Sample records for ultra deep fields

  1. SMUVS: Spitzer Matching survey of the UltraVISTA ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Caputi, Karina; Ashby, Matthew; Fazio, Giovanni; Huang, Jiasheng; Dunlop, James; Franx, Marijn; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Muzzin, Adam; Ilbert, Olivier; Somerville, Rachel; Wechsler, Risa; Behroozi, Peter; Lu, Yu

    2014-12-01

    We request 2026.5 hours to homogenize the matching ultra-deep IRAC data of the UltraVISTA ultra-deep stripes, producing a final area of ~0.6 square degrees with the deepest near- and mid-IR coverage existing in any such large area of the sky (H, Ks, [3.6], [4.5] ~ 25.3-26.1 AB mag; 5 sigma). The UltraVISTA ultra-deep stripes are contained within the larger COSMOS field, which has a rich collection of multi-wavelength, ancillary data, making it ideal to study different aspects of galaxy evolution with high statistical significance and excellent redshift accuracy. The UltraVISTA ultra-deep stripes are the region of the COSMOS field where these studies can be pushed to the highest redshifts, but securely identifying high-z galaxies, and determining their stellar masses, will only be possible if ultra-deep mid-IR data are available. Our IRAC observations will allow us to: 1) extend the galaxy stellar mass function at redshifts z=3 to z=5 to the intermediate mass regime (M~5x10^9-10^10 Msun), which is critical to constrain galaxy formation models; 2) gain a factor of six in the area where it is possible to effectively search for z>=6 galaxies and study their properties; 3) measure, for the first time, the large-scale structure traced by an unbiased galaxy sample at z=5 to z=7, and make the link to their host dark matter haloes. This cannot be done in any other field of the sky, as the UltraVISTA ultra-deep stripes form a quasi-contiguous, regular-shape field, which has a unique combination of large area and photometric depth. 4) provide a unique resource for the selection of secure z>5 targets for JWST and ALMA follow up. Our observations will have an enormous legacy value which amply justifies this new observing-time investment in the COSMOS field. Spitzer cannot miss this unique opportunity to open up a large 0.6 square-degree window to the early Universe.

  2. Near-UV Sources in the Hubble Ultra Deep Field: The Catalog

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.; Voyrer, Elysse; de Mello, Duilia F.; Siana, Brian; Quirk, Cori; Teplitz, Harry I.

    2009-01-01

    The catalog from the first high resolution U-band image of the Hubble Ultra Deep Field, taken with Hubble s Wide Field Planetary Camera 2 through the F300W filter, is presented. We detect 96 U-band objects and compare and combine this catalog with a Great Observatories Origins Deep Survey (GOODS) B-selected catalog that provides B, V, i, and z photometry, spectral types, and photometric redshifts. We have also obtained Far-Ultraviolet (FUV, 1614 Angstroms) data with Hubble s Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) and with Galaxy Evolution Explorer (GALEX). We detected 31 sources with ACS/SBC, 28 with GALEX/FUV, and 45 with GALEX/NUV. The methods of observations, image processing, object identification, catalog preparation, and catalog matching are presented.

  3. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment.

    PubMed

    Ohsugi, Hideharu; Tabuchi, Hitoshi; Enno, Hiroki; Ishitobi, Naofumi

    2017-08-25

    Rhegmatogenous retinal detachment (RRD) is a serious condition that can lead to blindness; however, it is highly treatable with timely and appropriate treatment. Thus, early diagnosis and treatment of RRD is crucial. In this study, we applied deep learning, a machine-learning technology, to detect RRD using ultra-wide-field fundus images and investigated its performance. In total, 411 images (329 for training and 82 for grading) from 407 RRD patients and 420 images (336 for training and 84 for grading) from 238 non-RRD patients were used in this study. The deep learning model demonstrated a high sensitivity of 97.6% [95% confidence interval (CI), 94.2-100%] and a high specificity of 96.5% (95% CI, 90.2-100%), and the area under the curve was 0.988 (95% CI, 0.981-0.995). This model can improve medical care in remote areas where eye clinics are not available by using ultra-wide-field fundus ophthalmoscopy for the accurate diagnosis of RRD. Early diagnosis of RRD can prevent blindness.

  4. Finding the First Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.

  5. The MUSE Hubble Ultra Deep Field Survey. II. Spectroscopic redshifts and comparisons to color selections of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.

    2017-11-01

    We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at z< 1.5 (473 objects) and Lyα at 2.9

  6. Hubble Team Unveils Most Colorful View of Universe Captured by Space Telescope

    NASA Image and Video Library

    2014-06-04

    Astronomers using NASA's Hubble Space Telescope have assembled a comprehensive picture of the evolving universe – among the most colorful deep space images ever captured by the 24-year-old telescope. Researchers say the image, in new study called the Ultraviolet Coverage of the Hubble Ultra Deep Field, provides the missing link in star formation. The Hubble Ultra Deep Field 2014 image is a composite of separate exposures taken in 2003 to 2012 with Hubble's Advanced Camera for Surveys and Wide Field Camera 3. Credit: NASA/ESA Read more: 1.usa.gov/1neD0se NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. VizieR Online Data Catalog: Merging galaxies with tidal tails in COSMOS to z=1 (Wen+, 2016)

    NASA Astrophysics Data System (ADS)

    Wen, Z. Z.; Zheng, X. Z.

    2017-02-01

    Our study utilizes the public data and catalogs from multi-band deep surveys of the COSMOS field. The UltraVISTA survey (McCracken+ 2012, J/A+A/544/A156) provides ultra-deep near-IR imaging observations of this field in the Y,J,H, and Ks-band, as well as a narrow band (NB118). The HST/ACS I-band imaging data are publicly available, allowing us to measure morphologies in the rest-frame optical for galaxies at z<=1. The HST/ACS I-band images reach a 5σ depth of 27.2 magnitude for point sources. (1 data file).

  8. VizieR Online Data Catalog: Galaxy samples rest-frame ultraviolet structure (Bond+, 2014)

    NASA Astrophysics Data System (ADS)

    Bond, N. A.; Gardner, J. P.; de Mello, D. F.; Teplitz, H. I.; Rafelski, M.; Koekemoer, A. M.; Coe, D.; Grogin, N.; Gawiser, E.; Ravindranath, S.; Scarlata, C.

    2017-03-01

    In this paper, we use data taken as part of a program (GO 11563, PI: Teplitz) to obtain UV imaging of the Hubble Ultra Deep Field (hereafter UVUDF) and study intermediate-redshift galaxy structure in the F336W, F275W, and F225W filters, complementing existing optical and near-IR measurements from the 2012 Hubble Ultra Deep Field (HUDF12; Ellis et al. 2013ApJ...763L...7E) survey. We use AB magnitudes throughout and assume a concordance cosmology with H0=71 km/s/Mpc, ωm=0.27, and ωλ=0.73 (Spergel et al. 2007ApJS..170..377S). The UVUDF data and the optical Hubble Ultradeep Field (UDF; Beckwith et al. 2006, J/AJ/132/1729) are both contained within a single deep field in the Great Observatories Origins Deep Survey South. The new UVUDF data include imaging in three filters (F336W, F275W, and F225W), obtained in 10 visits, for a total of 30 orbits per filter. In addition, from the UDF, we make use of deep drizzled images taken in the observed optical with the F435W, F606W, and F775W filters. (1 data file).

  9. HST/ACS Observations of RR Lyrae Stars in Six Ultra-Deep Fields of M31

    NASA Technical Reports Server (NTRS)

    Jeffery, E. J.; Smith, E.; Brown, T. M.; Sweigart, A. V.; Kalirai, J. S.; Ferguson, H. C.; Guhathakurta, P.; Renzini, A.; Rich, R. M.

    2010-01-01

    We present HST/ACS observations of RR Lyrae variable stars in six ultra deep fields of the Andromeda galaxy (M31), including parts of the halo, disk, and giant stellar stream. Past work on the RR Lyrae stars in M31 has focused on various aspects of the stellar populations that make up the galaxy s halo, including their distances and metallicities. This study builds upon this previous work by increasing the spatial coverage (something that has been lacking in previous studies) and by searching for these variable stars in constituents of the galaxy not yet explored. Besides the 55 RR Lyrae stars we found in our initial field located 11kpc from the galactic nucleus, we find additional RR Lyrae stars in four of the remaining five ultra deep fields as follows: 21 in the disk, 24 in the giant stellar stream, 3 in the halo field 21kpc from the galactic nucleus, and 5 in one of the halo fields at 35kpc. No RR Lyrae were found in the second halo field at 35kpc. The RR Lyrae populations of these fields appear to mostly be of Oosterhoff I type, although the 11kpc field appears to be intermediate or mixed. We will discuss the properties of these stars including period and reddening distributions. We calculate metallicities and distances for the stars in each of these fields using different methods and compare the results, to an extent that has not yet been done. We compare these methods not just on RR Lyrae in our M31 fields, but also on a data set of Milky Way field RR Lyrae stars.

  10. 76 FR 66078 - Notice of Industry Workshop on Technical and Regulatory Challenges in Deep and Ultra-Deep Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ...-0087] Notice of Industry Workshop on Technical and Regulatory Challenges in Deep and Ultra-Deep Outer... and gas exploration and production in deep and ultra-deep OCS waters. Through this workshop, BSEE will... structured venue for consultation among offshore deepwater oil and gas industry and regulatory experts in...

  11. VizieR Online Data Catalog: VANDELS High-Redshift Galaxy Evolution (McLure+, 2017)

    NASA Astrophysics Data System (ADS)

    McLure, R.; Pentericci, L.; Vandels Team

    2017-11-01

    This is the first data release (DR1) of the VANDELS survey, an ESO public spectroscopy survey targeting the high-redshift Universe. The VANDELS survey uses the VIMOS spectrograph on ESO's VLT to obtain ultra-deep, medium resolution, optical spectra of galaxies within the UKIDSS Ultra Deep Survey (UDS) and Chandra Deep Field South (CDFS) survey fields (0.2 sq. degree total area). Using robust photometric redshift pre-selection, VANDELS is targeting ~2100 galaxies in the redshift interval 1.0=3. In addition, VANDELS is targeting a substantial number of passive galaxies in the redshift interval 1.0

  12. Deep Keck u-Band Imaging of the Hubble Ultra Deep Field: A Catalog of z ~ 3 Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, Hsiao-Wen; Armandroff, Taft E.; Wirth, Gregory D.

