joint. Based on the number of parameters and their levels, the Response Surface Methodology technique has been selected as the Design of Experiment. For understanding the influence of input parameters on Ultimate tensile strength of weldment, ANOVA analysis has been carried out. Also to describe and optimize TIG Welding using a new metaheuristic Nature - inspired algorithm which is called as Firefly algorithm which was developed by Dr. Xin-She Yang at Cambridge University in 2007. A general formulation of firefly algorithm is presented together with an analytical, mathematical modeling to optimize the TIG Welding process by a single equivalent objective function.
Yang, Zhiqiang; Liu, Zhengdong; He, Xikou; Qiao, Shibin; Xie, Changsheng
2018-01-09
The effect of microstructure on the impact toughness and the temper embrittlement of a SA508Gr.4N steel was investigated. Martensitic and bainitic structures formed in this material were examined via scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy, and Auger electron spectroscopy (AES) analysis. The martensitic structure had a positive effect on both the strength and toughness. Compared with the bainitic structure, this structure consisted of smaller blocks and more high-angle grain boundaries (HAGBs). Changes in the ultimate tensile strength and toughness of the martensitic structure were attributed to an increase in the crack propagation path. This increase resulted from an increased number of HAGBs and refinement of the sub-structure (block). The AES results revealed that sulfur segregation is higher in the martensitic structure than in the bainitic structure. Therefore, the martensitic structure is more susceptible to temper embrittlement than the bainitic structure.
Interaction of a shock with a longitudinal vortex
NASA Technical Reports Server (NTRS)
Erlebacher, Gordon; Hussaini, M. Y.; Shu, Chi-Wang
1996-01-01
In this paper we study the shock/longitudinal vortex interaction problem in axisymmetric geometry. Linearized analysis for small vortex strength is performed, and compared with results from a high order axisymmetric shock-fitted Euler solution obtained for this purpose. It is confirmed that for weak vortices, predictions from linear theory agree well with results from nonlinear numerical simulations at the shock location. To handle very strong longitudinal vortices, which may ultimately break the shock, we use an axisymmetric high order essentially non-oscillatory (ENO) shock capturing scheme. Comparison of shock-captured and shock-fitted results are performed in their regions of common validity. We also study the vortex breakdown as a function of Mach number ranging from 1.3 to 10, thus extending the range of existing results. For vortex strengths above a critical value. a triple point forms on the shock and a secondary shock forms to provide the necessary deceleration so that the fluid velocity can adjust to downstream conditions at the shock.
Xu, Yidong; Qian, Chunxiang
2013-01-01
Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson–Tvergaard–Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process. PMID:23342140
High temperature tensile properties of V-4Cr-4Ti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinkle, S.J.; Rowcliffe, A.F.; Stevens, C.O.
Tensile tests have been performed on V-4Cr-4Ti at 750 and 800 C in order to extend the data base beyond the current limit of 700 C. From comparison with previous measurements, the yield strength is nearly constant and tensile elongations decrease slightly with increasing temperature between 300 and 800 C. The ultimate strength exhibits an apparent maximum near 600 C (attributable to dynamic strain aging) but adequate strength is maintained up to 800 C. The reduction in area measured on tensile specimens remained high ({approximately}80%) for test temperatures up to 800 C, in contrast to previous reported results.
Combined Intercritical Annealing and Q&P Processing of Medium Mn Steel
NASA Astrophysics Data System (ADS)
De Cooman, Bruno C.; Lee, Seon Jong; Shin, Sunmi; Seo, Eun Jung; Speer, John G.
2017-01-01
The microstructure and mechanical properties of intercritically annealed medium Mn steel are dependent on the selection of the intercritical annealing (IA) temperature. While the yield strength (YS) decreases with increasing IA temperature, the ultimate tensile strength increases with increasing IA temperature. Strain aging phenomena, both static and dynamic, are also often observed. The present contribution shows that, by combining IA with the quench and partitioning processing of the intercritical austenite, it is possible to obtain non-aging mechanical properties which combine a high YS with an ultra-high tensile strength. These properties are particularly suitable for automotive parts related to passenger safety.
Mechanical tensile testing of titanium 15-3-3-3 and Kevlar 49 at cryogenic temperatures
NASA Astrophysics Data System (ADS)
James, B. L.; Martinez, R. M.; Shirron, P.; Tuttle, J.; Galassi, N. M.; McGuinness, D. S.; Puckett, D.; Francis, J. J.; Flom, Y.
2012-06-01
Titanium 15-3-3-3 and Kevlar 49 are highly desired materials for structural components in cryogenic applications due to their low thermal conductivity at low temperatures. Previous tests have indicated that titanium 15-3-3-3 becomes increasingly brittle as the temperature decreases. Furthermore, little is known regarding the mechanical properties of Kevlar 49 at low temperatures, most specifically its Young's modulus. This testing investigates the mechanical properties of both materials at cryogenic temperatures through cryogenic mechanical tensile testing to failure. The elongation, ultimate tensile strength, yield strength, and break strength of both materials are provided and analyzed here.
Mechanical Tensile Testing of Titanium 15-3-3-3 and Kevlar 49 at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
James, Bryan L.; Martinez, Raul M.; Shirron, Peter; Tuttle, Jim; Galassi, Nicholas M.; Mcguinness, Daniel S.; Puckett, David; Francis, John J.; Flom, Yury
2011-01-01
Titanium 15-3-3-3 and Kevlar 49 are highly desired materials for structural components in cryogenic applications due to their low thennal conductivity at low temperatures. Previous tests have indicated that titanium 15-3-3-3 becomes increasingly brittle as the temperature decreases. Furthermore, little is known regarding the mechanical properties of Kevlar 49 at low temperatures, most specifically its Young's modulus. This testing investigates the mechanical properties of both materials at cryogenic temperatures through cryogenic mechanical tensile testing to failure. The elongation, ultimate tensile strength, yield strength, and break strength of both materials are provided and analyzed here.
The Brittleness and Chemical Stability of Optimized Geopolymer Composites
Steinerova, Michaela; Matulova, Lenka; Vermach, Pavel; Kotas, Jindrich
2017-01-01
Geopolymers are known as high strength and durable construction materials but have a brittle fracture. In practice, this results in a sudden collapse at ultimate load, without any chance of preventing the breakdown of parts or of withstanding the stress for some time. Glass fiber usage as a total anisotropic shape acting as a compact structure component should hinder the fracture mechanism. The optimized compositions in this study led to a significant reinforcement, especially in the case of flexural strength, but also in terms of the compressive strength and notch toughness. The positive and negative influence of the fibers on the complex composite properties provided chemical stability. PMID:28772756
The Brittleness and Chemical Stability of Optimized Geopolymer Composites.
Steinerova, Michaela; Matulova, Lenka; Vermach, Pavel; Kotas, Jindrich
2017-04-09
Geopolymers are known as high strength and durable construction materials but have a brittle fracture. In practice, this results in a sudden collapse at ultimate load, without any chance of preventing the breakdown of parts or of withstanding the stress for some time. Glass fiber usage as a total anisotropic shape acting as a compact structure component should hinder the fracture mechanism. The optimized compositions in this study led to a significant reinforcement, especially in the case of flexural strength, but also in terms of the compressive strength and notch toughness. The positive and negative influence of the fibers on the complex composite properties provided chemical stability.
Grain-refining heat treatments to improve cryogenic toughness of high-strength steels
NASA Technical Reports Server (NTRS)
Rush, H. F.
1984-01-01
The development of two high Reynolds number wind tunnels at NASA Langley Research Center which operate at cryogenic temperatures with high dynamic pressures has imposed severe requirements on materials for model construction. Existing commercial high strength steels lack sufficient toughness to permit their safe use at temperatures approaching that of liquid nitrogen (-320 F). Therefore, a program to improve the cryogenic toughness of commercial high strength steels was conducted. Significant improvement in the cryogenic toughness of commercial high strength martensitic and maraging steels was demonstrated through the use of grain refining heat treatments. Charpy impact strength at -320 F was increased by 50 to 180 percent for the various alloys without significant loss in tensile strength. The grain sizes of the 9 percent Ni-Co alloys and 200 grade maraging steels were reduced to 1/10 of the original size or smaller, with the added benefit of improved machinability. This grain refining technique should permit these alloys with ultimate strengths of 220 to 270 ksi to receive consideration for cryogenic service.
Rauh, Juliane; Despang, Florian; Baas, Jorgen; Liebers, Cornelia; Pruss, Axel; Gelinsky, Michael; Günther, Klaus-Peter; Stiehler, Maik
2014-01-01
Bone transplantation is frequently used for the treatment of large osseous defects. The availability of autologous bone grafts as the current biological gold standard is limited and there is a risk of donor site morbidity. Allogenic bone grafts are an appealing alternative, but disinfection should be considered to reduce transmission of infection disorders. Peracetic acid-ethanol (PE) treatment has been proven reliable and effective for disinfection of human bone allografts. The purpose of this study was to evaluate the effects of PE treatment on the biomechanical properties and microstructure of cancellous bone grafts (CBG). Forty-eight human CBG cylinders were either treated by PE or frozen at -20 °C and subjected to compression testing and histological and scanning electron microscopy (SEM) analysis. The levels of compressive strength, stiffness (Young's modulus), and fracture energy were significantly decreased upon PE treatment by 54%, 59%, and 36%, respectively. Furthermore, PE-treated CBG demonstrated a 42% increase in ultimate strain. SEM revealed a modified microstructure of CBG with an exposed collagen fiber network after PE treatment. We conclude that the observed reduced compressive strength and reduced stiffness may be beneficial during tissue remodeling thereby explaining the excellent clinical performance of PE-treated CBG.
Callcut, S; Knowles, J C
2002-05-01
Glass-reinforced hydroxyapatite (HA) foams were produced using reticulated foam technology using a polyurethane template with two different pore size distributions. The mechanical properties were evaluated and the structure analyzed through density measurements, image analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM). For the mechanical properties, the use of a glass significantly improved the ultimate compressive strength (UCS) as did the use of a second coating. All the samples tested showed the classic three regions characteristic of an elastic brittle foam. From the density measurements, after application of a correction to compensate for the closed porosity, the bulk and apparent density showed a 1 : 1 correlation. When relative bulk density was plotted against UCS, a non-linear relationship was found characteristic of an isotropic open celled material. It was found by image analysis that the pore size distribution did not change and there was no degradation of the macrostructure when replicating the ceramic from the initial polyurethane template during processing. However, the pore size distributions did shift to a lower size by about 0.5 mm due to the firing process. The ceramic foams were found to exhibit mechanical properties typical of isotropic open cellular foams.
Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024
NASA Astrophysics Data System (ADS)
Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar
2014-02-01
Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.
Mechanical Properties of Friction Stir Welds in A12195-T8
NASA Technical Reports Server (NTRS)
Kinchen, David G.; Li, Zhixian; Adams, Glynn P.
1999-01-01
An extensive study of the mechanical properties of friction stir welded Al-Li 2195 has been conducted by Lockheed Martin Michoud Space Systems under contract to NASA. The study was part of a development program in which weld parameters were defined for using FSW to assemble large-scale aluminum cryogenic tanks. In excess of 300 feet of 0.320 in. gage plate material was welded and tested. The tests include room temperature and cryogenic temperature tensile tests and surface crack tension (SCT) tests, nondestructive evaluation, metallurgical studies, and photostress analysis. The results of the testing demonstrated improved mechanical properties with FSW as compared to typical fusion welding processes. Increases in ultimate tensile strength, cryogenic enhancement and elongation were observed with the tensile test results. Increased fracture toughness was observed with the SCT results. Nondestructive evaluations were conducted on all welded Joints. No volumetric defects were indicated. Surface indications on the root side of the welds did not significantly affect weld strength. The results of the nondestructive evaluations were confirmed via metallurgical studies. Photostress analysis revealed strain concentrations in multi-pass and heat-repaired FSW's. Details of the tests and results are presented.
Advanced Technology Composite Fuselage-Structural Performance
NASA Technical Reports Server (NTRS)
Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.
1997-01-01
Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.
Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels
NASA Astrophysics Data System (ADS)
Ashrafi, H.; Shamanian, M.; Emadi, R.; Saeidi, N.
2017-03-01
In the present study, microstructure, tensile properties and work hardening behavior of a DP700 steel after gas tungsten arc welding were investigated. Formation of bainite in the fusion zone resulted in a hardness increase compared to that for the base metal (BM), whereas tempering of the pre-existing martensite in the subcritical heat-affected zone (HAZ) led to softening. The GTA-welded joint exhibited a continuous yielding behavior and a yield strength close to that for the BM, while its ultimate tensile strength and total elongation were lower than those for the BM owing to the formation of soft zone in the HAZ. A joint efficiency of about 81% was obtained for the GTA-welded joint, and it failed in the softened HAZ. Analysis of work hardening based on the Kocks-Mecking approach showed one stage of hardening behavior corresponding to the stage III for both the DP700 BM and welded sample. It was also revealed that the DP700 BM has larger values of work hardening exponent and magnitude of work hardening compared with the welded sample. Analysis of fractured surfaces showed that the dominant fracture mode for both the DP700 BM and welded joint was ductile.
Optimizing concrete mix designs to produce cost effective paving mixes.
DOT National Transportation Integrated Search
2009-09-01
This research is designed to determine the effect of the mechanically activated fly ash on fresh : concrete properties and the ultimate strength of the hardened concrete. Six types of fly ash that are : locally available in the state of Oklahoma were...
Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel
Brnic, Josip; Turkalj, Goran; Canadija, Marko; Lanc, Domagoj; Krscanski, Sanjin; Brcic, Marino; Li, Qiang; Niu, Jitai
2016-01-01
The correct choice of a material in the process of structural design is the most important task. This study deals with determining and analyzing the mechanical properties of the material, and the material resistance to short-time creep and fatigue. The material under consideration in this investigation is austenitic stainless steel X6CrNiTi18-10. The results presenting ultimate tensile strength and 0.2 offset yield strength at room and elevated temperatures are displayed in the form of engineering stress-strain diagrams. Besides, the creep behavior of the steel is presented in the form of creep curves. The material is consequently considered to be creep resistant at temperatures of 400 °C and 500 °C when subjected to a stress which is less than 0.9 of the yield strength at the mentioned temperatures. Even when the applied stress at a temperature of 600 °C is less than 0.5 of the yield strength, the steel may be considered as resistant to creep. Cyclic tensile fatigue tests were carried out at stress ratio R = 0.25 using a servo-pulser machine and the results were recorded. The analysis shows that the stress level of 434.33 MPa can be adopted as a fatigue limit. The impact energy was also determined and the fracture toughness assessed. PMID:28773424
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahfuz, H.; Maniruzzaman, M.; Vaidya, U.
1997-04-01
Monotonic tensile and fatigue response of continuous silicon carbide fiber reinforced silicon nitride (SiC{sub f}/Si{sub 3}N{sub 4}) composites has been investigated. The monotonic tensile tests have been performed at room and elevated temperatures. Fatigue tests have been conducted at room temperature (RT), at a stress ratio, R = 0.1 and a frequency of 5 Hz. It is observed during the monotonic tests that the composites retain only 30% of its room temperature strength at 1,600 C suggesting a substantial chemical degradation of the matrix at that temperature. The softening of the matrix at elevated temperature also causes reduction in tensilemore » modulus, and the total reduction in modulus is around 45%. Fatigue data have been generated at three load levels and the fatigue strength of the composite has been found to be considerably high; about 75% of its ultimate room temperature strength. Extensive statistical analysis has been performed to understand the degree of scatter in the fatigue as well as in the static test data. Weibull shape factors and characteristic values have been determined for each set of tests and their relationship with the response of the composites has been discussed. A statistical fatigue life prediction method developed from the Weibull distribution is also presented. Maximum Likelihood Estimator with censoring techniques and data pooling schemes has been employed to determine the distribution parameters for the statistical analysis. These parameters have been used to generate the S-N diagram with desired level of reliability. Details of the statistical analysis and the discussion of the static and fatigue behavior of the composites are presented in this paper.« less
NASA Astrophysics Data System (ADS)
Long, Nicholas James
This thesis serves to develop a preliminary foundational methodology for evaluating the static complexity of future lunar oxygen production systems when extensive information is not yet available about the various systems under consideration. Evaluating static complexity, as part of a overall system complexity analysis, is an important consideration in ultimately selecting a process to be used in a lunar base. When system complexity is higher, there is generally an overall increase in risk which could impact the safety of astronauts and the economic performance of the mission. To evaluate static complexity in lunar oxygen production, static complexity is simplified and defined into its essential components. First, three essential dimensions of static complexity are investigated, including interconnective complexity, strength of connections, and complexity in variety. Then a set of methods is developed upon which to separately evaluate each dimension. Q-connectivity analysis is proposed as a means to evaluate interconnective complexity and strength of connections. The law of requisite variety originating from cybernetic theory is suggested to interpret complexity in variety. Secondly, a means to aggregate the results of each analysis is proposed to create holistic measurement for static complexity using the Single Multi-Attribute Ranking Technique (SMART). Each method of static complexity analysis and the aggregation technique is demonstrated using notional data for four lunar oxygen production processes.
Mechanical properties and flexure behaviour of lightweight foamed concrete incorporating coir fibre
NASA Astrophysics Data System (ADS)
Mohamad, Noridah; Afif Iman, Muhamad; Othuman Mydin, M. A.; Samad, A. A. A.; Rosli, J. A.; Noorwirdawati, A.
2018-04-01
This paper presents an experimental investigation on the mechanical properties and flexural behaviour of lightweight foamed concrete (LFC) with added coir fibre as filler. The compressive strength (Pt), tensile strength (Ft), modulus of elasticity (E), ultimate load and crack pattern of the foamed concrete were determined. The coir fibre was added to the foamed concrete mixture at 0.1%, 0.2% and 0.3% of the total weight of cement. Effects of various percentage of coir fibre used on foam concrete’s mechanical and properties and flexural behaviour were studied and analysed. It was found that the increase percentage of fibre resulted in increase in compressive strength, tensile strength and modulus of elasticity of LFC mixture. LFC with added coir of 0.3% experienced the smallest crack propagation.
Marek, Ivo; Vojtěch, Dalibor; Michalcová, Alena; Kubatík, Tomáš František
2016-01-01
In this study, bulk ultrafine-grained and micro-crystalline cobalt was prepared using a combination of high-energy ball milling and subsequent spark plasma sintering. The average grain sizes of the ultrafine-grained and micro-crystalline materials were 200 nm and 1 μm, respectively. Mechanical properties such as the compressive yield strength, the ultimate compressive strength, the maximum compressive deformation and the Vickers hardness were studied and compared with those of a coarse-grained as-cast cobalt reference sample. The bulk ultrafine-grained sample showed an ultra-high compressive yield strength that was greater than 1 GPa, which is discussed with respect to the preparation technique and a structural investigation. PMID:28773514
NASA Technical Reports Server (NTRS)
Williams, J. G.
1981-01-01
Structural tests were conducted on thermal protection systems (TPS) LI 900 and LI 2200 tiles and .41 cm and .23 cm thick strain isolation pads. The bond surface of selected tiles was densified to obtain improved strength. Four basic types of experiments were conducted including tension tests, substrate mismatch (initial imperfection) tests, tension loads eccentrically applied, and pressure loads applied rapidly to the tile top surface. A small initial imperfection mismatch (2.29 m spherical radius on the substrate) did not influence significantly the ultimate failure strength. Densification of the tile bond region improved the strength of TPS constructed both of LI 900 tile and of LI 2200 tile. Pressure shock conditions studied did not significantly affect the TPS strength.
DOT National Transportation Integrated Search
2008-06-01
The objective of this study was to evaluate the behavior of standard books that are made using corrosion resistant reinforcement, which typically have higher yield and ultimate strengths than that of ASTM A615 Grade 60 reinforcement. Two steel types ...
Evidence Report: Risk of Bone Fracture due to Spaceflight-Induced Changes to Bone
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.; Evans, Harlan J.; Smith, Scott A.; Spector, Elisabeth R.; Yardley, Greg; Myer, Jerry
2017-01-01
Given that spaceflight may induce adverse changes in bone ultimate strength with respect to mechanical loads during and post-mission, there is a possibility a fracture may occur for activities otherwise unlikely to induce fracture prior to initiating spaceflight.
NASA Astrophysics Data System (ADS)
Ruicheng, Feng; Hui, Cao; Haiyan, Li; Zhiyuan, Rui; Changfeng, Yan
2018-01-01
Molecular dynamics simulation is used to analyze tensile strength and elastic modulus under different temperatures and vacancy concentrations. The effects of temperature and vacancy concentration on the mechanical properties of γ-TiAl alloy are investigated. The results show that the ultimate stress, ultimate strain and elastic modulus decrease nonlinearly with increasing temperature and vacancy concentration. As the temperature increases, the plastic of material is reinforced. The influence of temperature on strength and elastic modulus is larger than that of vacancy concentration. The evolution process of vacancy could be observed clearly. Furthermore, vacancies with different concentrations develop into voids first as a function of external forces or other factors, micro cracks evolve from those voids, those micro cracks then converge to a macro crack, and fracture will finally occur. The vacancy evolution process cannot be observed clearly owing to the thermal motion of atoms at high temperature. In addition, potential energy is affected by both temperature and vacancy concentration.
Effect of rotation speed and welding speed on Friction Stir Welding of AA1100 Aluminium alloy
NASA Astrophysics Data System (ADS)
Raja, P.; Bojanampati, S.; Karthikeyan, R.; Ganithi, R.
2018-04-01
Aluminum AA1100 is the most widely used grade of Aluminium due to its excellent corrosion resistance, high ductility and reflective finish, the selected material was welded with Friction Stir Welding (FSW) process on a CNC machine, using a combination of different tool rotation speed (1500 rpm, 2500 rpm, 3500 rpm) and welding speed (10 mm/min, 30 mm/min, 50 mm/min) as welding parameters. The effect of FSW using this welding parameter was studied by measuring the ultimate tensile strength of the welded joints. A high-speed steel tool was prepared for welding the Aluminium AA1100 alloy having an 8mm shoulder diameter and pin dimension of 4mm diameter and 2.8 mm length. The welded joints were tested using the universal testing machine. It was found that Ultimate Tensile Strength of FSW specimen was highest with a value of 98.08 MPa when the weld was performed at rotation speed of 1500 RPM and welding speed of 50 mm/min.
NASA Astrophysics Data System (ADS)
Mu, X. N.; Zhang, H. M.; Cai, H. N.; Fan, Q. B.; Wu, Y.; Fu, Z. J.; Wang, Q. X.
2017-05-01
This study proposed an in-situ reactive method that uses graphene as a reinforcement to fabricate titanium metal matrix composites (TiMMCs) through powder metallurgy processing route. The volume fraction of graphene nanoplatelets was 1.8%vol, and the pure titanium was used as a matrix. The Archimedes density, hardness, microstructure and mechanical properties of specimens were compared under different ball milling times (20 min and 2.5 h) and hot pressing temperatures (900°C, 1150°C, and 1300°C,). The ultimate tensile strength of 630 MPa, which demonstrated a 27.3% increase compared with pure Ti, was achieved under a ball milling time of 20 min. Elongation increased with increasing temperature. When the ball milling time and hot pressing temperature were increased to 2.5 h and 1300 °C, respectively, the ultimate tensile strength of the composites reached 750 MPa, showing an increase of 51.5% compared with pure Ti.
Mechanical Strength of the Side-to-Side Tendon Attachment for Mismatched Tendon Sizes and Shapes
Fridén, Jan; Tirrell, Timothy F.; Bhola, Siddharth; Lieber, Richard L.
2015-01-01
Summary Certain combinations are advised against in tendon transfers due to size or shape mismatches between donor and recipient tendons. In this study, ultimate load, stiffness and Young’s modulus were measured in two tendon-to-tendon attachments with intentionally mismatched donor and recipient tendons - pronator teres (PT)-to-extensor carpi radialis brevis (ECRB) and flexor carpi ulnaris (FCU)-to-extensor digitorum communis (EDC). FCU-EDC attachments failed at higher loads than PT-to-ECRB attachments but they had similar modulus and stiffness values. Ultimate tensile strength of the tendon attachments exceeded the maximum predicted contraction force of any of the affected muscles, with safety factors of 4x and 2x for the FCU-to-EDC and PT-to-ECRB constructs, respectively. This implies that size and shape mismatch should not be a contraindication to tendon attachment in transfers. Further, these safety factors strongly suggest that no postoperative immobilization of these attachments is necessary. PMID:24413573
Tensile experiments and SEM fractography on bovine subchondral bone.
