Sample records for ultra clean room

  1. Cleaning-resistant Cupriavidus and Ralstonia bacteria contaminating spacecrafts and the ultra clean rooms they are assembled in.

    NASA Astrophysics Data System (ADS)

    Leys, N.; Dams, A.; Bossus, A.; Provoost, A.; Venkateswaran, K.; Mergeay, M.

    Background Planetary Protection is preventing microbial contamination of both the target planet and the Earth when sending spacecrafts on interplanetary space mission It is important to preserve the natural conditions of other planets and to not bring with robots earthly microbes forward contamination when looking for spores of extra terrestrial life Spacecrafts and the ultra clean rooms they are assembled in are routinely monitored for microbial contamination It was shown that the floor air and surfaces of such spacecraft assembly rooms often contain Cupriavidu s and Ralstonia bacteria These bacteria not only contaminated the clean rooms but have also been found prior-to-flight on surfaces of space robots such as the Mars Odyssey Orbiter La Duc et al 2003 and even in-flight in ISS cooling water and Shuttle drinking water unpublished Aim In this study several Cupriavidus and Ralstonia strains isolated from space craft assembling rooms and spacecrafts were characterized and analysed in detail Results The analysis showed that all the Cupriavidus and Ralstonia clean-room isolates are able to use a wide variety of substrates as carbon sources including ethanol and acetone In addition they all have accumulated moderate resistances to an extraordinary collection of physical and chemical antimicrobial agents Some of the test strains were able to form biofilms on plastic and metal materials used for space robots a nutritional and

  2. Mobile zoned/exponential LAF screen: a new concept in ultra-clean air technology for additional operating room ventilation.

    PubMed

    Friberg, B; Lindgren, M; Karlsson, C; Bergström, A; Friberg, S

    2002-04-01

    A mobile screen (0.5 x 0.4 m) producing ultra-clean exponential LAF (air-flow central zone 0.6 m/s and peripheral zone 0.4 m/s) was investigated as an addition to conventional turbulent/mixing operating room ventilation. The evaluation was performed during strictly standardized sham operations reflecting conditions during major surgery. The study consisted of a pilot experiment designed to give high counts of sedimenting aerobic colony forming units (cfu). In a second main study, recording dust particles, air-borne and sedimenting aerobic cfu, the screen was associated with optimal operating room clothing. In the pilot experiment the use of the screen resulted in a substantial reduction of sedimenting bacteria from 3835-4940 to 0-390 cfu/m(2)/h. In the main study, the use of the additional LAF reduced the surface contamination from 416-329 to 7-78 cfu/m(2)/h up to 1.6 m from the screen (P=0.001-0.0001). Measured in the wound area the screen reduced the air counts of bacteria from 9-14 to 0.2-0.4 cfu/m(3) (P=0.008-0.0001) and a marked reduction of air-borne dust particles was recorded (P=0.007-0.009). In conclusion, the additional mobile LAF screen reduced the counts of aerobic air-borne and sedimenting bacteria-carrying particles as well as dust particles to the levels gained with complete ultra-clean LAF room ventilation. Thus, the screen might prove a valuable addition to operating room ventilation as well as in other areas where asepsis is essential. Copyright 2002 The Hospital Infection Society.

  3. True Cost of Amateur Clean rooms

    NASA Technical Reports Server (NTRS)

    Ramsey, W. Lawrence

    2005-01-01

    This viewgraph document reviews the cost factors for clean rooms that are not professionally built, monitored or maintained. These amateur clean rooms are built because scientist and engineers desire to create a clean room to build a part of an experiment that requires a clean room, and the program manager is looking to save money. However, in the long run these clean rooms may not save money, as the cost of maintenance may be higher due to the cost of transporting the crews, and if the materials were of lesser quality, the cost of modifications may diminish any savings, and the product may not be of the same quality. Several examples are shown of the clean rooms that show some of the problems that can arise from amateur clean rooms.

  4. Clean room technology in surgery suites

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The principles of clean room technology and the criteria for their application to surgery are discussed. The basic types of surgical clean rooms are presented along with their advantages and disadvantages. Topics discussed include: microbiology of surgery suites; principles of laminar airflow systems, and their use in surgery; and asepsis and the operating room.

  5. 9 CFR 354.241 - Cleaning of rooms and compartments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... compartments. Rooms, compartments, or other parts of the official plant shall be kept clean and in sanitary... light fixtures in the official plant shall be kept clean. (c) All docks and rooms shall be kept clean... rooms should be kept clean at all times. (e) Floors in live rabbit holding rooms shall be cleaned with...

  6. 9 CFR 354.241 - Cleaning of rooms and compartments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... compartments. Rooms, compartments, or other parts of the official plant shall be kept clean and in sanitary... light fixtures in the official plant shall be kept clean. (c) All docks and rooms shall be kept clean... rooms should be kept clean at all times. (e) Floors in live rabbit holding rooms shall be cleaned with...

  7. How clean is your clean room?

    PubMed

    Govier, J

    2006-01-01

    After investment in a clean room, cleanliness, sanitisation or sterility is essential to ensuring it operates at the highest standard. This article advises on the products and maintenance procedures to achieve this.

  8. Clean Room in the Zero Gravity Research Facility

    NASA Image and Video Library

    1968-07-21

    A technician prepares a test sample in the Zero Gravity Research Facility clean room at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Zero Gravity Research Facility contained a drop tower which provided five seconds of microgravity during freefall in its 450-foot deep vacuum chamber. The facility has been used for a variety of studies relating to the behavior of fluids and flames in microgravity. During normal operations, a cylindrical 3-foot diameter and 11-foot long vehicle was used to house the experiments, instrumentation, and high speed cameras. The 4.5-foot long and 1.5-foot wide rectangular vehicle, seen in this photograph, was used less frequently. A 3-foot diameter orb was used for the special ten-second drops in which the package was pneumatically shot to the top of the tower then dropped. The facility also contained a control room, shop offices, tool and equipment rooms, and this clean room. The 242.5-foot long and 19.5-foot wide clean room was equipped with specialized cleaning equipment. In the 1960s the room was rated as a class 10,000 clean room, but I was capable of meeting the class 100 requirements. The room included a fume hood, ultrasonic cleaner, and a laminar flow station which operated as a class 100 environment. The environment in the clean room was maintained at 71° F and a relative humidity of 45- percent.

  9. Further bacteriological evaluation of the TOUL mobile system delivering ultra-clean air over surgical patients and instruments.

    PubMed

    Thore, M; Burman, L G

    2006-06-01

    Two mobile TOUL-400 units (types 1 and 2) that produce an exponential ultra-clean air flow (EUA) via a mobile screen were evaluated (maximum height from floor to centre of screen: type 1, 1.4m; type 2, 1.6m). Bacterial deposition rates were lowered by >60% (P=0.001) over a table area of 1.7 m (length)x1.0m (width) with the TOUL-400 type 1 unit, and the mean air count at 1.0m from the screen was reduced from 23 to 1.6 colony-forming units (CFU)/m3 in experiments in a room with six air changes/h (ACH). The corresponding reductions were two- to three-fold greater in an operating room (OR) with 16 ACH due to higher bacterial contamination levels in the control experiments. The dramatic but localized reduction of the deposition rate recorded on one 14-cm settle plate (>2376-fold at 0.8m from the screen in the OR) apparently reflected the focus of the EUA. The impact of the TOUL-400 unit was underestimated by almost 100-fold by the air counts of bacteria recorded in parallel at the same sampling point (26.5-fold reduction). During sham coronary angiography and sham hip arthroplasty performed in a room with six ACH, ultra-clean air (<10 CFU/m3) was obtained over the incision area with the TOUL-400 type 2 unit when the EUA was undisturbed (maximum screen-wound distance 1.7 m). In actual coronary angiography (room with six ACH, screen-wound distance 2.0-2.3m) and various surgical procedures in the OR (screen-wound distance 1.4-1.8m), ultra-clean air was obtained at the wound in three of 18 instances, characterized by undisturbed air flow and a maximum distance of 1.8 m. The newly developed TOUL-300 surgical instrument table (1.3-1.7 x 0.6m), equipped at one end with the same EUA unit as the TOUL-400 unit, was evaluated for a room with six ACH and an OR with 16 ACH. It yielded ultra-clean air at 0.8m (1.9 CFU/m3, 96% reduction, P=0.01) and reduced the deposition rate by >60% over most of the table surface. Simplified positioning of the screen or a longer reach, plus a

  10. 'How To' Clean Room Video

    NASA Technical Reports Server (NTRS)

    McCarty, Kaley Corinne

    2013-01-01

    One of the projects that I am completing this summer is a Launch Services Program intern 'How to' set up a clean room informational video. The purpose of this video is to go along with a clean room kit that can be checked out by employees at the Kennedy Space Center and to be taken to classrooms to help educate students and intrigue them about NASA. The video will include 'how to' set up and operate a clean room at NASA. This is a group project so we will be acting as a team and contributing our own input and ideas. We will include various activities for children in classrooms to complete, while learning and having fun. Activities that we will explain and film include: helping children understand the proper way to wear a bunny suit, a brief background on cleanrooms, and the importance of maintaining the cleanliness of a space craft. This project will be shown to LSP management and co-workers; we will be presenting the video once it is completed.

  11. 9 CFR 354.241 - Cleaning of rooms and compartments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... skinning room shall be kept clean and free from offensive odors at all times. (g) The walls, floors, and all equipment and utensils used in the killing and skinning room shall be thoroughly washed and cleaned after each day's operation. (h) The floor in the killing and skinning rooms shall be cleaned...

  12. 9 CFR 354.241 - Cleaning of rooms and compartments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... skinning room shall be kept clean and free from offensive odors at all times. (g) The walls, floors, and all equipment and utensils used in the killing and skinning room shall be thoroughly washed and cleaned after each day's operation. (h) The floor in the killing and skinning rooms shall be cleaned...

  13. Evaluation of Ultra Clean Fuels from Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Abbott; Edward Casey; Etop Esen

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-cleanmore » burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also

  14. Diversity of anaerobic microbes in spacecraft assembly clean rooms.

    PubMed

    Probst, Alexander; Vaishampayan, Parag; Osman, Shariff; Moissl-Eichinger, Christine; Andersen, Gary L; Venkateswaran, Kasthuri

    2010-05-01

    Although the cultivable and noncultivable microbial diversity of spacecraft assembly clean rooms has been previously documented using conventional and state-of-the-art molecular techniques, the occurrence of obligate anaerobes within these clean rooms is still uncertain. Therefore, anaerobic bacterial communities of three clean-room facilities were analyzed during assembly of the Mars Science Laboratory rover. Anaerobic bacteria were cultured on several media, and DNA was extracted from suitable anaerobic enrichments and examined with conventional 16S rRNA gene clone library, as well as high-density phylogenetic 16S rRNA gene microarray (PhyloChip) technologies. The culture-dependent analyses predominantly showed the presence of clostridial and propionibacterial strains. The 16S rRNA gene sequences retrieved from clone libraries revealed distinct microbial populations associated with each clean-room facility, clustered exclusively within gram-positive organisms. PhyloChip analysis detected a greater microbial diversity, spanning many phyla of bacteria, and provided a deeper insight into the microbial community structure of the clean-room facilities. This study presents an integrated approach for assessing the anaerobic microbial population within clean-room facilities, using both molecular and cultivation-based analyses. The results reveal that highly diverse anaerobic bacterial populations persist in the clean rooms even after the imposition of rigorous maintenance programs and will pose a challenge to planetary protection implementation activities.

  15. Clean Room at Goddard Space Flight Center

    NASA Image and Video Library

    2010-03-10

    This panorama shows the inside of Goddard's High Bay Clean Room, as seen from the observation deck. Credit: NASA/Goddard Space Flight Center/Chris Gunn Go into a NASA Clean Room Daily with the Webb Telescope via NASA's 'Webb-cam' here: www.jwst.nasa.gov/webcam.html For more information on JWST go to: www.jwst.nasa.gov/ For more information on Goddard Space Flight Center go to: www.nasa.gov/centers/goddard/home/index.html

  16. Clean room survey and assessment, volume 5, appendix H

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The scope of this task is to perform a comparative analysis of the various Environmental Control Life Support System (ECLSS) options for different growth scenarios. The Space Station Freedom ECLSS design and existing ground-based clean room facilities are used as a baseline for comparison. Specifically addressed here are the ground based clean room facilities at the Marshall Space Flight Center (MSFC). Given here is an evaluation of the facilities, equipment, technologies, and procedures used to maintain specified environments in typical aerospace industrial areas. Twenty-five specific clean rooms are evaluated. The objectives were to collect, compare, and catalog data for each specified facility in the areas of engineering and design, construction materials, work stations, contamination control, particulate elimination, entry systems, and instrumentation, and to make recommendations concerning enhancements required to assure an efficient and orderly evolution of MSFC clean room environmental control facilities.

  17. The addition of a mobile ultra-clean exponential laminar airflow screen to conventional operating room ventilation reduces bacterial contamination to operating box levels.

    PubMed

    Friberg, S; Ardnor, B; Lundholm, R; Friberg, B

    2003-10-01

    A mobile screen producing ultra-clean exponential laminar airflow (LAF) was investigated as an addition to conventional turbulent/mixing operating room (OR) ventilation (16 air changes/h). The evaluation was performed in a small OR (50 m(3)) during 60 standardized operations for groin hernia including mesh implantation. The additional ventilation was used in 50 of the operations. The LAF passed from the foot-end of the OR table over the instrument and surgical area. Strict hygiene OR procedures including tightly woven and non-woven OR clothing were used. Sedimentation rates were recorded at the level of the patients' chests (N=60) (i.e. the air had passed the surgical team) and in the periphery of the OR. In addition bacterial air contamination was studied above the patients' chests in all 10 operations without the additional LAF and in 12 with the LAF. The screen reduced the mean counts of sedimenting bacteria (cfu/m(2)/h) on the patients' chests from 775 without the screen to 355 (P=0.0003). The screen also reduced the mean air counts of bacteria (cfu/m(3)) above the patients' chests from 27 to 9 (P=0.0001). No significant differences in mean sedimentation rates (cfu/m(2)/h) existed in the periphery of the OR where 628 without and 574 with screen were recorded. During the follow-up period of six months no surgical site infections were detected. In conclusion when the mobile LAF screen was added to conventional OR ventilation the counts of aerobic airborne and sedimenting bacteria-carrying particles downstream of the surgical team were reduced to the levels achieved with complete ultra-clean LAF OR ventilation (operating box).

  18. Pioneer surgeon drove ultra clean technology.

    PubMed

    Parkin, Amanda

    2013-04-01

    On the 50th anniversary of the development of his ground-breaking hip replacement surgical technique, Amanda Parkin, communications consultant with clean air technology specialist, Howorth Air Technology, examines Professor Sir John Charnley's influence on orthopaedic surgery, and explains how his realisation that any subsequent infection may not appear until long after the operation, and that keeping bacteria away from the wound during the procedure is the the key to minimising the risk, led to the emergence of 'ultra clean' operating theatre technology - within which Howorth was an early pioneer.

  19. 14. VIEW OF WEST WALL OF CLEAN ROOM (102) SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF WEST WALL OF CLEAN ROOM (102) SHOWING VIEWING WINDOWS IN WEST FALSE PARTION WALL, WEST WALL OF CLEAN ROOM (102), AND ROLLS OF PLASTIC WRAP FOR COVERING CLEANED FAIRING ASSEMBLY - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. 9 CFR 354.241 - Cleaning of rooms and compartments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Cleaning of rooms and compartments. 354.241 Section 354.241 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Sanitary Conditions and Precautions Against Contamination of Products § 354.241 Cleaning of rooms and...

  1. Diversity of Anaerobic Microbes in Spacecraft Assembly Clean Rooms ▿ †

    PubMed Central

    Probst, Alexander; Vaishampayan, Parag; Osman, Shariff; Moissl-Eichinger, Christine; Andersen, Gary L.; Venkateswaran, Kasthuri

    2010-01-01

    Although the cultivable and noncultivable microbial diversity of spacecraft assembly clean rooms has been previously documented using conventional and state-of-the-art molecular techniques, the occurrence of obligate anaerobes within these clean rooms is still uncertain. Therefore, anaerobic bacterial communities of three clean-room facilities were analyzed during assembly of the Mars Science Laboratory rover. Anaerobic bacteria were cultured on several media, and DNA was extracted from suitable anaerobic enrichments and examined with conventional 16S rRNA gene clone library, as well as high-density phylogenetic 16S rRNA gene microarray (PhyloChip) technologies. The culture-dependent analyses predominantly showed the presence of clostridial and propionibacterial strains. The 16S rRNA gene sequences retrieved from clone libraries revealed distinct microbial populations associated with each clean-room facility, clustered exclusively within gram-positive organisms. PhyloChip analysis detected a greater microbial diversity, spanning many phyla of bacteria, and provided a deeper insight into the microbial community structure of the clean-room facilities. This study presents an integrated approach for assessing the anaerobic microbial population within clean-room facilities, using both molecular and cultivation-based analyses. The results reveal that highly diverse anaerobic bacterial populations persist in the clean rooms even after the imposition of rigorous maintenance programs and will pose a challenge to planetary protection implementation activities. PMID:20228115

  2. Mobile ultra-clean unidirectional airflow screen reduces air contamination in a simulated setting for intra-vitreal injection.

    PubMed

    Lapid-Gortzak, Ruth; Traversari, Roberto; van der Linden, Jan Willem; Lesnik Oberstein, Sarit Y; Lapid, Oren; Schlingemann, Reinier O

    2017-02-01

    The aim of this study is to determine whether the use of a mobile ultra-clean laminar airflow screen reduces the air-borne particle counts in the setting of a simulated procedure of an intra-vitreal injection. A mobile ultra-clean unidirectional airflow (UDF) screen was tested in a simulated procedure for intra-vitreal injections in a treatment room without mechanical ventilation. One UDF was passed over the instrument tray and the surgical area. The concentration of particles was measured in the background, over the instrument table, and next to the ocular area. The degree of protection was calculated at the instrument table and at the surgical site. Use of the UDF mobile screen reduced the mean particle concentration (particles > 0.3 microns) on the instrument table by a factor of at least 100.000 (p < 0.05), and over the patient's eye by at least a factor of 436 (p < 0.05), which in clinical practice translates into significantly reduced air contamination. Mobile UDF screen reduces the mean particle concentration substantially. The mobile UDF screen may therefore allow for a safer procedural environment for ambulatory care procedures such as intra-vitreal injections in treatment rooms.

  3. Ultra-Low-Cost Room Temperature SiC Thin Films

    NASA Technical Reports Server (NTRS)

    Faur, Maria

    1997-01-01

    The research group at CSU has conducted theoretical and experimental research on 'Ultra-Low-Cost Room Temperature SiC Thin Films. The effectiveness of a ultra-low-cost room temperature thin film SiC growth technique on Silicon and Germanium substrates and structures with applications to space solar sells, ThermoPhotoVoltaic (TPV) cells and microelectronic and optoelectronic devices was investigated and the main result of this effort are summarized.

  4. Materials Science Clean Room Facility at Tulane University (Final Technical Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altiero, Nicholas

    2010-09-30

    The project involves conversion of a 3,000 sq. ft. area into a clean room facility for materials science research. It will be accomplished in phases. Phase I will involve preparation of the existing space, acquisition and installation of clean room equipped with a pulsed laser deposition (PLD) processing system, and conversion of ancillary space to facilitate the interface with the clean room. From a capital perspective, Phases II and III will involve the acquisition of additional processing, fabrication, and characterization equipment and capabilities.

  5. Microbial diversity in European and South American spacecraft assembly clean rooms

    NASA Astrophysics Data System (ADS)

    Moissl-Eichinger, Christine; Stieglmeier, Michaela; Schwendner, Petra

    Spacecraft assembly clean rooms are unique environments for microbes: Due to low nutri-ent levels, desiccated, clean conditions, constant control of humidity and temperature, these environments are quite inhospitable to microbial life and even considered "extreme". Many procedures keep the contamination as low as possible, but these conditions are also highly se-lective for indigenous microbial communities. For space missions under planetary protection requirements, it is crucial to control the contaminating bioburden as much as possible; but for the development of novel cleaning/sterilization methods it is also important to identify and characterize (understand) the present microbial community of spacecraft clean rooms. In prepa-ration for the recently approved ESA ExoMars mission, two European and one South American spacecraft assembly clean rooms were analyzed with respect to their microbial diversity, using standard procedures, new cultivation approaches and molecular methods, that should shed light onto the presence of planetary protection relevant microorganisms. For this study, the Her-schel Space Observatory (launched in May 2009) and its housing clean rooms in Friedrichshafen (Germany), at ESTEC (The Netherlands) and CSG, Kourou (French Guyana) were sampled during assembly, test and launch operations. Although Herschel does not demand planetary protection requirements, all clean rooms were in a fully operating state during sampling. This gave us the opportunity to sample the microbial diversity under strict particulate and molecular contamination-control. Samples were collected from spacecraft and selected clean room surface areas and were subjected to cultivation assays (32 different media), molecular studies (based on 16S rRNA gene sequence analysis) and quantitative PCR. The results from different strategies will be compared and critically discussed, showing the advantages and limits of the selected methodologies. This talk will sum up the lessons

  6. Applying a Wearable Voice-Activated Computer to Instructional Applications in Clean Room Environments

    NASA Technical Reports Server (NTRS)

    Graves, Corey A.; Lupisella, Mark L.

    2004-01-01

    The use of wearable computing technology in restrictive environments related to space applications offers promise in a number of domains. The clean room environment is one such domain in which hands-free, heads-up, wearable computing is particularly attractive for education and training because of the nature of clean room work We have developed and tested a Wearable Voice-Activated Computing (WEVAC) system based on clean room applications. Results of this initial proof-of-concept work indicate that there is a strong potential for WEVAC to enhance clean room activities.

  7. Payload canister transporter in VPF clean room

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Payload canister transporter in Vertical Processing Facility (VPF) Clean Room loaded with Earth Radiation Budget Satellite (ERBS), Large Format Camera (LFC) and Orbital Refueling System (ORS) for STS-41G mission.

  8. Apparel for Cleaner Clean Rooms

    NASA Technical Reports Server (NTRS)

    1983-01-01

    In the 1960s NASA pioneered contamination control technology, providing a base from which aerospace contractors could develop control measures. NASA conducted special courses for clean room technicians and supervisors, and published a series of handbooks with input from various NASA field centers. These handbooks extended aerospace experience to the medical, pharmaceutical, electronics, and other industries where extreme cleanliness is important. American Hospital Supply Company (AHSC) felt that high technology products with increasingly stringent operating requirements in aerospace, electronics, pharmaceuticals and medical equipment manufacturing demanded improvement in contamination control techniques. After studying the NASA handbooks and visiting NASA facilities, the wealth of information gathered resulted in Micro-clean non-woven garments and testing equipment and procedures for evaluating effectiveness.

  9. Molecular bacterial community analysis of clean rooms where spacecraft are assembled.

    PubMed

    Moissl, Christine; Osman, Shariff; La Duc, Myron T; Dekas, Anne; Brodie, Eoin; DeSantis, Todd; Desantis, Tadd; Venkateswaran, Kasthuri

    2007-09-01

    Molecular bacterial community composition was characterized from three geographically distinct spacecraft-associated clean rooms to determine whether such populations are influenced by the surrounding environment or the maintenance of the clean rooms. Samples were collected from facilities at the Jet Propulsion Laboratory (JPL), Kennedy Space Flight Center (KSC), and Johnson Space Center (JSC). Nine clone libraries representing different surfaces within the spacecraft facilities and three libraries from the surrounding air were created. Despite the highly desiccated, nutrient-bare conditions within these clean rooms, a broad diversity of bacteria was detected, covering all the main bacterial phyla. Furthermore, the bacterial communities were significantly different from each other, revealing only a small subset of microorganisms common to all locations (e.g. Sphingomonas, Staphylococcus). Samples from JSC assembly room surfaces showed the greatest diversity of bacteria, particularly within the Alpha- and Gammaproteobacteria and Actinobacteria. The bacterial community structure of KSC assembly surfaces revealed a high presence of proteobacterial groups, whereas the surface samples collected from the JPL assembly facility showed a predominance of Firmicutes. Our study presents the first extended molecular survey and comparison of NASA spacecraft assembly facilities, and provides new insights into the bacterial diversity of clean room environments .

  10. Measuring quality indicators in the operating room: cleaning and turnover time.

    PubMed

    Jericó, Marli de Carvalho; Perroca, Márcia Galan; da Penha, Vivian Colombo

    2011-01-01

    This exploratory-descriptive study was carried out in the Surgical Center Unit of a university hospital aiming to measure time spent with concurrent cleaning performed by the cleaning service and turnover time and also investigated potential associations between cleaning time and the surgery's magnitude and specialty, period of the day and the room's size. The sample consisted of 101 surgeries, computing cleaning time and 60 surgeries, computing turnover time. The Kaplan-Meier method was used to analyze time and Pearson's correlation to study potential correlations. The time spent in concurrent cleaning was 7.1 minutes and turnover time was 35.6 minutes. No association between cleaning time and the other variables was found. These findings can support nurses in the efficient use of resources thereby speeding up the work process in the operating room.

  11. Absorbed radiation doses to staff after implementation of a radiopharmacy clean room.

    PubMed

    Ponto, James A

    2014-12-01

    In response to U.S. Pharmacopeia general chapter <797> standards, a clean room was constructed for our in-house radiopharmacy. Previously, most patient doses were prepared as needed just before injection. Currently, to minimize repeated entries into the clean room, most patient doses are prepared in batches; that is, early morning and noontime preparation of doses to be injected at various times throughout the morning and the afternoon, respectively. Because these patient doses may be prepared well before injection time, radioactive decay necessitates higher amounts of radioactivity to be handled for patient dose preparation. Hence, absorbed radiation doses to staff, all of whom rotate into the radiopharmacy clean room in addition to their regular patient-related activities, were retrospectively evaluated. Monthly dosimetry reports for body (chest badge) and extremities (finger ring) were retrospectively reviewed for each staff member for 12 mo before and 12 mo after implementation of the radiopharmacy clean room. Monthly data were evaluated for average and SD, and 12-mo groups were evaluated using a paired t test. Data for the second 12-mo period were also normalized to the same number of patient doses to account for an increase in procedure volume and were reevaluated. Before the radiopharmacy clean room had been implemented, average monthly absorbed radiation doses to body and extremities were 23 ± 15 mrem (0.23 ± 0.15 mSv) and 93 ± 59 mrem (0.93 ± 0.59 mSv), respectively. After the clean room had been implemented, average monthly absorbed radiation doses increased to 32 ± 16 mrem (0.32 ± 0.16 mSv) (P < 0.001) and 121 ± 89 mrem (1.21 ± 0.89 mSv) (P = 0.0015), respectively. When normalized for procedure volume, average monthly absorbed radiation doses after implementation of the clean room were still higher, at 29 ± 15 mrem (0.29 ± 0.15 mSv) (P = 0.001) and 110 ± 80 mrem (1.10 ± 0.80 mSv) (P = 0.039), respectively. After implementation of a

  12. Evaluation of exposures to fluorocarbon 113 in a horizontal and a vertical laminar airflow clean room.

    PubMed

    Bloom, T F; Egeland, G M

    1999-01-01

    Exposures to 1,1,2-trichloro-1,2,2-trifluoroethane or fluorocarbon (FC) 113 were evaluated in a horizontal laminar airflow (HLAF) clean room and a vertical laminar airflow (VLAF) clean room. A full period consecutive samples measurement strategy was employed. Data were used to calculate 8-hour time-weighted averages (8-TWA) for major work groups and to characterize exposures associated with specific cleaning tasks. The MIRAN 1B infrared analyzer was used to estimate peak concentrations. In the HLAF clean room, 8-TWAs ranged from 193 to 439 ppm; in the VLAF clean room, 8-TWAs ranged from 110 to 935 ppm. These levels were below the current Occupational Safety and Health Administration permissible exposure limit and the National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit for FC 113 of 1000 ppm. Short-term sample concentrations ranged from 104 ppm (inspection) to 1080 ppm (assembly) in the HLAF clean room and 51 ppm (packaging)-3380 ppm (flushing) in the VLAF clean room. In the VLAF clean room, several short-term concentrations measured during the flushing task--1421 ppm and 2522 ppm--were above the NIOSH short-term exposure limit (STEL) of 1250 ppm. These data suggest the possibility that the STEL may be exceeded for tasks involving direct work with liquid FC 113. Peak exposure levels may be reduced by modification of worker position in the HLAF clean room and by use of open wire tables in the VLAF clean room.

  13. Reducing urinary tract infections among female clean room workers.

    PubMed

    Su, Shih-Bin; Wang, Jiang-Nan; Lu, Chih-Wei; Guo, How-Ran

    2006-09-01

    A higher prevalence of urinary tract infection (UTI) was observed among clean room workers than among others in our previous study in 2001. We implemented intervention programs for reducing UTI and evaluated their effects 2 years later. We conducted an intervention study in four factories in the industrial park where the previous study was conducted and recruited participants from women workers who received annual health examinations at the clinic of the park. The intervention included health education programs during the new employee orientation and seasonal on-the-job training. We also implemented other measures, including placing posters in the workplace and disseminating knowledge of UTI prevention through e-mail and oral communications. One-on-one education was provided to workers who were found to have UTI in the previous study. All the 1666 qualified workers, including 1414 clean room workers and 252 nonclean room workers, agreed to participate. We found a similar prevalence (both 0.8%) of symptomatic UTIs (patients with clinical symptoms, such as voiding frequency, urgency, and burning sensation during voiding) in clean room and nonclean room workers. In the 366 participants who also participated in the previous study, we found a significant decrease in the prevalence of UTI (from 9.8% to 1.6%) and significant increases in the prevalence of water intake and urine voiding, three times or more during a shift (p < 0.001 for all McNemar tests). The interventions had achieved behavior modification and decreases in the prevalence of UTI.

  14. [Quantitative analysis of factors to influence the environment of the clean room and clean bench during preparation of intravenous hyperalimentation (IVH) admixtures].

    PubMed

    Hotoda, S; Aoyama, T; Sato, A; Yamamura, Y; Nakajima, K; Nakamura, K; Sato, H; Iga, T

    1999-12-01

    We quantitatively studied factors influencing the environment cleanliness for intravenous hyperalimentation (IVH) admixing. The environment cleanliness was evaluated by measuring the counts of particles (> 0.5 micron) and bacteria floating in 1 ft3 of the air inside the clean room (23.6 m3) and in the clean bench built in the department of pharmacy, The University of Tokyo Hospital in 1998. The number of particles at the center of the clean room during IVH admixing by 4 pharmacists was higher than that at the medicine passing area (150 +/- 50/ft3 vs. 260 +/- 60/ft3; mean +/- S.D., n = 12). The cleanliness inside the clean room was improved as the measurement point became higher from the floor (600 +/- 180/ft3, 150 +/- 50/ft3, and 35 +/- 15/ft3 at 50, 100, and 150 cm height, respectively) and the number of persons working inside the room decreased. The changes in the counts of floating bacteria were similar to that of floating particles under the same conditions. In addition the effect of disinfection on the counts of bacteria was clearly observed. When the cleanliness of the room became lower by turning off the air conditioning, the particle counts inside the clean bench became lower along with the distance from the front glass becoming deeper (i.e., 1400 +/- 550/ft3, 140 +/- 70/ft3, and 40 +/- 30/ft3 at 0, 5, and 15 cm, respectively). From these lines of evidence, the following items were suggested in order to maintain the environment cleanliness for IVH admixing. First, the number of persons residing in the clean room should be kept to be minimum. Second, the clean bench should be set up in the center of the clean room. Finally IVH admixing operation should be performed at more than 15 cm depth inside the front glass surface of the clean bench. Moreover, the effect of mopping-up of the clean room with 0.1% benzethonium chloride clearly demonstrated the importance of disinfection on a routine basis.

  15. The World of Work--Industrial Clean Rooms.

    ERIC Educational Resources Information Center

    Potts, Frank E.

    The purpose of this publication is to present information concerning the environmental conditions imposed upon workers in industries which require clean room facilities to eliminate particle-caused equipment failure. The information, which was collected through interviews, observation, and other standard job analysis techniques, discusses these…

  16. Contamination control and assay results for the Majorana Demonstrator ultra clean components

    NASA Astrophysics Data System (ADS)

    Christofferson, C. D.; Abgrall, N.; Alvis, S. I.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Barton, C. J.; Bertrand, F. E.; Bode, T.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Hehn, L.; Henning, R.; Hoppe, E. W.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Myslik, J.; O'Shaughnessy, C.; Othman, G.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Rielage, K.; Robertson, R. G. H.; Rouf, N. W.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.

    2018-01-01

    The Majorana Demonstrator is a neutrinoless double beta decay experiment utilizing enriched Ge-76 detectors in 2 separate modules inside of a common solid shield at the Sanford Underground Research Facility. The Demonstrator has utilized world leading assay sensitivities to develop clean materials and processes for producing ultra-pure copper and plastic components. This experiment is now operating, and initial data provide new insights into the success of cleaning and processing. Post production copper assays after the completion of Module 1 showed an increase in U and Th contamination in finished parts compared to starting bulk material. A revised cleaning method and additional round of surface contamination studies prior to Module 2 construction have provided evidence that more rigorous process control can reduce surface contamination. This article describes the assay results and discuss further studies to take advantage of assay capabilities for the purpose of maintaining ultra clean fabrication and process design.

  17. Microbiological aspects of clean room technology as applied to surgery, with special reference to unidirectional airflow systems

    NASA Technical Reports Server (NTRS)

    Wardle, M. D.

    1974-01-01

    The microbiological aspects of clean room technology as applied to surgery were reviewed. The following pertinent subject areas were examined: (1) clean room technology per se and its utilization for surgery, (2) microbiological monitoring of the clean room surgical environment, (3) clean rooms and their impact on operating room environmental microbiology, and (4) the effect of the technology on surgical wound infection rates. Conclusions were drawn for each topic investigated.

  18. TESS Spacecraft Move to Clean Room

    NASA Image and Video Library

    2018-02-12

    Technician dressed in clean room suits move NASA's Transiting Exoplanet Survey Satellite (TESS) on a test stand to a clean room tent inside the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  19. TESS Spacecraft Move to Clean Room

    NASA Image and Video Library

    2018-02-12

    Technician dressed in clean room suits move NASA's Transiting Exoplanet Survey Satellite (TESS) on a test stand into a clean room tent inside the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  20. Biomechanical, physiological and psychophysical evaluations of clean room boots.

    PubMed

    Lin, Chih-Long; Wang, Mao-Jiun J; Drury, Colin G

    2007-04-01

    The purpose of this study was to evaluate the significance of boot sole properties on reducing fatigue, to evaluate the effects of load carrying and walking (over a 1 h period) on biomechanical, physiological and psychophysical responses, and to investigate the correlations between the measurements. The results indicated that elasticity and shock absorption of the boot had significant effects on outcome variables. Significant load effects were seen in most measurements. All of the significant time period effects gave strong regressions, with no R2 value less than 0.983. The findings of this study provide useful information for the selection and design of clean room boots as well as for job design for load carrying tasks in the clean room environment.

  1. Assessment of terminal cleaning in pediatric isolation rooms: Options for low-resource settings.

    PubMed

    Dramowski, Angela; Whitelaw, Andrew; Cotton, Mark F

    2016-12-01

    Few studies have evaluated terminal cleaning in low-resource settings. Adequacy of pediatric isolation room terminal cleaning was evaluated using quantitative bacterial surface cultures, ATP bioluminescence assays, and fluorescent high-touch surface markers at Tygerberg Children's Hospital in South Africa (August 1, 2014-October 31, 2015). Cleaning adequacy was assessed by comparing pre- and postcleaning measurements. Influence of verbal feedback was determined by comparing cleaners' first and subsequent cleaning episodes. Cleaning methods were compared for cost, time, and feasibility. Adequacy of terminal cleaning was evaluated in 25 isolation rooms after hospitalization for pulmonary tuberculosis (n = 13), respiratory (n = 5) and enteric viruses (n = 5), pertussis (n = 1), and methicillin-resistant Staphylococcus aureus (n = 1). Mean aerobic colony counts and mean ATP relative light units declined between pre- and postcleaning evaluations (39 ± 41 to 15 ± 30 [P < .001] and 72 ± 40 to 23 ± 11 [P < .001]). Fluorescent marker removal was initially poor, but improved significantly at subsequent cleaning episodes (17 out of 78 [22%] to 121 out of 198 [61%]; P < .001); mean aerobic colony counts and ATP values also declined significantly following feedback. Cost, time, and resources required for ATP and surface cultures far exceeded that required for fluorescent markers. Adequacy of isolation room cleaning improved following feedback to cleaning staff. Fluorescent markers are an inexpensive option for cleaning evaluation and training in low-resource settings. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Looking for Microbes in a Spacecraft Assembly Clean Room

    NASA Image and Video Library

    2013-11-06

    A microbiologist collects a swab sample from the floor of a spacecraft assembly clean room at NASA Jet Propulsion Laboratory where samples such as this are taken frequently during the assembly of a spacecraft and analyzed.

  3. ATP as a biomarker of viable microorganisms in clean-room facilities

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Hattori, Noriaki; La Duc, Myron T.; Kern, Roger

    2003-01-01

    A new firefly luciferase bioluminescence assay method that differentiates free extracellular ATP (dead cells, etc.) from intracellular ATP (viable microbes) was used to determine the viable microbial cleanliness of various clean-room facilities. For comparison, samples were taken from both clean-rooms, where the air was filtered to remove particles >0.5 microm, and ordinary rooms with unfiltered air. The intracellular ATP was determined after enzymatically degrading the sample's free ATP. Also for comparison, cultivable microbial populations were counted on nutrient-rich trypticase soy agar (TSA) plates. Both the cultivable and ATP-based determinations indicate that the microbial burden was lower in clean-room facilities than in ordinary rooms. However, there was no direct correlation between the two sets of measurements because the two assays measured very different populations. A large fraction of the samples yielded no colony formers on TSA, but were positive for intracellular ATP. Subsequently, genomic DNA was isolated directly from selected samples and 16S rDNA fragments were cloned and sequenced, identifying nearest neighbors, many of which are known to be noncultivable in the media employed. It was concluded that viable microbial contamination can be reliably monitored by measurement of intracellular ATP, and that this method may be considered superior to cultivable colony counts due to its speed and its ability to report the presence of viable but noncultivable organisms. When the detection of nonviable microbes is of interest, the ATP assay can be supplemented with DNA analysis.

  4. ATP as a biomarker of viable microorganisms in clean-room facilities.

    PubMed

    Venkateswaran, Kasthuri; Hattori, Noriaki; La Duc, Myron T; Kern, Roger

    2003-03-01

    A new firefly luciferase bioluminescence assay method that differentiates free extracellular ATP (dead cells, etc.) from intracellular ATP (viable microbes) was used to determine the viable microbial cleanliness of various clean-room facilities. For comparison, samples were taken from both clean-rooms, where the air was filtered to remove particles >0.5 microm, and ordinary rooms with unfiltered air. The intracellular ATP was determined after enzymatically degrading the sample's free ATP. Also for comparison, cultivable microbial populations were counted on nutrient-rich trypticase soy agar (TSA) plates. Both the cultivable and ATP-based determinations indicate that the microbial burden was lower in clean-room facilities than in ordinary rooms. However, there was no direct correlation between the two sets of measurements because the two assays measured very different populations. A large fraction of the samples yielded no colony formers on TSA, but were positive for intracellular ATP. Subsequently, genomic DNA was isolated directly from selected samples and 16S rDNA fragments were cloned and sequenced, identifying nearest neighbors, many of which are known to be noncultivable in the media employed. It was concluded that viable microbial contamination can be reliably monitored by measurement of intracellular ATP, and that this method may be considered superior to cultivable colony counts due to its speed and its ability to report the presence of viable but noncultivable organisms. When the detection of nonviable microbes is of interest, the ATP assay can be supplemented with DNA analysis.

  5. 33. FIFTH FLOOR BLDG. 27, "CLEAN ROOM" LOOKING NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. FIFTH FLOOR BLDG. 27, "CLEAN ROOM" LOOKING NORTH. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  6. 87. SIXTH FLOOR BLDG. 19 "CLEAN ROOM" LOOKING WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    87. SIXTH FLOOR BLDG. 19 "CLEAN ROOM" LOOKING WEST. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  7. Bacterial contamination of ex vivo processed PBPC products under clean room conditions.

    PubMed

    Ritter, Markus; Schwedler, Joachim; Beyer, Jörg; Movassaghi, Kamran; Mutters, Reinier; Neubauer, Andreas; Schwella, Nimrod

    2003-11-01

    Patients undergoing high-dose radio- and/or chemotherapy and autologous or allogeneic PBPC transplantation are at high risk for infections owing to profound immunosuppression. In this study, the rate of microbial contamination of ex vivo processed PBPC products was analyzed, comparing preparation under clean room conditions to standard laboratory conditions. After implementation of good manufacturing practice conditions in the two participating institutions, the microbial contamination rate of 366 PBPC harvests from 198 patients was determined under certified clean room conditions (Group A) from 2000 until 2002. To investigate influence of improved environmental conditions along with other parameters, this set of samples was compared with a historical control set of 1413 PBPC products, which have been processed ex vivo under a clean bench in a regular laboratory room and were harvested from 626 patients (Group B) from 1989 until 2000. In Group B microbial contamination was found in 74 PBPC products (5.2%) from 57 patients. In Group A microbial growth was detected in 3 leukapheresis products (0.8%) from 3 patients. After exclusion of PBPC products, which were probably contaminated before manipulation, statistical analysis showed a significant difference (chi2= 10.339; p < 0.001). These data suggest an impact of clean room conditions on the bacterial contamination rate of PBPC products. To identify confounding variables, variables like technique of leukapheresis, culture methodology, and microbial colonization of central venous catheters were taken into account. Further variables might be identified in following studies.

  8. Magnetically suspended stepping motors for clean room and vacuum environments

    NASA Technical Reports Server (NTRS)

    Higuchi, Toshiro

    1994-01-01

    To answer the growing needs for super-clean or contact free actuators for uses in clean rooms, vacuum chambers, and space, innovative actuators which combine the functions of stepping motors and magnetic bearings in one body were developed. The rotor of the magnetically suspended stepping motor is suspended like a magnetic bearing and rotated and positioned like a stepping motor. The important trait of the motor is that it is not a simple mixture or combination of a stepping motor and conventional magnetic bearing, but an amalgam of a stepping motor and a magnetic bearing. Owing to optimal design and feed-back control, a toothed stator and rotor are all that are needed structurewise for stable suspension. More than ten types of motors such as linear type, high accuracy rotary type, two-dimensional type, and high vacuum type were built and tested. This paper describes the structure and design of these motors and their performance for such applications as precise positioning rotary table, linear conveyor system, and theta-zeta positioner for clean room and high vacuum use.

  9. Novel Bacterial Genus Found Only in Spacecraft Assembly Clean Rooms

    NASA Image and Video Library

    2013-11-06

    This microscopic image shows dozens of individual bacterial cells of the recently discovered species, Tersicoccus phoenicis, found in only two places: clean rooms in Florida and South America where spacecraft are assembled for launch.

  10. 13. EQUIPMENT USED IN CLEAN ROOM (102), INCLUDING ROYCO PARTICLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. EQUIPMENT USED IN CLEAN ROOM (102), INCLUDING ROYCO PARTICLE COUNTER (LEFT) AND STEREOSCOPE FOR MANUAL PARTICLE COUNTING (RIGHT) - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. Abundance and diversity of microbial inhabitants in European spacecraft-associated clean rooms.

    PubMed

    Stieglmeier, Michaela; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Pukall, Rüdiger; Wirth, Reinhard; Moissl-Eichinger, Christine

    2012-06-01

    The determination of the microbial load of a spacecraft en route to interesting extraterrestrial environments is mandatory and currently based on the culturable, heat-shock-surviving portion of microbial contaminants. Our study compared these classical bioburden measurements as required by NASA's and ESA's guidelines for the microbial examination of flight hardware, with molecular analysis methods (16S rRNA gene cloning and quantitative PCR) to further develop our understanding of the diversity and abundance of the microbial communities of spacecraft-associated clean rooms. Three samplings of the Herschel Space Observatory and its surrounding clean rooms were performed in two different European facilities. Molecular analyses detected a broad diversity of microbes typically found in the human microbiome with three bacterial genera (Staphylococcus, Propionibacterium, and Brevundimonas) common to all three locations. Bioburden measurements revealed a low, but heterogeneous, abundance of spore-forming and other heat-resistant microorganisms. Total cell numbers estimated by quantitative real-time PCR were typically 3 orders of magnitude greater than those determined by viable counts, which indicates a tendency for traditional methods to underestimate the extent of clean room bioburden. Furthermore, the molecular methods allowed the detection of a much broader diversity than traditional culture-based methods.

  12. Collection and analysis of NASA clean room air samples

    NASA Technical Reports Server (NTRS)

    Sheldon, L. S.; Keever, J.

    1985-01-01

    The environment of the HALOE assembly clean room at NASA Langley Research Center is analyzed to determine the background levels of airborne organic compounds. Sampling is accomplished by pumping the clean room air through absorbing cartridges. For volatile organics, cartridges are thermally desorbed and then analyzed by gas chromatography and mass spectrometry, compounds are identified by searching the EPA/NIH data base using an interactive operator INCOS computer search algorithm. For semivolatile organics, cartridges are solvent entracted and concentrated extracts are analyzed by gas chromatography-electron capture detection, compound identification is made by matching gas chromatogram retention times with known standards. The detection limits for the semivolatile organics are; 0.89 ng cu m for dioctylphlhalate (DOP) and 1.6 ng cu m for polychlorinated biphenyls (PCB). The detection limit for volatile organics ranges from 1 to 50 parts per trillion. Only trace quantities of organics are detected, the DOP levels do not exceed 2.5 ng cu m and the PCB levels do not exceed 454 ng cu m.

  13. Archaea in artificial environments: Their presence in global spacecraft clean rooms and impact on planetary protection

    PubMed Central

    Moissl-Eichinger, Christine

    2011-01-01

    The presence and role of Archaea in artificial, human-controlled environments is still unclear. The search for Archaea has been focused on natural biotopes where they have been found in overwhelming numbers, and with amazing properties. However, they are considered as one of the major group of microorganisms that might be able to survive a space flight, or even to thrive on other planets. Although still concentrating on aerobic, bacterial spores as a proxy for spacecraft cleanliness, space agencies are beginning to consider Archaea as a possible contamination source that could affect future searches for life on other planets. This study reports on the discovery of archaeal 16S rRNA gene signatures not only in US American spacecraft assembly clean rooms but also in facilities in Europe and South America. Molecular methods revealed the presence of Crenarchaeota in all clean rooms sampled, while signatures derived from methanogens and a halophile appeared only sporadically. Although no Archaeon was successfully enriched in our multiassay cultivation approach thus far, samples from a European clean room revealed positive archaeal fluorescence in situ hybridization (FISH) signals of rod-shaped microorganisms, representing the first visualization of Archaea in clean room environments. The molecular and visual detection of Archaea was supported by the first quantitative PCR studies of clean rooms, estimating the overall quantity of Archaea therein. The significant presence of Archaea in these extreme environments in distinct geographical locations suggests a larger role for these microorganisms not only in natural biotopes, but also in human controlled and rigorously cleaned environments. PMID:20703318

  14. Archaea in artificial environments: their presence in global spacecraft clean rooms and impact on planetary protection.

    PubMed

    Moissl-Eichinger, Christine

    2011-02-01

    The presence and role of Archaea in artificial, human-controlled environments is still unclear. The search for Archaea has been focused on natural biotopes where they have been found in overwhelming numbers, and with amazing properties. However, they are considered as one of the major group of microorganisms that might be able to survive a space flight, or even to thrive on other planets. Although still concentrating on aerobic, bacterial spores as a proxy for spacecraft cleanliness, space agencies are beginning to consider Archaea as a possible contamination source that could affect future searches for life on other planets. This study reports on the discovery of archaeal 16S rRNA gene signatures not only in US American spacecraft assembly clean rooms but also in facilities in Europe and South America. Molecular methods revealed the presence of Crenarchaeota in all clean rooms sampled, while signatures derived from methanogens and a halophile appeared only sporadically. Although no Archaeon was successfully enriched in our multiassay cultivation approach thus far, samples from a European clean room revealed positive archaeal fluorescence in situ hybridization (FISH) signals of rod-shaped microorganisms, representing the first visualization of Archaea in clean room environments. The molecular and visual detection of Archaea was supported by the first quantitative PCR studies of clean rooms, estimating the overall quantity of Archaea therein. The significant presence of Archaea in these extreme environments in distinct geographical locations suggests a larger role for these microorganisms not only in natural biotopes, but also in human controlled and rigorously cleaned environments.

  15. In vitro hemostatic, hydrogen peroxide production and elastase sequestration properties of nonwoven ultra clean greige cotton dressing

    USDA-ARS?s Scientific Manuscript database

    Nonwoven UltraCleanTM Cotton (highly cleaned and hydroentangled, greige cotton) retains the native wax and pectin content (~2%) of the cotton fiber traditionally removed from scoured and bleached cotton gauze, yet potentially affording wound healing properties. In vitro thromboelastography, hydrog...

  16. 36. FIFTH FLOOR BLDG. 27, "CLEAN ROOM" AIR FILTERS LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. FIFTH FLOOR BLDG. 27, "CLEAN ROOM" AIR FILTERS LOOKING SOUTH. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  17. 35. FIFTH FLOOR BLDG. 27, "CLEAN ROOM" DINING AREA LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. FIFTH FLOOR BLDG. 27, "CLEAN ROOM" DINING AREA LOOKING WEST. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  18. 34. FIFTH FLOOR BLDG. 27, "CLEAN ROOM" ENTRANCE CORRIDOR LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. FIFTH FLOOR BLDG. 27, "CLEAN ROOM" ENTRANCE CORRIDOR LOOKING SOUTH. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  19. Surface Cleaning Techniques: Ultra-Trace ICP-MS Sample Preparation and Assay of HDPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overman, Nicole R.; Hoppe, Eric W.; Addleman, Raymond S.

    2013-06-01

    The world’s most sensitive radiation detection and assay systems depend upon ultra-low background (ULB) materials to reduce unwanted radiological backgrounds. Herein, we evaluate methods to clean HDPE, a material of interest to ULB systems and the means to provide rapid assay of surface and bulk contamination. ULB level material and ultra-trace level detection of actinide elements is difficult to attain, due to the introduction of contamination from sample preparation equipment such as pipette tips, sample vials, forceps, etc. and airborne particulate. To date, literature available on the cleaning of such polymeric materials and equipment for ULB applications and ultra-trace analysesmore » is limited. For these reasons, a study has been performed to identify an effective way to remove surface contamination from polymers in an effort to provide improved instrumental detection limits. Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was utilized to assess the effectiveness of a variety of leachate solutions for removal of inorganic uranium and thorium surface contamination from polymers, specifically high density polyethylene (HDPE). HDPE leaching procedures were tested to optimize contaminant removal of thorium and uranium. Calibration curves for thorium and uranium ranged from 15 ppq (fg/mL) to 1 ppt (pg/mL). Detection limits were calculated at 6 ppq for uranium and 7 ppq for thorium. Results showed the most effective leaching reagent to be clean 6 M nitric acid for 72 hour exposures. Contamination levels for uranium and thorium found in the leachate solutions were significant for ultralow level radiation detection applications.« less

  20. Cleaning Hospital Room Surfaces to Prevent Health Care–Associated Infections

    PubMed Central

    Han, Jennifer H.; Sullivan, Nancy; Leas, Brian F.; Pegues, David A.; Kaczmarek, Janice L.; Umscheid, Craig A.

    2015-01-01

    The cleaning of hard surfaces in hospital rooms is critical for reducing health care–associated infections. This review describes the evidence examining current methods of cleaning, disinfecting, and monitoring cleanliness of patient rooms, as well as contextual factors that may affect implementation and effectiveness. Key informants were interviewed, and a systematic search for publications since 1990 was done with the use of several bibliographic and gray literature resources. Studies examining surface contamination, colonization, or infection with Clostridium difficile, methicillin-resistant Staphylococcus aureus, or vancomycinresistant enterococci were included. Eighty studies were identified—76 primary studies and 4 systematic reviews. Forty-nine studies examined cleaning methods, 14 evaluated monitoring strategies, and 17 addressed challenges or facilitators to implementation. Only 5 studies were randomized, controlled trials, and surface contamination was the most commonly assessed outcome. Comparative effectiveness studies of disinfecting methods and monitoring strategies were uncommon. Future research should evaluate and compare newly emerging strategies, such as self-disinfecting coatings for disinfecting and adenosine triphosphate and ultraviolet/fluorescent surface markers for monitoring. Studies should also assess patient-centered outcomes, such as infection, when possible. Other challenges include identifying high-touch surfaces that confer the greatest risk for pathogen transmission; developing standard thresholds for defining cleanliness; and using methods to adjust for confounders, such as hand hygiene, when examining the effect of disinfecting methods. PMID:26258903

  1. Comparison between lead levels in dandelions grown in an ultra-clean lab environment (baseline) and those collected from the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Rojero, J.; Odigie, K. O.; Hibdon, S.; Flegal, A. R.

    2011-12-01

    This study is aimed at establishing the baseline (natural) levels of lead in dandelions (Taraxacum officinale) grown in an ultra-clean environment. Dandelions have been used extensively as biomonitors of environmental lead levels since their distribution is global and they can be easily collected. However, industrial lead contamination is so pervasive that even dandelions from the most remote areas in the world may be contaminated with industrial lead. Therefore, this work will test the hypothesis that "natural" lead levels in dandelions are lower than any previously published values - by growing them in a HEPA filtered air (Class 100) trace metal clean room with high purity (18 MΩ cm) water. Concentrations and isotopic compositions of lead in the clean-room grown dandelions will be compared to values in literature and to those of lead in dandelions collected from San Francisco Bay Area. Lead is a dense, ductile, and highly malleable metal that is found naturally in our environment. Due to its properties it is currently highly used in building construction, in ceramic glazes, lead chromate and in PVC plastic used to coat electrical cords. The uses of lead have included paint, leather tanning, and being used as an additive to gasoline prior to the mid 1970's, as well as others. Due to its many uses, humans are susceptible to lead regularly through various means of exposure from air, water and soil, often leading to lead toxicity.