    2009-10-01

    We present a sample of 407 z ~ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec-2, making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ~50% of the z ~ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ~ 3 and z ~ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ~ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  13. WFIRST: Science from Deep Field Surveys

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Foley, Ryan; WFIRST Deep Field Working Group

    2018-06-01

    WFIRST will enable deep field imaging across much larger areas than those previously obtained with Hubble, opening up completely new areas of parameter space for extragalactic deep fields including cosmology, supernova and galaxy evolution science. The instantaneous field of view of the Wide Field Instrument (WFI) is about 0.3 square degrees, which would for example yield an Ultra Deep Field (UDF) reaching similar depths at visible and near-infrared wavelengths to that obtained with Hubble, over an area about 100-200 times larger, for a comparable investment in time. Moreover, wider fields on scales of 10-20 square degrees could achieve depths comparable to large HST surveys at medium depths such as GOODS and CANDELS, and would enable multi-epoch supernova science that could be matched in area to LSST Deep Drilling fields or other large survey areas. Such fields may benefit from being placed on locations in the sky that have ancillary multi-band imaging or spectroscopy from other facilities, from the ground or in space. The WFIRST Deep Fields Working Group has been examining the science considerations for various types of deep fields that may be obtained with WFIRST, and present here a summary of the various properties of different locations in the sky that may be considered for future deep fields with WFIRST.

  14. WFIRST: Science from Deep Field Surveys

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton; Foley, Ryan; WFIRST Deep Field Working Group

    2018-01-01

    WFIRST will enable deep field imaging across much larger areas than those previously obtained with Hubble, opening up completely new areas of parameter space for extragalactic deep fields including cosmology, supernova and galaxy evolution science. The instantaneous field of view of the Wide Field Instrument (WFI) is about 0.3 square degrees, which would for example yield an Ultra Deep Field (UDF) reaching similar depths at visible and near-infrared wavelengths to that obtained with Hubble, over an area about 100-200 times larger, for a comparable investment in time. Moreover, wider fields on scales of 10-20 square degrees could achieve depths comparable to large HST surveys at medium depths such as GOODS and CANDELS, and would enable multi-epoch supernova science that could be matched in area to LSST Deep Drilling fields or other large survey areas. Such fields may benefit from being placed on locations in the sky that have ancillary multi-band imaging or spectroscopy from other facilities, from the ground or in space. The WFIRST Deep Fields Working Group has been examining the science considerations for various types of deep fields that may be obtained with WFIRST, and present here a summary of the various properties of different locations in the sky that may be considered for future deep fields with WFIRST.

  15. Swimming in Sculptor

    NASA Image and Video Library

    2016-03-07

    Peering deep into the early Universe, this picturesque parallel field observation from the NASA/ESA Hubble Space Telescope reveals thousands of colourful galaxies swimming in the inky blackness of space. A few foreground stars from our own galaxy, the Milky Way, are also visible. In October 2013 Hubble’s Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) began observing this portion of sky as part of the Frontier Fields programme. This spectacular skyscape was captured during the study of the giant galaxy cluster Abell 2744, otherwise known as Pandora’s Box. While one of Hubble’s cameras concentrated on Abell 2744, the other camera viewed this adjacent patch of sky near to the cluster. Containing countless galaxies of various ages, shapes and sizes, this parallel field observation is nearly as deep as the Hubble Ultra-Deep Field. In addition to showcasing the stunning beauty of the deep Universe in incredible detail, this parallel field — when compared to other deep fields — will help astronomers understand how similar the Universe looks in different directions

  16. PdBI cold dust imaging of two extremely red H – [4.5] > 4 galaxies discovered with SEDS and CANDELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caputi, K. I.; Popping, G.; Spaans, M.

    2014-06-20

    We report Plateau de Bure Interferometer (PdBI) 1.1 mm continuum imaging toward two extremely red H – [4.5] > 4 (AB) galaxies at z > 3, which we have previously discovered making use of Spitzer SEDS and Hubble Space Telescope CANDELS ultra-deep images of the Ultra Deep Survey field. One of our objects is detected on the PdBI map with a 4.3σ significance, corresponding to S{sub ν}(1.1 mm)=0.78±0.18 mJy. By combining this detection with the Spitzer 8 and 24 μm photometry for this source, and SCUBA2 flux density upper limits, we infer that this galaxy is a composite active galacticmore » nucleus/star-forming system. The infrared (IR)-derived star formation rate is SFR ≈ 200 ± 100 M {sub ☉} yr{sup –1}, which implies that this galaxy is a higher-redshift analogue of the ordinary ultra-luminous infrared galaxies more commonly found at z ∼ 2-3. In the field of the other target, we find a tentative 3.1σ detection on the PdBI 1.1 mm map, but 3.7 arcsec away of our target position, so it likely corresponds to a different object. In spite of the lower significance, the PdBI detection is supported by a close SCUBA2 3.3σ detection. No counterpart is found on either the deep SEDS or CANDELS maps, so, if real, the PdBI source could be similar in nature to the submillimeter source GN10. We conclude that the analysis of ultra-deep near- and mid-IR images offers an efficient, alternative route to discover new sites of powerful star formation activity at high redshifts.« less

  17. Observing the Birth and evolution of Galaxies - the ATCA-AKARI-ASTE/AzTEC deep South Ecliptic Pole Field

    NASA Astrophysics Data System (ADS)

    White, Glenn; Kohno, Kotaro; Matsuhara, Hideo; Matsuura, Shuji; Hanami, Hitoshi; Lee, Hyung Mok; Pearson, Chris; Takagi, Toshi; Serjeant, Stephen; Jeong, Woongseob; Oyabu, Shinki; Shirahata, Mai; Nakanishi, Kouichiro; Figueredo, Elysandra; Etxaluze, Mireya

    2007-04-01

    We propose deep 20 cm observations supporting the AKARI (3-160 micron)/ASTE/AzTEC (1.1 mm) SEP ultra deep ('Oyabu Field') survey of an extremely low cirrus region at the South Ecliptic Pole. Our combined IR/mm/Radio survey addresses the questions: How do protogalaxies and protospheroids form and evolve? How do AGN link with ULIRGs in their birth and evolution? What is the nature of the mm/submm extragalactic source population? We will address these by sampling the star formation history in the early universe to at least z~2. Compared to other Deep Surveys, a) AKARI multi-band IR measurements allow precision photo-z estimates of optically obscured objects, b) our multi-waveband contiguous area will mitigate effects of cosmic variance, c) the low cirrus noise at the SEP (< 0.08 MJy/sr) rivals that of the Lockman Hole "Astronomy's other ultra-deep 'cosmological window'", and d) our coverage of four FIR bands will characterise the far-IR dust emission hump of our starburst galaxies better than SPITZER's two MIPS bands allow. The ATCA data are crucial to galaxy identification, and determining the star formation rates and intrinsic luminosities through this unique Southern cosmological window.

  18. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... qualified deep well or qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (b) of this... a qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (c) of this section. (b) If your lease meets the requirements in paragraph (a)(1) of this section, it earns the RSV prescribed in...

  19. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... qualified deep well or qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (b) of this... a qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (c) of this section. (b) If your lease meets the requirements in paragraph (a)(1) of this section, it earns the RSV prescribed in...

  20. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... qualified deep well or qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (b) of this... a qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (c) of this section. (b) If your lease meets the requirements in paragraph (a)(1) of this section, it earns the RSV prescribed in...

  1. A new family of magnetic stars: the Am stars

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Petit, P.; Lignières, F.

    2016-12-01

    We presented the discovery of an ultra-weak field in three Am stars, β UMa, θ Leo, and Alhena, thanks to ultra-deep spectropolarimetric observations. Two of the three stars of this study shown peculiar magnetic signatures with prominent positive lobes like the one of Sirius A that are not expected in the standard theory of the Zeeman effect. Alhena, contrary to Sirius A, β UMa and θ Leo, show normal signatures. These detections of ultra-weak fields in Am stars suggest the existence of a new family of magnetic intermediate-mass stars: the Am stars. However the various shapes of the signatures required further observation to identify the physical processes at work in these stars. A preliminary explanation is based on microturbulence.

  2. Evolution Of The Galaxy Major Merger Rate Since Z 6 In The Muse Hubble Ultra Deep Field Survey.

    NASA Astrophysics Data System (ADS)

    Ventou, E.; Contini, T.; MUSE-GTO Collaboration

    2017-06-01

    Over the past two decades, strong evidence that galaxies have undergone a significant evolution over cosmic time were found. Do galaxy mergers, one of the main driving mechanisms behind the growth of galaxies, played a key role in their evolution at significant look-back time? Due to the difficulty to identify these violent interactions between galaxies at high redshifts, the major merger rate, involving two galaxies of similar masses, was constrained so far up to redshift z 3, from previous studies of spectrocopic pair counts. Thanks to MUSE, which is perfectly suited to identify close pairs of galaxies with secure spectroscopic redshifts, we are now able to extend such studies up to z 6. I will present the results obtained from deep (10-30h) MUSE observations in the Hubble Ultra Deep Field. We provide the first constraints on the galaxy major merger evolution over 12 Gyrs (0.2 < z < 6) and over a broad range of stellar masses, showing that there is a flattening of the major merger rate evolution at very high redshift.

  3. A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straughn, Amber N.; Eufrasio, Rafael T.; Gardner, Jonathan P.

    2015-12-01

    Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies’ morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of “tadpole” galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies ofmore » these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct “tadpole” shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation.« less

  4. Ultra-Deep Drilling Cost Reduction; Design and Fabrication of an Ultra-Deep Drilling Simulator (UDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindstrom, Jason

    2010-01-31

    Ultra-deep drilling, below about 20,000 ft (6,096 m), is extremely expensive and limits the recovery of hydrocarbons at these depths. Unfortunately, rock breakage and cuttings removal under these conditions is not understood. To better understand and thus reduce cost at these conditions an ultra-deep single cutter drilling simulator (UDS) capable of drill cutter and mud tests to sustained pressure and temperature of 30,000 psi (207 MPa) and 482 °F (250 °C), respectively, was designed and manufactured at TerraTek, a Schlumberger company, in cooperation with the Department of Energy’s National Energy Technology Laboratory. UDS testing under ultra-deep drilling conditions offers anmore » economical alternative to high day rates and can prove or disprove the viability of a particular drilling technique or fluid to provide opportunity for future domestic energy needs.« less

  5. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures

    PubMed Central

    Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun

    2016-01-01

    Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than −10 dB within the −3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems. PMID:27883028

  6. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures.