Braidotti, P; Bemporad, E; D'Alessio, T; Sciuto, S A; Stagni, L
2000-09-01
Subchondral bone undecalcified samples, extracted from bovine femoral heads, are subjected to a direct tensile load. The Young's modulus of each sample is determined from repeated tests within the elastic limit. In a last test, the tensile load is increased up to the specimen failure, determining the ultimate tensile strength. The investigation is performed on both dry and wet specimens. The measured Young's modulus for dry samples is 10.3+/-2.5GPa, while that of wet samples is 3.5+/-1.2GPa. The ultimate tensile strengths are 36+/-10 and 30+/-7.5MPa for dry and wet specimens, respectively. SEM micrographs of failure surfaces show characteristic lamellar bone structures, with lamellae composed of calcified collagen fibers. Rudimentary osteon-like structures are also observed. Failure surfaces of wet samples show a marked fiber pull-out, while delamination predominates in dry samples. The obtained results are interpreted on the basis of the deformation mechanisms typical of fiber-reinforced laminated composite materials.
Identification of strengthening phases in Al-Cu-Li alloy Weldalite (tm) 049
NASA Technical Reports Server (NTRS)
1991-01-01
Microstructure property relationships were determined for a family of ultrahigh strength weldable Al-Cu-Li based alloys referred to as Weldalite (tm) alloys. The highest strength variant of this family, Weldalite 049, has a high Cu/Li wt pct. ratio with a nominal composition of Al-6.3Cu-1.3Li-0.4Ag-0.4Mg-0.14Zr. Increasing the alloy's lithium content above 1.3 wt pct. resulted in a decrease in both yield and ultimate tensile strength. Strength was shown to be strongly dependent on lithium content, with a maximum in strength occurring in the range of about 1.1 to 1.4 wt pct. lithium. The strengthening phases present in Weldalite 049 (1.3Li) and an Al-6.3Cu-1.9Li-0.4Mg-0.14Zr alloy were identified using transmission electron microscopy (TEM).
NASA Astrophysics Data System (ADS)
Favero, Valentina; Ferrari, Alessio; Laloui, Lyesse
2018-05-01
This paper investigates the anisotropic hydro-mechanical behaviour of Opalinus Clay shale, the host material currently being considered for the construction of a nuclear waste repository in Switzerland. Consolidated and drained triaxial tests on Opalinus Clay from the Mont Terri URL have been conducted in order to derive information on its strength and stiffness properties. Opalinus Clay specimens were tested both parallel to bedding (P-specimens) and perpendicular to bedding (S-specimens). The considered effective confining stress range (from 2 to 12 MPa) has been selected in order to reproduce possible in situ stress conditions for the repository. In this work, particular attention has been paid to the experimental procedure in order to ensure consolidated conditions and avoid generation of unwanted excess pore water pressure during drained shearing. The Skempton B parameter has been determined for all the tested specimens in order to ensure saturation. Both single-stage and multistage triaxial testing procedures were adopted in the experimental campaign. The results of the triaxial tests highlight an anisotropic elastic response of Opalinus Clay: S-specimens present a more compliant behaviour than P-specimens. The values of the Young modulus are found to increase with the increase in mean effective stress. The analysis of the peak and ultimate shear strength results reveals that the material behaves in a similar manner regardless of the considered direction of loading (P and S directions) with respect to the bedding orientation. Peak and ultimate failure envelopes for Opalinus Clay were derived for the investigated stress range.
Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network
Pascual, Agustín; Camps, Isabel; Grau-Benitez, María
2015-01-01
Background The field of dental ceramics for CAD-CAM is enriched with a new innovative material composition having a porous three-dimensional structure of feldspathic ceramic infiltrated with acrylic resins.The aim of this study is to determine the mechanical properties of Polymer-Infiltrated-Ceramic-Network (PICN) and compare its performance with other ceramics and a nano-ceramic resin available for CAD-CAM systems. Material and Methods In this study a total of five different materials for CAD-CAM were investigated. A polymer-infiltrated ceramic (Vita Enamic), a nano-ceramic resin (Lava Ultimate), a feldspathic ceramic (Mark II), a lithium disilicate ceramic (IPS-e max CAD) and finally a Leucite based ceramic (Empress - CAD). From CAD-CAM blocks, 120 bars (30 for each material cited above) were cut to measure the flexural strength with a three-point-bending test. Strain at failure, fracture stress and Weibull modulus was calculated. Vickers hardness of each material was also measured. Results IPS-EMAX presents mechanical properties significantly better from the other materials studied. Its strain at failure, flexural strength and hardness exhibited significantly higher values in comparison with the others. VITA ENAMIC and LAVA ULTIMATE stand out as the next most resistant materials. Conclusions The flexural strength, elastic modulus similar to a tooth as well as having less hardness than ceramics make PICN materials an option to consider as a restorative material. Key words:Ceramic infiltrated with resin, CAD-CAM, Weibull modulus, flexural strength, micro hardness. PMID:26535096
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.
2003-01-01
Both interlaminar and in-plane shear strengths of a unidirectional Hi-Nicalon(TM) fiber-reinforced barium strontium aluminosilicate (SiC/BSAS) composite were determined at 1100 C in air as a function of test rate using double notch shear test specimens. The composite exhibited a significant effect of test rate on shear strength, regardless of orientation which was either in interlaminar or in in-plane direction, resulting in an appreciable shear-strength degradation of about 50 percent as test rate decreased from 3.3 10(exp -1) mm/s to 3.3 10(exp -5) mm/s. The rate dependency of composite's shear strength was very similar to that of ultimate tensile strength at 1100 C observed in a similar composite (2-D SiC/BSAS) in which tensile strength decreased by about 60 percent when test rate varied from the highest (5 MPa/s) to the lowest (0.005 MPa/s). A phenomenological, power-law slow crack growth formulation was proposed and formulated to account for the rate dependency of shear strength of the composite.
Method of forming biaxially textured alloy substrates and devices thereon
Goyal, Amit; Specht, Eliot D.; Kroeger, Donald M.; Paranthaman, Mariappan
2000-01-01
Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samoylenko, Vitaliy V., E-mail: samoylenko.vitaliy@mail.ru; Lenivtseva, Olga G., E-mail: lenivtseva-olga@mail.ru; Polyakov, Igor A., E-mail: status9@mail.ru
In this paper structural investigations and mechanical tests of Ti-Ta-Zr coatings obtained on surfaces of cp-titanium workpieces were carried out. It was found that the coatings had a dendrite structure; investigations at high-power magnifications revealed a platelet structure. An increase of tantalum concentration led to refinement of structural components. The microhardness level of all coatings, excepting a specimen with the maximum tantalum content, was 370 HV. The microhardness of this coating reached 400 HV. The ultimate tensile strength of cladded layers varied from 697 to 947 MPa. Adhesion tests showed that bimetallic composites were characterized by high bond strength of claddedmore » layers to the substrate, which exceeded cp-titanium strength characteristics.« less
Campbell, Kristin Turza; Burns, Nadja K; Rios, Carmen N; Mathur, Anshu B; Butler, Charles E
2011-06-01
Human acellular dermal matrix (HADM) and non-cross-linked porcine acellular dermal matrix (ncl-PADM) are clinically useful for complex ventral hernia repair. Direct comparisons between the two in vivo are lacking, however. This study compared clinically relevant early outcomes with these bioprosthetic materials when used for ventral hernia repair. Seventy-two guinea pigs underwent inlay repair of surgically created hernias with HADM (n = 37) or ncl-PADM (n = 35). Repair sites were harvested at 1, 2, or 4 weeks postoperatively. Adhesions were graded and quantified. Mechanical testing and histologic and immunohistologic (factor VIII) analyses of cellular and vascular infiltration were performed. No infections or recurrent hernias occurred. No difference was observed in mean adhesion surface area or tenacity between groups. Mean cellular infiltration (p < 0.002, weeks 1 and 4; p < 0.006, week 2) and vascular infiltration (p < 0.0003, week 1; p < 0.0001, weeks 2 and 4) were greater in HADM. Ultimate tensile strength at the implant-musculofascia interface increased over time with both materials, but no difference was observed at 4 weeks. The mean ultimate tensile strength of explanted ncl-PADM itself was consistently greater than that of HADM. The elastic modulus (stiffness) did not differ between groups at the interface but was greater in explanted ncl-PADM (p < 0.0001, weeks 1 and 2; p < 0.02, week 4). Both HADM and ncl-PADM become infiltrated with host cells and blood vessels within 4 weeks and have similar musculofascia-bioprosthetic interface strength. However, HADM has greater cellular and vascular infiltration. Longer-term studies will help determine whether later differences in material strength, stiffness, and remodeling affect hernia and/or bulge incidence.
Neppelenbroek, Karin Hermana; Lima, Jozely Francisca Mello; Hotta, Juliana; Galitesi, Lucas Lulo; Almeida, Ana Lucia Pompéia Fraga; Urban, Vanessa Migliorini
2018-02-01
To investigate the ultimate tensile strength of temporary soft denture liners modified by minimum inhibitory concentrations (MICs) of antifungal agents for Candida albicans biofilm (SC5314) determined in previous microbiological research. Dumbbell-shaped specimens (n = 7) with a central cross-sectional area of 6 × 3 × 33 mm were produced by Softone and Trusoft, without (control) or with incorporation of drugs in powder form at MICs for C. albicans biofilm (per g of material powder): nystatin (0.032 g), chlorhexidine diacetate (0.064 g), ketoconazole (0.128 g), miconazole (0.256 g), and itraconazole (0.256 g). After plasticization, specimens were immersed in distilled water at 37°C for 24 hours, 7 or 14 days, and then tested in tension in a universal testing machine at 40 mm/min. Data of tensile strength (MPa) and elongation percentage (%) were submitted to 3-way ANOVA and Tukey's test (α = 0.05). At the end of 14 days, the tensile strength for both materials was significantly lower in the groups modified by miconazole and itraconazole compared to the other groups (p < 0.0001), which showed no significant difference between them (p > 0.05). After 7 and 14 days in water, miconazole and itraconazole added into both materials resulted in significantly lower elongation percentages compared to the other antifungal agents and control (p < 0.0001), which were similar to each other (p > 0.05). The addition of the nystatin, chlorhexidine, and ketoconazole at MICs for C. albicans biofilm resulted in no harmful effects on the tensile strength and elongation percentage of the temporary soft denture liner materials up to 14 days. © 2017 by the American College of Prosthodontists.
Load response and gap formation in a single-row cruciate suture rotator cuff repair.
Huntington, Lachlan; Richardson, Martin; Sobol, Tony; Caldow, Jonathon; Ackland, David C
2017-06-01
Double-row rotator cuff tendon repair techniques may provide superior contact area and strength compared with single-row repairs, but are associated with higher material expenses and prolonged operating time. The purpose of this study was to evaluate gap formation, ultimate tensile strength and stiffness of a single-row cruciate suture rotator cuff repair construct, and to compare these results with those of the Mason-Allen and SutureBridge repair constructs. Infraspinatus tendons from 24 spring lamb shoulders were harvested and allocated to cruciate suture, Mason-Allen and SutureBridge repair groups. Specimens were loaded cyclically between 10 and 62 N for 200 cycles, and gap formation simultaneously measured using a high-speed digital camera. Specimens were then loaded in uniaxial tension to failure, and construct stiffness and repair strength were evaluated. Gap formation in the cruciate suture repair was significantly lower than that of the Mason-Allen repair (mean difference = 0.6 mm, P = 0.009) and no different from that of the SutureBridge repair (P > 0.05). Both the cruciate suture repair (mean difference = 15.7 N/mm, P = 0.002) and SutureBridge repair (mean difference = 15.8 N/mm, P = 0.034) were significantly stiffer than that of the Mason-Allen repair; however, no significant differences in ultimate tensile strength between repair groups were discerned (P > 0.05). The cruciate suture repair construct, which may represent a simple and cost-effective alternative to double-row and double-row equivalent rotator cuff repairs, has comparable biomechanical strength and integrity with that of the SutureBridge repair, and may result in improved construct longevity and tendon healing compared with the Mason-Allen repair. © 2017 Royal Australasian College of Surgeons.
Optimization of BI test parameters to investigate mechanical properties of Grade 92 steel
NASA Astrophysics Data System (ADS)
Barbadikar, Dipika R.; Vincent, S.; Ballal, Atul R.; Peshwe, Dilip R.; Mathew, M. D.
2018-04-01
The ball indentation (BI) testing is used to evaluate the tensile properties of materials namely yield strength, strength coefficient, ultimate tensile strength, and strain hardening exponent. The properties evaluated depend on a number of BI test parameters. These parameters include the material constants like yield slope (YS), constraint factor (CF), yield offset parameter (YOP). Number of loading/unloading cycles, preload, indenter size and depth of penetration of indenter also affects the properties. In present investigation the effect of these parameters on the stress-strain curve of normalized and tempered Grade 92 steel is evaluated. Grade 92 is a candidate material for power plant application over austenitic stainless steel and derives its strength from M23C6, MX precipitates and high dislocation density. CF, YS and YOP changed the strength properties considerably. Indenter size effect resulted in higher strength for smaller indenter. It is suggested to use larger indenter diameter and higher number of loading cycles for GRADE 92 steel to get best results using BI technique.
Xu, H; Zhang, Z J; Zhang, P; Cui, C Y; Jin, T; Zhang, Z F
2017-08-14
It is a great challenge to improve the strength of disc superalloys without great loss of plasticity together since the microstructures benefiting the strength always do not avail the plasticity. Interestingly, this study shows that the trade-off relationship between strength and plasticity can be broken through decreasing stacking fault energy (SFE) in newly developed Ni-Co based disc superalloys. Axial tensile tests in the temperature range of 25 to 725 °C were carried out in these alloys with Co content ranging from 5% to 23% (wt.%). It is found that the ultimate tensile strength (UTS) and uniform elongation (UE) are improved synchronously when microtwinning is activated by decreasing the SFE at 650 and 725 °C. In contrast, only UTS is improved when stacking fault (SF) dominates the plastic deformation at 25 and 400 °C. These results may be helpful for designing advanced disc superalloys with relatively excellent strength and plasticity simultaneously.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of 4.25 shall not exceed the minimum ultimate strength of the material. They shall be so designed as... the initial surveys, and may be required at periodical surveys and at annual surveys or at more...
Code of Federal Regulations, 2014 CFR
2014-10-01
... of 4.25 shall not exceed the minimum ultimate strength of the material. They shall be so designed as... the initial surveys, and may be required at periodical surveys and at annual surveys or at more...
Code of Federal Regulations, 2011 CFR
2011-10-01
... of 4.25 shall not exceed the minimum ultimate strength of the material. They shall be so designed as... the initial surveys, and may be required at periodical surveys and at annual surveys or at more...
Code of Federal Regulations, 2010 CFR
2010-10-01
... of 4.25 shall not exceed the minimum ultimate strength of the material. They shall be so designed as... the initial surveys, and may be required at periodical surveys and at annual surveys or at more...
Code of Federal Regulations, 2013 CFR
2013-10-01
... of 4.25 shall not exceed the minimum ultimate strength of the material. They shall be so designed as... the initial surveys, and may be required at periodical surveys and at annual surveys or at more...
Review of "Charting New Territory"
ERIC Educational Resources Information Center
Trujillo, Tina
2011-01-01
"Charting New Territory: Tapping Charter Schools to Turn Around the Nation's Dropout Factories" argues for a more prominent role for charter operators in turning around perennially low-performing high schools. However, the report's ultimate findings and conclusions are out of proportion to the strength of the research evidence on school…
The stability of cassette walls in compression
NASA Astrophysics Data System (ADS)
Voutay, Pierre-Arnaud
Much research into the behaviour of cold formed steel columns in the last decade has focused on channel sections undergoing local, distortional and overall buckling. Light gauge steel cassette sections are a particular form of channel section which offers an alternative form of load-bearing wall assembly for use in low-rise steel framed construction. Cassette wall sections possess wide and slender flanges so that, by including intermediate stiffeners in these wide flanges, a significant increase in the ultimate load capacity may be achieved. However, the introduction of intermediate stiffeners also increases the number of buckling modes (stiffener buckling) and, therefore complicates the behaviour and increases the risk of interactive buckling between these modes. The work undertaken in this thesis aims to clarify the behaviour of wide flanges in compression with and without intermediate stiffeners. In this research, the distortional mode of web and narrow flange buckling was inhibited by connecting the narrow flanges of the cassettes together at suitable intervals. "Generalised Beam Theory" (GBT), which allows the individual buckling modes to be considered individually and in predetermined combinations, provides a particularly good tool with which to analyse and understand the buckling behaviour of cassette sections with and without intermediate stiffeners. "Generalised Beam Theory" (GBT) is used throughout this work to determine the elastic buckling stress of the sections studied (simply supported stiffened plates, as well as cassette sections). Since the economic design of cold-formed steel sections requires the consideration of post- buckling behaviour, elastic buckling values are not directly comparable with design code values which are usually based on the concept of effective width. Therefore, finite element analysis with both material and geometric nonlinearity has also been carried out in order to obtain the ultimate strength in the critical mode or mode combination. Firstly the results of experimental test are analysed and their behaviour reproduced numerically. This serves to explain the test results and verify the numerical model. Confidence in modelling non-linear instability phenomena with the finite element method is acquired. Secondly, an initial parametric study was undertaken on the behaviour of cassette sections with and without intermediate stiffeners. This study considers the effect of the length and overall buckling on the behaviour of cassette sections, the effect of load eccentricity and the effect of the rotational restraint given by the web to the stiffened wide flange. A second parametric study including 96 specimens was undertaken next. This study considered the effect of the number (up to three intermediate stiffeners) and sizes of intermediate stiffeners on slender flanges with a slenderness ratio between 150 ≤ w/t ≤ 600. A wide range of geometries was studied covering single and interactive buckling modes. Comparison of the ultimate strength obtained from finite element analysis with the ultimate strength obtained using the effective width approach of modem design codes such as Eurocode 3 part 1.3 (1996) and NAS (North American specification (2001)) was then possible. By integrating the stress distribution over the length of the specimen, the stiffened wide flange can be isolated from the rest of the section (webs and narrow flanges). Design procedures tor plate elements incorporating one or two intermediate stiffeners under compressive load are given in Eurocode 3; Part 1.3. However, cassette sections, which have wider and more slender flanges than typical sheeting and decking, are increasingly being used in practical construction. For such cases, the design procedures in Eurocode 3 are less well founded. An improvement of the Eurocode 3 procedure dealing with intermediate stiffeners is proposed and validated for one, two or three stiffeners. Throughout the work, simple expressions suitable for design calculations are presented. Modern design codes as well as Direct Strength Method are evaluated in the light of findings of this work and wherever possible suggestions for improvements are made.
Development of Fuel Hose for Use in the Arctic.
1983-12-01
Teonsil* Strength. psi (min) 1500 1500 AST" D-412 eStress (100% elongation), psi record record AST4 D-412 .Ultimate Elongation, t (min) I(i 150 ASTM D-412...0.5 hr 94 hras + 0.5 hr AST14 D-47173.40F + 3.60F for: - - .Tensile Strength Retained, % (min) 60 40 ASTM D-471 eStress (1001 elongation) Retained...or fracture at -600 F, it was stiff. Moreover, it was very difficult to process and a cure temperature in excess of 302OF is necessary. Present hose
NASA Astrophysics Data System (ADS)
Kozulyn, A. A.; Skripnyak, V. A.; Krasnoveikin, V. A.; Skripnyak, V. V.; Karavatskii, A. K.
2015-01-01
The results of investigations of physico-mechanical properties of specimens made from the structural Mg-based alloy (Russian grade Ma2-1) in its coarse-grained and ultrafine-grained states after SPD processing are presented. To form the ultrafine-grained structure, use was made of the method of orthogonal equal-channel angular pressing. After four passes through the die, a simultaneous increase was achieved in microhardness, yield strength, ultimate tensile strength and elongation to failure under conditions of uniaxial tensile loading.
Development of near β titanium alloy with high strength and superplastic properties
NASA Astrophysics Data System (ADS)
Naydenkin, E. V.; Ratochka, I. V.; Mishin, I. P.; Lykova, O. N.
2017-12-01
Ultrafine-grained (UFG) structure with an average element size of about 0.25 µm was obtained in a near β titanium alloy under severe plastic deformation by abc pressing. It is shown that the formation of such structure greatly increases the ultimate strength of the alloy compared to its coarse-grained state (up to 1610 MPa). In addition, the UFG alloy features improved superplastic characteristics under tension at temperatures of 973-1073 K: its elongation to failure exceeds 1300% and the flow stress decreases to several MPa.
Some Effects of Nitrates on the Tensile Properties of Al 7075-T7351.
1988-03-01
SORNSOIG IO 8b OFFICE SYMBOL 7aRO NA10 MDFN %1% ST% RuMEN IENT, ON NME ORGAiZtION Reerh ru (if applicable) Sc. ADDRESS (City, State and ZIP Code) 7t0 ADRES...grains in products with significant grain directionality TUS Tensile Ultimate Strength TYS Tensile Yield Strength wt Weight TABLE OF CONTENTS Page...CONFIGURATION NI A- NI 6. 44. 6.0 .1 rl il i I I APPENDIX B CONTROL SETS - TENSILE TEST DATA Contents L -T C ontro ls
A new high strength alloy for hydrogen fueled propulsion systems
NASA Technical Reports Server (NTRS)
Mcpherson, W. B.
1986-01-01
This paper describes the development of a high-strength alloy (1241 MPa ultimate and 1103 MPa yield, with little or no degradation in hydrogen) for application in advanced hydrogen-fueled rocket engines. Various compositions of the Fe-Ni-Co-Cr system with elemental additions of Cb, Ti and Al are discussed. After processing, notched tensile specimens were tested in 34.5-MPa hydrogen at room temperature, as the main screening test. The H2/air notch tensile ratio was used as the selection/rejection criterion. The most promising alloys are discussed.
Effects of fiber, matrix, and interphase on carbon fiber composite compression strength
NASA Technical Reports Server (NTRS)
Nairn, John A.; Harper, Sheila I.; Bascom, Willard D.
1994-01-01
The major goal of this project was to obtain basic information on compression failure properties of carbon fiber composites. To do this, we investigated fiber effects, matrix effects, and fiber/matrix interface effects. Using each of nine fiber types, we prepared embedded single-fiber specimens, single-ply specimens, and full laminates. From the single-fiber specimens, in addition to the standard fragmentation test analysis, we were able to use the low crack density data to provide information about the distribution of fiber flaws. The single-ply specimens provided evidence of a correlation between the size of kink band zones and the quality of the interface. Results of the laminate compression experiments mostly agreed with the results from single-ply experiments, although the ultimate compression strengths of laminates were higher. Generally, these experiments showed a strong effect of interfacial properties. Matrix effects were examined using laminates subjected to precracking under mixed-mode loading conditions. A large effect of precracking conditions on the mode 1 toughness of the laminates was found. In order to control the properties of the fiber/matrix interface, we prepared composites of carbon fiber and polycarbonate and subjected these to annealing. The changes in interfacial properties directly correlated with changes in compression strength.
NASA Astrophysics Data System (ADS)
Abrosimov, N. A.; Novosel'tseva, N. A.
2017-05-01
A technique for numerically analyzing the dynamic strength of two-layer metal-plastic cylindrical shells under an axisymmetric internal explosive loading is developed. The kinematic deformation model of the layered package is based on a nonclassical theory of shells. The geometric relations are constructed using relations of the simplest quadratic version of the nonlinear elasticity theory. The stress and strain tensors in the composite macrolayer are related by Hooke's law for an orthotropic body with account of degradation of the stiffness characteristics of the multilayer package due to local failure of some its elementary layers. The physical relations in the metal layer are formulated in terms of a differential theory of plasticity. An energy-correlated resolving system of dynamic equations for the metal-plastic cylindrical shells is derived by minimizing the functional of total energy of the shells as three-dimensional bodies. The numerical method for solving the initial boundary-value problem formulated is based on an explicit variational-difference scheme. The reliability of the technique considered is verified by comparing numerical results with experimental data. An analysis of the ultimate strains and strength of one-layer basalt-and glass-fiber-reinforced plastic and two-layer metalplastic cylindrical shells is carried out.
NASA Astrophysics Data System (ADS)
Singh, Dharmendra; Rao, P. Nageswara; Jayaganthan, R.