  2. Aerobiology in the operating room and its implications for working standards.

    PubMed

    Friberg, B; Friberg, S

    2005-01-01

    Two novel operating room (OR) ventilation concepts, i.e. the upward displacement or thermal convection system and the exponential ultra-clean laminar air flow (LAF) designed to function without extra walls, were evaluated from a bacteriological point of view. The thermal convection system (17 air changes/h) was compared with conventional ventilation (16 air changes/h) with an air inlet at the ceiling and evacuation at floor level. The exponential LAF was compared with the vertical ultra-clean LAF and the horizontal ultra-clean LAF, both with extra side walls. The comparison was made using strictly standardized simulated operations and, except for the horizontal LAF, it was performed in the same OR where the type of ventilation was changed. In the different areas important for surgical asepsis, the thermal system resulted in a twofold to threefold increase in bacterial air and surface counts compared to the conventional system (statistical significance = p < 0.05-0.0001). The bacteriological efficiency of the exponential LAF was equal to the horizontal and vertical LAF units with extra walls in the OR, and all three systems easily fulfilled the criteria for ultra-clean air, i.e. bacteria-carrying particles < 10/m3. In the areas important for surgical asepsis the turbulent ventilation systems yielded highly significant correlation between air and surface contamination (p < 0.02-0.0006). No such correlation existed in the LAF systems.

  3. KENNEDY SPACE CENTER, FLA. - A KSC employee secures a foot and leg cover of his "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee secures a foot and leg cover of his "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  4. KENNEDY SPACE CENTER, FLA. - A KSC employee dons the head and face cover of a "bunny suit," part of standard clean room apparel, before entering a clean room. This apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dons the head and face cover of a "bunny suit," part of standard clean room apparel, before entering a clean room. This apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  5. KENNEDY SPACE CENTER, FLA. - A KSC employee dons the coverall of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dons the coverall of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  6. KENNEDY SPACE CENTER, FLA. - A KSC employee dons the foot and leg covers of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dons the foot and leg covers of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  7. What Does A Clean Room Look Like at the National Ignition Facility? (360)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-03-31

    Inside this Clean Room, engineering technicians use mechatronics to fabricate targets for NIF experiments. The goal is to improve our understanding of the universe and ensure the nation's nuclear stockpile.

  8. KSC technicians inspect TDRS-C, an STS-26 payload, in VPF clean room

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Kennedy Space Center (KSC) clean-suited technicians inspect tracking and data relay satellite C (TDRS-C) in KSC's Vertical Processing Facility (VPF) clean room. TDRS-C is the primary satellite payload aboard STS-26 Discovery, Orbiter Vehicle (OV) 103. TDRS-C will relay data from low Earth orbiting spacecraft, and air-to-ground voice communications and television from Space Shuttle orbiters when operational. View provided by KSC with alternate number KSC-88PC-363.

  9. The first collection of spacecraft-associated microorganisms: a public source for extremotolerant microorganisms from spacecraft assembly clean rooms.

    PubMed

    Moissl-Eichinger, Christine; Rettberg, Petra; Pukall, Rüdiger

    2012-11-01

    For several reasons, spacecraft are constructed in so-called clean rooms. Particles could affect the function of spacecraft instruments, and for missions under planetary protection limitations, the biological contamination has to be restricted as much as possible. The proper maintenance of clean rooms includes, for instance, constant control of humidity and temperature, air filtering, and cleaning (disinfection) of the surfaces. The combination of these conditions creates an artificial, extreme biotope for microbial survival specialists: spore formers, autotrophs, multi-resistant, facultative, or even strictly anaerobic microorganisms have been detected in clean room habitats. Based on a diversity study of European and South-American spacecraft assembly clean rooms, the European Space Agency (ESA) has initialized and funded the creation of a public library of microbial isolates. Isolates from three different European clean rooms, as well as from the final assembly and launch facility in Kourou (French Guiana), have been phylogenetically analyzed and were lyophilized for long-term storage at the German Culture Collection facilities in Brunswick, Germany (Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen). The isolates were obtained by either following the standard protocol for the determination of bioburden on, and around, spacecraft or the use of alternative cultivation strategies. Currently, the database contains 298 bacterial strains. Fifty-nine strains are Gram-negative microorganisms, belonging to the α-, β- and γ-Proteobacteria. Representatives of the Gram-positive phyla Actinobacteria, Bacteroidetes/Chlorobi, and Firmicutes were subjected to the collection. Ninety-four isolates (21 different species) of the genus Bacillus were included in the ESA collection. This public collection of extremotolerant microbes, which are adapted to a complicated artificial biotope, provides a wonderful source for industry and research focused on

  10. Comprehensive census of bacteria in clean rooms by using DNA microarray and cloning methods.

    PubMed

    La Duc, Myron T; Osman, Shariff; Vaishampayan, Parag; Piceno, Yvette; Andersen, Gary; Spry, J A; Venkateswaran, Kasthuri

    2009-10-01

    A census of clean room surface-associated bacterial populations was derived from the results of both the cloning and sequencing of 16S rRNA genes and DNA microarray (PhyloChip) analyses. Samples from the Lockheed Martin Aeronautics Multiple Testing Facility (LMA-MTF), the Kennedy Space Center Payload Hazard and Servicing Facility (KSC-PHSF), and the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) clean rooms were collected during the various assembly phases of the Phoenix and Mars Science Laboratory (MSL) spacecraft. Clone library-derived analyses detected a larger bacterial diversity prior to the arrival of spacecraft hardware in these clean room facilities. PhyloChip results were in agreement with this trend but also unveiled the presence of anywhere from 9- to 70-fold more bacterial taxa than cloning approaches. Among the facilities sampled, the JPL-SAF (MSL mission) housed a significantly less diverse bacterial population than either the LMA-MTF or KSC-PHSF (Phoenix mission). Bacterial taxa known to thrive in arid conditions were frequently detected in MSL-associated JPL-SAF samples, whereas proteobacterial lineages dominated Phoenix-associated KSC-PHSF samples. Comprehensive bacterial censuses, such as that reported here, will help space-faring nations preemptively identify contaminant biomatter that may compromise extraterrestrial life detection experiments. The robust nature and high sensitivity of DNA microarray technologies should prove beneficial to a wide range of scientific, electronic, homeland security, medical, and pharmaceutical applications and to any other ventures with a vested interest in monitoring and controlling contamination in exceptionally clean environments.

  11. Floor cleaning: effect on bacteria and organic materials in hospital rooms.

    PubMed

    Andersen, B M; Rasch, M; Kvist, J; Tollefsen, T; Lukkassen, R; Sandvik, L; Welo, A

    2009-01-01

    Routine surface cleaning is recommended to control the spread of pathogens in hospital environments. In Norway, ordinary cleaning of patient rooms is traditionally performed with soap and water. In this study, four floor-mopping methods--dry, spray, moist and wet mopping--were compared by two systems using adenosine triphosphate (ATP) bioluminescence (Hygiena and Biotrace). These systems assess residual organic soil on surfaces. The floor-mopping methods were also assessed by microbiological samples from the floor and air, before and after cleaning. All methods reduced organic material on the floors but wet and moist mopping seemed to be the most effective (P < 0.001, P < 0.011, respectively, ATP Hygiena). The two ATP methods were easy to use, although each had their own reading scales. Cleaning reduced organic material to 5-36% of the level present before cleaning, depending upon mopping method. All four mopping methods reduced bacteria on the floor from about 60-100 to 30-60 colony-forming units (cfu)/20cm2 floor. Wet, moist and dry mopping seemed to be more effective in reducing bacteria on the floor, than the spray mopping (P=0.007, P=0.002 and P=0.011, respectively). The burden of bacteria in air increased for all methods just after mopping. The overall best cleaning methods seemed to be moist and wet mopping.

  12. Dropping in on a Clean Room Webb Test

    NASA Image and Video Library

    2017-12-08

    A crane in a clean room at NASA's Goddard Space Flight Center in Greenbelt, Md., lowers a test mass simulator (center of frame) onto the Ambient Optical Assembly Stand or AOAS to ensure it can support the James Webb Space Telescope's Optical Telescope Element during its assembly. Credit: NASA/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Higher prevalence of dry symptoms in skin, eyes, nose and throat among workers in clean rooms with moderate humidity.

    PubMed

    Su, Shih-Bin; Wang, Bour-Jr; Tai, Chien; Chang, Hsiu-Fen; Guo, How-Ran

    2009-01-01

    To determine whether working under relative humidity (RH) around 55 +/- 5% may lead to dry symptoms among workers in tropical regions. We recruited 3,154 Taiwanese workers who had no history of skin diseases and compared dry symptoms between clean room workers (RH around 55 +/- 5%) and other workers (RH around 65 +/- 5%). Clean room workers had higher prevalences of dry symptoms of the eye (odds ratio [OR]=1.62, 95% confidence interval [CI]: 1.40 to 1.86), nose and throat (OR=2.15, 95% CI: 1.66 to 2.79), and skin (OR=1.46, 95% CI: 1.23 to 1.73). In clean room workers, however, dry skin symptoms affected the palms (OR=1.72, 95% CI: 1.24 to 2.39), which are covered by gloves, more frequently than the face (OR=0.65, 95% CI: 0.45 to 0.94), which is exposed to the room air. We found working in clean rooms (adjusted OR [AOR]=1.38, 95% CI: 1.08 to 1.77), 24 to 30 yr of age (AOR=0.78, 95% CI: 0.62 to 0.99), family history of atopic diseases (AOR=1.75, 95% CI: 1.37 to 2.25), and skin moisturizer use (AOR=1.64, 95% CI: 1.30 to 2.06) were independent predictors of skin symptoms. In addition, working in clean rooms was an independent predictor of dry eye (AOR=1.30, 95% CI: 1.06 to 1.60) and dry nose and throat (AOR=1.70, 95% CI: 1.28 to 2.26) symptoms. Whereas the humidity in such working environments is not very low, for workers living in a high humidity environment, the relatively low humidity may still cause dry symptoms of the eye, nose, and throat.

  14. How Clean Are Hotel Rooms? Part I: Visual Observations vs. Microbiological Contamination.

    PubMed

    Almanza, Barbara A; Kirsch, Katie; Kline, Sheryl Fried; Sirsat, Sujata; Stroia, Olivia; Choi, Jin Kyung; Neal, Jay

    2015-01-01

    Current evidence of hotel room cleanliness is based on observation rather than empirically based microbial assessment. The purpose of the study described here was to determine if observation provides an accurate indicator of cleanliness. Results demonstrated that visual assessment did not accurately predict microbial contamination. Although testing standards have not yet been established for hotel rooms and will be evaluated in Part II of the authors' study, potential microbial hazards included the sponge and mop (housekeeping cart), toilet, bathroom floor, bathroom sink, and light switch. Hotel managers should increase cleaning in key areas to reduce guest exposure to harmful bacteria.

  15. Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms.

    PubMed

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-06-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus.

  16. A virtual clean room to teach USP 797 regulations for intravenous medications.

    PubMed

    Patel, Sheetal; Vincent, Ashley H; Abel, Steven R; Jacobs, Carolyn M; Dunlop, Steven R; Seibert, Megan

    2011-02-10

    To provide a virtual environment for pharmacy students to learn United States Pharmacopeia Chapter 797 (USP 797) requirements, while recognizing the role of pharmacists in the safe use of intravenous (IV) medications. A virtual laboratory was created that included stations for IV medications, product verification, medication safety, and patient cases pertaining to high-alert medications. Pharmacy students used 3-D glasses and a wireless controller to navigate through the session and identify violations of USP 797 regulations. Pre-assessments and post-assessments were administered to students who completed the session in each of the 2 years it was offered. In the first year, 88% of students strongly agreed or agreed that the sessions met their expectation. Following their APPE clerkship, 92% of these students felt the virtual IV room prepared them for the IV clean room experience. In the second year, 88% of students felt the experience enhanced their understanding of clean room procedures. After session completion, 75% of participants perceived medication errors to be more significant. Written examinations also were administered and students' mean scores improved significantly compared to those of students' prior to implementation of the session (89.6% in year 0; 91.2% in year 1; and 96.1% in year 2). The immersive virtual environment is a contemporary and effective way to teach USP 797 requirements and enhance the awareness of medication errors.

  17. A Virtual Clean Room to Teach USP 797 Regulations for Intravenous Medications

    PubMed Central

    Patel, Sheetal; Abel, Steven R.; Jacobs, Carolyn M.; Dunlop, Steven R.; Seibert, Megan

    2011-01-01

    Objective To provide a virtual environment for pharmacy students to learn United States Pharmacopeia Chapter 797 (USP 797) requirements, while recognizing the role of pharmacists in the safe use of intravenous (IV) medications. Design A virtual laboratory was created that included stations for IV medications, product verification, medication safety, and patient cases pertaining to high-alert medications. Pharmacy students used 3-D glasses and a wireless controller to navigate through the session and identify violations of USP 797 regulations. Assessment Preassessments and postassessments were administered to students who completed the session in each of the 2 years it was offered. In the first year, 88% of students strongly agreed or agreed that the sessions met their expectation. Following their APPE clerkship, 92% of these students felt the virtual IV room prepared them for the IV clean room experience. In the second year, 88% of students felt the experience enhanced their understanding of clean room procedures. After session completion, 75% of participants perceived medication errors to be more significant. Written examinations also were administered and students' mean scores improved significantly compared to those of students' prior to implementation of the session (89.6% in year 0; 91.2% in year 1; and 96.1% in year 2). Conclusion The immersive virtual environment is a contemporary and effective way to teach USP 797 requirements and enhance the awareness of medication errors. PMID:21451759

  18. Comprehensive Census of Bacteria in Clean Rooms by Using DNA Microarray and Cloning Methods▿ †

    PubMed Central

    La Duc, Myron T.; Osman, Shariff; Vaishampayan, Parag; Piceno, Yvette; Andersen, Gary; Spry, J. A.; Venkateswaran, Kasthuri

    2009-01-01

    A census of clean room surface-associated bacterial populations was derived from the results of both the cloning and sequencing of 16S rRNA genes and DNA microarray (PhyloChip) analyses. Samples from the Lockheed Martin Aeronautics Multiple Testing Facility (LMA-MTF), the Kennedy Space Center Payload Hazard and Servicing Facility (KSC-PHSF), and the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) clean rooms were collected during the various assembly phases of the Phoenix and Mars Science Laboratory (MSL) spacecraft. Clone library-derived analyses detected a larger bacterial diversity prior to the arrival of spacecraft hardware in these clean room facilities. PhyloChip results were in agreement with this trend but also unveiled the presence of anywhere from 9- to 70-fold more bacterial taxa than cloning approaches. Among the facilities sampled, the JPL-SAF (MSL mission) housed a significantly less diverse bacterial population than either the LMA-MTF or KSC-PHSF (Phoenix mission). Bacterial taxa known to thrive in arid conditions were frequently detected in MSL-associated JPL-SAF samples, whereas proteobacterial lineages dominated Phoenix-associated KSC-PHSF samples. Comprehensive bacterial censuses, such as that reported here, will help space-faring nations preemptively identify contaminant biomatter that may compromise extraterrestrial life detection experiments. The robust nature and high sensitivity of DNA microarray technologies should prove beneficial to a wide range of scientific, electronic, homeland security, medical, and pharmaceutical applications and to any other ventures with a vested interest in monitoring and controlling contamination in exceptionally clean environments. PMID:19700540

  19. Prevalence of dry eye syndrome after a three-year exposure to a clean room.

    PubMed

    Cho, Hyun A; Cheon, Jae Jung; Lee, Jong Seok; Kim, Soo Young; Chang, Seong Sil

    2014-01-01

    To measure the prevalence of dry eye syndrome (DES) among clean room (relative humidity ≤1%) workers from 2011 to 2013. Three annual DES examinations were performed completely in 352 clean room workers aged 20-40 years who were working at a secondary battery factory. Each examination comprised the tear-film break-up test (TFBUT), Schirmer's test I, slit-lamp microscopic examination, and McMonnies questionnaire. DES grades were measured using the Delphi approach. The annual examination results were analyzed using a general linear model and post-hoc analysis with repeated-ANOVA (Tukey). Multiple logistic regression was performed using the examination results from 2013 (dependent variable) to analyze the effect of years spent working in the clean room (independent variable). The prevalence of DES among these workers was 14.8% in 2011, 27.1% in 2012, and 32.8% in 2013. The TFBUT and McMonnies questionnaire showed that DES grades worsened over time. Multiple logistic regression analysis indicated that the odds ratio for having dry eyes was 1.130 (95% CI 1.012-1.262) according to the findings of the McMonnies questionnaire. This 3-year trend suggests that the increased prevalence of DES was associated with longer working hours. To decrease the prevalence of DES, employees should be assigned reasonable working hours with shift assignments that include appropriate break times. Workers should also wear protective eyewear, subdivide their working process to minimize exposure, and utilize preservative-free eye drops.

  20. Ventilation performance in the operating theatre against airborne infection: numerical study on an ultra-clean system.

    PubMed

    Chow, T T; Yang, X Y

    2005-02-01

    A laminar airflow study was performed in a standard operating theatre in Hong Kong, the design of which followed the requirements of the UK Health Technical Memorandum. The study of the ultra-clean ventilation system investigated the effectiveness of the laminar flow in: (i) preventing bioaerosols released by the surgical staff from causing postoperative infection of the patient; and (ii) protecting the surgical team against infection by bacteria from the wound site. Seven cases of computer simulation are presented and the sensitivity of individual cases is discussed. Air velocity at the supply diffuser has been identified as one of the most important factors in governing the dispersion of airborne infectious particles. Higher velocity within the laminar regime is advantageous in minimizing the heat-dissipation effect, and to ensure an adequate washing effect against particulate settlement. Inappropriate positioning of the medical lamps can be detrimental. Omission of a partial wall may increase the infection risk of the surgical team due to the ingression of room air at the supply diffuser periphery. This paper stresses that a successful outcome in preventing airborne infection depends as much on resolving human factors as on overcoming technical obstacles.

  1. Ultra Pure Water Cleaning Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Burkett, P. J.; Allton, J. H.; Allen, C. C.

    2013-01-01

    Future sample return missions will require strict protocols and procedures for reducing inorganic and organic contamination in isolation containment systems. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs [1, 2]. As part of this in-depth organic study, the current curatorial technical support procedure (TSP) 23 was used for cleaning the gloveboxes with ultra pure water (UPW) [3-5]. Particle counts and identification were obtained that could be used as a benchmark for future mission designs that require glovebox decontamination. The UPW baseline study demonstrates that TSP 23 works well for gloveboxes that have been thoroughly degreased. However, TSP 23 could be augmented to provide even better glovebox decontamination. JSC 03243 could be used as a starting point for further investigating optimal cleaning techniques and procedures. DuPont Vertrel XF or other chemical substitutes to replace Freon- 113, mechanical scrubbing, and newer technology could be used to enhance glovebox cleanliness in addition to high purity UPW final rinsing. Future sample return missions will significantly benefit from further cleaning studies to reduce inorganic and organic contamination.

  2. TESS Spacecraft Move to Clean Room

    NASA Image and Video Library

    2018-02-12

    NASA's Transiting Exoplanet Survey Satellite (TESS), secured on a test stand, is moved into a clean room tent inside the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  3. TESS Spacecraft Move to Clean Room

    NASA Image and Video Library

    2018-02-12

    Technicians dressed in clean room suits move NASA's Transiting Exoplanet Survey Satellite (TESS) on a test stand inside the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  4. TESS Spacecraft Move to Clean Room

    NASA Image and Video Library

    2018-02-12

    Technicians dressed in clean room suits move NASA's Transiting Exoplanet Survey Satellite (TESS) secured on a test stand inside the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  5. Prevalence of Dry Eye Syndrome after a Three-Year Exposure to a Clean Room

    PubMed Central

    2014-01-01

    Objective To measure the prevalence of dry eye syndrome (DES) among clean room (relative humidity ≤1%) workers from 2011 to 2013. Methods Three annual DES examinations were performed completely in 352 clean room workers aged 20–40 years who were working at a secondary battery factory. Each examination comprised the tear-film break-up test (TFBUT), Schirmer’s test I, slit-lamp microscopic examination, and McMonnies questionnaire. DES grades were measured using the Delphi approach. The annual examination results were analyzed using a general linear model and post-hoc analysis with repeated-ANOVA (Tukey). Multiple logistic regression was performed using the examination results from 2013 (dependent variable) to analyze the effect of years spent working in the clean room (independent variable). Results The prevalence of DES among these workers was 14.8% in 2011, 27.1% in 2012, and 32.8% in 2013. The TFBUT and McMonnies questionnaire showed that DES grades worsened over time. Multiple logistic regression analysis indicated that the odds ratio for having dry eyes was 1.130 (95% CI 1.012–1.262) according to the findings of the McMonnies questionnaire. Conclusions This 3-year trend suggests that the increased prevalence of DES was associated with longer working hours. To decrease the prevalence of DES, employees should be assigned reasonable working hours with shift assignments that include appropriate break times. Workers should also wear protective eyewear, subdivide their working process to minimize exposure, and utilize preservative-free eye drops. PMID:25339991

  6. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) is being moved to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  7. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians move the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) into a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  8. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians begin to move the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  9. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians move the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) toward a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  10. Cleaning Hospital Room Surfaces to Prevent Health Care-Associated Infections: A Technical Brief.

    PubMed

    Han, Jennifer H; Sullivan, Nancy; Leas, Brian F; Pegues, David A; Kaczmarek, Janice L; Umscheid, Craig A

    2015-10-20

    The cleaning of hard surfaces in hospital rooms is critical for reducing health care-associated infections. This review describes the evidence examining current methods of cleaning, disinfecting, and monitoring cleanliness of patient rooms, as well as contextual factors that may affect implementation and effectiveness. Key informants were interviewed, and a systematic search for publications since 1990 was done with the use of several bibliographic and gray literature resources. Studies examining surface contamination, colonization, or infection with Clostridium difficile, methicillin-resistant Staphylococcus aureus, or vancomycin-resistant enterococci were included. Eighty studies were identified-76 primary studies and 4 systematic reviews. Forty-nine studies examined cleaning methods, 14 evaluated monitoring strategies, and 17 addressed challenges or facilitators to implementation. Only 5 studies were randomized, controlled trials, and surface contamination was the most commonly assessed outcome. Comparative effectiveness studies of disinfecting methods and monitoring strategies were uncommon. Future research should evaluate and compare newly emerging strategies, such as self-disinfecting coatings for disinfecting and adenosine triphosphate and ultraviolet/fluorescent surface markers for monitoring. Studies should also assess patient-centered outcomes, such as infection, when possible. Other challenges include identifying high-touch surfaces that confer the greatest risk for pathogen transmission; developing standard thresholds for defining cleanliness; and using methods to adjust for confounders, such as hand hygiene, when examining the effect of disinfecting methods.

  11. Efficacy of laminar air flow room with or without clean nursing for preventing infection in patients with acute leukemia.

    PubMed

    Ueda, T; Shibata, H; Nakamura, H; Takubo, T; Kubota, Y; Oguma, S; Tani, Y; Masaoka, T; Nagao, T; Takeo, H; Hasegawa, H; Moriyama, Y

    1983-01-01

    The clinical effectiveness of bioclean rooms was studied in relation to prevention of infection during treatment for induction of remission of acute leukemia. According to the steps in clean patient care, patients were divided into three groups, Group A consisting of 106 patients who were accommodated in laminar air flow (LAF) rooms under strictly clean nursing, Group B consisting of 99 patients who were treated in disinfected rooms with LAF without any clean nursing techniques and Group C consisting of 188 patients who stayed in conventional wards. Since all patients were treated with antileukemic drugs and preventive administration of antimicrobial drugs under the same regimen, any difference between groups should be attributable to LAF or LAF and clean nursing. A marked and stepwise reduction in the incidence of infection between Groups A, B and C was observed. A statistically significant reduction in pneumonia, upper respiratory tract infection, periproctitis and skin abscesses was also observed in Groups A and B. As to the causative organisms, a relative increase in incidence of infections caused by Pseudomonas aeruginosa and Escherichia coli and a decrease in those caused by Proteus and fungi were observed in Groups A and B, as compared with Group C. These data suggest that pneumonia etc. may be exogenous infections and that Proteus and fungi are exogenous organisms, while Pseudomonas aeruginosa and Escherichia coli are endogenous bacteria. These data seem very helpful for setting up several steps in bioclean rooms for effective and economic patient care.

  12. [Correlation of bacteria in the contaminated drug and the environmental microbes in the clean room for pharmaceutical microbial test investigated by FTIR].

    PubMed

    Pei, Lin; Hu, Chang-qin; Ma, Shi-hong; Dai, Hui; Hang, Tai-jun

    2007-11-01

    The FTIR method was used to investigate the correlation of bacteria in the contaminated drug and the environmental microbes in the clean room for pharmaceutical microbial test. The similarity of bacteria in the contaminated drug and environmental microbes was compared by critical hit value method and cluster analysis method. This constructed the FTIR spectra library of clean room environmental microbe, and determined the criterion to promptly judge if the bacteria isolated from pharmaceuticals were contaminated by environment or not, hence the exactness of "one-off report" of sterile test result can be guaranteed, and can be used for the dynamic monitoring of environmental bacteria of clean room. The method is proven to be simple, accurate and rapid, and can be easily spread to the pharmaceutical microbial control.

  13. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians secure a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  14. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a Lockheed Martin technician secures a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  15. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians secure a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  16. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a protective cover is installed around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  17. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians are preparing the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for the move into a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  18. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) is in a clean room with protective walls secured around it. The adapter will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  19. Orion EM-1 Crew Module Move from Clean Room to Work Station

    NASA Image and Video Library

    2017-05-11

    The Orion crew module pressure vessel for NASA’s Exploration Mission 1 (EM-1) is moved from a clean room to a work station inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. Orion will undergo additional processing to prepare it for launch in 2019. The spacecraft is being prepared for its first integrated flight atop the Space Launch System rocket on Exploration Mission-1.

  20. Orion EM-1 Crew Module Move from Clean Room to Work Station

    NASA Image and Video Library

    2017-05-11

    The Orion crew module pressure vessel for NASA’s Exploration Mission 1 (EM-1) is being moved from a clean room to a work station inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. Orion will undergo additional processing to prepare it for launch in 2019. The spacecraft is being prepared for its first integrated flight atop the Space Launch System rocket on Exploration Mission-1.

  1. Obesity and high blood pressure of 12-hour night shift female clean-room workers.

    PubMed

    Chen, Jong-Dar; Lin, Yu-Cheng; Hsiao, Shu-Tin

    2010-01-01

    The 12 h shift schedule is widely used in clean rooms for electronic semiconductor production in Taiwan. This study investigated the associations of obesity and metabolic syndrome (MetS) components among women working in a semiconductor manufacturing factory in North Taiwan. Workers were divided into four groups according to their work schedules and duties (i.e., office workers, day workers, fixed 12 h day shift, and fixed 12 h night shiftworkers). The subjects comprised 1838 women who voluntarily attended a health examination between August 2006 and November 2006. Their mean (+/-SD) age was 33.6 (+/-7.1) yrs and their mean duration of work was 7.4 (+/-5.2) yrs. Each subject's health-related behaviors, body mass index, and MetS components were measured and analyzed using multivariate logistic regression. Obesity and MetS were defined according to World Health Organization criteria for Asian populations and the National Cholesterol Educational Program and Adult Treatment Panel III Guidelines, respectively. The results showed that women working in the clean room on fixed 12 h night shifts had significantly elevated odds ratios for obesity (OR, 2.7; 95% CI, 1.6-4.5), central obesity (OR, 2.9; 95% CI, 1.7-5.1), and high blood pressure (OR, 2.3; 95% CI, 1.2-4.4) compared to female office workers; these results persisted after adjusting for age, smoking, drinking, education, and duration of work. We did not find any significant differences in triglyceride and high-density lipoprotein cholesterol among women working different schedules. We conclude that working fixed 12 h night shifts was associated with an increased odds ratio for obesity, central obesity, and high blood pressure among clean-room women workers. Weight reduction and blood pressure control programs should be implemented in the workplace for women working fixed 12 h night shifts.

  2. Ultra-high heat flux cooling characteristics of cryogenic micro-solid nitrogen particles and its application to semiconductor wafer cleaning technology

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Oh, U.; Guanghan, Zhao; Koike, Tomoki; Ochiai, Naoya

    2014-01-01

    The ultra-high heat flux cooling characteristics and impingement behavior of cryogenic micro-solid nitrogen (SN2) particles in relation to a heated wafer substrate were investigated for application to next generation semiconductor wafer cleaning technology. The fundamental characteristics of cooling heat transfer and photoresist removal-cleaning performance using micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. This study contributes not only advanced cryogenic cooling technology for high thermal emission devices, but also to the field of nano device engineering including the semiconductor wafer cleaning technology.

  3. Impact of terminal cleaning and disinfection on isolation of Acinetobacter baumannii complex from inanimate surfaces of hospital rooms by quantitative and qualitative methods.

    PubMed

    Manian, Farrin A; Griesnauer, Sandra; Senkel, Diane

    2013-04-01

    Quantitative broth cultures were obtained from hospital rooms newly vacated by patients positive for multidrug-resistant Acinetobacter baumannii complex (ABC) before and after terminal cleaning and disinfection. Of 10 ABC-positive precleaned room surfaces, 6 (60%) remained culture-positive after terminal cleaning and disinfection. Of a total of 16 room surfaces with detectable ABC by the quantitative method, 5 (31.2%; 95% confidence interval, 13.9%-55.8%) were also culture-positive by the qualitative technique. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  4. Orion EM-1 Crew Module Move from Clean Room to Work Station

    NASA Image and Video Library

    2017-05-11

    Workers have moved the Orion crew module pressure vessel for NASA’s Exploration Mission 1 (EM-1) out of a clean room inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. The crew module will be moved to a work station where it will undergo additional processing to prepare it for launch in 2019. The spacecraft is being prepared for its first integrated flight atop the Space Launch System rocket on Exploration Mission-1.

  5. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    NASA Astrophysics Data System (ADS)

    Banks, T. I.; Freedman, S. J.; Wallig, J.; Ybarrolaza, N.; Gando, A.; Gando, Y.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; Mitsui, T.; Nakamura, K.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yoshida, H.; Yoshida, S.; Kozlov, A.; Grant, C.; Keefer, G.; Piepke, A.; Bloxham, T.; Fujikawa, B. K.; Han, K.; Ichimura, K.; Murayama, H.; O`Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2015-01-01

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.

  6. Isolation and Characterization of Bacteria Capable of Tolerating the Extreme Conditions of Clean Room Environments▿

    PubMed Central

    La Duc, Myron T.; Dekas, Anne; Osman, Shariff; Moissl, Christine; Newcombe, David; Venkateswaran, Kasthuri

    2007-01-01

    In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4°C to 65°C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 106 cells/m2. However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (α- and β-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means of translocation of

  7. Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments.

    PubMed

    La Duc, Myron T; Dekas, Anne; Osman, Shariff; Moissl, Christine; Newcombe, David; Venkateswaran, Kasthuri

    2007-04-01

    In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4 degrees C to 65 degrees C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 10(6) cells/m(2). However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (alpha- and beta-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means

  8. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    DOE PAGES

    Banks, T. I.; Freedman, S. J.; Wallig, J.; ...

    2014-10-14

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealedmore » housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. Finally, an infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable’s motion, and the system was controlled via a graphical user interface.« less

  9. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.T. Robinson; John Sirman; Prasad Apte

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and inmore » International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.« less

  10. Impact of an Environmental Cleaning Intervention on the Presence of Methicillin-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococci on Surfaces in Intensive Care Unit Rooms

    PubMed Central

    Goodman, Eric R.; Platt, Richard; Bass, Richard; Onderdonk, Andrew B.; Yokoe, Deborah S.; Huang, Susan S.

    2009-01-01

    OBJECTIVES To evaluate the adequacy of discharge room cleaning and the impact of a cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) on environmental surfaces in intensive care unit (ICU) rooms. DESIGN Prospective environmental study. SETTING AND SAMPLE Convenience sample of ICU rooms in an academic hospital. METHODS AND INTERVENTION The intervention consisted of (1) a change from the use of pour bottles to bucket immersion for applying disinfectant to cleaning cloths, (2) an educational campaign, and (3) feedback regarding adequacy of discharge cleaning. Cleaning of 15 surfaces was evaluated by inspecting for removal of a preapplied mark, visible only with an ultraviolet lamp (“black light”). Six surfaces were cultured for MRSA or VRE contamination. Outcomes of mark removal and culture positivity were evaluated by χ2 testing and generalized linear mixed models, clustering by room. RESULTS The black-light mark was removed from 44% of surfaces at baseline, compared with 71% during the intervention (P <.001). The intervention increased the likelihood of removal of black-light marks after discharge cleaning (odds ratio, 4.4; P < .001), controlling for ICU type (medical vs surgical) and type of surface. The intervention reduced the likelihood of an environmental culture positive for MRSA or VRE (proportion of cultures positive, 45% at baseline vs 27% during the intervention; adjusted odds ratio, 0.4; P = .02). Broad, flat surfaces were more likely to be cleaned than were doorknobs and sink or toilet handles. CONCLUSIONS Increasing the volume of disinfectant applied to environmental surfaces, providing education for Environmental Services staff, and instituting feedback with a black-light marker improved cleaning and reduced the frequency of MRSA and VRE contamination. PMID:18624666

  11. Self-cleaning effect in high quality percussion ablating of cooling hole by picosecond ultra-short pulse laser

    NASA Astrophysics Data System (ADS)

    Zhao, Wanqin; Yu, Zhishui

    2018-06-01

    Comparing with the trepanning technology, cooling hole could be processed based on the percussion drilling with higher processing efficiency. However, it is widely believed that the ablating precision of hole is lower for percussion drilling than for trepanning, wherein, the melting spatter materials around the hole surface and the recast layer inside the hole are the two main issues for reducing the ablating precision of hole, especially for the recast layer, it can't be eliminated completely even through the trepanning technology. In this paper, the self-cleaning effect which is a particular property just for percussion ablating of holes has been presented in detail. In addition, the reasons inducing the self-cleaning effect have been discussed. At last, based on the self-cleaning effect of percussion drilling, high quality cooling hole without the melting spatter materials around the hole surface and recast layer inside the hole could be ablated in nickel-based superalloy by picosecond ultra-short pulse laser.

  12. Cleaning Physical Education Areas.

    ERIC Educational Resources Information Center

    Griffin, William R.

    1999-01-01

    Discusses techniques to help create clean and inviting school locker rooms. Daily, weekly or monthly, biannual, and annual cleaning strategies for locker room showers are highlighted as are the specialized maintenance needs for aerobic and dance areas, running tracks, and weight training areas. (GR)

  13. Correlating Cleaning Thoroughness with Effectiveness and Briefly Intervening to Affect Cleaning Outcomes: How Clean Is Cleaned?

    PubMed

    Clifford, Robert; Sparks, Michael; Hosford, Eve; Ong, Ana; Richesson, Douglas; Fraser, Susan; Kwak, Yoon; Miller, Sonia; Julius, Michael; McGann, Patrick; Lesho, Emil

    2016-01-01

    The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal) correlates with cleaning efficacy (absence of molecular or cultivable biomaterial) and whether one brief educational intervention improves cleaning outcomes. Before-after trial. Newly built community hospital. 90 minute training refresher with surface-specific performance results. Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention) and assessments continued for another eight consecutive months. 1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant). For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant), and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016). For nonspecific biomaterial on surfaces: a) removal of cultivable Gram-negatives (GN) trended toward improvement (P = 0.056); b) removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning) worsened (P = 0.017); c) removal of PCR-based detection of bacterial DNA improved (P = 0.046), but acquisition worsened (P = 0.003); d) cleaning thoroughness and efficacy were not correlated. At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences.

  14. Analysis of the effects of essential oils on airborne bacteria in a customized bio-clean room.

    PubMed

    Yang, Hyun; Koo, Tae-Hyoung; Hong, Chang-Young; Choi, In-Gyu; Jeung, Eui-Bae

    2012-09-01

    Essential oils have a sedative effect on stress, and are also known to have antibiotic and anti-carcinogenic effects. These compounds have long been used as natural microbial agents, and have recently been added to a number of pharmaceutical, food and cosmetic products. Controlling the exposure to allergens and pathogens are important factors for the treatment of allergy, and potentially reducing the risk of sensitization and infection. Low humidity, at levels under 35%, may affect human comfort and health during the winter. Patients and other individuals require optimal humidification to maintain a moisturized respiratory tract necessary for protecting against bacterial infection. We designed an analytical system to examine the effects of aromatherapeutic essential oils on airborne bacteria. The antibacterial activities of essential oils were assayed using agar plate air-sampling methods. A bacterial suspension was sprayed into a bio-clean room through the upper holes using a spray gun. Free-floating airborne bacteria were collected from the bio-clean room (blank) in blood agar plates for 10 sec using an air sampler. Three different concentrations of essential oils (0.0005, 0.005 and 0.05 ppm) were then sprayed into the bio-clean room for 5 min. Free-floating airborne bacteria were collected every 10 min for 10 sec each. Treatment with 0.0005 ppm essential oils inhibited the growth of colonies; this effect appeared to persist after 60 min. Decreased bacterial colony growth was more apparent in the presence of 0.005 ppm and 0.05 ppm essential oils than 0.0005 ppm. These effects were observed after 60 min compared to the control (distilled water). These results indicate that essential oils are able to inhibit the growth of airborne bacteria.

  15. Correlating Cleaning Thoroughness with Effectiveness and Briefly Intervening to Affect Cleaning Outcomes: How Clean Is Cleaned?

    PubMed Central

    Hosford, Eve; Ong, Ana; Richesson, Douglas; Fraser, Susan; Kwak, Yoon; Miller, Sonia; Julius, Michael; McGann, Patrick; Lesho, Emil

    2016-01-01

    Objectives The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal) correlates with cleaning efficacy (absence of molecular or cultivable biomaterial) and whether one brief educational intervention improves cleaning outcomes. Design Before-after trial. Setting Newly built community hospital. Intervention 90 minute training refresher with surface-specific performance results. Methods Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention) and assessments continued for another eight consecutive months. Results 1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant). For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant), and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016). For nonspecific biomaterial on surfaces: a) removal of cultivable Gram-negatives (GN) trended toward improvement (P = 0.056); b) removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning) worsened (P = 0.017); c) removal of PCR-based detection of bacterial DNA improved (P = 0.046), but acquisition worsened (P = 0.003); d) cleaning thoroughness and efficacy were not correlated. Conclusion At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences. PMID

  16. Clean Room Apparel

    NASA Technical Reports Server (NTRS)

    1989-01-01

    American Hospital Supply Corporation (AHSC), Baxter Healthcare Corporation's predecessor, used the NASA informational base on contamination control technology to improve industrial contamination control technology. When a study determined that microscopic body particles escaping through tiny "windows" in woven garments worn by workers were the greatest source of contamination, AHSC developed TYVEK. This non-woven material filters 99% of all particulate matter larger than half a micron. Baxter Healthcare added a polyimide coating which seals and ties down any loose fibers, providing greater durability. Stress points along seams have been minimized to make the garment almost tearproof. Micro-Clean 212 garments are individually packaged and disposable.

  17. High-Density 16S Microarray and Clone Library-Based Microbial Community Composition of the Phoenix Spacecraft Assembly Clean Room

    NASA Astrophysics Data System (ADS)

    Vaishampayan, Parag; Osman, Shariff; Andersen, Gary; Venkateswaran, Kasthuri

    2010-06-01

    The bacterial diversity and comparative community structure of a clean room used for assembling the Phoenix spacecraft was characterized throughout the spacecraft assembly process by using 16S rRNA gene cloning/sequencing and DNA microarray (PhyloChip) technologies. Samples were collected from several locations of the clean room at three time points: before Phoenix's arrival (PHX-B), during hardware assembly (PHX-D), and after the spacecraft was removed for launch (PHX-A). Bacterial diversity comprised of all major bacterial phyla of PHX-B was found to be statistically different from PHX-D and PHX-A samples. Due to stringent cleaning and decontamination protocols during assembly, PHX-D bacterial diversity was dramatically reduced when compared to PHX-B and PHX-A samples. Comparative community analysis based on PhyloChip results revealed similar overall trends as were seen in clone libraries, but the high-density phylogenetic microarray detected larger diversity in all sampling events. The decrease in community complexity in PHX-D compared to PHX-B, and the subsequent recurrence of these organisms in PHX-A, speaks to the effectiveness of NASA cleaning protocols. However, the persistence of a subset of bacterial signatures throughout all spacecraft assembly phases underscores the need for continued refinement of sterilization technologies and the implementation of safeguards that monitor and inventory microbial contaminants.

  18. High-density 16S microarray and clone library-based microbial community composition of the Phoenix spacecraft assembly clean room.

    PubMed

    Vaishampayan, Parag; Osman, Shariff; Andersen, Gary; Venkateswaran, Kasthuri

    2010-06-01

    The bacterial diversity and comparative community structure of a clean room used for assembling the Phoenix spacecraft was characterized throughout the spacecraft assembly process by using 16S rRNA gene cloning/sequencing and DNA microarray (PhyloChip) technologies. Samples were collected from several locations of the clean room at three time points: before Phoenix's arrival (PHX-B), during hardware assembly (PHX-D), and after the spacecraft was removed for launch (PHX-A). Bacterial diversity comprised of all major bacterial phyla of PHX-B was found to be statistically different from PHX-D and PHX-A samples. Due to stringent cleaning and decontamination protocols during assembly, PHX-D bacterial diversity was dramatically reduced when compared to PHX-B and PHX-A samples. Comparative community analysis based on PhyloChip results revealed similar overall trends as were seen in clone libraries, but the high-density phylogenetic microarray detected larger diversity in all sampling events. The decrease in community complexity in PHX-D compared to PHX-B, and the subsequent recurrence of these organisms in PHX-A, speaks to the effectiveness of NASA cleaning protocols. However, the persistence of a subset of bacterial signatures throughout all spacecraft assembly phases underscores the need for continued refinement of sterilization technologies and the implementation of safeguards that monitor and inventory microbial contaminants.

  19. Principles of a clean operating room environment.

    PubMed

    Howard, James L; Hanssen, Arlen D

    2007-10-01

    Optimizing the operating room environment is necessary to minimize the prevalence of arthroplasty infection. Reduction of bacterial contamination in the operating room should be a primary focus of all members of the operating room team. However, in recent years, there has been a decline in the emphasis of the basic principles of antisepsis in many operating rooms. The purpose of this review is to highlight important considerations for optimizing the operating room environment. These principles should be actively promoted by orthopedic surgeons in their operating rooms as part of a comprehensive approach to minimizing arthroplasty infection.

  20. Insights into the microbial diversity and bioburden in a South American spacecraft assembly clean room.

    PubMed

    Schwendner, Petra; Moissl-Eichinger, Christine; Barczyk, Simon; Bohmeier, Maria; Pukall, Rüdiger; Rettberg, Petra

    2013-12-01

    In this study, samples from the spacecraft assembly clean room BAF (final assembly building), located at Centre Spatial Guyanais in Kourou, French Guiana, were characterized by qualitative and quantitative methods to determine the bioburden and biodiversity. The cultivation assays mainly focused on extremotolerant microorganisms that have special metabolic skills, such as the ability to grow without oxygen, fix nitrogen, grow autotrophically, or reduce sulfate. A broad range of media and growth conditions were used to simulate possible extraterrestrial environments and clean room buildings. In addition to these alternative cultivation assays, the ESA standard protocol for bioburden estimation was also applied. The phylogenetic analysis of the isolates (mainly facultative anaerobes) showed an extraordinarily broad cultivable biodiversity. Overall, 49 species were isolated and identified as members of the bacterial phyla Actinobacteria, Firmicutes, α-, β-, γ-Proteobacteria, and Bacteroidetes/Chlorobi. In addition to cultivation-based analyses, molecular techniques were also applied, including construction of a 16S rRNA gene clone library. The results indicate a wide-ranging microbial diversity (12 bacterial phyla, 34 families) that not only confirms the results of the cultivation efforts but also deepens our understanding of the noncultivable variety. Our investigations hint at a very broad, mainly uncultivated microbial diversity.

  1. Piezo-based motion stages for heavy duty operation in clean environments

    NASA Astrophysics Data System (ADS)

    Karasikov, Nir; Peled, Gal; Yasinov, Roman; Gissin, Michael; Feinstein, Alan

    2018-02-01

    A range of heavy duty, ultra-precise motion stages had been developed for precise positioning in semiconductor manufacturing and metrology, for use in a clean room and high vacuum (HV and UHV) environments, to meet the precision requirements for 7, 5 nm nodes and beyond. These stages are powered by L1B2 direct drive ultrasonic motors, which allows combining long motion range, sub-nanometer positioning accuracy, high stiffness (in the direction of motion), low power consumption and active compensation of thermal and structural drift while holding position. The mechanical design, material selection for clean room and high vacuum preparation techniques are reviewed. Test results in a clean room are reported for a two-axis (X-Y) stage, having a load capacity of 30 kg, a motion range of 450 mm, a positioning accuracy of < 1 nm, a maximum motion speed of > 200 mm/s and a < 2 nm position stability (3 sigma). Long term drift compensation to sub-nm level, against thermal drift, has been validated for more than 10 hours. Heavy duty operation in a high vacuum is exemplified via a single axis stage operating at 5E-7 Torr, having a moving mass of 0.96 kg, oriented against gravity. The stage is operated periodically (up and down) over a travel length of 45 mm. The motion profile has a trapezoidal shape with an acceleration of 1m/s2 and a constant velocity of 100 mm/s. The operational parameters (average absolute position error during constant velocity, motor force, dead zone level) remain stable over more than 370000 passes (experiment duration).

  2. Parallel-plate wet denuder coupled ion chromatograph for near-real-time detection of trace acidic gases in clean room air.

    PubMed

    Takeuchi, Masaki; Tsunoda, Hiromichi; Tanaka, Hideji; Shiramizu, Yoshimi

    2011-01-01

    This paper describes the performance of our automated acidic (CH(3)COOH, HCOOH, HCl, HNO(2), SO(2), and HNO(3)) gases monitor utilizing a parallel-plate wet denuder (PPWD). The PPWD quantitatively collects gaseous contaminants at a high sample flow rate (∼8 dm(3) min(-1)) compared to the conventional methods used in a clean room. Rapid response to any variability in the sample concentration enables near-real-time monitoring. In the developed monitor, the analyte collected with the PPWD is pumped into one of two preconcentration columns for 15 min, and determined by means of ion chromatography. While one preconcentration column is used for chromatographic separation, the other is used for loading the sample solution. The system allows continuous monitoring of the common acidic gases in an advanced semiconductor manufacturing clean room. 2011 © The Japan Society for Analytical Chemistry

  3. KENNEDY SPACE CENTER, FLA. - A KSC employee dressed in a "bunny suit," standard clean room apparel, disposes of some waste material into a container designated for the purpose. The apparel is designed to cover the hair, clothing and shoes of employees entering a clean room to prevent particulate matter from contaminating the space flight hardware being stored or processed in the room. The suit and container are both part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dressed in a "bunny suit," standard clean room apparel, disposes of some waste material into a container designated for the purpose. The apparel is designed to cover the hair, clothing and shoes of employees entering a clean room to prevent particulate matter from contaminating the space flight hardware being stored or processed in the room. The suit and container are both part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  4. Statistical analysis of environmental monitoring data: does a worst case time for monitoring clean rooms exist?

    PubMed

    Cundell, A M; Bean, R; Massimore, L; Maier, C

    1998-01-01

    To determine the relationship between the sampling time of the environmental monitoring, i.e., viable counts, in aseptic filling areas and the microbial count and frequency of alerts for air, surface and personnel microbial monitoring, statistical analyses were conducted on 1) the frequency of alerts versus the time of day for routine environmental sampling conducted in calendar year 1994, and 2) environmental monitoring data collected at 30-minute intervals during routine aseptic filling operations over two separate days in four different clean rooms with multiple shifts and equipment set-ups at a parenteral manufacturing facility. Statistical analyses showed, except for one floor location that had significantly higher number of counts but no alert or action level samplings in the first two hours of operation, there was no relationship between the number of counts and the time of sampling. Further studies over a 30-day period at the floor location showed no relationship between time of sampling and microbial counts. The conclusion reached in the study was that there is no worst case time for environmental monitoring at that facility and that sampling any time during the aseptic filling operation will give a satisfactory measure of the microbial cleanliness in the clean room during the set-up and aseptic filling operation.

  5. Effects of Ultra-Clean and centrifugal filtration on rolling-element bearing life

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.; Needelman, W. M.

    1981-01-01

    Fatigue tests were conducted on groups of 65-millimeter bore diameter deep-groove ball bearings in a MIL-L-23699 lubricant under two levels of filtration. In one test series, the oil cleanliness was maintained at an exceptionally high level (better than a class "000" per NAS 1638) with a 3 micron absolute barrier filter. These tests were intended to determine the "upper limit" in bearing life under the strictest possible lubricant cleanliness conditions. In the tests using a centrifugal oil filter, contaminants of the type found in aircraft engine filters were injected into the filters' supply line at 125 milligrams per bearing-hour. "Ultra-clean" lubrication produced bearing fatigue lives that were approximately twice that obtained in previous tests with contaminated oil using 3 micron absolute filtration and approximately three times that obtained with 49 micron filtration. It was also observed that the centrifugal oil filter had approximately the same effectiveness as a 30 micron absolute filter in preventing bearing surface damage.

  6. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition.

    PubMed

    Liu, Donghua; Chen, Xiaosong; Hu, Yibin; Sun, Tai; Song, Zhibo; Zheng, Yujie; Cao, Yongbin; Cai, Zhi; Cao, Min; Peng, Lan; Huang, Yuli; Du, Lei; Yang, Wuli; Chen, Gang; Wei, Dapeng; Wee, Andrew Thye Shen; Wei, Dacheng

    2018-01-15

    Graphene is regarded as a potential surface-enhanced Raman spectroscopy (SERS) substrate. However, the application of graphene quantum dots (GQDs) has had limited success due to material quality. Here, we develop a quasi-equilibrium plasma-enhanced chemical vapor deposition method to produce high-quality ultra-clean GQDs with sizes down to 2 nm directly on SiO 2 /Si, which are used as SERS substrates. The enhancement factor, which depends on the GQD size, is higher than conventional graphene sheets with sensitivity down to 1 × 10 -9  mol L -1 rhodamine. This is attributed to the high-quality GQDs with atomically clean surfaces and large number of edges, as well as the enhanced charge transfer between molecules and GQDs with appropriate diameters due to the existence of Van Hove singularities in the electronic density of states. This work demonstrates a sensitive SERS substrate, and is valuable for applications of GQDs in graphene-based photonics and optoelectronics.

  7. [Study on assistant cleaning of ultrasound for the ultrafiltration membrane].

    PubMed

    Zhang, Guojun; Liu, Zhongzhou

    2003-11-01

    The effects of ultrasounds with different frequency on membrane performance were investigated in this paper. The experimental results show that there were nearly no effects of 20 W ultrasound on membrane retention coefficient, but it decreased seriously when the ultrasound power was above 30 W. On the basis of these results, low frequency ultrasound (20 W) was introduced to assist the chemical cleaning in the ultrafiltration process of wastewater from bank note printing works. The cleaning time could be shortened from 20-30 min to 5 min by the ultra-liberation and ultra-blend effects of ultrasound, therefore, the cleaning efficiency was highly improved. However, the fouling substances could not be cleaned entirely in the simple physical cleaning process by SEM analysis.

  8. Scalable Multifunctional Ultra-thin Graphite Sponge: Free-standing, Superporous, Superhydrophobic, Oleophilic Architecture with Ferromagnetic Properties for Environmental Cleaning

    NASA Astrophysics Data System (ADS)

    Bay, Hamed Hosseini; Patino, Daisy; Mutlu, Zafer; Romero, Paige; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2016-02-01

    Water decontamination and oil/water separation are principal motives in the surge to develop novel means for sustainability. In this prospect, supplying clean water for the ecosystems is as important as the recovery of the oil spills since the supplies are scarce. Inspired to design an engineering material which not only serves this purpose, but can also be altered for other applications to preserve natural resources, a facile template-free process is suggested to fabricate a superporous, superhydrophobic ultra-thin graphite sponge. Moreover, the process is designed to be inexpensive and scalable. The fabricated sponge can be used to clean up different types of oil, organic solvents, toxic and corrosive contaminants. This versatile microstructure can retain its functionality even when pulverized. The sponge is applicable for targeted sorption and collection due to its ferromagnetic properties. We hope that such a cost-effective process can be embraced and implemented widely.

  9. Scalable Multifunctional Ultra-thin Graphite Sponge: Free-standing, Superporous, Superhydrophobic, Oleophilic Architecture with Ferromagnetic Properties for Environmental Cleaning

    PubMed Central

    Bay, Hamed Hosseini; Patino, Daisy; Mutlu, Zafer; Romero, Paige; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2016-01-01

    Water decontamination and oil/water separation are principal motives in the surge to develop novel means for sustainability. In this prospect, supplying clean water for the ecosystems is as important as the recovery of the oil spills since the supplies are scarce. Inspired to design an engineering material which not only serves this purpose, but can also be altered for other applications to preserve natural resources, a facile template-free process is suggested to fabricate a superporous, superhydrophobic ultra-thin graphite sponge. Moreover, the process is designed to be inexpensive and scalable. The fabricated sponge can be used to clean up different types of oil, organic solvents, toxic and corrosive contaminants. This versatile microstructure can retain its functionality even when pulverized. The sponge is applicable for targeted sorption and collection due to its ferromagnetic properties. We hope that such a cost-effective process can be embraced and implemented widely. PMID:26908346

  10. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations.

    PubMed

    Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen

    2005-03-01

    Microorganisms, such as bacteria, which might be present as contamination inside an industrial food or pharmaceutical clean room process need to be identified on short time scales in order to minimize possible health hazards as well as production downtimes causing financial deficits. Here we describe the first results of single-particle micro-Raman measurements in combination with a classification method, the so-called support vector machine technique, allowing for a fast, reliable, and nondestructive online identification method for single bacteria.

  11. Chemotaxonomic Identification of Single Bacteria by Micro-Raman Spectroscopy: Application to Clean-Room-Relevant Biological Contaminations

    PubMed Central

    Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen

    2005-01-01

    Microorganisms, such as bacteria, which might be present as contamination inside an industrial food or pharmaceutical clean room process need to be identified on short time scales in order to minimize possible health hazards as well as production downtimes causing financial deficits. Here we describe the first results of single-particle micro-Raman measurements in combination with a classification method, the so-called support vector machine technique, allowing for a fast, reliable, and nondestructive online identification method for single bacteria. PMID:15746368

  12. 146. View of oil filter room in basement (Room B1) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. View of oil filter room in basement (Room B-1) where oil used in lubrication in generator room is cleaned and recycled. The two tanks in the foreground each have capacities of 2,100 gallons. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  13. Assessment of the Forward Contamination Risk of Mars by Clean Room Isolates from Space-Craft Assembly Facilities through Aeolian Transport - a Model Study.