    PubMed

    Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun

    2016-11-24

    Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than -10 dB within the -3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems.

  7. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.30 Which leases...

  8. Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, Design and Target Catalogue

    NASA Astrophysics Data System (ADS)

    Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Lagos, C. P.; Cortese, L.; Mannering, E.; Foster, C.; Lidman, C.; Hashemizadeh, A.; Koushan, S.; O'Toole, S.; Baldry, I. K.; Bilicki, M.; Bland-Hawthorn, J.; Bremer, M. N.; Brown, M. J. I.; Bryant, J. J.; Catinella, B.; Croom, S. M.; Grootes, M. W.; Holwerda, B. W.; Jarvis, M. J.; Maddox, N.; Meyer, M.; Moffett, A. J.; Phillipps, S.; Taylor, E. N.; Windhorst, R. A.; Wolf, C.

    2018-06-01

    The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ˜60,000 galaxies to Y<21.2 mag, over ˜6 deg2 in three well-studied deep extragalactic fields (Cosmic Origins Survey field, COSMOS, Extended Chandra Deep Field South, ECDFS and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS - all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of NIR colours, and has been validated by visual inspection. To maximise our observing efficiency for faint targets we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night's observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.

  9. Deep Imaging of the HCG 95 Field. I. Ultra-diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Shi, Dong Dong; Zheng, Xian Zhong; Zhao, Hai Bin; Pan, Zhi Zheng; Li, Bin; Zou, Hu; Zhou, Xu; Guo, KeXin; An, Fang Xia; Li, Yu Bin

    2017-09-01

    We present a detection of 89 candidates of ultra-diffuse galaxies (UDGs) in a 4.9 degree2 field centered on the Hickson Compact Group 95 (HCG 95) using deep g- and r-band images taken with the Chinese Near Object Survey Telescope. This field contains one rich galaxy cluster (Abell 2588 at z = 0.199) and two poor clusters (Pegasus I at z = 0.013 and Pegasus II at z = 0.040). The 89 candidates are likely associated with the two poor clusters, giving about 50-60 true UDGs with a half-light radius {r}{{e}}> 1.5 {kpc} and a central surface brightness μ (g,0)> 24.0 mag arcsec-2. Deep z\\prime -band images are available for 84 of the 89 galaxies from the Dark Energy Camera Legacy Survey (DECaLS), confirming that these galaxies have an extremely low central surface brightness. Moreover, our UDG candidates are spread over a wide range in g - r color, and ˜26% are as blue as normal star-forming galaxies, which is suggestive of young UDGs that are still in formation. Interestingly, we find that one UDG linked with HCG 95 is a gas-rich galaxy with H I mass 1.1× {10}9 M ⊙ detected by the Very Large Array, and has a stellar mass of {M}\\star ˜ 1.8× {10}8 M ⊙. This indicates that UDGs at least partially overlap with the population of nearly dark galaxies found in deep H I surveys. Our results show that the high abundance of blue UDGs in the HCG 95 field is favored by the environment of poor galaxy clusters residing in H I-rich large-scale structures.

  10. X-UDS: The Chandra Legacy Survey of the UKIDSS Ultra Deep Survey Field

    NASA Astrophysics Data System (ADS)

    Kocevski, Dale D.; Hasinger, Guenther; Brightman, Murray; Nandra, Kirpal; Georgakakis, Antonis; Cappelluti, Nico; Civano, Francesca; Li, Yuxuan; Li, Yanxia; Aird, James; Alexander, David M.; Almaini, Omar; Brusa, Marcella; Buchner, Johannes; Comastri, Andrea; Conselice, Christopher J.; Dickinson, Mark A.; Finoguenov, Alexis; Gilli, Roberto; Koekemoer, Anton M.; Miyaji, Takamitsu; Mullaney, James R.; Papovich, Casey; Rosario, David; Salvato, Mara; Silverman, John D.; Somerville, Rachel S.; Ueda, Yoshihiro

    2018-06-01

    We present the X-UDS survey, a set of wide and deep Chandra observations of the Subaru-XMM Deep/UKIDSS Ultra Deep Survey (SXDS/UDS) field. The survey consists of 25 observations that cover a total area of 0.33 deg2. The observations are combined to provide a nominal depth of ∼600 ks in the central 100 arcmin2 region of the field that has been imaged with Hubble/WFC3 by the CANDELS survey and ∼200 ks in the remainder of the field. In this paper, we outline the survey’s scientific goals, describe our observing strategy, and detail our data reduction and point source detection algorithms. Our analysis has resulted in a total of 868 band-merged point sources detected with a false-positive Poisson probability of <1 × 10‑4. In addition, we present the results of an X-ray spectral analysis and provide best-fitting neutral hydrogen column densities, N H, as well as a sample of 51 Compton-thick active galactic nucleus candidates. Using this sample, we find the intrinsic Compton-thick fraction to be 30%–35% over a wide range in redshift (z = 0.1–3), suggesting the obscured fraction does not evolve very strongly with epoch. However, if we assume that the Compton-thick fraction is dependent on luminosity, as is seen for Compton-thin sources, then our results are consistent with a rise in the obscured fraction out to z ∼ 3. Finally, an examination of the host morphologies of our Compton-thick candidates shows a high fraction of morphological disturbances, in agreement with our previous results. All data products described in this paper are made available via a public website.

  11. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...

  12. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...

  13. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...

  14. A search for Vega-like fields in OB stars

    NASA Astrophysics Data System (ADS)

    Neiner, C.; Folsom, C. P.; Blazere, A.

    2014-12-01

    Very weak magnetic fields (with a longitudinal component below 1 Gauss) have recently been discovered in the A star Vega as well as in a few Am stars. According to fossil field scenarios, such weak fields should also exist in more massive stars. In the framework of the ANR project Imagine, we have started to investigate the existence of this new class of very weakly magnetic stars among O and B stars thanks to ultra-deep spectropolarimetric observations. The first results and future plans are presented.

  15. Ultramafics-Hydrothermalism-Hydrogenesis-HyperSLiME (UltraH3) Linkage is a key for Occurrence of Last Universal Common Ancestral (LUCA) Community: Where is it, Lost City or Kairei (Rainbow)?

    NASA Astrophysics Data System (ADS)

    Takai, K.; Inagaki, F.; Nakamura, K.; Suzuki, K.; Kumagai, H.

    2005-12-01

    Deep-sea hydrothermal system has been recognized one of the most plausible places for origin of life in this planet. This hypothesis has been supported by evidences from multidisciplinary scientific fields. In geology, it has been demonstrated that the potentially most ancient microbial fossils are retrieved from the paleoenvironment, that might be related with deep-sea hydrothermal systems in the Archean. Chemical reactions suggesting prebiotic chemical evolution (synthesis of amino acids, nucleic acids and hydrocarbon, and polymerization of these molecules) are observed under the simulated physical and chemical conditions of the deep-sea hydrothermal vents in the laboratory. In addition, phylogenetic analyses of all the lives in this planet have clearly revealed that hyperthermophiles inhabiting deep-sea hydrothermal systems represent the deepest lineage of the life. Supposed that the Archean deep-sea hydrothermal system hosted the origin of life, what was the first life? We are pursuing the energy metabolism of our last universal common ancestor (LUCA) and the environmental settings hosting the LUCA. It is definitely expected that the genesis of LUCA occurred at high temperatures of locally organics-rich microenvironment around deep-sea hydrothermal field and the first energy metabolism depended on fermentation of simple amino acids, organic acids and sugars. However, these organics were immediately consumed by the hyperthermophilic LUCA activity. Inheritance of the LUCA needed to evolve the energy and carbon acquisitions to more stable and efficient mode. Chemolithoautotrophy might be the best because a plenty of reductive gas components were always provided by the hydrothermal activity. Hyperthermophilic chemolithoautotrophs could serve as the primary producers and could foster the heterotrophic fellows. This was the genesis of the last universal common ancestral (LUCA) community of life. We hypothesize that the LUCA community was metabolically approximated to hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) currently discovered beneath the Central Indian Ridge hydrothermal field. The environmental settings for the occurrence of HyperSLiME are now being characterized and an important linkage among the occurrence of HyperSLiME, extraordinary amount of hydrogen in the hydrothermal fluids and ultramfics-hosted hydrothermal systems is proposed. This ultramafics-hydrothermalism-hydrogen-HyperSLiME (UltraH3) linkage is very likely a key for the genesis of the LUCA community. We would like to discuss the possible UltraH3 linkage in the Archean earth. In addition, we would like to discuss which of modern deep-sea hydrothermal systems is the most plausible proxy for the Archean LUCA habitats.

  16. Discovery of bright z ≃ 7 galaxies in the UltraVISTA survey

    NASA Astrophysics Data System (ADS)

    Bowler, R. A. A.; Dunlop, J. S.; McLure, R. J.; McCracken, H. J.; Milvang-Jensen, B.; Furusawa, H.; Fynbo, J. P. U.; Le Fèvre, O.; Holt, J.; Ideue, Y.; Ihara, Y.; Rogers, A. B.; Taniguchi, Y.