2013-08-01
The influence of rolling at liquid nitrogen temperature and annealing on the microstructure and mechanical properties of Al 5083 alloy was studied in this paper. Cryorolled samples of Al 5083 show significant improvements in strength and hardness. The ultimate tensile strength increases up to 340 MPa and 390 MPa for the 30% and 50% cryorolled samples, respectively. The cryorolled samples, with 30% and 50% reduction, were subjected to Charpy impact testing at various temperatures from -190°C to 100°C. It is observed that increasing the percentage of reduction of samples during cryorolling has significant effect on decreasing impact toughness at all temperatures by increasing yield strength and decreasing ductility. Annealing of samples after cryorolling shows remarkable increment in impact toughness through recovery and recrystallization. The average grain size of the 50% cryorolled sample (14 μm) after annealing at 350°C for 1 h is found to be finer than that of the 30% cryorolled sample (25 μm). The scanning electron microscopy (SEM) analysis of fractured surfaces shows a large-size dimpled morphology, resembling the ductile fracture mechanism in the starting material and fibrous structure with very fine dimples in cryorolled samples corresponding to the brittle fracture mechanism.
Concept for a beryllium divertor with in-situ plasma spray surface regeneration
NASA Astrophysics Data System (ADS)
Smith, M. F.; Watson, R. D.; McGrath, R. T.; Croessmann, C. D.; Whitley, J. B.; Causey, R. A.
1990-04-01
Two serious problems with the use of graphite tiles on the ITER divertor are the limited lifetime due to erosion and the difficulty of replacing broken tiles inside the machine. Beryllium is proposed as an alternative low-Z armor material because the plasma spray process can be used to make in-situ repairs of eroded or damaged surfaces. Recent advances in plasma spray technology have produced beryllium coatings of 98% density with a 95% deposition efficiency and strong adhesion to the substrate. With existing technology, the entire active region of the ITER divertor surface could be coated with 2 mm of beryllium in less than 15 h using four small plasma spray guns. Beryllium also has other potential advantages over graphite, e.g., efficient gettering of oxygen, ten times less tritium inventory, reduced problems of transient fueling from D/T exchange and release, no runaway erosion cascades from self-sputtering, better adhesion of redeposited material, as well as higher strength, ductility, and fracture toughness than graphite. A 2-D finite element stress analysis was performed on a 3 mm thick Be tile brazed to an OFHC soft-copper saddle block, which was brazed to a high-strength copper tube. Peak stresses remained 50% below the ultimate strength for both brazing and in-service thermal stresses.
High-Strength Konjac Glucomannan/Silver Nanowires Composite Films with Antibacterial Properties
Lei, Jia; Zhou, Lei; Tang, Yongjian; Luo, Yong; Duan, Tao; Zhu, Wenkun
2017-01-01
Robust, high-strength and environmentally friendly antibacterial composite films were prepared by simply blending konjac glucomannan (KGM) and silver nanowires (Ag NWs) in an aqueous system. The samples were then characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis, mechanical property tests, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS) and antimicrobial tests. The results showed that there was a high ratio of Ag NWs uniformly distributed in the composite films, which was vital for mechanical reinforcement and stable antibacterial properties. The enhanced thermal stability and mechanical intensity increased, while the elongation at break was reduced with an increase in the amount of Ag NWs found in the composite films. When the percentage of Ag NWs in the composite films reached 5%, the tensile strength was 148.21 MPa, Young’s modulus was 13.79 GPa and the ultimate strain was 25.28%. Antibacterial tests showed that the KGM films had no antibacterial effect. After the addition of Ag NWs, the composite films had an obvious inhibitory effect on bacteria, with the uniform dispersion of Ag NWs promoting the antibacterial effect to a certain degree. These results indicated that these composite films would have a potential application in the fields of environmentally friendly packaging or medicine. PMID:28772883
Eccentric Training for Tendon Healing After Acute Lesion: A Rat Model.
Kaux, Jean-François; Libertiaux, Vincent; Leprince, Pierre; Fillet, Marianne; Denoel, Vincent; Wyss, Clémence; Lecut, Christelle; Gothot, André; Le Goff, Caroline; Croisier, Jean-Louis; Crielaard, Jean-Michel; Drion, Pierre
2017-05-01
The tendon is a dynamic entity that remodels permanently. Platelet-rich plasma (PRP) injection has been shown to have a beneficial effect on tendon healing after lesion in rats. Furthermore, eccentric exercise seems to improve the mechanical quality of the tendon. A combination of PRP injection and eccentric training might be more effective than either treatment alone. Controlled laboratory study. Adult male rats were anesthetized, an incision was performed in the middle of their left patellar tendon and an injection of physiological fluid (PF) or homologous PRP was randomly made at the lesion level. The rats were then divided into 2 groups: the eccentric group, undergoing eccentric training 3 times a week, and the untrained group, without any training. Thus, 4 groups were compared. After 5 weeks, the tendons were removed and their ultimate tensile strength and energy were measured. Tendons were frozen for proteomic analyses when all biomechanical tests were completed. Statistical analysis was performed with linear mixed effect models. No significant difference was found between the treatments using PF injection or PRP injection alone. However, the value of the ultimate tensile force at rupture was increased by 4.5 N (108% of control, P = .006) when eccentric training was performed. An intragroup analysis revealed that eccentric training significantly improved the ultimate force values for the PRP group. Proteomic analysis revealed that eccentric training led to an increase in abundance of several cytoskeletal proteins in the PF group, while a decrease in abundance of enzymes of the glycolytic pathway occurred in the PRP-treated groups, indicating that this treatment might redirect the exercise-driven metabolic plasticity of the tendon. Eccentric training altered the metabolic plasticity of tendon and led to an improvement of injured tendon resistance regardless of the treatment injected (PF or PRP). This study demonstrates the necessity of eccentric rehabilitation and training in cases of tendon lesion regardless of the treatment carried out.
29 CFR 1926.500 - Scope, application, and definitions applicable to this subpart.
Code of Federal Regulations, 2012 CFR
2012-07-01
... protection requirements for employees performing steel erection work (except for towers and tanks) are... protection systems, except in relation to steel erection activities and the use of equipment covered by... refusal, breakage, or separation of component parts. Load refusal is the point where the ultimate strength...
29 CFR 1926.500 - Scope, application, and definitions applicable to this subpart.
Code of Federal Regulations, 2011 CFR
2011-07-01
... protection requirements for employees performing steel erection work (except for towers and tanks) are... protection systems, except in relation to steel erection activities and the use of equipment covered by... refusal, breakage, or separation of component parts. Load refusal is the point where the ultimate strength...
29 CFR 1926.500 - Scope, application, and definitions applicable to this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Fall protection requirements for employees performing steel erection work (except for towers and tanks... protection systems, except in relation to steel erection activities. (b) Definitions. Anchorage means a... component parts. Load refusal is the point where the ultimate strength is exceeded. Free fall means the act...
29 CFR 1926.500 - Scope, application, and definitions applicable to this subpart.
Code of Federal Regulations, 2013 CFR
2013-07-01
... protection requirements for employees performing steel erection work (except for towers and tanks) are... protection systems, except in relation to steel erection activities and the use of equipment covered by... refusal, breakage, or separation of component parts. Load refusal is the point where the ultimate strength...
ERIC Educational Resources Information Center
Grierson, Arlene L.; Woloshyn, Vera E.
2005-01-01
Researchers and educators acknowledge that early reading instruction is of critical importance, with interventions and remedial programming most effective in the primary grades. Integral to this programming are educators' abilities to assess students' reading strengths and needs, with inconsistent and/or inaccurate practices ultimately threatening…
46 CFR 72.05-20 - Stairways, ladders, and elevators.
Code of Federal Regulations, 2010 CFR
2010-10-01
... factor of safety of 4 based on the ultimate strength. (j) The stringers, treads, and all platforms and... means of an intermediate landing of rectangular or nearly rectangular shape based on the actual...) Except as further noted the provisions of this section apply to all vessels. (2) For small vessels...
46 CFR 72.05-20 - Stairways, ladders, and elevators.
Code of Federal Regulations, 2011 CFR
2011-10-01
... factor of safety of 4 based on the ultimate strength. (j) The stringers, treads, and all platforms and... means of an intermediate landing of rectangular or nearly rectangular shape based on the actual...) Except as further noted the provisions of this section apply to all vessels. (2) For small vessels...
Raspberry supplementation alleviates age-related motor dysfunction in select populations
USDA-ARS?s Scientific Manuscript database
Age-related declines in balance, muscle strength and coordination often lead to a higher incidence of falling. Among older adults, falls are the leading cause of distress, pain, injury, loss of confidence, and ultimately, loss of independence and death. Previous studies in our laboratory have demons...
USDA-ARS?s Scientific Manuscript database
Among older adults, falls are a leading cause of distress, pain, injury, loss of confidence, and ultimately, loss of independence and death. Previous studies in our laboratory have demonstrated that berry supplementation improves the age-related declines in balance, muscle strength, and coordination...
TRIP effect in austenitic-martensitic VNS9-Sh steel at various strain rates
NASA Astrophysics Data System (ADS)
Terent'ev, V. F.; Slizov, A. K.; Prosvirnin, D. V.
2016-10-01
The mechanical properties of austenitic-martensitic VNS9-Sh (23Kh15N5AM3-Sh) steel are studied at a static strain rate from 4.1 × 10-5 to 17 × 10-3 s-1 (0.05-20 mm/min). It is found that, as the strain rate increases, the ultimate tensile strength decreases and the physical yield strength remains unchanged (≈1400 MPa). As the strain rate increases, the yield plateau remains almost unchanged and the relative elongation decreases continuously. Because of high microplastic deformation, the conventional yield strength is lower than the physical yield strength over the entire strain rate range under study. The influence of the TRIP effect on the changes in the mechanical properties of VNS9-Sh steel at various strain rates is discussed.
Omi, Rei; Gingery, Anne; Steinmann, Scott P.; Amadio, Peter C.; An, Kai-Nan; Zhao, Chunfeng
2016-01-01
Hypothesis A composite of multilayer tendon slices (COMTS) seeded with bone marrow stromal cells (BMSCs) may impart mechanical and biologic augmentation effects on supraspinatus tendon repair under tension, thereby improving the healing process after surgery in rats. Methods Adult female Lewis rats (n = 39) underwent transection of the supraspinatus tendon and a 2-mm tendon resection at the distal end, followed by immediate repair to its bony insertion site under tension. Animals received 1 of 3 treatments at the repair site: (1) no augmentation, (2) COMTS augmentation alone, or (3) BMSC-seeded COMTS augmentation. BMSCs were labeled with a fluorescent cell marker. Animals were euthanized 6 weeks after surgery, and the extent of healing of the repaired supraspinatus tendon was evaluated with biomechanical testing and histologic analysis. Results Histologic analysis showed gap formation between the repaired tendon and bone in all specimens, regardless of treatment. Robust fibrous tissue was observed in rats with BMSC-seeded COMTS augmentation; however, fibrous tissue was scarce within the gap in rats with no augmentation or COMTS-only augmentation. Labeled transplanted BMSCs were observed throughout the repair site. Biomechanical analysis showed that the repairs augmented with BMSC-seeded COMTS had significantly greater ultimate load to failure and stiffness compared with other treatments. However, baseline (time 0) data showed that COMTS-only augmentation did not increase mechanical strength of the repair site. Conclusion Although the COMTS scaffold did not increase the initial repair strength, the BMSC-seeded scaffold increased healing strength and stiffness 6 weeks after rotator cuff repair in a rat model. Level of evidence Basic Science Study, Animal Model. PMID:26387915
Probabilistic fatigue methodology for six nines reliability
NASA Technical Reports Server (NTRS)
Everett, R. A., Jr.; Bartlett, F. D., Jr.; Elber, Wolf
1990-01-01
Fleet readiness and flight safety strongly depend on the degree of reliability that can be designed into rotorcraft flight critical components. The current U.S. Army fatigue life specification for new rotorcraft is the so-called six nines reliability, or a probability of failure of one in a million. The progress of a round robin which was established by the American Helicopter Society (AHS) Subcommittee for Fatigue and Damage Tolerance is reviewed to investigate reliability-based fatigue methodology. The participants in this cooperative effort are in the U.S. Army Aviation Systems Command (AVSCOM) and the rotorcraft industry. One phase of the joint activity examined fatigue reliability under uniquely defined conditions for which only one answer was correct. The other phases were set up to learn how the different industry methods in defining fatigue strength affected the mean fatigue life and reliability calculations. Hence, constant amplitude and spectrum fatigue test data were provided so that each participant could perform their standard fatigue life analysis. As a result of this round robin, the probabilistic logic which includes both fatigue strength and spectrum loading variability in developing a consistant reliability analysis was established. In this first study, the reliability analysis was limited to the linear cumulative damage approach. However, it is expected that superior fatigue life prediction methods will ultimately be developed through this open AHS forum. To that end, these preliminary results were useful in identifying some topics for additional study.
Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.
2016-01-01
The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.
Analysis of Dependence of the Properties of Alloy V95 on the Pressure Applied to Crystallizing Metal
NASA Astrophysics Data System (ADS)
Korostelev, V. F.; Khromova, L. P.; Denisov, M. S.
2017-05-01
Results of a study aimed at formation of a single-phase fine-grained structure in pistons from aluminum alloy V95 in the process of their fabrication, which involves isostatic pressing of liquid metal before the start of crystallization, application of pressure to the crystallizing metal, and holding under pressure in the process of cooling to the shop temperature, are presented. The ultimate strength and the structure of alloy V95 after casting with imposition of pressure are determined. An example of application of the method suggested for fabricating cast billets ∅ 82 × 70 mm in size with a uniform dense structure without gas shrinkage defects, volume and dendritic segregation is considered.
NASA Technical Reports Server (NTRS)
Mayugo, J A.; Camanho, P. P.; Maimi, P.; Davila, C. G.
2010-01-01
An analytical model based on the analysis of a cracked unit cell of a composite laminate subjected to multiaxial loads is proposed to predict the onset and accumulation of transverse matrix cracks in the 90(sub n) plies of uniformly stressed [plus or minus Theta/90(sub n)](sub s) laminates. The model predicts the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate, and it accounts for the effect of the ply thickness on the ply strength. Several examples describing the predictions of laminate response, from damage onset up to final failure under both uniaxial and multiaxial loads, are presented.
Precast self-compacting concrete (PSCC) panel with added coir fiber: An overview
NASA Astrophysics Data System (ADS)
Afif Iman, Muhamad; Mohamad, Noridah; Samad, Abdul Aziz Abdul; Goh, W. I.; Othuman Mydin, M. A.; Afiq Tambichik, Muhamad; Bosro, Mohamad Zulhairi Mohd; Wirdawati, A.; Jamaluddin, N.
2018-04-01
Self-compacting concrete (SCC) is the alternative way to reduce construction time and improve the quality and strength of concrete. The panel system fabricated from SCC contribute to the IBS system that is sustainable and environmental friendly. The precast self-compacting concrete (PSCC) panel with added coir fiber will be overview in this paper. The properties of SCC and coir fiber are studied and reviewed from the previous researches. Finite element analysis is used to support the experimental results by conduction parametric simulation study on PSCC under flexure load. In general, it was found that coir fiber has a significant influence on the flexural load and crack propagation. Higher fiber incorporated in SCC resulted with higher ultimate load of PSCC.
The Effect of Artificial Aging on the Tensile Properties of Alclad 24S-T and 24S-T Aluminum Alloy
NASA Technical Reports Server (NTRS)
Kotanchik, Joseph N.; Woods, Walter; Zender, George W.
1943-01-01
An experimental study was made to determine the effect of artificial aging on the tensile properties of alclad 24S-T and 24S-T aluminum-alloy sheet material. The results of the tests show that certain combinations of aging time and temperature cause a marked increase in the yield strength and a small increase in the ultimate strength; these increases are accompanied by a very large decrease in elongation. A curve is presented that shows the maximum yield strengths that can be obtained by aging this material at various combinations of time and temperature. The higher values of yield stress are obtained in material aged at relatively longer times and lower temperatures.
NASA Astrophysics Data System (ADS)
Samoylenko, Vitaliy V.; Lenivtseva, Olga G.; Polyakov, Igor A.; Laptev, Ilya S.
2015-10-01
In this paper structural investigations and mechanical tests of Ti-Ta-Zr coatings obtained on surfaces of cp-titanium workpieces were carried out. It was found that the coatings had a dendrite structure; investigations at high-power magnifications revealed a platelet structure. An increase of tantalum concentration led to refinement of structural components. The microhardness level of all coatings, excepting a specimen with the maximum tantalum content, was 370 HV. The microhardness of this coating reached 400 HV. The ultimate tensile strength of cladded layers varied from 697 to 947 MPa. Adhesion tests showed that bimetallic composites were characterized by high bond strength of cladded layers to the substrate, which exceeded cp-titanium strength characteristics.
Method of forming biaxially textured alloy substrates and devices thereon
Goyal, Amit; Specht, Eliot D.; Kroeger, Donald M.; Paranthaman, Mariappan
1999-01-01
Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be fabricated in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.
An Investigation into the Postbuckling Response of a Single Blade-Stiffened Composite Panel
NASA Astrophysics Data System (ADS)
Spediacci, Alexander Daniel
The large strength reserves of stiffened composite structures in the postbuckling range appeal to the aerospace industry because of the high strength-to weight-ratio. Design and analysis of these large-scale, complex structures is technical, and requires major computational effort. Using the building-block approach, a smaller, single-stringer panel can be a useful and efficient tool for initial design, and can reveal critical behavior of a larger, multi-stringer panel. A characterization, through finite element modeling, of buckling and postbuckling response of a single blade-stiffened composite panel is proposed. Several factors affecting buckling and postbuckling behavior are investigated, including specimen length, initial imperfections, mode switching, and skin stringer separation. Two specimens are repeatedly tested under quasi- static compression loading well into the postbuckling range, showing no sign of damage. The test data from the specimens are used to compare and validate the nonlinear finite element models, show good correlation with the models. Ultimately, this work will serve to demonstrate the safety of stiffened structures operating in the postbuckling range and allow for thinner, lighter structures, which can increase the overall efficiency of aircraft.
NASA Technical Reports Server (NTRS)
Merry, Josh; Takeshita, Jennifer; Tweedy, Bryan; Burford, Dwight
2006-01-01
In this presentation, the results of a recent study on the effect of pin tool design for friction stir welding thin sheets (0.040") of aluminum alloys 2024 and 7075 are provided. The objective of this study was to investigate and document the effect of tool shoulder and pin diameter, as well as the presence of pin flutes, on the resultant microstructure and mechanical properties at both room temperature and cryogenic temperature. Specifically, the comparison between three tools will include: FSW process load analysis (tool forces required to fabricate the welds), Static Mechanical Properties (ultimate tensile strength, yield strength, and elongation), and Process window documenting the range of parameters that can be used with the three pin tools investigated. All samples were naturally aged for a period greater than 10 days. Prior research has shown 7075 may require post weld heat treatment. Therefore, an additional pair of room temperature and cryogenic temperature samples was post-weld aged to the 7075-T7 condition prior to mechanical testing.
NASA Astrophysics Data System (ADS)
Bachmann, A.; Krutzlinger, M.; Zaeh, M. F.
2018-06-01
Friction Stir Welding (FSW) is an innovative joining technique, which has proven to produce high quality joints in high strength aluminum alloys. Consequently, it is commonly used to manufacture lightweight aerospace structures with stringent requirements. For these structures, it is necessary to ensure a high ultimate tensile strength (UTS). Various studies have reported that the UTS is significantly influenced by the welding parameters. Samples welded with different parameter sets showed a considerably different UTS, despite being free from detectable welding defects (e.g. tunnel defect, voids, or lack of penetration). Based on the observations in the literature, a hypothesis was posed. The welding temperature along with the welding speed determine the UTS of the weld. This study aims to prove this hypothesis experimentally by using temperature-controlled FSW to join plates of EN AW-2219-T87 in butt joint configuration. The welded samples were examined using visual inspection, metallography, X-ray imaging, and uniaxial tensile tests. Finally, a statistical analysis was conducted. Hereby, the hypothesis was confirmed.
NASA Astrophysics Data System (ADS)
Yao, Xiling; Moon, Seung Ki; Lee, Bing Yang; Bi, Guijun
2018-03-01
The purpose of this paper is to investigate the effects of TiC nanoparticle content on microstructures and tensile properties of the IN718/TiC nanocomposites fabricated by selective laser melting (SLM). 0.5wt%, 1.0wt%, and 2.0wt% of TiC nanoparticles are added to the IN718 powders. The bulk-form IN718/TiC nanocomposites with different TiC contents are fabricated in-situ by SLM using the same process settings. The evolution of microstructures and tensile properties as the effect of changing the TiC content is studied using the optical microscopy, scanning electron microscopy, X-ray diffraction analysis, and tensile testing. The increase of TiC content refines the microstructure, promotes the formation of the cellular morphology, and reduces the size and continuity of Laves precipitates. Increasing the TiC content improves the yield strength and ultimate tensile strength but decreases the ductility. The grain refinement, dislocation bowing, dislocation punching, and the reduction in Laves precipitate contribute to the strengthening effect in the IN718/TiC nanocomposites.
Effects of H content on the tensile properties and fracture behavior of SA508-III steel
NASA Astrophysics Data System (ADS)
Liu, Jia-hua; Wang, Lei; Liu, Yang; Song, Xiu; Luo, Jiong; Yuan, Dan
2015-08-01
SA508-III steel was charged with different hydrogen (H) contents using a high-pressure thermal charging method to study the effects of H content on the tensile properties and evaluate the H embrittlement behavior of the steel. The results indicate that the ultimate tensile strength remains nearly unchanged with the addition of H. In contrast, the yielding strength slightly increases, and the elongation significantly decreases with increasing H content, especially at concentrations exceeding 5.6 × 10-6. On the basis of fractographic analysis, it is clear that the addition of H changes the fracture mode from microvoid coalescence to a mixture of river patterns and dimples. Carbides are strong traps for H; thus, the H atoms easily migrate in the form of Cottrell atmosphere toward the carbides following moving dislocations during tensile deformation. In addition, stress-induced H atoms accumulate at the interface between carbides and the matrix after necking under three-dimensional stress, which weakens the interfacial bonding force. Consequently, when the local H concentration reaches a critical value, microcracks occur at the interface, resulting in fracture.
Study of the SCC Behavior of 7075 Aluminum Alloy After One-Step Aging at 163 °C
NASA Astrophysics Data System (ADS)
Silva, G.; Rivolta, B.; Gerosa, R.; Derudi, U.
2013-01-01
For the past many years, 7075 aluminum alloys have been widely used especially in those applications for which high mechanical performances are required. It is well known that the alloy in the T6 condition is characterized by the highest ultimate and yield strengths, but, at the same time, by poor stress corrosion cracking (SCC) resistance. For this reason, in the aeronautic applications, new heat treatments have been introduced to produce T7X conditions, which are characterized by lower mechanical strength, but very good SCC behavior, when compared with the T6 condition. The aim of this study is to study the tensile properties and the SCC behavior of 7075 thick plates when submitted to a single-step aging by varying the aging times. The tests were carried out according to the standards and the data obtained from the SCC tests were analyzed quantitatively using an image analysis software. The results show that, when compared with the T7X conditions, the single-step aging performed in the laboratory can produce acceptable tensile and SCC properties.
A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite-Development and Characterization.
Khatri, Bilal; Lappe, Karl; Noetzel, Dorit; Pursche, Kilian; Hanemann, Thomas
2018-01-25
In this work, a 3D printed polymer-metal soft-magnetic composite was developed and characterized for its material, structural, and functional properties. The material comprises acrylonitrile butadiene styrene (ABS) as the polymer matrix, with up to 40 vol. % stainless steel micropowder as the filler. The composites were rheologically analyzed and 3D printed into tensile and flexural test specimens using a commercial desktop 3D printer. Mechanical characterization revealed a linearly decreasing trend of the ultimate tensile strength (UTS) and a sharp decrease in Young's modulus with increasing filler content. Four-point bending analysis showed a decrease of up to 70% in the flexural strength of the composite and up to a two-factor increase in the secant modulus of elasticity. Magnetic hysteresis characterization revealed retentivities of up to 15.6 mT and coercive forces of up to 4.31 kA/m at an applied magnetic field of 485 kA/m. The composite shows promise as a material for the additive manufacturing of passive magnetic sensors and/or actuators.