    PubMed

    van Heereveld, Luc; Merrison, Jonathan; Nørnberg, Per; Finster, Kai

    2017-06-01

    The increasing number of missions to Mars also increases the risk of forward contamination. Consequently there is a need for effective protocols to ensure efficient protection of the Martian environment against terrestrial microbiota. Despite the fact of constructing sophisticated clean rooms for spacecraft assembly a 100 % avoidance of contamination appears to be impossible. Recent surveys of these facilities have identified a significant number of microbes belonging to a variety of taxonomic groups that survive the harsh conditions of clean rooms. These microbes may have a strong contamination potential, which needs to be investigate to apply efficient decontamination treatments. In this study we propose a series of tests to evaluate the potential of clean room contaminants to survive the different steps involved in forward contamination. We used Staphylococcus xylosus as model organism to illustrate the different types of stress that potential contaminants will be subjected to on their way from the spacecraft onto the surface of Mars. Staphylococcus xylosus is associated with human skin and commonly found in clean rooms and could therefore contaminate the spacecraft as a result of human activity during the assembling process. The path the cell will take from the surface of the spacecraft onto the surface of Mars was split into steps representing different stresses that include desiccation, freezing, aeolian transport in a Martian-like atmosphere at Martian atmospheric pressure, and UV radiation climate. We assessed the surviving fraction of the cellular population after each step by determining the integrated metabolic activity of the survivor population by measuring their oxygen consumption rate. The largest fraction of the starting culture (around 70 %) was killed during desiccation, while freezing, Martian vacuum and short-term UV radiation only had a minor additional effect on the survivability of Staphylococcus xylosus. The study also included a

  14. Assessment of the Forward Contamination Risk of Mars by Clean Room Isolates from Space-Craft Assembly Facilities through Aeolian Transport - a Model Study

    NASA Astrophysics Data System (ADS)

    van Heereveld, Luc; Merrison, Jonathan; Nørnberg, Per; Finster, Kai

    2017-06-01

    The increasing number of missions to Mars also increases the risk of forward contamination. Consequently there is a need for effective protocols to ensure efficient protection of the Martian environment against terrestrial microbiota. Despite the fact of constructing sophisticated clean rooms for spacecraft assembly a 100 % avoidance of contamination appears to be impossible. Recent surveys of these facilities have identified a significant number of microbes belonging to a variety of taxonomic groups that survive the harsh conditions of clean rooms. These microbes may have a strong contamination potential, which needs to be investigate to apply efficient decontamination treatments. In this study we propose a series of tests to evaluate the potential of clean room contaminants to survive the different steps involved in forward contamination. We used Staphylococcus xylosus as model organism to illustrate the different types of stress that potential contaminants will be subjected to on their way from the spacecraft onto the surface of Mars. Staphylococcus xylosus is associated with human skin and commonly found in clean rooms and could therefore contaminate the spacecraft as a result of human activity during the assembling process. The path the cell will take from the surface of the spacecraft onto the surface of Mars was split into steps representing different stresses that include desiccation, freezing, aeolian transport in a Martian-like atmosphere at Martian atmospheric pressure, and UV radiation climate. We assessed the surviving fraction of the cellular population after each step by determining the integrated metabolic activity of the survivor population by measuring their oxygen consumption rate. The largest fraction of the starting culture (around 70 %) was killed during desiccation, while freezing, Martian vacuum and short-term UV radiation only had a minor additional effect on the survivability of Staphylococcus xylosus. The study also included a simulation

  15. Exploring surface cleaning strategies in hospital to prevent contact transmission of methicillin-resistant Staphylococcus aureus.

    PubMed

    Lei, Hao; Jones, Rachael M; Li, Yuguo

    2017-01-18

    Cleaning of environmental surfaces in hospitals is important for the control of methicillin-resistant Staphylococcus aureus (MRSA) and other hospital-acquired infections transmitted by the contact route. Guidance regarding the best approaches for cleaning, however, is limited. In this study, a mathematical model based on ordinary differential equations was constructed to study MRSA concentration dynamics on high-touch and low-touch surfaces, and on the hands and noses of two patients (in two hospitals rooms) and a health care worker in a hypothetical hospital environment. Two cleaning interventions - whole room cleaning and wipe cleaning of touched surfaces - were considered. The performance of the cleaning interventions was indicated by a reduction in MRSA on the nose of a susceptible patient, relative to no intervention. Whole room cleaning just before first patient care activities of the day was more effective than whole room cleaning at other times, but even with 100% efficiency, whole room cleaning only reduced the number of MRSA transmitted to the susceptible patient by 54%. Frequent wipe cleaning of touched surfaces was shown to be more effective that whole room cleaning because surfaces are rapidly re-contaminated with MRSA after cleaning. Wipe cleaning high-touch surfaces was more effective than wipe cleaning low-touch surfaces for the same frequency of cleaning. For low wipe cleaning frequency (≤3 times per hour), high-touch surfaces should be targeted, but for high wipe cleaning frequency (>3 times per hour), cleaning should target high- and low-touch surfaces in proportion to the surface touch frequency. This study reproduces the observations from a field study of room cleaning, which provides support for the validity of our findings. Daily whole room cleaning, even with 100% cleaning efficiency, provides limited reduction in the number of MRSA transmitted to susceptible patients via the contact route; and should be supplemented with frequent targeted

  16. Recurrent isolation of extremotolerant bacteria from the clean room where Phoenix spacecraft components were assembled.

    PubMed

    Ghosh, Sudeshna; Osman, Shariff; Vaishampayan, Parag; Venkateswaran, Kasthuri

    2010-04-01

    The microbial burden of the Phoenix spacecraft assembly environment was assessed in a systematic manner via several cultivation-based techniques and a suite of NASA-certified, cultivation-independent biomolecule-based detection assays. Extremotolerant bacteria that could potentially survive conditions experienced en route to Mars or on the planet's surface were isolated with a series of cultivation-based assays that promoted the growth of a variety of organisms, including spore formers, mesophilic heterotrophs, anaerobes, thermophiles, psychrophiles, alkaliphiles, and bacteria resistant to UVC radiation and hydrogen peroxide exposure. Samples were collected from the clean room where Phoenix was housed at three different time points, before (1P), during (2P), and after (3P) Phoenix's presence at the facility. There was a reduction in microbial burden of most bacterial groups, including spore formers, in samples 2P and 3P. Analysis of 262 isolates from the facility demonstrated that there was also a shift in predominant cultivable bacterial populations accompanied by a reduction in diversity during 2P and 3P. It is suggested that this shift was a result of increased cleaning when Phoenix was present in the assembly facility and that certain species, such as Acinetobacter johnsonii and Brevundimonas diminuta, may be better adapted to environmental conditions found during 2P and 3P. In addition, problematic bacteria resistant to multiple extreme conditions, such as Bacillus pumilus, were able to survive these periods of increased cleaning.

  17. NASA's Webb Telescope Clean Room 'Transporter'

    NASA Image and Video Library

    2017-12-08

    What looks like a teleporter from science fiction being draped over NASA's James Webb Space Telescope, is actually a "clean tent." The clean tent protects Webb from dust and dirt when engineers at NASA's Goddard Space Flight Center in Greenbelt, Maryland transport the next generation space telescope out of the relatively dust-free cleanroom and into the shirtsleeve environment of the vibration and acoustics testing areas. In two years, a rocket will be the transporter that carries the Webb into space so it can orbit one million miles from Earth and peer back over 13.5 billion years to see the first stars and galaxies forming out of the darkness of the early universe. For more information about the Webb telescope, visit: www.jwst.nasa.gov or www.nasa.gov/webb. Photo Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. 9 CFR 354.242 - Cleaning of equipment and utensils.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... room and equipment and utensils used therein shall be maintained in a clean and sanitary condition. (c... utensils. Equipment and utensils used for preparing or otherwise handling any product shall be kept clean... removed from the plant daily. (b) All equipment and utensils used in the killing and skinning rooms shall...

  19. KENNEDY SPACE CENTER, FLA. - A KSC employee uses a clean-air shower before entering a clean room. Streams of pressurized air directed at the occupant from nozzles in the chamber's ceiling and walls are designed to dislodge particulate matter from hair, clothing and shoes. The adhesive mat on the floor captures soil from shoe soles, as well as particles that fall on its surface. Particulate matter has the potential to contaminate the space flight hardware being stored or processed in the clean room. The shower is part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee uses a clean-air shower before entering a clean room. Streams of pressurized air directed at the occupant from nozzles in the chamber's ceiling and walls are designed to dislodge particulate matter from hair, clothing and shoes. The adhesive mat on the floor captures soil from shoe soles, as well as particles that fall on its surface. Particulate matter has the potential to contaminate the space flight hardware being stored or processed in the clean room. The shower is part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  20. Air Cleaning Technologies

    PubMed Central

    2005-01-01

    Executive Summary Objective This health technology policy assessment will answer the following questions: When should in-room air cleaners be used? How effective are in-room air cleaners? Are in-room air cleaners that use combined HEPA and UVGI air cleaning technology more effective than those that use HEPA filtration alone? What is the Plasmacluster ion air purifier in the pandemic influenza preparation plan? The experience of severe acute respiratory syndrome (SARS) locally, nationally, and internationally underscored the importance of administrative, environmental, and personal protective infection control measures in health care facilities. In the aftermath of the SARS crisis, there was a need for a clearer understanding of Ontario’s capacity to manage suspected or confirmed cases of airborne infectious diseases. In so doing, the Walker Commission thought that more attention should be paid to the potential use of new technologies such as in-room air cleaning units. It recommended that the Medical Advisory Secretariat of the Ontario Ministry of Health and Long-Term Care evaluate the appropriate use and effectiveness of such new technologies. Accordingly, the Ontario Health Technology Advisory Committee asked the Medical Advisory Secretariat to review the literature on the effectiveness and utility of in-room air cleaners that use high-efficiency particle air (HEPA) filters and ultraviolet germicidal irradiation (UVGI) air cleaning technology. Additionally, the Ontario Health Technology Advisory Committee prioritized a request from the ministry’s Emergency Management Unit to investigate the possible role of the Plasmacluster ion air purifier manufactured by Sharp Electronics Corporation, in the pandemic influenza preparation plan. Clinical Need Airborne transmission of infectious diseases depends in part on the concentration of breathable infectious pathogens (germs) in room air. Infection control is achieved by a combination of administrative, engineering

  1. Do surgeons and surgical facilities disturb the clean air distribution close to a surgical patient in an orthopedic operating room with laminar airflow?

    PubMed

    Cao, Guangyu; Storås, Madeleine C A; Aganovic, Amar; Stenstad, Liv-Inger; Skogås, Jan Gunnar

    2018-05-04

    Airflow distribution in the operating room plays an important role in ensuring a clean operating microenvironment and preventing surgical site infections (SSIs) caused by airborne contaminations. The objective of this study was to characterize the airflow distribution in proximity to a patient in an orthopedic operating room. Experimental measurements were conducted in a real operating room at St. Olav's Hospital, Norway, with a laminar airflow system. Omnidirectional anemometers were used to investigate the air distribution in the operating zone, and 4 different cases were examined with a real person and a thermal manikin. This study showed that the downward airflow from the laminar airflow system varies in each case with different surgical arrangement, such as the position of the operating lamp. The results indicate that the interaction of thermal plumes from a patient and the downward laminar airflow may dominate the operating microenvironment. The airflow distribution in proximity to a patient is influenced by both the surgical facility and the presence of medical staff. A thermal manikin may be an economical and practical way to study the interaction of thermal plumes and downward laminar airflow. The provision of higher clean airflow rate in the operating microenvironment may be an effective way to prevent the development of SSIs caused by indoor airborne contamination. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Prospective Evaluation of Operating Room Inefficiency.

    PubMed

    Madni, Tarik D; Imran, Jonathan B; Clark, Audra T; Cunningham, Holly B; Taveras, Luis; Arnoldo, Brett D; Phelan, Herb A; Wolf, Steven E

    2018-04-06

    Previously, we identified that 60% of our facility's total operative time is nonoperative. We performed a review of our operating room to determine where inefficiencies exist in nonoperative time. Live video of operations performed in a burn operating room from 6/23/17 to 8/16/17 were prospectively reviewed. Preparation (end of induction to procedure start) and turnover (patient out of room to next patient in room) were divided into the following activities: 1) Preparation: remove dressing, position patient, clean patient, drape patient, and 2) Turnover: clean operating room, scrub tray set-up, anesthesia set-up. Ideal preparation time was calculated as the sum of time needed to perform preparation activities consecutively. Ideal turnover time was calculated as the sum of time needed to clean the operating room and to set up either the scrub tray or anesthesia (the larger of the two times as these can be done in parallel). We reviewed 101 consecutive operations. An average of 2.4±0.8 cases/day were performed. Ideal preparation and turnover time were 16.6 and 30.1 minutes, a 38.3% and 32.5% reduction compared to actual times. Attending surgeon presence in the operating room within 10 minutes of a patient's arrival was found to significantly decrease time to incision by 33% (52.7±14.3 minutes down to 35.7±20.4, p<0.0001). A reduction in preparation and turnover time could save $1.02 million and generate $1.76 million in additional revenue annually. Reducing preparation and turnover to ideal times could increase caseload to 4/day, leading to millions of dollars of savings annually.

  3. SnTe microcrystals: Surface cleaning of a topological crystalline insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saghir, M., E-mail: M.Saghir@warwick.ac.uk, E-mail: G.Balakrishnan@warwick.ac.uk; Walker, M.; McConville, C. F.

    Investigating nanometer and micron sized materials thought to exhibit topological surface properties that can present a challenge, as clean surfaces are a pre-requisite for band structure measurements when using nano-ARPES or laser-ARPES in ultra-high vacuum. This issue is exacerbated when dealing with nanometer or micron sized materials, which have been prepared ex-situ and so have been exposed to atmosphere. We present the findings of an XPS study where various cleaning methods have been employed to reduce the surface contamination and preserve the surface quality for surface sensitive measurements. Microcrystals of the topological crystalline insulator SnTe were grown ex-situ and transferredmore » into ultra high vacuum (UHV) before being treated with either atomic hydrogen, argon sputtering, annealing, or a combination of treatments. The samples were also characterised using the scanning electron microscopy, both before and after treatment. It was found that atomic hydrogen cleaning with an anneal cycle (200 °C) gave the best clean surface results.« less

  4. A closed system for islet isolation and purification using the COBE2991 cell processor may reduce the need of clean room facilities.

    PubMed

    Klaffschenkel, R A; Biesemeier, A; Waidmann, M; Northoff, H; Steurer, W; Königsrainer, A; Lembert, N

    2007-01-01

    During the isolation of human islets of Langerhans the digest has repeated direct contact with the ambient atmosphere. In order to fulfill GMP requirements in clinical applications, the entire cell preparation must be performed in clean room facilities. We hypothesized that the use of a closed system, which avoids the direct exposure of tissue to the atmosphere, would significantly ease the preparation procedure. To avoid the direct atmosphere exposure we tested a modification of the isolation and purification process by performing all islet preparation steps in a closed system. In this study we compared the isolation outcome of the traditional open preparation technique with the new closed system. Pancreata from 6-month-old hybrid pigs were procured in the local slaughterhouse. After digestion/filtration the digest was cooled, collected, and concentrated in centrifugation containers and purified thereafter in the COBE2991 by top loading (control). In the control group 502 +/- 253 IEQ per gram pancreas were purified. The total preparation time amounted to 12 h. In the closed system the digest was cooled and directly pumped into the COBE2991 for centrifugation followed by supernatant expelling. Bag filling, centrifugation, and expelling were repeated several times. Islets in pellet form were then purified by adding a gradient (bottom loading). Using this closed system 1098 +/- 489 IEQ per gram pancreas were purified with a total cell viability of 67 +/- 10% and a beta-cell viability of 41 +/- 13%. The total preparation time reduced to 6 h. After 24 h of cell culture the viability of beta-cells was still 56 +/- 10% and was only reduced after the addition of proapoptotic IL-1 and TNF-alpha to 40 +/- 4%, indicating that freshly isolated islets are not apoptotic. In conclusion, the closed system preparation is much faster, more effective, and less expensive than the traditional islet preparation. The closed system may be applicable for human islets preparations to

  5. Efficient decomposition of formaldehyde at room temperature over Pt/honeycomb ceramics with ultra-low Pt content.

    PubMed

    Nie, Longhui; Zheng, Yingqiu; Yu, Jiaguo

    2014-09-14

    Pt/honeycomb ceramic (Pt/HC) catalysts with ultra-low Pt content (0.005-0.055 wt%) were for the first time prepared by an impregnation of honeycomb ceramics with Pt precursor and NaBH4-reduction combined method. The microstructures, morphologies and textural properties of the resulting samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The obtained Pt/HC catalysts were used for catalytic oxidative decomposition of formaldehyde (HCHO) at room temperature. It was found that the as-prepared Pt/HC catalysts can efficiently decompose HCHO in air into CO2 and H2O at room temperature. The catalytic activity of the Pt/HC catalysts increases with increasing the Pt loading in the range of 0.005-0.013 wt%, and the further increase of the Pt loading does not obviously improve catalytic activity. From the viewpoint of cost and catalytic performance, 0.013 wt% Pt loading is the optimal Pt loading amount, and the Pt/HC catalyst with 0.013 wt% Pt loading also exhibited good catalytic stability. Considering practical applications, this work will provide new insights into the low-cost and large-scale fabrication of advanced catalytic materials for indoor air purification.

  6. Observation and Spectroscopy of a Two-Electron Wigner Molecule in Ultra-Clean Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Pecker, Sharon; Kuemmeth, Ferdinand; Secchi, Andrea; Rontani, Massimo; Ralph, Dan; McEuen, Paul; Ilani, Shahal

    2013-03-01

    Coulomb interactions can have a decisive effect on the ground state of electronic systems. The simplest system in which interactions can play an interesting role is that of two electrons on a string. In the presence of strong interactions the two electrons are predicted to form a Wigner molecule, separating to the ends of the string due to their mutual repulsion. This spatial structure is believed to be clearly imprinted on the energy spectrum, yet to date a direct measurement of such a spectrum in a controllable one-dimensional setting is still missing. Here we use an ultra-clean suspended carbon nanotube to realize this strongly-correlated system in a tunable potential. Using tunneling spectroscopy we measure the excitation spectra of two interacting carriers, electrons or holes. Seven quantum states are identified, characterized by their spin and isospin quantum numbers. These states are seen to fall into two distinctive multiplets according to their exchange symmetries. Interestingly, we find that the splitting between multiplets is quenched by an order of magnitude compared to the non-interacting value. This quenching is shown to be a direct manifestation of the formation of a strongly-interacting Wigner-molecule ground state.

  7. An environmental disinfection odyssey: evaluation of sequential interventions to improve disinfection of Clostridium difficile isolation rooms.

    PubMed

    Sitzlar, Brett; Deshpande, Abhishek; Fertelli, Dennis; Kundrapu, Sirisha; Sethi, Ajay K; Donskey, Curtis J

    2013-05-01

    OBJECTIVE. Effective disinfection of hospital rooms after discharge of patients with Clostridium difficile infection (CDI) is necessary to prevent transmission. We evaluated the impact of sequential cleaning and disinfection interventions by culturing high-touch surfaces in CDI rooms after cleaning. DESIGN. Prospective intervention. SETTING. A Veterans Affairs hospital. INTERVENTIONS. During a 21-month period, 3 sequential tiered interventions were implemented: (1) fluorescent markers to provide monitoring and feedback on thoroughness of cleaning facility-wide, (2) addition of an automated ultraviolet radiation device for adjunctive disinfection of CDI rooms, and (3) enhanced standard disinfection of CDI rooms, including a dedicated daily disinfection team and implementation of a process requiring supervisory assessment and clearance of terminally cleaned CDI rooms. To determine the impact of the interventions, cultures were obtained from CDI rooms after cleaning and disinfection. RESULTS. The fluorescent marker intervention improved the thoroughness of cleaning of high-touch surfaces (from 47% to 81% marker removal; P < .0001). Relative to the baseline period, the prevalence of positive cultures from CDI rooms was reduced by 14% (P=.024), 48% (P <.001), and 89% (P=.006) with interventions 1, 2, and 3, respectively. During the baseline period, 67% of CDI rooms had positive cultures after disinfection, whereas during interventions periods 1, 2, and 3 the percentages of CDI rooms with positive cultures after disinfection were reduced to 57%, 35%, and 7%, respectively. CONCLUSIONS. An intervention that included formation of a dedicated daily disinfection team and implementation of a standardized process for clearing CDI rooms achieved consistent CDI room disinfection. Culturing of CDI rooms provides a valuable tool to drive improvements in environmental disinfection.

  8. Large-eddy simulation of human-induced contaminant transport in room compartments.

    PubMed

    Choi, J-I; Edwards, J R

    2012-02-01

    A large-eddy simulation is used to investigate contaminant transport owing to complex human and door motions and vent-system activity in room compartments where a contaminated and clean room are connected by a vestibule. Human and door motions are simulated with an immersed boundary procedure. We demonstrate the details of contaminant transport owing to human- and door-motion-induced wake development during a short-duration event involving the movement of a person (or persons) from a contaminated room, through a vestibule, into a clean room. Parametric studies that capture the effects of human walking pattern, door operation, over-pressure level, and vestibule size are systematically conducted. A faster walking speed results in less mass transport from the contaminated room into the clean room. The net effect of increasing the volume of the vestibule is to reduce the contaminant transport. The results show that swinging-door motion is the dominant transport mechanism and that human-induced wake motion enhances compartment-to-compartment transport. The effect of human activity on contaminant transport may be important in design and operation of clean or isolation rooms in chemical or pharmaceutical industries and intensive care units for airborne infectious disease control in a hospital. The present simulations demonstrate details of contaminant transport in such indoor environments during human motion events and show that simulation-based sensitivity analysis can be utilized for the diagnosis of contaminant infiltration and for better environmental protection. © 2011 John Wiley & Sons A/S.

  9. Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity--description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room.

    PubMed

    Behrendt, Undine; Schumann, Peter; Stieglmeier, Michaela; Pukall, Rüdiger; Augustin, Jürgen; Spröer, Cathrin; Schwendner, Petra; Moissl-Eichinger, Christine; Ulrich, Andreas

    2010-10-01

    In the course of studying the influence of N-fertilization on N(2) and N(2)O flux rates in relation to soil bacterial community composition of a long-term fertilization experiment in fen peat grassland, a strain group was isolated that was related to a strain isolated from a spacecraft assembly clean room during diversity studies of microorganisms, which withstood cleaning and bioburden reduction strategies. Both the fen soil isolates and the clean room strain revealed versatile physiological capacities in N-transformation processes by performing heterotrophic nitrification, respiratory ammonification and denitrification activity. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the investigated isolates belonged to the genus Paenibacillus. Sequence similarities lower than 97% in comparison to established species indicated a separate species position. Except for the peptidoglycan type (A4alpha L-Lys-D-Asp), chemotaxonomic features of the isolates matched the genus description, but differences in several physiological characteristics separated them from related species and supported their novel species status. Despite a high 16S rRNA gene sequence similarity between the clean room isolate ES_MS17(T) and the representative fen soil isolate N3/975(T), DNA-DNA hybridization studies revealed genetic differences at the species level. These differences were substantiated by MALDI-TOF MS analysis, ribotyping and several distinct physiological characteristics. On the basis of these results, it was concluded that the fen soil isolates and the clean room isolate ES_MS17(T) represented two novel species for which the names Paenibacillus uliginis sp. nov. (type strain N3/975(T)=DSM 21861(T)=LMG 24790(T)) and Paenibacillus purispatii sp. nov. (type strain ES_MS17(T)=DSM 22991(T)=CIP 110057(T)) are proposed. Copyright © 2010 Elsevier GmbH. All rights reserved.

  10. 7 CFR 58.413 - Cutting and packaging rooms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cutting and packaging rooms. 58.413 Section 58.413....413 Cutting and packaging rooms. When small packages of cheese are cut and wrapped, separate rooms shall be provided for the cleaning and preparation of the bulk cheese and for the cutting and wrapping...

  11. 7 CFR 58.413 - Cutting and packaging rooms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cutting and packaging rooms. 58.413 Section 58.413....413 Cutting and packaging rooms. When small packages of cheese are cut and wrapped, separate rooms shall be provided for the cleaning and preparation of the bulk cheese and for the cutting and wrapping...

  12. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of satisfactory material for this purpose. The rooms shall be maintained in a clean and orderly... 7 Agriculture 3 2012-01-01 2012-01-01 false Hardening and storage rooms. 58.622 Section 58.622... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58...

  13. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of satisfactory material for this purpose. The rooms shall be maintained in a clean and orderly... 7 Agriculture 3 2014-01-01 2014-01-01 false Hardening and storage rooms. 58.622 Section 58.622... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58...

  14. Aging of D-limonene-cleaned assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somer, T.A.

    1994-04-01

    The performance of 2000 electronic circuit variables was monitored throughout a 5000-hour exposure to + 160{degrees}F. the 2000 variables involve 36 electronic assemblies, cleaned with various solvents, including d-limonene, as a replacement for TCE. The assemblies were divided into four groups, including a TCE-cleaned control group at room temperature. Of the three groups exposed at + 160{degrees}F, one was cleaned in TCE, one was cleaned in d-limonene, and one was kept in a saturated d-limonene atmosphere. No performance degradation was observed with any of the groups, including the worst case exposure in a saturated d-limonene atmosphere.

  15. 7 CFR 58.412 - Coolers or curing rooms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Coolers or curing rooms. 58.412 Section 58.412....412 Coolers or curing rooms. Coolers or curing rooms where cheese is held for curing or storage shall... times. The shelves shall be kept clean and dry. This does not preclude the maintenance of suitable...

  16. 7 CFR 58.412 - Coolers or curing rooms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Coolers or curing rooms. 58.412 Section 58.412....412 Coolers or curing rooms. Coolers or curing rooms where cheese is held for curing or storage shall... times. The shelves shall be kept clean and dry. This does not preclude the maintenance of suitable...

  17. 7 CFR 58.412 - Coolers or curing rooms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Coolers or curing rooms. 58.412 Section 58.412....412 Coolers or curing rooms. Coolers or curing rooms where cheese is held for curing or storage shall... times. The shelves shall be kept clean and dry. This does not preclude the maintenance of suitable...

  18. 7 CFR 58.412 - Coolers or curing rooms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Coolers or curing rooms. 58.412 Section 58.412....412 Coolers or curing rooms. Coolers or curing rooms where cheese is held for curing or storage shall... times. The shelves shall be kept clean and dry. This does not preclude the maintenance of suitable...

  19. 7 CFR 58.412 - Coolers or curing rooms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Coolers or curing rooms. 58.412 Section 58.412....412 Coolers or curing rooms. Coolers or curing rooms where cheese is held for curing or storage shall... times. The shelves shall be kept clean and dry. This does not preclude the maintenance of suitable...

  20. Disinfectants used for environmental disinfection and new room decontamination technology.

    PubMed

    Rutala, William A; Weber, David J

    2013-05-01

    Environmental contamination plays an important role in the transmission of several key health care-associated pathogens. Effective and thorough cleaning/disinfecting of the patient environment is essential. Room decontamination units (such as ultraviolet-C and hydrogen peroxide systems) aid in reducing environmental contamination after terminal room cleaning and disinfection. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  1. 9 CFR 590.508 - Candling and transfer-room operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., Processing, and Facility Requirements § 590.508 Candling and transfer-room operations. (a) Candling and transfer rooms and equipment shall be kept clean, free from cobwebs, dust, objectionable odors, and excess... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Candling and transfer-room operations...

  2. 9 CFR 590.508 - Candling and transfer-room operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., Processing, and Facility Requirements § 590.508 Candling and transfer-room operations. (a) Candling and transfer rooms and equipment shall be kept clean, free from cobwebs, dust, objectionable odors, and excess... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Candling and transfer-room operations...

  3. 9 CFR 590.508 - Candling and transfer-room operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., Processing, and Facility Requirements § 590.508 Candling and transfer-room operations. (a) Candling and transfer rooms and equipment shall be kept clean, free from cobwebs, dust, objectionable odors, and excess... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Candling and transfer-room operations...

  4. 9 CFR 590.508 - Candling and transfer-room operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Processing, and Facility Requirements § 590.508 Candling and transfer-room operations. (a) Candling and transfer rooms and equipment shall be kept clean, free from cobwebs, dust, objectionable odors, and excess... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Candling and transfer-room operations...

  5. 9 CFR 590.508 - Candling and transfer-room operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Processing, and Facility Requirements § 590.508 Candling and transfer-room operations. (a) Candling and transfer rooms and equipment shall be kept clean, free from cobwebs, dust, objectionable odors, and excess... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Candling and transfer-room operations...

  6. Respiratory viral RNA on toys in pediatric office waiting rooms.

    PubMed

    Pappas, Diane E; Hendley, J Owen; Schwartz, Richard H

    2010-02-01

    Toys in pediatric office waiting rooms may be fomites for transmission of viruses. Eighteen samples were taken from office objects on 3 occasions. Samples were tested for presence of picornavirus (either rhinovirus or enterovirus) on all 3 sample days; in addition, January samples were tested for respiratory syncytial virus and March samples were tested for influenza A and B. In addition, 15 samples were obtained from the sick waiting room before and after cleaning. Polymerase chain reaction was used to detect picornavirus, respiratory syncytial virus, and influenza A or B virus. Finally, 20 samples were obtained from the fingers of a researcher after handling different toys in the sick waiting room, and samples were then obtained from all the same toys; all samples were tested for picornavirus by polymerase chain reaction. Viral RNA was detected on 11 of 52 (21%) of toys sampled. Ten of the positives were picornavirus; 1 was influenza B virus. Three (30%) of 10 toys from the new toy bag, 6 of 30 (20%) in the sick child waiting room, and 2 of 12 (17%) in the well child waiting room were positive. Six (40%) of 15 toys in the sick waiting room were positive for picornaviral RNA before cleaning; after cleaning, 4 (27%) of 15 were positive in spite of the fact that RNA was removed from 4 of 6 of the original positives. Three (15%) of 20 toys in the sick waiting room were positive for picornaviral RNA, but RNA was not transferred to the fingers of the investigator who handled these toys. About 20% of the objects in a pediatric office may be contaminated with respiratory viral RNA, most commonly picornavirus RNA. Cleaning with a disinfectant cloth was only modestly effective in removing the viral RNA from the surfaces of toys, but transfer of picornaviral RNA from toys to fingers was inefficient.

  7. Cleaning the grey zones of hospitals: A prospective, crossover, interventional study.

    PubMed

    Semret, Makeda; Dyachenko, Alina; Ramman-Haddad, Leila; Belzile, Eric; McCusker, Jane

    2016-12-01

    Environmental cleaning is a fundamental principle of infection prevention in hospitals, but its role in reducing transmission of health care-acquired pathogens has been difficult to prove experimentally. In this study we analyze the influence of cleaning previously uncleaned patient care items, grey zones (GZ), on health care-acquired transmission rates. The intervention consisted of specific GZ cleaning by an extra cleaner (in addition to routine cleaning) on 2 structurally different acute care medical wards for a period of 6 months each, in a crossover design. Data on health care-acquired transmissions of vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus, and Clostridium difficile were collected during both periods. Adjusted incidence rate ratios (IRRs) using Poisson regression were calculated to compare transmission of pathogens between both periods on both wards. During the intervention VRE transmission was significantly decreased (2-fold) on the ward where patients had fewer roommates; cleaning of GZ did not have any effect on the ward with multiple-occupancy rooms. There was no impact on methicillin-resistant S aureus transmission and only a nonsignificant decrease in transmission of C difficile. Our data provide evidence that targeted cleaning interventions can reduce VRE transmission when rooming conditions are optimized; such interventions can be cost-effective when the burden of VRE is significant. Enhanced cleaning interventions are less beneficial in the context of room sharing where many other factors contribute to transmission of pathogens. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  8. Air cleaning technologies: an evidence-based analysis.

    PubMed

    2005-01-01

    This health technology policy assessment will answer the following questions: When should in-room air cleaners be used?How effective are in-room air cleaners?Are in-room air cleaners that use combined HEPA and UVGI air cleaning technology more effective than those that use HEPA filtration alone?What is the Plasmacluster ion air purifier in the pandemic influenza preparation plan?The experience of severe acute respiratory syndrome (SARS) locally, nationally, and internationally underscored the importance of administrative, environmental, and personal protective infection control measures in health care facilities. In the aftermath of the SARS crisis, there was a need for a clearer understanding of Ontario's capacity to manage suspected or confirmed cases of airborne infectious diseases. In so doing, the Walker Commission thought that more attention should be paid to the potential use of new technologies such as in-room air cleaning units. It recommended that the Medical Advisory Secretariat of the Ontario Ministry of Health and Long-Term Care evaluate the appropriate use and effectiveness of such new technologies. Accordingly, the Ontario Health Technology Advisory Committee asked the Medical Advisory Secretariat to review the literature on the effectiveness and utility of in-room air cleaners that use high-efficiency particle air (HEPA) filters and ultraviolet germicidal irradiation (UVGI) air cleaning technology. Additionally, the Ontario Health Technology Advisory Committee prioritized a request from the ministry's Emergency Management Unit to investigate the possible role of the Plasmacluster ion air purifier manufactured by Sharp Electronics Corporation, in the pandemic influenza preparation plan. Airborne transmission of infectious diseases depends in part on the concentration of breathable infectious pathogens (germs) in room air. Infection control is achieved by a combination of administrative, engineering, and personal protection methods. Engineering

  9. Toys are a potential source of cross-infection in general practitioners' waiting rooms.

    PubMed Central

    Merriman, Eileen; Corwin, Paul; Ikram, Rosemary

    2002-01-01

    The waiting rooms of general practitioners' surgeries usually have toys provided for children. The level of contamination of these toys and the effectiveness of toy decontamination was investigated in this study. Hard toys from general practitioners' waiting rooms had relatively low levels of contamination, with only 13.5% of toys showing any coliform counts. There were no hard toys with heavy contamination by coliforms or other bacteria. Soft toys were far more likely to be contaminated, with 20% of toys showing moderate to heavy coliform contamination and 90% showing moderate to heavy bacterial contamination. Many waiting-room toys are not cleaned routinely. Soft toys are hard to disinfect and tend to rapidly become recontaminated after cleaning. Conversely, hard toys can be cleaned and disinfected easily. Soft toys in general practitioners' waiting rooms pose an infectious risk and it is therefore recommended that soft toys are unsuitable for doctors' waiting rooms. PMID:11885823

  10. Clean and Cold Sample Curation

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Agee, C. B.; Beer, R.; Cooper, B. L.

    2000-01-01

    Curation of Mars samples includes both samples that are returned to Earth, and samples that are collected, examined, and archived on Mars. Both kinds of curation operations will require careful planning to ensure that the samples are not contaminated by the instruments that are used to collect and contain them. In both cases, sample examination and subdivision must take place in an environment that is organically, inorganically, and biologically clean. Some samples will need to be prepared for analysis under ultra-clean or cryogenic conditions. Inorganic and biological cleanliness are achievable separately by cleanroom and biosafety lab techniques. Organic cleanliness to the <50 ng/sq cm level requires material control and sorbent removal - techniques being applied in our Class 10 cleanrooms and sample processing gloveboxes.

  11. Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on contamination levels of methicillin-resistant Staphylococcus aureus.

    PubMed

    Jinadatha, Chetan; Quezada, Ricardo; Huber, Thomas W; Williams, Jason B; Zeber, John E; Copeland, Laurel A

    2014-04-07

    Healthcare-acquired infections with methicillin-resistant Staphylococcus aureus (MRSA) are a significant cause of increased mortality, morbidity and additional health care costs in United States. Surface decontamination technologies that utilize pulsed xenon ultraviolet light (PPX-UV) may be effective at reducing microbial burden. The purpose of this study was to compare standard manual room-cleaning to PPX-UV disinfection technology for MRSA and bacterial heterotrophic plate counts (HPC) on high-touch surfaces in patient rooms. Rooms vacated by patients that had a MRSA-positive polymerase chain reaction or culture during the current hospitalization and at least a 2-day stay were studied. 20 rooms were then treated according to one of two protocols: standard manual cleaning or PPX-UV. This study evaluated the reduction of MRSA and HPC taken from five high-touch surfaces in rooms vacated by MRSA-positive patients, as a function of cleaning by standard manual methods vs a PPX-UV area disinfection device. Colony counts in 20 rooms (10 per arm) prior to cleaning varied by cleaning protocol: for HPC, manual (mean = 255, median = 278, q1-q3 132-304) vs PPX-UV (mean = 449, median = 365, q1-q3 332-530), and for MRSA, manual (mean = 127; median = 28.5; q1-q3 8-143) vs PPX-UV (mean = 108; median = 123; q1-q3 14-183). PPX-UV was superior to manual cleaning for MRSA (adjusted incident rate ratio [IRR] = 7; 95% CI <1-41) and for HPC (IRR = 13; 95% CI 4-48). PPX-UV technology appears to be superior to manual cleaning alone for MRSA and HPC. Incorporating 15 minutes of PPX-UV exposure time to current hospital room cleaning practice can improve the overall cleanliness of patient rooms with respect to selected micro-organisms.

  12. Bacillus horneckiae sp. nov., isolated from a spacecraft-assembly clean room.

    PubMed

    Vaishampayan, Parag; Probst, Alexander; Krishnamurthi, Srinivasan; Ghosh, Sudeshna; Osman, Shariff; McDowall, Alasdair; Ruckmani, Arunachalam; Mayilraj, Shanmugam; Venkateswaran, Kasthuri

    2010-05-01

    Five Gram-stain-positive, motile, aerobic strains were isolated from a clean room of the Kennedy Space Center where the Phoenix spacecraft was assembled. All strains are rod-shaped, spore-forming bacteria, whose spores were resistant to UV radiation up to 1000 J m(-2). The spores were subterminally positioned and produced an external layer. A polyphasic taxonomic study including traditional biochemical tests, fatty acid analysis, cell-wall typing, lipid analyses, 16S rRNA gene sequencing and DNA-DNA hybridization studies was performed to characterize these novel strains. 16S rRNA gene sequencing and lipid analyses convincingly grouped these novel strains within the genus Bacillus as a cluster separate from already described species. The similarity of 16S rRNA gene sequences among the novel strains was >99 %, but the similarity was only about 97 % with their nearest neighbours Bacillus pocheonensis, Bacillus firmus and Bacillus bataviensis. DNA-DNA hybridization dissociation values were <24 % to the closest related type strains. The novel strains had a G+C content 35.6+/-0.5 mol% and could liquefy gelatin but did not utilize or produce acids from any of the carbon substrates tested. The major fatty acids were iso-C(15 : 0) and anteiso-C(15 : 0) and the cell-wall diamino acid was meso-diaminopimelic acid. Based on phylogenetic and phenotypic results, it is concluded that these strains represent a novel species of the genus Bacillus, for which the name Bacillus horneckiae sp. nov. is proposed. The type strain is 1P01SC(T) (=NRRL B-59162(T) =MTCC 9535(T)).

  13. New electrostatic coal cleaning method cuts sulfur content by 40%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-12-01

    An emission control system that electrically charges pollutants and coal particles promises to reduce sulfur 40% at half the cost. The dry coal cleaning processes offer superior performance and better economics than conventional flotation cleaning. Advanced Energy Dynamics, Inc. (AED) is developing both fine and ultra fine processes which increase combustion efficiency and boiler reliability and reduced operating costs. The article gives details from the performance tests and comparisons and summarizes the economic analyses. 4 tables.

  14. Infection control in the operating room: is it more than a clean dish?

    PubMed

    Loftus, Randy W

    2016-04-01

    Healthcare-associated infections (HCAIs) are driven by a complex interplay between host defenses, pathogen traits, and pathogen transmission. A better understanding of each of these factors is required to extend infection control beyond antibiotic therapy to improvements in basic preventive measures that can achieve sustained HCAI reductions. The purpose of this article is to review recent advancements in our understanding of these issues for the operating room environment. The importance and implications of intraoperative bacterial transmission have been solidified, and hyper transmissible, virulent, and antibiotic resistant bacterial strains have been characterized. As a result, a best practice for improved intraoperative infection control has been delineated. Little advancement has been made in our understanding of the efficacy of higher inspired oxygen concentrations, improved postoperative glucose control, perioperative normothermia, and prophylactic antibiotic selection, timing, and dose for HCAI prevention. Recent work has led to the development of evidence-based hand hygiene, environmental cleaning, patient decolonization, and intravascular catheter design and handling improvement strategies. Evidence suggests that a best practice for postoperative infection control is a multimodal program that utilizes these interventions to target patient, provider, and environmental reservoirs in parallel. The development of novel diagnostic tools for targeted attenuation of hyper virulent, transmissible and resistant strains/strain characteristics is indicated to improve patient decolonization efforts.

  15. Room temperature optical anisotropy of a LaMnO 3 thin-film induced by ultra-short pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munkhbaatar, Purevdorj; Marton, Zsolt; Tsermaa, Bataarchuluun

    Ultra-short laser pulse induced optical anisotropy of LaMnO 3 thin films grown on SrTiO 3 substrates were observed by irradiation with a femto-second laser pulse with the fluence of less than 0.1 mJ/cm 2 at room temperature. The transmittance and reflectance showed different intensities for different polarization states of the probe pulse after pump pulse irradiation. The theoretical optical transmittance and re ectance that assumed an orbital ordering of the 3d eg electrons in Mn 3+ ions resulted in an anisotropic time dependent changes similar to those obtained from the experimental results, suggesting that the photo-induced optical anisotropy of LaMnOmore » 3 is a result of photo-induced symmetry breaking of the orbital ordering for an optically excited state.« less

  16. Domibacillus robiginosus gen. nov., sp. nov., isolated from a pharmaceutical clean room.

    PubMed

    Seiler, Herbert; Wenning, Mareike; Scherer, Siegfried

    2013-06-01

    A novel red-pigmented bacterial strain, designated WS 4628(T), was isolated from a pharmaceutical clean room of a vaccine-producing company and was investigated in a taxonomic study using a polyphasic approach. The strain was Gram-stain-positive, strictly aerobic, motile, catalase-positive and produced spherical to slightly ellipsoidal endospores in rods. The genomic DNA G+C content was 44.1 mol%. The major fatty acids were anteiso-C15:0, iso-C15:0 and anteiso-C17:0 and the predominant quinone was MK-6. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, an unidentified phosphoglycolipid and an unidentified phospholipid. meso-diaminopimelic acid (type A1γ) was present in the cell-wall peptidoglycan and the major whole-cell sugars were glucose and ribose. The closest phylogenetic neighbours were identified as Bacillus badius ATCC 14574(T) (95.8% 16S rRNA gene sequence similarity), Bacillus indicus Sd/3(T) (94.8%), Jeotgalibacillus alimentarius YKJ-13(T) (94.8%) and Bacillus cibi JG-30(T) (94.8%). Phylogenetic, physiological, biochemical and morphological differences between strain WS 4628(T) and its closest relatives in the families Bacillaceae and Planococcaceae suggest that this strain represents a novel species in a new genus in the family Bacillaceae for which the name Domibacillus robiginosus gen. nov., sp. nov. is proposed; the type strain of the type species is WS 4628(T) (=DSM 25058(T)=LMG 26645(T)).

  17. Development of megasonic cleaning for silicon wafers

    NASA Technical Reports Server (NTRS)

    Mayer, A.

    1980-01-01

    A cleaning and drying system for processing at least 2500 three in. diameter wafers per hour was developed with a reduction in process cost. The system consists of an ammonia hydrogen peroxide bath in which both surfaces of 3/32 in. spaced, ion implanted wafers are cleaned in quartz carriers moved on a belt past two pairs of megasonic transducers. The wafers are dried in the novel room temperature, high velocity air dryer in the same carriers used for annealing. A new laser scanner was used effectively to monitor the cleaning ability on a sampling basis.

  18. Aging of d-Limonene-cleaned assemblies. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somer, T.A.

    1995-08-01

    The performance of 1600 electronic circuit variables was monitored throughout an 8000-hour exposure to +160{degrees}F. The variables involve 36 electronic assemblies, cleaned with various solvents, including d-Limonene, as a replacement for trichloroethylene (TCE). The assemblies were divided into four groups, including a TCE-cleaned control group at room temperature. Of the three groups exposed at +160{degrees}F, one was cleaned in TCE, one was cleaned in d-Limonene, and one was kept in a saturated d-Limonene atmosphere. No performance degradation was observed with any of the groups, including the worst-case exposure in a saturated d-Limonene atmosphere.

  19. INTERIOR, ROOF, A view looking southwest through Room 205 at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR, ROOF, A view looking southwest through Room 205 at the doorway that leads to Room 206P, a shower and clean area in the penthouse - Department of Energy, Mound Facility, B Building, One Mound Road, Miamisburg, Montgomery County, OH

  20. Tensile Properties and Integrity of Clean Room and Low-Modulus Disposable Nitrile Gloves: A Comparison of Two Dissimilar Glove Types

    PubMed Central

    Phalen, Robert N.; Wong, Weng kee

    2012-01-01

    Background: The selection of disposable nitrile exam gloves is complicated by (i) the availability of several types or formulations, (ii) product variability, and (iii) an inability of common quality control tests to detect small holes in the fingers. Differences in polymer formulation (e.g. filler and plasticizer/oil content) and tensile properties are expected to account for much of the observed variability in performance. Objectives: This study evaluated the tensile properties and integrity (leak failure rates) of two glove choices assumed to contain different amounts of plasticizers/oils. The primary aims were to determine if the tensile properties and integrity differed and if associations existed among these factors. Additional physical and chemical properties were evaluated. Methods: Six clean room and five low-modulus products were evaluated using the American Society for Testing and Materials Method D412 and a modified water-leak test to detect holes capable of passing a virus or chemical agent. Results: Significant differences in the leak failure rates and tensile properties existed between the two glove types (P ≤ 0.05). The clean room gloves were about three times more likely to have leak failures (chi-square; P = 0.001). No correlation was observed between leak failures and tensile properties. Solvent extract, an indication of added plasticizer/oil, was not associated with leak failures. However, gloves with a maximum modulus <4 MPa or area density (AD) <11 g cm−2 were about four times less likely to leak. Conclusions: On average, the low-modulus gloves were a better choice for protection against aqueous chemical or biological penetration. The observed variability between glove products indicated that glove selection cannot rely solely on glove type or manufacturer labeling. Measures of modulus and AD may aid in the selection process, in contrast with common measures of tensile strength and elongation at break. PMID:22201179

  1. Tensile properties and integrity of clean room and low-modulus disposable nitrile gloves: a comparison of two dissimilar glove types.

    PubMed

    Phalen, Robert N; Wong, Weng Kee

    2012-05-01

    The selection of disposable nitrile exam gloves is complicated by (i) the availability of several types or formulations, (ii) product variability, and (iii) an inability of common quality control tests to detect small holes in the fingers. Differences in polymer formulation (e.g. filler and plasticizer/oil content) and tensile properties are expected to account for much of the observed variability in performance. This study evaluated the tensile properties and integrity (leak failure rates) of two glove choices assumed to contain different amounts of plasticizers/oils. The primary aims were to determine if the tensile properties and integrity differed and if associations existed among these factors. Additional physical and chemical properties were evaluated. Six clean room and five low-modulus products were evaluated using the American Society for Testing and Materials Method D412 and a modified water-leak test to detect holes capable of passing a virus or chemical agent. Significant differences in the leak failure rates and tensile properties existed between the two glove types (P ≤ 0.05). The clean room gloves were about three times more likely to have leak failures (chi-square; P = 0.001). No correlation was observed between leak failures and tensile properties. Solvent extract, an indication of added plasticizer/oil, was not associated with leak failures. However, gloves with a maximum modulus <4 MPa or area density (AD) <11 g cm(-2) were about four times less likely to leak. On average, the low-modulus gloves were a better choice for protection against aqueous chemical or biological penetration. The observed variability between glove products indicated that glove selection cannot rely solely on glove type or manufacturer labeling. Measures of modulus and AD may aid in the selection process, in contrast with common measures of tensile strength and elongation at break.

  2. Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on contamination levels of methicillin-resistant Staphylococcus aureus

    PubMed Central

    2014-01-01

    Background Healthcare-acquired infections with methicillin-resistant Staphylococcus aureus (MRSA) are a significant cause of increased mortality, morbidity and additional health care costs in United States. Surface decontamination technologies that utilize pulsed xenon ultraviolet light (PPX-UV) may be effective at reducing microbial burden. The purpose of this study was to compare standard manual room-cleaning to PPX-UV disinfection technology for MRSA and bacterial heterotrophic plate counts (HPC) on high-touch surfaces in patient rooms. Methods Rooms vacated by patients that had a MRSA-positive polymerase chain reaction or culture during the current hospitalization and at least a 2-day stay were studied. 20 rooms were then treated according to one of two protocols: standard manual cleaning or PPX-UV. This study evaluated the reduction of MRSA and HPC taken from five high-touch surfaces in rooms vacated by MRSA-positive patients, as a function of cleaning by standard manual methods vs a PPX-UV area disinfection device. Results Colony counts in 20 rooms (10 per arm) prior to cleaning varied by cleaning protocol: for HPC, manual (mean = 255, median = 278, q1-q3 132–304) vs PPX-UV (mean = 449, median = 365, q1-q3 332–530), and for MRSA, manual (mean = 127; median = 28.5; q1-q3 8–143) vs PPX-UV (mean = 108; median = 123; q1-q3 14–183). PPX-UV was superior to manual cleaning for MRSA (adjusted incident rate ratio [IRR] = 7; 95% CI <1-41) and for HPC (IRR = 13; 95% CI 4–48). Conclusion PPX-UV technology appears to be superior to manual cleaning alone for MRSA and HPC. Incorporating 15 minutes of PPX-UV exposure time to current hospital room cleaning practice can improve the overall cleanliness of patient rooms with respect to selected micro-organisms. PMID:24708734

  3. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald P. Huffman

    2004-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogenmore » from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.« less

  4. High-throughput molecular identification of Staphylococcus spp. isolated from a clean room facility in an environmental monitoring program

    PubMed Central

    2010-01-01

    Background The staphylococci are one of the most common environmental isolates found in clean room facility. Consequently, isolation followed by comprehensive and accurate identification is an essential step in any environmental monitoring program. Findings We have used the API Staph identification kit (bioMérieux, France) which depends on the expression of metabolic activities and or morphological features to identify the Staphylococcus isolates. The API staphylococci showed low sensitivity in the identification of some species, so we performed molecular methods based on PCR based fingerprinting of glyceraldehyde-3-phosphate dehydrogenase encoding gene as useful taxonomic tool for examining Staphylococcus isolates. Conclusions Our results showed that PCR protocol used in this study which depends on genotypic features was relatively accurate, rapid, sensitive and superior in the identification of at least 7 species of Staphylococcus than API Staph which depends on phenotypic features. PMID:21047438

  5. High-throughput molecular identification of Staphylococcus spp. isolated from a clean room facility in an environmental monitoring program.

    PubMed

    Sheraba, Norhan S; Yassin, Aymen S; Amin, Magdy A

    2010-11-04

    The staphylococci are one of the most common environmental isolates found in clean room facility. Consequently, isolation followed by comprehensive and accurate identification is an essential step in any environmental monitoring program. We have used the API Staph identification kit (bioMérieux, France) which depends on the expression of metabolic activities and or morphological features to identify the Staphylococcus isolates. The API staphylococci showed low sensitivity in the identification of some species, so we performed molecular methods based on PCR based fingerprinting of glyceraldehyde-3-phosphate dehydrogenase encoding gene as useful taxonomic tool for examining Staphylococcus isolates. Our results showed that PCR protocol used in this study which depends on genotypic features was relatively accurate, rapid, sensitive and superior in the identification of at least 7 species of Staphylococcus than API Staph which depends on phenotypic features.

  6. Evaluation of an automated room decontamination device using aerosolized peracetic acid.

    PubMed

    Mana, Thriveen S C; Sitzlar, Brett; Cadnum, Jennifer L; Jencson, Annette L; Koganti, Sreelatha; Donskey, Curtis J

    2017-03-01

    Because manual cleaning is often suboptimal, there is increasing interest in use of automated devices for room decontamination. We demonstrated that an ultrasonic room fogging system that generates submicron droplets of peracetic acid and hydrogen peroxide eliminated Clostridium difficile spores and vegetative pathogens from exposed carriers in hospital rooms and adjacent bathrooms. Published by Elsevier Inc.

  7. Optimum outlier model for potential improvement of environmental cleaning and disinfection.

    PubMed

    Rupp, Mark E; Huerta, Tomas; Cavalieri, R J; Lyden, Elizabeth; Van Schooneveld, Trevor; Carling, Philip; Smith, Philip W

    2014-06-01

    The effectiveness and efficiency of 17 housekeepers in terminal cleaning 292 hospital rooms was evaluated through adenosine triphosphate detection. A subgroup of housekeepers was identified who were significantly more effective and efficient than their coworkers. These optimum outliers may be used in performance improvement to optimize environmental cleaning.

  8. A single-dose regimen for antimicrobial prophylaxis to prevent perioperative infection in urological clean and clean-contaminated surgery.

    PubMed

    Higuchi, Yoshihide; Takesue, Yoshio; Yamada, Yusuke; Ueda, Yasuo; Suzuki, Toru; Aihara, Kinue; Maruyama, Takuo; Kondoh, Nobuyuki; Nojima, Michio; Yamamoto, Shingo

    2011-04-01

    A single dose of antimicrobial prophylaxis (AMP) was administered parenterally for the prevention of perioperative infection in a total of 788 patients undergoing urological surgery, including 380 endoscopic-instrumental, 328 clean, and 80 clean-contaminated operations performed at our institute between January 2007 and December 2009. Surgical site infections (SSIs), urinary tract infections (UTIs), and remote infections (RIs) were prospectively surveyed. The definition for a single dose of AMP allowed for the administration of an additional dose of an antimicrobial during surgery if the procedure was longer than 3 h, but not for the parenteral or oral administration at the end of the procedure in the recovery room, or at a later time over a period of more than 24 h. UTI was observed in 12 (3.2%) patients after endoscopic-instrumental operation, 1 (0.3%) after clean operation, and 1 (0.9%) after clean-contaminated operation. SSI was observed in 2 (0.6%) patients after clean operation but in none after clean-contaminated operations. RI was observed in 1 (0.3%) patient after endoscopic-instrumental operation, 3 (0.9%) after clean operation, and none after clean-contaminated operations. A single-dose regimen of AMP was effective and feasible for the prevention of perioperative infections, including SSIs, UTIs, and RIs, in endoscopic-instrumental, clean, and clean-contaminated urological surgical procedures.