    2012-11-01

    We have exploited the new, deep, near-infrared UltraVISTA imaging of the Cosmological Evolution Survey (COSMOS) field, in tandem with deep optical and mid-infrared imaging, to conduct a new search for luminous galaxies at redshifts z ≃ 7. The year-one UltraVISTA data provide contiguous Y, J, H, Ks imaging over 1.5 deg2, reaching a 5σ detection limit of Y + J ≃ 25 (AB mag, 2-arcsec-diameter aperture). The central ≃1 deg2 of this imaging coincides with the final deep optical (u*, g, r, i) data provided by the Canada-France-Hawaii Telescope (CFHT) Legacy Survey and new deep Subaru/Suprime-Cam z'-band imaging obtained specifically to enable full exploitation of UltraVISTA. It also lies within the Hubble Space Telescope (HST) I814 band and Spitzer/Infrared Array Camera imaging obtained as part of the COSMOS survey. We have utilized this unique multiwavelength dataset to select galaxy candidates at redshifts z > 6.5 by searching first for Y + J-detected objects which are undetected in the CFHT and HST optical data. This sample was then refined using a photometric redshift fitting code, enabling the rejection of lower redshift galaxy contaminants and cool galactic M, L, T dwarf stars. The final result of this process is a small sample of (at most) 10 credible galaxy candidates at z > 6.5 (from over 200 000 galaxies detected in the year-one UltraVISTA data) which we present in this paper. The first four of these appear to be robust galaxies at z > 6.5, and fitting to their stacked spectral energy distribution yields zphot = 6.98 ± 0.05 with a stellar mass M* ≃ 5 × 109 M⊙ and rest-frame ultraviolet (UV) spectral slope β ≃ -2.0 ± 0.2 (where fλ ∝ λβ). The next three are also good candidates for z > 6.5 galaxies, but the possibility that they are dwarf stars cannot be completely excluded. Our final subset of three additional candidates is afflicted not only by potential dwarf star contamination, but also contains objects likely to lie at redshifts just below z = 6.5. We show that the three even-brighter z ≳ 7 galaxy candidates reported in the COSMOS field by Capak et al. are in fact all lower redshift galaxies at z ≃ 1.5-3.5. Consequently the new z ≃ 7 galaxies reported here are the first credible z ≃ 7 Lyman-break galaxies discovered in the COSMOS field and, as the most UV luminous discovered to date at these redshifts, are prime targets for deep follow-up spectroscopy. We explore their physical properties, and briefly consider the implications of their inferred number density for the form of the galaxy luminosity function at z ≃ 7.

  17. Position-specific automated processing of V3 env ultra-deep pyrosequencing data for predicting HIV-1 tropism

    PubMed Central

    Jeanne, Nicolas; Saliou, Adrien; Carcenac, Romain; Lefebvre, Caroline; Dubois, Martine; Cazabat, Michelle; Nicot, Florence; Loiseau, Claire; Raymond, Stéphanie; Izopet, Jacques; Delobel, Pierre

    2015-01-01

    HIV-1 coreceptor usage must be accurately determined before starting CCR5 antagonist-based treatment as the presence of undetected minor CXCR4-using variants can cause subsequent virological failure. Ultra-deep pyrosequencing of HIV-1 V3 env allows to detect low levels of CXCR4-using variants that current genotypic approaches miss. However, the computation of the mass of sequence data and the need to identify true minor variants while excluding artifactual sequences generated during amplification and ultra-deep pyrosequencing is rate-limiting. Arbitrary fixed cut-offs below which minor variants are discarded are currently used but the errors generated during ultra-deep pyrosequencing are sequence-dependant rather than random. We have developed an automated processing of HIV-1 V3 env ultra-deep pyrosequencing data that uses biological filters to discard artifactual or non-functional V3 sequences followed by statistical filters to determine position-specific sensitivity thresholds, rather than arbitrary fixed cut-offs. It allows to retain authentic sequences with point mutations at V3 positions of interest and discard artifactual ones with accurate sensitivity thresholds. PMID:26585833

  18. Position-specific automated processing of V3 env ultra-deep pyrosequencing data for predicting HIV-1 tropism.

    PubMed

    Jeanne, Nicolas; Saliou, Adrien; Carcenac, Romain; Lefebvre, Caroline; Dubois, Martine; Cazabat, Michelle; Nicot, Florence; Loiseau, Claire; Raymond, Stéphanie; Izopet, Jacques; Delobel, Pierre

    2015-11-20

    HIV-1 coreceptor usage must be accurately determined before starting CCR5 antagonist-based treatment as the presence of undetected minor CXCR4-using variants can cause subsequent virological failure. Ultra-deep pyrosequencing of HIV-1 V3 env allows to detect low levels of CXCR4-using variants that current genotypic approaches miss. However, the computation of the mass of sequence data and the need to identify true minor variants while excluding artifactual sequences generated during amplification and ultra-deep pyrosequencing is rate-limiting. Arbitrary fixed cut-offs below which minor variants are discarded are currently used but the errors generated during ultra-deep pyrosequencing are sequence-dependant rather than random. We have developed an automated processing of HIV-1 V3 env ultra-deep pyrosequencing data that uses biological filters to discard artifactual or non-functional V3 sequences followed by statistical filters to determine position-specific sensitivity thresholds, rather than arbitrary fixed cut-offs. It allows to retain authentic sequences with point mutations at V3 positions of interest and discard artifactual ones with accurate sensitivity thresholds.

  19. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b) You determine RSV under § 203.41 for the first qualified deep... wells, that determination establishes the total RSV available for that drilling depth interval on your...

  20. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b) You determine RSV under § 203.41 for the first qualified deep... wells, that determination establishes the total RSV available for that drilling depth interval on your...

  1. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b) You determine RSV under § 203.41 for the first qualified deep... wells, that determination establishes the total RSV available for that drilling depth interval on your...

  2. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... water less than 400 meters deep (see § 203.30(a)), has no existing deep or ultra-deep wells and that the... depths partly or entirely less than 200 meters and has not previously produced from a deep well (§ 203.30... which is 16,000 feet TVD SS and your lease is located in water 100 meters deep. Then in 2008, you drill...

  3. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less

  4. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less

  5. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not... royalty relief under § 203.41. If . . . Then . . . (a) Your lease has produced gas or oil from a well with... RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b...

  6. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: ULTRA-DEEP J AND K{sub S} IMAGING IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Bau-Ching; Wang, Wei-Hao; Hsieh, Chih-Chiang

    2012-12-15

    We present ultra-deep J and K{sub S} imaging observations covering a 30' Multiplication-Sign 30' area of the Extended Chandra Deep Field-South (ECDFS) carried out by our Taiwan ECDFS Near-Infrared Survey (TENIS). The median 5{sigma} limiting magnitudes for all detected objects in the ECDFS reach 24.5 and 23.9 mag (AB) for J and K{sub S} , respectively. In the inner 400 arcmin{sup 2} region where the sensitivity is more uniform, objects as faint as 25.6 and 25.0 mag are detected at 5{sigma}. Thus, this is by far the deepest J and K{sub S} data sets available for the ECDFS. To combinemore » TENIS with the Spitzer IRAC data for obtaining better spectral energy distributions of high-redshift objects, we developed a novel deconvolution technique (IRACLEAN) to accurately estimate the IRAC fluxes. IRACLEAN can minimize the effect of blending in the IRAC images caused by the large point-spread functions and reduce the confusion noise. We applied IRACLEAN to the images from the Spitzer IRAC/MUSYC Public Legacy in the ECDFS survey (SIMPLE) and generated a J+K{sub S} -selected multi-wavelength catalog including the photometry of both the TENIS near-infrared and the SIMPLE IRAC data. We publicly release the data products derived from this work, including the J and K{sub S} images and the J+K{sub S} -selected multi-wavelength catalog.« less

  7. SEDS: The Spitzer Extended Deep Survey. Survey Design, Photometry, and Deep IRAC Source Counts

    NASA Technical Reports Server (NTRS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Arendt, A.; Barmby, P.; Barro, G; Bell, E. F.; Bouwens, R.; Cattaneo, A.; hide

    2013-01-01

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg(exp 2) to a depth of 26 AB mag (3sigma) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 micron. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 +/- 1.0 and 4.4 +/- 0.8 nW / square m/sr at 3.6 and 4.5 micron to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  8. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.31... applies if your lease: (i) Has produced gas or oil from a deep well with a perforated interval the top of...

  9. Generation and evaluation of an ultra-high-field atlas with applications in DBS planning

    NASA Astrophysics Data System (ADS)

    Wang, Brian T.; Poirier, Stefan; Guo, Ting; Parrent, Andrew G.; Peters, Terry M.; Khan, Ali R.

    2016-03-01

    Purpose Deep brain stimulation (DBS) is a common treatment for Parkinson's disease (PD) and involves the use of brain atlases or intrinsic landmarks to estimate the location of target deep brain structures, such as the subthalamic nucleus (STN) and the globus pallidus pars interna (GPi). However, these structures can be difficult to localize with conventional clinical magnetic resonance imaging (MRI), and thus targeting can be prone to error. Ultra-high-field imaging at 7T has the ability to clearly resolve these structures and thus atlases built with these data have the potential to improve targeting accuracy. Methods T1 and T2-weighted images of 12 healthy control subjects were acquired using a 7T MR scanner. These images were then used with groupwise registration to generate an unbiased average template with T1w and T2w contrast. Deep brain structures were manually labelled in each subject by two raters and rater reliability was assessed. We compared the use of this unbiased atlas with two other methods of atlas-based segmentation (single-template and multi-template) for subthalamic nucleus (STN) segmentation on 7T MRI data. We also applied this atlas to clinical DBS data acquired at 1.5T to evaluate its efficacy for DBS target localization as compared to using a standard atlas. Results The unbiased templates provide superb detail of subcortical structures. Through one-way ANOVA tests, the unbiased template is significantly (p <0.05) more accurate than a single-template in atlas-based segmentation and DBS target localization tasks. Conclusion The generated unbiased averaged templates provide better visualization of deep brain nuclei and an increase in accuracy over single-template and lower field strength atlases.

  10. Hubble Sees a Legion of Galaxies

    NASA Image and Video Library

    2017-12-08

    Peering deep into the early universe, this picturesque parallel field observation from the NASA/ESA Hubble Space Telescope reveals thousands of colorful galaxies swimming in the inky blackness of space. A few foreground stars from our own galaxy, the Milky Way, are also visible. In October 2013 Hubble’s Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) began observing this portion of sky as part of the Frontier Fields program. This spectacular skyscape was captured during the study of the giant galaxy cluster Abell 2744, otherwise known as Pandora’s Box. While one of Hubble’s cameras concentrated on Abell 2744, the other camera viewed this adjacent patch of sky near to the cluster. Containing countless galaxies of various ages, shapes and sizes, this parallel field observation is nearly as deep as the Hubble Ultra-Deep Field. In addition to showcasing the stunning beauty of the deep universe in incredible detail, this parallel field — when compared to other deep fields — will help astronomers understand how similar the universe looks in different directions. Image credit: NASA, ESA and the HST Frontier Fields team (STScI), NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Ultra-deep K S-band Imaging of the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel B.; Marchesini, Danilo; Labbé, Ivo; Spitler, Lee; Lange-Vagle, Daniel; Barker, Elizbeth A.; Tanaka, Masayuki; Fontana, Adriano; Galametz, Audrey; Ferré-Mateu, Anna; Kodama, Tadayuki; Lundgren, Britt; Martis, Nicholas; Muzzin, Adam; Stefanon, Mauro; Toft, Sune; van der Wel, Arjen; Vulcani, Benedetta; Whitaker, Katherine E.