A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite—Development and Characterization
Lappe, Karl; Noetzel, Dorit; Pursche, Kilian; Hanemann, Thomas
2018-01-01
In this work, a 3D printed polymer–metal soft-magnetic composite was developed and characterized for its material, structural, and functional properties. The material comprises acrylonitrile butadiene styrene (ABS) as the polymer matrix, with up to 40 vol. % stainless steel micropowder as the filler. The composites were rheologically analyzed and 3D printed into tensile and flexural test specimens using a commercial desktop 3D printer. Mechanical characterization revealed a linearly decreasing trend of the ultimate tensile strength (UTS) and a sharp decrease in Young’s modulus with increasing filler content. Four-point bending analysis showed a decrease of up to 70% in the flexural strength of the composite and up to a two-factor increase in the secant modulus of elasticity. Magnetic hysteresis characterization revealed retentivities of up to 15.6 mT and coercive forces of up to 4.31 kA/m at an applied magnetic field of 485 kA/m. The composite shows promise as a material for the additive manufacturing of passive magnetic sensors and/or actuators. PMID:29370112
Damage prediction of 7025 aluminum alloy during equal-channel angular pressing
NASA Astrophysics Data System (ADS)
Ebrahimi, M.; Attarilar, Sh.; Gode, C.; Djavanroodi, F.
2014-10-01
Equal-channel angular pressing (ECAP) is a prominent technique that imposes severe plastic deformation into materials to enhance their mechanical properties. In this research, experimental and numerical approaches were utilized to investigate the mechanical properties, strain behavior, and damage prediction of ECAPed 7025 aluminum alloy in various conditions, such as die channel angle, outer corner angle, and friction coefficient. Experimental results indicate that, after the first pass, the yield strength, ultimate tensile strength, and hardness magnitude are improved by approximately 95%, 28%, and 48.5%, respectively, compared with the annealed state, mainly due to grain refinement during the deformation. Finite element analysis shows that the influence of die channel angle is more important than that of outer corner angle or friction coefficient on both the strain behavior and the damage prediction. Also, surface cracks are the main cause of damage during the ECAP process for every die channel angle except for 90°; however, the cracks initiated from the neighborhood of the central regions are the possible cause of damage in the ECAPed sample with the die channel angle of 90°.
NASA Astrophysics Data System (ADS)
Wibowo, F.; Zulfi, F. R.; Korda, A. A.
2017-01-01
Deformation induced martensite was studied in 316L stainless steel through tensile pre-strain deformation in the rolling direction (RD) and perpendicular to the rolling direction (LT) at various %pre-strain. The experiment was carried out at various given %pre-strain, which were 0%, 4.6%, 12%, 17.4%, and 25.2% for the RD, whereas for LT were 0%, 4.6%, 12%, 18%, and 26% for LT. Changes in the microstructure and mechanical properties were observed using optical microscope, tensile testing, hardness testing, and X-ray diffraction (XRD) analysis. The experimental results showed that the volume fraction of martensite was increased as the %pre-strain increased. In the same level of deformation by tensile pre-strain, the volume of martensite for RD was higher than that with LT direction. The ultimate tensile strength (UTS), yield strength (YS), and hardness of the steel were increased proportionally with the increases in %pre-strain, while the value of elongation and toughness were decreased with the increases in %pre-strain.
Rauh, Juliane; Despang, Florian; Baas, Jorgen; Liebers, Cornelia; Pruss, Axel; Günther, Klaus-Peter; Stiehler, Maik
2014-01-01
Bone transplantation is frequently used for the treatment of large osseous defects. The availability of autologous bone grafts as the current biological gold standard is limited and there is a risk of donor site morbidity. Allogenic bone grafts are an appealing alternative, but disinfection should be considered to reduce transmission of infection disorders. Peracetic acid-ethanol (PE) treatment has been proven reliable and effective for disinfection of human bone allografts. The purpose of this study was to evaluate the effects of PE treatment on the biomechanical properties and microstructure of cancellous bone grafts (CBG). Forty-eight human CBG cylinders were either treated by PE or frozen at −20°C and subjected to compression testing and histological and scanning electron microscopy (SEM) analysis. The levels of compressive strength, stiffness (Young's modulus), and fracture energy were significantly decreased upon PE treatment by 54%, 59%, and 36%, respectively. Furthermore, PE-treated CBG demonstrated a 42% increase in ultimate strain. SEM revealed a modified microstructure of CBG with an exposed collagen fiber network after PE treatment. We conclude that the observed reduced compressive strength and reduced stiffness may be beneficial during tissue remodeling thereby explaining the excellent clinical performance of PE-treated CBG. PMID:24678514
NASA Astrophysics Data System (ADS)
Peng, Q.; Liang, Chao; Ji, Wei; de, Suvranu
2013-03-01
We investigated the mechanical properties of graphene and graphane using first-principles calculations based on density-functional theory. A conventional unitcell containing a hexagonal ring made of carbon atoms was chosen to capture the finite wave vector ``soft modes'', which affect the the fourth and fifth elastic constants considerably. Graphane has about 2/3 ultimate strengths in all three tested deformation modes - armchair, zigzag, and biaxial- compared to graphene. However, graphane has larger ultimate strains in zigzag deformation, and smaller in armchair deformation. We obtained the second, third, fourth, and fifth order elastic constants for a rigorous continuum description of the elastic response. Graphane has a relatively low in-plane stiffness of 240 N/m which is about 2/3 of that of graphene, and a very small Poisson ratio of 0.078, 44% of that of graphene. The pressure dependence of the second order elastic constants were predicted from the third order elastic constants. The Poisson's ratio monotonically decreases with increasing pressure. Acknowledge the financial support from DTRA Grant # BRBAA08-C-2-0130, the U.S. NRCFDP # NRC-38-08-950, and U.S. DOE NEUP Grant #DE-NE0000325.
NASA Technical Reports Server (NTRS)
Wolf, Kay Woodroof
1982-01-01
Graphite/epoxy (T300/5208) and graphite/polyimide composites (C6000/PMR 15) were exposed to various levels of 0.5 MeV electron radiation with the maximum dose being 10,000 Mrad. A three point bending test was used to evaluate the ultimate stress and modulus of the composites. In all composites except transverse samples of C6000/PMR 15 ultimate stress values remained approximately constant or increased slightly. The modulus values remained approximately constant for all composite types regardless of the radiation level. Interfacial aspects of composites were studied. Interlaminar shear tests were performed on T300/5208 and C6000/PMR 15 composites irradiated to 10,000 Mrad. There was an initial increase in interlaminar shear strength (up to 1,000 Mrad) followed by a sharp decrease with further radiation exposure. Using scanning electron microscopy no visual differences in the mode of fracture could be detected between ruptured control samples and those exposed to various levels of radiation. Electron spectroscopy for chemical analysis (ESCA) revealed little change in the surface elements present in control and highly irradiated T300/5208 composite samples.
Strength of the cervical spine in compression and bending.
Przybyla, Andrzej S; Skrzypiec, Daniel; Pollintine, Phillip; Dolan, Patricia; Adams, Michael A
2007-07-01
Cadaveric motion segment experiment. To compare the strength in bending and compression of the human cervical spine and to investigate which structures resist bending the most. The strength of the cervical spine when subjected to physiologically reasonable complex loading is unknown, as is the role of individual structures in resisting bending. A total of 22 human cervical motion segments, 64 to 89 years of age, were subjected to complex loading in bending and compression. Resistance to flexion and to extension was measured in consecutive tests. Sagittal-plane movements were recorded at 50 Hz using an optical two-dimensional "MacReflex" system. Experiments were repeated 1) after surgical removal of the spinous process, 2) after removal of both apophyseal joints, and 3) after the disc-vertebral body unit had been compressed to failure. Results were analyzed using t tests, analysis of variance, and linear regression. Results were compared with published data for the lumbar spine. The elastic limit in flexion was reached at 8.5 degrees (SD, 1.7 degrees ) with a bending moment of 6.7 Nm (SD, 1.7 Nm). In extension, values were 9.5 degrees (SD, 1.6 degrees ) and 8.4 Nm (3.5 Nm), respectively. Spinous processes (and associated ligaments) provided 48% (SD, 17%) of the resistance to flexion. Apophyseal joints provided 47% (SD, 16%) of the resistance to extension. In compression, the disc-vertebral body units reached the elastic limit at 1.23 kN (SD, 0.46 Nm) and their ultimate compressive strength was 2.40 kN (SD, 0.96 kN). Strength was greater in male specimens, depended on spinal level and tended to decrease with age. The cervical spine has approximately 20% of the bending strength of the lumbar spine but 45% of its compressive strength. This suggests that the neck is relatively vulnerable in bending.
NASA Astrophysics Data System (ADS)
Torabi, Amir; Kolahan, Farhad
2018-07-01
Pulsed laser welding is a powerful technique especially suitable for joining thin sheet metals. In this study, based on experimental data, pulsed laser welding of thin AISI316L austenitic stainless steel sheet has been modeled and optimized. The experimental data required for modeling are gathered as per Central Composite Design matrix in Response Surface Methodology (RSM) with full replication of 31 runs. Ultimate Tensile Strength (UTS) is considered as the main quality measure in laser welding. Furthermore, the important process parameters including peak power, pulse duration, pulse frequency and welding speed are selected as input process parameters. The relation between input parameters and the output response is established via full quadratic response surface regression with confidence level of 95%. The adequacy of the regression model was verified using Analysis of Variance technique results. The main effects of each factor and the interactions effects with other factors were analyzed graphically in contour and surface plot. Next, to maximum joint UTS, the best combinations of parameters levels were specified using RSM. Moreover, the mathematical model is implanted into a Simulated Annealing (SA) optimization algorithm to determine the optimal values of process parameters. The results obtained by both SA and RSM optimization techniques are in good agreement. The optimal parameters settings for peak power of 1800 W, pulse duration of 4.5 ms, frequency of 4.2 Hz and welding speed of 0.5 mm/s would result in a welded joint with 96% of the base metal UTS. Computational results clearly demonstrate that the proposed modeling and optimization procedures perform quite well for pulsed laser welding process.
Bio-based thermosetting copolymers of eugenol and tung oil
NASA Astrophysics Data System (ADS)
Handoko, Harris
There has been an increasing demand for novel synthetic polymers made of components derived from renewable sources to cope with the depletion of petroleum sources. In fact, monomers derived vegetable oils and plant sources have shown promising results in forming polymers with good properties. The following is a study of two highly viable renewable sources, eugenol and tung oil (TO) to be copolymerized into fully bio-based thermosets. Polymerization of eugenol required initial methacrylate-functionalization through Steglich esterification and the synthesized methacrylated eugenol (ME) was confirmed by 1H-NMR. Rheological studies showed ideal Newtonian behavior in ME and five other blended ME resins containing 10 -- 50 wt% TO. Free-radical copolymerization using 5 mol% of tert-butyl peroxybenzoate (crosslinking catalyst) and curing at elevated temperatures (90 -- 160 °C) formed a series of soft to rigid highly-crosslinked thermosets. Crosslinked material (89 -- 98 %) in the thermosets were determined by Soxhlet extraction to decrease with increase of TO content (0 -- 30%). Thermosets containing 0 -- 30 wt% TO possessed ultimate flexural (3-point bending) strength of 32.2 -- 97.2 MPa and flexural moduli of 0.6 -- 3.5 GPa, with 3.2 -- 8.8 % strain-to-failure ratio. Those containing 10 -- 40 wt% TO exhibited ultimate tensile strength of 3.3 -- 45.0 MPa and tensile moduli of 0.02 GPa to 1.12 GPa, with 8.5 -- 76.7 % strain-to-failure ratio. Glass transition temperatures ranged from 52 -- 152 °C as determined by DMA in 3-point bending. SEM analysis on fractured tensile test specimens detected a small degree of heterogeneity. All the thermosets are thermally stable up to approximately 300 °C based on 5% weight loss.
Zhang, En-Wei; Cheung, Gary S P; Zheng, Yu-Feng
2010-08-01
The aim of this study was to examine the influence of the cross-sectional configuration and dimensions (size and taper) on the torsional and bending behavior of nickel-titanium rotary instruments, taking into account the nonlinear mechanical properties of material. Ten cross-sectional configurations, square, triangular, U-type, S-type (large and small), convex-triangle, and 4 proprietary ones (Mani NRT and RT2, Quantec, and Mtwo), were analyzed under torsion or bending by using a 3-dimensional finite element method. The von Mises stresses were correlated with the critical values for various phases of the nickel-titanium material. Different loading conditions led to unequal patterns of stress distribution. Increasing the applied torque or bending angle resulted in a rise in the corresponding stresses in the instrument. Favorable stress distribution without dangerous stress concentration was observed if the material was undergoing superelastic transformation at that applied load. The ultimate strength of the material was not exceeded when the instrument was bent up to a 50-degree curvature. On the other hand, when a torsional moment of greater than 1.0 N*mm was applied, the maximum stresses developed in some designs would exceed the ultimate strength of the material. Little variation in the von Mises stresses was observed for instruments of different nominal sizes and tapers on bending to similar extent. The cross-sectional design has a greater impact than taper or size of the instrument on the stresses developed in the instrument under either torsion or bending. Certain cross-sectional configurations are prone to fracture by excess torsional stresses. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Biomechanical Analysis of Suture Anchor vs Tenodesis Screw for FHL Transfer.
Drakos, Mark C; Gott, Michael; Karnovsky, Sydney C; Murphy, Conor I; DeSandis, Bridget A; Chinitz, Noah; Grande, Daniel; Chahine, Nadeen
2017-07-01
Chronic Achilles injury is often treated with flexor hallucis longus (FHL) tendon transfer to the calcaneus using 1 or 2 incisions. A single incision avoids the risks of extended dissections yet yields smaller grafts, which may limit fixation options. We investigated the required length of FHL autograft and biomechanical profiles for suture anchor and biotenodesis screw fixation. Single-incision FHL transfer with suture anchor or biotenodesis screw fixation to the calcaneus was performed on 20 fresh cadaveric specimens. Specimens were cyclically loaded until maximal load to failure. Length of FHL tendon harvest, ultimate load, stiffness, and mode of failure were recorded. Tendon harvest length needed for suture anchor fixation was 16.8 ± 2.1 mm vs 29.6 ± 2.4 mm for biotenodesis screw ( P = .002). Ultimate load to failure was not significantly different between groups. A significant inverse correlation existed between failure load and donor age when all specimens were pooled (ρ = -0.49, P < .05). Screws in younger specimens (fewer than 70) resulted in significantly greater failure loads ( P < .03). No difference in stiffness was found between groups. Modes of failure for screw fixation were either tunnel pullout (n = 6) or tendon rupture (n = 4). Anchor failure occurred mostly by suture breakage (n = 8). Adequate FHL tendon length could be harvested through a single posterior incision for fixation to the calcaneus with either fixation option, but suture anchor required significantly less graft length. Stiffness, fixation strength, and load to failure were comparable between groups. An inverse correlation existed between failure load and donor age. Younger specimens with screw fixation demonstrated significantly greater failure loads. Adequate harvest length for FHL transfer could be achieved with a single posterior incision. There was no difference in strength of fixation between suture anchor and biotenodesis screw.
NASA Astrophysics Data System (ADS)
Caves, Jeffrey Morris
The microstructure and mechanics of collagen and elastin protein fiber networks dictate the mechanical responses of all soft tissues and related organ systems. In this project, we endeavored to meet or exceed native tissue biomechanical properties through mimicry of these extracellular matrix components with synthetic collagen fiber and a recombinant elastin-like protein polymer. Significantly, this work led to the development of a framework for the design and fabrication of protein-based tissue substitutes with enhanced strength, resilience, anisotropy, and more. We began with the development of a spinning process for scalable production of synthetic collagen fiber. Fiber with an elliptical cross-section of 53 +/- 14 by 21 +/- 3 mum and an ultimate tensile strength of 90 +/- 19 MPa was continuously produced at 60 meters per hour from an ultrafiltered collagen solution. The starting collagen concentration, flowrate, and needle size could be adjusted to control fiber size. The fiber was characterized with mechanical analysis, micro-differential scanning calorimetry, transmission electron microscopy, second harmonic generation analysis, and subcutaneous murine implant. We subsequently describe the scalable, semi-automated fabrication of elastin-like protein sheets reinforced with synthetic collagen fibers that can be positioned in a precisely defined three-dimensional hierarchical pattern. Multilamellar, fiber-reinforced elastic protein sheets were constructed with controlled fiber orientation and volume fraction. Structures were analyzed with scanning electron microscopy, transmission electron microscopy, and digital volumetric imaging. The effect of fiber orientation and volume fraction on Young's Modulus, yield stress, ultimate tensile stress, strain-to-failure, and resilience was evaluated in uniaxial tension. Increased fiber volume fraction and alignment with applied deformation significantly increased Young's Modulus, resilience, and yield stress. Highly extensible, elastic tissues display a functionally important mechanical transition from low to high modulus deformation at a strain dictated by the crimped microstructure of native collagen fiber. We report the fabrication of dense arrays of microcrimped synthetic collagen fiber embedded in elastin-like protein lamellae that mimic this aspect of tissue mechanics. Microcrimped fiber arrays were characterized with scanning electron microscopy, confocal laser scanning microscopy, and uniaxial tension analysis. Crimp wavelength was 143 +/- 5 mum. The degree of crimping was varied from 3.1% to 9.4%, and corresponded to mechanical modulus transitions at 4.6% and 13.3% strain. Up to 1000 cycles of tensile loading did not substantially alter microcrimp morphology. We designed and prototyped a series of small-diameter vascular grafts consisting of elastin-like protein reinforced with controlled volume fractions and orientations of collagen fiber. A pressure-diameter system was developed and implemented to study the effects of fiber distribution on graft mechanics. The optimal design satisfied target properties with suture retention strength of 173 +/- 4 g-f, burst strength of 1483 +/- 143 mm Hg, and compliance of 5.1 +/- 0.8 %/100 mm Hg.
Mechanical properties of as-cast and heat-treated ZA-27 alloy/short glass fiber composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, S.C.; Girish, B.M.; Satish, B.M.
1998-02-01
This paper reports on the mechanical properties of as-cast and heat-treated ZA-27 alloy composites reinforced with glass fibers from 1 to 5 wt%. The composites were fabricated using the Compocasting method, in which short glass fibers were introduced into the vortex created in the molten alloy through an impeller rotated at 500 rpm. The molten mass was thoroughly stirred and poured into permanent molds and squeezed under pressure. The specimens were heat treated at 320 C for 1, 2, 3, and 4 h. The tests on the as-cast composites revealed that as the glass content in the composites was increased,more » the ultimate tensile strength (UTS), compressive strength, and hardness of the composite increased, while the ductility and impact strength were decreased. Heat treatment was found to improve significantly the ductility, compressive strength, and impact strength, while the hardness and UTS were reduced. This paper discusses the behavior of these composites.« less
NASA Astrophysics Data System (ADS)
Zaid, Adnan I. O.; Qandil, A.; Qattous, M. A. A.
2016-08-01
It was repeatedly reported that the clay bricks industry in Jordan is facing both weak mechanical strength and poor quality which caused marketing problems where it is expected to serve the increasing demand of housing in the country especially after the political crises in the neighboring countries Iraq and Syria. It is therefore anticipated that improvement of the mechanical strength and quality of the produced clay evaluation of the brick industry in Jordan is worth investigating. In this paper, theoretical and experimental investigation obtained from field visits to the factories producing clay bricks were carried out. Furthermore, the effect of using some additives from locally available materials namely: Battn El-Ghoul Clay, Suweileh sand and Olive extracts on the mechanical strength, thermal conductivity and surface quality of the produced bricks is investigated and discussed. The experimental results indicated that thermal conductivity, color and durability were all enhanced and the ultimate compressive strength was reduced but remained higher than the acceptable value for brickwork.
29 CFR 1926.500 - Scope, application, and definitions applicable to this subpart.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CC of this part. (iii) Fall protection requirements for employees performing steel erection work... for training in the installation and use of fall protection systems, except in relation to steel... component parts. Load refusal is the point where the ultimate strength is exceeded. Free fall means the act...
46 CFR 108.550 - Survival craft launching and recovery arrangements: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... must be designed, based on the ultimate strength of the construction material, to be at least 4.5 times...-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.550 Survival craft... approved under approval series 160.132, with a winch approved under approval series 160.115. Each launching...
46 CFR 108.550 - Survival craft launching and recovery arrangements: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... must be designed, based on the ultimate strength of the construction material, to be at least 4.5 times...-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.550 Survival craft... approved under approval series 160.132, with a winch approved under approval series 160.115. Each launching...
14 CFR 29.685 - Control system details.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ultimate bearing strength of the softest material used as a bearing: (1) 3.33 for push-pull systems other... must be means to prevent the slapping of cables or tubes against other parts. (d) Cable systems must be designed as follows: (1) Cables, cable fittings, turnbuckles, splices, and pulleys must be of an acceptable...
14 CFR 29.685 - Control system details.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ultimate bearing strength of the softest material used as a bearing: (1) 3.33 for push-pull systems other... must be means to prevent the slapping of cables or tubes against other parts. (d) Cable systems must be designed as follows: (1) Cables, cable fittings, turnbuckles, splices, and pulleys must be of an acceptable...
14 CFR 29.685 - Control system details.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ultimate bearing strength of the softest material used as a bearing: (1) 3.33 for push-pull systems other... must be means to prevent the slapping of cables or tubes against other parts. (d) Cable systems must be designed as follows: (1) Cables, cable fittings, turnbuckles, splices, and pulleys must be of an acceptable...
46 CFR 32.63-20 - Hull structure-B/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... condition such that the forward rake bulkhead rests upon a pinnacle at the water surface, the maximum hull bending stress shall not exceed the following limits: (1) Independent tanks may be installed in such a... stress shall not exceed either 50 percent of the minimum ultimate tensile strength of the material or 70...
46 CFR 32.63-20 - Hull structure-B/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... bending stress shall not exceed the following limits: (1) Independent tanks may be installed in such a... stress shall not exceed either 50 percent of the minimum ultimate tensile strength of the material or 70... reduction in hull stress when independent tanks are installed in such a manner as to contribute to the...
A Carbon Nanotube Cable for a Space Elevator
ERIC Educational Resources Information Center
Bochnícek, Zdenek
2013-01-01
In this paper the mechanical properties of carbon nanotubes are discussed in connection with the possibility to use them for the construction of a space elevator. From the fundamental information about the structure of a carbon nanotube and the chemical bond between carbon atoms, Young's modulus and the ultimate tensile strength are…
49 CFR 238.219 - Truck-to-car-body attachment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Truck-to-car-body attachment. 238.219 Section 238... I Passenger Equipment § 238.219 Truck-to-car-body attachment. Passenger equipment shall have a truck-to-car-body attachment with an ultimate strength sufficient to resist without failure the following...
49 CFR 238.219 - Truck-to-car-body attachment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Truck-to-car-body attachment. 238.219 Section 238... I Passenger Equipment § 238.219 Truck-to-car-body attachment. Passenger equipment shall have a truck-to-car-body attachment with an ultimate strength sufficient to resist without failure the following...
49 CFR 238.219 - Truck-to-car-body attachment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Truck-to-car-body attachment. 238.219 Section 238... I Passenger Equipment § 238.219 Truck-to-car-body attachment. Passenger equipment shall have a truck-to-car-body attachment with an ultimate strength sufficient to resist without failure the following...
49 CFR 238.219 - Truck-to-car-body attachment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Truck-to-car-body attachment. 238.219 Section 238... I Passenger Equipment § 238.219 Truck-to-car-body attachment. Passenger equipment shall have a truck-to-car-body attachment with an ultimate strength sufficient to resist without failure the following...
49 CFR 238.219 - Truck-to-car-body attachment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Truck-to-car-body attachment. 238.219 Section 238... I Passenger Equipment § 238.219 Truck-to-car-body attachment. Passenger equipment shall have a truck-to-car-body attachment with an ultimate strength sufficient to resist without failure the following...
Local Strain Measurement of Kevlar Strand with Fiber Optic Bragg Grating
NASA Technical Reports Server (NTRS)
Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn
2008-01-01
1987 DuPont manufactured 4560 denier Kevlar/Epoxy Strands were instrumented with nine and three sensors each. Stress tests were performed at 30,45,60,70 and 80% of ultimate strength with dwell times of 10,000 seconds. FBG showed uneven stress levels which is contrary to conventional observation.
Local strain measurement of Kevlar strand with fiber optic Bragg grating
NASA Astrophysics Data System (ADS)
Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn
2008-03-01
1987 DuPont manufactured 4560 denier Kevlar/Epoxy Strands were instrumented with nine and three sensors each. Stress tests were performed at 30,45,60,70 and 80% of ultimate strength with dwell times of 10,000 seconds. FBG showed uneven stress levels which is contrary to conventional observation.