  9. Efficiency of hydrogen peroxide in improving disinfection of ICU rooms.

    PubMed

    Blazejewski, Caroline; Wallet, Frédéric; Rouzé, Anahita; Le Guern, Rémi; Ponthieux, Sylvie; Salleron, Julia; Nseir, Saad

    2015-02-02

    The primary objective of this study was to determine the efficiency of hydrogen peroxide (H₂O₂) techniques in disinfection of ICU rooms contaminated with multidrug-resistant organisms (MDRO) after patient discharge. Secondary objectives included comparison of the efficiency of a vaporizator (HPV, Bioquell) and an aerosolizer using H₂O₂, and peracetic acid (aHPP, Anios) in MDRO environmental disinfection, and assessment of toxicity of these techniques. This prospective cross-over study was conducted in five medical and surgical ICUs located in one University hospital, during a 12-week period. Routine terminal cleaning was followed by H₂O₂ disinfection. A total of 24 environmental bacteriological samplings were collected per room, from eight frequently touched surfaces, at three time-points: after patient discharge (T0), after terminal cleaning (T1) and after H₂O₂ disinfection (T2). In total 182 rooms were studied, including 89 (49%) disinfected with aHPP and 93 (51%) with HPV. At T0, 15/182 (8%) rooms were contaminated with at least 1 MDRO (extended spectrum β-lactamase-producing Gram-negative bacilli 50%, imipenem resistant Acinetobacter baumannii 29%, methicillin-resistant Staphylococcus aureus 17%, and Pseudomonas aeruginosa resistant to ceftazidime or imipenem 4%). Routine terminal cleaning reduced environmental bacterial load (P <0.001) without efficiency on MDRO (15/182 (8%) rooms at T0 versus 11/182 (6%) at T1; P = 0.371). H₂O₂ technologies were efficient for environmental MDRO decontamination (6% of rooms contaminated with MDRO at T1 versus 0.5% at T2, P = 0.004). Patient characteristics were similar in aHPP and HPV groups. No significant difference was found between aHPP and HPV regarding the rate of rooms contaminated with MDRO at T2 (P = 0.313). 42% of room occupants were MDRO carriers. The highest rate of rooms contaminated with MDRO was found in rooms where patients stayed for a longer period of time, and where a patient

  10. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...

  11. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...

  12. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...

  13. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...

  14. GOES EXIS Quadruplets Together in a Clean Room "Nursery"

    NASA Image and Video Library

    2014-02-10

    Four Extreme Ultraviolet and X-ray Irradiance Sensors or EXIS instruments that will fly aboard four of NOAA's Geostationary Operational Environmental Satellite-R or GOES-R Series spacecraft were recently lined up like babies in a nursery. The EXIS Team at NOAA's Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado took a short timeout during the week of January 20, 2014 to take advantage of a rare photo opportunity. Each EXIS instrument will fly aboard one of the GOES-R series of spacecraft that include GOES-R, S, T, and U. All four EXIS instruments happened to be in the clean room at the same time. It is expected that this will probably be the last time that all four siblings will be in one place together as Flight Model 1 (seen on the left) is being shipped on February 3 to begin integration and testing onto the GOES-R spacecraft at a Lockheed Martin facility in Littleton, Colo. The other instruments have already dispersed to other areas at LASP for continued build and test operations. The EXIS instruments on the GOES-R series satellites are critical to understanding and monitoring solar irradiance in the upper atmosphere, that is, the power and effect of the Sun’s electromagnetic radiation per unit of area. EXIS will be able to detect solar flares that could interrupt communications and reduce navigational accuracy, affecting satellites, high altitude airlines and power grids on Earth. On board the EXIS are two main sensors, the Extreme Ultraviolet Sensor (EUVS) and the X-Ray Sensor (XRS), which will help scientists monitor activity on the sun. The GOES-R series is a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration and NASA. The GOES-R satellites will provide continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. For more information about the GOES-R series, visit: www.goes-r.gov Credit: NOAA/NASA NASA image use policy. NASA

  15. Use of a fluorescent chemical as a quality indicator for a hospital cleaning program.

    PubMed

    Blue, Jennifer; O'Neill, Cindy; Speziale, Paul; Revill, Jeff; Ramage, Lee; Ballantyne, Lisa

    2008-01-01

    Hamilton Health Sciences is a large teaching hospital with over 1,000 beds and consists of three acute care sites, one Regional Cancer Center and two Rehabilitation/Chronic Care facilities. An environmental cleaning pilot project was initiated at the acute care Henderson site, following an outbreak of vancomycin-resistant Enterococcus (VRE). Healthcare-associated infections (HAI) due to antibiotic-resistant organisms are increasing in Southern Ontario. Environmental cleaning plays a key role in eradicating resistant organisms that live in hospital environments, thereby helping to reduce HAIs. The environmental cleaning practices on the Orthopaedic Unit were identified as a contributing factor to the VRE outbreak after visual assessments were completed using a Brevis GlitterBug product, a chemical that fluoresces under an ultraviolet (UV) lamp. These findings led to a hospital-wide cleaning improvement initiative on all units except critical care areas. The GlitterBug potion was employed by Infection Control and Customer Support Services (CSS) as a tool to evaluate the daily cleaning of patient washrooms as well as discharge cleaning of contact precaution isolation rooms. Over a four-week period, the GlitterBug potion was applied to seven frequently touched standard targets in randomly selected patient bathrooms on each unit and 14 frequently touched targets prior to cleaning in the rooms used for isolation. The targets were then evaluated using the UV lamp to detect objects that were not cleaned and the results were recorded on a standardized form. The rate of targets cleaned versus the targets missed was calculated. The overall rate for daily cleaning of bathrooms and cleaning of isolation rooms was poor with only 23% of the targets cleaned. Based on these findings, several interventions were implemented. This resulted in a significant improvement in cleaning practices during the pilot project. Greater than 80% of the targets were cleaned compared to the baseline

  16. Reduction of Clostridium Difficile and vancomycin-resistant Enterococcus contamination of environmental surfaces after an intervention to improve cleaning methods

    PubMed Central

    Eckstein, Brittany C; Adams, Daniel A; Eckstein, Elizabeth C; Rao, Agam; Sethi, Ajay K; Yadavalli, Gopala K; Donskey, Curtis J

    2007-01-01

    Background Contaminated environmental surfaces may play an important role in transmission of some healthcare-associated pathogens. In this study, we assessed the adequacy of cleaning practices in rooms of patients with Clostridium difficile-associated diarrhea (CDAD) and vancomycin-resistant Enterococcus (VRE) colonization or infection and examined whether an intervention would result in improved decontamination of surfaces. Methods During a 6-week period, we cultured commonly touched surfaces (i.e. bedrails, telephones, call buttons, door knobs, toilet seats, and bedside tables) in rooms of patients with CDAD and VRE colonization or infection before and after housekeeping cleaning, and again after disinfection with 10% bleach performed by the research staff. After the housekeeping staff received education and feedback, additional cultures were collected before and after housekeeping cleaning during a 10-week follow-up period. Results Of the 17 rooms of patients with VRE colonization or infection, 16 (94%) had one or more positive environmental cultures before cleaning versus 12 (71%) after housekeeping cleaning (p = 0.125), whereas none had positive cultures after bleach disinfection by the research staff (p < 0.001). Of the 9 rooms of patients with CDAD, 100% had positive cultures prior to cleaning versus 7 (78%) after housekeeping cleaning (p = 0.50), whereas only 1 (11%) had positive cultures after bleach disinfection by research staff (p = 0.031). After an educational intervention, rates of environmental contamination after housekeeping cleaning were significantly reduced. Conclusion Our findings provide additional evidence that simple educational interventions directed at housekeeping staff can result in improved decontamination of environmental surfaces. Such interventions should include efforts to monitor cleaning and disinfection practices and provide feedback to the housekeeping staff. PMID:17584935

  17. How Clean Are Hotel Rooms? Part II: Examining the Concept of Cleanliness Standards.

    PubMed

    Almanza, Barbara A; Kirsch, Katie; Kline, Sheryl Fried; Sirsat, Sujata; Stroia, Olivia; Choi, Jin Kyung; Neal, Jay

    2015-01-01

    Hotel room cleanliness is based on observation and not on microbial assessment even though recent reports suggest that infections may be acquired while staying in hotel rooms. Exploratory research in the first part of the authors' study was conducted to determine if contamination of hotel rooms occurs and whether visual assessments are accurate indicators of hotel room cleanliness. Data suggested the presence of microbial contamination that was not reflective of visual assessments. Unfortunately, no standards exist for interpreting microbiological data and other indicators of cleanliness in hotel rooms. The purpose of the second half of the authors' study was to examine cleanliness standards in other industries to see if they might suggest standards in hotels. Results of the authors' study indicate that standards from other related industries do not provide analogous criteria, but do provide suggestions for further research.

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES/CLEAN DIESEL TECHNOLOGIES FUEL BORNE CATALYST WITH CLEANAIR SYSTEM'S DIESEL OXIDATION CATALYST

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with CleanAir System's Diesel Oxidation Catalyst manufactured by Clean Diesel Technologies, Inc. The technology is a fuel-borne catalyst used in ultra low sulfur d...

  19. Comparison of two whole-room ultraviolet irradiation systems for enhanced disinfection of contaminated hospital patient rooms.

    PubMed

    Ali, S; Yui, S; Muzslay, M; Wilson, A P R

    2017-10-01

    Ultraviolet (UV) light decontamination systems are being used increasingly to supplement terminal disinfection of patient rooms. However, efficacy may not be consistent in the presence of soil, especially against Clostridium difficile spores. To demonstrate in-use efficacy of two whole-room UV decontamination systems against three hospital pathogens with and without soil. For each system, six patient rooms were decontaminated with UV irradiation (enhanced disinfection) following manual terminal cleaning. Total aerobic colony counts of surface contamination were determined by spot-sampling 15 environmental sites before and after terminal disinfection and after UV irradiation. Efficacy against biological indicator coupons (stainless-steel discs) was performed for each system using test bacteria (10 6  cfu EMRSA-15 variant A, carbapenemase-producing Klebsiella pneumoniae) or spores (10 5  cfu C. difficile 027), incorporating low soiling [0.03% bovine serum albumin (BSA)], heavy soiling (10% BSA) or synthetic faeces (C. difficile only) placed at five locations in the room. UV disinfection eliminated contamination after terminal cleaning in 8/14 (57%) and 11/14 (79%) sites. Both systems demonstrated 4-5 log 10 reductions in meticillin-resistant Staphylococcus aureus and K. pneumoniae at low soiling. Lower and more variable log 10 reductions were achieved when heavy soiling was present. Between 0.1 and 4.8 log 10 reductions in C. difficile spores were achieved with low but not heavy soil challenge. Terminal disinfection should be performed on all surfaces prior to UV decontamination. In-house validation studies should be considered to ensure optimal positioning in each room layout and sufficient cycle duration to eliminate target pathogens. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  20. Forced-air warming and ultra-clean ventilation do not mix: an investigation of theatre ventilation, patient warming and joint replacement infection in orthopaedics.

    PubMed

    McGovern, P D; Albrecht, M; Belani, K G; Nachtsheim, C; Partington, P F; Carluke, I; Reed, M R

    2011-11-01

    We investigated the capacity of patient warming devices to disrupt the ultra-clean airflow system. We compared the effects of two patient warming technologies, forced-air and conductive fabric, on operating theatre ventilation during simulated hip replacement and lumbar spinal procedures using a mannequin as a patient. Infection data were reviewed to determine whether joint infection rates were associated with the type of patient warming device that was used. Neutral-buoyancy detergent bubbles were released adjacent to the mannequin's head and at floor level to assess the movement of non-sterile air into the clean airflow over the surgical site. During simulated hip replacement, bubble counts over the surgical site were greater for forced-air than for conductive fabric warming when the anaesthesia/surgery drape was laid down (p = 0.010) and at half-height (p < 0.001). For lumbar surgery, forced-air warming generated convection currents that mobilised floor air into the surgical site area. Conductive fabric warming had no such effect. A significant increase in deep joint infection, as demonstrated by an elevated infection odds ratio (3.8, p = 0.024), was identified during a period when forced-air warming was used compared to a period when conductive fabric warming was used. Air-free warming is, therefore, recommended over forced-air warming for orthopaedic procedures.

  1. Enhanced Cleaning and Education to Prevent Transmission of Clostridium difficile in Pediatrics

    PubMed Central

    Aslam, Anoshé; Melendez, Giselle; Wang, Min; Stell, Frederic; Kelly, Paulette; Killinger, James; Dannaoui, Aimee; Riedman, Scott; Lopez, Ruben; Ackerman, Jill; Chou, Alexander; Wexler, Leonard; Smith, David; Sanchez, Stacy; Robilotti, Elizabeth; Kamboj, Mini; Eagan, Janet

    2017-01-01

    Abstract Background Transmission of healthcare-associated Clostridium difficile infection (HA-CDI) has been shown to occur directly or indirectly through a contaminated environment. At a tertiary-care cancer center, HA-CDI rates were higher for pediatric units than for other general oncology units. To address the problem, a multidisciplinary team, including Infection Control, Nursing, and Environmental Services (EVS), was convened and identified refusals and room clutter as barriers to proper cleaning of rooms on the unit. Aim: The aim of this study seeks to reduce HA-CDI in the inpatient pediatrics setting through environmental and educational interventions. Methods In the first phase of the study from February to April 2016, a baseline assessment of prevalent environmental disinfection practices was made among Nursing, EVS, Physicians, and Patient Representatives. Based on this feedback, the following were implemented during Phase 2, from June through October 2016: 1) Unit-wide disinfection with bleach twice a day including common and high traffic areas; 2) Initiation of a “preferred time for cleaning” program to engage families; 3) Enhanced visitor and family education on PPE use; 4) Creation of a communication plan in case of refusal to clean rooms; and 5) Dedicated use of diaper scales. Results During the first phase of the study, the following barriers to cleaning were identified: 1) High refusal rate as cleaning was perceived as inconvenient by families due to timing; 2) Common perception among EVS staff that multiple requests for cleaning the room may appear intrusive to the families; 3) Excessive clutter in the room; 4) Lack of education regarding PPE use; and 5) Shared equipment for diapers. To overcome these barriers, several interventions as outlined in methods were implemented. In Phase 2, there were 0 cases of HA-CDI identified in pediatric patients starting in July through October, 2016. Conclusion Control of CDI on pediatric units poses unique

  2. The Chemistry of Ultra-Radiopure Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miley, Harry S.; Aalseth, Craig E.; Day, Anthony R.

    Ultra-pure materials are needed for the construction of the next generation of ultra-low level radiation detectors. These detectors are used for environmental research as well as rare nuclear decay experiments, e.g. probing the effective mass and character of the neutrino. Unfortunately, radioactive isotopes are found in most construction materials, either primordial isotopes, activation/spallation products from cosmic-ray exposure, or surface deposition of dust or radon progeny. Copper is an ideal candidate material for these applications. High-purity copper is commercially available and, when even greater radiopurity is needed, additional electrochemical purification can be combined with the final construction step, resulting in “electroformed”more » copper of extreme purity. Copper also offers desirable thermal, mechanical, and electrical properties. To bridge the gap between commercially-available high purity copper and the most stringent requirements of next-generation low-background experiments, a method of additional chemical purification is being developed based on well-known copper electrochemistry. This method is complemented with the co-development of surface cleaning techniques and more sensitive assay for both surface and bulk contamination. Developments in the electroplating of copper, surface cleaning, assay of U and Th in the bulk copper, and residual surface contamination will be discussed relative to goals of less than 1 microBq/kg Th.« less

  3. 7 CFR 58.510 - Rooms and compartments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...

  4. 7 CFR 58.510 - Rooms and compartments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...

  5. 7 CFR 58.510 - Rooms and compartments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...

  6. 7 CFR 58.510 - Rooms and compartments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...

  7. 7 CFR 58.510 - Rooms and compartments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...

  8. A new approach in dry technology for non-degrading optical and EUV mask cleaning

    NASA Astrophysics Data System (ADS)

    Varghese, Ivin; Smith, Ben; Balooch, Mehdi; Bowers, Chuck

    2012-11-01

    The Eco-Snow Systems group of RAVE N.P., Inc. has developed a new cleaning technique to target several of the advanced and next generation mask clean challenges. This new technique, especially when combined with Eco-Snow Systems cryogenic CO2 cleaning technology, provides several advantages over existing methods because it: 1) is solely based on dry technique without requiring additional complementary aggressive wet chemistries that degrade the mask, 2) operates at atmospheric pressure and therefore avoids expensive and complicated equipment associated with vacuum systems, 3) generates ultra-clean reactants eliminating possible byproduct adders, 4) can be applied locally for site specific cleaning without exposing the rest of the mask or can be used to clean the entire mask, 5) removes organic as well as inorganic particulates and film contaminations, and 6) complements current techniques utilized for cleaning of advanced masks such as reduced chemistry wet cleans. In this paper, we shall present examples demonstrating the capability of this new technique for removal of pellicle glue residues and for critical removal of carbon contamination on EUV masks.

  9. Room-temperature creation and spin-orbit torque-induced manipulation of skyrmions in thin film

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Upadhyaya, Pramey; Li, Xiang; Li, Wenyuan; Im, Se Kwon K.; Fan, Yabin; Wong, Kin L.; Tserkovnyak, Yaroslav; Amiri, Pedram Khalili; Wang, Kang L.

    Magnetic skyrmions, which are topologically protected spin texture, are promising candidates for ultra-low energy and ultra-high density magnetic data storage and computing applications1, 2. To date, most experiments on skyrmions have been carried out at low temperatures. The choice of materials available is limited and there is a lack of electrical means to control of skyrmions. Here, we experimentally demonstrate a method for creating skyrmion bubbles phase in the ferromagnetic thin film at room temperature. We further demonstrate that the created skyrmion bubbles can be manipulated by electric current. This room-temperature creation and manipulation of skyrmion in thin film is of particular interest for applications, being suitable for room-temperature operation and compatible with existing semiconductor manufacturing tools. 1. Nagaosa, N., Tokura, Y. Nature Nanotechnology 8, 899-911 (2013). 2. Fert, A., et al., Nature Nanotechnology 8, 152-156 (2013).

  10. 9 CFR 590.520 - Breaking room facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Breaking room facilities. 590.520 Section 590.520 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE..., clean towels or other facilities for drying hands, odorless soap, and containers for used towels. Hand...

  11. Surface cleaning for negative electron affinity GaN photocathode

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Yin, Yingpeng; Gao, Youtang; Niu, Jun; Qian, Yunsheng; Chang, Benkang

    2012-10-01

    In the preparation process for negative electron affinity (NEA) GaN photocathode, the surface cleanness is very important to activation, it influences the sensitivity and stability of NEA GaN photocathode. The traditional corrosion methods based on oxidizing and dissolving can't remove oxygen (O) and carbon (C) on GaN surface effectively. How to get an ideal atom clean surface is still an important question at present. The cleaning techniques for GaN photocathode was studied by using NEA photocathode activation system and XPS surface analysis system. The experiment sample is p-type GaN doped with Mg, doped concentration is 1.37×1017 cm-3, the transfer rate is 3.08 cm2/V-S, and the thickness of activation layer is 0.51 μm, the substrate is 300 μm thick sapphire. The sample was dealed with chemical cleaning depuration at first. And to get the atom clean surface, the vacuum heat cleaning process was needed. The methods of chemical cleaning and the vacuum heating cleaning were given in detail. According to the X-ray photoelectron spectroscopy of GaN surface after chemical cleaning and the vacuum degree curve of the activation chamber during the heat cleaning, the cleaning effect and the cleaning mechanism were discussed. After the effective chemical cleaning and the heating of 700 Centigrade degree about 20 minutes in ultrahigh vacuum system, the oxides and carbon contaminants on cathode surface can be removed effectively, and the ideal atom clean surface can be obtained. The purpose of heating depuration process is that not only to get the atom clean GaN surface, but also to guarantee the contents of Ga, N on GaN surface stabilize and to keep the system ultra-high vacuum degree. Because of the volatilization of oxide and carbon impurity on the cathode surface, the vacuum degree curve drops with the rising of temperature on the whole.

  12. Prepsolv (TM): The optimum alternative to 1,1,1-trichloroethane and methyl ethyl ketone for hand-wipe cleaning of aerospace materials

    NASA Technical Reports Server (NTRS)

    Gallagher, R. Scott; Purvis, John A.; Moran, Wade W.

    1995-01-01

    Engineers at Hercules Aerospace, a rocket motor manufacturer in Utah, have worked closely with chemists at Glidco Organics to study the feasibility of using terpenes for zero-residue wipe cleaning. The result of this work is a technological breakthrough, in which the barrier to ultra-low non-volatile residue formation has been broken. After 2 years of development and testing, SCM Glidco Organics has announced the availability of Glidsafe(registered trademark) Prepsolv(TM): a state-of-the-art ultra-low residue terpene wipe cleaning agent that does not require rinsing. Prepsolv(TM) can successfully be used in simple hand-wipe cleaning processes without fear of leaving surface residues. Industry testing has confirmed that Prepsolv(TM) is not only highly effective, but can even be less expensive to use than traditional cleaning solvents like methyl chloroform. This paper addresses the features and benefits of Prepsolv(TM), and presents performance and material compatibility data that characterizes this unique cleaning agent. Since its commercialization, Hercules Aerospace has chosen Prepsolv(TM) as the optimum cleaning agent to replace ozone-depleting solvents in their weapons factory in Magna, UT. Likewise, Boeing has approved Prepsolv(TM) for cleaning components in the manufacture of commercial aircraft at their facilities in Seattle, WA and Wichita, KS. Additional approvals are forthcoming for this uniquely safe and effective solvent.

  13. Effectiveness of ultraviolet devices and hydrogen peroxide systems for terminal room decontamination: Focus on clinical trials.

    PubMed

    Weber, David J; Rutala, William A; Anderson, Deverick J; Chen, Luke F; Sickbert-Bennett, Emily E; Boyce, John M

    2016-05-02

    Over the last decade, substantial scientific evidence has accumulated that indicates contamination of environmental surfaces in hospital rooms plays an important role in the transmission of key health care-associated pathogens (eg, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, Clostridium difficile, Acinetobacter spp). For example, a patient admitted to a room previously occupied by a patient colonized or infected with one of these pathogens has a higher risk for acquiring one of these pathogens than a patient admitted to a room whose previous occupant was not colonized or infected. This risk is not surprising because multiple studies have demonstrated that surfaces in hospital rooms are poorly cleaned during terminal cleaning. To reduce surface contamination after terminal cleaning, no touch methods of room disinfection have been developed. This article will review the no touch methods, ultraviolet light devices, and hydrogen peroxide systems, with a focus on clinical trials which have used patient colonization or infection as an outcome. Multiple studies have demonstrated that ultraviolet light devices and hydrogen peroxide systems have been shown to inactivate microbes experimentally plated on carrier materials and placed in hospital rooms and to decontaminate surfaces in hospital rooms naturally contaminated with multidrug-resistant pathogens. A growing number of clinical studies have demonstrated that ultraviolet devices and hydrogen peroxide systems when used for terminal disinfection can reduce colonization or health care-associated infections in patients admitted to these hospital rooms. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  14. Evaluation of a pulsed xenon ultraviolet disinfection system to decrease bacterial contamination in operating rooms.

    PubMed

    El Haddad, Lynn; Ghantoji, Shashank S; Stibich, Mark; Fleming, Jason B; Segal, Cindy; Ware, Kathy M; Chemaly, Roy F

    2017-10-10

    Environmental cleanliness is one of the contributing factors for surgical site infections in the operating rooms (ORs). To decrease environmental contamination, pulsed xenon ultraviolet (PX-UV), an easy and safe no-touch disinfection system, is employed in several hospital environments. The positive effect of this technology on environmental decontamination has been observed in patient rooms and ORs during the end-of-day cleaning but so far, no study explored its feasibility between surgical cases in the OR. In this study, 5 high-touch surfaces in 30 ORs were sampled after manual cleaning and after PX-UV intervention mimicking between-case cleaning to avoid the disruption of the ORs' normal flow. The efficacy of a 1-min, 2-min, and 8-min cycle were tested by measuring the surfaces' contaminants by quantitative cultures using Tryptic Soy Agar contact plates. We showed that combining standard between-case manual cleaning of surfaces with a 2-min cycle of disinfection using a portable xenon pulsed ultraviolet light germicidal device eliminated at least 70% more bacterial load after manual cleaning. This study showed the proof of efficacy of a 2-min cycle of PX-UV in ORs in eliminating bacterial contaminants. This method will allow a short time for room turnover and a potential reduction of pathogen transmission to patients and possibly surgical site infections.

  15. 9 CFR 590.522 - Breaking room operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... room personnel shall wash their hands thoroughly with odorless soap and water each time they enter the... wholesomeness by smelling the shell or the egg meat and by visual examination at the time of breaking. All egg... of shell particles and other foreign material shall be cleaned and sanitized each time it is...

  16. 9 CFR 590.522 - Breaking room operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... room personnel shall wash their hands thoroughly with odorless soap and water each time they enter the... wholesomeness by smelling the shell or the egg meat and by visual examination at the time of breaking. All egg... of shell particles and other foreign material shall be cleaned and sanitized each time it is...

  17. 9 CFR 590.522 - Breaking room operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... room personnel shall wash their hands thoroughly with odorless soap and water each time they enter the... wholesomeness by smelling the shell or the egg meat and by visual examination at the time of breaking. All egg... of shell particles and other foreign material shall be cleaned and sanitized each time it is...

  18. Fabrication method for a room temperature hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Shukla, Satyajit V. (Inventor); Cho, Hyoung (Inventor); Seal, Sudipta (Inventor); Ludwig, Lawrence (Inventor)

    2011-01-01

    A sensor for selectively determining the presence and measuring the amount of hydrogen in the vicinity of the sensor. The sensor comprises a MEMS device coated with a nanostructured thin film of indium oxide doped tin oxide with an over layer of nanostructured barium cerate with platinum catalyst nanoparticles. Initial exposure to a UV light source, at room temperature, causes burning of organic residues present on the sensor surface and provides a clean surface for sensing hydrogen at room temperature. A giant room temperature hydrogen sensitivity is observed after making the UV source off. The hydrogen sensor of the invention can be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently used at room temperature.

  19. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmlid, Leif, E-mail: holmlid@chem.gu.se; Kotzias, Bernhard

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H{sub 2N}(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H{sub 4}(0) andmore » H{sub 3}(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H{sub 2N}(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.« less

  20. Safety assessment of the use of Bacillus-based cleaning products.

    PubMed

    Berg, Ninna W; Evans, Matthew R; Sedivy, John; Testman, Robert; Acedo, Kimon; Paone, Domenic; Long, David; Osimitz, Thomas G

    2018-06-01

    Non-pathogenic Bacillus species used in cleaning products produce the appropriate enzymes to degrade stains and soils. However, there is little scientific data regarding the human exposure by inhalation of Bacillus spores during or after use of microbial-based cleaning products. Herein, air samples were collected at various locations in a ventilated, carpeted, residential room to determine the air concentration of viable bacteria and spores during and after the application of microbial-based carpet cleaning products containing Bacillus spores. The influence of human activities and vacuuming was investigated. Bioaerosol levels associated with use and post-application activities of whole room carpet treatments were elevated during post-application activity, but quickly returned to the indoor background range. Use of trigger spray spot applications generated aerosolized spores in the immediate vicinity, however, their use pattern and the generation of mostly non-respirable particles suggest minimal risks for pulmonary exposure from their use. The aerosol counts associated with use of these microbial-based cleaners were below the recommendation for safe exposure levels to non-pathogenic and non-toxigenic microorganisms except during application of the spot cleaner. The data presented suggest that carpet cleaning products, containing non-pathogenic Bacillus spores present a low potential for inhalation exposure and consequently minimal risk of adverse effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Postdischarge decontamination of MRSA, VRE, and Clostridium difficile isolation rooms using 2 commercially available automated ultraviolet-C-emitting devices.

    PubMed

    Wong, Titus; Woznow, Tracey; Petrie, Mike; Murzello, Elena; Muniak, Allison; Kadora, Amin; Bryce, Elizabeth

    2016-04-01

    Two ultraviolet-C (UVC)-emitting devices were evaluated for effectiveness in reducing methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and Clostridium difficile (CD). Six surfaces in rooms previously occupied by patients with MRSA, VRE, or CD were cultured before and after cleaning and after UVC disinfection. In a parallel laboratory study, MRSA and VRE suspended in trypticase soy broth were inoculated onto stainless steel carriers in triplicate, placed in challenging room areas, subjected to UVC, and subcultured to detect growth. Sixty-one rooms and 360 surfaces were assessed. Before cleaning, MRSA was found in 34.4%, VRE was found in 29.5%, and CD was found in 31.8% of rooms. Cleaning reduced MRSA-, VRE-, and CD-contaminated rooms to 27.9%, 29.5%, and 22.7%, respectively (not statistically significant). UVC disinfection further reduced MRSA-, VRE-, and CD-contaminated rooms to 3.3% (P = .0003), 4.9% (P = .0003), and 0% (P = .0736), respectively. Surface colony counts (excluding floors) decreased from 88.0 to 19.6 colony forming units (CFU) (P < .0001) after manual cleaning; UVC disinfection further reduced it to 1.3 CFU (P = .0013). In a multivariable model of the carrier study, the odds of detecting growth in broth suspensions after UVC disinfection were 7 times higher with 1 machine (odds ratio, 6.96; 95% confidence interval, 3.79-13.4) for a given organism, surface, and concentration. UVC devices are effective adjuncts to manual cleaning but vary in their ability to disinfect high concentrations of organisms in the presence of protein. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.T.; James P. Meagher; Prasad Apte

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but wasmore » delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.« less

  3. Safety by design: effects of operating room floor marking on the position of surgical devices to promote clean air flow compliance and minimise infection risks.

    PubMed

    de Korne, Dirk F; van Wijngaarden, Jeroen D H; van Rooij, Jeroen; Wauben, Linda S G L; Hiddema, U Frans; Klazinga, Niek S

    2012-09-01

    To evaluate the use of floor marking on the positioning of surgical devices within the clean air flow in an operating room (OR) to minimise infection risk. Laminar flow clean air systems are important in preventing infection in ORs but, for optimal results, surgical devices must be correctly positioned. The authors evaluated floor marking in four ORs at an eye hospital using time series analysis. Through observations during 829 surgeries over a 20-month period, the positions of surgical devices were determined. Eight semistructured interviews with surgical staff were conducted to assess user experiences and team dynamics. Before marking, the instrument table was positioned completely within the laminar flow in only 6.1% of the cases. This increased to 36.1% and finally 53.8%. Mayo stands were increasingly positioned within the laminar flow: from 74.2% to 84.7%. The surgical lamp decreasingly obstructed flow: from 41.8% to 28.7%. At T3 (20 months), however, in 48.6% of the applicable cases the lamp was positioned in the flow again. Discussions and site visits between airside operators and surgical staff resulted in increasing awareness of specific risk areas in the OR. OR floor markings facilitated and stimulated safety awareness and resulted in significantly increased compliance with the positioning of surgical devices in the clean air flow. Safety and quality approaches in hospital care, therefore, should include a human factors approach that focuses on system design in addition to teaching clinical and non-technical skills.

  4. Air, water, and surface bacterial contamination in a university-hospital autopsy room.

    PubMed

    Maujean, Géraldine; Malicier, Daniel; Fanton, Laurent

    2012-03-01

    Today, little is known about the bacteriological environment of the autopsy room and its potential interest for medico-legal practices. Seven hundred fifty microbiological samples were taken from surface (n = 660), air (n = 48), and water (n = 42) to evaluate it in a French University Forensic Department. Median bacterial counts were compared before and during autopsy for air samples, and before and after autopsy for surface samples, using Wilcoxon matched pairs signed ranks test. Bacterial identification relied on traditional phenotypic methods. Bacterial counts in the air were low before autopsy, increased significantly during procedure, and seemed more linked to the number of people in the room than to an important production of aerosol-containing bacteria. Despite cleaning, human fecal flora was omnipresent on surfaces, which revealed insufficient disinfection. Bacteriological sampling is an easy way to monitor cleaning practices in postmortem rooms, but chiefly a way to improve the reliability of medico-legal proofs of infectious deaths. © 2012 American Academy of Forensic Sciences.

  5. [The application of operating room quality backward system in instrument place management].

    PubMed

    Du, Hui; He, Anjie; Zeng, Leilei

    2010-09-01

    Improvement of the surgery instrument's clean quality, the optimized preparation way, reasonable arrangement in groups, raising the working efficiency. We use the quality backward system into the instrument clean, the pack and the preparation way's question, carry on the analysis and the optimization, and appraise the effect after trying out 6 months. After finally the way optimized, instrument clean quality distinct enhancement; The flaws in the instrument clean, the pack way and the total operating time reduce; the contradictory between nurses and the cleans arising from the unclear connection reduces, the satisfaction degree of nurse and doctor to the instrument enhances. Using of operating room quality backward system in the management of the instrument clean, the pack and the preparation way optimized, may reduce flaws in the work and the waste of human resources, raise the working efficiency.

  6. Establishing and monitoring an aseptic workspace for building the MOMA mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lalime, Erin N.; Berlin, David

    2016-09-01

    Mars Organic Molecule Analyzer (MOMA) is an instrument suite on the European Space Agency (ESA) ExoMars 2020 Rover, and the Mass Spectrometer (MOMA-MS) is being built at Goddard Space Flight Center (GSFC). MOMA-MS is a life-detection instrument and thus falls in the most stringent category of Planetary Protection (PP) biological cleanliness requirements. Less than 0.03 spore/m2 are allowed in the instrument sample path. In order to meet these PP requirements, MOMA-MS must be built and maintained in a low bioburden environment. The MOMA-MS project at GSFC maintains three clean rooms with varying levels of bioburden control. The Aseptic Assembly Clean room has the highest level of control, applying three different bioburden reducing methods: 70% Isopropyl Alcohol (IPA), 7.5% Hydrogen Peroxide, and Ultra-Violet C (UVC) light. The three methods are used in rotation and each kills microorganisms by a different mechanism, reducing the likelihood of microorganisms developing resistance to all three. The Integration and Mars Chamber Clean rooms use less biocidal cleaning, with the option to deploy extra techniques as necessary. To support the monitoring of clean rooms and verification that MOMA-MS hardware meets PP requirements, a new Planetary Protection lab was established that currently has the capabilities of standard growth assays for spore or vegetative bacteria, rapid bioburden analysis that detects Adenosine Triphosphate (ATP), plus autoclave and Dry Heat microbial Reduction (DHMR) verification. The clean rooms are monitored for vegetative microorganisms and by rapid ATP assay, and a clear difference in bioburden is observed between the aseptic and other clean room.

  7. Establishing and Monitoring an Aseptic Workspace for Building the MOMA Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Lalime, Erin N.; Berlin, David

    2016-01-01

    Mars Organic Molecule Analyzer (MOMA) is an instrument suite on the European Space Agency (ESA) ExoMars 2020 Rover, and the Mass Spectrometer (MOMA-MS) is being built at Goddard Space Flight Center (GSFC). MOMA-MS is a life-detection instrument and thus falls in the most stringent category of Planetary Protection (PP) biological cleanliness requirements. Less than 0.03 spore/m2 are allowed in the instrument sample path. In order to meet these PP requirements, MOMA-MS must be built and maintained in a low bioburden environment. The MOMA-MS project at GSFC maintains three clean rooms with varying levels of bioburden control. The Aseptic Assembly Clean room has the highest level of control, applying three different bioburden reducing methods: 70% Isopropyl Alcohol (IPA), 7.5% Hydrogen Peroxide, and Ultra-Violet C (UVC) light. The three methods are used in rotation and each kills microorganisms by a different mechanism, reducing the likelihood of microorganisms developing resistance to all three. The Integration and Mars Chamber Clean rooms use less biocidal cleaning, with the option to deploy extra techniques as necessary. To support the monitoring of clean rooms and verification that MOMA-MS hardware meets PP requirements, a new Planetary Protection lab was established that currently has the capabilities of standard growth assays for spore or vegetative bacteria, rapid bioburden analysis that detects Adenosine Triphosphate (ATP), plus autoclave and Dry Heat microbial Reduction (DHMR) verification. The clean rooms are monitored for vegetative microorganisms and by rapid ATP assay, and a clear difference in bioburden is observed between the aseptic and other clean room.

  8. Hospital Patient Room Design: The Issues Facing 23 Occupational Groups Who Work in Medical/Surgical Patient Rooms.

    PubMed

    Lavender, Steven A; Sommerich, Carolyn M; Patterson, Emily S; Sanders, Elizabeth B-N; Evans, Kevin D; Park, Sanghyun; Umar, Radin Zaid Radin; Li, Jing

    2015-01-01

    The aim of this study was to learn from a wide range of hospital staff members about how the design of the patient room in which they work adversely affects their ergonomics or hinders their job performance. In addition to providing a healing space for patients, hospital patient rooms need to serve as functional workplaces for the people who provide clinical care, to clean, or to maintain room functions. Therefore, from a design perspective, it is important to understand the needs of all the users of hospital patient rooms with regard to room design. One hundred forty-seven people, representing 23 different occupational stakeholder groups, participated in either focus groups or interviews in which they were asked to identify room design issues that affect the performance of their work tasks. Key issues shared across multiple stakeholder groups included an inability to have eye contact with the patient when entering the room, inadequate space around the bed for the equipment used by stakeholders, the physical demands experienced as stakeholders move furnishings to accomplish their activities or access equipment, and a lack of available horizontal surfaces. Unique issues were also identified for a number of stakeholder groups. There are a number of issues that should be addressed in the next generation of hospital patient rooms, or when refurbishing existing facilities, so that all occupational stakeholder groups can work effectively, efficiently, and without undue physical stress. © The Author(s) 2015.

  9. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians secure a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  10. SOFIA's primary mirror assembly is cradled on its dolly as technicians prepare to move it into a "clean room" at NASA Dryden's Aircraft Operations Facility

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  11. Technicians carefully guide SOFIA's primary mirror assembly on its transport cradle into a clean room where it is being prepared for shipment to NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  12. The estimation of dynamic contact angle of ultra-hydrophobic surfaces using inclined surface and impinging droplet methods

    NASA Astrophysics Data System (ADS)

    Jasikova, Darina; Kotek, Michal

    2014-03-01

    The development of industrial technology also brings with optimized surface quality, particularly where there is contact with food. Application ultra-hydrophobic surface significantly reduces the growth of bacteria and facilitates cleaning processes. Testing and evaluation of surface quality are used two methods: impinging droplet and inclined surface method optimized with high speed shadowgraphy, which give information about dynamic contact angle. This article presents the results of research into new methods of measuring ultra-hydrophobic patented technology.

  13. ShellFit: Reconstruction in the MiniCLEAN Detector

    NASA Astrophysics Data System (ADS)

    Seibert, Stanley

    2010-02-01

    The MiniCLEAN dark matter experiment is an ultra-low background liquid cryogen detector with a fiducial volume of approximately 150 kg. Dark matter candidate events produce ultraviolet scintillation light in argon at 128 nm and in neon at 80 nm. In order to detect this scintillation light, the target volume is enclosed by acrylic plates forming a spherical shell upon which an organic fluor, tetraphenyl butadiene (TPB), has been applied. TPB absorbs UV light and reemits visible light isotropically which can be detected by photomultiplier tubes. Two significant sources of background events in MiniCLEAN are decays of radon daughters embedded in the acrylic surface and external sources of neutrons, such as the photomultiplier tubes themselves. Both of these backgrounds can be mitigated by reconstructing the origin of the scintillation light and cutting events beyond a particular radius. The scrambling of photon trajectories at the TPB surface makes this task very challenging. The ``ShellFit'' algorithm for reconstructing event position and energy in a detector with a spherical wavelength-shifting shell will be described. The performance of ShellFit will be demonstrated using Monte Carlo simulation of several event types in the MiniCLEAN detector. )

  14. Genesis Spacecraft Science Canister Preliminary Inspection and Cleaning

    NASA Technical Reports Server (NTRS)

    Hittle, J. D.; Calaway, M. J.; Allton, J. H.; Warren, J. L.; Schwartz, C. M.; Stansbery, E. K.

    2006-01-01

    The Genesis science canister is an aluminum cylinder (75 cm diameter and 35 cm tall) hinged at the mid-line for opening. This canister was cleaned and assembled in an ISO level 4 (Class 10) clean room at Johnson Space Center (JSC) prior to launch. The clean solar collectors were installed and the canister closed in the cleanroom to preserve collector cleanliness. The canister remained closed until opened on station at Earth-Sun L1 for solar wind collection. At the conclusion of collection, the canister was again closed to preserve collector cleanliness during Earth return and re-entry. Upon impacting the dry Utah lakebed at 300 kph the science canister integrity was breached. The canister was returned to JSC. The canister shell was briefly examined, imaged, gently cleaned of dust and packaged for storage in anticipation of future detailed examination. The condition of the science canister shell noted during this brief examination is presented here. The canister interior components were packaged and stored without imaging due to time constraints.

  15. Enhanced Cleaning of Genesis Solar Wind Sample 61348 for Film Residue Removal

    NASA Technical Reports Server (NTRS)

    Allums, K. K.; Gonzalez, C. P.; Kuhlman, K. R.; Allton, J. H.

    2015-01-01

    The Genesis mission returned to Earth on September 8, 2004, experiencing a nonnominal reentry. During the recovery of the collector materials from the capsule, many of the collector fragments were placed on the adhesive protion of post-it notes to prevent the fragments from moving during transport back to Johnson Space Center. This unknowingly provided an additional contaminate that would prove difficult to remove with the limited chemistries allowed in the Genesis Curation Laboratory. Generally when collector material samples are prepared for allocation to PIs, the samples are cleaned front side only with Ultra-Pure Water (UPW) via megasonic dispersion to the collector surface to remove crash debris and contamination. While this cleaning method works well on samples that were not placed on post-its during recovery, it has caused movement of the residue on the back of the sample to be deposited on the front in at least two examples. Therefore, samples placed on the adhesive portion on post-it note, require enhanced cleaning methods since post-it residue has proved resistant to UPW cleaning.

  16. Mask fabrication and its applications to extreme ultra-violet diffractive optics

    NASA Astrophysics Data System (ADS)

    Cheng, Yang-Chun

    Short-wavelength radiation around 13nm of wavelength (Extreme Ultra-Violet, EUV) is being considered for patterning microcircuits, and other electronic chips with dimensions in the nanometer range. Interferometric Lithography (IL) uses two beams of radiation to form high-resolution interference fringes, as small as half the wavelength of the radiation used. As a preliminary step toward manufacturing technology, IL can be used to study the imaging properties of materials in a wide spectral range and at nanoscale dimensions. A simple implementation of IL uses two transmission diffraction gratings to form the interference pattern. More complex interference patterns can be created by using different types of transmission gratings. In this thesis, I describe the development of a EUV lithography system that uses diffractive optical elements (DOEs), from simple gratings to holographic structures. The exposure system is setup on a EUV undulator beamline at the Synchrotron Radiation Center, in the Center for NanoTechnology clean room. The setup of the EUV exposure system is relatively simple, while the design and fabrication of the DOE "mask" is complex, and relies on advanced nanofabrication techniques. The EUV interferometric lithography provides reliable EUV exposures of line/space patterns and is ideal for the development of EUV resist technology. In this thesis I explore the fabrication of these DOE for the EUV range, and discuss the processes I have developed for the fabrication of ultra-thin membranes. In addition, I discuss EUV holographic lithography and generalized Talbot imaging techniques to extend the capability of our EUV-IL system to pattern arbitrary shapes, using more coherent sources than the undulator. In a series of experiments, we have demonstrated the use of a soft X-ray (EUV) laser as effective source for EUV lithography. EUV-IL, as implemented at CNTech, is being used by several companies and research organizations to characterize photoresist

  17. Ultraviolet-Ozone Cleaning of Semiconductor Surfaces

    DTIC Science & Technology

    1992-10-01

    rooms and in the air ducts of air conditioning systems (7). In 1972, Bolon and Kunz (1) reported that UV light had the capability to depolymerize a...instead of oxygen, the depolymerization was hindered. Thus, Bolon and Kunz recognized that oxygen and wavelengths shorter than 300-nm played a role in the...that mild heat increases the UV/ozone cleaning rates. Bolon and Kunz (1), on the other hand, found that the rate of ozone depolymerization of

  18. 9 CFR 355.15 - Inedible material operating and storage rooms; outer premises, docks, driveways, etc.; fly...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-breeding material; nuisances. All operating and storage rooms and departments of inspected plants used for... storage rooms; outer premises, docks, driveways, etc.; fly-breeding material; nuisances. 355.15 Section... premises of every inspected plant shall be kept in clean and orderly condition. All catchbasins on the...

  19. 9 CFR 355.15 - Inedible material operating and storage rooms; outer premises, docks, driveways, etc.; fly...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-breeding material; nuisances. All operating and storage rooms and departments of inspected plants used for... storage rooms; outer premises, docks, driveways, etc.; fly-breeding material; nuisances. 355.15 Section... premises of every inspected plant shall be kept in clean and orderly condition. All catchbasins on the...

  20. KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved into NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved into NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  1. Bedding disposal cabinet for containment of aerosols generated by animal cage cleaning procedures.

    PubMed Central

    Baldwin, C L; Sabel, F L; Henke, C B

    1976-01-01

    Laboratory tests with aerosolized spores and animal room tests with uranine dye indicate the effectiveness of a prototype bedding disposal cabinet in reducing airborne contamination generated by cage cleaning procedures. Images PMID:826219

  2. Comparison of three distinct clean air suits to decrease the bacterial load in the operating room: an observational study.

    PubMed

    Kasina, Piotr; Tammelin, Ann; Blomfeldt, Anne-Marie; Ljungqvist, Bengt; Reinmüller, Berit; Ottosson, Carin

    2016-01-01

    Lowering air-borne bacteria counts in the operating room is essential in prevention of surgical site infections in orthopaedic joint replacement surgery. This is mainly achieved by decreasing bacteria counts through dilution, with appropriate ventilation and by limiting the bacteria carrying skin particles, predominantly shed by the personnel. The aim of this study was to investigate if a single use polypropylene clothing system or a reusable polyester clothing system could offer similar air quality in the operating room as a mobile laminar airflow device-assisted reusable cotton/polyester clothing system. Prospective observational study design, comparing the performance of three Clean Air Suits by measuring Colony Forming Units (CFU)/m(3) of air during elective hip and knee arthroplasties, performed at a large university-affiliated hospital. The amount of CFU/m(3) of air was measured during 37 operations of which 13 were performed with staff dressed in scrub suits made of a reusable mixed material (69 % cotton, 30 % polyester, 1 % carbon fibre) accompanied by two mobile laminar airflow units. During 24 procedures no mobile laminar airflow units were used, 13 with staff using a reusable olefin fabric clothing (woven polypropylene) and 11 with staff dressed in single-use suits (non-woven spunbonded polypropylene). Air from the operating field was sampled through a filter, by a Sartorius MD8, and bacterial colonies were counted after incubation. There were 6-8 measurements from each procedure, in total 244 measurements. Statistical analysis was performed by Mann-Whitney U-test. The single-use polypropylene suit reduced the amount of CFU/m(3) to a significantly lower level than both other clothing systems. Single-use polypropylene clothing systems can replace mobile laminar airflow unit-assisted reusable mixed material-clothing systems. Measurements in standardized laboratory settings can only serve as guidelines as environments in real operation settings present a

  3. Bacterial dispersion in relation to operating room clothing.

    PubMed Central

    Whyte, W.; Vesley, D.; Hodgson, R.

    1976-01-01

    The effect of operating clothing on the dispersal of bacterial particles from the wearers was studied in a dispersal chamber. A comparison was made of six gowns as well as four types of trousers. The gowns were of three basic types, namely a conventional cotton type, disposable types made of non-woven fabric and those of the total-body exhaust system (Charnley type). The dispersal chamber could simulate conditions as expected both in down-flow unidirectional ultra-clean systems and in a conventional turbulent plenum-ventilated system. It was found that the disposable gowns would reduce the dispersal rate by about 30% in the simulated conventionally ventilated system and about 65% in the laminar flow system. The total-body exhaust system (Charnley) would reduce the count by 10-fold in the conventional ventilated system and by 66-fold in the laminar-flow system. The poor performance of the gowns in conventionally ventilated systems was caused by the dispersal of bacterial particles from underneath the gown (about 80%). This was not reduced by the disposable gown and only partially by the Charnley type. This small drop would be further decreased in a conventionally ventilated operating-room as only scrubbed staff would wear the gown. In order to overcome this poor performance in conventionally ventilated operating-rooms impervious trousers would be required. Four types were studied and it was demonstrated that those made either from Ventile or non-woven fabric would reduce the bacterial dispersion fourfold. As these tests had been carried out in an artificial environment checks were carried out in the unidirectional-flow operating-room during total-hip arthroplasty. This was done by comparing conventional cotton gowns with non-woven gowns and total-body exhaust gowns. The results showed good correlation between the operating room and the chamber with the non-woven fabric gown but the total-body exhaust system did not perform as well in the operating room (12-fold

  4. Determining high touch areas in the operating room with levels of contamination.

    PubMed

    Link, Terri; Kleiner, Catherine; Mancuso, Mary P; Dziadkowiec, Oliwier; Halverson-Carpenter, Katherine

    2016-11-01

    The Centers for Disease Control and Prevention put forth the recommendation to clean areas considered high touch more frequently than minimal touch surfaces. The operating room was not included in these recommendations. The purpose of this study was to determine the most frequently touched surfaces in the operating room and their level of contamination. Phase 1 was a descriptive study to identify high touch areas in the operating room. In phase 2, high touch areas determined in phase 1 were cultured to determine if high touch areas observed were also highly contaminated and if they were more contaminated than a low touch surface. The 5 primary high touch surfaces in order were the anesthesia computer mouse, OR bed, nurse computer mouse, OR door, and anesthesia medical cart. Using the OR light as a control, this study demonstrated that a low touch area was less contaminated than the high touch areas with the exception of the OR bed. Based on information and data collected in this study, it is recommended that an enhanced cleaning protocol be established based on the most frequently touched surfaces in the operating room. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  5. Epi-cleaning of Ge/GeSn heterostructures

    NASA Astrophysics Data System (ADS)

    Di Gaspare, L.; Sabbagh, D.; De Seta, M.; Sodo, A.; Wirths, S.; Buca, D.; Zaumseil, P.; Schroeder, T.; Capellini, G.

    2015-01-01

    We demonstrate a very-low temperature cleaning technique based on atomic hydrogen irradiation for highly (1%) tensile strained Ge epilayers grown on metastable, partially strain relaxed GeSn buffer layers. Atomic hydrogen is obtained by catalytic cracking of hydrogen gas on a hot tungsten filament in an ultra-high vacuum chamber. X-ray photoemission spectroscopy, reflection high energy electron spectroscopy, atomic force microscopy, secondary ion mass spectroscopy, and micro-Raman showed that an O- and C-free Ge surface was achieved, while maintaining the same roughness and strain condition of the as-deposited sample and without any Sn segregation, at a process temperature in the 100-300 °C range.

  6. Graphene-based room-temperature implementation of a modified Deutsch-Jozsa quantum algorithm.

    PubMed

    Dragoman, Daniela; Dragoman, Mircea

    2015-12-04

    We present an implementation of a one-qubit and two-qubit modified Deutsch-Jozsa quantum algorithm based on graphene ballistic devices working at room temperature. The modified Deutsch-Jozsa algorithm decides whether a function, equivalent to the effect of an energy potential distribution on the wave function of ballistic charge carriers, is constant or not, without measuring the output wave function. The function need not be Boolean. Simulations confirm that the algorithm works properly, opening the way toward quantum computing at room temperature based on the same clean-room technologies as those used for fabrication of very-large-scale integrated circuits.

  7. [Effects of covering the windowpane with plastic film on microclimate and sunshine of the living room in a cold region].

    PubMed

    Peng, G H

    1990-05-01

    Experiments were made to ascertain the effects of covering windowpane with plastic film in Hulunbeir region on microclimate and sunshine intensity in the living room. It was found that a good regulative effect on the room microclimate resulted by covering the windowpane with plastic film in the cold region. The room temperature rose distinctly. No evident effects were found on ultra-violet radiation and illumination. But the concentration of carbon dioxide increased to some extent. Attention should be paid to ventilation of the room.

  8. Irritants and allergens at school in relation to furnishings and cleaning.

    PubMed

    Smedje, G; Norbäck, D

    2001-06-01

    In order to study the influence of furnishings and cleaning on the indoor air quality at school, 181 randomly chosen classrooms were investigated. The amounts of open shelves, textiles and other fittings were noted, data were gathered on cleaning routines, and a number of pollutants were measured in the classrooms. In classrooms with more fabrics there was more settled dust and the concentration of formaldehyde was higher. Classrooms with more open shelves had more formaldehyde, and more pet allergens in settled dust, and classrooms with a white board, instead of a chalk board, were less dusty. Classrooms mainly cleaned through wet mopping had more airborne viable bacteria but less settled dust than classrooms mainly cleaned by dry methods. In rooms where the desks and curtains were more often cleaned, the concentrations of cat and dog allergen in settled dust were lower. It is concluded that furnishings and textiles in the classroom act as significant reservoirs of irritants and allergens and have an impact on the indoor air quality at school.

  9. Interior of processing room. Scale is in front of windows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of processing room. Scale is in front of windows for weighing shuckers' buckets of oyster meat. Blow tank for thoroughly cleaning the oyster meat and two skimming tables for rinsing and draining can also be seen. - J.C. Lore Oyster House, 14430 Solomons Island Road, Solomons, Calvert County, MD

  10. In situ oxygen plasma cleaning of microswitch surfaces—comparison of Ti and graphite electrodes

    NASA Astrophysics Data System (ADS)

    Oh, Changho; Streller, Frank; Ashurst, W. Robert; Carpick, Robert W.; de Boer, Maarten P.

    2016-11-01

    Ohmic micro- and nanoswitches are of interest for a wide variety of applications including radio frequency communications and as low power complements to transistors. In these switches, it is of paramount importance to maintain surface cleanliness in order to prevent frequent failure by tribopolymer growth. To prepare surfaces, an oxygen plasma clean is expected to be beneficial compared to a high temperature vacuum bakeout because of shorter cleaning time (<5 min compared to ~24 h) and active removal of organic contaminants. We demonstrate that sputtering of the electrode material during oxygen plasma cleaning is a critical consideration for effective cleaning of switch surfaces. With Ti electrodes, a TiO x layer forms that increases electrical contact resistance. When plasma-cleaned using graphite electrodes, the resistance of Pt-coated microswitches exhibit a long lifetime with consistently low resistance (<0.5 Ω variation over 300 million cycles) if the test chamber is refilled with ultra-high purity nitrogen and if the devices are not exposed to laboratory air. Their current-voltage characteristic is also linear at the millivolt level. This is important for nanoswitches which will be operated in that range.