    2016-09-01

    We present an overview of the “KIFF” project, which provides ultra-deep K s -band imaging of all six of the Hubble Frontier Fields clusters, Abell 2744, MACS-0416, Abell S1063, Abell 370, MACS-0717, and MACS-1149. All of these fields have recently been observed with large allocations of Directors’ Discretionary Time with the Hubble and Spitzer telescopes, covering 0.4\\lt λ \\lt 1.6 μ {{m}} and 3.6-4.5 μ {{m}}, respectively. VLT/HAWK-I integrations of the first four fields reach 5σ limiting depths of {K}s˜ 26.0 (AB, point sources) and have excellent image quality (FWHM ˜ 0.″4). The MACS-0717 and MACS-1149 fields are observable from the northern hemisphere, and shorter Keck/MOSFIRE integrations on those fields reach limiting depths of K s = 25.5 and 25.1, with a seeing FWHM of ˜ 0.″4 and 0\\buildrel{\\prime\\prime}\\over{.} 5. In all cases the K s -band mosaics cover the primary cluster and parallel HST/ACS+WFC3 fields. The total area of the K s -band coverage is 490 arcmin2. The K s -band at 2.2 μ {{m}} crucially fills the gap between the reddest HST filter (1.6 μ {{m}} ˜ H band) and the IRAC 3.6 μ {{m}} passband. While reaching the full depths of the space-based imaging is not currently feasible from the ground, the deep K s -band images provide important constraints on both the redshifts and the stellar population properties of galaxies extending well below the characteristic stellar mass across most of the age of the universe, down to and including the redshifts of the targeted galaxy clusters (z≲ 0.5). Reduced, aligned mosaics of all six survey fields are provided.

  12. MIGHTEE: The MeerKAT International GHz Tiered Extragalactic Exploration

    NASA Astrophysics Data System (ADS)

    Taylor, A. Russ; Jarvis, Matt

    2017-05-01

    The MeerKAT telescope is the precursor of the Square Kilometre Array mid-frequency dish array to be deployed later this decade on the African continent. MIGHTEE is one of the MeerKAT large survey projects designed to pathfind SKA key science in cosmology and galaxy evolution. Through a tiered radio continuum deep imaging project including several fields totaling 20 square degrees to microJy sensitivities and an ultra-deep image of a single 1 square degree field of view, MIGHTEE will explore dark matter and large scale structure, the evolution of galaxies, including AGN activity and star formation as a function of cosmic time and environment, the emergence and evolution of magnetic fields in galaxies, and the magnetic counter part to large scale structure of the universe.

  13. Near-field thermal radiation of deep- subwavelength slits in the near infrared range.

    PubMed

    Guo, Yan; Li, Kuanbiao; Xu, Ying; Wei, Kaihua

    2017-09-18

    We numerically investigate the thermal radiation of one-dimensional deep subwavelength slits in the near infrared range. Using numerical calculations of single-slit and multi-slit structures, we find that high-level radiation efficiency can be achieved for a wide spectrum when ultra-thin intermediate layers are used, and it is less affected by structure parameters. The underlying mechanisms involve Surface Plasmon Polaritons resonance and Fabry-Perot interference at each slit and the interaction between adjacent slits. This structure helps understand and improve the design of thermal radiation control devices.

  14. Optimizing the G/T ratio of the DSS-13 34-meter beam-waveguide antenna

    NASA Technical Reports Server (NTRS)

    Esquivel, M. S.

    1992-01-01

    Calculations using Physical Optics computer software were done to optimize the gain-to-noise-temperature (G/T) ratio of Deep Space Station (DSS)-13, the Deep Space Network's (DSN's) 34-m beam-waveguide antenna, at X-band for operation with the ultra-low-noise amplifier maser system. A better G/T value was obtained by using a 24.2-dB far-field-gain smooth-wall dual-mode horn than by using the standard X-band 22.5-dB-gain corrugated horn.

  15. 30 CFR 203.33 - To which production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra... after May 18, 2007, reported on the Oil and Gas Operations Report, Part A (OGOR-A) for your lease under... the unitized portion of lease A (drilled after the ultra-deep well on the non-unitized portion of that...

  16. VizieR Online Data Catalog: Spitzer-CANDELS catalog within 5 deep fields (Ashby+, 2015)

    NASA Astrophysics Data System (ADS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Dunlop, J. S.; Egami, E.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Hora, J. L.; Huang, J.-S.; Koekemoer, A. M.; Labbe, I.; Wang, Z.

    2015-08-01

    We chose to locate S-CANDELS inside the wider and shallower fields already covered by Spitzer Extended Deep Survey (SEDS), in regions that enjoy deep optical and NIR imaging from HST/CANDELS. These S-CANDELS fields are thus the Extended GOODS-south (aka the GEMS field, hereafter ECDFS; Rix et al. 2004ApJS..152..163R; Castellano et al. 2010A&A...511A..20C), the Extended GOODS-north (HDFN; Giavalisco et al. 2004, II/261; Wang et al. 2010, J/ApJS/187/251; Hathi et al. 2012ApJ...757...43H; Lin et al. 2012ApJ...756...71L), the UKIDSS UDS (aka the Subaru/XMM Deep Field, Ouchi et al. 2001ApJ...558L..83O; Lawrence et al. 2007, II/319), a narrow field within the EGS (Davis et al. 2007ApJ...660L...1D; Bielby et al. 2012A&A...545A..23B), and a strip within the UltraVista deep survey of the larger COSMOS field (Scoville et al. 2007ApJS..172...38S; McCracken et al. 2012, J/A+A/544/A156). The S-CANDELS observing strategy was designed to maximize the area covered to full depth within the CANDELS area. Each field was visited twice with six months separating the two visits. Table 1 lists the epochs for each field. All of the IRAC full-depth coverage is within the SEDS area (Ashby et al. 2013, J/ApJ/769/80), and almost all is within the area covered by HST for CANDELS. (6 data files).

  17. Hubble Goes to the eXtreme to Assemble Farthest-Ever View of the Universe

    NASA Image and Video Library

    2017-12-08

    NASA image release September 25, 2012 Like photographers assembling a portfolio of best shots, astronomers have assembled a new, improved portrait of mankind's deepest-ever view of the universe. Called the eXtreme Deep Field, or XDF, the photo was assembled by combining 10 years of NASA Hubble Space Telescope photographs taken of a patch of sky at the center of the original Hubble Ultra Deep Field. The XDF is a small fraction of the angular diameter of the full moon. The Hubble Ultra Deep Field is an image of a small area of space in the constellation Fornax, created using Hubble Space Telescope data from 2003 and 2004. By collecting faint light over many hours of observation, it revealed thousands of galaxies, both nearby and very distant, making it the deepest image of the universe ever taken at that time. The new full-color XDF image is even more sensitive, and contains about 5,500 galaxies even within its smaller field of view. The faintest galaxies are one ten-billionth the brightness of what the human eye can see. To read more go to:http://www.nasa.gov/mission_pages/hubble/science/xdf.html Credit: NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. The MUSE Hubble Ultra Deep Field Survey. IX. Evolution of galaxy merger fraction since z ≈ 6

    NASA Astrophysics Data System (ADS)

    Ventou, E.; Contini, T.; Bouché, N.; Epinat, B.; Brinchmann, J.; Bacon, R.; Inami, H.; Lam, D.; Drake, A.; Garel, T.; Michel-Dansac, L.; Pello, R.; Steinmetz, M.; Weilbacher, P. M.; Wisotzki, L.; Carollo, M.

    2017-11-01

    We provide, for the first time, robust observational constraints on the galaxy major merger fraction up to z ≈ 6 using spectroscopic close pair counts. Deep Multi Unit Spectroscopic Explorer (MUSE) observations in the Hubble Ultra Deep Field (HUDF) and Hubble Deep Field South (HDF-S) are used to identify 113 secure close pairs of galaxies among a parent sample of 1801 galaxies spread over a large redshift range (0.2 < z < 6) and stellar masses (107-1011 M⊙), thus probing about 12 Gyr of galaxy evolution. Stellar masses are estimated from spectral energy distribution (SED) fitting over the extensive UV-to-NIR HST photometry available in these deep Hubble fields, adding Spitzer IRAC bands to better constrain masses for high-redshift (z ⩾ 3) galaxies. These stellar masses are used to isolate a sample of 54 major close pairs with a galaxy mass ratio limit of 1:6. Among this sample, 23 pairs are identified at high redshift (z ⩾ 3) through their Lyα emission. The sample of major close pairs is divided into five redshift intervals in order to probe the evolution of the merger fraction with cosmic time. Our estimates are in very good agreement with previous close pair counts with a constant increase of the merger fraction up to z ≈ 3 where it reaches a maximum of 20%. At higher redshift, we show that the fraction slowly decreases down to about 10% at z ≈ 6. The sample is further divided into two ranges of stellar masses using either a constant separation limit of 109.5 M⊙ or the median value of stellar mass computed in each redshift bin. Overall, the major close pair fraction for low-mass and massive galaxies follows the same trend. These new, homogeneous, and robust estimates of the major merger fraction since z ≈ 6 are in good agreement with recent predictions of cosmological numerical simulations. Based on observations made with ESO telescopes at the La Silla-Paranal Observatory under programmes 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045(B).

  19. Lyman-alpha fractions in the Hubble Ultra Deep Field at 4 < z < 6

    NASA Astrophysics Data System (ADS)

    Harish, Santosh; Malhotra, Sangeeta; Rhoads, James; Christensen, Lise; Tilvi, Vithal; Finkelstein, Steven; Pharo, John

    2018-01-01

    Lyman-alpha (Lya) emitting galaxies at high-redshifts serve as a good probe of neutral hydrogen in the intergalactic medium (IGM). Here we present measurements of the Lya fraction using a sample of Lyman-break galaxies (LBGs) between 4 < z < 6 with deep HST grism observations from the GRAPES/PEARS projects as well as spectroscopic observations from the MUSE integral-field spectrograph. The sample of LBGs at z~5 & 6 are spectroscopically confirmed with deep HST grism data from the GRAPES and PEARS projects. We also measure Lya fractions using a sample of photometrically-selected LBGs for the same redshift range. In addition, we study the EW distribution in relation to continuum and line luminosities, as well as the relation between photometric and spectroscopic redshift. We find that objects with higher EWs tend to have larger differences between photometric and spectroscopic redshifts.