30 CFR 77.403-1 - Mobile equipment; rollover protective structures (ROPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.403-1 Mobile equipment... surface coal mines or the surface work areas of underground coal mines shall be provided with rollover... complying with paragraph (d) (1) (iii) (A) of this section. Stresses shall not exceed the ultimate strength...
30 CFR 77.403-1 - Mobile equipment; rollover protective structures (ROPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.403-1 Mobile equipment... surface coal mines or the surface work areas of underground coal mines shall be provided with rollover... complying with paragraph (d) (1) (iii) (A) of this section. Stresses shall not exceed the ultimate strength...
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. National Science Board.
In this report the National Science Board presents the first results from a newly initiated effort to develop indicators of the state of the scientific enterprise in the Unite States. The ultimate goal of this effort is a set of indices which will reveal the strengths and weaknesses of U.S. science and technology, in terms of the capacity and…
46 CFR 32.63-20 - Hull structure-B/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... bending stress shall not exceed the following limits: (1) Independent tanks may be installed in such a... stress shall not exceed either 50 percent of the minimum ultimate tensile strength of the material or 70... reduction in hull stress when independent tanks are installed in such a manner as to contribute to the...
46 CFR 32.63-20 - Hull structure-B/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... bending stress shall not exceed the following limits: (1) Independent tanks may be installed in such a... stress shall not exceed either 50 percent of the minimum ultimate tensile strength of the material or 70... reduction in hull stress when independent tanks are installed in such a manner as to contribute to the...
46 CFR 32.63-20 - Hull structure-B/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... bending stress shall not exceed the following limits: (1) Independent tanks may be installed in such a... stress shall not exceed either 50 percent of the minimum ultimate tensile strength of the material or 70... reduction in hull stress when independent tanks are installed in such a manner as to contribute to the...
Method of Construction for Geopolymer Soil Stabilized Platforms
2017-12-20
of the geopolymer core compressive strength tests. The degree of seepage varied from pavement to pavement due to mix design and additives, ultimately...Department of the Army position unless so designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE...20 3.5 Test pavement ................................................................................................ 23
Effect of particle Alignment on mechanical properties of neat cellulose nanocrystal films
Alexander B. Reising; Robert J. Moon; Jeffrey P. Youngblood
2012-01-01
Shear-based film casting methods were used to cast neat films from wood-based cellulose nanocrystal (CNC) suspensions. The degree of CNC alignment in dried films was characterized using the Hermans order parameter (S), and the film elastic modulus (E), ultimate tensile strength (σf ), elongation at failure (εf...
ERIC Educational Resources Information Center
Callery, Anne
The Internet has the potential to be the ultimate information resource, but it needs to be organized in order to be useful. This paper discusses how the subject guide, "Yahoo!" is different from most web search engines, and how best to search for information on Yahoo! The strength in Yahoo! lies in the subject hierarchy. Advantages to…
Fracture mechanics and parapsychology
NASA Astrophysics Data System (ADS)
Cherepanov, G. P.
2010-08-01
The problem of postcritical deformation of materials beyond the ultimate strength is considered a division of fracture mechanics. A simple example is used to show the relationship between this problem and parapsychology, which studies phenomena and processes where the causality principle fails. It is shown that the concept of postcritical deformation leads to problems with no solution
Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering
NASA Astrophysics Data System (ADS)
Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.; Tracey, M. C.
2014-03-01
Polydimethylsiloxane (PDMS) elastomers are extensively used for soft lithographic replication of microstructures in microfluidic and micro-engineering applications. Elastomeric microstructures are commonly required to fulfil an explicit mechanical role and accordingly their mechanical properties can critically affect device performance. The mechanical properties of elastomers are known to vary with both curing and operational temperatures. However, even for the elastomer most commonly employed in microfluidic applications, Sylgard 184, only a very limited range of data exists regarding the variation in mechanical properties of bulk PDMS with curing temperature. We report an investigation of the variation in the mechanical properties of bulk Sylgard 184 with curing temperature, over the range 25 °C to 200 °C. PDMS samples for tensile and compressive testing were fabricated according to ASTM standards. Data obtained indicates variation in mechanical properties due to curing temperature for Young's modulus of 1.32-2.97 MPa, ultimate tensile strength of 3.51-7.65 MPa, compressive modulus of 117.8-186.9 MPa and ultimate compressive strength of 28.4-51.7 GPa in a range up to 40% strain and hardness of 44-54 ShA.
Microstructure and Mechanical Property of 12Cr Oxide Dispersion Strengthened Steel
NASA Astrophysics Data System (ADS)
Xu, Haijian; Lu, Zheng; Jia, Chunyan; Gao, Hao; Liu, Chunming
2016-03-01
Nanostructured oxide dispersion strengthened (ODS) steels with nominal compositions (wt%): Fe-12Cr-2W-0.3Ti-0.3Y2O3 were produced by mechanical alloying and hot isostatic pressing. The microstructure was characterized by means of electron microscopy (EBSD, TEM and HRTEM) and the hardness and the tensile properties at different temperatures were measured. The results showed that the ultimate tensile strength of the fabricated 12Cr-ODS steel reached nearly 1,100 MPa at room temperature and maintained around 340 MPa at 700°C. Nano-oxide particles with size ranging from several nm to 30 nm and the number density was 3.6 × 1020/m3 were observed by TEM. Following heat treatment, including normalizing at 1,100°C for 1 h and tempering at 750°C for 2 h, the average grain size was a little decreased. The number of nano-oxide particles increased and the number density was 8.9 × 1020/m3. Specimens showed much higher ductility and there was a slight increase of ultimate tensile strength and Vickers hardness at the same time.
Effects of ion irradiation on the mechanical properties of several polymers
NASA Astrophysics Data System (ADS)
Sasuga, Tsuneo; Kawanishi, Shunichi; Nishii, Masanobu; Seguchi, Tadao; Kohno, Isao
The effects of high-energy ion irradiation (8 MeV protons, 30 MeV He 2+, 80 MeV C 4+, and N 4+) on the tensile properties of polymers were studied under conditions in which ions should pass completely through the specimen and the results were compared with 2 MeV electron irradiation effects. Experiments were carried out on polymers having various constituents and molecular structures, i.e. eight aliphatic polymers and four aromatic polymers. In the aliphatic polymers studied (PE, PP, PVdF, ETFE, EVA, nylon-6, EPDM, and PE-TPE), there was scarcely any difference in the dose dependence of the tensile strength and ultimate elongation between proton and electron irradiation. In aromatic polymers (PET, PES, U-PS, and U-polymer), however, the decrements in the tensile strength and ultimate elongation vs proton dose were less than those for electron irradiation. In heavy-ion irradiation, the radiation damage of PE (an aliphatic polymer) decreased with increase of LET, but no obvious LET effects were observed in PES (an aromatic polymer).
NASA Astrophysics Data System (ADS)
Chen, Guangyao; Kang, Juyun; Wang, Shusen; Wang, Shihua; Lu, Xionggang; Li, Chonghe
2018-04-01
In this study, the thermo-mechanical treatment process for low-cost Ti-4.5Al-6.9Cr-2.3Mn alloy were designed on the basis of assessment of Ti-Al-Cr-Mn thermodynamic system. The microstructure and mechanical properties of Ti-4.5Al-6.9Cr-2.3Mn forging and sheet were investigated by using the OM, SEM and universal tensile testing machine. The results show that both the forging and sheet were consisted of α + β phase, which is consistent with the expectation, and no element Cr and Mn existed in the grain boundaries of the sheet after quenching, and the C14 laves phase was not detected. The average ultimate tensile strength (σ b), 0.2% proof strength (σ 0.2) and elongation (EI) of alloy sheet after quenching can reach 1059 MPa, 1051 MPa and 24.6 Pct., respectively. Moreover, the average ultimate tensile strength of Ti-4.5Al-6.9Cr-2.3Mn forgings can reach 1599 MPa and the average elongation can reach 11.2 Pct., and a more excellent property of Ti-4.5Al-6.9Cr-2.3Mn forging is achieved than that of TC4 forging. It provides a theoretical support for further developing this low-cost alloy.
Strength of inserts in titanium alloy machining
NASA Astrophysics Data System (ADS)
Kozlov, V.; Huang, Z.; Zhang, J.
2016-04-01
In this paper, a stressed state of a non-worn cutting wedge in a machined titanium alloy (Ti6Al2Mo2Cr) is analyzed. The distribution of contact loads on the face of a cutting tool was obtained experimentally with the use of a ‘split cutting tool’. Calculation of internal stresses in the indexable insert made from cemented carbide (WC8Co) was carried out with the help of ANSYS 14.0 software. Investigations showed that a small thickness of the cutting insert leads to extremely high compressive stresses near the cutting edge, stresses that exceed the ultimate compressive strength of cemented carbide. The face and the base of the insert experience high tensile stresses, which approach the ultimate tensile strength of cemented carbide and increase a probability of cutting insert destruction. If the thickness of the cutting insert is bigger than 5 mm, compressive stresses near the cutting edge decrease, and tensile stresses on the face and base decrease to zero. The dependences of the greatest normal and tangential stresses on thickness of the cutting insert were found. Abbreviation and symbols: m/s - meter per second (cutting speed v); mm/r - millimeter per revolution (feed rate f); MPa - mega Pascal (dimension of specific contact loads and stresses); γ - rake angle of the cutting tool [°] α - clearance angle of the sharp cutting tool [°].
NASA Astrophysics Data System (ADS)
Wu, C.; Han, S.
2018-05-01
In order to obtain an optimal heat treatment for a low alloy high strength Ni-Cr-Mo-V steel, the microstructural evolution and mechanical properties of the material were studied. For this purpose, a series of quenching and temper experiments were carried out. The results showed that the effects of tempering temperature, time, original microstructure on the microstructural evolution and final properties were significant. The martensite can be completely transformed into the tempered lath structure. The width and length of the lath became wider and shorter, respectively with increasing temperature and time. The amount and size of the precipitates increased with temperature and time. The yield strength (YS), ultimate tensile strength (UTS) and hardness decreased with temperature and time, but the reduction in area (Z), elongation (E) and impact toughness displayed an opposite trend, which was related to the morphological evolution of the lath tempered structure.
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Thomas E., Jr.; Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
A multiscale modeling methodology, which incorporates a statistical distribution of fiber strengths into coupled micromechanics/ finite element analyses, is applied to unidirectional polymer matrix composites (PMCs) to analyze the effect of mesh discretization both at the micro- and macroscales on the predicted ultimate tensile (UTS) strength and failure behavior. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a PMC tensile specimen that initiates at the repeating unit cell (RUC) level. Three different finite element mesh densities were employed and each coupled with an appropriate RUC. Multiple simulations were performed in order to assess the effect of a statistical distribution of fiber strengths on the bulk composite failure and predicted strength. The coupled effects of both the micro- and macroscale discretizations were found to have a noticeable effect on the predicted UTS and computational efficiency of the simulations.
New high-strength, high-conductivity Cu-Ag alloy sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, Y.; Inoue, K.; Maeda, H.
1995-04-01
A sheet-conductor fabrication method has been developed for Cu-Ag alloys containing 6--24 wt% Ag in which high-strength and high-conductivity are obtained by coldworking combined with intermediate heat treatments. The intermediate heat treatments were repeated three times at 400--450 C for 1--2 h at appropriate stages of cold-rolling. The optimized Cu-24 wt% Ag alloy sheet with a 96% reduction ratio shows an ultimate tensile strength of 1,050 MPa and an electrical conductivity of 75% IACS at room temperature. Anisotropy in the strength with respect to the rolling direction is less than 10%, and no anisotropy in the electrical conductivity occurs. Themore » authors demonstrated the ability to manufacture the Cu-Ag sheets for Bitter magnet on a commercial basis. The sheets fabricated by this method are promising as conductors for high-field Bitter magnet coils.« less
Rating the strength of coal mine roof rocks. Information circular/1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molinda, G.M.; Mark, C.
1996-05-01
The Ferm pictoral classification of coal measure rocks is widely utilized in coalfield exploration. Although extremely useful as an alternative to conventional geologic description, no material properties are provided that would be suitable for engineering solutions. To remedy this problem, the USBM has tested over 30 common coal measure roof rock types for axial and bedding strength. More than 1,300 individual point load tests have been conducted on core from 8 different coal mines representing the full range of common coal measure rocks. The USBM core and roof exposure properties database has been merged with the picture classification to provide,more » for the first time, a simple, clear guide from field identification of core to the associated mechanical strength of the rock. For 33 of the most common roof rocks, the axial and diametral point load strength, as well as the ultimate unit rating, is overprinted onto the photograph.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwalani, B.; Soni, Vishal; Lee, Michael
2017-05-01
A successful demonstration of applying integrated strengthening using Hall-Petch strengthening (grains size effect) and precipitation strengthening is shown in the fcc based high entropy alloy (HEA) Al0.3CoCrFeNi, leading to quantitative determinations of the Hall-Petch coefficients for both hardness and tensile yield strength, aswell as the enhancements in the yield strength fromtwo distinct types of ordered precipitates, L12 and B2. An excellent combination of yield strength (~490MPa), ultimate tensile strength (~850MPa), and ductility (~45% elongation) was achieved by optimizing and coupling both strengtheningmechanisms, resulting from a refined grain size as well as both L12 and B2 ordered precipitates. This opens upmore » new avenues for the future development of HEAs, with the appropriate balance of properties required for engineering applications.« less
Rausch, S; Hoffmeier, K; Gueorguiev, B G; Klos, K; Gras, F; Hofmann, G O; Mückley, T
2011-12-01
Polyaxial angle-stable plating is thought to be particularly beneficial in the management of complex intra-articular fractures of the distal radius. The present study was performed to investigate the strength of polyaxial locking interfaces of distal radius plates. We tested the polyaxial interfaces of 3 different distal radius plates (2.4 mm Variable Angle LCP Two-Column Volar Distal Radius Plate, Synthes, Palmar Classic, Königsee Implantate and VariAx Plate Stryker). The strength of 0° and 10° screw locking angle was obtained during static loading. The strength of Palmar Classic with a 0° locking angle is significantly the best of all tested systems. With a 10° locking angle there is no significant difference between Palmar Classic, Two column Plate and VariAx Plate. The strength of polyaxial interfaces differs between the tested systems. A reduction of ultimate strength is due to increases of screw locking angle. The design of polyaxial locking interfaces should be investigated in human bone models. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Baranov, Vladimir; Sidelnikov, Sergey; Zenkin, Evgeny; Frolov, Viktor; Voroshilov, Denis; Yakivyuk, Olga; Konstantinov, Igor; Sokolov, Ruslan; Belokonova, Irina
2018-04-01
The results of a study on the strength of rolled products from aluminium alloys doped with scandium under various processing conditions of hot and cold rolling are presented. The regularities of metal flow and the level of strength of deformed semi-finished products from aluminum-scandium alloys are established, depending on the total degree of deformation and the various modes of single reduction during rolling. It is shown that when using one heating of a cast billet to obtain high-quality semi-finished products, the temperature during the rolling process should not be lower than 350-370°, and the total degree of deformation does not exceed 50-60%. It was found that the semi-finished products from alloys with a content of scandium in the range 0.11-0.12% in the deformed state had elevated values of ultimate tensile strength and yield strength of the metal, which allows them to be recommended for industrial production of sheet metal products.
High Strength and Thermally Stable Nanostructured Magnesium Alloys and Nanocomposites
NASA Astrophysics Data System (ADS)
Chang, Yuan-Wei
Magnesium and its alloys are currently in the spotlight of global research because of the need to limit energy consumption and reduce the environmental impact. In particular, their low densities compared to other structural metals make them a very attractive alternative in the automobile and aerospace industries. However, their low strength compared to other structural materials (e.g. Al and steels) has limited their widespread application. This dissertation presents the results of developing and investigation of a high strength nanostructured magnesium-aluminum alloy and composite. The nanostructured magnesium alloy is prepared by cryomilling and consolidated by spark-plasma-sintering. Focused ion beam is used to prepare micropillars with different diameters ranging from 1.5 to 8 mum and micro-compression test is conducted by nanoindenter in order to evaluate the mechanical properties. The yield strength obtained in the present study is around three times higher than conventional magnesium alloys (120 MPa vs. 370 MPa). The yield strength of the nanostructured magnesium alloy is further improved through hot extrusion, resulting in a yield strength of 550 MPa and an ultimate strength of 580 MPa. The nanostructured magnesium alloy exhibits a strong size-dependence, and a significant improvement in strength is observed when the pillar diameter is reduced to below 3.5 mum. The deformation mechanisms of the compressed pillars were characterized using transmission electron microscopy. The size-induced strengthening is attributed to a less number of dislocation sources along with a higher activity of non-basal deformation mechanisms. We have also developed a high strength and thermally stable nanostructured magnesium composite by adding diamantane. A yield strength of 500 MPa is achieved, moreover, excellent thermal stability is demonstrated in the magnesium alloy containing diamantanes. The strength and grain size are thermally stable after annealing at 400°C for 100 hours. In contrast, the yield strength of the alloy without diamantanes decreases significantly after annealing due to severe grain growth. These results suggest that diamantanes are pinning the grain boundaries and inhibiting grain growth at elevated temperatures. Finally, molecular dynamics simulations and finite element analysis are used to explore the deformation mechanisms of magnesium with different grain sizes at atomic resolutions and correct tapering effect on micro-compression test, respectively. The results in the dissertation show that nanostructured Mg-Al alloy and Mg-Al-Diamantane composite are promising materials for aerospace and automobile industries.
Effect of Brake Forming on the Strength of 24S-T Aluminum-alloy Sheet
NASA Technical Reports Server (NTRS)
Heimerl, George J; Woods, Walter
1946-01-01
Tests were made to determine the effect of brake forming on the strength of 24S-T aluminum alloy sheet that had been formed to an inside bend radius of three times the sheet thickness. The results for both directions of the grain of the material showed that the compressive yield stresses were appreciably increased, that the tensile yield stresses were moderately increased, that the ultimate tensile stresses were only slightly increased, that the elongations were considerably reduced, and that the shapes of the tensile and compressive stress-strain curves were markedly changed.
Moving Aerospace Structural Design Practice to a Load and Resistance Factor Approach
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.; Raju, Ivatury S.
2016-01-01
Aerospace structures are traditionally designed using the factor of safety (FOS) approach. The limit load on the structure is determined and the structure is then designed for FOS times the limit load - the ultimate load. Probabilistic approaches utilize distributions for loads and strengths. Failures are predicted to occur in the region of intersection of the two distributions. The load and resistance factor design (LRFD) approach judiciously combines these two approaches by intensive calibration studies on loads and strength to result in structures that are efficient and reliable. This paper discusses these three approaches.
NASA Astrophysics Data System (ADS)
Köck, T.; Brendel, A.; Bolt, H.
2007-05-01
Novel copper matrix composites reinforced with silicon carbide fibres are considered as a new generation of heat sink materials for the divertor of future fusion reactors. The divertor is exposed to intense particle bombardment and heat loads of up to 15 MW m-2. This component consists of the plasma-facing material which is bonded to the actively cooled heat sink. Due to its high thermal conductivity of about 400 W m-1 K-1 copper is a promising material for the heat sink. To increase the mechanical properties of copper at working temperature (823 K), silicon carbide fibres with a diameter of 140 μm are used to reinforce the interface area between the plasma-facing material and the heat sink. Push-out tests show that the adhesion between SiC fibre and Cu matrix without any interlayer is very low. To increase the fibre-matrix bonding the fibres are coated with Cr and W with a thickness of 300-400 nm before Cu deposition by magnetron sputtering. Push-out tests on these modified fibres show a significant increase in adhesion compared to the fibres without interlayer. XRD investigations after a heat treatment at 923 K show a chromium carbide (Cr23C6, Cr3C2) formation and the absence of chromium silicides. In the case of a W interlayer a W2C formation is detected and also no tungsten silicides. Single-fibre tensile tests were performed to investigate the influence of the reaction zone on the ultimate tensile strength of the fibres. The ultimate tensile strength for fibres without interlayer remains constant at about 2200 MPa after annealing at 923 K. The fibres with chromium and tungsten interlayers, respectively, show a decrease of about 30% of the ultimate tensile strength after the heat treatment at 923 K.
Effect of bending on the room-temperature tensile strengths of structural ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, M.G.
1992-01-01
Results for nearly fifty, room-temperature tensile tests conducted on two advanced, monolithic silicon nitride ceramics are evaluated for the effects of bending and application of various Weibull statistical analyses. Two specimen gripping systems (straight collet and tapered collet) were evaluated for both success in producing gage section failures and tendency to minimize bending at failure. Specimen fabrication and grinding technique consderations are briefly reviewed and related to their effects on successful tensile tests. Ultimate tensile strengths are related to the bending measured at specimen failure and the effects of the gripping system on bending are discussed. Finally, comparisons are mademore » between the use of censored and uncensored data sample sets for determining the maximum likelihood estimates of the Weibull parameters from the tensile strength distributions.« less
Effect of bending on the room-temperature tensile strengths of structural ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, M.G.
1992-07-01
Results for nearly fifty, room-temperature tensile tests conducted on two advanced, monolithic silicon nitride ceramics are evaluated for the effects of bending and application of various Weibull statistical analyses. Two specimen gripping systems (straight collet and tapered collet) were evaluated for both success in producing gage section failures and tendency to minimize bending at failure. Specimen fabrication and grinding technique consderations are briefly reviewed and related to their effects on successful tensile tests. Ultimate tensile strengths are related to the bending measured at specimen failure and the effects of the gripping system on bending are discussed. Finally, comparisons are mademore » between the use of censored and uncensored data sample sets for determining the maximum likelihood estimates of the Weibull parameters from the tensile strength distributions.« less
Tensile behavior of the L(1)2 compound Al67Ti25Cr8
NASA Technical Reports Server (NTRS)
Kumar, K. S.; Brown, S. A.
1992-01-01
Temperature-related variations in tensile yield strength and ductility were studied on cast, homogenized and isothermally forged Al67Ti25Cr8. Yield strength dropped discontinuously between 623 K and 773 K and then decreased gradually with increasing temperature. Below 623 K, fracture occurred prior to macroscopic yielding. Ductility decreased from 0.2 percent at 623 K to zero at 773 K, but increased again at higher temperatures. At 1073 K, an elongation of 19 percent was obtainable, and ultimate tensile strength and localized necking were observed. Fracture surfaces and deformed microstructures were examined. The 1073 K tensile specimen that exhibited 19 percent elongation showed grain boundary serrations and some evidence of recrystallization (likely dynamic) although fracture occurred predominantly via an intergranular mode.
Evaluation of the interfacial bond properties between carbon phenolic and glass phenolic composites
NASA Technical Reports Server (NTRS)
Jordan, K.; Clinton, R.; Jeelani, S.
1991-01-01
The effects of moisture and surface finish on the mechanical and physical properties of the interfacial bond between carbon/phenolic (C/P) and glass/phenolic (G/P) composite materials have been studied. Test results indicate that moisture substantially degrades the integrity of the interfacial bond between C/P and G/P materials. The apparent effect of the autoclave curing of the C/P material reduces the ultimate interlaminar shear length of the C/P material by 20 percent compared to the hydroclave curing of the C/P material. The variation in applied surface finishes is found to have no appreciable effect on the ultimate interlaminar shear strength of the interface in the wet laminate.
49 CFR 173.247 - Bulk packaging for certain elevated temperature materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... constructed of carbon steel which is in elevated temperature material service is excepted from § 178.345-7(d... constructed such that the stress in the packaging does not exceed one fourth (0.25) of the ultimate strength... kettle tires; CG height is measured perpendicular from the road surface). (2) High stability kettles. (i...
46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).
Code of Federal Regulations, 2013 CFR
2013-10-01
... the following additional requirements: Note: For high alloy steels refer to § 54.25-15. For heat... tempered steels. The ultimate and yield strengths shall be as shown in the applicable specification and... 46 Shipping 2 2013-10-01 2013-10-01 false Low temperature operation-ferritic steels (replaces UCS...
46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).
Code of Federal Regulations, 2014 CFR
2014-10-01
... the following additional requirements: Note: For high alloy steels refer to § 54.25-15. For heat... tempered steels. The ultimate and yield strengths shall be as shown in the applicable specification and... 46 Shipping 2 2014-10-01 2014-10-01 false Low temperature operation-ferritic steels (replaces UCS...