  11. 76 FR 58043 - Notice of Lodging of Stipulation of Settlement and Judgment Pursuant to the Clean Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... Clean Water Act On August 31, 2011, a proposed Stipulation of Settlement and Judgment (the ``Stipulation... violations of the Clean Water Act, 33 U.S.C. 1251, et seq., in the course of the defendants' construction of..., 400 East Ninth Street, Room 5510, Kansas City, Missouri 64106, or on the Department of Justice Web...

  12. Infection prevention for patients with acute leukemia using laminar air flow rooms.

    PubMed

    Masaoka, T

    1986-01-01

    Infection prevention using laminar air flow (LAF) rooms was studied. For the effective and economical usage of LAF rooms, our trials with ozone decontamination were deemed very convenient and effective. In maintaining LAF clean, insects were found to be a critical factor regarding fungus contamination of LAF. As to its efficacy of infection prevention, LAF decreased infection during remission induction from 113/100 to 28/100. The infections reduced by LAF were pneumonia, upper respiratory infection and skin abscess, while sepsis and perianal infection were not affected. Treatment in LAF rooms also seemed to have comparable influence on interstitial pneumonitis after bone marrow transplantation.

  13. Epi-cleaning of Ge/GeSn heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Gaspare, L.; Sabbagh, D.; De Seta, M.

    2015-01-28

    We demonstrate a very-low temperature cleaning technique based on atomic hydrogen irradiation for highly (1%) tensile strained Ge epilayers grown on metastable, partially strain relaxed GeSn buffer layers. Atomic hydrogen is obtained by catalytic cracking of hydrogen gas on a hot tungsten filament in an ultra-high vacuum chamber. X-ray photoemission spectroscopy, reflection high energy electron spectroscopy, atomic force microscopy, secondary ion mass spectroscopy, and micro-Raman showed that an O- and C-free Ge surface was achieved, while maintaining the same roughness and strain condition of the as-deposited sample and without any Sn segregation, at a process temperature in the 100–300 °C range.

  14. Determination of 21 antibiotics in sea cucumber using accelerated solvent extraction with in-cell clean-up coupled to ultra-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhu, Minghua; Zhao, Hongxia; Xia, Deming; Du, Juan; Xie, Huaijun; Chen, Jingwen

    2018-08-30

    An accelerated solvent extraction (ASE) with in-cell clean-up method coupled to ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed to determine 21 antibiotics in sea cucumber. The analytes include 10 sulfonamides, 4 fluoroquinolones, 3 amphenicols, 2 beta-lactams, 1 lincosamide and trimethoprim. Optimal parameters of ASE method were obtained at 80 °C, 1 static cycle of 5 min with methanol/acetonitrile (1/1, v/v) using 2 g of C18 as adsorbent. Recoveries at 50.1-129.2% were achieved with RSD under 20%. Method detection limits ranged from 0.03 to 2.9 μg kg -1 . Compared to the reported ultrasound-assisted extraction method, the proposed method offered comparable extraction efficiency for sulfonamides from sea cucumber, but higher for other categories of antibiotics. This validated method was then successfully applied to sea cucumber samples and 9 antibiotics were detected with the highest concentration up to 57.7 μg kg -1 for norfloxacin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Identifying opportunities to enhance environmental cleaning in 23 acute care hospitals .

    PubMed

    Carling, P C; Parry, M F; Von Beheren, S M

    2008-01-01

    The quality of environmental hygiene in hospitals is under increasing scrutiny from both healthcare providers and consumers because the prevalence of serious infections due to multidrug-resistant pathogens has reached alarming levels. On the basis of the results from a small number of hospitals, we undertook a study to evaluate the thoroughness of disinfection and cleaning in the patient's immediate environment and to identify opportunities for improvement in a diverse group of acute care hospitals. Prospective multicenter study to evaluate the thoroughness of terminal room cleaning in hospitals using a novel targeting method to mimic the surface contamination of objects in the patient's immediate environment. Twenty-three acute care hospitals. The overall thoroughness of terminal cleaning, expressed as a percentage of surfaces evaluated, was 49% (range for all 23 hospitals, 35%-81%). Despite the tight clustering of overall cleaning rates in 21 of the hospitals, there was marked variation within object categories, which was particularly notable with respect to the cleaning of toilet handholds, bedpan cleaners, light switches, and door knobs (mean cleaning rates, less than 30%; institutional ranges, 0%-90%). Sinks, toilet seats, and tray tables, in contrast, were consistently relatively well cleaned (mean cleaning rates, over 75%). Patient telephones, nurse call devices, and bedside rails were inconsistently cleaned. We identified significant opportunities in all participating hospitals to improve the cleaning of frequently touched objects in the patient's immediate environment. The information obtained from such assessments can be used to develop focused administrative and educational interventions that incorporate ongoing feedback to the environmental services staff, to improve cleaning and disinfection practices in healthcare institutions.

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS:AAF INTERNATIONAL, PERFECTPLEAT ULTRA, 175-102-863

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the PerfectPleat Ultra 175-102-863 air filter for dust and bioaerosol filtration manufactured by AAF International. The pressure drop across the filter was 112 Pa clean and 229 Pa dust lo...

  17. Following ergonomics guidelines decreases physical and cardiovascular workload during cleaning tasks.

    PubMed

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen; Holtermann, Andreas; Madeleine, Pascal

    2012-01-01

    The aim was to investigate the effect of ergonomics guidelines on muscular activity, postural and cardiovascular load during cleaning. Eighteen cleaners performed 10 min of cleaning tasks in two locations; three min in a laboratory and seven min in a lecture room. All participants performed the task with or without focusing on ergonomics guidelines (ergonomics/non-ergonomics session). Bipolar surface electromyography was recorded bilaterally from upper trapezius and erector spinae muscles. A tri-axial accelerometer package was mounted on the low back (L5-S1) to measure postural changes, and the cardiovascular load was estimated by electrocardiogram. Ergonomics sessions resulted in lower muscular load, a more complex pattern of muscular activity, lower range of motion and angular velocity of the trunk as well as lower cardiovascular load compared with non-ergonomics sessions (p < 0.05). The study highlighted the multiple musculoskeletal and cardiovascular benefits of following ergonomics guidelines during cleaning tasks. This study investigated the effects of following instructive ergonomics guidelines during cleaning tasks (daily curriculum of cleaning including mopping, sweeping, changing trash bins and cleaning of desks and blackboards). Following the ergonomics guidelines reduces the general workload and induces a more complex pattern of muscular activity. The study contributes with novel knowledge concerning ergonomics guidelines and work techniques.

  18. 5. INTERIOR VIEW OF LAUNDRY ROOM ON GALLERY LEVEL, NEAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW OF LAUNDRY ROOM ON GALLERY LEVEL, NEAR SOUTHWEST CORNER OF BUILDING 149; WORKERS' UNIFORMS AND BEEF SHROUDS WERE LAUNDERED HERE; CLEAN BEEF SHROUDS WERE RETURNED TO DISASSEMBLY LINE ON LEVEL 4 THROUGH FUNNEL-SHAPED CHUTE AT LOWER LEFT - Rath Packing Company, Beef Killing Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  19. Multisite evaluation of environmental cleanliness of high-touch surfaces in intensive care unit patient rooms.

    PubMed

    Hopman, Joost; Donskey, Curtis J; Boszczowski, Icaro; Alfa, Michelle J

    2018-05-23

    The efficacy of discharge cleaning and disinfection of high-touch surfaces of intensive care unit patient rooms in Brazil, Canada, the Netherlands, and the United States was evaluated and the effect of an educational intervention was determined. Significant site-to-site differences in cleaning regimens and baseline cleanliness levels were observed using ATP levels, colony-forming units, and reflective surface marker removal percent pass rates. An educational intervention that includes rapid feedback of the ATP measurements could significantly improve the quality of the cleaning and disinfection regimens. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. All rights reserved.

  20. Production of chlorothalonil hydrolytic dehalogenase from agro-industrial wastewater and its application in raw food cleaning.

    PubMed

    He, Qin; Xu, Xi-Hui; Zhang, Fan; Tai, Yu-Kai; Luo, Yan-Fei; He, Jian; Hong, Qing; Jiang, Jian-Dong; Yan, Xin

    2017-06-01

    To reduce the fermentation cost for industrialization of chlorothalonil hydrolytic dehalogenase (Chd), agro-industrial wastewaters including molasses, corn steep liquor (CSL) and fermentation wastewater were used to substitute for expensive carbon and nitrogen sources and fresh water for lab preparation. The results showed that molasses and CSL could replace 5% carbon source and 100% organic nitrogen source respectively to maintain the same fermentation level. Re-fermentation from raffinate of ultra-filtered fermentation wastewater could achieve 61.03% of initial Chd activity and reach 96.39% activity when cultured in a mixture of raffinate and 50% of original medium constituent. Typical raw foods were chosen to evaluate the chlorothalonil removal ability of Chd. After Chd treatment for 2 h at room temperature, 97.40 and 75.55% of 30 mg kg -1 chlorothalonil on cherry tomato and strawberry respectively and 60.29% of 50 mg kg -1 chlorothalonil on Chinese cabbage were removed. Furthermore, the residual activity of the enzyme remained at 78-82% after treatment, suggesting its potential for reuse. This study proved the cost-feasibility of large-scale production of Chd from agro-industrial wastewater and demonstrated the potential of Chd in raw food cleaning. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Storm, Jan-Hendrik; Hömmen, Peter; Drung, Dietmar; Körber, Rainer

    2017-02-01

    The magnetic field noise in superconducting quantum interference devices (SQUIDs) used for biomagnetic research such as magnetoencephalography or ultra-low-field nuclear magnetic resonance is usually limited by instrumental dewar noise. We constructed a wideband, ultra-low noise system with a 45 mm diameter superconducting pick-up coil inductively coupled to a current sensor SQUID. Thermal noise in the liquid helium dewar is minimized by using aluminized polyester fabric as superinsulation and aluminum oxide strips as heat shields. With a magnetometer pick-up coil in the center of the Berlin magnetically shielded room 2 (BMSR2), a noise level of around 150 aT Hz-1/2 is achieved in the white noise regime between about 20 kHz and the system bandwidth of about 2.5 MHz. At lower frequencies, the resolution is limited by magnetic field noise arising from the walls of the shielded room. Modeling the BMSR2 as a closed cube with continuous μ-metal walls, we can quantitatively reproduce its measured field noise.

  2. Effect of automated ultraviolet C-emitting device on decontamination of hospital rooms with and without real-time observation of terminal room disinfection.

    PubMed

    Penno, Katie; Jandarov, Roman A; Sopirala, Madhuri M

    2017-11-01

    We studied the effectiveness of an ultraviolet C (UV-C) emitter in clinical settings and compared it with observed terminal disinfection. We cultured 22 hospital discharge rooms at a tertiary care academic medical center. Phase 1 (unobserved terminal disinfection) included cultures of 11 high-touch environmental surfaces (HTSs) after terminal room disinfection (AD) and after the use of a UV-C-emitting device (AUV). Phase 2 (observed terminal disinfection) included cultures before terminal room disinfection (BD), AD, and AUV. Zero-inflated Poisson regression compared mean colony forming units (CFU) between the groups. Two-sample proportion tests identified significance of the observed differences in proportions of thoroughly cleaned HTSs (CFU < 5). Significant P value was determined using the Bonferroni corrected threshold of α = .05/12 = .004. We obtained 594 samples. Risk of overall contamination was 0.48 times lower in the AUV group than in the AD group (P < .001), with 1.04 log 10 reduction. During phase 1, overall proportion of HTSs with <5 CFUs increased in AUV versus AD by 0.12 (P = .001). During phase 2, it increased in AD versus BD by 0.45 (P < .001), with no significant difference between AD and AUV (P = .02). Use of UV-C with standard cleaning significantly reduced microbial burden and improved the thoroughness of terminal disinfection. We found no further benefit to UV-C use if standard terminal disinfection was observed. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Exposure of German residents to ethylene and propylene glycol ethers in general and after cleaning scenarios.

    PubMed

    Fromme, H; Nitschke, L; Boehmer, S; Kiranoglu, M; Göen, T

    2013-03-01

    Glycol ethers are a class of semi-volatile substances used as solvents in a variety of consumer products like cleaning agents, paints, cosmetics as well as chemical intermediates. We determined 11 metabolites of ethylene and propylene glycol ethers in 44 urine samples of German residents (background level study) and in urine samples of individuals after exposure to glycol ethers during cleaning activities (exposure study). In the study on the background exposure, methoxyacetic acid and phenoxyacetic acid (PhAA) could be detected in each urine sample with median (95th percentile) values of 0.11 mgL(-1) (0.30 mgL(-1)) and 0.80 mgL(-1) (23.6 mgL(-1)), respectively. The other metabolites were found in a limited number of samples or in none. In the exposure study, 5-8 rooms were cleaned with a cleaner containing ethylene glycol monobutyl ether (EGBE), propylene glycol monobutyl ether (PGBE), or ethylene glycol monopropyl ether (EGPE). During cleaning the mean levels in the indoor air were 7.5 mgm(-3) (EGBE), 3.0 mgm(-3) (PGBE), and 3.3 mgm(-3) (EGPE), respectively. The related metabolite levels analysed in the urine of the residents of the rooms at the day of cleaning were 2.4 mgL(-1) for butoxyacetic acid, 0.06 mgL(-1) for 2-butoxypropionic acid, and 2.3 mgL(-1) for n-propoxyacetic acid. Overall, our study indicates that the exposure of the population to glycol ethers is generally low, with the exception of PhAA. Moreover, the results of the cleaning scenarios demonstrate that the use of indoor cleaning agents containing glycol ethers can lead to a detectable internal exposure of residents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. BRASS FOUNDRY ROOM SHOWING GATE CUTTERS USED TO REMOVE RUNNERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRASS FOUNDRY ROOM SHOWING GATE CUTTERS USED TO REMOVE RUNNERS AND SPRUES FROM BRONZE CASTINGS TOO SOFT TO BE CLEANED IN TUMBLING MILLS. ALSO SHOWN ARE MOLD MACHINES AND THE SAND DELIVERY SYSTEM USED TO CREATE GREEN SAND MOLDS, POURED AT THE OTHER END OF THE GRAVITY CONVEYORS. - Stockham Pipe & Fittings Company, Brass Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabeel, A.; Khan, T.A.; Sharma, D.K.

    The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents,more » keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.« less

  6. [Cleaning and disinfection of surfaces in hospitals: Data on structure, process and result in the Frankfurt/Main Metropolitan Area].

    PubMed

    Hausemann, A; Hofmann, H; Otto, U; Heudorf, Ursel

    2015-06-01

    In addition to hand hygiene and reprocessing of medical products, cleaning and disinfection of surfaces is also an important issue in the prevention of germ transmission and by implication infections. Therefore, in 2014, the quality of the structure, process and result of surface preparation of all hospitals in Frankfurt am Main, Germany, was monitored. All 17 hospitals transferred information on the quality of structure. Process quality was obtained through direct observation during cleaning and disinfection of rooms and their plumbing units. Result quality was gained using the fluorescent method, i.e. marking surfaces with a fluorescent liquid and testing if this mark has been sufficiently removed by cleaning. Structure quality: in all hospitals the employees were trained regularly. In 12 of them, the foremen had the required qualifications, in 6 hospitals unclarity as to the intersection of the cleaning and care services remained. In 14 hospitals only visible contamination was cleaned on the weekends, whereas complete cleaning was reported to take place in 12 hospitals on Saturdays and in 2 hospitals on Sundays. The contractually stipulated cleaning (observations specified in brackets) averaged 178 m(2)/h (148 m(2)/h) per patient room and 69 m(2)/h (33 m(2)/h) for bathrooms. Process quality: during process monitoring, various hand contact surfaces were prepared insufficiently. Result quality: 63 % of fluorescent markings were appropriately removed. The need for improvement is given especially in the area of the qualification of the foremen and a in a clear definition of the intersection between cleaning and care services, as well as in the regulations for weekends and public holidays.

  7. Cultivation of Anaerobic and Facultatively Anaerobic Bacteria from Spacecraft-Associated Clean Rooms▿

    PubMed Central

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-01-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus. PMID:19363082

  8. Reference metrology in a research fab: the NIST clean calibrations thrust

    NASA Astrophysics Data System (ADS)

    Dixson, Ronald; Fu, Joe; Orji, Ndubuisi; Renegar, Thomas; Zheng, Alan; Vorburger, Theodore; Hilton, Al; Cangemi, Marc; Chen, Lei; Hernandez, Mike; Hajdaj, Russell; Bishop, Michael; Cordes, Aaron

    2009-03-01

    In 2004, the National Institute of Standards and Technology (NIST) commissioned the Advanced Measurement Laboratory (AML) - a state-of-the-art, five-wing laboratory complex for leading edge NIST research. The NIST NanoFab - a 1765 m2 (19,000 ft2) clean room with 743 m2 (8000 ft2) of class 100 space - is the anchor of this facility and an integral component of the new Center for Nanoscale Science and Technology (CNST) at NIST. Although the CNST/NanoFab is a nanotechnology research facility with a different strategic focus than a current high volume semiconductor fab, metrology tools still play an important role in the nanofabrication research conducted here. Some of the metrology tools available to users of the NanoFab include stylus profiling, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Since 2001, NIST has collaborated with SEMATECH to implement a reference measurement system (RMS) using critical dimension atomic force microscopy (CD-AFM). NIST brought metrology expertise to the table and SEMATECH provided access to leading edge metrology tools in their clean room facility in Austin. Now, in the newly launched "clean calibrations" thrust at NIST, we are implementing the reference metrology paradigm on several tools in the CNST/NanoFab. Initially, we have focused on calibration, monitoring, and uncertainty analysis for a three-tool set consisting of a stylus profiler, an SEM, and an AFM. Our larger goal is the development of new and supplemental calibrations and standards that will benefit from the Class 100 environment available in the NanoFab and offering our customers calibration options that do not require exposing their samples to less clean environments. Toward this end, we have completed a preliminary evaluation of the performance of these instruments. The results of these evaluations suggest that the achievable uncertainties are generally consistent with our measurement goals.

  9. Handheld Optical Coherence Tomography Angiography and Ultra-Wide-Field Optical Coherence Tomography in Retinopathy of Prematurity.

    PubMed

    Campbell, J Peter; Nudleman, Eric; Yang, Jianlong; Tan, Ou; Chan, R V Paul; Chiang, Michael F; Huang, David; Liu, Gangjun

    2017-09-01

    Retinopathy of prematurity (ROP) is a leading cause of childhood blindness worldwide. Optical coherence tomography (OCT) has improved the care of adults with vitreoretinal disease, and OCT angiography (OCTA) is demonstrating promise as a technique to visualize the retinal vasculature with lower risk and cost than fluorescein angiography. However, to date, there are no commercially available devices able to obtain ultra-wide-field OCT or OCTA images in neonates. To obtain ultra-wide-field OCT and OCTA images in neonates with ROP using a prototype handheld OCT and OCTA device. This observational case series was conducted from March 1 to April 1, 2017, in an academic medical center among 4 neonates with ROP in the neonatal intensive care unit and in the operating room. Acquisition of wide-field OCT and OCTA images using a handheld prototype OCTA and ultra-wide-field OCT device. Images were obtained from 4 neonates (1 girl and 3 boys; mean age, 38 weeks' postmenstrual age [range, 34-43 weeks]) with various stages of ROP: 3 in the neonatal intensive care unit and 1 in the operating room. The system can obtain noncontact en face OCT images and horizontal line scans with an approximately 40° field of view and up to 100° (ultra-wide-field) using a contact lens-based approach in a single 2-second scan. In addition, 20° × 20° (approximately 4 × 4-mm) OCTA scans were obtained in patients with ROP in a single 2-second scan. Optical coherence tomography and OCTA are gaining popularity in pediatric retinal imaging. This study reports on OCTA and ultra-wide-field OCT images in 4 neonates with various stages of ROP that were obtained using a prototype handheld device. Additional studies will be needed to prove the clinical value of this technology.

  10. Description of Tersicoccus phoenicis gen. nov., sp. nov. isolated from spacecraft assembly clean room environments.

    PubMed

    Vaishampayan, Parag; Moissl-Eichinger, Christine; Pukall, Rüdiger; Schumann, Peter; Spröer, Cathrin; Augustus, Angela; Roberts, Anne Hayden; Namba, Greg; Cisneros, Jessica; Salmassi, Tina; Venkateswaran, Kasthuri

    2013-07-01

    Two strains of aerobic, non-motile, Gram-reaction-positive cocci were independently isolated from geographically distinct spacecraft assembly clean room facilities (Kennedy Space Center, Florida, USA and Centre Spatial Guyanais, Kourou, French Guiana). A polyphasic study was carried out to delineate the taxonomic identity of these two isolates (1P05MA(T) and KO_PS43). The 16S rRNA gene sequences exhibited a high similarity when compared to each other (100 %) and lower than 96.7 % relatedness with Arthrobacter crystallopoietes ATCC 15481(T), Arthrobacter luteolus ATCC BAA-272(T), Arthrobacter tumbae DSM 16406(T) and Arthrobacter subterraneus DSM 17585(T). In contrast with previously described Arthrobacter species, the novel isolates maintained their coccidal morphology throughout their growth and did not exhibit the rod-coccus life cycle typically observed in nearly all Arthrobacter species, except A. agilis. The distinct taxonomic identity of the novel isolates was confirmed based on their unique cell-wall peptidoglycan type (A.11.20; Lys-Ser-Ala2) and polar lipid profile (presence of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, an unknown phospholipid and two unknown glycolipids). The G+C content of the genomic DNA was 70.6 mol%. The novel strains revealed MK-9(H2) and MK-8(H2) as dominant menaquinones and exhibited fatty acid profiles consisting of major amounts of anteiso-C15 : 0 and anteiso-C17 : 0 and moderate amounts of iso-C15 : 0 discriminating them again from closely related Arthrobacter species. Based on these observations, the authors propose that strains 1P05MA(T) and KO_PS43 be assigned into a separate genus Tersicoccus gen. nov. For this new taxon, comprising strains 1P05MA(T) and KO_PS43, we propose the name Tersicoccus phoenicis gen. nov., sp. nov. (the type species of Tersicoccus), represented by the type strain Tersicoccus phoenicis 1P05MA(T) ( = NRRL B-59547(T) = DSM 30849(T)).

  11. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature.

    PubMed

    Kleemann, Marie-Elena; Chikkaraddy, Rohit; Alexeev, Evgeny M; Kos, Dean; Carnegie, Cloudy; Deacon, Will; de Pury, Alex Casalis; Große, Christoph; de Nijs, Bart; Mertens, Jan; Tartakovskii, Alexander I; Baumberg, Jeremy J

    2017-11-03

    Strong coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can be achieved in compact, robust, and easily assembled gold nano-gap resonators at room temperature. We prove that strong-coupling is impossible with monolayers due to the large exciton coherence size, but resolve clear anti-crossings for greater than 7 layer devices with Rabi splittings exceeding 135 meV. We show that such structures improve on prospects for nonlinear exciton functionalities by at least 10 4 , while retaining quantum efficiencies above 50%, and demonstrate evidence for superlinear light emission.

  12. Use of fluorescent tagging for assessment of environmental cleaning and disinfection in a veterinary hospital.

    PubMed

    Weese, J S; Lowe, T; Walker, M

    2012-09-01

    Environmental cleaning was assessed at a small animal veterinary referral hospital and associated primary healthcare facility. A convenience sample of surfaces was contaminated with fluorescent dye, and then cleaning was assessed 24 hours later by UV light visualisation. Five hundred sixty-three sites were assessed; however, 70 sites were unable to be evaluated 24 hours later because equipment had been removed or because rooms were occupied at the time of re-evaluation. Overall, dye was removed from 212/493 (43%) of sites. Site-specific rates ranged from 14% (computer keyboards and mice, 9/66 site cleaned) to 81% (examination tables, 44/54 sites cleaned). There was a significant difference in the prevalence of successful cleaning by general location (P < 0.0001) and surface type (P < 0.0001). Environmental tagging was an easy and low-cost tool to assess cleaning practices. Results prompted further infection control investigations to explain selected deficiencies, leading to identification of inadequacies in protocols and practices. Environmental tagging may be a useful infection control tool for establishing baseline cleaning rates, identifying deficiencies in protocols, evaluating the effects of interventions and education of personnel.

  13. Worker exposure to methanol vapors during cleaning of semiconductor wafers in a manufacturing setting.

    PubMed

    Gaffney, Shannon; Moody, Emily; McKinley, Meg; Knutsen, Jeffrey; Madl, Amy; Paustenbach, Dennis

    2008-05-01

    An exposure simulation was conducted to characterize methanol exposure of workers who cleaned wafers in quality control departments within the semiconductor industry. Short-term (15 min) and long-term (2-4 hr) personal and area samples (at distances of 1 m and 3-6 m from the source) were collected during the 2-day simulation. On the first day, 45 mL of methanol were used per hour by a single worker washing wafers in a 102 m(3) room with a ventilation rate of about 10 air changes per hour (ACH). Virtually all methanol volatilized. To assess exposures under conditions associated with higher productivity, on the second day, two workers cleaned wafers simultaneously, together using methanol at over twice the rate of the first day (95 mL/hr). On this day, the ventilation rate was halved (5 ACH). Personal concentrations on the first day averaged 60 ppm (SD = 46 ppm) and ranged from 10-140 ppm. On the second day, personal concentrations for both workers averaged 118 ppm (SD = 50 ppm; range: 64-270 ppm). Area concentrations measured on the first day at 1 m from the source and throughout the balance of the room averaged 29 ppm (SD = 19 ppm; range: 4-83 ppm) and 18 ppm (SD = 12 ppm; range: 3-42 ppm), respectively. As expected, area concentrations measured on the second day were higher than the first and averaged 73 ppm (SD = 25 ppm; range: 27-140 ppm) at 1 meter and 48 ppm (SD = 13 ppm; range: 21-67 ppm) throughout the balance of the room. The results of this simulation suggest that the use of methanol to clean semiconductor wafers without the use of local exhaust ventilation and with relatively low room ventilation rates is unlikely to result in worker exposures exceeding the current ACGIH(R) threshold limit value of 200 ppm. This study also confirmed prior studies suggesting that when a relatively volatile chemical is located within arm's length (near field), breathing zone concentrations will be about two- to threefold greater than the room concentration when the air

  14. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices.

    PubMed

    Gysin, Urs; Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst

    2015-01-01

    The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip-sample interface for optically excited measurements such as local surface photo voltage detection. We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.

  15. Conception, realization and qualification of a radioactive clean room lab facility dedicated to the synthesis of radiolabeled API for human ADME studies.

    PubMed

    Loewe, Claudia; Atzrodt, Jens; Reschke, Kai; Schofield, Joe

    2016-12-01

    The human absorption, distribution, metabolism and elimination study administering radiolabeled drugs to human volunteers is an important clinical study in the development program of new drug candidates. The manufacture of radiolabeled Active Pharmaceutical Ingredients is covered by national drug laws and may come within the scope of regulatory GMP requirements. Additionally, authorities may request an appropriate environmental zoning to minimize the risk of microbiological contaminations particularly during the synthesis of radiolabeled Active Pharmaceutical Ingredients intended for parenteral application. Thus, a radioactive clean room lab facility in line with both GMP and radiation safety regulations was installed and the environmental zoning validated by appropriate testing of technical parameters and microbial and particle monitoring. The considerations detailed in this paper cover only GMP aspects related to the synthesis of radioactive drug substance. The subsequent, final formulation step in the overall process for manufacturing of radioactive drug product for any kind of administration is not within the scope of this paper. Under these qualified and controlled environmental conditions, we are now in a position to provide radiolabeled drug substances for all kinds of drug administration including both po and iv. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Operating Room Environment Control. Part A: a Valve Cannister System for Anesthetic Gas Adsorption. Part B: a State-of-the-art Survey of Laminar Flow Operating Rooms. Part C: Three Laminar Flow Experiments

    NASA Technical Reports Server (NTRS)

    Meyer, J. S.; Kosovich, J.

    1973-01-01

    An anesthetic gas flow pop-off valve canister is described that is airtight and permits the patient to breath freely. Once its release mechanism is activated, the exhaust gases are collected at a hose adapter and passed through activated coal for adsorption. A survey of laminar air flow clean rooms is presented and the installation of laminar cross flow air systems in operating rooms is recommended. Laminar flow ventilation experiments determine drying period evaporation rates for chicken intestines, sponges, and sections of pig stomach.

  17. Rhabdomyolysis and exercise-associated hyponatremia in ultra-bikers and ultra-runners.

    PubMed

    Chlíbková, Daniela; Knechtle, Beat; Rosemann, Thomas; Tomášková, Ivana; Novotný, Jan; Žákovská, Alena; Uher, Tomáš

    2015-01-01

    Exercise-associated hyponatremia (EAH), rhabdomyolysis and renal failure appear to be a unique problem in ultra-endurance racers. We investigated the combined occurrence of EAH and rhabdomyolysis in seven different ultra-endurance races and disciplines (i.e. multi-stage mountain biking, 24-h mountain biking, 24-h ultra-running and 100-km ultra-running). Two (15.4%) ultra-runners (man and woman) from hyponatremic ultra-athletes (n = 13) and four (4%) ultra-runners (four men) from the normonatremic group (n = 100) showed rhabdomyolysis following elevated blood creatine kinase (CK) levels > 10,000 U/L without the development of renal failure and the necessity of a medical treatment. Post-race creatine kinase, plasma and urine creatinine significantly increased, while plasma [Na(+)] and creatine clearance decreased in hyponatremic and normonatremic athletes, respectively. The percentage increase of CK was higher in the hyponatremic compared to the normonatremic group (P < 0.05). Post-race CK levels were higher in ultra-runners compared to mountain bikers (P < 0.01), in faster normonatremic (P < 0.05) and older and more experienced hyponatremic ultra-athletes (P < 0.05). In all finishers, pre-race plasma [K(+)] was related to post-race CK (P < 0.05). Hyponatremic ultra-athletes tended to develop exercise-induced rhabdomyolysis more frequently than normonatremic ultra-athletes. Ultra-runners tended to develop rhabdomyolysis more frequently than mountain bikers. We found no association between post-race plasma [Na(+)] and CK concentration in both hypo- and normonatremic ultra-athletes.

  18. Construction, Testing, and Analysis of Radon Mitigation System

    NASA Astrophysics Data System (ADS)

    Jardin, Dan; Schnee, Richard; CDMS Collaboration

    2011-10-01

    The search for dark matter or other rare events such as neutrinoless double-beta decay is difficult in the presence of background radiation such as the alpha and beta emissions from the 222Rn decay chain. In order to reduce the radioactive background from Rn-daughters, an ultra-low radon clean room is being built at Syracuse University. A vacuum-swing adsorption system is used to mitigate the radon. Air flows through one of two tanks filled with charcoal that the radon adsorbs to, allowing the filtered air to pass into the clean room. Computer-controlled valves direct the airflow so that one tank filters the air while the other tank is purged of radon by circulating a small fraction of the cleaned airflow back through the tank at low pressure. The durations, pressures, and flow rates of each stage of building pressure, filtering, releasing pressure, and purging in the tanks are optimized in order to maximize the reduction of radon from the air. Professor.

  19. Recommendations for rationalizing cleaning-in-place in the dairy industry: case study of an ultra-high temperature heat exchanger.

    PubMed

    Alvarez, N; Daufin, G; Gésan-Guiziou, G

    2010-02-01

    The objective of this work was to propose a new strategy, based on objective and rational arguments and calculations, that can be implemented by plant designers and operators in the dairy industry to reduce operating time and the volume and load of effluents. The strategy is based on the on-line and off-line use of sensors and tracers, the accuracy, relevance, and robustness of which were evaluated for each phase of the sequence used for cleaning an industrial sterilizer. The efficient duration of each phase of the cleaning sequence (management of the end of operation) and the sorting of the fluids (management of mixtures and destination of fluids) were determined in real time. As a result, significant reduction in total overall duration of the cleaning sequence, wastewater volume (waste volume was reduced by half), and detergent volume (caustic soda and acid was reduced by up to a few tens of kilograms per cleaning) was achievable. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. A surfactant free preparation of ultradispersed surface-clean Pt catalyst with highly stable electrocatalytic performance

    NASA Astrophysics Data System (ADS)

    Tao, Lu; Zhao, Yueping; Zhao, Yufeng; Huang, Shifei; Yang, Yunxia; Tong, Qi; Gao, Faming

    2018-02-01

    High efficiency platinum-based catalyst demands the ultrafine size and well dispersion of Pt nanoparticles (NPs), with clean surface and strong interactions between the supports. In this work, we demonstrate a simple strategy for the preparation of ultra-dispersed surface-clean Pt catalyst with high stability, in which the Pt nanoparticles (NPs) with 1.8 ± 0.6 nm in size are anchored tightly on a 3D hierarchical porous graphitized carbon (3D-HPG) through galvanic replacement reaction. The as-obtained catalyst can undergo 2000 voltage cycles with negligible activity decay and no apparent structure and size changes for MOR during the durability test, and its mass activity for ORR only reduce 18.3% after 5000 cycles. The excellent performance is attributed to strong anchoring effect between carbon support and Pt nanoparticles.

  1. First UK trial of Xenex PX-UV, an automated ultraviolet room decontamination device in a clinical haematology and bone marrow transplantation unit.

    PubMed

    Beal, A; Mahida, N; Staniforth, K; Vaughan, N; Clarke, M; Boswell, T

    2016-06-01

    There is growing interest in the use of no-touch automated room decontamination devices within healthcare settings. Xenex PX-UV is an automated room disinfection device using pulsed ultraviolet (UV) C radiation with a short cycle time. To investigate the microbiological efficacy of this device when deployed for terminal decontamination of isolation rooms within a clinical haematology unit. The device was deployed in isolation rooms in a clinical haematology unit. Contact plates were applied to common touch points to determine aerobic total colony counts (TCCs) and samples collected using Polywipe™ sponges for detection of vancomycin-resistant enterococci (VRE). The device was easy to transport, easy to use, and it disinfected rooms rapidly. There was a 76% reduction in the TCCs following manual cleaning, with an additional 14% reduction following UV disinfection, resulting in an overall reduction of 90% in TCCs. There was a 38% reduction in the number of sites where VRE was detected, from 26 of 80 sites following manual cleaning to 16 of 80 sites with additional UV disinfection. The Xenex PX-UV device can offer a simple and rapid additional decontamination step for terminal disinfection of patient rooms. However, the microbiological efficacy against VRE was somewhat limited. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  2. Evaluation of Ultra High Pressure (UHP) Firefighting in a Room-and-Contents Fire

    DTIC Science & Technology

    2017-03-15

    Burn Room and Hangar Temperature Prior to Ignition ............................................... 18 Figure 12. Effect of Temperature on Normalized...Figure 20. Maximum Average Temperature and Heat Flux ......................................................... 22 Figure 21. Effect of Maximum Average...Aspirated Ceiling Temperature .................................... 23 Figure 22. Effect of Maximum Average Floor Heat Flux on Extinguishment Quantity

  3. Evaluation of a pulsed xenon ultraviolet light device for isolation room disinfection in a United Kingdom hospital.

    PubMed

    Hosein, Ian; Madeloso, Rosie; Nagaratnam, Wijayaratnam; Villamaria, Frank; Stock, Eileen; Jinadatha, Chetan

    2016-09-01

    Pathogen transmission from contaminated surfaces can cause hospital-associated infections. Although pulsed xenon ultraviolet (PX-UV) light devices have been shown to decrease hospital room bioburden in the United States, their effectiveness in United Kingdom (UK) hospitals is less understood. Forty isolation rooms at the Queens Hospital (700 beds) in North London, UK, were sampled for aerobic bacteria after patient discharge, after manual cleaning with a hypochlorous acid-troclosene sodium solution, and after PX-UV disinfection. PX-UV device efficacy on known organisms was tested by exposing inoculated agar plates in a nonpatient care area. Turnaround times for device usage were recorded, and a survey of hospital staff for perceptions of the device was undertaken. After PX-UV disinfection, the bacterial contamination measured in colony forming units (CFU) decreased by 78.4%, a 91% reduction from initial bioburden levels prior to terminal cleaning. PX-UV exposure resulted in a 5-log CFU reduction for multidrug-resistant organisms (MDROs) on spiked plates. The average device turnaround time was 1 hour, with minimal impact on patient throughput. Ward staff were enthusiastic about device deployment, and device operators reported physical comfort in usage. PX-UV use decreased bioburden in patient discharge rooms and on agar plates spiked with MDROs. The implementation of the PX-UV device was well received by hospital cleaning and ward staff, with minimal disruption to patient flow. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. All rights reserved.

  4. Persistence of mixed staphylococci assemblages following disinfection of hospital room surfaces.

    PubMed

    Sigler, V; Hensley, S

    2013-03-01

    The distribution of staphylococcal assemblages on surfaces in hospital rooms was assessed before and after daily disinfection with quaternary ammonia products. DNA was extracted from enrichment cultures of bacteria, which were swabbed from each of nine surface types, and subjected to analysis by staphylococci-specific, denaturing gradient gel electrophoresis. A genetic marker for Staphylococcus epidermidis/kloosii was detected on all surface types before and after cleaning, whereas markers for Staphylococcus aureus and Staphylococcus lugdunensis were detected on five surface types. Overall, genetic makers for several staphylococci known to colonize and infect humans remained ubiquitous in each room following daily disinfection practices. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  5. Non-inferiority of pulsed xenon UV light versus bleach for reducing environmental Clostridium difficile contamination on high-touch surfaces in Clostridium difficile infection isolation rooms

    PubMed Central

    Ghantoji, Shashank S.; Stibich, Mark; Stachowiak, Julie; Cantu, Sherry; Adachi, Javier A.; Raad, Issam I.

    2015-01-01

    The standard for Clostridium difficile surface decontamination is bleach solution at a concentration of 10 % of sodium hypochlorite. Pulsed xenon UV light (PX-UV) is a means of quickly producing germicidal UV that has been shown to be effective in reducing environmental contamination by C. difficile spores. The purpose of this study was to investigate whether PX-UV was equivalent to bleach for decontamination of surfaces in C. difficile infection isolation rooms. High-touch surfaces in rooms previously occupied by C. difficile infected patients were sampled after discharge but before and after cleaning using either bleach or non-bleach cleaning followed by 15 min of PX-UV treatment. A total of 298 samples were collected by using a moistened wipe specifically designed for the removal of spores. Prior to disinfection, the mean contamination level was 2.39 c.f.u. for bleach rooms and 22.97 for UV rooms. After disinfection, the mean level of contamination for bleach was 0.71 c.f.u. (P = 0.1380), and 1.19 c.f.u. (P = 0.0017) for PX-UV disinfected rooms. The difference in final contamination levels between the two cleaning protocols was not significantly different (P = 0.9838). PX-UV disinfection appears to be at least equivalent to bleach in the ability to decrease environmental contamination with C. difficile spores. Larger studies are needed to validate this conclusion. PMID:25627208

  6. Protective isolation in single-bed rooms: studies in a modified hospital ward

    PubMed Central

    Ayliffe, G. A. J.; Collins, B. J.; Lowbury, E. J. L.; Wall, Mary

    1971-01-01

    Studies were made in a modified hospital ward containing 19 beds, 14 of them in the open ward, one in a window-ventilated side-room, two in rooms with partial-recirculation ventilators giving 7-10 air changes per hour, and two in self-contained isolation suites with plenum ventilation (20 air changes per hour), ultra-violet (UV) barriers at doorways and airlocks. Preliminary tests with aerosols of tracer bacteria showed that few bacteria entered the plenum or recirculation-ventilated rooms. Bacteria released inside mechanically ventilated cubicles escaped into the corridor, but this transfer was reduced by the presence of an airlock. UV barriers at the entrance to the airlock and the cubicle reduced the transfer of bacteria from cubicle to corridor. During a period of 4 years while the ward was in use for surgical and gynaecological patients, the incidence of post-operative sepsis and colonization of wounds by multiple-resistant Staphylococcus aureus was lower (though not significantly lower) in the plenum-ventilated rooms than in the open ward, the recirculator-ventilated cubicles and the window-ventilated cubicles. Nasal acquisition of multiple-resistant Staph. aureus was significantly less common in the plenum-ventilated than in the recirculator-ventilated cubicles and in the other areas. Mean counts of bacteria on settle-plates were significantly lower in the plenum-ventilated cubicles than in the other areas; mean settle-plate counts in the recirculator-ventilated cubicles were significantly lower than in the open ward and in the window-ventilated side-room; similar results were shown by slit-sampling of air. Mean settle-plate counts were significantly lower in all areas when the ward was occupied by female patients. Staph. aureus was rarely carried by air from plenum-ventilated or other cubicles to the open ward, or from the open ward to the cubicles; though staphylococci were transferred from one floor area to another, they did not appear to be redispersed

  7. Ultra-bright emission from hexagonal boron nitride defects as a new platform for bio-imaging and bio-labelling

    NASA Astrophysics Data System (ADS)

    Elbadawi, Christopher; Tran, Trong Toan; Shimoni, Olga; Totonjian, Daniel; Lobo, Charlene J.; Grosso, Gabriele; Moon, Hyowan; Englund, Dirk R.; Ford, Michael J.; Aharonovich, Igor; Toth, Milos

    2016-12-01

    Bio-imaging requires robust ultra-bright probes without causing any toxicity to the cellular environment, maintain their stability and are chemically inert. In this work we present hexagonal boron nitride (hBN) nanoflakes which exhibit narrowband ultra-bright single photon emitters1. The emitters are optically stable at room temperature and under ambient environment. hBN has also been noted to be noncytotoxic and seen significant advances in functionalization with biomolecules2,3. We further demonstrate two methods of engineering this new range of extremely robust multicolour emitters across the visible and near infrared spectral ranges for large scale sensing and biolabeling applications.

  8. [Effect of manual cleaning and machine cleaning for dental handpiece].

    PubMed

    Zhou, Xiaoli; Huang, Hao; He, Xiaoyan; Chen, Hui; Zhou, Xiaoying

    2013-08-01

    Comparing the dental handpiece' s cleaning effect between manual cleaning and machine cleaning. Eighty same contaminated dental handpieces were randomly divided into experimental group and control group, each group contains 40 pieces. The experimental group was treated by full automatic washing machine, and the control group was cleaned manually. The cleaning method was conducted according to the operations process standard, then ATP bioluminescence was used to test the cleaning results. Average relative light units (RLU) by ATP bioluminescence detection were as follows: Experimental group was 9, control group was 41. The two groups were less than the recommended RLU value provided by the instrument manufacturer (RLU < or = 45). There was significant difference between the two groups (P < 0.05). The cleaning quality of the experimental group was better than that of control group. It is recommended that the central sterile supply department should clean dental handpieces by machine to ensure the cleaning effect and maintain the quality.

  9. Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, A.; Department of Physics, University of York, Heslington, York YO10 5DD; Graziosi, P.

    We present a novel method of delivering a low-concentration (<15%) ozone beam to an ultra-high vacuum environment for the purpose of cleaning and dosing experimental samples through oxidation processing. The system described is safe, low-cost, and practical and overcomes the limitations of ozone transport in the molecular flow environment of high or ultrahigh vacuum whilst circumventing the use of pure ozone gas which is potentially highly explosive. The effectiveness of this method in removing surface contamination is demonstrated through comparison of high-temperature annealing of a simple oxide (MgO) in ozone and oxygen environments as monitored using quadrupole mass spectroscopy andmore » Auger electron spectroscopy. Additionally, we demonstrate the potential of ozone for obtaining clean complex oxide surfaces without the need for high-temperature annealing which may significantly alter surface structure.« less

  10. Nanostructured ZnO Films for Room Temperature Ammonia Sensing

    NASA Astrophysics Data System (ADS)

    Dhivya Ponnusamy; Sridharan Madanagurusamy

    2014-09-01

    Zinc oxide (ZnO) thin films have been deposited by a reactive dc magnetron sputtering technique onto a thoroughly cleaned glass substrate at room temperature. X-ray diffraction revealed that the deposited film was polycrystalline in nature. The field emission scanning electron micrograph (FE-SEM) showed the uniform formation of a rugby ball-shaped ZnO nanostructure. Energy dispersive x-ray analysis (EDX) confirmed that the film was stoichiometric and the direct band gap of the film, determined using UV-Vis spectroscopy, was 3.29 eV. The ZnO nanostructured film exhibited better sensing towards ammonia (NH3) at room temperature (˜30°C). The fabricated ZnO film based sensor was capable of detecting NH3 at as low as 5 ppm, and its parameters, such as response, selectivity, stability, and response/recovery time, were also investigated.

  11. Morphometric analysis of root canal cleaning after rotary instrumentation with or without laser irradiation

    NASA Astrophysics Data System (ADS)

    Marchesan, Melissa A.; Geurisoli, Danilo M. Z.; Brugnera, Aldo, Jr.; Barbin, Eduardo L.; Pecora, Jesus D.

    2002-06-01

    The present study examined root canal cleaning, using the optic microscope, after rotary instrumentation with ProFile.04 with or without laser application with different output energies. Cleaning and shaping can be accomplished manually, with ultra-sonic and sub-sonic devices, with rotary instruments and recently, increasing development in laser radiation has shown promising results for disinfection and smear layer removal. In this study, 30 palatal maxillary molar roots were examined using an optic microscope after rotary instrumentation with ProFile .04 with or without Er:YAG laser application (KaVo KeyLaser II, Germany) with different output energies (2940 nm, 15 Hz, 300 pulses, 500 milli-sec duration, 42 J, 140 mJ showed on the display- input, 61 mJ at fiberoptic tip-output and 140 mJ showed on the display-input and 51 mJ at fiberoptic tip-output). Statistical analysis showed no statistical differences between the tested treatments (ANOVA, p>0.05). ANOVA also showed a statistically significant difference (p<0.01) between the root canal thirds, indicating that the middle third had less debris than the apical third. We conclude that: 1) none of the tested treatments led to totally cleaned root canals; 2) all treatments removed debris similarly, 3) the middle third had less debris than the apical third; 4) variation in output energy did not increase cleaning.

  12. Airing 'clean air' in Clean India Mission.

    PubMed

    Banerjee, T; Kumar, M; Mall, R K; Singh, R S

    2017-03-01

    The submission explores the possibility of a policy revision for considering clean air quality in recently launched nationwide campaign, Clean India Mission (CIM). Despite of several efforts for improving availability of clean household energy and sanitation facilities, situation remain still depressing as almost half of global population lacks access to clean energy and proper sanitation. Globally, at least 2.5 billion people do not have access to basic sanitation facilities. There are also evidences of 7 million premature deaths by air pollution in year 2012. The situation is even more disastrous for India especially in rural areas. Although, India has reasonably progressed in developing sanitary facilities and disseminating clean fuel to its urban households, the situation in rural areas is still miserable and needs to be reviewed. Several policy interventions and campaigns were made to improve the scenario but outcomes were remarkably poor. Indian census revealed a mere 31% sanitation coverage (in 2011) compared to 22% in 2001 while 60% of population (700 million) still use solid biofuels and traditional cook stoves for household cooking. Further, last decade (2001-2011) witnessed the progress decelerating down with rural households without sanitation facilities increased by 8.3 million while minimum progress has been made in conversion of conventional to modern fuels. To revamp the sanitation coverage, an overambitious nationwide campaign CIM was initiated in 2014 and present submission explores the possibility of including 'clean air' considerations within it. The article draws evidence from literatures on scenarios of rural sanitation, energy practises, pollution induced mortality and climatic impacts of air pollution. This subsequently hypothesised with possible modification in available technologies, dissemination modes, financing and implementation for integration of CIM with 'clean air' so that access to both sanitation and clean household energy may be

  13. Quick and clean cloning.

    PubMed

    Thieme, Frank; Marillonnet, Sylvestre

    2014-01-01

    Identification of unknown sequences that flank known sequences of interest requires PCR amplification of DNA fragments that contain the junction between the known and unknown flanking sequences. Since amplified products often contain a mixture of specific and nonspecific products, the quick and clean (QC) cloning procedure was developed to clone specific products only. QC cloning is a ligation-independent cloning procedure that relies on the exonuclease activity of T4 DNA polymerase to generate single-stranded extensions at the ends of the vector and insert. A specific feature of QC cloning is the use of vectors that contain a sequence called catching sequence that allows cloning specific products only. QC cloning is performed by a one-pot incubation of insert and vector in the presence of T4 DNA polymerase at room temperature for 10 min followed by direct transformation of the incubation mix in chemo-competent Escherichia coli cells.

  14. Plasma Cleaning

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  15. Clean Room Facility

    NASA Image and Video Library

    2016-09-07

    NASA Glenn technician Ariana Miller prepares an ultrahigh vacuum chamber used to test the materials used in silicon carbide based sensors and electronics that can operate at extremely high temperatures (500 degrees Celsius and higher) for applications such as sensor systems for aircraft engines and Venus exploration.

  16. "Clean Your Room!"

    ERIC Educational Resources Information Center

    Smetana, Judith G.; Daddis, Christopher; Chaung, Susan S.

    2003-01-01

    Middle-class African American adolescents' and parents' (n = 82 families) everyday conflicts were examined longitudinally over 2 years. The number and frequency of conflicts did not change from early to middle adolescence, but mothers rated conflicts as less intense and adolescents rated conflicts as more intense over time. Conflicts over…

  17. Implementation of remote video auditing with feedback and compliance for manual-cleaning protocols of endoscopic retrograde cholangiopancreatography endoscopes.

    PubMed

    Armellino, Donna; Cifu, Kelly; Wallace, Maureen; Johnson, Sherly; DiCapua, John; Dowling, Oonagh; Jacobs, Mitchel; Browning, Susan

    2018-05-01

    A pilot initiative to assess the use of remote video auditing in monitoring compliance with manual-cleaning protocols for endoscopic retrograde cholangiopancreatography (ERCP) endoscopes was performed. Compliance with manual-cleaning steps following the initiation of feedback was measured. A video feed of the ERCP reprocessing room was provided to remote auditors who scored items of an ERCP endoscope manual-cleaning checklist. Compliance feedback was provided in the form of reports and reeducation. Outcomes were reported as checklist compliance. The use of remote video auditing to document manual processing is a feasible approach and feedback and reeducation increased manual-cleaning compliance from 53.1% (95% confidence interval, 34.7-71.6) to 98.9% (95.0% confidence interval, 98.1-99.6). Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  18. Clean Assembly of Genesis Collector Canister for Flight: Lessons for Planetary Sample Return

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Stansbery, E. K.; Allen, C. C.; Warren, J. L.; Schwartz, C. M.

    2007-01-01

    Measurement of solar composition in the Genesis collectors requires not only high sensitivity but very low blanks; thus, very strict collector contamination minimization was required beginning with mission planning and continuing through hardware design, fabrication, assembly and testing. Genesis started with clean collectors and kept them clean inside of a canister. The mounting hardware and container for the clean collectors were designed to be cleanable, with access to all surfaces for cleaning. Major structural components were made of aluminum and cleaned with megasonically energized ultrapure water (UPW). The UPW purity was >18 M resistivity. Although aluminum is relatively difficult to clean, the Genesis protocol achieved level 25 and level 50 cleanliness on large structural parts; however, the experience suggests that surface treatments may be helpful on future missions. All cleaning was performed in an ISO Class 4 (Class 10) cleanroom immediately adjacent to an ISO Class 4 assembly room; thus, no plastic packaging was required for transport. Persons assembling the canister were totally enclosed in cleanroom suits with face shield and HEPA filter exhaust from suit. Interior canister materials, including fasteners, were installed, untouched by gloves, using tweezers and other stainless steel tools. Sealants/lubricants were not exposed inside the canister, but vented to the exterior and applied in extremely small amounts using special tools. The canister was closed in ISO Class 4, not to be opened until on station at Earth-Sun L1. Throughout the cleaning and assembly, coupons of reference materials that were cleaned at the same time as the flight hardware were archived for future reference and blanks. Likewise reference collectors were archived. Post-mission analysis of collectors has made use of these archived reference materials.

  19. Clean then Assemble Versus Assemble then Clean: Several Comparisons

    NASA Technical Reports Server (NTRS)

    Welker, Roger W.

    2004-01-01

    Cleanliness of manufactured parts and assemblies is a significant issue in many industries including disk drives, semiconductors, aerospace, and medical devices. Clean manufacturing requires cleanroom floor space and cleaning technology that are both expensive to own and expensive to operate. Strategies to reduce these costs are an important consideration. One strategy shown to be effective at reducing costs is to assemble parts into subassemblies and then clean the subassembly, rather than clean the individual parts first and then assemble them. One advantage is that assembly outside of the cleanroom reduces the amount of cleanroom floor space and its associated operating cost premium. A second advantage is that this strategy reduces the number of individual parts that must be cleaned prior to assembly, reducing the number of cleaning baskets, handling and, possibly, reducing the number of cleaners. The assemble then clean strategy also results in a part that is significantly cleaner because contamination generated during the assembly steps are more effectively removed that normally can be achieved by hand wiping after assembly in the cleanroom.

  20. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy

    Science.gov Websites

    Energy Solutions Center: Assisting Countries with Clean Energy Policy NREL helps developing countries and adapting to climate change impacts, developing countries are looking for clean energy solutions supports clean energy scale-up in the developing world are knowledge, capacity, and cost. The Clean Energy

  1. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is lowered to the ground and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is lowered to the ground and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  2. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is on a transporter to be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is on a transporter to be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  3. Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System

    NASA Technical Reports Server (NTRS)

    Parrish, Lewis M.

    2009-01-01

    NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.

  4. Can Beach Cleans Do More Than Clean-Up Litter? Comparing Beach Cleans to Other Coastal Activities

    PubMed Central

    Wyles, Kayleigh J.; Pahl, Sabine; Holland, Matthew; Thompson, Richard C.

    2016-01-01

    Coastal visits not only provide psychological benefits but can also contribute to the accumulation of rubbish. Volunteer beach cleans help address this issue, but may only have limited, local impact. Consequently, it is important to study any broader benefits associated with beach cleans. This article examines the well-being and educational value of beach cleans, as well as their impacts on individuals’ behavioral intentions. We conducted an experimental study that allocated students (n = 90) to a beach cleaning, rock pooling, or walking activity. All three coastal activities were associated with positive mood and pro-environmental intentions. Beach cleaning and rock pooling were associated with higher marine awareness. The unique impacts of beach cleaning were that they were rated as most meaningful but linked to lower restorativeness ratings of the environment compared with the other activities. This research highlights the interplay between environment and activities, raising questions for future research on the complexities of person-environment interactions. PMID:28546642

  5. Screening materials with the XIA UltraLo alpha particle counter at Southern Methodist University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakib, M. Z.; Cooley, J.; Kara, B.