  20. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii

    PubMed Central

    Edwards, Katrina J; Glazer, B T; Rouxel, O J; Bach, W; Emerson, D; Davis, R E; Toner, B M; Chan, C S; Tebo, B M; Staudigel, H; Moyer, C L

    2011-01-01

    A novel hydrothermal field has been discovered at the base of Lōihi Seamount, Hawaii, at 5000 mbsl. Geochemical analyses demonstrate that ‘FeMO Deep', while only 0.2 °C above ambient seawater temperature, derives from a distal, ultra-diffuse hydrothermal source. FeMO Deep is expressed as regional seafloor seepage of gelatinous iron- and silica-rich deposits, pooling between and over basalt pillows, in places over a meter thick. The system is capped by mm to cm thick hydrothermally derived iron-oxyhydroxide- and manganese-oxide-layered crusts. We use molecular analyses (16S rDNA-based) of extant communities combined with fluorescent in situ hybridizations to demonstrate that FeMO Deep deposits contain living iron-oxidizing Zetaproteobacteria related to the recently isolated strain Mariprofundus ferroxydans. Bioenergetic calculations, based on in-situ electrochemical measurements and cell counts, indicate that reactions between iron and oxygen are important in supporting chemosynthesis in the mats, which we infer forms a trophic base of the mat ecosystem. We suggest that the biogenic FeMO Deep hydrothermal deposit represents a modern analog for one class of geological iron deposits known as ‘umbers' (for example, Troodos ophilolites, Cyprus) because of striking similarities in size, setting and internal structures. PMID:21544100

  1. The BUFFALO HST Survey

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles; Jauzac, Mathilde; Capak, Peter; Koekemoer, Anton; Oesch, Pascal; Richard, Johan; Sharon, Keren q.; BUFFALO

    2018-01-01

    Beyond Ultra-deep Frontier Fields And Legacy Observations (BUFFALO) is an astronomical survey built around the six Hubble Space Telescope (HST) Frontier Fields clusters designed to learn about early galactic assembly and clustering and prepare targets for observations with the James Webb Space Telescope. BUFFALO will place significant new constraints on how and when the most massive and luminous galaxies in the universe formed and how early galaxy formation is linked to dark matter assembly. The same data will also probe the temperature and cross section of dark matter in the massive Frontier Fields galaxy clusters, and tell us how the dark matter, cluster gas, and dynamics of the clusters influence the galaxies in and around them. These studies are possible because the Spitzer Space Telescope, Chandra X-ray Observatory, XMM-Newton, and ground based telescopes have already invested heavily in deep observations around the Frontier Fields, so that the addition of HST observations can yield significant new results.

  2. Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration.

    PubMed

    Matsuba, Shinji; Tabuchi, Hitoshi; Ohsugi, Hideharu; Enno, Hiroki; Ishitobi, Naofumi; Masumoto, Hiroki; Kiuchi, Yoshiaki

    2018-05-09

    To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system. First, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD: 137) were amplified and the area under the curve (AUC), sensitivity and specificity were examined. Furthermore, in order to compare the diagnostic abilities between DCNN and six ophthalmologists, we prepared yield 84 sheets comprising 50% of normal and wet-AMD data each, and calculated the correct answer rate, specificity, sensitivity, and response times. DCNN exhibited 100% sensitivity and 97.31% specificity for wet-AMD images, with an average AUC of 99.76%. Moreover, comparing the diagnostic abilities of DCNN versus six ophthalmologists, the average accuracy of the DCNN was 100%. On the other hand, the accuracy of ophthalmologists, determined only by Optos images without a fundus examination, was 81.9%. A combination of DCNN with Optos images is not better than a medical examination; however, it can identify exudative AMD with a high level of accuracy. Our system is considered useful for screening and telemedicine.

  3. 30 CFR 203.34 - To which production may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.34 To which... lease, except as provided in paragraph (c) of § 203.33; (c) To any liquid hydrocarbon (oil and...

  4. 30 CFR 203.35 - What administrative steps must I take to use the RSV earned by a qualified phase 2 or phase 3...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.35 What... Development in writing of your intent to begin drilling operations on all your ultra-deep wells. (b) Before...

  5. 30 CFR 203.33 - To which production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.33... from qualified wells on or after May 18, 2007, reported on the Oil and Gas Operations Report, Part A...

  6. 30 CFR 203.32 - What other requirements or restrictions apply to royalty relief for a qualified phase 2 or phase...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on... qualified ultra-deep well is a directional well (either an original well or a sidetrack) drilled across a...

  7. New constraints on the average escape fraction of Lyman continuum radiation in z 4 galaxies from the VIMOS Ultra Deep Survey (VUDS)

    NASA Astrophysics Data System (ADS)

    Marchi, F.; Pentericci, L.; Guaita, L.; Ribeiro, B.; Castellano, M.; Schaerer, D.; Hathi, N. P.; Lemaux, B. C.; Grazian, A.; Le Fèvre, O.; Garilli, B.; Maccagni, D.; Amorin, R.; Bardelli, S.; Cassata, P.; Fontana, A.; Koekemoer, A. M.; Le Brun, V.; Tasca, L. A. M.; Thomas, R.; Vanzella, E.; Zamorani, G.; Zucca, E.

    2017-05-01

    Context. Determining the average fraction of Lyman continuum (LyC) photons escaping high redshift galaxies is essential for understanding how reionization proceeded in the z> 6 Universe. Aims: We want to measure the LyC signal from a sample of sources in the Chandra Deep Field South (CDFS) and COSMOS fields for which ultra-deep VIMOS spectroscopy as well as multi-wavelength Hubble Space Telescope (HST) imaging are available. Methods: We select a sample of 46 galaxies at z 4 from the VIMOS Ultra Deep Survey (VUDS) database, such that the VUDS spectra contain the LyC part, that is, the rest-frame range 880-910 Å. Taking advantage of the HST imaging, we apply a careful cleaning procedure and reject all the sources showing nearby clumps with different colours, that could potentially be lower-redshift interlopers. After this procedure, the sample is reduced to 33 galaxies. We measure the ratio between ionizing flux (LyC at 895 Å) and non-ionizing emission (at 1500 Å) for all individual sources. We also produce a normalized stacked spectrum of all sources. Results: Assuming an intrinsic average Lν(1470) /Lν(895) of 3, we estimate the individual and average relative escape fraction. We do not detect ionizing radiation from any individual source, although we identify a possible LyC emitter with very high Lyα equivalent width (EW). From the stacked spectrum and assuming a mean transmissivity for the sample, we measure a relative escape fraction . We also look for correlations between the limits in the LyC flux and source properties and find a tentative correlation between LyC flux and the EW of the Lyα emission line. Conclusions: Our results imply that the LyC flux emitted by V = 25-26 star-forming galaxies at z 4 is at most very modest, in agreement with previous upper limits from studies based on broad and narrow band imaging. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.

  8. Hubble's deepest view ever of the Universe unveils earliest galaxies

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Hubble sees galaxies galore hi-res Size hi-res: 446 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble sees galaxies galore Galaxies, galaxies everywhere - as far as the NASA/ESA Hubble Space Telescope can see. This view of nearly 10,000 galaxies is the deepest visible-light image of the cosmos. Called the Hubble Ultra Deep Field, this galaxy-studded view represents a ‘deep’ core sample of the universe, cutting across billions of light-years. Hubble reveals galactic drama hi-res Size hi-res: 879 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. Here three galaxies just below centre are enmeshed in battle, their shapes distorted by the brutal encounter. Hubble reveals galactic drama hi-res Size hi-res: 886 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. Here three galaxies just below centre are enmeshed in battle, their shapes distorted by the brutal encounter. Hubble reveals galactic drama hi-res Size hi-res: 892 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. The galaxies in this panel were plucked from a harvest of nearly 10,000 galaxies in the Ultra Deep Field, the deepest visible-light image of the cosmos. This historic new view is actually made up by two separate images taken by Hubble's Advanced Camera for Surveys (ACS) and the Near Infrared Camera and Multi-object Spectrometer (NICMOS). Both images reveal some galaxies that are too faint to be seen by ground-based telescopes, or even in Hubble's previous faraway looks, called the Hubble Deep Fields (HDFs), taken in 1995 and 1998. The HUDF field contains an estimated 10,000 galaxies in a patch of sky just one-tenth the diameter of the full Moon. Besides the rich harvest of classic spiral and elliptical galaxies, there is a zoo of oddball galaxies littering the field. Some look like toothpicks; others like links on a bracelet. A few appear to be interacting. Their strange shapes are a far cry from the majestic spiral and elliptical galaxies we see today. These oddball galaxies chronicle a period when the Universe was more chaotic. Order and structure were just beginning to emerge. The combination of ACS and NICMOS images will be used to search for galaxies that existed between 400 and 800 million years after the Big Bang (in cosmological terms this corresponds to a 'redshift' range of 7 to 12). Astronomers around the world will use these data to understand whether in this very early stages the Universe appears to be the same as it did when the cosmos was between 1000 and 2000 million years old. Hubble's ACS allows astronomers to see galaxies two to four times fainter than Hubble could view previously, but the NICMOS sees even farther than the ACS. The NICMOS reveals the farthest galaxies ever seen because the expanding Universe has stretched their light into the near-infrared portion of the spectrum. The ACS uncovered galaxies that existed 800 million years after the Big Bang (at a redshift of 7). But the NICMOS might have spotted galaxies that lived just 400 million years after the birth of the cosmos (at a redshift of 12). Just like the previous HDFs, the new data are expected to galvanise the astronomical community and lead to dozens of research papers that will offer new insights into the birth and evolution of galaxies. This will hold the record as the deepest-ever view of the Universe until ESA together with NASA launches the James Webb Space Telescope in 2011. Notes for editors More information, images, animations and interactive zoomable images are available from http://www.spacetelescope.org/news/html/heic0406.html The Hubble Space Telescope is a project of international cooperation between ESA and NASA. Image credit: NASA, ESA, S. Beckwith (STScI) and the HUDF Team

  9. Deep X-ray lithography for the fabrication of microstructures at ELSA

    NASA Astrophysics Data System (ADS)

    Pantenburg, F. J.; Mohr, J.