46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).
Code of Federal Regulations, 2012 CFR
2012-10-01
... the following additional requirements: Note: For high alloy steels refer to § 54.25-15. For heat... tempered steels. The ultimate and yield strengths shall be as shown in the applicable specification and... 46 Shipping 2 2012-10-01 2012-10-01 false Low temperature operation-ferritic steels (replaces UCS...
46 CFR 199.150 - Survival craft launching and recovery arrangements; general.
Code of Federal Regulations, 2013 CFR
2013-10-01
... approval series 160.163. (b) Unless expressly provided otherwise in this part, each survival craft must be... attachment to the vessel must be designed, based on the ultimate strength of the construction material, to be at least 4.5 times the load imparted on the attachment by the launching appliance and its fully...
Installation and use of epoxy-grouted rock anchors for skyline logging in southeast Alaska.
W.L. Schroeder; D.N. Swanston
1992-01-01
Field tests of the load-carrying capacity of epoxy-grouted rock anchors in poor quality bedrock on Wrangel Island in southeast Alaska demonstrated the effectiveness of rock anchors as substitutes for stump anchors for logging system guylines. Ultimate capacity depends mainly on rock hardness or strength and length of the imbedded anchor.
49 CFR 238.419 - Truck-to-car-body and truck component attachment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Truck-to-car-body and truck component attachment... Specific Requirements for Tier II Passenger Equipment § 238.419 Truck-to-car-body and truck component attachment. (a) The ultimate strength of the truck-to-car-body attachment for each unit in a train shall be...
49 CFR 238.419 - Truck-to-car-body and truck component attachment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Truck-to-car-body and truck component attachment... Specific Requirements for Tier II Passenger Equipment § 238.419 Truck-to-car-body and truck component attachment. (a) The ultimate strength of the truck-to-car-body attachment for each unit in a train shall be...
USDA-ARS?s Scientific Manuscript database
The ultimate goal of applied research of phosphorus (P) transfer from agricultural fields to surface waters should arguably be to develop and apply mathematical models. There are two primary reasons for this assertion: 1) models formalize our understanding of P transfer and force us to test that und...
49 CFR 238.419 - Truck-to-car-body and truck component attachment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Truck-to-car-body and truck component attachment... Specific Requirements for Tier II Passenger Equipment § 238.419 Truck-to-car-body and truck component attachment. (a) The ultimate strength of the truck-to-car-body attachment for each unit in a train shall be...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirka, Michael M.; Medina, Frank; Dehoff, Ryan R.
Here, the electron beam melting (EBM) process was used to fabricate Inconel 718. The microstructure and tensile properties were characterized in both the as-fabricated and post-processed state transverse (T-orientation) and longitudinal (L-orientation) to the build direction. Post-processing involved both a hot isostatic pressing (HIP) and solution treatment and aging (STA) to homogenize the microstructure. In the as-fabricated state, EBM Inconel 718 exhibits a spatially dependent microstructure that is a function of build height. Spanning the last few layers is a cored dendritic structure comprised of the products (carbides and Laves phase) predicted under equilibrium solidification conditions. With increasing distance frommore » the build's top surface, the cored dendritic structure becomes increasingly homogeneous with complete dissolution of the secondary dendrite arms. Further, temporal phase kinetics are observed to lead to the dissolution of the strengthening γ"γ" and precipitation of networks of fine δ needles that span the grains. Microstructurally, post-processing resulted in dissolution of the δ networks and homogeneous precipitation of γ'"γ'" throughout the height of the build. In the as-fabricated state, the monotonic tensile behavior exhibits a height sensitivity within the T-orientation at both 20 and 650 °C. Along the L-orientation, the tensile behavior exhibits strength values comparable to the reference wrought material in the fully heat-treated state. After post-processing, the yield strength, ultimate strength, and elongation at failure for the EBM Inconel 718 were observed to have beneficially increased compared to the as-fabricated material. Further, as a result of post-processing the spatial variance of the ultimate yield strength and elongation at failure within the transverse direction decreased by 4 and 3× respectively.« less
Kirka, Michael M.; Medina, Frank; Dehoff, Ryan R.; ...
2016-10-21
Here, the electron beam melting (EBM) process was used to fabricate Inconel 718. The microstructure and tensile properties were characterized in both the as-fabricated and post-processed state transverse (T-orientation) and longitudinal (L-orientation) to the build direction. Post-processing involved both a hot isostatic pressing (HIP) and solution treatment and aging (STA) to homogenize the microstructure. In the as-fabricated state, EBM Inconel 718 exhibits a spatially dependent microstructure that is a function of build height. Spanning the last few layers is a cored dendritic structure comprised of the products (carbides and Laves phase) predicted under equilibrium solidification conditions. With increasing distance frommore » the build's top surface, the cored dendritic structure becomes increasingly homogeneous with complete dissolution of the secondary dendrite arms. Further, temporal phase kinetics are observed to lead to the dissolution of the strengthening γ"γ" and precipitation of networks of fine δ needles that span the grains. Microstructurally, post-processing resulted in dissolution of the δ networks and homogeneous precipitation of γ'"γ'" throughout the height of the build. In the as-fabricated state, the monotonic tensile behavior exhibits a height sensitivity within the T-orientation at both 20 and 650 °C. Along the L-orientation, the tensile behavior exhibits strength values comparable to the reference wrought material in the fully heat-treated state. After post-processing, the yield strength, ultimate strength, and elongation at failure for the EBM Inconel 718 were observed to have beneficially increased compared to the as-fabricated material. Further, as a result of post-processing the spatial variance of the ultimate yield strength and elongation at failure within the transverse direction decreased by 4 and 3× respectively.« less
Chen, Jyi-Feng; Lee, Shih-Tseng
2006-10-01
In a previous article, we used the PMMA cervical cage in the treatment of single-level cervical disk disease and the preliminary clinical results were satisfactory. However, the mechanical properties of the PMMA cage were not clear. Therefore, we designed a comparative in vitro biomechanical study to determine the mechanical properties of the PMMA cage. The PMMA cervical cage and the Solis PEEK cervical cage were compressed in a materials testing machine to determine the mechanical properties. The compressive yield strength of the PMMA cage (7030 +/- 637 N) was less than that of the Solis polymer cervical cage (8100 +/- 572 N). The ultimate compressive strength of the PMMA cage (8160 +/- 724 N) was less than that of the Solis cage (9100 +/- 634 N). The stiffness of the PMMA cervical cage (8106 +/- 817 N/mm) was greater than that of the Solis cage (6486 +/- 530 N/mm). The elastic modulus of the PMMA cage (623 +/- 57 MPa) was greater than that of the Solis cage (510 +/- 42 MPa). The elongation of PMMA cage (43.5 +/- 5.7%) was larger than that of the Solis cage (36.1 +/- 4.3%). Although the compressive yield strength and ultimate compressive strength of the PMMA cervical cage were less than those of the Solis polymer cage, the mechanical properties are better than those of the cervical vertebral body. The PMMA cage is strong and safe for use as a spacer for cervical interbody fusion. Compared with other cage materials, the PMMA cage has many advantages and no obvious failings at present. However, the PMMA cervical cage warrants further long-term clinical study.
The strength of aversive and appetitive associations and maladaptive behaviors.
Itzhak, Yossef; Perez-Lanza, Daniel; Liddie, Shervin
2014-08-01
Certain maladaptive behaviors are thought to be acquired through classical Pavlovian conditioning. Exaggerated fear response, which can develop through Pavlovian conditioning, is associated with acquired anxiety disorders such as post-traumatic stress disorders (PTSDs). Inflated reward-seeking behavior, which develops through Pavlovian conditioning, underlies some types of addictive behavior (e.g., addiction to drugs, food, and gambling). These maladaptive behaviors are dependent on associative learning and the development of long-term memory (LTM). In animal models, an aversive reinforcer (fear conditioning) encodes an aversive contextual and cued LTM. On the other hand, an appetitive reinforcer results in conditioned place preference (CPP) that encodes an appetitive contextual LTM. The literature on weak and strong associative learning pertaining to the development of aversive and appetitive LTM is relatively scarce; thus, this review is particularly focused on the strength of associative learning. The strength of associative learning is dependent on the valence of the reinforcer and the salience of the conditioned stimulus that ultimately sways the strength of the memory trace. Our studies suggest that labile (weak) aversive and appetitive LTM may share similar signaling pathways, whereas stable (strong) aversive and appetitive LTM is mediated through different pathways. In addition, we provide some evidence suggesting that extinction of aversive fear memory and appetitive drug memory is likely to be mediated through different signaling molecules. We put forward the importance of studies aimed to investigate the molecular mechanisms underlying the development of weak and strong memories (aversive and appetitive), which would ultimately help in the development of targeted pharmacotherapies for the management of maladaptive behaviors that arise from classical Pavlovian conditioning. © 2014 International Union of Biochemistry and Molecular Biology.
Shah, Viral; Choudhury, Bijaya Krushna
2017-11-01
A revolutionary paradigm shift is being observed currently, towards the use of therapeutic biologics for disease management. The present research was focused on designing an efficient dosage form for transdermal delivery of α-choriogonadotropin (high molecular weight biologic), through biodegradable polymeric microneedles. Polyvinylpyrrolidone-based biodegradable microneedle arrays loaded with high molecular weight polypeptide, α-choriogonadotropin, were fabricated for its systemic delivery via transdermal route. Varied process and formulation parameters were optimized for fabricating microneedle array, which in turn was expected to temporally rupture the stratum corneum layer of the skin, acting as a major barrier to drug delivery through transdermal route. The developed polymeric microneedles were optimized on the basis of quality attributes like mechanical strength, axial strength, insertion ratio, and insertion force analysis. The optimized polymeric microneedle arrays were characterized for in vitro drug release studies, ex vivo drug permeation studies, skin resealing studies, and in vivo pharmacokinetic studies. Results depicted that fabricated polymeric microneedle arrays with mechanical strength of above 5 N and good insertion ratio exhibited similar systemic bioavailability of α-choriogonadotropin in comparison to marketed subcutaneous injection formulation of α-choriogonadotropin. Thus, it was ultimately concluded that the designed drug delivery system can serve as an efficient tool for systemic delivery of therapeutic biologics, with an added benefit of overcoming the limitations of parenteral delivery, achieving better patient acceptability and compliance.
NASA Astrophysics Data System (ADS)
Neumeister, Jonas M.
1993-08-01
THE TENSILE BEHAVIOR of a brittle matrix composite is studied for post matrix crack saturation conditions. Scatter of fiber strength following the Weibull distribution as well as the influence of the major microstructural variables is considered. The stress in a fiber is assumed to recover linearly around a failure due to a fiber-matrix interface behavior mainly ruled by friction. The constitutive behavior for such a composite is analysed. Results are given for a simplified and a refined approximate description and compared with an analysis resulting from the exact analytical theory of fiber fragmentation. It is shown that the stress-strain relation for the refined model excellently follows the exact solution and gives the location of the maximum to within 1% in both stress and strain; for most materials the agreement is even better. Also it is shown that all relations can be normalized to depend on only two variables; a stress reference and the Weibull exponent. For systems with low scatter in fiber strength the simplified model is sufficient to determine the stress maximum but not the postcritical behavior. In addition, the simplified model gives explicit analytical expressions for the maximum stress and corresponding strain. None of the models contain any volume dependence or statistical scatter, but the maximum stress given by the stress-strain relation constitutes an upper bound for the ultimate tensile strength of the composite.
The effect of lower body burns on physical function.
Benjamin, Nicole C; Andersen, Clark R; Herndon, David N; Suman, Oscar E
2015-12-01
To attenuate burn-induced catabolism, patients are often enrolled in a resistance exercise program as part of their physical rehabilitation. This study assessed how lower body burn locations affected strength and cardiopulmonary function. Children enrolled in an exercise study between 2003 and 2013, were 7-18 years of age, and burned ≥30% of their total body surface area were included. Analysis of variance was used to model the relationship of lower body strength (PTW) and cardiopulmonary function (VO2peak) due to burns which traverse the subject's lower body joints. There was a significant relationship between PTW and burns at the hip and toe joints, showing a 26 N m/kg (p=0.010) and 33 N m/kg (p=0.013) decrease in peak torque, respectively. Burns at the hip joint corresponded to a significant decrease in VO2peak by 4.9 ml kg(-1) min(-1) (p=0.010) in peak cardiopulmonary function. Physical function and performance are detrimentally affected by burns that traverse specific lower body joints. The most significant relationship on exercise performance was that of hip joint burns as it affected both strength and cardiopulmonary measurements. Ultimately, burns at hip and toe joints need to be considered when interpreting exercise test results involving the lower body. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Gupta, Ashim; Main, Benjamin J; Taylor, Brittany L; Gupta, Manu; Whitworth, Craig A; Cady, Craig; Freeman, Joseph W; El-Amin, Saadiq F
2014-11-01
The purpose of this study was to develop three-dimensional single-walled carbon nanotube composites (SWCNT/PLAGA) using 10-mg single-walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3-E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic-co-glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3-E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3-E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc.
The Effect of Lower Body Burns on Physical Function
Benjamin, Nicole C.; Andersen, Clark R.; Herndon, David N.; Suman, Oscar E.
2015-01-01
Objective To attenuate burn-induced catabolism, patients are often enrolled in a resistance exercise program as part of their physical rehabilitation. This study assessed how lower body burn locations affected strength and cardiopulmonary function. Methods Children enrolled in an exercise study between 2003 and 2013, were 7–18 years of age, and burned ≥ 30% of their total body surface area were included. Analysis of variance was used to model the relationship of lower body strength (PTW) and cardiopulmonary function (VO2peak) due to burns which traverse the subject’s lower body joints. Results There was a significant relationship between PTW and burns at the hip and toe joints, showing a 26 Newton·meters/kilogram (p=0.010) and 33 Newton·meters/kilogram (p=0.013) decrease in peak torque, respectively. Burns at the hip joint corresponded to a significant decrease in VO2peak by 4.9 mL·kg−1·min−1 (p=0.010) in peak cardiopulmonary function. Conclusion Physical function and performance are detrimentally affected by burns that traverse specific lower body joints. The most significant relationship on exercise performance was that of hip joint burns as it affected both strength and cardiopulmonary measurements. Ultimately, burns at hip and toe joints need to be considered when interpreting exercise test results involving the lower body. PMID:26421695
Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens
Dymáček, Petr; Jarý, Milan; Dobeš, Ferdinand; Kloc, Luboš
2018-01-01
Tensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties. Although the creep rupture time was found to be systematically shorter and creep ductility lower in the miniature test, the minimum creep rates were comparable. The analysis of the fracture surfaces revealed similar ductile fracture morphology for both specimen geometries. One exception was found in a small area near the miniature specimen edge that was cut by electro discharge machining, where an influence of the steel fracture behavior at elevated temperature was identified. PMID:29337867
Fracture characteristics of balloon films
NASA Technical Reports Server (NTRS)
Portanova, Marc A.
1989-01-01
An attempt was made to determine the failure modes of high altitude scientific balloons through an investigation of the fracture characteristics of the thin polyethylene films. Two films were the subject of the evaluation, Winzen Int.'s Stratafilm SF-85 and Raven Industries' Astro-E. Research began with an investigation of the film's cold brittleness point and it's effect on the ultimate strength and elasticity of the polyethylene film. A series of preliminary investigations were conducted to develop an understanding of the material characteristics. The primary focus of this investigation was on the notch sensitivity of the films. Simple stress strain tests were also conducted to enable analysis employing fracture toughness parameters. Studies were conducted on both film types at 23 C (room temperature), -60 C, -90 C, and -120 C.
Effect of screw torque level on cortical bone pullout strength.
Cleek, Tammy M; Reynolds, Karen J; Hearn, Trevor C
2007-02-01
The objectives of this study were 2-fold: (1) to perform detailed analysis of cortical screw tightening stiffness during automated insertion, and (2) to determine the effect of 3 torque levels on the holding strength of the bone surrounding the screw threads as assessed by screw pullout. Ten pairs of ovine tibiae were used with 3 test sites spaced 20 mm apart centered along the shaft. One side of each pair was used for measuring ultimate failure torque (Tmax). These Tmax and bone-density values were used to predict Tmax at contralateral tibia sites. Screws were inserted and tightened to 50%, 70%, and 90% of predicted Tmax at the contralateral sites to encompass the average clinical level of torque (86% Tmax). Pullout tests were performed and maximum force values were normalized by cortical thickness. Torque to failure tests indicated tightening to 86% Tmax occurs after yield and leads to an average 51% loss in stiffness. Normalized pullout strength for screws tightened to 50% Tmax, 70% Tmax, and 90% Tmax were 2525 +/- 244, 2707 +/- 280, and 2344 +/- 346 N, respectively, with a significant difference between 70% Tmax and 90% Tmax groups (P < 0.05). Within the limitations of our study involving the testing of 1 type of screw purchase in ovine tibiae, results demonstrate that clinical levels of lag screw tightening (86% Tmax) are past the yield point of bone. Tightening to these high torque levels can cause damage leading to compromised holding strength. Further research is still required to establish the appropriate level of torque required for achieving optimal fracture fixation and healing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yongfeng; Qiu, LN; Sun, Xin
2015-06-01
With a suite of multi-modal and multi-scale characterization techniques, the present study unambiguously proves that a substantially-improved combination of ultrahigh strength and good ductility can be achieved by tailoring the volume fraction, morphology, and carbon content of the retained austenite (RA) in a transformation-induced-plasticity (TRIP) steel with the nominal chemical composition of 0.19C-0.30Si-1.76Mn-1.52Al (weight percent, wt.%). After intercritical annealing and bainitic holding, a combination ultimate tensile strength (UTS) of 1,100 MPa and true strain of 50% has been obtained, as a result of the ultrafine RA lamellae, which are alternately arranged in the bainitic ferrite around junction regions of ferritemore » grains. For reference, specimens with a blocky RA, prepared without the bainitic holding, yield a low ductility (35%) and a low UTS (800 MPa). The volume fraction, morphology, and carbon content of RA have been characterized using various techniques, including magnetic probing, scanning electron microscopy (SEM), electron-backscatter-diffraction (EBSD), and transmission electron microscopy (TEM). Interrupted tensile tests, mapped using EBSD in conjunction with the kernel average misorientation (KAM) analysis, reveal that the lamellar RA is the governingmicrostructure component responsible for the higher mechanical stability, compared to the blocky one. By coupling these various techniques, we quantitatively demonstrate that in addition to the RA volume fraction, its morphology and carbon content are equally important in optimizing the strength and ductility of TRIP-assisted steels.« less
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.
2016-01-01
Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.
Ghoshal, P. K.; Pastor, O.; Kashy, D.; ...
2014-12-18
The torus magnet for the CLAS12 spectrometer is a 3.6 T superconducting magnet being designed and built as part of the Jefferson Lab 12 GeV Upgrade. The magnet consists of six coil case assemblies mounted to a cold central hub. The coil case assembly consists of an aluminum case and cover enclosing an epoxy vacuum impregnated coil pack. The coil pack consists of a 117 turn double-pancake winding wrapped with 2 layers of 0.635 mm thick copper cooling sheets. The coil case assembly is cooled by supercritical helium at 4.6 K. This report details the structural analysis of the coilmore » case assembly and the assessment of the coil pack stresses. For the normal operation of the torus magnet, the coil case assembly was analyzed for cool down to 4.6 K and the Lorentz forces at normal operating current. In addition to the normal operating configuration, the coil case assembly was analyzed for Lorentz forces arising from coil misalignment and current imbalances. The allowable stress criteria for the magnet followed the approach of the ASME codes. Primary stresses were limited to the lesser of 2/3 times the yield strength or 1/3 times the ultimate tensile strength. Primary plus secondary stresses were limited to 3 times the primary stress allowable. The analysis was performed using ANSYS Maxwell to calculate the magneto-static loads and ANSYS Mechanical to calculate the stresses.« less
Investigation on mechanical properties of basalt composite fabrics (experiment study)
NASA Astrophysics Data System (ADS)
Talebi Mazraehshahi, H.; Zamani, H.
2010-06-01
To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with another, the effect of weight must be considered. Weight measurement showed that the replacement of glass fabric reinforcement with basalt fabric has little effect on weight. Investigation also shows that mechanical behavior of basalt fabric is higher than glass fabric. This is due to the excellent mechanical properties of the ballast fabric such as Young modulus and strength in compare with the glass fabric. Figure1 shows the samples which used for tensile testing in warp direction.
Oz, F D; Bolay, S
2018-01-01
The aim of this in vitro study was to evaluate marginal adaptation and fracture strength of inlays produced by CEREC Omnicam using different types of blocs and heat-pressed technique. Methods: Seventy-five extracted human mandibular molars were divided randomly into 5 groups ( n =15). 60 molars in four groups received MOD inlay preparations. Experimental groups were CO: Intact teeth, EC: IPS e.max CAD and CEREC, LU: Lava Ultimate and CEREC, EL: IPS Empress CAD and CEREC, EP: IPS Empress Esthetic ingots and heat-pressed technique. Marginal gap measurements were taken with a stereomicroscope. Restorations were cemented with Variolink N and stored in distilled water at 37°C for 24 hours. All samples were subjected to thermocycling. The fracture strength of specimens was determined at a 0.5 mm/min crosshead speed until fracture. Fracture modes were determined. Statistical analyses were performed using one-way analysis of variance for fracture strength data and Kruskal-Wallis for marginal gap data ( p =0.05). The mean marginal gap size of EC, LU, EL, and EP were 33.54 µ m, 33.77 µ m, 34.23 µ m, and 85.34 µ m, respectively. EP had statistically higher values than other groups. The fracture strength values were significantly higher in the intact teeth group (3959,00 ± 1279,79 N) than those of restored groups EC (2408,00 ± 607,97 N), LU (2206,73 ± 675,16), EL (2573.27 ± 644,73) ve EP (2879,53 ± 897,30). Inlays fabricated using CEREC Omnicam demonstrated better marginal adaptation than inlays produced with heat-pressed technique, whereas fracture strength values of inlays fabricated with different type of blocks using CEREC Omnicam exhibited similarity to those fabricated with heat-pressed technique.
Bolay, S.
2018-01-01
Objective The aim of this in vitro study was to evaluate marginal adaptation and fracture strength of inlays produced by CEREC Omnicam using different types of blocs and heat-pressed technique. Methods: Seventy-five extracted human mandibular molars were divided randomly into 5 groups (n=15). 60 molars in four groups received MOD inlay preparations. Experimental groups were CO: Intact teeth, EC: IPS e.max CAD and CEREC, LU: Lava Ultimate and CEREC, EL: IPS Empress CAD and CEREC, EP: IPS Empress Esthetic ingots and heat-pressed technique. Marginal gap measurements were taken with a stereomicroscope. Restorations were cemented with Variolink N and stored in distilled water at 37°C for 24 hours. All samples were subjected to thermocycling. The fracture strength of specimens was determined at a 0.5 mm/min crosshead speed until fracture. Fracture modes were determined. Statistical analyses were performed using one-way analysis of variance for fracture strength data and Kruskal–Wallis for marginal gap data (p=0.05). Results The mean marginal gap size of EC, LU, EL, and EP were 33.54 µm, 33.77 µm, 34.23 µm, and 85.34 µm, respectively. EP had statistically higher values than other groups. The fracture strength values were significantly higher in the intact teeth group (3959,00 ± 1279,79 N) than those of restored groups EC (2408,00 ± 607,97 N), LU (2206,73 ± 675,16), EL (2573.27 ± 644,73) ve EP (2879,53 ± 897,30). Conclusion Inlays fabricated using CEREC Omnicam demonstrated better marginal adaptation than inlays produced with heat-pressed technique, whereas fracture strength values of inlays fabricated with different type of blocks using CEREC Omnicam exhibited similarity to those fabricated with heat-pressed technique. PMID:29853894
Kannan, C; Ramanujam, R
2017-07-01
In this research work, a comparative evaluation on the mechanical and microstructural characteristics of aluminium based single and hybrid reinforced nanocomposites was carried out. The manufacture of a single reinforced nanocomposite was conducted with the distribution of 2 wt.% nano alumina particles (avg. particle size 30-50 nm) in the molten aluminium alloy of grade AA 7075; while the hybrid reinforced nanocomposites were produced with of 4 wt.% silicon carbide (avg. particle size 5-10 µm) and 2 wt.%, 4 wt.% nano alumina particles. Three numbers of single reinforced nanocomposites were manufactured through stir casting with reinforcements preheated to different temperatures viz. 400 °C, 500 °C, and 600 °C. The stir cast procedure was extended to fabricate two hybrid reinforced nanocomposites with reinforcements preheated to 500 °C prior to their inclusion. A single reinforced nanocomposite was also developed by squeeze casting with a pressure of 101 MPa. Mechanical and physical properties such as density, hardness, ultimate tensile strength, and impact strength were evaluated on all the developed composites. The microstructural observation was carried out using optical and scanning electron microscopy. On comparison with base alloy, an improvement of 63.7% and 81.1% in brinell hardness was observed for single and hybrid reinforced nanocomposites respectively. About 16% higher ultimate tensile strength was noticed with the squeeze cast single reinforced nanocomposite over the stir cast.