    2013-08-08

    Southern Methodist University houses one of five existing commercially available UltraLo 1800 production model alpha counters made by XIA LLC. The instrument has an electron drift chamber with a 707 cm{sup 2} or 1800 cm{sup 2} counting region which is determined by selecting the inner electrode size. The SMU team operating this device is part of the SuperCDMS screening working group, and uses the alpha counter to study the background rates from the decay of radon in materials used to construct the SuperCDMS experiment. We have studied four acrylic samples obtained from the MiniCLEAN direct dark matter search with themore » XIA instrument demonstrating its utility in low background experiments by investigating the plate-out of {sup 210}Pb and comparing the effectiveness of cleaning procedures in removing {sup 222}Rn progenies from the samples.« less

  6. Synthesis and photoluminescence of ultra-pure germanium nanoparticles

    NASA Astrophysics Data System (ADS)

    Chivas, R.; Yerci, S.; Li, R.; Dal Negro, L.; Morse, T. F.

    2011-09-01

    We have used aerosol deposition to synthesize defect and micro-strain free, ultra-pure germanium nanoparticles. Transmission electron microscopy images show a core-shell configuration with highly crystalline core material. Powder X-ray diffraction measurements verify the presence of highly pure, nano-scale germanium with average crystallite size of 30 nm and micro-strain of 0.058%. X-ray photoelectron spectroscopy demonstrates that GeO x ( x ⩽ 2) shells cover the surfaces of the nanoparticles. Under optical excitation, these nanoparticles exhibit two separate emission bands at room temperature: a visible emission at 500 nm with 0.5-1 ns decay times and an intense near-infrared emission at 1575 nm with up to ˜20 μs lifetime.

  7. SMUVS: Spitzer Matching survey of the UltraVISTA ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Caputi, Karina; Ashby, Matthew; Fazio, Giovanni; Huang, Jiasheng; Dunlop, James; Franx, Marijn; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Muzzin, Adam; Ilbert, Olivier; Somerville, Rachel; Wechsler, Risa; Behroozi, Peter; Lu, Yu

    2014-12-01

    We request 2026.5 hours to homogenize the matching ultra-deep IRAC data of the UltraVISTA ultra-deep stripes, producing a final area of ~0.6 square degrees with the deepest near- and mid-IR coverage existing in any such large area of the sky (H, Ks, [3.6], [4.5] ~ 25.3-26.1 AB mag; 5 sigma). The UltraVISTA ultra-deep stripes are contained within the larger COSMOS field, which has a rich collection of multi-wavelength, ancillary data, making it ideal to study different aspects of galaxy evolution with high statistical significance and excellent redshift accuracy. The UltraVISTA ultra-deep stripes are the region of the COSMOS field where these studies can be pushed to the highest redshifts, but securely identifying high-z galaxies, and determining their stellar masses, will only be possible if ultra-deep mid-IR data are available. Our IRAC observations will allow us to: 1) extend the galaxy stellar mass function at redshifts z=3 to z=5 to the intermediate mass regime (M~5x10^9-10^10 Msun), which is critical to constrain galaxy formation models; 2) gain a factor of six in the area where it is possible to effectively search for z>=6 galaxies and study their properties; 3) measure, for the first time, the large-scale structure traced by an unbiased galaxy sample at z=5 to z=7, and make the link to their host dark matter haloes. This cannot be done in any other field of the sky, as the UltraVISTA ultra-deep stripes form a quasi-contiguous, regular-shape field, which has a unique combination of large area and photometric depth. 4) provide a unique resource for the selection of secure z>5 targets for JWST and ALMA follow up. Our observations will have an enormous legacy value which amply justifies this new observing-time investment in the COSMOS field. Spitzer cannot miss this unique opportunity to open up a large 0.6 square-degree window to the early Universe.

  8. Capillary-Force-Assisted Clean-Stamp Transfer of Two-Dimensional Materials.

    PubMed

    Ma, Xuezhi; Liu, Qiushi; Xu, Da; Zhu, Yangzhi; Kim, Sanggon; Cui, Yongtao; Zhong, Lanlan; Liu, Ming

    2017-11-08

    A simple and clean method of transferring two-dimensional (2D) materials plays a critical role in the fabrication of 2D electronics, particularly the heterostructure devices based on the artificial vertical stacking of various 2D crystals. Currently, clean transfer techniques rely on sacrificial layers or bulky crystal flakes (e.g., hexagonal boron nitride) to pick up the 2D materials. Here, we develop a capillary-force-assisted clean-stamp technique that uses a thin layer of evaporative liquid (e.g., water) as an instant glue to increase the adhesion energy between 2D crystals and polydimethylsiloxane (PDMS) for the pick-up step. After the liquid evaporates, the adhesion energy decreases, and the 2D crystal can be released. The thin liquid layer is condensed to the PDMS surface from its vapor phase, which ensures the low contamination level on the 2D materials and largely remains their chemical and electrical properties. Using this method, we prepared graphene-based transistors with low charge-neutral concentration (3 × 10 10 cm -2 ) and high carrier mobility (up to 48 820 cm 2 V -1 s -1 at room temperature) and heterostructure optoelectronics with high operation speed. Finally, a capillary-force model is developed to explain the experiment.

  9. Computational Prediction of Cryogenic Micro-nano Solid Nitrogen Particle Production Using Laval Nozzle for Physical Photo Resist Removal-cleaning Technology

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Abe, Haruto; Ochiai, Naoya

    The fundamental characteristics of the cryogenic single-component micro-nano solid nitrogen (SN2) particle production using super adiabatic Laval nozzle and its application to the physical photo resist removal-cleaning technology are investigated by a new type of integrated measurement coupled computational technique. As a result of present computation, it is found that high-speed ultra-fine SN2 particles are continuously generated due to the freezing of liquid nitrogen (LN2) droplets induced by rapid adiabatic expansion of transonic subcooled two-phase nitrogen flow passing through the Laval nozzle. Furthermore, the effect of SN2 particle diameter, injection velocity, and attack angle to the wafer substrate on resist removal-cleaning performance is investigated in detail by integrated measurement coupled computational technique.

  10. [Reduction of exposure to particulate matter in classrooms by improved cleaning: extent of exposure and results of a pilot study in Bavaria].

    PubMed

    Twardella, D; Fromme, H; Dietrich, S; Dietrich, W C

    2009-02-01

    The aims of the research project were (I) to describe the exposure to particulate matter in Bavarian schools and identify predictors of increased exposure and (II) to evaluate whether exposure can be reduced by improving the ventilation and/or cleaning routine. Air quality was measured in 46 schools, two classrooms each, in the City of Munich and Dachau county. Each classroom was measured on one school day in both winter 2004/2005 and summer 2005. The continuously generated data on particulate matter during the teaching hours were summarised to daily medians and the possible association of the median concentration with classroom characteristics was tested using non-parametric methods. In winter, the median PM (2.5) concentration was 18.8 microg/m (3), in summer 12.7 microg/m (3). The median PM (10) concentration was 91.5 microg/m (3) in winter and 64.9 microg/m (3) in summer. Determinants of a high particulate matter concentration were the winter period, an increased number of pupils or decreased room size, a high CO(2) concentration, and a low class level. Following this survey, a pilot study on the effects of improved cleaning and ventilation routines was conducted in autumn 2005. Three conditions were tested in two classrooms of one school: (a) standard, (b) improved airing (3 min during short and 20 min during long breaks), and (c) improved airing and improved cleaning (thorough cleaning once and vacuuming before wet wiping). Each condition was implemented for 2 weeks and particulate matter concentrations measured concurrently. In both rooms a reduction of both PM (2.5) and PM (10) concentration was found following improved airing and a further reduction occurred when improved cleaning was introduced in addition. However, in a linear regression accounting for other factors (room, physical activity of the pupils, outdoor concentration of particulate matter) the effect of improved airing was no longer significant, while the effect of improved cleaning remained at

  11. Template-free synthesis of porous ZnO/Ag microspheres as recyclable and ultra-sensitive SERS substrates

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Xu, Chunxiang; Lu, Junfeng; Zhu, Zhu; Zhu, Qiuxiang; Manohari, A. Gowri; Shi, Zengliang

    2018-01-01

    The porous structured zinc oxide (ZnO) microspheres decorated with silver nanoparticles (Ag NPs) have been fabricated as surface-enhanced Raman scattering (SERS) substrate for ultra-sensitive, highly reproducible and stable biological/chemical sensing of various organic molecules. The ZnO microspheres were hydrothermally synthesized without any template, and the Ag NPs decorated on microspheres via photochemical reaction in situ, which provided stable Ag/ZnO contact to achieve a sensitive SERS response. It demonstrates a higher enhancement factor (EF) of 2.44 × 1011 and a lower detection limit of 10-11 M-10-12 M. This porous SERS substrate could also be self-cleaned through a photocatalytic process and then further recycled for the detection of same or different molecules, such as phenol red (PhR), dopamine (DA) and glucose (GLU) with ultra-low concentration and it possessed a sensitive response. The excellent performances are attributed to morphology of porous microspheres, hybrid structure of semiconductor/metal and corresponding localized field enhancement of surface plasmons. Therefore, it is expected to design the recyclable ultra-sensitive SERS sensors for the detection of biological molecules and organic pollutant monitoring.

  12. Ultra-high-pressure liquid chromatography-tandem mass spectrometry method for the determination of alkylphenols in soil.

    PubMed

    Wang, Jing; Pan, Hefang; Liu, Zhengzheng; Ge, Fei

    2009-03-20

    A novel method has been developed for the determination of alkylphenols in soil by ultra-high-pressure liquid chromatography employing small particle sizes, combined with tandem mass spectrometry. Soil samples were extracted with pressurized liquid extraction (PLE) and then cleaned with solid-phase extraction (SPE). The extracts were separated on C18 column (1.7 microm, 50 mm x 2.1mm) with a gradient elution and a mobile phase consisting of water and acetonitrile, and then detected by an electrospray ionization tandem mass spectrometry in negative ion mode with multiple reaction monitoring (MRM). Compared with traditional liquid chromatography, it took ultra-high-pressure liquid chromatography much less time to analyze alkylphenols. Additionally, the ultra-high-pressure liquid chromatography/tandem mass spectrometry method produces satisfactory reliability, sensitivity, and accuracy. The average recoveries of the three target analytes were 74.0-103.4%, with the RSD<15%. The calibration curves for alkylphenols were linear within the range of 0.01-0.4 microg/ml, with the correlation coefficients greater than 0.99. When 10 g soil sample was used for analysis, the limits of quantification (LOQs) of the three alkylphenols were all 1.0 microg/kg.

  13. Development of UItra-Low Temperature Motor Controllers: Ultra Low Temperatures Evaluation and Characterization of Semiconductor Technologies For The Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.

    2003-01-01

    Electronics designed for low temperature operation will result in more efficient systems than room temperature. This improvement is a result of better electronic, electrical, and thermal properties of materials at low temperatures. In particular, the performance of certain semiconductor devices improves with decreasing temperature down to ultra-low temperature (-273 'C). The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components and systems suitable for applications in deep space missions. Research is being conducted on devices and systems for use down to liquid helium temperatures (-273 'C). Some of the components that are being characterized include semiconductor switching devices, resistors, magnetics, and capacitors. The work performed this summer has focused on the evaluation of silicon-, silicon-germanium- and gallium-Arsenide-based (GaAs) bipolar, MOS and CMOS discrete components and integrated circuits (ICs), from room temperature (23 'C) down to ultra low temperatures (-263 'C).

  14. The Iowa Disinfection Cleaning Project: Opportunities, Successes, and Challenges of a Structured Intervention Program in 56 Hospitals.

    PubMed

    Carling, Philip; Herwaldt, Loreen A

    2017-08-01

    OBJECTIVE A diverse group of hospitals in Iowa implemented a program to objectively evaluate and improve the thoroughness of disinfection cleaning of near-patient surfaces. Administrative benefits of, challenges of, and impediments to the program were also evaluated. METHODS We conducted a prospective, quasi-experimental pre-/postintervention trial to improve the thoroughness of terminal room disinfection cleaning. Infection preventionists utilized an objective cleaning performance monitoring system (DAZO) to evaluate the thoroughness of disinfection cleaning (TDC) expressed as a proportion of objects confirmed to have been cleaned (numerator) to objects to be cleaned per hospital policy (denominator)×100. Data analysis, educational interventions, and objective performance feedback were modeled on previously published studies using the same monitoring tool. Programmatic analysis utilized unstructured and structured information from participants irrespective of whether they participated in the process improvement aspects to the program. RESULTS Initially, the overall TDC was 61% in 56 hospitals. Hospitals completing 1 or 2 feedback cycles improved their TDC percentages significantly (P90% for at least 38 months. A survey of infection preventionists found that lack of time and staff turnover were the most common reasons for terminating the study early. CONCLUSION The study confirmed that hospitals using this program can improve their TDC percentages significantly. Hospitals must invest resources to improve cleaning and to sustain their gains. Infect Control Hosp Epidemiol 2017;38:960-965.

  15. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    NASA Astrophysics Data System (ADS)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  16. Aqueous cleaning and verification processes for precision cleaning of small parts

    NASA Technical Reports Server (NTRS)

    Allen, Gale J.; Fishell, Kenneth A.

    1995-01-01

    The NASA Kennedy Space Center (KSC) Materials Science Laboratory (MSL) has developed a totally aqueous process for precision cleaning and verification of small components. In 1990 the Precision Cleaning Facility at KSC used approximately 228,000 kg (500,000 lbs) of chlorofluorocarbon (CFC) 113 in the cleaning operations. It is estimated that current CFC 113 usage has been reduced by 75 percent and it is projected that a 90 percent reduction will be achieved by the end of calendar year 1994. The cleaning process developed utilizes aqueous degreasers, aqueous surfactants, and ultrasonics in the cleaning operation and an aqueous surfactant, ultrasonics, and Total Organic Carbon Analyzer (TOCA) in the nonvolatile residue (NVR) and particulate analysis for verification of cleanliness. The cleaning and verification process is presented in its entirety, with comparison to the CFC 113 cleaning and verification process, including economic and labor costs/savings.

  17. Quantitative assessment of airborne exposures generated during common cleaning tasks: a pilot study

    PubMed Central

    2010-01-01

    . Conclusions Our results indicate that airborne exposures from short-term cleaning tasks can remain in the air even after tasks' cessation, suggesting potential exposures to anyone entering the room shortly after cleaning. Additionally, 2-BE concentrations from cleaning could approach occupational exposure limits and warrant further investigation. Measurement methods applied in this study can be useful for workplace assessment of airborne exposures during cleaning, if the limitations identified here are addressed. PMID:21118559

  18. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is lowered onto a transporter to be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is lowered onto a transporter to be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  19. Effect of heated-air blanket on the dispersion of squames in an operating room.

    PubMed

    He, X; Karra, S; Pakseresht, P; Apte, S V; Elghobashi, S

    2018-05-01

    High-fidelity, predictive fluid flow simulations of the interactions between the rising thermal plumes from forced air warming blower and the ultra-clean ventilation air in an operating room (OR) are conducted to explore whether this complex flow can impact the dispersion of squames to the surgical site. A large-eddy simulation, accurately capturing the spatiotemporal evolution of the flow in 3 dimensions together with the trajectories of squames, is performed for a realistic OR consisting of an operating table (OT), side tables, surgical lamps, medical staff, and a patient. Two cases are studied with blower-off and blower-on together with Lagrangian trajectories of 3 million squames initially placed on the floor surrounding the OT. The large-eddy simulation results show that with the blower-off, squames are quickly transported by the ventilation air away from the table and towards the exit grilles. In contrast, with the hot air blower turned on, the ventilation airflow above and below the OT is disrupted significantly. The rising thermal plumes from the hot air blower drag the squames above the OT and the side tables and then they are advected downwards toward the surgical site by the ventilation air from the ceiling. Temporal history of the number of squames reaching 4 imaginary boxes surrounding the side tables, the OT, and the patient's knee shows that several particles reach these boxes for the blower-on case. © 2018 The Authors International Journal for Numerical Methods in Biomedical Engineering Published by John Wiley & Sons Ltd.

  20. Effectiveness of cleaning-disinfection wipes and sprays against multidrug-resistant outbreak strains.

    PubMed

    Kenters, Nikki; Huijskens, Elisabeth G W; de Wit, Sophie C J; van Rosmalen, Joost; Voss, Andreas

    2017-08-01

    Hospital rooms play an important role in the transmission of several health care-associated pathogens. During the last few years, a number of innovative cleaning-disinfecting products have been brought to market. In this study, commercially available products combining cleaning and disinfection were compared, using 2 different application methods. The aim was to determine which product was most effective in simultaneous cleaning and disinfection of surfaces. Seven cleaning-disinfecting wipes and sprays based on different active ingredients were tested for their efficacy in removal of microbial burden and proteins. Efficacy was tested with known Dutch outbreak strains: vancomycin-resistant enterococci (VRE), Klebsiella pneumoniae OXA-48, or Acinetobacter baumannii. For all bacteria, ready-to-use cleaning-disinfecting products reduced the microbial count with a log 10 reduction >5 with a 5-minute exposure time, with the exception of a spray based on hydrogen peroxide. Omitting the aforementioned hydrogen peroxide spray, there were no significant differences between use of a wipe or spray in bacterial load reduction. Using adenosine triphosphate (ATP) measurements, a significant difference in log 10 relative light units (RLU) reduction between various bacteria (P ≤ .001) was observed. In general, a >5 log 10 reduction of colony forming units (CFU) for tested wipes and sprays was obtained for all tested bacteria strains, with exception of hydrogen peroxide spray and VRE. Although ATP may show a difference between pre- and postcleaning, RLU reduction does not correlate with actual CFU reductions. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  1. Have Recent Modifications of Operating Room Attire Policies Decreased Surgical Site Infections? An American College of Surgeons NSQIP Review of 6,517 Patients.

    PubMed

    Farach, Sandra M; Kelly, Kristin N; Farkas, Rachel L; Ruan, Daniel T; Matroniano, Amy; Linehan, David C; Moalem, Jacob

    2018-05-01

    After a Department of Health site visit, 2 teaching hospitals imposed strict regulations on operating room attire, including full coverage of ears and facial hair. We hypothesized that this intervention would reduce superficial surgical site infections (SSIs). We compared NSQIP data from all patients undergoing operations in the 9 months before implementation (n = 3,077) to time-matched data 9 months post-implementation (n = 3,440). Univariate and multivariable analyses were used to examine patient, clinical, and operative factors associated with SSIs. Power analysis was performed using pre-intervention SSI rates. Despite a shift toward more clean cases, there were more SSIs post-implementation (33 vs 30 [1%]; p = 0.95). There were no differences in length of stay, complications, or mortality between the 2 time periods. Overall, SSI increased with wound class: 0.6%, 0.9%, 2.3%, and 3.8% in clean, clean-contaminated, contaminated, and infected cases, respectively. Limiting the review to clean or clean-contaminated cases, incisional SSIs increased from 0.7% (20 of 2,754) to 0.8% (24 of 3,115) (p = 0.85). A multivariable analysis showed that implementation of these policies was not associated with decreased SSIs (odds ratio 1.2; 95% CI 0.70 to 1.96; p = 0.56). The largest predictors of SSIs were preoperative infection, operative time >75th percentile, open wounds, and dirty/contaminated wounds. A hypothetical analysis revealed that a sample size of 485,154 patients would be required to demonstrate a 10% SSI reduction among patients with clean or clean-contaminated wounds. Implementation of stringent operating room attire policies do not reduce SSI rates. A study to prove this principle further would be impractical to conduct. Copyright © 2018 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Calibration of an Ultra-Low-Background Proportional Counter for Measuring 37Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifert, Allen; Aalseth, Craig E.; Bonicalzi, Ricco

    Abstract. An ultra-low-background proportional counter (ULBPC) design has been developed at Pacific Northwest National Laboratory (PNNL) using clean materials, primarily electrochemically-purified copper. This detector, along with an ultra-low-background counting system (ULBCS), was developed to complement a new shallow underground laboratory (30 meters water-equivalent) constructed at PNNL. The ULBCS design includes passive neutron and gamma shielding, along with an active cosmic-veto system. This system provides a capability for making ultra-sensitive measurements to support applications like age-dating soil hydrocarbons with 14C/3H, age-dating of groundwater with 39Ar, and soil-gas assay for 37Ar to support On-Site Inspection (OSI). On-Site Inspection is a key componentmore » of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclides created by an underground nuclear explosion are valuable signatures of a Treaty violation. For OSI, the 35-day half-life of 37Ar, produced from neutron interactions with calcium in soil, provides both high specific activity and sufficient time for inspection before decay limits sensitivity. This work describes the calibration techniques and analysis methods developed to enable quantitative measurements of 37Ar samples over a broad range of pressures. These efforts, along with parallel work in progress on gas chemistry separation, are expected to provide a significant new capability for 37Ar soil gas background studies.« less

  3. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-03-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  4. Cleaning at the Edge of Science: NASA's Genesis Mission

    NASA Technical Reports Server (NTRS)

    Stansbery, Eileen K.; Biesinger, Paul H.

    2000-01-01

    Ne at approx. 10(exp 12), atoms per centimeter squared). Typical spacecraft assembly is done in class 10,000 cleanrooms. The final cleaning and reintegration of the Genesis payload canister as well as all sample material handling will be done within a class 10 cleanroom using Dryden suits to protect the collector materials from any human debris. Each component is unique, no standard size, shape, material, or precleaning history. We are developing new final cleaning techniques utilizing ultra-pure water to minimize molecular residues on the hardware components.

  5. ATP bioluminescence: Surface hygiene monitoring in milk preparation room of neonatal intensive care unit

    NASA Astrophysics Data System (ADS)

    Mohamad, Mahirah; Ishak, Shareena; Jaafar, Rohana; Sani, Norrakiah Abdullah

    2018-04-01

    ATP Bioluminescence application and standard microbiological analyses were used to evaluate the cleanliness of milk contact surfaces and non-milk contact surfaces in milk preparation room of neonatal intensive care unit (NICU) of Universiti Kebangsaan Malaysia Medical Centre (UKMMC). A total of 44 samples including the breast pump, milk bottle, milk bottle screw top and screw ring, teats, measuring cups, waterless warmer, refrigerator, dishwasher and pasteurizer inner wall were tested on May 2017. 3M Clean and Trace Hygiene Monitoring (UXL100 ATP Test swabs) and the bioluminescence reader Clean-Trace NG Luminometer (3M) were used to measure the Relative Light Unit (RLU) and microbiological analysis using 3M Quick Swab and 3MTM PetrifilmTM for enumeration of aerobic count, Staphylococcus aureus, Enterobacteriaceae, coliform and detection of Escherichia coli (CFU /100cm2 or utensil/item). The RLU values were from 11 to 194 and passed the ATP benchmark for intensive care unit (ICU), < 250 RLU as recommended. Aerobic colony count was only found in waterless warmer (0.05±0.01 mean log CFU/warmer). None of S. aureus, Enterobacteriaceae, E. coli and coliform was detected in all samples. A weak correlation was found between bioluminescence measurements RLU and the microbiological analysis (CFU). However, the use of ATP bioluminescence in monitoring milk preparation room cleanliness can be a useful method for assessing rapidly the surface hygiene as well as to verify the Sanitation Standard Operating Procedure (SSOP) prior to implementation of Hazard Analysis and Critical Control Points (HACCP) in milk preparation room.

  6. Modeling, investigation and formulation of hydrophobic coatings for potential self-cleaning applications

    NASA Astrophysics Data System (ADS)

    Rios, Pablo Fabian

    and compared with the existing models. Ultra-hydrophobic non-transparent and transparent coatings for potential self-cleaning applications were produced using hydrophobic chemistry and different configurations of roughening micro and nano-particles, however they present low adhesion and durability. Durability and stability enhancement of such coatings was attempted and improved by different methods.

  7. Chemical cleaning re-invented: clean, lean and green.

    PubMed

    Hanson, Margaret; Vangeel, Michel

    2014-01-01

    A project undertaken in the Central Cleaning Department of Janssen, a Johnson and Johnson pharmaceutical company, demonstrates how ergonomics, environmental and industrial hygiene risks and quality concerns can be tackled simultaneously. The way equipment was cleaned was re-designed by an in-house cross-functional team to ensure a 'clean, lean and green' process. Initiatives included a new layout of the area, and new work processes and equipment to facilitate cleaning and handling items. This resulted in significant improvements: all ergonomics high risk tasks were reduced to moderate or low risk; hearing protection was no longer required; respirator requirement reduced by 67%; solvent use reduced by 73%; productivity improved, with 55% fewer operator hours required; and quality improved 40-fold. The return on investment was estimated at 3.125 years based on an investment of over €1.5 million (2008 prices). This win-win intervention allowed ergonomics, environmental, industrial hygiene, productivity and quality concerns all to be addressed.

  8. Wet cleaning and surface characterization of Si 1- xGe x virtual substrates after a CMP step

    NASA Astrophysics Data System (ADS)

    Abbadie, A.; Hartmann, J. M.; Besson, P.; Rouchon, D.; Martinez, E.; Holliger, P.; Di Nardo, C.; Campidelli, Y.; Billon, T.

    2008-08-01

    New reactants such as ozone dissolved in ultra-pure water have been widely used the last few years instead of the original Radio Corporation of America (RCA) cleaning (which is a combination of the Standard Cleaning 1 (SC1) and the Standard Cleaning 2 (SC2)). In a first part of the study (Microelectron. Eng. 83 (2006) 1986), we had quantified the efficiency of a new cleaning sequence (that calls upon HF and H 2O/O 3 solutions) on polished Si 1- xGe x virtual substrates ( x = 0.2-0.5). We are discussing here the surface morphology and wetability together with the oxide thickness and structure typically obtained after this so-called "DDC-SiGe" wet cleaning. Flat surface morphologies are found after cleaning whatever the Ge content (from 20 to 50%). Typical root mean square roughness is around 0.4 nm. We have used X-ray Photoelectron Spectroscopy to determine the characteristics of the surface termination after this "DDC-SiGe" cleaning. An oxide mainly composed of SiO 2 is formed, with a low fraction of Ge sub-oxide and GeO 2. The distribution of chemical species is not that different from the one obtained after the use of a SC1 cleaning. However, the chemical oxide formed is slightly thicker. Such a HF/O 3 cleaning leads, when used on thick Ge layers grown on Si, to the formation of a really thin Ge sub-oxide. Our oxidation model assumes a competition in O 3 solutions between the oxidation rates of Si and Ge atoms (faster for Si) and the dissolution of the Ge oxide formed in solution. This mechanism, which implies the formation of a slightly porous oxide, is different from the one seeming to occur in SC1-based solutions. Indeed, the addition of surfactant in a SC1 solution modifies the oxidation rate compared to standard SC1 or O 3-based solutions, suggesting a diffusion of reactants towards the interface between the SiGe and the oxide in formation, assisted by the reactions of species within the cleaning solutions.

  9. Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications

    NASA Astrophysics Data System (ADS)

    Czerwinski, Frank; Birsan, Gabriel

    2017-04-01

    The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.

  10. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is ready to be lowered to the ground and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is ready to be lowered to the ground and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  11. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is being dismantled from atop the Delta II rocket. It will be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is being dismantled from atop the Delta II rocket. It will be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  12. KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, start dismantling the Space Infrared Telescope Facility (SIRTF) observatory from atop the Delta II rocket. It will be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, start dismantling the Space Infrared Telescope Facility (SIRTF) observatory from atop the Delta II rocket. It will be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  13. Household cleaning product-related injuries treated in US emergency departments in 1990-2006.

    PubMed

    McKenzie, Lara B; Ahir, Nisha; Stolz, Uwe; Nelson, Nicolas G

    2010-09-01

    The goal was to examine comprehensively the patterns and trends of household cleaning product-related injuries among children treated in US emergency departments. Through use of the National Electronic Injury Surveillance System database, cases of unintentional, nonfatal, household cleaning product-related injuries were selected by using product codes for drain cleaners, ammonia, metal polishes/tarnish removers, turpentine, dishwasher detergents, acids, swimming pool chemicals, oven cleaners, pine oil cleaners/disinfectants, laundry soaps/detergents, toilet bowl products, abrasive cleaners, general-purpose household cleaners, noncosmetic bleaches, windshield wiper fluids, caustic agents, lye, wallpaper cleaners, room deodorizers/fresheners, spot removers, and dishwashing liquids. Products were categorized according to major toxic ingredients, mode of action, and exposure. An estimated 267 269 childrencleaning product-related injuries. The number of injuries attributable to household cleaning product exposure decreased 46.0% from 22 141 in 1990 to 11 964 in 2006. The product most-commonly associated with injury was bleach (37.1%). Children 1 to 3 years of age accounted for 72.0% of cases. The primary mechanism of injury was ingestion (62.7%). The most common source or container was spray-bottles (40.1%). Although rates of household cleaner-related injuries from regular bottles or original containers and kitchenware decreased during the study period, spray-bottle injury rates showed no decrease. Although national rates of household cleaning product-related injuries in children decreased significantly over time, the number of injuries remains high.

  14. A Green Clean

    ERIC Educational Resources Information Center

    Kravitz, Robert

    2006-01-01

    In the professional cleaning industry, green cleaning has been much discussed in the past few years. Usually, the information pertains to the many reasons why a green cleaning program should be started, the steps involved to get the program off the ground, and the potential benefits. However, although many facility managers and school…

  15. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zurlo, James; Lueck, Steve

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. willmore » leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background« less

  16. Ultra high vacuum test setup for electron gun

    NASA Astrophysics Data System (ADS)

    Pandiyar, M. L.; Prasad, M.; Jain, S. K.; Kumar, R.; Hannurkar, P. R.

    2008-05-01

    Ultra High Vacuum (UHV) test setup for electron gun testing has been developed. The development of next generation light sources and accelerators require development of klystron as a radio frequency power source, and in turn electron gun. This UHV electron gun test setup can be used to test the electron guns ranging from high average current, quasi-continuous wave to high peak current, single pulse etc. An electron gun has been designed, fabricated, assembled and tested for insulation up to 80 kV under the programme to develop high power klystron for future accelerators. Further testing includes the electron emission parameters characterization of the cathode, as it determines the development of a reliable and efficient electron gun with high electron emission current and high life time as well. This needs a clean ultra high vacuum to study these parameters particularly at high emission current. The cathode emission current, work function and vapour pressure of cathode surface material at high temperature studies will further help in design and development of high power electron gun The UHV electron gun test setup consists of Turbo Molecular Pump (TMP), Sputter Ion Pump (SIP), pressure gauge, high voltage and cathode power supplies, current measurement device, solenoid magnet and its power supply, residual gas analyser etc. The ultimate vacuum less than 2×10-9 mbar was achieved. This paper describes the UHV test setup for electron gun testing.

  17. Oak ridge national laboratory automated clean chemistry for bulk analysis of environmental swipe samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostick, Debra A.; Hexel, Cole R.; Ticknor, Brian W.

    2016-11-01

    To shorten the lengthy and costly manual chemical purification procedures, sample preparation methods for mass spectrometry are being automated using commercial-off-the-shelf (COTS) equipment. This addresses a serious need in the nuclear safeguards community to debottleneck the separation of U and Pu in environmental samples—currently performed by overburdened chemists—with a method that allows unattended, overnight operation. In collaboration with Elemental Scientific Inc., the prepFAST-MC2 was designed based on current COTS equipment that was modified for U/Pu separations utilizing Eichrom™ TEVA and UTEVA resins. Initial verification of individual columns yielded small elution volumes with consistent elution profiles and good recovery. Combined columnmore » calibration demonstrated ample separation without crosscontamination of the eluent. Automated packing and unpacking of the built-in columns initially showed >15% deviation in resin loading by weight, which can lead to inconsistent separations. Optimization of the packing and unpacking methods led to a reduction in the variability of the packed resin to less than 5% daily. The reproducibility of the automated system was tested with samples containing 30 ng U and 15 pg Pu, which were separated in a series with alternating reagent blanks. These experiments showed very good washout of both the resin and the sample from the columns as evidenced by low blank values. Analysis of the major and minor isotope ratios for U and Pu provided values well within data quality limits for the International Atomic Energy Agency. Additionally, system process blanks spiked with 233U and 244Pu tracers were separated using the automated system after it was moved outside of a clean room and yielded levels equivalent to clean room blanks, confirming that the system can produce high quality results without the need for expensive clean room infrastructure. Comparison of the amount of personnel time necessary for successful manual

  18. Single-use surgical clothing system for reduction of airborne bacteria in the operating room.

    PubMed

    Tammelin, A; Ljungqvist, B; Reinmüller, B

    2013-07-01

    It is desirable to maintain a low bacterial count in the operating room air to prevent surgical site infection. This can be achieved by ventilation or by all staff in the operating room wearing clothes made from low-permeable material (i.e. clean air suits). We investigated whether there was a difference in protective efficacy between a single-use clothing system made of polypropylene and a reusable clothing system made of a mixed material (cotton/polyester) by testing both in a dispersal chamber and during surgical procedures. Counts of colony-forming units (cfu)/m(3) air were significantly lower when using the single-use clothing system in both settings. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  19. The Influence of Sintering Method on Kaolin-Based Geopolymer Ceramics with Addition of Ultra High Molecular Weight Polyethylene as Binder

    NASA Astrophysics Data System (ADS)

    Romisuhani, A.; AlBakri, M. M.; Kamarudin, H.; Andrei, S. V.

    2017-11-01

    The influence of sintering method on kaolin-based geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene as binder were studied. Geopolymer were formed at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. 12 M of sodium hydroxide solution were mixed with sodium silicate at a ratio of 0.24 to form alkaline activator. Powder metallurgy technique were used in order to produce kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene. The samples were heated at temperature of 1200 °C with two different sintering method which are conventional method and two-step sintering method. The strength and density were tested.

  20. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    PubMed

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  1. Space ultra-vacuum facility and method of operation

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor)

    1988-01-01

    A wake shield space processing facility (10) for maintaining ultra-high levels of vacuum is described. The wake shield (12) is a truncated hemispherical section having a convex side (14) and a concave side (24). Material samples (68) to be processed are located on the convex side of the shield, which faces in the wake direction in operation in orbit. Necessary processing fixtures (20) and (22) are also located on the convex side. Support equipment including power supplies (40, 42), CMG package (46) and electronic control package (44) are located on the convex side (24) of the shield facing the ram direction. Prior to operation in orbit the wake shield is oriented in reverse with the convex side facing the ram direction to provide cleaning by exposure to ambient atomic oxygen. The shield is then baked-out by being pointed directed at the sun to obtain heating for a suitable period.

  2. Clean it up: motivating a 13-year-old boy to pick up his room.

    PubMed

    James, Helene M; Luyben, Paul D

    2009-01-01

    The purpose of this study was to reduce the messiness in a 13-year-old boy's room. Previous research indicated that contingent access to an activity reinforcer such as computer time might well provide the motivation to do what the participant had steadfastly refused to do in the past. The data show that relative to baseline there was a substantial decrease in the number of objects out-of-place once the contingency was in effect, although limitations in the design preclude absolute confidence that the intervention produced the reductions observed.

  3. Self-generated Local Heating Induced Nanojoining for Room Temperature Pressureless Flexible Electronic Packaging

    PubMed Central

    Peng, Peng; Hu, Anming; Gerlich, Adrian P.; Liu, Yangai; Zhou, Y. Norman

    2015-01-01

    Metallic bonding at an interface is determined by the application of heat and/or pressure. The means by which these are applied are the most critical for joining nanoscale structures. The present study considers the feasibility of room-temperature pressureless joining of copper wires using water-based silver nanowire paste. A novel mechanism of self-generated local heating within the silver nanowire paste and copper substrate system promotes the joining of silver-to-silver and silver-to-copper without any external energy input. The localized heat energy was delivered in-situ to the interfaces to promote atomic diffusion and metallic bond formation with the bulk component temperature stays near room-temperature. This local heating effect has been detected experimentally and confirmed by calculation. The joints formed at room-temperature without pressure achieve a tensile strength of 5.7 MPa and exhibit ultra-low resistivity in the range of 101.3 nOhm·m. The good conductivity of the joint is attributed to the removal of organic compounds in the paste and metallic bonding of silver-to-copper and silver-to-silver. The water-based silver nanowire paste filler material is successfully applied to various flexible substrates for room temperature bonding. The use of chemically generated local heating may become a potential method for energy in-situ delivery at micro/nanoscale. PMID:25788019

  4. Cleaning verification: A five parameter study of a Total Organic Carbon method development and validation for the cleaning assessment of residual detergents in manufacturing equipment.

    PubMed

    Li, Xue; Ahmad, Imad A Haidar; Tam, James; Wang, Yan; Dao, Gina; Blasko, Andrei

    2018-02-05

    A Total Organic Carbon (TOC) based analytical method to quantitate trace residues of clean-in-place (CIP) detergents CIP100 ® and CIP200 ® on the surfaces of pharmaceutical manufacturing equipment was developed and validated. Five factors affecting the development and validation of the method were identified: diluent composition, diluent volume, extraction method, location for TOC sample preparation, and oxidant flow rate. Key experimental parameters were optimized to minimize contamination and to improve the sensitivity, recovery, and reliability of the method. The optimized concentration of the phosphoric acid in the swabbing solution was 0.05M, and the optimal volume of the sample solution was 30mL. The swab extraction method was 1min sonication. The use of a clean room, as compared to an isolated lab environment, was not required for method validation. The method was demonstrated to be linear with a correlation coefficient (R) of 0.9999. The average recoveries from stainless steel surfaces at multiple spike levels were >90%. The repeatability and intermediate precision results were ≤5% across the 2.2-6.6ppm range (50-150% of the target maximum carry over, MACO, limit). The method was also shown to be sensitive with a detection limit (DL) of 38ppb and a quantitation limit (QL) of 114ppb. The method validation demonstrated that the developed method is suitable for its intended use. The methodology developed in this study is generally applicable to the cleaning verification of any organic detergents used for the cleaning of pharmaceutical manufacturing equipment made of electropolished stainless steel material. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. What Orthopaedic Operating Room Surfaces Are Contaminated With Bioburden? A Study Using the ATP Bioluminescence Assay.

    PubMed

    Richard, Raveesh Daniel; Bowen, Thomas R

    2017-07-01

    Contaminated operating room surfaces can increase the risk of orthopaedic infections, particularly after procedures in which hardware implantation and instrumentation are used. The question arises as to how surgeons can measure surface cleanliness to detect increased levels of bioburden. This study aims to highlight the utility of adenosine triphosphate (ATP) bioluminescence technology as a novel technique in detecting the degree of contamination within the sterile operating room environment. What orthopaedic operating room surfaces are contaminated with bioburden? When energy is required for cellular work, ATP breaks down into adenosine biphosphate (ADP) and phosphate (P) and in that process releases energy. This process is inherent to all living things and can be detected as light emission with the use of bioluminescence assays. On a given day, six different orthopaedic surgery operating rooms (two adult reconstruction, two trauma, two spine) were tested before surgery with an ATP bioluminescence assay kit. All of the cases were considered clean surgery without infection, and this included the previously performed cases in each sampled room. These rooms had been cleaned and prepped for surgery but the patients had not been physically brought into the room. A total of 13 different surfaces were sampled once in each room: the operating room (OR) preparation table (both pre- and postdraping), OR light handles, Bovie machine buttons, supply closet countertops, the inside of the Bair Hugger™ hose, Bair Hugger™ buttons, right side of the OR table headboard, tourniquet machine buttons, the Clark-socket attachment, and patient positioners used for total hip and spine positioning. The relative light units (RLUs) obtained from each sample were recorded and data were compiled and averaged for analysis. These values were compared with previously published ATP benchmark values of 250 to 500 RLUs to define cleanliness in both the hospital and restaurant industries. All

  6. Si-compatible cleaning process for graphene using low-density inductively coupled plasma.

    PubMed

    Lim, Yeong-Dae; Lee, Dae-Yeong; Shen, Tian-Zi; Ra, Chang-Ho; Choi, Jae-Young; Yoo, Won Jong

    2012-05-22

    We report a novel cleaning technique for few-layer graphene (FLG) by using inductively coupled plasma (ICP) of Ar with an extremely low plasma density of 3.5 × 10(8) cm(-3). It is known that conventional capacitively coupled plasma (CCP) treatments destroy the planar symmetry of FLG, giving rise to the generation of defects. However, ICP treatment with extremely low plasma density is able to remove polymer resist residues from FLG within 3 min at a room temperature of 300 K while retaining the carbon sp(2)-bonding of FLG. It is found that the carrier mobility and charge neutrality point of FLG are restored to their pristine defect-free state after the ICP treatment. Considering the application of graphene to silicon-based electronic devices, such a cleaning method can replace thermal vacuum annealing, electrical current annealing, and wet-chemical treatment due to its advantages of being a low-temperature, large-area, high-throughput, and Si-compatible process.

  7. Naumannella halotolerans gen. nov., sp. nov., a Gram-positive coccus of the family Propionibacteriaceae isolated from a pharmaceutical clean room and from food.

    PubMed

    Rieser, Gernot; Scherer, Siegfried; Wenning, Mareike

    2012-12-01

    Four Gram-stain-positive, aerobic bacterial strains isolated from a pharmaceutical clean room (strain WS4616(T)), a dessert milk product (strain WS4617) and from raw milk (strains WS4623 and WS4624) were characterized using a polyphasic approach. Phylogenetic analyses based on 16S rRNA and recA gene sequences showed that they formed a distinct lineage within the family Propionibacteriaceae. Similarity values between 16S rRNA gene sequences of the four novel strains and the type species of all genera belonging to the family Propionibacteriaceae were 89.2-94.1%. The major cellular fatty acid was anteiso-C(15:0) and the major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. Respiratory quinones were MK-8(H(4)) and MK-9(H(4)). The cell-wall peptidoglycan of type A3γ contained ll-diaminopimelic acid, alanine, glycine and glutamic acid. The G+C content of the genomic DNA of strain WS4616(T) was 67.7 mol%. The whole-cell sugar pattern contained ribose, mannose, arabinose, glucose and galactose. On the basis of phenotypic and genetic data, strains WS4616(T), WS4617, WS4623 and WS4624 are classified as members of a novel species in a new genus of the family Propionibacteriaceae, for which the name Naumannella halotolerans gen. nov., sp. nov. is proposed. The type strain is WS4616(T) ( = DSM 24323(T) = LMG 26184(T)) and three additional strains are WS4617, WS4623 and WS4624.

  8. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  9. Bio-Inspired Self-Cleaning Surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Kesong; Jiang, Lei

    2012-08-01

    Self-cleaning surfaces have drawn a lot of interest for both fundamental research and practical applications. This review focuses on the recent progress in mechanism, preparation, and application of self-cleaning surfaces. To date, self-cleaning has been demonstrated by the following four conceptual approaches: (a) TiO2-based superhydrophilic self-cleaning, (b) lotus effect self-cleaning (superhydrophobicity with a small sliding angle), (c) gecko setae-inspired self-cleaning, and (d) underwater organisms-inspired antifouling self-cleaning. Although a number of self-cleaning products have been commercialized, the remaining challenges and future outlook of self-cleaning surfaces are also briefly addressed. Through evolution, nature, which has long been a source of inspiration for scientists and engineers, has arrived at what is optimal. We hope this review will stimulate interdisciplinary collaboration among material science, chemistry, biology, physics, nanoscience, engineering, etc., which is essential for the rational design and reproducible construction of bio-inspired multifunctional self-cleaning surfaces in practical applications.

  10. Mouse Cleaning Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L. (Inventor)

    2005-01-01

    The method of using the mouse pad cleaning apparatus is disclosed and claimed. The method comprises the steps of uncovering the mouse cleaning surface, applying the mouse and ball of the mouse to the cleaning surface, moving the mouse in a rotational pattern on the mouse cleaning surface, removing the mouse form the mouse cleaning surface, washing the cleaning surface, and covering the mouse cleaning surface. A mouse pad cleaning apparatus comprising a plurality of substrates, each said substrate having adhesive thereon, said plurality of substrates residing in and affixed to a receptacle. A single substrate having adhesive, which may be washable or non-washable, thereon may be employed. The washable adhesive may be an organopolysiloxane or gelatinous elastomer.

  11. Environmental and body contamination from cleaning vomitus in a health care setting: A simulation study.

    PubMed

    Phan, Linh; Su, Yu-Min; Weber, Rachel; Fritzen-Pedicini, Charissa; Edomwande, Osayuwamen; Jones, Rachael M

    2018-04-01

    Environmental service workers may be exposed to pathogens during the cleaning of pathogen-containing bodily fluids. Participants with experience cleaning hospital environments were asked to clean simulated, fluorescein-containing vomitus using normal practices in a simulated patient room. Fluorescein was visualized in the environment and on participants under black lights. Fluorescein was quantitatively measured on the floor, in the air, and on gloves and shoe covers. In all 21 trials involving 7 participants, fluorescein was found on the floor after cleaning and on participants' gloves. Lower levels of floor contamination were associated with the use of towels to remove bulk fluid (ρ = -0.56, P = .01). Glove contamination was not associated with the number or frequency of contacts with environmental surfaces, suggesting contamination occurs with specific events, such as picking up contaminated towels. Fluorescein contamination on shoe covers was measured in 19 trials. Fluorescein was not observed on participants' facial personal protective equipment, if worn, or faces. Contamination on other body parts, primarily the legs, was observed in 8 trials. Fluorescein was infrequently quantified in the air. Using towels to remove bulk fluid prior to mopping is part of the recommended cleaning protocol and should be used to minimize residual contamination. Contamination on shoes and the floor may serve as reservoirs for pathogens. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  12. Compliance of Ultra-Orthodox and secular pedestrians with traffic lights in Ultra-Orthodox and secular locations.

    PubMed

    Rosenbloom, Tova; Shahar, Amit; Perlman, Amotz

    2008-11-01

    Following a previous study that revealed the disobedience of Ultra-Orthodox citizens, as compared to secular citizens, of traffic lights at crosswalks, the present study examined the road habits of 995 Ultra-Orthodox and secular pedestrians in neighboring Ultra-Orthodox and secular cities. Using an observation grid designed specially for this study, the pedestrians were observed at two crosswalks--one in an Ultra-Orthodox city and one in a secular city--as far as similar traffic parameters, using a logistic regression. The tendency to cross on a red light was assessed as a function of estimated age, gender, religiosity, location (religious/secular), the duration of the red light, the number of vehicles crossing and the number of pedestrians waiting at the curb. Ultra-Orthodox pedestrians committed more violations than secular pedestrians did, and there were more road violations in the Ultra-Orthodox location than there were in the secular location. Fewer traffic violations were committed by "local" pedestrians (Ultra-Orthodox pedestrians in the Ultra-Orthodox location and secular pedestrians in the secular location) than by "foreigners" (Ultra-Orthodox pedestrians in the secular location and secular pedestrians in the Ultra-Orthodox location). The odds of crossing on a red light decreased as a function of both the number of people waiting at the curb and the number of vehicles. Consistent with previous research, males crossed on red much more than females did, regardless of religiosity and location. Our discussion focuses on theoretical and practical explanations of the findings.

  13. A Commercial IOTV Cleaning Study

    DTIC Science & Technology

    2010-04-12

    manufacturer’s list price without taking into consideration of possible volume discount.  Equipment depreciation cost was calculated based on...Laundering with Prewash Spot Cleaning) 32 Table 12 Shrinkage Statistical Data (Traditional Wet Laundering without Prewash Spot Cleaning...Statistical Data (Computer-controlled Wet Cleaning without Prewash Spot Cleaning) 35 Table 15 Shrinkage Statistical Data (Liquid CO2 Cleaning

  14. Tunable multiwavelength SOA fiber laser with ultra-narrow wavelength spacing based on nonlinear polarization rotation.

    PubMed

    Zhang, Zuxing; Wu, Jian; Xu, Kun; Hong, Xiaobin; Lin, Jintong

    2009-09-14

    A tunable multiwavelength fiber laser with ultra-narrow wavelength spacing and large wavelength number using a semiconductor optical amplifier (SOA) has been demonstrated. Intensity-dependent transmission induced by nonlinear polarization rotation in the SOA accounts for stable multiwavelength operation with wavelength spacing less than the homogenous broadening linewidth of the SOA. Stable multiwavelength lasing with wavelength spacing as small as 0.08 nm and wavelength number up to 126 is achieved at room temperature. Moreover, wavelength tuning of 20.2 nm is implemented via polarization tuning.

  15. Latest technologies on ultrasonic cleaning

    NASA Astrophysics Data System (ADS)

    Hofstetter, Hans U.

    2007-05-01

    UCM-AG manufactures Ultrasonic Cleaning Machines for highest quality requirements. The company has the know-how for cleaning and supplies cleaning systems together with the cleaning process. With a UCM of Switzerland Cleaning System, the customer gets the system itself, the cleaning process with a guarantee for the specified result but also all auxiliary equipment needed for perfect results. Therefore UCM also supplies fixtures, linkage to existing automated fabrication facilities water treatment plants etc. Thus the UCM customer gets a turnkey installation - ready to operate and including know-how. UCM of Switzerland will describe the latest technology in ultrasonic precision cleaning on the example of a recent and sophisticated installation. The installation consists of three interlinked cleaning systems which operate completely automated. The 1st system is designed for pre-cleaning to remove waxes, pitch and protection lacquers with environmentally friendly solvents which are non hazardous to the health of the operators. The 2nd system cleans the parts prior to inspection and operates with neutral or slightly alkaline detergents. The 3rd system is designed for final cleaning prior to vacuum coating and perfect results are required. It combines cleaning tanks and DI-Water rinse with lift out and vacuum dryer. The installation combines the latest technologies in ultrasonic cleaning for precision optical components. The system employs multi frequency immersed ultrasonic transducers and special rinsing technologies The complete installation will be explained in detail; the concept in its whole, the lay out, the particular setup of each cleaning system etc. will be shown and explained together with construction particulars of the complete installation.

  16. Comparison of washer-disinfector cleaning indicators: impact of temperature and cleaning cycle parameters.

    PubMed

    Alfa, Michelle J; Olson, Nancy

    2014-02-01

    Because automated instrument washer-disinfectors (WD) are widely used in health care to reprocess a variety of medical instruments, we developed a study to compare 3 cleaning indicators to determine whether they detected suboptimal temperature, time, enzymatic detergent, and fluid action in a washer-disinfector. The Miele WD was used for this comparison. One optimal cycle and 14 cycles with suboptimal enzymatic detergent, cleaning time, temperature, or inactive spray arms were evaluated. The cleaning indicators evaluated included the following: Pinnacle Monitor for Automated Enzymatic Cleaning Process (PNCL), Wash-Checks (WC), and TOSI. The scoring system for all 3 indicators was harmonized to a common scale. Soiled tweezers were included in each cycle evaluated. The PNCL, TOSI, and WC cleaning indicators showed significantly more failures at 40°C compared with 60°C (100% vs 0% for PNCL, 17% vs 0% for TOSI, and 60% vs 22% for WC, respectively). There were significantly more failures at suboptimal temperatures with a 2- versus 4-minute cycle (100% vs 0% for PNCL, 17% vs 0% for TOSI, and 17% vs 0% for WC, respectively, for 40°C cycles). Despite suboptimal cleaning cycles, all soiled tweezers looked clean. All 3 cleaning indicators responded to suboptimal WD conditions; however, the PNCL was the most affected by alterations in the cycle conditions evaluated. In simulated use testing, cleaning indicators provided a more sensitive audit tool compared with visual inspection of soiled instruments after automated cleaning. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  17. Precision cleaning apparatus and method

    DOEpatents

    Schneider, T.W.; Frye, G.C.; Martin, S.J.

    1998-01-13

    A precision cleaning apparatus and method are disclosed. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece. 11 figs.

  18. Precision cleaning apparatus and method

    DOEpatents

    Schneider, Thomas W.; Frye, Gregory C.; Martin, Stephen J.

    1998-01-01

    A precision cleaning apparatus and method. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece.

  19. Supersonic Gas-Liquid Cleaning System

    NASA Technical Reports Server (NTRS)

    Kinney, Frank

    1996-01-01

    The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.

  20. Age-related changes in ultra-triathlon performances

    PubMed Central

    2012-01-01

    Background The age-related decline in performance has been investigated in swimmers, runners and triathletes. No study has investigated the age-related performance decline in ultra-triathletes. The purpose of this study was to analyse the age-related declines in swimming, cycling, running and overall race time for both Triple Iron ultra-triathlon (11.4-km swimming, 540-km cycling and 126.6-km running) and Deca Iron ultra-triathlon (38-km swimming, 1,800-km cycling and 420-km running). Methods The age and performances of 423 male Triple Iron ultra-triathletes and 119 male Deca Iron ultra-triathletes were analysed from 1992 to 2010 using regression analyses and ANOVA. Results The mean age of the finishers was significantly higher for Deca Iron ultra-triathletes (41.3 ± 3.1 years) compared to a Triple Iron ultra-triathletes (38.5 ± 3.3 years) (P < 0.05). For both ultra-distances, the fastest overall race times were achieved between the ages of 25 and 44 years. Deca Iron ultra-triathletes achieved the same level of performance in swimming and cycling between 25 and 54 years of age. Conclusions The magnitudes of age-related declines in performance in the three disciplines of ultra-triathlon differ slightly between Triple and Deca Iron ultra-triathlon. Although the ages of Triple Iron ultra-triathletes were on average younger compared to Deca Iron ultra-triathletes, the fastest race times were achieved between 25 and 44 years for both distances. Further studies should investigate the motivation and training of ultra-triathletes to gain better insights in ultra-triathlon performance. PMID:23849327

  1. Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents.

    PubMed

    Zevenhoven, Koos C J; Busch, Sarah; Hatridge, Michael; Oisjöen, Fredrik; Ilmoniemi, Risto J; Clarke, John

    2014-03-14

    Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field-applied before each signal acquisition sequence to increase the signal-induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures.

  2. Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents

    PubMed Central

    Zevenhoven, Koos C. J.; Busch, Sarah; Hatridge, Michael; Öisjöen, Fredrik; Ilmoniemi, Risto J.; Clarke, John

    2014-01-01

    Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field—applied before each signal acquisition sequence to increase the signal—induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures. PMID:24753629

  3. Ultra-Low Background Measurements Of Decayed Aerosol Filters

    NASA Astrophysics Data System (ADS)

    Miley, H.

    2009-04-01

    To experimentally evaluate the opportunity to apply ultra-low background measurement methods to samples collected, for instance, by the Comprehensive Test Ban Treaty International Monitoring System (IMS), aerosol samples collected on filter media were measured using HPGe spectrometers of varying low-background technology approaches. In this way, realistic estimates of the impact of low-background methodology can be assessed on the Minimum Detectable Activities obtained in systems such as the IMS. The current measurement requirement of stations in the IMS is 30 microBq per cubic meter of air for 140Ba, or about 106 fissions per daily sample. Importantly, this is for a fresh aerosol filter. Decay varying form 3 days to one week reduce the intrinsic background from radon daughters in the sample. Computational estimates of the improvement factor for these decayed filters for underground-based HPGe in clean shielding materials are orders of magnitude less, even when the decay of the isotopes of interest is included.