    2001-07-01

    Two beamlines at the Electron Stretcher Accelerator (ELSA) of Bonn University are dedicated for the production of microstructures by deep X-ray lithography with synchrotron radiation. They are equipped with state-of-the-art X-ray scanners, maintained and used by Forschungszentrum Karlsruhe. Polymer microstructure heights between 30 and 3000 μm are manufactured regularly for research and industrial projects. This requires different characteristic energies. Therefore, ELSA operates routinely at 1.6, 2.3 and 2.7 GeV, for high-resolution X-ray mask fabrication, deep and ultra-deep X-ray lithography, respectively. The experimental setup, as well as the structure quality of deep and ultra deep X-ray lithographic microstructures are described.

  10. Far-Ultraviolet Number Counts of Field Galaxies

    NASA Technical Reports Server (NTRS)

    Voyer, Elysse N.; Gardner, Jonathan P.; Teplitz, Harry I.; Siana, Brian D.; deMello, Duilia F.

    2010-01-01

    The Number counts of far-ultraviolet (FUV) galaxies as a function of magnitude provide a direct statistical measure of the density and evolution of star-forming galaxies. We report on the results of measurements of the rest-frame FUV number counts computed from data of several fields including the Hubble Ultra Deep Field, the Hubble Deep Field North, and the GOODS-North and -South fields. These data were obtained from the Hubble Space Telescope Solar Blind Channel of the Advance Camera for Surveys. The number counts cover an AB magnitude range from 20-29 magnitudes, covering a total area of 15.9 arcmin'. We show that the number counts are lower than those in previous studies using smaller areas. The differences in the counts are likely the result of cosmic variance; our new data cover more area and more lines of sight than the previous studies. The slope of our number counts connects well with local FUV counts and they show good agreement with recent semi-analytical models based on dark matter "merger trees".

  11. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 400 meters deep. (b) The lease has not produced gas or oil from a deep well or an ultra-deep well, except as provided in § 203.31(b). (c) If the lease is located entirely in more than 200 meters and entirely less than 400 meters of water, it must either: (1) Have been issued before November 28, 1995, and...

  12. Dark-ages reionization and galaxy formation simulation-XI. Clustering and halo masses of high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Kim, Han-Seek; Liu, Chuanwu; Trenti, Michele; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-12-01

    We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ∼ 6 - 8. Using the semi-analytical model MERAXES constructed as part of the dark-ages reionization and galaxy-formation observables from numerical simulation (DRAGONS) project, we predict the angular correlation function (ACF) of LBGs at z ∼ 6 - 8. Overall, we find that the predicted ACFs are in good agreement with recent measurements at z ∼ 6 and z ∼ 7.2 from observations consisting of the Hubble eXtreme Deep Field, the Hubble Ultra Deep Field and cosmic sssembly near-infrared deep extragalactic legacy survey field. We confirm the dependence of clustering on luminosity, with more massive dark matter haloes hosting brighter galaxies, remains valid at high redshift. The predicted galaxy bias at fixed luminosity is found to increase with redshift, in agreement with observations. We find that LBGs of magnitude MAB(1600) < -19.4 at 6 ≲ z ≲ 8 reside in dark matter haloes of mean mass ∼1011.0-1011.5 M⊙, and this dark matter halo mass does not evolve significantly during reionisation.

  13. The Local Group: the ultimate deep field

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Weisz, Daniel R.; Bullock, James S.; Cooper, Michael C.

    2016-10-01

    Near-field cosmology - using detailed observations of the Local Group and its environs to study wide-ranging questions in galaxy formation and dark matter physics - has become a mature and rich field over the past decade. There are lingering concerns, however, that the relatively small size of the present-day Local Group (˜2 Mpc diameter) imposes insurmountable sample-variance uncertainties, limiting its broader utility. We consider the region spanned by the Local Group's progenitors at earlier times and show that it reaches 3 arcmin ≈ 7 comoving Mpc in linear size (a volume of ≈350 Mpc3) at z = 7. This size at early cosmic epochs is large enough to be representative in terms of the matter density and counts of dark matter haloes with Mvir(z = 7) ≲ 2 × 109 M⊙. The Local Group's stellar fossil record traces the cosmic evolution of galaxies with 103 ≲ M⋆(z = 0)/M⊙ ≲ 109 (reaching M1500 > -9 at z ˜ 7) over a region that is comparable to or larger than the Hubble Ultra-Deep Field (HUDF) for the entire history of the Universe. In the JWST era, resolved stellar populations will probe regions larger than the HUDF and any deep JWST fields, further enhancing the value of near-field cosmology.

  14. Design and evaluation of an ultra-slim objective for in-vivo deep optical biopsy

    PubMed Central

    Landau, Sara M.; Liang, Chen; Kester, Robert T.; Tkaczyk, Tomasz S.; Descour, Michael R.

    2010-01-01

    An estimated 1.6 million breast biopsies are performed in the US each year. In order to provide real-time, in-vivo imaging with sub-cellular resolution for optical biopsies, we have designed an ultra-slim objective to fit inside the 1-mm-diameter hypodermic needles currently used for breast biopsies to image tissue stained by the fluorescent probe proflavine. To ensure high-quality imaging performance, experimental tests were performed to characterize fiber bundle’s light-coupling efficiency and simulations were performed to evaluate the impact of candidate lens materials’ autofluorescence. A prototype of NA = 0.4, 250-µm field of view, ultra-slim objective optics was built and tested, yielding diffraction-limited performance and estimated resolution of 0.9 µm. When used in conjunction with a commercial coherent fiber bundle to relay the image formed by the objective, the measured resolution was 2.5 µm. PMID:20389489

  15. The MUSE Hubble Ultra Deep Field Survey. V. Spatially resolved stellar kinematics of galaxies at redshift 0.2 ≲ z ≲ 0.8

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Krajnović, Davor; Epinat, Benoit; Contini, Thierry; Emsellem, Eric; Bouché, Nicolas; Bacon, Roland; Michel-Dansac, Leo; Richard, Johan; Weilbacher, Peter M.; Schaye, Joop; Marino, Raffaella Anna; den Brok, Mark; Erroz-Ferrer, Santiago

    2017-11-01

    We present spatially resolved stellar kinematic maps, for the first time, for a sample of 17 intermediate redshift galaxies (0.2 ≲ z ≲ 0.8). We used deep MUSE/VLT integral field spectroscopic observations in the Hubble Deep Field South (HDFS) and Hubble Ultra Deep Field (HUDF), resulting from ≈30 h integration time per field, each covering 1' × 1' field of view, with ≈ 0.̋65 spatial resolution. We selected all galaxies brighter than 25 mag in the I band and for which the stellar continuum is detected over an area that is at least two times larger than the spatial resolution. The resulting sample contains mostly late-type disk, main-sequence star-forming galaxies with 108.5 M⊙ ≲ M∗ ≲ 1010.5 M⊙. Using a full-spectrum fitting technique, we derive two-dimensional maps of the stellar and gas kinematics, including the radial velocity V and velocity dispersion σ. We find that most galaxies in the sample are consistent with having rotating stellar disks with roughly constant velocity dispersions and that the second order velocity moments Vrms = √V2+σ2 of the gas and stars, a scaling proxy for the galaxy gravitational potential, compare well to each other. These spatially resolved observations of the stellar kinematics of intermediate redshift galaxies suggest that the regular stellar kinematics of disk galaxies that is observed in the local Universe was already in place 4-7 Gyr ago and that their gas kinematics traces the gravitational potential of the galaxy, thus is not dominated by shocks and turbulent motions. Finally, we build dynamical axisymmetric Jeans models constrained by the derived stellar kinematics for two specific galaxies and derive their dynamical masses. These are in good agreement (within 25%) with those derived from simple exponential disk models based on the gas kinematics. The obtained mass-to-light ratios hint towards dark matter dominated systems within a few effective radii. Based on observations made with ESO telescopes at the La Silla-Paranal Observatory under programmes 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045(B).

  16. Parametric study on the behavior of an innovative subsurface tension leg platform in ultra-deep water

    NASA Astrophysics Data System (ADS)

    Zhen, Xing-wei; Huang, Yi

    2017-10-01

    This study focuses on a new technology of Subsurface Tension Leg Platform (STLP), which utilizes the shallowwater rated well completion equipment and technology for the development of large oil and gas fields in ultra-deep water (UDW). Thus, the STLP concept offers attractive advantages over conventional field development concepts. STLP is basically a pre-installed Subsurface Sea-star Platform (SSP), which supports rigid risers and shallow-water rated well completion equipment. The paper details the results of the parametric study on the behavior of STLP at a water depth of 3000 m. At first, a general description of the STLP configuration and working principle is introduced. Then, the numerical models for the global analysis of the STLP in waves and current are presented. After that, extensive parametric studies are carried out with regarding to SSP/tethers system analysis, global dynamic analysis and riser interference analysis. Critical points are addressed on the mooring pattern and riser arrangement under the influence of ocean current, to ensure that the requirements on SSP stability and riser interference are well satisfied. Finally, conclusions and discussions are made. The results indicate that STLP is a competitive well and riser solution in up to 3000 m water depth for offshore petroleum production.

  17. The significance of ultra-refracted surface gravity waves on sheltered coasts, with application to San Francisco Bay

    USGS Publications Warehouse

    Hanes, D.M.; Erikson, L.H.

    2013-01-01

    Ocean surface gravity waves propagating over shallow bathymetry undergo spatial modification of propagation direction and energy density, commonly due to refraction and shoaling. If the bathymetric variations are significant the waves can undergo changes in their direction of propagation (relative to deepwater) greater than 90° over relatively short spatial scales. We refer to this phenomenon as ultra-refraction. Ultra-refracted swell waves can have a powerful influence on coastal areas that otherwise appear to be sheltered from ocean waves. Through a numerical modeling investigation it is shown that San Francisco Bay, one of the earth's largest and most protected natural harbors, is vulnerable to ultra-refracted ocean waves, particularly southwest incident swell. The flux of wave energy into San Francisco Bay results from wave transformation due to the bathymetry and orientation of the large ebb tidal delta, and deep, narrow channel through the Golden Gate. For example, ultra-refracted swell waves play a critical role in the intermittent closure of the entrance to Crissy Field Marsh, a small restored tidal wetland located on the sheltered north-facing coast approximately 1.5 km east of the Golden Gate Bridge.