NASA Astrophysics Data System (ADS)
Ceschini, L.; Morri, Alessandro; Morri, Andrea
2017-05-01
The aim of this research was to investigate the effects of casting size (10-210 mm) on the microstructure and mechanical properties of spheroidal (SGI) and compacted (CGI) graphite cast irons. A comparison of the experimental mechanical data with those specified by ISO standards is presented and discussed. The study highlighted that the microstructure and mechanical properties of SGI (also known as ductile or nodular cast iron) are more sensitive to casting size than CGI (also known as vermicular graphite cast irons). In particular, in both types of cast iron, hardness, yield strength and ultimate tensile strength decreased, with increasing casting size, by 27% in SGI and 17% in CGI. Elongation to failure showed, instead, an opposite trend, decreasing from 5 to 3% in CGI, while increasing from 5 to 11% in SGI. These results were related to different microstructures, the ferritic fraction being more sensitive to the casting size in SGI than CGI. Degeneration of spheroidal graphite was observed at casting size above 120 mm. The microstructural similarities between degenerated SGI and CGI suggested the proposal of a unified empirical constitutional law relating the most important microstructural parameters to the ultimate tensile strength. An outstanding result was also the finding that standard specifications underestimated the mechanical properties of both cast irons (in particular SGI) and, moreover, did not take into account their variation with casting size, at thicknesses over 60 mm.
Boo, Marie E; Garrison, J Craig; Hannon, Joseph P; Creed, Kalyssa M; Goto, Shiho; Grondin, Angellyn N; Bothwell, James M
2018-03-01
Female patients are more likely to suffer a second anterior cruciate ligament (ACL) injury after ACL reconstruction (ACLR) and return to sport (RTS) compared with healthy female controls. Few studies have examined the energy absorption contribution (EAC) that could lead to this subsequent injury. The ACLR group would demonstrate an altered EAC between joints (hip, knee, and ankle) but no difference in quadriceps, hip abduction, or hip external rotation (ER) strength at the time of RTS. Cross-sectional study; Level of evidence, 3. A total of 34 female participants (ACLR: n = 17; control: n = 17) were enrolled in the study and matched for age and activity level. Jump landing performance for the initial 50 milliseconds of landing of a lateral-vertical jump was assessed using a 10-camera 3-dimensional motion capture system and 2 force plates. Isokinetic quadriceps strength was measured using a Biodex machine, and hip abduction and ER isometric strength were measured using a handheld dynamometer. All values were normalized to the participant's height and weight. A 1-way multivariate analysis of variance was used to assess between-group differences in the EAC at the hip, knee, and ankle. Two 1-way analyses of variance were used to independently examine quadriceps, hip abduction, and hip ER strength between the groups. Significant differences in the EAC were found between the groups for the involved hip ( P = .002), uninvolved hip ( P = .005), and involved ankle ( P = .023). There were no between-group differences in the EAC for the involved or uninvolved knee or the uninvolved ankle. Patients who underwent ACLR demonstrated significantly decreased quadriceps strength on the involved limb ( P = .02) and decreased hip ER strength on both the involved ( P = .005) and uninvolved limbs ( P = .002). No significant strength differences were found between the groups for the uninvolved quadriceps or for involved or uninvolved hip abduction. At RTS, patients who underwent ACLR utilized a greater hip EAC bilaterally and a decreased involved ankle EAC during a lateral-vertical jump. Furthermore, quadriceps strength on the involved limb and hip ER strength of bilateral lower extremities remained decreased. This could place greater stress on the ACL graft and ultimately lead to an increased injury risk.
Boo, Marie E.; Garrison, J. Craig; Hannon, Joseph P.; Creed, Kalyssa M.; Goto, Shiho; Grondin, Angellyn N.; Bothwell, James M.
2018-01-01
Background: Female patients are more likely to suffer a second anterior cruciate ligament (ACL) injury after ACL reconstruction (ACLR) and return to sport (RTS) compared with healthy female controls. Few studies have examined the energy absorption contribution (EAC) that could lead to this subsequent injury. Hypothesis: The ACLR group would demonstrate an altered EAC between joints (hip, knee, and ankle) but no difference in quadriceps, hip abduction, or hip external rotation (ER) strength at the time of RTS. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 34 female participants (ACLR: n = 17; control: n = 17) were enrolled in the study and matched for age and activity level. Jump landing performance for the initial 50 milliseconds of landing of a lateral-vertical jump was assessed using a 10-camera 3-dimensional motion capture system and 2 force plates. Isokinetic quadriceps strength was measured using a Biodex machine, and hip abduction and ER isometric strength were measured using a handheld dynamometer. All values were normalized to the participant’s height and weight. A 1-way multivariate analysis of variance was used to assess between-group differences in the EAC at the hip, knee, and ankle. Two 1-way analyses of variance were used to independently examine quadriceps, hip abduction, and hip ER strength between the groups. Results: Significant differences in the EAC were found between the groups for the involved hip (P = .002), uninvolved hip (P = .005), and involved ankle (P = .023). There were no between-group differences in the EAC for the involved or uninvolved knee or the uninvolved ankle. Patients who underwent ACLR demonstrated significantly decreased quadriceps strength on the involved limb (P = .02) and decreased hip ER strength on both the involved (P = .005) and uninvolved limbs (P = .002). No significant strength differences were found between the groups for the uninvolved quadriceps or for involved or uninvolved hip abduction. Conclusion: At RTS, patients who underwent ACLR utilized a greater hip EAC bilaterally and a decreased involved ankle EAC during a lateral-vertical jump. Furthermore, quadriceps strength on the involved limb and hip ER strength of bilateral lower extremities remained decreased. This could place greater stress on the ACL graft and ultimately lead to an increased injury risk. PMID:29552573
Chan, J T Y; Omana, D A; Betti, M
2011-05-01
Functional and rheological properties of proteins from frozen turkey breast meat with different ultimate pH at 24 h postmortem (pH(24)) have been studied. Sixteen breast fillets from Hybrid Tom turkeys were initially selected based on lightness (L*) values for each color group (pale, normal, and dark), with a total of 48 breast fillets. Further selection of 8 breast samples was made within each class of meat according to the pH(24). The average L* and pH values of the samples were within the following range: pale (L* >52; pH ≤5.7), normal (46 < L* < 52; 5.9 < pH <6.1), and dark (L* <46; pH ≥6.3), referred to as low, normal, and high pH meat, respectively. Ultimate pH did not cause major changes in the emulsifying and foaming properties of the extracted sarcoplasmic and myofibrillar proteins. An SDS-PAGE profile of proteins from low and normal pH meat was similar, which revealed that the extent of protein denaturation was the same. Low pH meat had the lowest water-holding capacity compared with normal and high pH meat as shown by the increase in cooking loss, which can be explained by factors other than protein denaturation. Gel strength analysis and folding test revealed that gel-forming ability was better for high pH meat compared with low and normal pH meat.Dynamic viscoelastic behavior showed that myosin denaturation temperature was independent of pH(24). Normal and high pH meat had similar hardness, springiness, and chewiness values as revealed by texture profile analysis. The results from this study indicate that high pH meat had similar or better functional properties than normal pH meat. Therefore, high pH meat is suitable for further processed products, whereas low pH meat may need additional treatment or ingredient formulations to improve its functionality.
Castro, Morgana G; Araújo, Cleudmar A; Menegaz, Gabriela L; Silva, João Paulo L; Nóbilo, Mauro Antônio A; Simamoto Júnior, Paulo Cézar
2015-05-01
The literature provides limited information regarding the performance of Ti-6Al-4V laser and plasma joints welded in prefabricated bars in dental applications. The purpose of this study was to evaluate the mechanical strength of different diameters of Ti-6Al-4V alloy welded with laser and plasma techniques. Forty-five dumbbell-shaped rods were created from Ti-6Al-4V and divided into 9 groups (n=5): a control group with 3-mm and intact bars; groups PL2.5, PL3, PL4, and PL5 (specimens with 2.5-, 3-, 4-, and 5-mm diameters welded with plasma); and groups L2.5, L3, L4, and L5 (specimens with 2.5-, 3-, 4-, and 5-mm diameters welded with laser). The specimens were tested for ultimate tensile strength (UTS), and elongation percentages (EP) were obtained. Fractured specimens were analyzed by stereomicroscopy, and welded area percentages (WAP) were calculated. Images were made with scanning electron microscopy. In the initial analysis, the data were analyzed with a 2-way ANOVA (2×4) and the Tukey Honestly Significant Difference (HSD) test. In the second analysis, the UTS and EP data were analyzed with 1-way ANOVA, and the Dunnett test was used to compare the 4 experimental groups with the control group (α=.05). The Pearson and Spearman correlation coefficient tests were applied to correlate the study factors. Finite element models were developed in a workbench environment with boundary conditions simulating those of a tensile test. The 2-way ANOVA showed that the factors welding type and diameter were significant for the UTS and WAP values. However, the interaction between them was not significant. The 1-way ANOVA showed statistically significant differences among the groups for UTS, WAP, and EP values. The Dunnett test showed that all the tested groups had lower UTS and EP values than the control group. The 2.5- and 3-mm diameter groups showed higher values for UTS and WAP than the other test groups. A positive correlation was found between welded area percentage and UTS and a negative correlation between these parameters and the diameters of the specimens. No statistically significant difference was found between the weld techniques. Under the experimental conditions described, diameters of 2.5 and 3 mm resulted in higher UTS and WAP for both laser and plasma welding and appear to be the best option for joining prefabricated rods in this kind of union. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Analysis of the rivets from the RMS Titanic using experimental and theoretical techniques
NASA Astrophysics Data System (ADS)
Hooper, Jennifer Jo
Earlier studies of Titanic wrought iron rivets revealed an anisotropic, inhomogeneous composite material composed of glassy iron silicate (slag) particles embedded in a ferrite matrix. Micrographs indicated a directional character to the slag "stringers" that follows the method of processing---aligned parallel to the shaft in the center of the rivet, but oriented perpendicular to the shaft within the inner section of each head. It was proposed that the re-orientation of large slag particles in the rivet head weakened this region, predisposing the rivets to fail as a result of collision with the iceberg. Using quantitative metallography, mechanical testing, and a combination of modeling techniques, this hypothesis was tested using 35 Titanic rivets and additional contemporary wrought iron. Results revealed that the wrought iron microstructure showed a high slag content that was very coarse and unevenly distributed. Results from micro structural, chemical and mechanical analysis, as well as supporting historical evidence, suggested that two types of rivets, both wrought iron and steel, were used on the Titanic. Tensile testing results indicated that the longitudinal orientation in wrought iron possesses an average of 20% higher tensile strength and nearly four times the ductility of the transverse orientation. Results for Titanic rivet steel suggest a 100MPa enhancement in yield strength and tensile strength over wrought iron. Sequential imaging during mechanical testing, supported by micromechanical modeling predictions, indicated that the mechanical behavior of wrought iron is strongly affected by the orientation, distribution and content of slag within the matrix. Finite element analysis of a wrought iron rivet with anisotropic properties demonstrated that, because of poor ductility produced by the re-orientation of slag within the head, a Titanic rivet could not withstand a 5mm displacement of the hull's steel plates. Due to its low ultimate tensile strength, the wrought iron rivet would fail after an additional load that is 2.5 times less than that required for the steel rivet failure. This evidence suggests that as a result of the collision with the iceberg, failure at the junction of the head and shaft caused "popping" of rivet's heads and the opening of riveted seams.
Formulation/cure technology for ultrahigh molecular weight silphenylene-siloxane polymers
NASA Technical Reports Server (NTRS)
Hundley, N. H.; Patterson, W. J.
1985-01-01
Molecular weights above one million were achieved for methylvinylsilphenylene-siloxane terpolymers using a two-stage polymerization technique which was successfully scaled up to 200 grams. The resulting polymer was vulcanized by two different formulations and compared to an identically formulated commercial methylvinyl silicone on the basis of ultimate strength, Young's modulus, percent elongation at failure, and tear strength. Relative thermal/oxidative stabilities of the elastomers were assessed by gradient and isothermal thermogravimetric analyses performed in both air and nitrogen. The experimental elastomer exhibited enhanced thermal/oxidative stability and possed equivalent or superior mechanical properties. The effect of variations in prepolymer molecular weight on mechanical properties was also investigated.
2013-01-01
Multiwalled boron nitride nanotubes (BNNTs) have very attractive mechanical and thermal properties, e.g., elasticity, tensile strength, and high resistance to oxidation, and may be considered as ideal reinforcing agents in lightweight metal matrix composites. Herein, for the first time, Al-BNNT ribbons with various BNNT contents (up to 3 wt.%) were fabricated via melt spinning in an argon atmosphere. BNNTs were randomly dispersed within a microcrystalline Al matrix under ribbon casting and led to more than doubling of room-temperature ultimate tensile strength of the composites compared to pure Al ribbons produced at the similar conditions. PMID:23279813
Quantitative controls on submarine slope failure morphology
Lee, H.J.; Schwab, W.C.; Edwards, B.D.; Kayen, R.E.
1991-01-01
The concept of the steady-state of deformation can be applied to predicting the ultimate form a landslide will take. The steady-state condition, defined by a line in void ratio-effective stress space, exists at large levels of strain and remolding. Conceptually, if sediment initially exists with void ratio-effective stress conditions above the steady-state line, the sediment shear strength will decrease during a transient loading event, such as an earthquake or storm. If the reduced shear strength existing at the steady state is less than the downslope shear stress induced by gravity, then large-scale internal deformation, disintegration, and flow will occur. -from Authors
Estimation of the notch sensitivity of a nitrided steel by acoustic emission
NASA Astrophysics Data System (ADS)
Rogachev, S. O.; Nikulin, S. A.; Khatkevich, V. M.; Ozherelkov, D. Yu.; Molyarov, A. V.
2017-10-01
The notch sensitivity of sheet corrosion-resistant 08Kh17T steel is estimated in the states before and after high-temperature (1000-1100°C) internal nitriding during tensile tests accompanied by the measurement of acoustic emission signals. A crack in the steel is shown to propagate according to a ductile mechanism is all states. As the nitrogen content increases from 0.60 to 0.85%, the ultimate tensile strength of the steel decreases by 15% in the presence of a stress concentrator and remains substantially higher than the yield strength of the sheet steel without a stress concentrator.
Evans, Scotney D; Prilleltensky, Ora; McKenzie, Adrine; Prilleltensky, Isaac; Nogueras, Debbie; Huggins, Corinne; Mescia, Nick
2011-01-01
SPEC Learning and Changing by Doing is a three-year, action research, and organizational change project designed to ultimately promote social justice and well-being in the community. SPEC is an acronym that stands for Strengths, Prevention, Empowerment, and Community Change. The project consists of five organizations tackling internal organizational change in order to better promote justice and well-being in their respective constituencies. In this article we present a formative evaluation of this multicase study of organizational change in human services. This article contributes to the empirical and theoretical literature on organizational change in the nonprofit human service milieu.
Shear Strength of Square Graphene Nanoribbons beyond Wrinkling
NASA Astrophysics Data System (ADS)
Ragab, Tarek; Basaran, Cemal
2018-04-01
Atomistic modeling of armchair and zigzag graphene nanoribbons (GNRs) has been performed to investigate the post-wrinkling behavior under in-plane (x-y) shear deformation. Simulations were performed at 300 K for square GNRs with size ranging from 2.5 nm to 20 nm. Shear stresses led only to diagonal tension, and wrinkling was not accompanied by any diagonal compressive force. Once the diagonal tension reached its ultimate elastic level, three major stress-relaxing phenomena were observed. The type of stress-relaxing phenomenon involved greatly affected the mechanical behavior in terms of the slope of the stress-strain diagram beyond the elastic range. The results showed that the average slope of the stress-strain relation beyond the ultimate elastic stress decreased with the increase of the GNR size. Moreover, the slope of the shear stress-strain curve beyond the ultimate elastic stress was always greater for armchair than for zigzag GNRs. GNRs can sustain very high plastic shear strains beyond 100% before failure. The ultimate elastic stress can range from 20 GPa to 50 GPa, occurring at shear strain ranging from 52% to 19%. The ultimate elastic stress and strain were inversely proportional to the size of the GNR with a power factor ranging from 0.261 for armchair GNRs to 0.354 for zigzag GNRs due to the decrease in the effective width for diagonal tension.
Shear Strength of Square Graphene Nanoribbons beyond Wrinkling
NASA Astrophysics Data System (ADS)
Ragab, Tarek; Basaran, Cemal
2018-07-01
Atomistic modeling of armchair and zigzag graphene nanoribbons (GNRs) has been performed to investigate the post-wrinkling behavior under in-plane ( x- y) shear deformation. Simulations were performed at 300 K for square GNRs with size ranging from 2.5 nm to 20 nm. Shear stresses led only to diagonal tension, and wrinkling was not accompanied by any diagonal compressive force. Once the diagonal tension reached its ultimate elastic level, three major stress-relaxing phenomena were observed. The type of stress-relaxing phenomenon involved greatly affected the mechanical behavior in terms of the slope of the stress-strain diagram beyond the elastic range. The results showed that the average slope of the stress-strain relation beyond the ultimate elastic stress decreased with the increase of the GNR size. Moreover, the slope of the shear stress-strain curve beyond the ultimate elastic stress was always greater for armchair than for zigzag GNRs. GNRs can sustain very high plastic shear strains beyond 100% before failure. The ultimate elastic stress can range from 20 GPa to 50 GPa, occurring at shear strain ranging from 52% to 19%. The ultimate elastic stress and strain were inversely proportional to the size of the GNR with a power factor ranging from 0.261 for armchair GNRs to 0.354 for zigzag GNRs due to the decrease in the effective width for diagonal tension.
Determination of Proper Austenitization Temperatures for Hot Stamping of AISI 4140 Steel
NASA Astrophysics Data System (ADS)
Samadian, Pedram; Parsa, Mohammad Habibi; Shakeri, Amid
2014-04-01
High strength steels are desirable materials for use in automobile bodies in order to reduce vehicle weight and increase the safety of car passengers, but steel grades with high strength commonly show poor formability. Recently, steels with controlled microstructures and compositions are used to gain adequate strength after hot stamping while maintaining good formability during processing. In this study, microstructure evolutions and changes in mechanical properties of AISI 4140 steel sheets resulting from the hot stamping process at different austenitization temperatures were investigated. To determine the proper austenitization temperatures, the results were compared with those of the cold-worked and cold-worked plus quench-tempered specimens. Comparisons showed that the austenitization temperatures of 1000 and 1100 °C are proper for hot stamping of 3-mm-thick AISI 4140 steel sheets due to the resultant martensitic microstructure which led to the yield and ultimate tensile strength of 1.3 and 2.1 GPa, respectively. Such conditions resulted in more favorable simultaneous strength and elongation than those of hot-stamped conventional boron steels.
Study of interface influence on bending performance of CFRP with embedded optical fibers
NASA Astrophysics Data System (ADS)
Liu, Rong-mei; Liang, Da-kai
2008-11-01
Studies showed that the bending strength of composite would be affected by embedded optical fibers. Interface strength between the embedded optical fiber and the matrix was studied in this paper. Based on the single fiber pull out tests, the interfacial shear strength between the coating and the clad is the weakest. The shear strength of the optical fiber used in this study is near to 0.8MPa. In order to study the interfacial effect on bending property of generic smart structure, a quasi-isotropic composite laminates were produced from Toray T300C/ epoxy prepreg. Optical fibers were embedded within different orientation plies of the plates, with the optical fibers embedded in the same direction. Accordingly, five different types of plates were produced. Impact tests were carried out on the 5 different plate types. It is shown that when the fiber was embedded at the upper layer, the bending strength drops mostly. The bending normal stress on material arrives at the maximum. So does the normal stress applied on the optical fiber at the surface. Therefore, destructions could originate at the interface between the coating and the clad foremost. The ultimate strength of the smart structure will be affected furthest.
NASA Astrophysics Data System (ADS)
Li, Longfei; Ji, Shouxun; Zhu, Qiang; Wang, Yun; Dong, Xixi; Yang, Wenchao; Midson, Stephen; Kang, Yonglin
2018-06-01
The microstructure and mechanical properties of Al-8.1Mg-2.6Si-(0.08 to 4.62)Zn alloys (in wt pct) have been investigated by the permanent mold casting process. X-ray diffraction analysis shows that the τ-Mg32(Al, Zn)49 phase forms when the Zn content is 1.01 wt pct. With higher Zn contents of 2.37 and 3.59 wt pct, the η-MgZn2 and τ-Mg32(Al, Zn)49 phases precipitate in the microstructure, and the η-MgZn2 phase forms when the Zn content is 4.62 wt pct. Metallurgical analysis shows that the η-MgZn2 and τ-Mg32(Al, Zn)49 phases strengthen the Al-8.1Mg-2.6Si-(0.08 to 4.62)Zn alloys. After solutionizing at 510 °C for 180 minutes and aging at 180 °C for 90 minutes, the η'-MgZn2 phase precipitates in the α-Al matrix, which significantly enhances the mechanical properties. Addition of 3.59 wt pct Zn to the Al-8.1Mg-2.6Si alloy with heat treatment increases the yield strength from 96 to 280 MPa, increases the ultimate tensile strength from 267 to 310 MPa, and decreases the elongation from 9.97 to 1.74 pct.
NASA Astrophysics Data System (ADS)
Imam, Muhammad A.; Jeelani, Shaik; Rangari, Vijaya K.; Gome, Michelle G.; Moura, Esperidiana. A. B.
2016-02-01
Nylon-6 is an engineering plastic with excellent properties and processability, which are essential in several industrial applications. The addition of filler such as diamond (DN) and diamond coated carbon nanotubes (CNTs) to form molded composites may increase the range of Nylon-6 applications due to the resulting increase in strength. The effects of electron-beam irradiation on these thermoplastic nanocomposites are either increase in the cross-linking or causes chain scission. In this study, DN-coated CNTs were synthesized using the sonochemical technique in the presence of cationic surfactant cetyltrimethyl ammonium bromide (CTAB). The DN-coated CNTs nanoparticles and diamond nanoparticles were then introduced into Nylon-6 polymer through a melt extrusion process to form nanocomposite fibers. They were further tested for their mechanical (Tensile) and thermal properties (thermogravimetric analysis (TGA), differential scanning calorimetry (DSC)). These composites were further exposed to the electron-beam (160kGy, 132kGy and 99kGy) irradiation using a 1.5MeV electron-beam accelerator, at room temperature, in the presence of air and tested for their thermal and mechanical properties. The best ultimate tensile strength was found to be 690MPa and 864MPa irradiated at 132 for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber as compared to 346MPa and 321MPa for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber without irradiation. The neat Nylon-6 tensile strength was 240MPa. These results are consistent with the activation energy calculated from TGA graphs. DSC analysis result shows that the slight increase in glass transition temperature (Tg) and decrease in melting temperature (Tm) which was expected from high electron-beam radiation dose.
Welding of titanium and stainless steel using the composite insert
NASA Astrophysics Data System (ADS)
Cherepanov, A. N.; Mali, V. I.; Orishich, A. M.; Malikov, A. G.; Drozdov, V. O.; Malyutina, Y. N.
2016-11-01
The paper concerns the possibility of obtaining a lasting permanent joint of dissimilar metals: technically pure titanium and stainless steel using laser welding and an intermediate composite insert. The insert was a four-layer composition of plates of steel, copper, niobium, and titanium welded by explosion. The material layers used in the insert prevented the molten steel and titanium from mixing, which excluded the formation of brittle intermetallic compounds, such as FeTi and Fe2Ti. The optimization of explosion welding parameters provided a high quality of the four-layer composition and the absence of defects in the area of the joint of insert plates. The results of strength tests showed that values of the ultimate strength and yield of the permanent joint with the composite insert welded by explosion are comparable to the strength characteristics of titanium.