  4. An intra-neural microstimulation system for ultra-high field magnetic resonance imaging and magnetoencephalography.

    PubMed

    Glover, Paul M; Watkins, Roger H; O'Neill, George C; Ackerley, Rochelle; Sanchez-Panchuelo, Rosa; McGlone, Francis; Brookes, Matthew J; Wessberg, Johan; Francis, Susan T

    2017-10-01

    Intra-neural microstimulation (INMS) is a technique that allows the precise delivery of low-current electrical pulses into human peripheral nerves. Single unit INMS can be used to stimulate individual afferent nerve fibres during microneurography. Combining this with neuroimaging allows the unique monitoring of central nervous system activation in response to unitary, controlled tactile input, with functional magnetic resonance imaging (fMRI) providing exquisite spatial localisation of brain activity and magnetoencephalography (MEG) high temporal resolution. INMS systems suitable for use within electrophysiology laboratories have been available for many years. We describe an INMS system specifically designed to provide compatibility with both ultra-high field (7T) fMRI and MEG. Numerous technical and safety issues are addressed. The system is fully analogue, allowing for arbitrary frequency and amplitude INMS stimulation. Unitary recordings obtained within both the MRI and MEG screened-room environments are comparable with those obtained in 'clean' electrophysiology recording environments. Single unit INMS (current <7μA, 200μs pulses) of individual mechanoreceptive afferents produces appropriate and robust responses during fMRI and MEG. This custom-built MRI- and MEG-compatible stimulator overcomes issues with existing INMS approaches; it allows well-controlled switching between recording and stimulus mode, prevents electrical shocks because of long cable lengths, permits unlimited patterns of stimulation, and provides a system with improved work-flow and participant comfort. We demonstrate that the requirements for an INMS-integrated system, which can be used with both fMRI and MEG imaging systems, have been fully met. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Passive ultra-brief video training improves performance of compression-only cardiopulmonary resuscitation.

    PubMed

    Benoit, Justin L; Vogele, Jennifer; Hart, Kimberly W; Lindsell, Christopher J; McMullan, Jason T

    2017-06-01

    Bystander compression-only cardiopulmonary resuscitation (CPR) improves survival after out-of-hospital cardiac arrest. To broaden CPR training, 1-2min ultra-brief videos have been disseminated via the Internet and television. Our objective was to determine whether participants passively exposed to a televised ultra-brief video perform CPR better than unexposed controls. This before-and-after study was conducted with non-patients in an urban Emergency Department waiting room. The intervention was an ultra-brief CPR training video displayed via closed-circuit television 3-6 times/hour. Participants were unaware of the study and not told to watch the video. Pre-intervention, no video was displayed. Participants were asked to demonstrate compression-only CPR on a manikin. Performance was scored based on critical actions: check for responsiveness, call for help, begin compressions immediately, and correct hand placement, compression rate and depth. The primary outcome was the proportion of participants who performed all actions correctly. There were 50 control and 50 exposed participants. Mean age was 37, 51% were African-American, 52% were female, and 10% self-reported current CPR certification. There were no statistically significant differences in baseline characteristics between groups. The number of participants who performed all actions correctly was 0 (0%) control vs. 10 (20%) exposed (difference 20%, 95% confidence interval [CI] 8.9-31.1%, p<0.001). Correct compression rate and depth were 11 (22%) control vs. 22 (44%) exposed (22%, 95% CI 4.1-39.9%, p=0.019), and 5 (10%) control vs. 15 (30%) exposed (20%, 95% CI 4.8-35.2%, p=0.012), respectively. Passive ultra-brief video training is associated with improved performance of compression-only CPR. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cleaning and passivation of copper surfaces to remove surface radioactivity and prevent oxide formation

    NASA Astrophysics Data System (ADS)

    Hoppe, E. W.; Seifert, A.; Aalseth, C. E.; Bachelor, P. P.; Day, A. R.; Edwards, D. J.; Hossbach, T. W.; Litke, K. E.; McIntyre, J. I.; Miley, H. S.; Schulte, S. M.; Smart, J. E.; Warren, G. A.

    2007-08-01

    High-purity copper is an attractive material for constructing ultra-low-background radiation measurement devices. Many low-background experiments using high-purity copper have indicated surface contamination emerges as the dominant background. Radon daughters plate out on exposed surfaces, leaving a residual 210Pb background that is difficult to avoid. Dust is also a problem; even under cleanroom conditions, the amount of U and Th deposited on surfaces can represent the largest remaining background. To control these backgrounds, a copper cleaning chemistry has been developed. Designed to replace an effective, but overly aggressive concentrated nitric acid etch, this peroxide-based solution allows for a more controlled cleaning of surfaces. The acidified hydrogen peroxide solution will generally target the Cu +/Cu 2+ species which are the predominant surface participants, leaving the bulk of copper metal intact. This preserves the critical tolerances of parts and eliminates significant waste disposal issues. Accompanying passivation chemistry has also been developed that protects copper surfaces from oxidation. Using a high-activity polonium surface spike, the most difficult-to-remove daughter isotope of radon, the performance of these methods are quantified.

  7. Novel room temperature ferromagnetic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Amita

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will bemore » higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn

  8. What predicts performance in ultra-triathlon races? – a comparison between Ironman distance triathlon and ultra-triathlon

    PubMed Central

    Knechtle, Beat; Zingg, Matthias Alexander; Rosemann, Thomas; Stiefel, Michael; Rüst, Christoph Alexander

    2015-01-01

    Objective This narrative review summarizes recent intentions to find potential predictor variables for ultra-triathlon race performance (ie, triathlon races longer than the Ironman distance covering 3.8 km swimming, 180 km cycling, and 42.195 km running). Results from studies on ultra-triathletes were compared to results on studies on Ironman triathletes. Methods A literature search was performed in PubMed using the terms “ultra”, “triathlon”, and “performance” for the aspects of “ultra-triathlon”, and “Ironman”, “triathlon”, and “performance” for the aspects of “Ironman triathlon”. All resulting papers were searched for related citations. Results for ultra-triathlons were compared to results for Ironman-distance triathlons to find potential differences. Results Athletes competing in Ironman and ultra-triathlon differed in anthropometric and training characteristics, where both Ironmen and ultra-triathletes profited from low body fat, but ultra-triathletes relied more on training volume, whereas speed during training was related to Ironman race time. The most important predictive variables for a fast race time in an ultra-triathlon from Double Iron (ie, 7.6 km swimming, 360 km cycling, and 84.4 km running) and longer were male sex, low body fat, age of 35–40 years, extensive previous experience, a fast time in cycling and running but not in swimming, and origins in Central Europe. Conclusion Any athlete intending to compete in an ultra-triathlon should be aware that low body fat and high training volumes are highly predictive for overall race time. Little is known about the physiological characteristics of these athletes and about female ultra-triathletes. Future studies need to investigate anthropometric and training characteristics of female ultra-triathletes and what motivates women to compete in these races. Future studies need to correlate physiological characteristics such as maximum oxygen uptake (VO2max) with ultra

  9. Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Rabe, Douglas; Scribben, Angie

    2015-01-01

    In the study presented, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft engines require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the current study is to advance the understanding of the flow interaction between a modern ultra-compact inlet and a transonic fan for future design applications. Many experimental/ analytical studies have been reported on the aerodynamics of compact inlets in aircraft engines. On the other hand, very few studies have been reported on the effects of flow distortion from these inlets on the performance of the following fan/compressor stages. The primary goal of the study presented is to investigate how flow interaction between an ultra-compact inlet and a transonic compressor influence the operating margin of the compressor. Both Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) approaches are used to calculate the unsteady flow field, and the numerical results are used to study the flow interaction. The present study indicates that stall inception of the following compressor stage is affected directly based on how the distortion pattern evolves before it interacts with the fan/compressor face. For the present compressor, the stall initiates at the tip section with clean inlet flow and distortion pattern away from the casing itself seems to have limited impacts on the stall inception of the compressor. A counter-rotating swirl, which is generated due to flow separation inside the s-shaped compact duct, generates an increased flow angle near the blade tip. This increased flow angle near the rotor tip due to the secondary flow from the counter-rotating vortices is the primary reason for the reduced compressor stall margin.

  10. Physiology and Pathophysiology in Ultra-Marathon Running

    PubMed Central

    Knechtle, Beat; Nikolaidis, Pantelis T.

    2018-01-01

    In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time) is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat) and training (e.g., high volume and running speed during training) characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10–20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35–45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold) or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In longer ultra

  11. Physiology and Pathophysiology in Ultra-Marathon Running.

    PubMed

    Knechtle, Beat; Nikolaidis, Pantelis T

    2018-01-01

    In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time) is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat) and training (e.g., high volume and running speed during training) characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10-20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35-45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold) or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In longer ultra

  12. Cleaning devices

    NASA Technical Reports Server (NTRS)

    Schneider, Horst W. (Inventor)

    1981-01-01

    Cleaning devices are described which include a vacuum cleaner nozzle with a sharp rim for directing incoming air down against the floor; a vacuum cleaner wherein electrostatically charged brushes that brush dirt off a floor, are electrically grounded to remove charges that could tend to hold dirt to the brushes; a vacuum cleaner head having slots that form a pair of counter-rotating vortices, and that includes an outlet that blows a stream of air at the floor region which lies between the vortices; a cleaning device that sweeps a group of brushes against the ground along a first direction, and then sweeps them along the same ground area but in a second direction angled from the first by an amount such as 90.degree., to sweep up particles lying in crevices extending along any direction; a device that gently cleans a surface to remove bacteria for analysis, including an inclined wall along which cleaning fluid flows onto the surface, a vacuum chamber for drawing in the cleaning fluid, and a dividing wall spaced slightly from the surface to separate the fluid source from the vacuum cleaner chamber; and a device for providing pulses of pressured air including a chamber to which pressured air is supplied, a ball that circulates around the chamber to repeatedly close an outlet, and an air source that directs air circumferentially to move the ball around the chamber.

  13. CuInP₂S₆ Room Temperature Layered Ferroelectric.

    PubMed

    Belianinov, A; He, Q; Dziaugys, A; Maksymovych, P; Eliseev, E; Borisevich, A; Morozovska, A; Banys, J; Vysochanskii, Y; Kalinin, S V

    2015-06-10

    We explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP2S6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleaved bulk surfaces, whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V-likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. The existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing "graphene family".

  14. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrwas, R. B.

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludgemore » in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.« less

  15. Ultra-fast electron capture by electrosterically-stabilized gold nanoparticles.

    PubMed

    Ghandi, Khashayar; Findlater, Alexander D; Mahimwalla, Zahid; MacNeil, Connor S; Awoonor-Williams, Ernest; Zahariev, Federico; Gordon, Mark S

    2015-07-21

    Ultra-fast pre-solvated electron capture has been observed for aqueous solutions of room-temperature ionic liquid (RTIL) surface-stabilized gold nanoparticles (AuNPs; ∼9 nm). The extraordinarily large inverse temperature dependent rate constants (k(e)∼ 5 × 10(14) M(-1) s(-1)) measured for the capture of electrons in solution suggest electron capture by the AuNP surface that is on the timescale of, and therefore in competition with, electron solvation and electron-cation recombination reactions. The observed electron transfer rates challenge the conventional notion that radiation induced biological damage would be enhanced in the presence of AuNPs. On the contrary, AuNPs stabilized by non-covalently bonded ligands demonstrate the potential to quench radiation-induced electrons, indicating potential applications in fields ranging from radiation therapy to heterogeneous catalysis.

  16. Ionic liquid gating on atomic layer deposition passivated GaN: Ultra-high electron density induced high drain current and low contact resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong; Du, Yuchen; Ye, Peide D., E-mail: yep@purdue.edu

    2016-05-16

    Herein, we report on achieving ultra-high electron density (exceeding 10{sup 14 }cm{sup −2}) in a GaN bulk material device by ionic liquid gating, through the application of atomic layer deposition (ALD) of Al{sub 2}O{sub 3} to passivate the GaN surface. Output characteristics demonstrate a maximum drain current of 1.47 A/mm, the highest reported among all bulk GaN field-effect transistors, with an on/off ratio of 10{sup 5} at room temperature. An ultra-high electron density exceeding 10{sup 14 }cm{sup −2} accumulated at the surface is confirmed via Hall-effect measurement and transfer length measurement. In addition to the ultra-high electron density, we also observe a reductionmore » of the contact resistance due to the narrowing of the Schottky barrier width on the contacts. Taking advantage of the ALD surface passivation and ionic liquid gating technique, this work provides a route to study the field-effect and carrier transport properties of conventional semiconductors in unprecedented ultra-high charge density regions.« less

  17. Black silicon with self-cleaning surface prepared by wetting processes

    PubMed Central

    2013-01-01

    This paper reports on a simple method to prepare a hydrophobic surface on black silicon, which is fabricated by metal-assisted wet etching. To increase the reaction rate, the reaction device was placed in a heat collection-constant temperature type magnetic stirrer and set at room temperature. It was demonstrated that the micro- and nanoscale spikes on the black silicon made the surface become hydrophobic. As the reaction rate increases, the surface hydrophobicity becomes more outstanding and presents self-cleaning until the very end. The reflectance of the black silicon is drastically suppressed over a broad spectral range due to the unique geometry, which is effective for the enhancement of absorption. PMID:23941184

  18. Analysis of ultra-triathlon performances

    PubMed Central

    Lepers, Romuald; Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas

    2011-01-01

    Despite increased interest in ultra-endurance events, little research has examined ultra-triathlon performance. The aims of this study were: (i) to compare swimming, cycling, running, and overall performances in three ultra-distance triathlons, double Ironman distance triathlon (2IMT) (7.6 km swimming, 360 km cycling, and 84.4 km running), triple Ironman distance triathlon (3IMT) (11.4 km, 540 km, and 126.6 km), and deca Ironman distance triathlon (10IMT) (38 km, 1800 km, and 420 km) and (ii) to examine the relationships between the 2IMT, 3IMT, and 10IMT performances to create predicted equations of the 10IMT performances. Race results from 1985 through 2009 were examined to identify triathletes who performed the three considered ultra-distances. In total, 73 triathletes (68 men and 5 women) were identified. The contribution of swimming to overall ultra-triathlon performance was lower than for cycling and running. Running performance was more important to overall performance for 2IMT and 3IMT compared with 10IMT The 2IMT and 3IMT performances were significantly correlated with 10IMT performances for swimming and cycling, but not for running. 10IMT total time performance might be predicted by the following equation: 10IMT race time (minutes) = 5885 + 3.69 × 3IMT race time (minutes). This analysis of human performance during ultra-distance triathlons represents a unique data set in the field of ultra-endurance events. Additional studies are required to determine the physiological and psychological factors associated with ultra-triathlon performance. PMID:24198579

  19. California Clean Tech

    EPA Pesticide Factsheets

    The California Clean Air Technology Initiative is a partnership to develop clean air technologies for the San Joaquin Valley and South Coast Air Basins through collaborative projects in technology research, development, demonstration, and deployment.

  20. Cleaning agents and asthma.

    PubMed

    Quirce, S; Barranco, P

    2010-01-01

    Although cleaners represent a significant part of the working population worldwide, they remain a relatively understudied occupational group. Epidemiological studies have shown an association between cleaning work and asthma, but the risk factors are uncertain. Cleaning workers are exposed to a large variety of cleaning products containing both irritants and sensitizers, as well as to common indoor allergens and pollutants. Thus, the onset or aggravation of asthma in this group could be related to an irritant-induced mechanism or to specific sensitization. The main sensitizers contained in cleaning products are disinfectants, quaternary ammonium compounds (such as benzalkonium chloride), amine compounds, and fragrances.The strongest airway irritants in cleaning products are bleach (sodium hypochlorite), hydrochloric acid, and alkaline agents (ammonia and sodium hydroxide), which are commonly mixed together. Exposure to the ingredients of cleaning products may give rise to both new-onset asthma, with or without a latency period, and work-exacerbated asthma. High-level exposure to irritants may induce reactive airways dysfunction syndrome. Cleaning workers may also have a greater relative risk of developing asthma due to prolonged low-to-moderate exposure to respiratory irritants. In addition, asthma-like symptoms without confirmed asthma are also common after exposure to cleaning agents. In many cleaners, airway symptoms induced by chemicals and odors cannot be explained by allergic or asthmatic reactions. These patients may have increased sensitivity to inhaled capsaicin, which is known to reflect sensory reactivity, and this condition is termed airway sensory hyperreactivity.

  1. Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone

    NASA Astrophysics Data System (ADS)

    Singer, Brett C.; Coleman, Beverly K.; Destaillats, Hugo; Hodgson, Alfred T.; Lunden, Melissa M.; Weschler, Charles J.; Nazaroff, William W.

    This study investigated the formation of secondary pollutants resulting from household product use in the presence of ozone. Experiments were conducted in a 50-m 3 chamber simulating a residential room. The chamber was operated at conditions relevant to US residences in polluted areas during warm-weather seasons: an air exchange rate of 1.0 h -1 and an inlet ozone concentration of approximately 120 ppb, when included. Three products were used in separate experiments. An orange oil-based degreaser and a pine oil-based general-purpose cleaner were used for surface cleaning applications. A plug-in scented-oil air freshener (AFR) was operated for several days. Cleaning products were applied realistically with quantities scaled to simulate residential use rates. Concentrations of organic gases and secondary organic aerosol from the terpene-containing consumer products were measured with and without ozone introduction. In the absence of reactive chemicals, the chamber ozone level was approximately 60 ppb. Ozone was substantially consumed following cleaning product use, mainly by homogeneous reaction. For the AFR, ozone consumption was weaker and heterogeneous reaction with sorbed AFR-constituent VOCs was of similar magnitude to homogeneous reaction with continuously emitted constituents. Formaldehyde generation resulted from product use with ozone present, increasing indoor levels by the order of 10 ppb. Cleaning product use in the presence of ozone generated substantial fine particle concentrations (more than 100 μg m -3) in some experiments. Ozone consumption and elevated hydroxyl radical concentrations persisted for 10-12 h following brief cleaning events, indicating that secondary pollutant production can persist for extended periods.

  2. [Study on the situation regarding endoscope cleaning and disinfection in the department of otolaryngology in Hunan hospitals].

    PubMed

    Wang, Fang; Li, Wei; Li, Rong; Tan, Guolin; Luo, Dan

    2016-05-01

    To investigate the situation regarding the cleaning and sterilization of endonasal endoscopes in department of otolaryngology in Hunan Province, and to provide strategy for improving the level of sterilization and management of endonasal endoscopes.
 A total of 100 medical institutions were investigated by spot assessment, check and sampling. Data was analyzed by multivariate analysis.
 The qualified rate of rules and regulations for endoscopy was 28.8% in the second-class hospitals and 45% in the top-class hospitals. The qualified rate of environment for endoscopy cleaning and sterilization was 36.3% in the second-class hospitals and 85% in the top-class hospitals. The main problems include lack of independent disinfection room, the space not large enough, and/or lack of ventilation system. The qualified rate of bacterial detection for post-sterilized endoscopes and biopsy forceps was 93.8% in the second-class hospitals and 95.0% in the top-class hospitals, and the main pathogenic bacteria was gram-positive cocci and gram-negative bacilli. The multivariate analysis showed that the influencial factors for endoscope cleaning and disinfection are as follows: staffs responsible for the cleaning and sterilization of otolaryngology endoscopes, the standard for cleaning and disinfection process, and the frequency of endoscope use.
 The present situation of cleaning and sterilization for otolaryngology endoscopes is better in the top-class hospitals than that in the second-class hospitals. The sterilization and management of otolaryngology endoscopy are needed to be improved, and the staff training is needed, especially in the primary hospitals.

  3. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOEpatents

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1996-05-07

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  4. Limonene and tetrahydrofurfurly alcohol cleaning agent

    DOEpatents

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  5. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOEpatents

    Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  6. Marine Corps Operational Medicine: An Analysis of Medical Supply Requirements for the Surgical Company Operating Room

    DTIC Science & Technology

    2004-06-18

    354 Minor room clean-up Yes Yes 358 Tracheostomy Yes Yes 359 Induce local anesthesia No Yes 403 Decompression Craniotomy Yes Yes 455 Amputation... Drainage Auto Transfusion Bag 6s 1.2 EA 6515014993126 Pleurevac Drainage Unit W/Blood Retreival 6s 1.2 EA 6510011603261 Sponge Laparotomy...2.5’ Ster 24s 4 EA 6515011535730 Suture Nonabsorb Surg Cardio 3-0 Dbl Armed Poly Monofilament Ster 36s 2 EA 6515008669073 Tube Drainage

  7. Enhancing electrical energy storage capability of dielectric polymer nanocomposites via the room temperature Coulomb blockade effect of ultra-small platinum nanoparticles.

    PubMed

    Wang, Liwei; Huang, Xingyi; Zhu, Yingke; Jiang, Pingkai

    2018-02-14

    Introducing a high dielectric constant (high-k) nanofiller into a dielectric polymer is the most common way to achieve flexible nanocomposites for electrostatic energy storage devices. However, the significant decrease of breakdown strength and large increase of dielectric loss has long been known as the bottleneck restricting the enhancement of practical energy storage capability of the nanocomposites. In this study, by introducing ultra-small platinum (<2 nm) nanoparticles, high-k polymer nanocomposites with high breakdown strength and low dielectric loss were prepared successfully. Core-shell structured polydopamine@BaTiO 3 (PDA@BT) and core-satellite ultra-small platinum decorated PDA@BT (Pt@PDA@BT) were used as nanofillers. Compared with PDA@BT nanocomposites, the maximum discharged energy density of the Pt@PDA@BT nanocomposites is increased by nearly 70% because of the improved energy storage efficiency. This research provides a simple, promising and unique way to enhance energy storage capability of high-k polymer nanocomposites.

  8. Duplex precipitates and their effects on the room-temperature fracture behaviour of a NiAl-strengthened ferritic alloy

    DOE PAGES

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; ...

    2015-03-23

    Duplex precipitates are presented in a NiAl-strengthened ferritic alloy. They were characterized by the ultra-small angle X-ray scattering and transmission electron microscope. Fine cooling precipitates with the size of several to tens of nanometres harden the matrix considerably at room temperature. The cracks will likely to initiate from precipitates, and coalesce and propagate quickly through the matrix due to the excessive hardening effect of cooling precipitates, which lead to the premature fracture of NiAl-strengthened ferritic alloys.

  9. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved toward the outside of the launch tower. It will be lowered and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved toward the outside of the launch tower. It will be lowered and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  10. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids.

    PubMed

    Singer, B C; Destaillats, H; Hodgson, A T; Nazaroff, W W

    2006-06-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m3 room ventilated at approximately 0.5/h. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 microg/m3 for individual terpenoids, including alpha-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and alpha-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or d-limonene were 300-6000 microg/m3 after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, and approximately 25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were approximately 35-70% with towels retained, and 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and beta-citronellol) were emitted at 35-180 mg/day over 3 days while air concentrations averaged 30-160 microg/m3. While effective cleaning can improve the healthfulness of indoor environments, this work shows that use of some consumer cleaning agents can yield high levels of volatile organic compounds, including glycol ethers--which are regulated toxic air contaminants--and terpenes that can react with ozone to form a variety of secondary pollutants including formaldehyde and ultrafine particles. Persons involved in cleaning, especially those who clean occupationally or often, might encounter

  11. Turbine-Driven Pipe-Cleaning Brush

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy J.; Rowell, David E.

    1994-01-01

    Simple pipe-cleaning device includes small turbine wheel axially connected, by standoff, to circular brush. Turbine wheel turns on hub bearing attached to end of upstream cable. Turbine-and-brush assembly inserted in pipe with cable trailing upstream and brush facing downstream. Water or cleaning solution pumped through pipe. Cable held at upstream end, so it holds turbine and brush in pipe at location to be cleaned. Flow in pipe turns turbine, which turns wheel, producing desired cleaning action. In addition to brushing action, device provides even mixing of cleaning solution in pipe.

  12. RM-CLEAN: RM spectra cleaner

    NASA Astrophysics Data System (ADS)

    Heald, George

    2017-08-01

    RM-CLEAN reads in dirty Q and U cubes, generates rmtf based on the frequencies given in an ASCII file, and cleans the RM spectra following the algorithm given by Brentjens (2007). The output cubes contain the clean model components and the CLEANed RM spectra. The input cubes must be reordered with mode=312, and the output cubes will have the same ordering and thus must be reordered after being written to disk. RM-CLEAN runs as a MIRIAD (ascl:1106.007) task and a Python wrapper is included with the code.

  13. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  14. Wash room, bunkhouse, first floor interior. This room is a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Wash room, bunkhouse, first floor interior. This room is a screened porch with the original sinks extant. Light and ventilation was borrowed from the wash room into the toilets and bathing rooms. - Sespe Ranch, Bunkhouse, 2896 Telegraph Road, Fillmore, Ventura County, CA

  15. Extending CO2 cryogenic aerosol cleaning for advanced optical and EUV mask cleaning

    NASA Astrophysics Data System (ADS)

    Varghese, Ivin; Bowers, Charles W.; Balooch, Mehdi

    2011-11-01

    Cryogenic CO2 aerosol cleaning being a dry, chemically-inert and residue-free process is used in the production of optical lithography masks. It is an attractive cleaning option for the mask industry to achieve the requirement for removal of all printable soft defects and repair debris down to the 50nm printability specification. In the technique, CO2 clusters are formed by sudden expansion of liquid from high to almost atmospheric pressure through an optimally designed nozzle orifice. They are then directed on to the soft defects or debris for momentum transfer and subsequent damage free removal from the mask substrate. Unlike aggressive acid based wet cleaning, there is no degradation of the mask after processing with CO2, i.e., no critical dimension (CD) change, no transmission/phase losses, or chemical residue that leads to haze formation. Therefore no restriction on number of cleaning cycles is required to be imposed, unlike other cleaning methods. CO2 aerosol cleaning has been implemented for several years as full mask final clean in production environments at several state of the art mask shops. Over the last two years our group reported successful removal of all soft defects without damage to the fragile SRAF features, zero adders (from the cleaning and handling mechanisms) down to a 50nm printability specification. In addition, CO2 aerosol cleaning is being utilized to remove debris from Post-RAVE repair of hard defects in order to achieve the goal of no printable defects. It is expected that CO2 aerosol cleaning can be extended to extreme ultraviolet (EUV) masks. In this paper, we report advances being made in nozzle design qualification for optimum snow properties (size, velocity and flux) using Phase Doppler Anemometry (PDA) technique. In addition the two new areas of focus for CO2 aerosol cleaning i.e. pellicle glue residue removal on optical masks, and ruthenium (Ru) film on EUV masks are presented. Usually, the residue left over after the pellicle

  16. Consumers' conceptualization of ultra-processed foods.

    PubMed

    Ares, Gastón; Vidal, Leticia; Allegue, Gimena; Giménez, Ana; Bandeira, Elisa; Moratorio, Ximena; Molina, Verónika; Curutchet, María Rosa

    2016-10-01

    Consumption of ultra-processed foods has been associated with low diet quality, obesity and other non-communicable diseases. This situation makes it necessary to develop educational campaigns to discourage consumers from substituting meals based on unprocessed or minimally processed foods by ultra-processed foods. In this context, the aim of the present work was to investigate how consumers conceptualize the term ultra-processed foods and to evaluate if the foods they perceive as ultra-processed are in concordance with the products included in the NOVA classification system. An online study was carried out with 2381 participants. They were asked to explain what they understood by ultra-processed foods and to list foods that can be considered ultra-processed. Responses were analysed using inductive coding. The great majority of the participants was able to provide an explanation of what ultra-processed foods are, which was similar to the definition described in the literature. Most of the participants described ultra-processed foods as highly processed products that usually contain additives and other artificial ingredients, stressing that they have low nutritional quality and are unhealthful. The most relevant products for consumers' conceptualization of the term were in agreement with the NOVA classification system and included processed meats, soft drinks, snacks, burgers, powdered and packaged soups and noodles. However, some of the participants perceived processed foods, culinary ingredients and even some minimally processed foods as ultra-processed. This suggests that in order to accurately convey their message, educational campaigns aimed at discouraging consumers from consuming ultra-processed foods should include a clear definition of the term and describe some of their specific characteristics, such as the type of ingredients included in their formulation and their nutritional composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Staff corridor (room 206, representing rooms 301, 305, 401, 405, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Staff corridor (room 206, representing rooms 301, 305, 401, 405, 501, and 505), looking south towards the staff corridor vestibule (room 206A, representing rooms 305A, 405A, and 505A). - California State Office Building No. 1, 915 Capitol Mall, Sacramento, Sacramento County, CA

  18. High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device

    NASA Astrophysics Data System (ADS)

    Thangavel, Ranjith; Kannan, Aravindaraj G.; Ponraj, Rubha; Thangavel, Vigneysh; Kim, Dong-Won; Lee, Yun-Sung

    2018-04-01

    Development of supercapacitors with high energy density and long cycle life using sustainable materials for next-generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 °C) with maximum energy densities of ∼174 Wh kg-1 (25 °C), and 177 Wh kg-1 (60 °C) - based on active mass of both electrodes. Furthermore, an ultra-high specific power of ∼20 kW kg-1 along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 °C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.

  19. Cleaning without chlorinated solvents

    NASA Technical Reports Server (NTRS)

    Thompson, L. M.; Simandl, R. F.

    1995-01-01

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92 percent. The program has been a twofold effort. Vapor degreasers used in batch cleaning operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting, and bonding. Cleaning ability was determined using techniques such as x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes, and swelling of epoxies.

  20. 77 FR 44672 - Notice of Lodging of Consent Decree Under the Clean Water and Clean Air Acts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Water and Clean Air Acts... a civil penalty of $1,750,000 to resolve its violations of the Clean Air Act and the Clean Water Act... of coke oven gas. Under the Clean Water Act, Plaintiffs allege that Shenango violated the effluent...

  1. Cleaning with Bulk Nanobubbles.

    PubMed

    Zhu, Jie; An, Hongjie; Alheshibri, Muidh; Liu, Lvdan; Terpstra, Paul M J; Liu, Guangming; Craig, Vincent S J

    2016-11-01

    The electrolysis of aqueous solutions produces solutions that are supersaturated in oxygen and hydrogen gas. This results in the formation of gas bubbles, including nanobubbles ∼100 nm in size that are stable for ∼24 h. These aqueous solutions containing bubbles have been evaluated for cleaning efficacy in the removal of model contaminants bovine serum albumin and lysozyme from surfaces and in the prevention of the fouling of surfaces by these same proteins. Hydrophilic and hydrophobic surfaces were investigated. It is shown that nanobubbles can prevent the fouling of surfaces and that they can also clean already fouled surfaces. It is also argued that in practical applications where cleaning is carried out rapidly using a high degree of mechanical agitation the role of cleaning agents is not primarily in assisting the removal of soil but in suspending the soil that is removed by mechanical action and preventing it from redepositing onto surfaces. This may also be the primary mode of action of nanobubbles during cleaning.

  2. Gas cleaning system and method

    DOEpatents

    Newby, Richard Allen

    2006-06-06

    A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

  3. Benchmarks of Global Clean Energy Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandor, Debra; Chung, Donald; Keyser, David

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  4. Sex Difference in Draft-Legal Ultra-Distance Events - A Comparison between Ultra-Swimming and Ultra-Cycling.

    PubMed

    Salihu, Lejla; Rüst, Christoph Alexander; Rosemann, Thomas; Knechtle, Beat

    2016-04-30

    Recent studies reported that the sex difference in performance in ultra-endurance sports such as swimming and cycling changed over the years. However, the aspect of drafting in draft-legal ultra-endurance races has not yet been investigated. This study investigates the sex difference in ultra-swimming and ultra-cycling draft-legal races where drafting - swimming or cycling behind other participants to save energy and have more power at the end of the race to overtake them, is allowed. The change in performance of the annual best and the annual three best in an ultra-endurance swimming race (16-km 'Faros Swim Marathon') over 38 years and in a 24-h ultra-cycling race ('World Cycling Race') over 13 years were compared and analysed with respect to sex difference. Furthermore, performances of the fastest female and male finishers ever were compared. In the swimming event, the sex difference of the annual best male and female decreased non-significantly (P = 0.262) from 5.3% (1976) to 1.0% (2013). The sex gap of speed in the annual three fastest swimmers decreased significantly (P = 0.043) from 5.9 ± 1.6% (1979) to 4.7 ± 3.1% (2013). In the cycling event, the difference in cycling speed between the annual best male and female decreased significantly (P = 0.026) from 33.31% (1999) to 10.89% (2011). The sex gap of speed in the annual three fastest decreased significantly (P = 0.001) from 32.9 ± 0.6% (1999) to 16.4 ± 5.9% (2011). The fastest male swimmer ever (swimming speed 5.3 km/h, race time: 03:01:55 h:min:s) was 1.5% faster than the fastest female swimmer (swimming speed 5.2 km/h, race time: 03:04:09 h:min:s). The three fastest male swimmers ever (mean 5.27 ± 0.13 km/h) were 4.4% faster than the three fastest female swimmers (mean 5.05 ± 0.20 km/h) (P < 0.05). In the cycling event, the best male ever (cycling speed 45.8 km/h) was 26.4% faster than the best female (cycling speed 36.1 km/h). The three fastest male cyclists ever (45.9 km/h) (mean 45.85 ± 0.05 km

  5. ENHANCED CHEMICAL CLEANING: A NEW PROCESS FOR CHEMICALLY CLEANING SAVANNAH RIVER WASTE TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, E; Neil Davis, N; Renee Spires, R

    2008-01-17

    The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store thismore » stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.« less

  6. Graphene field-effect transistors as room-temperature terahertz detectors.

    PubMed

    Vicarelli, L; Vitiello, M S; Coquillat, D; Lombardo, A; Ferrari, A C; Knap, W; Polini, M; Pellegrini, V; Tredicucci, A

    2012-10-01

    The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very promising material for the development of detectors and modulators operating in the terahertz region of the electromagnetic spectrum (wavelengths in the hundreds of micrometres), still severely lacking in terms of solid-state devices. Here we demonstrate terahertz detectors based on antenna-coupled graphene field-effect transistors. These exploit the nonlinear response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature operation at 0.3 THz, showing that our devices can already be used in realistic settings, enabling large-area, fast imaging of macroscopic samples.

  7. Cleaning Products and Air Fresheners: Emissions and ResultingConcentrations of Glycol Ethers and Terpenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Brett C.; Destaillat, Hugo; Hodgson, Alfred T.

    2005-08-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m{sup 3} room ventilated at {approx}0.5 h{sup -1}. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 {micro}g m{sup -3} for individual terpenoids, including {alpha}-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and {alpha}-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or dlimonene were 300-6000 {micro}g m{sup -3} after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractionalmore » emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, {approx}25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were {approx}35-70% with towels retained, 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and {beta}-citronellol were emitted at 35-180 mg d{sup -1} over three days while air concentrations averaged 30-160 {micro}g m{sup -3}.« less

  8. Ultrasonic cleaning: Fundamental theory and application

    NASA Technical Reports Server (NTRS)

    Fuchs, F. John

    1995-01-01

    This presentation describes: the theory of ultrasonics, cavitation and implosion; the importance and application of ultrasonics in precision cleaning; explanations of ultrasonic cleaning equipment options and their application; process parameters for ultrasonic cleaning; and proper operation of ultrasonic cleaning equipment to achieve maximum results.

  9. Individual and workplace monitoring measurements made after a 240Pu incident and during the clean-up operations.

    PubMed

    Hochmann, R; Eisenwagner, H; Benesch, T; Hunt, J; Cruz-Suarez, R; Bulyha, S; Schmitzer, C

    2011-03-01

    On 3 August 2008, five glass vials containing around 7 GBq of (240)Pu in nitric acid solution burst in a laboratory operated by the IAEA in Seibersdorf, Austria. The vials were located in a fire-proof safe in the IAEA Safeguards Analytical Laboratory, and the release of the (240)Pu caused an air contamination in the room and in adjoining rooms. Immediate emergency work was carried out, which was then followed by a long period of clean-up operations. A large number of conventional individual and workplace monitoring measurements were carried out immediately after the incident and during the clean-up work. In addition, due to the fact that (240)Pu has a very low background presence in the environment, and that the IAEA laboratories operate an inductively coupled plasma mass spectrometry system capable of very low levels of detection of this radionuclide, a number of non-conventional measurements were made to detect (240)Pu on, for example, the photographic camera used to document the incident, on nasal swabs from the first responders, etc. Plastic beakers were left in the corridor of the controlled area to accumulate (240)Pu from precipitation to see whether it was possible to detect traces of the radionuclide. This paper presents the measurements obtained, and discusses their relevance to occupational radiation protection.

  10. Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Min; He, Shih-Ming; Huang, Chi-Hsien; Huang, Cheng-Chun; Shih, Wen-Pin; Chu, Chun-Lin; Kong, Jing; Li, Ju; Su, Ching-Yuan

    2016-02-01

    In this work, we fabricate ultra-large suspended graphene membranes, where stacks of a few layers of graphene could be suspended over a circular hole with a diameter of up to 1.5 mm, with a diameter to thickness aspect ratio of 3 × 105, which is the record for free-standing graphene membranes. The process is based on large crystalline graphene (~55 μm) obtained using a chemical vapor deposition (CVD) method, followed by a gradual solvent replacement technique. Combining a hydrogen bubbling transfer approach with thermal annealing to reduce polymer residue results in an extremely clean surface, where the ultra-large suspended graphene retains the intrinsic features of graphene, including phonon response and an enhanced carrier mobility (200% higher than that of graphene on a substrate). The highly elastic mechanical properties of the graphene membrane are demonstrated, and the Q-factor under 2 MHz stimulation is measured to be 200-300. A graphene-based capacitive pressure sensor is fabricated, where it shows a linear response and a high sensitivity of 15.15 aF Pa-1, which is 770% higher than that of frequently used silicon-based membranes. The reported approach is universal, which could be employed to fabricate other suspended 2D materials with macro-scale sizes on versatile support substrates, such as arrays of Si nano-pillars and deep trenches.In this work, we fabricate ultra-large suspended graphene membranes, where stacks of a few layers of graphene could be suspended over a circular hole with a diameter of up to 1.5 mm, with a diameter to thickness aspect ratio of 3 × 105, which is the record for free-standing graphene membranes. The process is based on large crystalline graphene (~55 μm) obtained using a chemical vapor deposition (CVD) method, followed by a gradual solvent replacement technique. Combining a hydrogen bubbling transfer approach with thermal annealing to reduce polymer residue results in an extremely clean surface, where the ultra

  11. Recrystallization in Si upon ion irradiation at room temperature in Co/Si(111) thin film systems

    NASA Astrophysics Data System (ADS)

    Banu, Nasrin; Satpati, B.; Dev, B. N.

    2018-04-01

    After several decades of research it was concluded that for a constant flux recrystallization in Si upon ion irradiation is possible only at high temperature. At low temperature or at room temperature only amorphization can take place. However we have observed recrystallization in Si upon ion irradiation at room temperature in a Co/Si thin film system. The Co/Si sample was prepared by deposition of 25 nm Co on clean Si(111) substrate. An oxide layer (˜ 2nm) of cobalt at the top of the film due to air exposure. The ion irradiation was done at room temperature under high vacuum with 1MeV Si+ ion with low beam current < 400 nA. Earlier we have shown similar ion induced recrystallization in Si(100) substrate which had a sandwich Si/Ni/Si structure. This system had an epitaxial buffer Si layer on Si substrate. This study also shows that the phenomenon is independent of substrate orientation and buffer layer. We have used transmission electron microscopy (TEM) to study the recrystallization behavior.

  12. Clean Watersheds Needs Survey

    EPA Pesticide Factsheets

    The Clean Watershed Needs Survey is a national assessment of the future capital cost for publicly owned wastewater collection and treatment facilities to meet the Clean Water Act's water quality goals.

  13. Comparison of Cryopreserved Human Sperm between Ultra Rapid Freezing and Slow Programmable Freezing: Effect on Motility, Morphology and DNA Integrity.

    PubMed

    Tongdee, Pattama; Sukprasert, Matchuporn; Satirapod, Chonticha; Wongkularb, Anna; Choktanasiri, Wicham

    2015-05-01

    Cryopreservation of sperm is common methods to preserve male fertility. Sperm freezing, suggest slow programmable freezing caused lower change of sperm morphology than sperm freezing in vapor of liquid nitrogen. Ultra rapid freezing is easy to be worked on, less time, low cost and does not need high experience. To compare the effect on sperm motility, morphology and DNA integrity of post-thawed sperm after ultra rapid freezing and slow programmable freezing methods. Experimental study at laboratory of infertility unit, Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital. Thirty-seven semen samples with normal semen analysis according to World Health Organization (WHO) 1999 [normal sperm volume ( 2 ml) and normal sperm concentration (≥ 20 x10(6)/ml) and sperm motility (≥ 50%)]. Semen samples were washed. Then each semen sample was divided into six cryovials. Two cryovials, 0.5 ml each, were cryopreserved by slow programmable freezing. Four 0.25 ml containing cryovials, were cryopreserved by ultra rapidfreezing method. After cryopreservationfor 1 month, thawedprocess was carried out at room temperature. Main outcomes are sperm motility was determined by Computer-Assisted Semen Analysis (CASA), sperm morphology was determined by eosin-methylene blue staining and sperm DNA integrity was assessed by TUNEL assay. Sperm motility was reduced significantly by both methods, from 70.4 (9.0)% to 29.1 (12.3)% in slowprogrammable freezing and to 19.7 (9.8)% in ultra rapid freezing (p < 0.05). Sperm motility decreased significantly more by ultra rapid freezing (p < 0.001). The percentage of normal sperm morphology and DNA integrity were also reduced significantly by both methods. However, no significant difference between the two methods was found (p > 0.05). Cryopreservation of human sperm for 1 month significantly decreased sperm motility, morphology and DNA integrity in both methods. However sperm motility was decreased more by ultra rapid

  14. Cleaning Processes across NASA Centers

    NASA Technical Reports Server (NTRS)

    Hammond, John M.

    2010-01-01

    All significant surfaces of the hardware must be pre-cleaned to remove dirt, grit, scale, corrosion, grease, oil and other foreign matter prior to any final precision cleaning process. Metallic parts shall be surface treated (cleaned, passivated, pickled and/or coated) as necessary to prevent latent corrosion and contamination.

  15. Locker Room Talk.

    ERIC Educational Resources Information Center

    Fickes, Michael

    1999-01-01

    Examines the trends in college and university sports and recreation center locker rooms as envisioned by a specialist. Features of the modern locker room and the different levels of locker room design are explained. Final comments discuss whether college and university facility managers are inclined to move to high-end locker rooms. (GR)

  16. Interior. Balance room for chemistry laboratory. Storage room for glassware ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior. Balance room for chemistry laboratory. Storage room for glassware and reference room with frequently used chemistry and chemical engineering texts. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  17. Traffic flow and microbial air contamination in operating rooms at a major teaching hospital in Ghana.

    PubMed

    Stauning, M T; Bediako-Bowan, A; Andersen, L P; Opintan, J A; Labi, A-K; Kurtzhals, J A L; Bjerrum, S

    2018-07-01

    Current literature examining the relationship between door-opening rate, number of people present, and microbial air contamination in the operating room is limited. Studies are especially needed from low- and middle-income countries, where the risk of surgical site infections is high. To assess microbial air contamination in operating rooms at a Ghanaian teaching hospital and the association with door-openings and number of people present. Moreover, we aimed to document reasons for door-opening. We conducted active air-sampling using an MAS 100 ® portable impactor during 124 clean or clean-contaminated elective surgical procedures. The number of people present, door-opening rate and the reasons for each door-opening were recorded by direct observation using pretested structured observation forms. During surgery, the mean number of colony-forming units (cfu) was 328 cfu/m 3 air, and 429 (84%) of 510 samples exceeded a recommended level of 180 cfu/m 3 . Of 6717 door-openings recorded, 77% were considered unnecessary. Levels of cfu/m 3 were strongly correlated with the number of people present (P = 0.001) and with the number of door-openings/h (P = 0.02). In empty operating rooms, the mean cfu count was 39 cfu/m 3 after 1 h of uninterrupted ventilation and 52 (51%) of 102 samples exceeded a recommended level of 35 cfu/m 3 . The study revealed high values of intraoperative airborne cfu exceeding recommended levels. Minimizing the number of door-openings and people present during surgery could be an effective strategy to reduce microbial air contamination in low- and middle-income settings. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Room with a View: Ethical Encounters in Room 13

    ERIC Educational Resources Information Center

    Grube, Vicky

    2012-01-01

    In this article, the author describes ethical encounters in Room 13, a schoolroom where children made what they wanted, posed their own questions, and ran an art room like a small business. In Room 13 children had the responsibility to maintain all aspects of the art studio. Specific decisions fell to an annually elected management team, a small…

  19. How Do We Clean Our Water and How Clean Does It Need to Be?

    ERIC Educational Resources Information Center

    Whitburn, Niki

    2013-01-01

    Nowadays, in the United Kingdom, citizens take for granted clean water pumped directly into their homes, but it was not always the case, and is still not so in many countries. Could people clean water themselves if they had to and what could they then use it for? Would it actually be "clean enough" to drink? The author presents children…

  20. Ultra Low Sulfur Home Heating Oil Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directlymore » related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.« less

  1. West elevation, southwest firstfloor room, main block. This room is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West elevation, southwest first-floor room, main block. This room is believed to be the one referred to as the "Committee Room" in institutional records. - Lazaretto Quarantine Station, Wanamaker Avenue and East Second Street, Essington, Delaware County, PA

  2. Cleaning supplies and equipment

    MedlinePlus

    ... gov/ency/patientinstructions/000443.htm Cleaning supplies and equipment To use the sharing features on this page, ... to clean supplies and equipment. Disinfecting Supplies and Equipment Start by wearing the right personal protective equipment ( ...

  3. Ultra-Large Solar Sail

    NASA Technical Reports Server (NTRS)

    Burton, Rodney; Coverstone, Victoria

    2009-01-01

    UltraSail is a next-generation ultra-large (km2 class) sail system. Analysis of the launch, deployment, stabilization, and control of these sails shows that high-payload-mass fractions for interplanetary and deep-space missions are possible. UltraSail combines propulsion and control systems developed for formation-flying microsatellites with a solar sail architecture to achieve controllable sail areas approaching 1 km2. Electrically conductive CP-1 polyimide film results in sail subsystem area densities as low as 5 g/m2. UltraSail produces thrust levels many times those of ion thrusters used for comparable deep-space missions. The primary innovation involves the near-elimination of sail-supporting structures by attaching each blade tip to a formation- flying microsatellite, which deploys the sail and then articulates the sail to provide attitude control, including spin stabilization and precession of the spin axis. These microsatellite tips are controlled by microthrusters for sail-film deployment and mission operations. UltraSail also avoids the problems inherent in folded sail film, namely stressing, yielding, or perforating, by storing the film in a roll for launch and deployment. A 5-km long by 2 micrometer thick film roll on a mandrel with a 1 m circumference (32 cm diameter) has a stored thickness of 5 cm. A 5 m-long mandrel can store a film area of 25,000 m2, and a four-blade system has an area of 0.1 sq km.

  4. Operating room management and operating room productivity: the case of Germany.

    PubMed

    Berry, Maresi; Berry-Stölzle, Thomas; Schleppers, Alexander

    2008-09-01

    We examine operating room productivity on the example of hospitals in Germany with independent anesthesiology departments. Linked to anesthesiology group literature, we use the ln(Total Surgical Time/Total Anesthesiologists Salary) as a proxy for operating room productivity. We test the association between operating room productivity and different structural, organizational and management characteristics based on survey data from 87 hospitals. Our empirical analysis links improved operating room productivity to greater operating room capacity, appropriate scheduling behavior and management methods to realign interests. From this analysis, the enforcing jurisdiction and avoiding advance over-scheduling appear to be the implementable tools for improving operating room productivity.

  5. Ionization-Assisted Getter Pumping for Ultra-Stable Trapped Ion Frequency Standards

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert L.; Burt, Eric A.

    2010-01-01

    A method eliminates (or recovers from) residual methane buildup in getter-pumped atomic frequency standard systems by applying ionizing assistance. Ultra-high stability trapped ion frequency standards for applications requiring very high reliability, and/or low power and mass (both for ground-based and space-based platforms) benefit from using sealed vacuum systems. These systems require careful material selection and system processing (cleaning and high-temperature bake-out). Even under the most careful preparation, residual hydrogen outgassing from vacuum chamber walls typically limits the base pressure. Non-evaporable getter pumps (NEGs) provide a convenient pumping option for sealed systems because of low mass and volume, and no power once activated. An ion gauge in conjunction with a NEG can be used to provide a low mass, low-power method for avoiding the deleterious effects of methane buildup in high-performance frequency standard vacuum systems.

  6. Plasma surface cleaning using microwave plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C.C.; Haselton, H.H.; Nelson, W.D.

    1993-11-01

    In a microwave electron cyclotron resonance (ECR) plasma source, reactive plasmas of oxygen and its mixture with argon are used for plasma-cleaning experiments. Aluminum test samples (0.95 {times} 1.9 cm) were coated with thin films ({le} 20 {mu}m in thickness) of Shell Vitrea oil and cleaned by using such reactive plasmas. The plasma cleaning was done in various discharge conditions with fixed microwave power, rf power, biased potential, gas pressures (0.5 and 5 mtorr), and operating time up to 35 min. The status of plasma cleaning has been monitored by using mass spectroscopy. Mass loss of the samples after plasmamore » cleaning was measured to estimate cleaning rates. Measured clean rates of low pressure (0.5 mtorr) argon/oxygen plasmas were as high as 2.7 {mu}/min. X-ray photoelectron spectroscopy was used to determine cleanliness of the sample surfaces and confirm the effectiveness of plasma cleaning in achieving atomic levels of surface cleanliness. In this paper, significant results are reported and discussed.« less

  7. Supersonic gas-liquid cleaning system

    NASA Technical Reports Server (NTRS)

    Caimi, Raoul E. B.; Thaxton, Eric A.

    1994-01-01

    A system to perform cleaning and cleanliness verification is being developed to replace solvent flush methods using CFC 113 for fluid system components. The system is designed for two purposes: internal and external cleaning and verification. External cleaning is performed with the nozzle mounted at the end of a wand similar to a conventional pressure washer. Internal cleaning is performed with a variety of fixtures designed for specific applications. Internal cleaning includes tubes, pipes, flex hoses, and active fluid components such as valves and regulators. The system uses gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the object to be cleaned. Compressed air or any inert gas may be used to provide the conveying medium for the liquid. The converging-diverging nozzles accelerate the gas-liquid mixture to supersonic velocities. The liquid being accelerated may be any solvent including water. This system may be used commercially to replace CFC and other solvent cleaning methods widely used to remove dust, dirt, flux, and lubricants. In addition, cleanliness verification can be performed without the solvents which are typically involved. This paper will present the technical details of the system, the results achieved during testing at KSC, and future applications for this system.

  8. Supersonic gas-liquid cleaning system

    NASA Astrophysics Data System (ADS)

    Caimi, Raoul E. B.; Thaxton, Eric A.

    1994-02-01

    A system to perform cleaning and cleanliness verification is being developed to replace solvent flush methods using CFC 113 for fluid system components. The system is designed for two purposes: internal and external cleaning and verification. External cleaning is performed with the nozzle mounted at the end of a wand similar to a conventional pressure washer. Internal cleaning is performed with a variety of fixtures designed for specific applications. Internal cleaning includes tubes, pipes, flex hoses, and active fluid components such as valves and regulators. The system uses gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the object to be cleaned. Compressed air or any inert gas may be used to provide the conveying medium for the liquid. The converging-diverging nozzles accelerate the gas-liquid mixture to supersonic velocities. The liquid being accelerated may be any solvent including water. This system may be used commercially to replace CFC and other solvent cleaning methods widely used to remove dust, dirt, flux, and lubricants. In addition, cleanliness verification can be performed without the solvents which are typically involved. This paper will present the technical details of the system, the results achieved during testing at KSC, and future applications for this system.

  9. Evaluation of Nanoparticles Emitted from Printers in a Clean Chamber, a Copy Center and Office Rooms: Health Risks of Indoor Air Quality.

    PubMed

    Shi, Xiaofei; Chen, Rui; Huo, Lingling; Zhao, Lin; Bai, Ru; Long, Dingxin; Pui, David Y H; Rang, Weiqing; Chen, Chunying

    2015-12-01

    Indoor air quality has great impact on the human health. An increasing number of studies have shown that printers could release particulate matters and pose adverse effects on indoor air quality. In this study, a thorough investigation was designed to assess the aerosol printer particle total number concentration (TNC) and size distribution in normal office environment, one copy center, and a clean chamber. Particle analyzers, SMPS, OPS, and CPC3007 were used to monitor the total printing process. In normal office environment, 37 laser printers out of all surveyed 55 printers were classified as high particle emitters. Comparing to laser printers, 5 inkjet printers showed no particle emission. Particle emission level in a copy center increased slightly with TNC elevating to about 2 times of the aerosol background. Simulating test in a clean chamber indicated that printer-emitted particles were dominated by particles in nanoscale (diameter of particle, D(p) < 100 nm). These particles in a sealed clean chamber attenuated so slowly that it still held at high level with the concentration of 1.5 x 10(4) particles/cm3 after printing for 2.5 hours. Our present results demonstrate that printers indeed release particulates which keeping at a high concentration level in the indoor environment. Special care should be taken to this kind of widely applied machines and effective controls of particle emission at printing processes are necessary.

  10. 77 FR 59182 - Ultra-Deepwater Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... DEPARTMENT OF ENERGY Ultra-Deepwater Advisory Committee AGENCY: Office of Fossil Energy... of the Ultra-Deepwater Advisory Committee is to provide advice on development and implementation of programs related to ultra-deepwater architecture and technology to the Secretary of Energy and provide...

  11. Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation.

    PubMed

    Davila-Rodriguez, J; Baynes, F N; Ludlow, A D; Fortier, T M; Leopardi, H; Diddams, S A; Quinlan, F

    2017-04-01

    We demonstrate an easy-to-manufacture 25-mm-long ultra-stable optical reference cavity for transportable photonic microwave generation systems. Employing a rigid holding geometry that is first-order insensitive to the squeezing force and a cavity geometry that improves the thermal noise limit at room temperature, we observe a laser phase noise that is nearly thermal noise limited for three frequency decades (1 Hz to 1 kHz offset) and supports 10 GHz generation with phase noise near -100  dBc/Hz at 1 Hz offset and <-173  dBc/Hz for all offsets >600  Hz. The fractional frequency stability reaches 2×10-15 at 0.1 s of averaging.