Improving properties of Mg with Al–Cu additions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashad, Muhammad, E-mail: rashadphy87@gmail.com; National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044; Pan, Fusheng, E-mail: fspan@cqu.edu.cn
The present work reports improvement in tensile properties of the Mg matrix reinforced with micron-sized copper–aluminum particulate hybrids. The Al–Cu particulate hybrids were incorporated into the Mg matrix through powder metallurgy method. The synthesized alloys exhibited homogeneously dispersed Mg{sub 2}Cu particles in the matrix, therefore leading to a 110% increase in yield strength (221 MPa) and a 72% enhancement in ultimate tensile strength (284 MPa) by addition of 1.0 wt.%Al–0.6 wt.%Cu particle hybrids. Optical microscopy, scanning election microscopy, transmission electron microscopy and X-ray diffraction were used to investigate the microstructure and intermetallic phases of the synthesized alloys. - Highlights: •more » Mg matrix is reinforced with Al–Cu particulate hybrids. • Powder metallurgic method is used to fabricate the alloys. • Tensile strength and ductility were increased simultaneously.« less
NASA Technical Reports Server (NTRS)
Pizzo, P. P.
1980-01-01
The microstructure and tensile properties of two powder metallurgy processed aluminum-lithium alloys were determined. Strength properties of 480 MPa yield and 550 MPa ultimate tensile strength with 5% strain to fracture were attained. Very little reduction in area was observed and fracture characteristics were brittle. The magnesium bearing alloy exhibited the highest strength and ductility, but fracture was intergranular. Recrystallization and grain growth, as well as coarse grain boundary precipitation, occurred in Alloy 2. The fracture morphology of the two alloys differed. Alloy 1 fractured along a plane of maximum shear stress, while Alloy 2 fractured along a plane of maximum tensile stress. It is found that a fixed orientation relationship exists between the shear fracture plane and the rolling direction which suggests that the PM alloys are strongly textured.
Damage and strength of composite materials: Trends, predictions, and challenges
NASA Technical Reports Server (NTRS)
Obrien, T. Kevin
1994-01-01
Research on damage mechanisms and ultimate strength of composite materials relevant to scaling issues will be addressed in this viewgraph presentation. The use of fracture mechanics and Weibull statistics to predict scaling effects for the onset of isolated damage mechanisms will be highlighted. The ability of simple fracture mechanics models to predict trends that are useful in parametric or preliminary designs studies will be reviewed. The limitations of these simple models for complex loading conditions will also be noted. The difficulty in developing generic criteria for the growth of these mechanisms needed in progressive damage models to predict strength will be addressed. A specific example for a problem where failure is a direct consequence of progressive delamination will be explored. A damage threshold/fail-safety concept for addressing composite damage tolerance will be discussed.
Rebecca E. Ibach; Craig M. Clemons
2006-01-01
Although moisture sorption in woodfiber-thermoplastic composites (WPCs) is slower than in unmodified solid wood, it still affects strength and ultimately results in decay of the material in moist outdoor exposure conditions. Chemical modification of the hydroxyl groups of wood with acetic anhydride esterifies the hydroxyl making the wood more hydrophobic and...
USDA-ARS?s Scientific Manuscript database
The FASST (Fast All Season Strength model, US Army Corps of Engineers), one-dimensional hydrologic model was used to evaluate soil moisture across the USDA-ARS-SEWRL Little River Watershed in south Georgia US. The ultimate goal of this research is to assess the spatial variation of soil moisture acr...
NASA Astrophysics Data System (ADS)
Zhao, Shan; McNamara, Cameron T.; Bowen, Patrick K.; Verhun, Nicholas; Braykovich, Jacob P.; Goldman, Jeremy; Drelich, Jaroslaw W.
2017-03-01
Zinc shows great promise as a bioabsorbable metal; however, the low tensile strength of pure zinc limits its application for endovascular stent purposes. In this study, a new Zn- xLi alloy (with x = 2, 4, 6 at. pct) was prepared by induction melting in an argon atmosphere and processed through hot rolling. Structures of the formulated binary alloys were characterized by X-ray diffraction and optical microscopy. Mechanical testing showed that the incorporation of Li into Zn increased ultimate tensile strength from <120 MPa (pure Zn) to >560 MPa ( x = 6 at. pct). In vitro corrosion behavior was evaluated by immersion tests in simulated body fluid. The Zn-2Li and Zn-4Li corrosion study demonstrated that corrosion rates and products resemble those observed for pure Zn in vivo, and in addition, the Zn-4Li alloy exhibits higher resistance to corrosion as compared to Zn-2Li. The findings herein encourage further exploration of Zn-Li systems for structural use in biomedical vascular support applications with the ultimate goal of simplifying stent procedures, thereby reducing stent-related complications.
Tensile properties of cast titanium alloys: Titanium-6Al-4V ELI and Titanium-5Al-2.5Sn ELI
NASA Technical Reports Server (NTRS)
Billinghurst, E. E., Jr.
1992-01-01
This work was performed to determine the tensile properties of cast, hot isostatic pressed (HIP'ed), and annealed titanium alloys, Ti-6Al-4V ELI and Ti-5Al-2.5Sn ELI, that are candidate materials for the space transportation main engine (STME) liquid hydrogen turbopump impeller. Samples of the cast alloys were HIP'ed, annealed, and machined into tensile specimens. The specimens were tested in air at ambient temperature (70 F) and also at -423 F in liquid hydrogen. The Ti-6Al-4V alloy had an average ultimate strength of 129.1 ksi at 70 F and 212.2 ksi at -423 F. The Ti-5Al-2.5Sn alloy had an average ultimate strength of 108.4 ksi at 70 degrees F and 185.0 ksi at -423 F. The ductility, as measured by reduction of area, for the Ti-6Al-4V averaged 15.2 percent at 70 F and 8.7 percent at -423 F, whereas for the Ti-5Al-2.5Sn alloy average reduction of area was 24.6 percent at 70 F and 11.7 percent at -423 F.
Compressive behavior of laminated neoprene bridge bearing pads under thermal aging condition
NASA Astrophysics Data System (ADS)
Jun, Xie; Zhang, Yannian; Shan, Chunhong
2017-10-01
The present study was conducted to obtain a better understanding of the variation rule of mechanical properties of laminated neoprene bridge bearing pads under thermal aging condition using compression tests. A total of 5 specimens were processed in a high-temperature chamber. After that, the specimens were tested subjected to axial load. The parameter mainly considered time of thermal aging processing for specimens. The results of compression tests show that the specimens after thermal aging processing are more probably brittle failure than the standard specimen. Moreover, the exposure of steel plate, cracks and other failure phenomena are more serious than the standard specimen. The compressive capacity, ultimate compressive strength, compressive elastic modulus of the laminated neoprene bridge bearing pads decreased dramatically with the increasing in the aging time of thermal aging processing. The attenuation trends of ultimate compressive strength, compressive elastic modulus of laminated neoprene bridge bearing pads under thermal aging condition accord with power function. The attenuation models are acquired by regressing data of experiment with the least square method. The attenuation models conform to reality well which shows that this model is applicable and has vast prospect in assessing the performance of laminated neoprene bridge bearing pads under thermal aging condition.
Experimental Study on Basic Mechanical Properties of BFRP Bars
NASA Astrophysics Data System (ADS)
Fan, Xiaochun; Xu, Ting; Zhou, Zhengrong; Zhou, Xun
2017-10-01
Basalt Fiber Reinforced Polymer (BFRP) bars have the advantages of corrosion resistance, high strength, light weight, good dielectric properties, and they are new type of green reinforced alternative material. In order to determine the mechanical properties of BFRP bars, the tensile strength of basalt fiber bars was necessary to be studied. The diameters of the basalt fiber bars were compared by means of uniaxial tensile test in this article. Then the stress-strain curve can be drawn out. The results show that the stress - strain curve of BFRP bars present straight line relation, and there is no sign before failure; there is no yield platform on the stress-strain curve of BFRP bars, which are typical brittle material;the tensile strength of BFRP bars is about 3 times higher than that of ordinary steel bars. and the elastic modulus is about 1/5 of that of ordinary steel; the ultimate tensile strength of BFRP bars varies little with the increase of diameter, but there exist some differences in modulus values.
Effect of tulle on the mechanical properties of a maxillofacial silicone elastomer.
Gunay, Yumushan; Kurtoglu, Cem; Atay, Arzu; Karayazgan, Banu; Gurbuz, Cihan Cem
2008-11-01
The purpose of this research was to investigate if physical properties could be improved by incorporating a tulle reinforcement material into a maxillofacial silicone elastomer. A-2186 silicone elastomer was used in this study. The study group consisted of 20 elastomer specimens incorporated with tulle and fabricated in dumbbell-shaped silicone patterns using ASTM D412 and D624 standards. The control group consisted of 20 elastomer specimens fabricated without tulle. Tensile strength, ultimate elongation, and tear strength of all specimens were measured and analyzed. Statistical analyses were performed using Mann-Whitney U test with a statistical significance at 95% confidence level. It was found that the tensile and tear strengths of tulle-incorporated maxillofacial silicone elastomer were higher than those without tulle incorporation (p < 0.05). Therefore, findings of this study suggested that tulle successfully reinforced a maxillofacial silicone elastomer by providing it with better mechanical properties and augmented strength--especially for the delicate edges of maxillofacial prostheses.
Bearing Strengths of Some Wrought-aluminum Alloys
NASA Technical Reports Server (NTRS)
Moore, R L; Wescoat, C
1943-01-01
Although a number of investigations of the bearing strength of aluminum alloys have been made, the problem remains one of considerable interest to the aircraft industry. For this reason it has seemed advisable to make additional tests of the commonly used aircraft alloys in an effort to establish a better basis for the selection of allowable bearing values. Current design practice does not recognize the effect of edge distance upon bearing strengths, and for this reason edge distance was one of the principal variables considered in this investigation. The increasing emphasis being placed upon permanent set limitations makes it essential that more information on bearing yield phenomena be obtained. The object of this investigation was to determine bearing yield and ultimate strengths of the following aluminum alloy products: 17S-T, 24S-T, Alclad 24S-T, 24S-RT, 52S-0, 52S-1/2H, 52S-H, 53S-T, and 61S-T extrusions. Ratios of these bearing properties to tensile properties were also determined.
Lamination residual stresses in hybrid composites, part 1
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1976-01-01
An experimental investigation was conducted to study lamination residual stresses for various material and loading parameters. The effects of hybridization on residual stresses and residual properties after thermal cycling under load were determined in angle-ply graphite/Kevlar/epoxy and graphite/S-glass/epoxy laminates. Residual strains in the graphite plies are not appreciably affected by the type and number of hybridizing plies. Computed residual stresses at room temperature in the S-glass plies reach values up to seventy-five percent of the transverse strength of the material. Computed residual stresses in the graphite plies exceed the static strength by approximately ten percent. In the case of Kevlar plies, computed residual stresses far exceed the static strength indicating possible early failure of these plies. Static testing of the hybrids above indicates that failure is governed by the ultimate strain of the graphite plies. In thermally cycled hybrids, in general, residual moduli were somewhat lower and residual strengths were higher than initial values.
Crack blunting and the strength of soft elastic solids
NASA Astrophysics Data System (ADS)
Hui, C.-Y.; Jagota, A.; Bennison, S. J.; Londono, J. D.
2003-06-01
When a material is so soft that the cohesive strength (or adhesive strength, in the case of interfacial fracture) exceeds the elastic modulus of the material, we show that a crack will blunt instead of propagating. Large-deformation finite-element model (FEM) simulations of crack initiation, in which the debonding processes are quantified using a cohesive zone model, are used to support this hypothesis. An approximate analytic solution, which agrees well with the FEM simulation, gives additional insight into the blunting process. The consequence of this result on the strength of soft, rubbery materials is the main topic of this paper. We propose two mechanisms by which crack growth can occur in such blunted regions. We have also performed experiments on two different elastomers to demonstrate elastic blunting. In one system, we present some details on a void growth mechanism for ultimate failure, post-blunting. Finally, we demonstrate how crack blunting can shed light on some long-standing problems in the area of adhesion and fracture of elastomers.
Pellegata, Alessandro F; Asnaghi, M Adelaide; Stefani, Ilaria; Maestroni, Anna; Maestroni, Silvia; Dominioni, Tommaso; Zonta, Sandro; Zerbini, Gianpaolo; Mantero, Sara
2013-01-01
Small caliber vessels substitutes still remain an unmet clinical need; few autologous substitutes are available, while synthetic grafts show insufficient patency in the long term. Decellularization is the complete removal of all cellular and nuclear matters from a tissue while leaving a preserved extracellular matrix representing a promising tool for the generation of acellular scaffolds for tissue engineering, already used for various tissues with positive outcomes. The aim of this work is to investigate the effect of a detergent-enzymatic decellularization protocol on swine arteries in terms of cell removal, extracellular matrix preservation, and mechanical properties. Furthermore, the effect of storage at -80°C on the mechanical properties of the tissue is evaluated. Swine arteries were harvested, frozen, and decellularized; histological analysis revealed complete cell removal and preserved extracellular matrix. Furthermore, the residual DNA content in decellularized tissues was far low compared to native one. Mechanical testings were performed on native, defrozen, and decellularized tissues; no statistically significant differences were reported for Young's modulus, ultimate stress, compliance, burst pressure, and suture retention strength, while ultimate strain and stress relaxation of decellularized vessels were significantly different from the native ones. Considering the overall results, the process was confirmed to be suitable for the generation of acellular scaffolds for vascular tissue engineering.
NASA Astrophysics Data System (ADS)
Gupta, Rahul; Chaudhari, G. P.; Daniel, B. S. S.
2018-03-01
In this study, in situ Titanium-tri-aluminide (Al3Ti) particles reinforced Al 6061 alloy matrix composites were fabricated by the reaction of potassium hexafluorotitanate (K2TiF6) inorganic salt with molten Al 6061 alloy via liquid metallurgy route. The development of in-situ Al3Ti particles and their effects on the mechanical properties such as yield strength (YS), ductility, ultimate tensile strength (UTS) and hardness, and microstructure of Al 6061 alloy were studied. It was observed from the results that in-situ formed Al3Ti particles were blocky in morphology whose average size was around 2.6 ± 1.1 μm. Microstructure studies showed that grain size of Al matrix was reduced due to the nucleating effect of Al3Ti particles. It was observed from the mechanical properties analysis that when the volume fraction of Al3Ti particles was increased, the hardness, UTS and YS of the composites were also increased as compared to that of Al 6061 alloy. An improvement in ductility was observed with the dispersion of Al3Ti particles in base alloy which is contrary to many other composites.
Experimental Study On The Effect Of Micro-Cracks On Brazilian Tensile Strength
NASA Astrophysics Data System (ADS)
Wang, Xiangyu
2015-12-01
For coal mine ground control issues, it is necessary to propose a failure criteria accounting for the transversely isotropic behaviors of rocks. Hence, it is very helpful to provide experimental data for the validation of the failure criteria. In this paper, the method for preparing transversely isotropic specimens and the scheme of the Brazilian tensile strength test are presented. Results obtained from Brazilian split tests under dry and water-saturated conditions reflect the effect of the development direction β of the structural plane, such as the bedding fissure, on the tensile strength, ultimate displacement, failure mode, and the whole splitting process. The results show that the tensile strength decreases linearly with increasing β. The softening coefficient of the tensile strength shows a sinusoidal function. The values of the slope and inflection point for the curve vary at the different stages of the Brazilian test. The failure mode of the rock specimen presented in this paper generally coincides with the standard Brazilian splitting failure mode. Based on the test results, the major influencing factors for the Brazilian splitting strength are analyzed and a mathematical model for solving the Brazilian splitting strength is proposed. The findings in this paper would greatly benefit the coal mine ground control studies when the surrounding rocks of interest show severe transversely isotropic behaviors.
Fracture Strength of Monolithic All-Ceramic Crowns on Titanium Implant Abutments.
Weyhrauch, Michael; Igiel, Christopher; Scheller, Herbert; Weibrich, Gernot; Lehmann, Karl Martin
2016-01-01
The fracture strengths of all-ceramic crowns cemented on titanium implant abutments may vary depending on crown materials and luting agents. The purpose of this study was to examine differences in fracture strength among crowns cemented on implant abutments using crowns made of seven different monolithic ceramic materials and five different luting agents. In total, 525 crowns (75 each of Vita Mark II, feldspathic ceramic [FSC]; Ivoclar Empress CAD, leucite-reinforced glass ceramic [LrGC]; Ivoclar e.max CAD, lithium disilicate [LiDS]; Vita Suprinity, presintered zirconia-reinforced lithium silicate ceramic [PSZirLS]; Vita Enamic, polymer-reinforced fine-structure feldspathic ceramic [PolyFSP], Lava Ultimate; resin nanoceramic [ResNC], Celtra Duo; fully crystallized zirconia-reinforced lithium silicate [FcZirLS]) were milled using a CAD/CAM system. The inner surfaces of the crowns were etched and silanized. Titanium implant abutments were fixed on implant analogs, and airborne-particle abrasion was used on their exterior specific adhesion surfaces (Al2O3, 50 μm). Then, the abutments were degreased and silanized. The crowns were cemented on the implant abutments using five luting agents (Multilink Implant, Variolink II, RelyX Unicem, GC FujiCEM, Panavia 2.0). After thermocycling for 5,000 cycles (5 to 55°C, 30 seconds dwell time), the crowns were subjected to fracture strength testing under static load using a universal testing machine. Statistical analyses were performed using analysis of variance (α = .0002) and the Bonferroni correction. No significant difference among the luting agents was found using the different all-ceramic materials. Ceramic materials LiDS, PSZirLS, PolyFSP, and ResNC showed significantly higher fracture strength values compared with FSC, FcZirLS, and LrGC. The PSZirLS especially showed significantly better results. Within the limitations of this study, fracture strength was not differentially affected by the various luting agents. However, the fracture strength was significantly higher for PSZirLS, PolyFSP, ResNC, and LiDS ceramics than for the FSP, LrGC, and the FcZirLS ceramic with all luting agents tested.
NASA Astrophysics Data System (ADS)
Faizah Bawadi, Nor; Anuar, Shamilah; Rahim, Mustaqqim A.; Mansor, A. Faizal
2018-03-01
A conventional and seismic method for determining the ultimate pile bearing capacity was proposed and compared. The Spectral Analysis of Surface Wave (SASW) method is one of the non-destructive seismic techniques that do not require drilling and sampling of soils, was used in the determination of shear wave velocity (Vs) and damping (D) profile of soil. The soil strength was found to be directly proportional to the Vs and its value has been successfully applied to obtain shallow bearing capacity empirically. A method is proposed in this study to determine the pile bearing capacity using Vs and D measurements for the design of pile and also as an alternative method to verify the bearing capacity from the other conventional methods of evaluation. The objectives of this study are to determine Vs and D profile through frequency response data from SASW measurements and to compare pile bearing capacities obtained from the method carried out and conventional methods. All SASW test arrays were conducted near the borehole and location of conventional pile load tests. In obtaining skin and end bearing pile resistance, the Hardin and Drnevich equation has been used with reference strains obtained from the method proposed by Abbiss. Back analysis results of pile bearing capacities from SASW were found to be 18981 kN and 4947 kN compared to 18014 kN and 4633 kN of IPLT with differences of 5% and 6% for Damansara and Kuala Lumpur test sites, respectively. The results of this study indicate that the seismic method proposed in this study has the potential to be used in estimating the pile bearing capacity.
Evaluation of urethane for feasibility of use in wind turbine blade design
NASA Technical Reports Server (NTRS)
Lieblein, S.; Ross, R. S.; Fertis, D. G.
1979-01-01
A preliminary evaluation was conducted of the use of cast urethane as a possible material for low-cost blades for wind turbines. Specimen test data are presented for ultimate tensile strength, elastic modulus, flexural strain, creep, and fatigue properties of a number of urethane formulations. Data are also included for a large-scale urethane blade section composed of cast symmetrical half-profiles tested as a cantilever beam. Based on these results, an analysis was conducted of a full-scale blade design of cast urethane that meets the design specifications of the rotor blades for the NASA/DOE experimental 100-kW MOD-0 wind turbine. Because of the low value of elastic modulus for urethane (around 457 000 psi), the design loads would have to be carried by metal reinforcement. Considerations for further evaluation are noted.
Failure analysis of single-bolted joint for lightweight composite laminates and metal plate
NASA Astrophysics Data System (ADS)
Li, Linjie; Qu, Junli; Liu, Xiangdong
2018-01-01
A three-dimensional progressive damage model was developed in ANSYS to predict the damage accumulation of single bolted joint in composite laminates under in-plane tensile loading. First, we describe the formulation and algorithm of this model. Second, we calculate the failure loads of the joint in fibre reinforced epoxy laminated composite plates and compare it with the experiment results, which validates that our model can appropriately simulate the ultimate tensile strength of the joints and the whole process of failure of structure. Finally, this model is applied to study the failure process of the light-weight composite material (USN125). The study also has a great potential to provide a strong basis for bolted joints design in composite Laminates as well as a simple tool for comparing different laminate geometries and bolt arrangements.
ERIC Educational Resources Information Center
Kirylo, James D.
2011-01-01
The unfolding of Paulo Freire's philosophy, uniqueness, and the lens through which he viewed the world, which ultimately brought this gentle spirit of a man onto the world stage, began at a young age in his hometown of Recife, Brazil. Remarkably grounded in the wisdom of humility, yet gifted with a determined strength, deep insight, and perceptive…
Certification Issues Relating to ABDR
2010-05-01
design techniques, among them increased utilization of advanced fibre reinforced materials or advanced metal alloys with higher material allowables for...most cases as a combination of a high strength/modulus carbon fibre and a hot curing thermoset resin. A high percentage of modern fighter aircraft’s...34Limited Fibre Strain Approach" at ultimate design loadcases, where the reduced material allowables account for a low energy impact damage level
49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives
Code of Federal Regulations, 2013 CFR
2013-10-01
... vertical acceleration of 2g, without exceeding the ultimate strength of the material. The load is assumed... maximize the vertical clearance between the top of the rail and the bottom of the fuel tank. (2) Load case... equivalent to one half the weight of the locomotive at a vertical acceleration of 2g, without exceeding the...
49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives
Code of Federal Regulations, 2010 CFR
2010-10-01
... vertical acceleration of 2g, without exceeding the ultimate strength of the material. The load is assumed... maximize the vertical clearance between the top of the rail and the bottom of the fuel tank. (2) Load case... equivalent to one half the weight of the locomotive at a vertical acceleration of 2g, without exceeding the...
49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives
Code of Federal Regulations, 2014 CFR
2014-10-01
... vertical acceleration of 2g, without exceeding the ultimate strength of the material. The load is assumed... maximize the vertical clearance between the top of the rail and the bottom of the fuel tank. (2) Load case... equivalent to one half the weight of the locomotive at a vertical acceleration of 2g, without exceeding the...
Micromechanics of fatigue in woven and stitched composites
NASA Technical Reports Server (NTRS)
Cox, B. N.; Carter, W. C.; Dadkhah, M. S.; Morris, W. L.
1994-01-01
The goals of this research program were to: (1) determine how microstructural factors, especially the architecture of reinforcing fibers, control stiffness, strength, and fatigue life in 3D woven composites; (2) identify mechanisms of failure; (3) model composite stiffness; (4) model notched and unnotched strength; and (5) model fatigue life. We have examined a total of eleven different angle and orthogonal interlock woven composites. Extensive testing has revealed that these 3D woven composites possess an extraordinary combination of strength, damage tolerance, and notch insensitivity in compression and tension and in monotonic and cyclic loading. In many important regards, 3D woven composites far outstrip conventional 2D laminates or stitched laminates. Detailed microscopic analysis of damage has led to a comprehensive picture of the essential mechanisms of failure and how they are related to the reinforcement geometry. The critical characteristics of the weave architecture that promote favorable properties have been identified. Key parameters are tow size and the distributions in space and strength of geometrical flaws. The geometrical flaws should be regarded as controllable characteristics of the weave in design and manufacture. In addressing our goals, the simplest possible models of properties were always sought, in a blend of old and new modeling concepts. Nevertheless, certain properties, especially regarding damage tolerance, ultimate failure, and the detailed effects of weave architecture, require computationally intensive stochastic modeling. We have developed a new model, the 'binary model,' to carry out such tasks in the most efficient manner and with faithful representation of crucial mechanisms. This is the final report for contract NAS1-18840. It covers all work from April 1989 up to the conclusion of the program in January 1993.