  12. Asthma risk, cleaning activities and use of specific cleaning products among Spanish indoor cleaners.

    PubMed

    Zock, J P; Kogevinas, M; Sunyer, J; Almar, E; Muniozguren, N; Payo, F; Sánchez, J L; Antó, J M

    2001-02-01

    Recent studies have shown an excess risk of asthma for cleaners, but it is not clear which cleaning-related exposures induce or aggravate asthma. Risk factors for asthma were studied among indoor cleaners participating in the Spanish part of the European Community Respiratory Health Survey in 1992. In 1998, 78 of the 91 subjects reporting cleaning-related jobs in 1992 were identified. Of these, 67 indoor cleaners were interviewed by telephone about their cleaning activities and their use of cleaning products in 1992. These data were related to asthma prevalence in 1992, and the cleaners were compared with a reference group of office workers. Asthma prevalence was 1.7 times higher [95% confidence interval (95% CI) 1.1-2.6] among the cleaners than among the referents, being highest among private home cleaners (3.3, 95% CI 1.9-5.8). The prevalence of housedust mite sensitization amounted to 28% for the home cleaners and was significantly (P<0.01) higher than for other indoor cleaners (3%), but similar to the corresponding prevalence of office workers (22%). More than half of the cleaners reported work-related respiratory symptoms. The asthma risk of the home cleaners was mainly associated with kitchen cleaning and furniture polishing, with the use of oven sprays and polishes. The asthma risk of Spanish cleaners is primarily related to the cleaning of private homes. This relationship may be explained by the use of sprays and other products in kitchen cleaning and furniture polishing.

  13. Laser paper cleaning: the method of cleaning historical books

    NASA Astrophysics Data System (ADS)

    Zekou, Evangelini; Tsilikas, Ioannis; Chatzitheodoridis, Elias; Serafetinides, Alexander A.

    2016-01-01

    Conservation of cultural heritage treasures is the most important issue for transferring knowledge to the public through the next generation of students, academics, and researchers. Although this century is authenticating e-books and information by means of electronic text, still historical manuscripts as content as well as objects are the main original recourses of keeping a record of this transformation. The current work focuses on cleaning paper samples by the application of pulsed light, which is interventional. Experiments carried out using paper samples that are artificially colonized with Ulocladium chartarum. Paper is treated by Nd:YAG laser light. The available wavelength is 1064 nm, at various fluences, repetition rates and number of pulses. Two types of paper are stained with fungi colonies, which grow on substrates of clean paper, as well as on paper with ink text. The first type of paper is Whatman No.1056, which is closer to pure cellulose. The second type of paper is a page of a cultural heritage book published in 1926. Cleaning is performed using laser irradiation, thus defining the damage threshold of each sample. The treatment on paper Watman showed a yellowing, especially on areas with high concentration of fungi. The second sample was more durable to the exposure, performing the best results at higher fluences. Eventually, the paper samples are characterized, with optical microscopy and SEM/EDX analyses, prior to and after cleaning.

  14. 75 FR 48319 - Ultra-Deepwater Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... DEPARTMENT OF ENERGY Ultra-Deepwater Advisory Committee AGENCY: Department of Energy, Office of...: Purpose of the Committee: The purpose of the Ultra-Deepwater Advisory Committee is to provide advice on development and implementation of programs related to ultra-deepwater architecture and technology to the...

  15. 76 FR 77990 - Ultra-Deepwater Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... DEPARTMENT OF ENERGY Ultra-Deepwater Advisory Committee AGENCY: Office of Fossil Energy... Committee: The purpose of the Ultra-Deepwater Advisory Committee is to provide advice to the Secretary of Energy on development and implementation of programs related to ultra-deepwater natural gas and other...

  16. 76 FR 6775 - Ultra-Deepwater Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... DEPARTMENT OF ENERGY Ultra-Deepwater Advisory Committee AGENCY: Department of Energy, Office of... Committee: The purpose of the Ultra-Deepwater Advisory Committee is to provide advice on development and implementation of programs related to ultra-deepwater architecture and technology to the Secretary of Energy and...

  17. 75 FR 54860 - Ultra Deepwater Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... DEPARTMENT OF ENERGY Ultra Deepwater Advisory Committee AGENCY: Department of Energy, Office of... of an open meeting of the Ultra Deepwater Advisory Committee. The Committee was organized pursuant to.../advisorycommittees/UltraDeepwater.html . Issued in Washington, DC, on September 3, 2010. Carol A. Matthews, Committee...

  18. The Clean Energy Manufacturing Analysis Center (CEMAC): Providing Analysis and Insights on Clean Technology Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Nicholi S

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  19. UltraNet Target Parameters. Chapter 1

    NASA Technical Reports Server (NTRS)

    Kislitzin, Katherine T.; Blaylock, Bruce T. (Technical Monitor)

    1992-01-01

    The UltraNet is a high speed network capable of rates up to one gigabit per second. It is a hub based network with four optical fiber links connecting each hub. Each link can carry up to 256 megabits of data, and the hub backplane is capable of one gigabit aggregate throughput. Host connections to the hub may be fiber, coax, or channel based. Bus based machines have adapter boards that connect to transceivers in the hub, while channel based machines use a personality module in the hub. One way that the UltraNet achieves its high transfer rates is by off-loading the protocol processing from the hosts to special purpose protocol engines in the UltraNet hubs. In addition, every hub has a PC connected to it by StarLAN for network management purposes. Although there is hub resident and PC resident UltraNet software, this document treats only the host resident UltraNet software.

  20. Cleaning method and apparatus

    DOEpatents

    Jackson, D.D.; Hollen, R.M.

    1981-02-27

    A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.

  1. Cleaning method and apparatus

    DOEpatents

    Jackson, Darryl D.; Hollen, Robert M.

    1983-01-01

    A new automatable cleaning apparatus which makes use of a method of very thoroughly and quickly cleaning a gauze electrode used in chemical analyses is given. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg. plutonium sample was removed in less than 3 minutes, using only about 60 ml. of rinse solution and two main rinse steps.

  2. CuInP 2S 6 Room Temperature Layered Ferroelectric

    DOE PAGES

    Belianinov, Alex; He, Qian; Dziaugys, Andrius; ...

    2015-05-01

    In this paper, we explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP 2S 6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleavedmore » bulk surfaces, whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V—likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. Finally, the existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing “graphene family”.« less

  3. Cavitation effects in ultrasonic cleaning baths

    NASA Technical Reports Server (NTRS)

    Glasscock, Barbara H.

    1995-01-01

    In this project, the effect of cavitation from aqueous ultrasonic cleaning on the surfaces of metal and non-metal sample coupons was studied. After twenty cleaning cycles, the mass loss from the aluminum coupons averaged 0.22 mg/sq cm surface area and 0.014 mg/sq cm for both stainless steel and titanium. The aluminum coupons showed visual evidence of minor cavitation erosion in regions of previously existing surface irregularities. The non-metal samples showed some periods of mass gain. These effects are believed to have minor impact on hardware being cleaned, but should be evaluated in the context of specific hardware requirements. Also the ultrasonic activity in the large cleaning baths was found to be unevenly distributed as measured by damage to sheets of aluminum foil. It is therefore recommended that items being cleaned in an ultrasonic bath be moved or conveyed during the cleaning to more evenly distribute the cavitation action provide more uniform cleaning.

  4. "Clean, green and ethical" animal production. Case study: reproductive efficiency in small ruminants.

    PubMed

    Martin, Graeme B; Kadokawa, Hiroya

    2006-02-01

    In response to changes in society and thus the marketplace, we need a vision for the future of our animal industries, including both on-farm and off-farm activities, that is "clean, green and ethical". Using small ruminants as a case study, we describe three "clean, green and ethical" strategies that farmers could use to improve reproductive performance. The first allows control of the timing of reproductive events by using socio-sexual signals (the "male effect") to induce synchronised ovulation in females. The second strategy, "focus feeding", is based on using short periods of nutritional supplements that are precisely timed and specifically designed for each event in the reproductive process (eg, gamete production, embryo survival, fetal programming, colostrum production). The third strategy aims to maximize offspring survival by a combination of management, nutrition and genetic selection for behaviour (temperament). All of these approaches involve non-pharmacological manipulation of the endogenous control systems of the animals and complement the detailed information from ultrasound that is now becoming available. Importantly, these approaches all have a solid foundation in reproductive biology. In several cases, they are currently used in commercial practice, but there is still room for improvement through both basic and applied research. Ultimately, these "clean, green and ethical" tools can be cost-effective, increase productivity and, at the same time, greatly improve the image of meat and milk industries in society and the marketplace.

  5. Fatigue Properties of the Ultra-High Strength Steel TM210A

    PubMed Central

    Kang, Xia; Zhao, Gui-ping

    2017-01-01

    This paper presents the results of an experiment to investigate the high cycle fatigue properties of the ultra-high strength steel TM210A. A constant amplitude rotating bending fatigue experiment was performed at room temperature at stress ratio R = −1. In order to evaluate the notch effect, the fatigue experiment was carried out upon two sets of specimens, smooth and notched, respectively. In the experiment, the rotating bending fatigue life was tested using the group method, and the rotating bending fatigue limit was tested using the staircase method at 1 × 107 cycles. A double weighted least square method was then used to fit the stress-life (S–N) curve. The S–N curves of the two sets of specimens were obtained and the morphologies of the fractures of the two sets of specimens were observed with scanning electron microscopy (SEM). The results showed that the fatigue limit of the smooth specimen for rotating bending fatigue was 615 MPa; the ratio of the fatigue limit to tensile strength was 0.29, and the cracks initiated at the surface of the smooth specimen; while the fatigue limit of the notched specimen for rotating bending fatigue was 363 MPa, and the cracks initiated at the edge of the notch. The fatigue notch sensitivity index of the ultra-high strength maraging steel TM210A was 0.69. PMID:28891934

  6. Cleaning practices and cleaning products in nurseries and schools: to what extent can they impact indoor air quality?

    PubMed

    Wei, W; Boumier, J; Wyart, G; Ramalho, O; Mandin, C

    2016-08-01

    In the framework of a nationwide survey on indoor air quality conducted from September 2009 to June 2011 in 310 nurseries, kindergartens, and elementary schools in all regions of France, cleaning practices and products were described through an extensive questionnaire completed on-site by expert building inspectors. The questionnaire included the cleaning frequencies and periods, cleaning techniques, whether windows were open during cleaning, and the commercial names of the products used. Analysis of the questionnaire responses showed that cleaning was generally performed daily for furniture and floors. It was performed mostly in the evening with wet mopping and with one or more windows open. Five hundred eighty-four different cleaning products were listed, among which 218 safety data sheets (SDSs) were available and analyzed. One hundred fifty-two chemical substances were identified in the SDSs. The typical substances in cleaning products included alcohols, chlorides, terpenes, aldehydes, and ethers; more than half of them are irritants. Two endocrine disruptors, 2-phenylphenol and Galaxolide, were identified in two cleaning products used every day to clean the floors, in seven kindergartens and in a nursery respectively. Eleven reactive substances containing C=C double bonds, mostly terpenes, were identified in a wide variety of cleaning products. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. KENNEDY SPACE CENTER, FLA. - The Space Infrared Telescope Facility (SIRTF) has been returned to NASA Spacecraft Hangar AE from the launch pad. It will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - The Space Infrared Telescope Facility (SIRTF) has been returned to NASA Spacecraft Hangar AE from the launch pad. It will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

  8. REPLACING SOLVENT CLEANING WITH AQUEOUS CLEANING

    EPA Science Inventory

    The report documents actions taken by Robert Bosch Corp., Charleston, SC, in replacing the cleaning solvents 1, 1, 2- trichloro-1, 2, 2-trifluoroethane (CFC-113) and trichloroethylene (TCE) with aqueous solutions. Bosch has succeeded in eliminating all their CFC-113 use and so f...

  9. One size fits all? Mixed methods evaluation of the impact of 100% single-room accommodation on staff and patient experience, safety and costs

    PubMed Central

    Maben, Jill; Penfold, Clarissa; Simon, Michael; Anderson, Janet E; Robert, Glenn; Pizzo, Elena; Hughes, Jane; Murrells, Trevor; Barlow, James

    2016-01-01

    Background and objectives There is little strong evidence relating to the impact of single-room accommodation on healthcare quality and safety. We explore the impact of all single rooms on staff and patient experience; safety outcomes; and costs. Methods Mixed methods pre/post ‘move’ comparison within four nested case study wards in a single acute hospital with 100% single rooms; quasi-experimental before-and-after study with two control hospitals; analysis of capital and operational costs associated with single rooms. Results Two-thirds of patients expressed a preference for single rooms with comfort and control outweighing any disadvantages (sense of isolation) felt by some. Patients appreciated privacy, confidentiality and flexibility for visitors afforded by single rooms. Staff perceived improvements (patient comfort and confidentiality), but single rooms were worse for visibility, surveillance, teamwork, monitoring and keeping patients safe. Staff walking distances increased significantly post move. A temporary increase of falls and medication errors in one ward was likely to be associated with the need to adjust work patterns rather than associated with single rooms per se. We found no evidence that single rooms reduced infection rates. Building an all single-room hospital can cost 5% more with higher housekeeping and cleaning costs but the difference is marginal over time. Conclusions Staff needed to adapt their working practices significantly and felt unprepared for new ways of working with potentially significant implications for the nature of teamwork in the longer term. Staff preference remained for a mix of single rooms and bays. Patients preferred single rooms. PMID:26408568

  10. Clean Air Act Text

    EPA Pesticide Factsheets

    The Clean Air Act is the law that defines EPA's responsibilities for protecting and improving the nation's air quality and the stratospheric ozone layer. The last major change in the law, the Clean Air Act Amendments of 1990, enacted in 1990 by Congress.

  11. Clean Energy Manufacturing Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  12. Cleaning the IceMole: collection of englacial samples from Blood Falls, Antarctica

    NASA Astrophysics Data System (ADS)

    Mikucki, J.; Digel, I.; Chua, M.; Davis, J.; Ghosh, D.; Lyons, W. B.; Welch, K. A.; Purcell, A.; Francke, G.; Feldmann, M.; Espe, C.; Heinen, D.; Dachwald, B.; Kowalski, J.; Tulaczyk, S. M.

    2016-12-01

    The Minimally Invasive Direct Glacial Access project (MIDGE) used a maneuverable thermoelectric melting probe called the IceMole to collect the first englacial samples of brine from Blood Falls, Antarctica. In order to maintain the scientific integrity of samples collected and minimize impact to this specially protected ecosystem, microbial and chemical contamination of the IceMole needed to be minimized. Guidelines have been established for research in Antarctic subglacial systems by the scientific and regulatory community and have been detailed by the "Code of Conduct for the Exploration and Research of Subglacial Aquatic Environments" put forth by the Scientific Committee on Antarctic Research (SCAR) Action Group, and was submitted to the Antarctic Treaty System. This Code of Conduct (CoC) recognizes the ecological importance and pristine nature of subglacial habitats and recommends a path forward towards clean exploration. Similarly, the US and European space agencies (NASA and ESA) have detailed instrument preparation protocols for the exploration of icy worlds in our solar system for planetary protection. Given the synergistic aims of these two groups we have adopted protocols from both subglacial and space exploration approaches. Here we present our approach to cleaning the IceMole in the field and report on ability to reduce the bioload inherent on the melter. Specifically our protocol reduced the exterior bio-load by an order of magnitude, to levels common in most clean rooms, and 1-3 orders of magnitude below that of Taylor Glacier ice surrounding Blood Falls. Our results indicate that the collection of englacial samples for microbiological analysis is feasible with melting probes.

  13. Automated carbon dioxide cleaning system

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.

    1991-01-01

    Solidified CO2 pellets are an effective blast media for the cleaning of a variety of materials. CO2 is obtained from the waste gas streams generated from other manufacturing processes and therefore does not contribute to the greenhouse effect, depletion of the ozone layer, or the environmental burden of hazardous waste disposal. The system is capable of removing as much as 90 percent of the contamination from a surface in one pass or to a high cleanliness level after multiple passes. Although the system is packaged and designed for manual hand held cleaning processes, the nozzle can easily be attached to the end effector of a robot for automated cleaning of predefined and known geometries. Specific tailoring of cleaning parameters are required to optimize the process for each individual geometry. Using optimum cleaning parameters the CO2 systems were shown to be capable of cleaning to molecular levels below 0.7 mg/sq ft. The systems were effective for removing a variety of contaminants such as lubricating oils, cutting oils, grease, alcohol residue, biological films, and silicone. The system was effective on steel, aluminum, and carbon phenolic substrates.

  14. Characterization of occupational exposures to cleaning products used for common cleaning tasks--a pilot study of hospital cleaners.

    PubMed

    Bello, Anila; Quinn, Margaret M; Perry, Melissa J; Milton, Donald K

    2009-03-27

    In recent years, cleaning has been identified as an occupational risk because of an increased incidence of reported respiratory effects, such as asthma and asthma-like symptoms among cleaning workers. Due to the lack of systematic occupational hygiene analyses and workplace exposure data, it is not clear which cleaning-related exposures induce or aggravate asthma and other respiratory effects. Currently, there is a need for systematic evaluation of cleaning products ingredients and their exposures in the workplace. The objectives of this work were to: a) identify cleaning products' ingredients of concern with respect to respiratory and skin irritation and sensitization; and b) assess the potential for inhalation and dermal exposures to these ingredients during common cleaning tasks. We prioritized ingredients of concern in cleaning products commonly used in several hospitals in Massachusetts. Methods included workplace interviews, reviews of product Materials Safety Data Sheets and the scientific literature on adverse health effects to humans, reviews of physico-chemical properties of cleaning ingredients, and occupational hygiene observational analyses. Furthermore, the potential for exposure in the workplace was assessed by conducting qualitative assessment of airborne exposures and semi-quantitative assessment of dermal exposures. Cleaning products used for common cleaning tasks were mixtures of many chemicals, including respiratory and dermal irritants and sensitizers. Examples of ingredients of concern include quaternary ammonium compounds, 2-butoxyethanol, and ethanolamines. Cleaning workers are at risk of acute and chronic inhalation exposures to volatile organic compounds (VOC) vapors and aerosols generated from product spraying, and dermal exposures mostly through hands. Cleaning products are mixtures of many chemical ingredients that may impact workers' health through air and dermal exposures. Because cleaning exposures are a function of product

  15. Characterization of occupational exposures to cleaning products used for common cleaning tasks-a pilot study of hospital cleaners

    PubMed Central

    2009-01-01

    Background In recent years, cleaning has been identified as an occupational risk because of an increased incidence of reported respiratory effects, such as asthma and asthma-like symptoms among cleaning workers. Due to the lack of systematic occupational hygiene analyses and workplace exposure data, it is not clear which cleaning-related exposures induce or aggravate asthma and other respiratory effects. Currently, there is a need for systematic evaluation of cleaning products ingredients and their exposures in the workplace. The objectives of this work were to: a) identify cleaning products' ingredients of concern with respect to respiratory and skin irritation and sensitization; and b) assess the potential for inhalation and dermal exposures to these ingredients during common cleaning tasks. Methods We prioritized ingredients of concern in cleaning products commonly used in several hospitals in Massachusetts. Methods included workplace interviews, reviews of product Materials Safety Data Sheets and the scientific literature on adverse health effects to humans, reviews of physico-chemical properties of cleaning ingredients, and occupational hygiene observational analyses. Furthermore, the potential for exposure in the workplace was assessed by conducting qualitative assessment of airborne exposures and semi-quantitative assessment of dermal exposures. Results Cleaning products used for common cleaning tasks were mixtures of many chemicals, including respiratory and dermal irritants and sensitizers. Examples of ingredients of concern include quaternary ammonium compounds, 2-butoxyethanol, and ethanolamines. Cleaning workers are at risk of acute and chronic inhalation exposures to volatile organic compounds (VOC) vapors and aerosols generated from product spraying, and dermal exposures mostly through hands. Conclusion Cleaning products are mixtures of many chemical ingredients that may impact workers' health through air and dermal exposures. Because cleaning

  16. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review

    NASA Astrophysics Data System (ADS)

    Zhang, Yinping; Mo, Jinhan; Li, Yuguo; Sundell, Jan; Wargocki, Pawel; Zhang, Jensen; Little, John C.; Corsi, Richard; Deng, Qihong; Leung, Michael H. K.; Fang, Lei; Chen, Wenhao; Li, Jinguang; Sun, Yuexia

    2011-08-01

    comparing the performance of different air cleaning technologies. (4) To compare and select suitable indoor air cleaning devices, a labeling system accounting for characteristics such as CADR, energy consumption, volume, harmful by-products, and life span is necessary. For that purpose, a standard test room and condition should be built and studied. (5) Although there is evidence that some air cleaning technologies improve indoor air quality, further research is needed before any of them can be confidently recommended for use in indoor environments.

  17. An evaluation of a partial-walled laminar-flow operating room

    PubMed Central

    Whyte, W.; Shaw, B. H.; Freeman, M. A. R.

    1974-01-01

    This paper contains an assessment of the physical performance of a permanently installed down-flow laminar-flow operating room at the London Hospital. This system employs partial walls extending 0·76 m (2·5 ft.) from the ceiling, from which the air is allowed to issue freely downwards at an initial velocity of about 0·4 m./sec. (80 ft./min.). The usefulness of the partial wall, as compared with a free issuing system, was demonstrated and a comparison made with a fully walled system. It was shown that a fully walled system would be more efficient than a partial-walled system as there was a loss in air velocity of about 20-25% with the partial wall due to the nonconstrained flow of air. This loss would be reflected in an increase in airborne bacterial count and would mean that an increase of 20-25% in the air volume would be required to obtain the same conditions as with the full-walled system. Entrainment of contaminated air was demonstrated but it was concluded that this would be of little consequence in the centre of the clean area, i.e. at the wound site. Sterile instruments, etc., however, on the outside of the clean area, would be more liable to airborne contamination. Bacterial and dust airborne counts taken during total hip operations gave a very low average figure (0·3 bacteria/ft.3 or 10·5/m.3) from which we conclude that the system was about 30 times cleaner in terms of airborne bacteria than a well ventilated conventional operating-room. We concluded that although the partial-walled system was slightly less efficacious than a normal full-walled system, the freedom of movement and of communication for the operating team could in some circumstances outweigh this disadvantage. Sound levels were such that normal conversation was possible with little or no awareness of background noise. ImagesFig. 2Fig. 3Plate 2Plate 2Plate 3Plate 3Plate 1 PMID:4529595

  18. Green Cleaning Label Power

    ERIC Educational Resources Information Center

    Balek, Bill

    2012-01-01

    Green cleaning plays a significant and supportive role in helping education institutions meet their sustainability goals. However, identifying cleaning products, supplies and equipment that truly are environmentally preferable can be daunting. The marketplace is inundated with products and services purporting to be "green" or environmentally…

  19. Use of an ultra-clean sampling technique with inductively coupled plasma-mass spectrometry to determine trace-element concentrations in water from the Kirkwood-Cohansey Aquifer system, coastal plain, New Jersey

    USGS Publications Warehouse

    Ivahnenko, Tamara; Szabo, Zoltan; Hall, G.S.

    1996-01-01

    Water samples were collected during 1993 from 22 public supply wells screened in the Kirkwood-Cohansey aquifer system; concentrations of 18 trace elements were determined primarily by using inductively coupled plasma-mass spectrometry (ICP-MS) techniques, though graphite furnace atomic adsorption, hydride generation, and cold- vapor flameless atomic adsorption techniques were used for thallium, arsenic, and mercury, respectively, at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL). In addition, laboratory measurements of alkalinity and turbidity were made. The ground-water samples were collected by using ultra-clean sampling protocols developed by the USGS for collecting ground-water samples in areas with water containing low concentrations of trace elements. This technique is based on recently gained experience in sampling surface water for these elements. Field parameters (water temperature, specific conductance, pH, and dissolved-oxygen concentration) were monitored prior to sample collection. Three equipment blanks were collected to ensure that low-level trace-element contamination did not occur during sample collection. One split sample and a commercially- prepared reference standard were submitted to the NWQL o evaluate laboratory precision and accuracy, respectively. Trace-element concentrations in 10 sample splits and one equipment blank were also determined at the Rutgers University Chemistry Department laboratory. Results of the ICP-MS analyses and cold vapor flameless atomic absorption indicated that five trace elements-- cobalt, copper, lead, mercury, and nickel--were detectable in low concentrations (<0.1-29 mg/L) in most of the samples from the 22 wells, and four elements--aluminum, barium, manganese and zinc--were detected in higher concentrations than the other elements (30-710 mg/L for aluminum; 4-180 mg/L for barium, manganese, and zinc). The remaining nine trace elements were present in concentrations consistently lower

  20. National Clean Fleets Partnership (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-01-01

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with localmore » stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.« less

  1. Precision Cleaning - Path to Premier

    NASA Technical Reports Server (NTRS)

    Mackler, Scott E.

    2008-01-01

    ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.

  2. 75 FR 11560 - Notice of Lodging of Consent Decree Under the Clean Water Act and Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Water Act and Clean Air... for the Defendant's violations of the Clean Water Act, 33 U.S.C. 1251 et seq., and the Clean Air Act... including the installation of water effluent controls, the rerouting of air emissions through control...

  3. The UltraLightweight Technology for Research in Astronomy (ULTRA) Project

    NASA Astrophysics Data System (ADS)

    Twarog, B. A.; Anthony-Twarog, B. J.; Shawl, S. J.; Hale, R.; Taghavi, R.; Fesen, R.; Etzel, P. B.; Martin, R.; Romeo, R.

    2004-12-01

    The collaborative focus of four academic departments (Univ. of Kansas Aerospace Engineering, Univ. of Kansas Physics & Astronomy, San Diego State University Astronomy and Dartmouth College Astronomy) and a private industry partner (Composite Mirror Applications, Inc.-CMA, Inc.) is a three-year plan to develop and test UltraLightweight Technology for Research in Astronomy (ULTRA). The ULTRA technology, using graphite fiber composites to fabricate mirrors and telescope structures, offers a versatile and cost-effective tool for optical astronomy, including the economical fabrication and operation of telescopes ranging from small (1m or smaller) aperture for education and research to extremely large (30m+) segmented telescopes (ELTs). The specific goal of this NSF-funded three-year Major Research Instrumentation project is to design, build, and test a 1m-class optical tube assembly (OTA) and mirrors constructed entirely from composites. In the first year of the project, the team has built and is field-testing two 0.4m prototypes to validate the optical surfaces and figures of the mirrors and to test and refine the structural dynamics of the OTA. Preparation for design and construction of the 1m telescope is underway. When completed in late 2005, the ULTRA telescope will be operated remotely from Mt. Laguna Observatory east of San Diego, where it will undergo a period of intensive optical and imaging tests. A 0.4m prototype OTA with mirrors (12 kg total weight) will be on display at the meeting. Support of this work by NSF through grants AST-0320784 and AST-0321247, NASA grant NCC5-600, the University of Kansas, and San Diego State University is gratefully acknowledged.

  4. 40 CFR 63.744 - Standards: Cleaning operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system with equivalent emission control. (e) Exempt cleaning operations. The following cleaning...) Cleaning of aircraft and ground support equipment fluid systems that are exposed to the fluid, including... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Standards: Cleaning operations. 63.744...

  5. 40 CFR 63.744 - Standards: Cleaning operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system with equivalent emission control. (e) Exempt cleaning operations. The following cleaning...) Cleaning of aircraft and ground support equipment fluid systems that are exposed to the fluid, including... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Standards: Cleaning operations. 63.744...

  6. 40 CFR 63.744 - Standards: Cleaning operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system with equivalent emission control. (e) Exempt cleaning operations. The following cleaning...) Cleaning of aircraft and ground support equipment fluid systems that are exposed to the fluid, including... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Standards: Cleaning operations. 63.744...

  7. 40 CFR 63.744 - Standards: Cleaning operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system with equivalent emission control. (e) Exempt cleaning operations. The following cleaning...) Cleaning of aircraft and ground support equipment fluid systems that are exposed to the fluid, including... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Standards: Cleaning operations. 63.744...

  8. 40 CFR 63.744 - Standards: Cleaning operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system with equivalent emission control. (e) Exempt cleaning operations. The following cleaning...) Cleaning of aircraft and ground support equipment fluid systems that are exposed to the fluid, including... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Cleaning operations. 63.744...

  9. #CleanTechNow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moniz, Ernest

    2013-09-17

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  10. #CleanTechNow

    ScienceCinema

    Moniz, Ernest

    2018-01-16

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  11. Development of ultra-high temperature material characterization capabilities using digital image correlation analysis

    NASA Astrophysics Data System (ADS)

    Cline, Julia Elaine

    2011-12-01

    Ultra-high temperature deformation measurements are required to characterize the thermo-mechanical response of material systems for thermal protection systems for aerospace applications. The use of conventional surface-contacting strain measurement techniques is not practical in elevated temperature conditions. Technological advancements in digital imaging provide impetus to measure full-field displacement and determine strain fields with sub-pixel accuracy by image processing. In this work, an Instron electromechanical axial testing machine with a custom-designed high temperature gripping mechanism is used to apply quasi-static tensile loads to graphite specimens heated to 2000°F (1093°C). Specimen heating via Joule effect is achieved and maintained with a custom-designed temperature control system. Images are captured at monotonically increasing load levels throughout the test duration using an 18 megapixel Canon EOS Rebel T2i digital camera with a modified Schneider Kreutznach telecentric lens and a combination of blue light illumination and narrow band-pass filter system. Images are processed using an open-source Matlab-based digital image correlation (DIC) code. Validation of source code is performed using Mathematica generated images with specified known displacement fields in order to gain confidence in accurate software tracking capabilities. Room temperature results are compared with extensometer readings. Ultra-high temperature strain measurements for graphite are obtained at low load levels, demonstrating the potential for non-contacting digital image correlation techniques to accurately determine full-field strain measurements at ultra-high temperature. Recommendations are given to improve the experimental set-up to achieve displacement field measurements accurate to 1/10 pixel and strain field accuracy of less than 2%.

  12. Significant OH production under surface cleaning and air cleaning conditions: Impact on indoor air quality.

    PubMed

    Carslaw, N; Fletcher, L; Heard, D; Ingham, T; Walker, H

    2017-11-01

    We report measurements of hydroxyl (OH) and hydroperoxy (HO 2 ) radicals made by laser-induced fluorescence spectroscopy in a computer classroom (i) in the absence of indoor activities (ii) during desk cleaning with a limonene-containing cleaner (iii) during operation of a commercially available "air cleaning" device. In the unmanipulated environment, the one-minute averaged OH concentration remained close to or below the limit of detection (6.5×10 5  molecule cm -3 ), whilst that of HO 2 was 1.3×10 7  molecule cm -3 . These concentrations increased to ~4×10 6 and 4×10 8  molecule cm -3 , respectively during desk cleaning. During operation of the air cleaning device, OH and HO 2 concentrations reached ~2×10 7 and ~6×10 8  molecule cm -3 respectively. The potential of these OH concentrations to initiate chemical processing is explored using a detailed chemical model for indoor air (the INDCM). The model can reproduce the measured OH and HO 2 concentrations to within 50% and often within a few % and demonstrates that the resulting secondary chemistry varies with the cleaning activity. Whilst terpene reaction products dominate the product composition following surface cleaning, those from aromatics and other VOCs are much more important during the use of the air cleaning device. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Environmentally compatible hand wipe cleaning solvents

    NASA Technical Reports Server (NTRS)

    Clayton, Catherine P.; Kovach, Michael P.

    1995-01-01

    Several solvents of environmental concern have previously been used for hand wipe cleaning of SRB surfaces, including 1,1,1-trichloroethane, perchloroethylene, toluene, xylene, and MEK. USBI determined the major types of surfaces involved, and qualification requirements of replacement cleaning agents. Nineteen environmentally compatible candidates were tested on 33 material substrates with 26 types of potential surface contaminants, involving over 7,000 individual evaluations. In addition to the cleaning performance evaluation, bonding, compatibility, and corrosion tests were conducted. Results showed that one cleaner was not optimum for all surfaces. In most instances, some of the candidates cleaned better than the 1,1,1-trichloroethane baseline control. Aqueous cleaners generally cleaned better, and were more compatible with nonmetallic materials, such as paints, plastics, and elastomers. Organic base cleaners were better on metal surfaces. Five cleaners have been qualified and are now being implemented in SRB hand wipe cleaning operations.

  14. Scalable, Economical Fabrication Processes for Ultra-Compact Warm-White LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowes, Ted

    Conventional warm-white LED component fabrication consists of a large number of sequential steps which are required to incorporate electrical, mechanical, and optical functionality into the component. Each of these steps presents cost and yield challenges which multiply throughout the entire process. Although there has been significant progress in LED fabrication over the last decade, significant advances are needed to enable further reductions in cost per lumen while not sacrificing efficacy or color quality. Cree conducted a focused 18-month program to develop a new low-cost, high-efficiency light emitting diode (LED) architecture enabled by novel large-area parallel processing technologies, reduced number ofmore » fabrication steps, and minimized raw materials use. This new scheme is expected to enable ultra-compact LED components exhibiting simultaneously high efficacy and high color quality. By the end of the program, Cree fabricated warm-white LEDs with a room-temperature “instant on” efficacy of >135 lm/W at ~3500K and 90 CRI (when driven at the DOE baseline current density of 35 A/cm2). Cree modified the conventional LED fabrication process flow in a manner that is expected to translate into simultaneously high throughput and yield for ultra-compact packages. Building on its deep expertise in LED wafer fabrication, Cree developed these ultra-compact LEDs to have no compromises in color quality or efficacy compared to their conventional counterparts. Despite their very small size, the LEDs will also be robustly electrically integrated into luminaire systems with the same attach yield as conventional packages. The versatility of the prototype high-efficacy LED architecture will likely benefit solid-state lighting (SSL) luminaire platforms ranging from bulbs to troffers. We anticipate that the prototype LEDs will particularly benefit luminaires with large numbers of distributed compact packages, such as linear and area luminaires (e.g. troffers). The

  15. Ultra Reliability Workshop Introduction

    NASA Technical Reports Server (NTRS)

    Shapiro, Andrew A.

    2006-01-01

    This plan is the accumulation of substantial work by a large number of individuals. The Ultra-Reliability team consists of representatives from each center who have agreed to champion the program and be the focal point for their center. A number of individuals from NASA, government agencies (including the military), universities, industry and non-governmental organizations also contributed significantly to this effort. Most of their names may be found on the Ultra-Reliability PBMA website.

  16. BUY CLEAN MANUAL INTERACTIVE CD-ROM

    EPA Science Inventory

    This interactive CD-ROM contains exercises and opportunities to help users develop a Buy Clean Program for janitorial cleaning products. CD users can learn about Material Safety Data Sheets (MSDS), complete an inventory list, and compare cleaning products to see which have the le...

  17. ASRM process development in aqueous cleaning

    NASA Technical Reports Server (NTRS)

    Swisher, Bill

    1992-01-01

    Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.

  18. Clinical and cost effectiveness of eight disinfection methods for terminal disinfection of hospital isolation rooms contaminated with Clostridium difficile 027.

    PubMed

    Doan, L; Forrest, H; Fakis, A; Craig, J; Claxton, L; Khare, M

    2012-10-01

    Clostridium difficile spores can survive in the environment for months or years, and contaminated environmental surfaces are important sources of nosocomial C. difficile transmission. To compare the clinical and cost effectiveness of eight C. difficile environmental disinfection methods for the terminal cleaning of hospital rooms contaminated with C. difficile spores. This was a novel randomized prospective study undertaken in three phases. Each empty hospital room was disinfected, then contaminated with C. difficile spores and disinfected with one of eight disinfection products: hydrogen peroxide vapour (HPV; Bioquell Q10) 350-700 parts per million (ppm); dry ozone at 25 ppm (Meditrox); 1000 ppm chlorine-releasing agent (Actichlor Plus); microfibre cloths (Vermop) used in combination with and without a chlorine-releasing agent; high temperature over heated dry atomized steam cleaning (Polti steam) in combination with a sanitizing solution (HPMed); steam cleaning (Osprey steam); and peracetic acid wipes (Clinell). Swabs were inoculated on to C. difficile-selective agar and colony counts were performed pre and post disinfection for each method. A cost-effectiveness analysis was also undertaken comparing all methods to the current method of 1000 ppm chlorine-releasing agent (Actichlor Plus). Products were ranked according to the log(10) reduction in colony count from contamination phase to disinfection. The three statistically significant most effective products were hydrogen peroxide (2.303); 1000 ppm chlorine-releasing agent (2.223) and peracetic acid wipes (2.134). The cheaper traditional method of using a chlorine-releasing agent for disinfection was as effective as modern methods. Copyright © 2012 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  19. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  20. Development of re-crystallized W-1.1%TiC with enhanced room-temperature ductility and radiation performance

    NASA Astrophysics Data System (ADS)

    Kurishita, H.; Matsuo, S.; Arakawa, H.; Sakamoto, T.; Kobayashi, S.; Nakai, K.; Takida, T.; Kato, M.; Kawai, M.; Yoshida, N.

    2010-03-01

    Ultra-fine grained (UFG) W-TiC compacts fabricated by powder metallurgical methods utilizing mechanical alloying (MA) are very promising for use in irradiation environments. However, the assurance of room-temperature ductility and enhancement in surface resistances to low-energy hydrogen irradiation are unsettled issues. As an approach to solution to these, microstructural modification by hot plastic working has been applied to UFG W-TiC processed by MA in a purified Ar or H 2 atmosphere and hot isostatic pressing (HIP). Hot plastically worked compacts have been subjected to 3-point bend tests at room temperature and TEM microstructural examinations. It is found that the microstructural modification allows us to convert UFG W-1.1%TiC to compacts exhibiting a very high fracture strength and appreciable ductility at room temperature. The compacts of W-1.1%TiC/Ar (MA atmosphere: Ar) and W-1.1%TiC/H 2 (MA atmosphere: H 2) exhibit re-crystallized structures with approximately 0.5 and 1.5 μm in grain size, respectively. It is shown that the enhancement of fracture resistance by microstructural modifications is attributed to significant strengthening of weak grain boundaries in the re-crystallized state. As a result the modified compacts exhibit superior surface resistance to low-energy deuteron irradiation.

  1. Cleaning process for EUV optical substrates

    DOEpatents

    Weber, Frank J.; Spiller, Eberhard A.

    1999-01-01

    A cleaning process for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.

  2. Low cost, high tech seed cleaning

    Treesearch

    Robert P. Karrfalt

    2013-01-01

    Clean seeds are a great asset in native plant restoration. However, seed cleaning equipment is often too costly for many small operations. This paper introduces how several tools and materials intended for other purposes can be used directly or made into simple machines to clean seeds.

  3. Sonochemical cleaning efficiencies in dental instruments

    NASA Astrophysics Data System (ADS)

    Tiong, T. Joyce; Walmsley, A. Damien; Price, Gareth J.

    2012-05-01

    Ultrasound has been widely used for cleaning purposes in a variety of situations, including in dental practice. Cleaning is achieved through a combination of acoustically driven streaming effects and sonochemical effects arising from the production of inertial cavitation in a liquid. In our work, various dental instruments used for endodontic (root canal) treatment have been evaluated for their efficiency in producing sonochemical effects in an in-vitro cleaning environment. The areas where cavitation was produced were mapped by monitoring chemiluminescence from luminol solutions and this was correlated with their cleaning efficiencies - assessed by the ability to bleach a dye, to form an emulsion by mixing immiscible components and also to remove ink from a glass surface. The results showed good correlation (Pearson's coefficient > 0.9) between the cavitation and cleaning efficiencies, suggesting that the former plays an important role in cleaning. The methods developed and the results will be beneficial in endodontics research in order to optimise future root canal instruments and treatments.

  4. 100 nm AlSb/InAs HEMT for ultra-low-power consumption, low-noise applications.

    PubMed

    Gardès, Cyrille; Bagumako, Sonia; Desplanque, Ludovic; Wichmann, Nicolas; Bollaert, Sylvain; Danneville, François; Wallart, Xavier; Roelens, Yannick

    2014-01-01

    We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100 nm gate length at room temperature in low-power regime. Extrinsic cut-off frequencies fT/f max of 100/125 GHz together with minimum noise figure NF(min) = 0.5 dB and associated gain G(ass) = 12 dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for high-frequency operation combined with low-noise performances in ultra-low-power regime.

  5. 78 FR 17229 - Notice of Lodging of Proposed Consent Decree Amendment Under the Clean Air Act; the Clean Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Act; the Clean Water Act; the Resource Conservation and Recovery Act; the Missouri Air Conservation Law; the Missouri Clean Water Law and the Missouri Hazardous Waste Management Law On March 14, 2013..., the Missouri Air Conservation Law, the Clean Water Act, the Missouri Clean Water Law, the Resource...

  6. Ultrasonic frequency selection for aqueous fine cleaning

    NASA Technical Reports Server (NTRS)

    Becker, Joann F.

    1995-01-01

    A study was conducted to evaluate ultrasonic cleaning systems for precision cleaning effectiveness for oxygen service hardware. This evaluation was specific for Rocketdyne Division of Rockwell Aerospace alloys and machining soils. Machining lubricants and hydraulic fluid were applied as soils to standardized complex test specimens designed to simulate typical hardware. The study consisted of tests which included 20, 25, 30, 40, 50, and 65 kHz ultrasonic cleaning systems. Two size categories of cleaning systems were evaluated, 3- to 10-gal laboratory size tanks and 35- to 320-gal industrial size tanks. The system properties of cavitation, frequency vs. cleaning effectiveness, the two types of transducers, and the power level of the system vs. size of the cleaning tank were investigated. The data obtained from this study was used to select the ultrasonic tanks for the aqueous fine clean facility installed at Rocketdyne.

  7. Ultrasonic frequency selection for aqueous fine cleaning

    NASA Technical Reports Server (NTRS)

    Becker, Joann F.

    1994-01-01

    A study was conducted to evaluate ultrasonic cleaning systems for precision cleaning effectiveness for oxygen service hardware. This evaluation was specific for Rocketdyne Div. of Rockwell Aerospace alloys and machining soils. Machining lubricants and hydraulic fluid were applied as soils to standardized complex test specimens designed to simulate typical hardware. The study consisted of tests which included 20, 25, 30, 40, 50, and 65 kHz ultrasonic cleaning systems. Two size categories of cleaning systems were evaluated, 3- to 10-gal laboratory size tanks and 35- to 320-gal industrial size tanks. The system properties of cavitation; frequency vs. cleaning effectiveness; the two types of transducers; and the power level of the system vs. size of the cleaning tank were investigated. The data obtained from this study was used to select the ultrasonic tanks for the aqueous fine clean facility installed at Rocketdyne.

  8. Rudimentary Cleaning Compared to Level 300A

    NASA Technical Reports Server (NTRS)

    Arpin, Christina Y. Pina; Stoltzfus, Joel

    2012-01-01

    A study was done to characterize the cleanliness level achievable when using a rudimentary cleaning process, and results were compared to JPR 5322.1G Level 300A. While it is not ideal to clean in a shop environment, some situations (e.g., field combat operations) require oxygen system hardware to be maintained and cleaned to prevent a fire hazard, even though it cannot be sent back to a precision cleaning facility. This study measured the effectiveness of basic shop cleaning. Initially, three items representing parts of an oxygen system were contaminated: a metal plate, valve body, and metal oxygen bottle. The contaminants chosen were those most likely to be introduced to the system during normal use: oil, lubricant, metal shavings/powder, sand, fingerprints, tape, lip balm, and hand lotion. The cleaning process used hot water, soap, various brushes, gaseous nitrogen, water nozzle, plastic trays, scouring pads, and a controlled shop environment. Test subjects were classified into three groups: technical professionals having an appreciation for oxygen hazards; professional precision cleaners; and a group with no previous professional knowledge of oxygen or precision cleaning. Three test subjects were in each group, and each was provided with standard cleaning equipment, a cleaning procedure, and one of each of the three test items to clean. The results indicated that the achievable cleanliness level was independent of the technical knowledge or proficiency of the personnel cleaning the items. Results also showed that achieving a Level 300 particle count was more difficult than achieving a Level A nonvolatile residue amount.

  9. Washing away your sins in the brain: physical cleaning and priming of cleaning recruit different brain networks after moral threat

    PubMed Central

    Tang, Honghong; Lu, Xiaping; Su, Rui; Liang, Zilu; Mai, Xiaoqin

    2017-01-01

    Abstract The association between moral purity and physical cleanliness has been widely discussed recently. Studies found that moral threat initiates the need of physical cleanliness, but actual physical cleaning and priming of cleaning have inconsistent effects on subsequent attitudes and behaviors. Here, we used resting-state functional magnetic resonance imaging to explore the underlying neural mechanism of actual physical cleaning and priming of cleaning. After recalling moral transgression with strong feelings of guilt and shame, participants either actually cleaned their faces with a wipe or were primed with cleanliness through viewing its pictures. Results showed that actual physical cleaning reduced the spontaneous brain activities in the right insula and MPFC, regions that involved in embodied moral emotion processing, while priming of cleaning decreased activities in the right superior frontal gyrus and middle frontal gyrus, regions that participated in executive control processing. Additionally, actual physical cleaning also changed functional connectivity between insula/MPFC and emotion related regions, whereas priming of cleaning modified connectivity within both moral and sensorimotor areas. These findings revealed that actual physical cleaning and priming of cleaning led to changes in different brain regions and networks, providing neural evidence for the inconsistent effects of cleanliness on subsequent attitudes and behaviors. PMID:28338887

  10. Washing away your sins in the brain: physical cleaning and priming of cleaning recruit different brain networks after moral threat.

    PubMed

    Tang, Honghong; Lu, Xiaping; Su, Rui; Liang, Zilu; Mai, Xiaoqin; Liu, Chao

    2017-07-01

    The association between moral purity and physical cleanliness has been widely discussed recently. Studies found that moral threat initiates the need of physical cleanliness, but actual physical cleaning and priming of cleaning have inconsistent effects on subsequent attitudes and behaviors. Here, we used resting-state functional magnetic resonance imaging to explore the underlying neural mechanism of actual physical cleaning and priming of cleaning. After recalling moral transgression with strong feelings of guilt and shame, participants either actually cleaned their faces with a wipe or were primed with cleanliness through viewing its pictures. Results showed that actual physical cleaning reduced the spontaneous brain activities in the right insula and MPFC, regions that involved in embodied moral emotion processing, while priming of cleaning decreased activities in the right superior frontal gyrus and middle frontal gyrus, regions that participated in executive control processing. Additionally, actual physical cleaning also changed functional connectivity between insula/MPFC and emotion related regions, whereas priming of cleaning modified connectivity within both moral and sensorimotor areas. These findings revealed that actual physical cleaning and priming of cleaning led to changes in different brain regions and networks, providing neural evidence for the inconsistent effects of cleanliness on subsequent attitudes and behaviors. © The Author (2017). Published by Oxford University Press.

  11. Membrane cleaning with ultrasonically driven bubbles.

    PubMed

    Reuter, Fabian; Lauterborn, Sonja; Mettin, Robert; Lauterborn, Werner

    2017-07-01

    A laboratory filtration plant for drinking water treatment is constructed to study the conditions for purely mechanical in situ cleaning of fouled polymeric membranes by the application of ultrasound. The filtration is done by suction of water with defined constant contamination through a membrane module, a stack of five pairs of flat-sheet ultrafiltration membranes. The short cleaning cycle to remove the cake layer from the membranes includes backwashing, the application of ultrasound and air flushing. A special geometry for sound irradiation of the membranes parallel to their surfaces is chosen. Two frequencies, 35kHz and 130kHz, and different driving powers are tested for their cleaning effectiveness. No cleaning is found for 35kHz, whereas good cleaning results are obtained for 130kHz, with an optimum cleaning effectiveness at moderate driving powers. Acoustic and optic measurements in space and time as well as analytical considerations and numerical calculations reveal the reasons and confirm the experimental results. The sound field is measured in high resolution and bubble structures are high-speed imaged on their nucleation sites as well as during their cleaning work at the membrane surface. The microscopic inspection of the membrane surface after cleaning shows distinct cleaning types in the cake layer that are related to specific bubble behaviour on the membrane. The membrane integrity and permeate quality are checked on-line by particle counting and turbidity measurement of the permeate. No signs of membrane damage or irreversible membrane degradation in permeability are detected and an excellent water permeate quality is retained. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, Edward; Spires, Renee; Davis, Neil

    2009-02-11

    At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, amore » significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking

  13. 49 CFR 174.615 - Cleaning cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Cleaning cars. 174.615 Section 174.615... Requirements for Division 6.1 (Poisonous) Materials § 174.615 Cleaning cars. (a) [Reserved] (b) After Division 6.1 (poisonous) materials are unloaded from a rail car, that car must be thoroughly cleaned unless...

  14. 49 CFR 174.615 - Cleaning cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Cleaning cars. 174.615 Section 174.615... Requirements for Division 6.1 (Poisonous) Materials § 174.615 Cleaning cars. (a) [Reserved] (b) After Division 6.1 (poisonous) materials are unloaded from a rail car, that car must be thoroughly cleaned unless...

  15. 49 CFR 174.615 - Cleaning cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Cleaning cars. 174.615 Section 174.615... Requirements for Division 6.1 (Poisonous) Materials § 174.615 Cleaning cars. (a) [Reserved] (b) After Division 6.1 (poisonous) materials are unloaded from a rail car, that car must be thoroughly cleaned unless...

  16. 49 CFR 174.615 - Cleaning cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Cleaning cars. 174.615 Section 174.615... Requirements for Division 6.1 (Poisonous) Materials § 174.615 Cleaning cars. (a) [Reserved] (b) After Division 6.1 (poisonous) materials are unloaded from a rail car, that car must be thoroughly cleaned unless...

  17. 49 CFR 174.615 - Cleaning cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cleaning cars. 174.615 Section 174.615... Requirements for Division 6.1 (Poisonous) Materials § 174.615 Cleaning cars. (a) [Reserved] (b) After Division 6.1 (poisonous) materials are unloaded from a rail car, that car must be thoroughly cleaned unless...

  18. Effectuality of Cleaning Workers' Training and Cleaning Enterprises' Chemical Health Hazard Risk Profiling.

    PubMed

    Suleiman, Abdulqadir M; Svendsen, Kristin V H

    2015-12-01

    Goal-oriented communication of risk of hazards is necessary in order to reduce risk of workers' exposure to chemicals. Adequate training of workers and enterprise priority setting are essential elements. Cleaning enterprises have many challenges and the existing paradigms influence the risk levels of these enterprises. Information on organization and enterprises' prioritization in training programs was gathered from cleaning enterprises. A measure of enterprises' conceptual level of importance of chemical health hazards and a model for working out the risk index (RI) indicating enterprises' conceptual risk level was established and used to categorize the enterprises. In 72.3% of cases, training takes place concurrently with task performances and in 67.4% experienced workers conduct the trainings. There is disparity between employers' opinion on competence level of the workers and reality. Lower conceptual level of importance was observed for cleaning enterprises of different sizes compared with regional safety delegates and occupational hygienists. Risk index values show no difference in risk level between small and large enterprises. Training of cleaning workers lacks the prerequisite for suitability and effectiveness to counter risks of chemical health hazards. There is dereliction of duty by management in the sector resulting in a lack of competence among the cleaning workers. Instituting acceptable easily attainable safety competence level for cleaners will conduce to risk reduction, and enforcement of attainment of the competence level would be a positive step.

  19. Characterisation of baroreflex sensitivity of recreational ultra-endurance athletes.

    PubMed

    Foulds, Heather J A; Cote, Anita T; Phillips, Aaron A; Charlesworth, Sarah A; Bredin, Shannon S D; Burr, Jamie F; Drury, Chipman Taylor; Ngai, Shirley; Fougere, Renee J; Ivey, Adam C; Warburton, Darren E R

    2014-01-01

    Altered autonomic function has been identified following ultra-endurance event participation among elite world-class athletes. Despite dramatic increases in recreational athlete participation in these ultra-endurance events, the physiological effects on these athletes are less known. This investigation sought to characterise changes in surrogate measures of autonomic function: heart rate variability (HRV), blood pressure variability (BPV) and baroreceptor sensitivity (BRS) following ultra-endurance race participation. Further, we sought to compare baseline measures among ultra-endurance athletes and recreationally active controls not participating in the ultra-endurance race. Recreational ultra-endurance athletes (n = 25, 44.6 ± 8.2 years, 8 females) and recreationally active age, sex and body mass index matched controls (n = 25) were evaluated. Measurements of HRV, BPV and BRS were collected pre- and post-race for recreational ultra-endurance athletes and at baseline, for recreationally active controls. Post-race, ultra-endurance athletes demonstrated significantly greater sympathetic modulation [low frequency (LF) power HRV: 50.3 ± 21.6 normalised units (n.u.) to 65.9 ± 20.4 n.u., p = 0.01] and significantly lower parasympathetic modulation [high frequency (HF) power HRV: 45.0 ± 22.4 n.u. to 23.9 ± 13.1 n.u., p < 0.001] and BRS. Baseline measurements BRS (spectral: 13.96 ± 10.82 ms·mmHg(-1) vs. 11.39 ± 5.33 ms·mmHg(-1)) were similar among recreational ultra-endurance athletes and recreationally active controls, though recreational ultra-endurance athletes demonstrated greater parasympathetic modulation of some HRV and BPV measures. Recreational ultra-endurance athletes experienced increased sympathetic tone and declines in BRS post-race, similar to previously reported elite world-class ultra-endurance athletes, though still within normal population ranges.

  20. Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapata-Solvas, E.; Jayaseelan, D.; Lin, Hua-Tay

    2013-01-01

    Flexural strengths at room temperature, at 1400 C in air and at room temperature after 1 h oxidation at 1400 C were determined for ZrB2- and HfB2-based ultra-high temperature ceramics (UHTCs). Defects caused by electrical discharge machining (EDM) lowered measured strengths significantly and were used to calculate fracture toughness via a fracture mechanics approach. ZrB2 with 20 vol.% SiC had room temperature strength of 700 90 MPa, fracture toughness of 6.4 0.6 MPa, Vickers hardness at 9.8 N load of 21.1 0.6 GPa, 1400 C strength of 400 30 MPa and room temperature strength after 1 h oxidation at 1400more » C of 678 15 MPa with an oxide layer thickness of 45 5 m. HfB2 with 20 vol.% SiC showed room temperature strength of 620 50 MPa, fracture toughness of 5.0 0.4 MPa, Vickers hardness at 9.8 N load of 27.0 0.6 GPa, 1400 C strength of 590 150 MPa and room temperature strength after 1 h oxidation at 1400 C of 660 25 MPa with an oxide layer thickness of 12 1 m. 2 wt.% La2O3 addition to UHTCs slightly reduced mechanical performance while increasing tolerance to property degradation after oxidation and effectively aided internal stress relaxation during spark plasma sintering (SPS) cooling, as quantified by X-ray diffraction (XRD). Slow crack growth was suggested as the failure mechanism at high temperatures as a consequence of sharp cracks formation during oxidation.« less