  18. 30 CFR 203.36 - Do I keep royalty relief if prices rise significantly?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to... drills and begins producing from a qualified phase 2 ultra-deep well in 2008 on a lease issued in 2004 in... which was exceeded. Example 2: Assume that a lessee: (1) Drills and produces from well no.1, a qualified...

  19. Large-scale fluctuations in the number density of galaxies in independent surveys of deep fields

    NASA Astrophysics Data System (ADS)

    Shirokov, S. I.; Lovyagin, N. Yu.; Baryshev, Yu. V.; Gorokhov, V. L.

    2016-06-01

    New arguments supporting the reality of large-scale fluctuations in the density of the visible matter in deep galaxy surveys are presented. A statistical analysis of the radial distributions of galaxies in the COSMOS and HDF-N deep fields is presented. Independent spectral and photometric surveys exist for each field, carried out in different wavelength ranges and using different observing methods. Catalogs of photometric redshifts in the optical (COSMOS-Zphot) and infrared (UltraVISTA) were used for the COSMOS field in the redshift interval 0.1 < z < 3.5, as well as the zCOSMOS (10kZ) spectroscopic survey and the XMM-COSMOS and ALHAMBRA-F4 photometric redshift surveys. The HDFN-Zphot and ALHAMBRA-F5 catalogs of photometric redshifts were used for the HDF-N field. The Pearson correlation coefficient for the fluctuations in the numbers of galaxies obtained for independent surveys of the same deep field reaches R = 0.70 ± 0.16. The presence of this positive correlation supports the reality of fluctuations in the density of visible matter with sizes of up to 1000 Mpc and amplitudes of up to 20% at redshifts z ~ 2. The absence of correlations between the fluctuations in different fields (the correlation coefficient between COSMOS and HDF-N is R = -0.20 ± 0.31) testifies to the independence of structures visible in different directions on the celestial sphere. This also indicates an absence of any influence from universal systematic errors (such as "spectral voids"), which could imitate the detection of correlated structures.

  20. The Galaxy–Halo Connection for 1.5\\lesssim z\\lesssim 5 as Revealed by the Spitzer Matching Survey of the UltraVISTA Ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Cowley, William I.; Caputi, Karina I.; Deshmukh, Smaran; Ashby, Matthew L. N.; Fazio, Giovanni G.; Le Fèvre, Olivier; Fynbo, Johan P. U.; Ilbert, Olivier; McCracken, Henry J.; Milvang-Jensen, Bo; Somerville, Rachel S.

    2018-01-01

    The Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) provides unparalleled depth at 3.6 and 4.5 μm over ∼0.66 deg2 of the COSMOS field, allowing precise photometric determinations of redshift and stellar mass. From this unique data set we can connect galaxy samples, selected by stellar mass, to their host dark matter halos for 1.5< z< 5.0, filling in a large hitherto unexplored region of the parameter space. To interpret the observed galaxy clustering, we use a phenomenological halo model, combined with a novel method to account for uncertainties arising from the use of photometric redshifts. We find that the satellite fraction decreases with increasing redshift and that the clustering amplitude (e.g., comoving correlation length/large-scale bias) displays monotonic trends with redshift and stellar mass. Applying ΛCDM halo mass accretion histories and cumulative abundance arguments for the evolution of stellar mass content, we propose pathways for the coevolution of dark matter and stellar mass assembly. Additionally, we are able to estimate that the halo mass at which the ratio of stellar-to-halo mass is maximized is {10}{12.5-0.08+0.10} {M}ȯ at z∼ 2.5. This peak halo mass is here inferred for the first time from stellar mass-selected clustering measurements at z≳ 2, and it implies a mild evolution of this quantity for z≲ 3, consistent with constraints from abundance-matching techniques.

  1. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis; Alan Black; Homer Robertson

    2006-03-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).« less

  2. FRONTIER FIELDS: HIGH-REDSHIFT PREDICTIONS AND EARLY RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Dan; Bradley, Larry; Zitrin, Adi, E-mail: DCoe@STScI.edu

    2015-02-20

    The Frontier Fields program is obtaining deep Hubble and Spitzer Space Telescope images of new ''blank'' fields and nearby fields gravitationally lensed by massive galaxy clusters. The Hubble images of the lensed fields are revealing nJy sources (AB mag > 31), the faintest galaxies yet observed. The full program will transform our understanding of galaxy evolution in the first 600 million years (z > 9). Previous programs have yielded a dozen or so z > 9 candidates, including perhaps fewer than expected in the Ultra Deep Field and more than expected in shallower Hubble images. In this paper, we present high-redshift (z >more » 6) number count predictions for the Frontier Fields and candidates in three of the first Hubble images. We show the full Frontier Fields program may yield up to ∼70 z > 9 candidates (∼6 per field). We base this estimate on an extrapolation of luminosity functions observed between 4 < z < 8 and gravitational lensing models submitted by the community. However, in the first two deep infrared Hubble images obtained to date, we find z ∼ 8 candidates but no strong candidates at z > 9. We defer quantitative analysis of the z > 9 deficit (including detection completeness estimates) to future work including additional data. At these redshifts, cosmic variance (field-to-field variation) is expected to be significant (greater than ±50%) and include clustering of early galaxies formed in overdensities. The full Frontier Fields program will significantly mitigate this uncertainty by observing six independent sightlines each with a lensing cluster and nearby blank field.« less

  3. Cortical depth dependent population receptive field attraction by spatial attention in human V1.

    PubMed

    Klein, Barrie P; Fracasso, Alessio; van Dijk, Jelle A; Paffen, Chris L E; Te Pas, Susan F; Dumoulin, Serge O

    2018-04-27

    Visual spatial attention concentrates neural resources at the attended location. Recently, we demonstrated that voluntary spatial attention attracts population receptive fields (pRFs) toward its location throughout the visual hierarchy. Theoretically, both a feed forward or feedback mechanism could underlie pRF attraction in a given cortical area. Here, we use sub-millimeter ultra-high field functional MRI to measure pRF attraction across cortical depth and assess the contribution of feed forward and feedback signals to pRF attraction. In line with previous findings, we find consistent attraction of pRFs with voluntary spatial attention in V1. When assessed as a function of cortical depth, we find pRF attraction in every cortical portion (deep, center and superficial), although the attraction is strongest in deep cortical portions (near the gray-white matter boundary). Following the organization of feed forward and feedback processing across V1, we speculate that a mixture of feed forward and feedback processing underlies pRF attraction in V1. Specifically, we propose that feedback processing contributes to the pRF attraction in deep cortical portions. Copyright © 2018. Published by Elsevier Inc.

  4. Study on Ultra-deep Azimuthal Electromagnetic Resistivity LWD Tool by Influence Quantification on Azimuthal Depth of Investigation and Real Signal

    NASA Astrophysics Data System (ADS)

    Li, Kesai; Gao, Jie; Ju, Xiaodong; Zhu, Jun; Xiong, Yanchun; Liu, Shuai

    2018-05-01

    This paper proposes a new tool design of ultra-deep azimuthal electromagnetic (EM) resistivity logging while drilling (LWD) for deeper geosteering and formation evaluation, which can benefit hydrocarbon exploration and development. First, a forward numerical simulation of azimuthal EM resistivity LWD is created based on the fast Hankel transform (FHT) method, and its accuracy is confirmed under classic formation conditions. Then, a reasonable range of tool parameters is designed by analyzing the logging response. However, modern technological limitations pose challenges to selecting appropriate tool parameters for ultra-deep azimuthal detection under detectable signal conditions. Therefore, this paper uses grey relational analysis (GRA) to quantify the influence of tool parameters on voltage and azimuthal investigation depth. After analyzing thousands of simulation data under different environmental conditions, the random forest is used to fit data and identify an optimal combination of tool parameters due to its high efficiency and accuracy. Finally, the structure of the ultra-deep azimuthal EM resistivity LWD tool is designed with a theoretical azimuthal investigation depth of 27.42-29.89 m in classic different isotropic and anisotropic formations. This design serves as a reliable theoretical foundation for efficient geosteering and formation evaluation in high-angle and horizontal (HA/HZ) wells in the future.

  5. SPECTROSCOPIC CONFIRMATION OF FAINT LYMAN BREAK GALAXIES NEAR REDSHIFT FIVE IN THE HUBBLE ULTRA DEEP FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhoads, James E.; Malhotra, Sangeeta; Cohen, Seth

    We present the faintest spectroscopically confirmed sample of z {approx} 5 Lyman break galaxies (LBGs) to date. The sample is based on slitless grism spectra of the Hubble Ultra Deep Field region from the Grism ACS Program for Extragalactic Science (GRAPES) and Probing Evolution and Reionization Spectroscopically (PEARS) projects, using the G800L grism on the Hubble Space Telescope Advanced Camera for Surveys. We report here confirmations of 39 galaxies, preselected as candidate LBGs using photometric selection criteria. We compare a 'traditional' V-dropout selection, based on the work of Giavalisco et al., to a more liberal one (with V - imore » > 0.9), and find that the traditional criteria are about 64% complete and 81% reliable. We also study the Ly{alpha} emission properties of our sample. We find that Ly{alpha} emission is detected in {approx}1/4 of the sample, and that the liberal V-dropout color selection includes {approx}55% of previously published line-selected Ly{alpha} sources. Finally, we examine our stacked two-dimensional spectra. We demonstrate that strong, spatially extended ({approx}1'') Ly{alpha} emission is not a generic property of these LBGs, but that a modest extension of the Ly{alpha} photosphere (compared to the starlight) may be present in those galaxies with prominent Ly{alpha} emission.« less

  6. A deep ALMA image of the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Dunlop, J. S.; McLure, R. J.; Biggs, A. D.; Geach, J. E.; Michałowski, M. J.; Ivison, R. J.; Rujopakarn, W.; van Kampen, E.; Kirkpatrick, A.; Pope, A.; Scott, D.; Swinbank, A. M.; Targett, T. A.; Aretxaga, I.; Austermann, J. E.; Best, P. N.; Bruce, V. A.; Chapin, E. L.; Charlot, S.; Cirasuolo, M.; Coppin, K.; Ellis, R. S.; Finkelstein, S. L.; Hayward, C. C.; Hughes, D. H.; Ibar, E.; Jagannathan, P.; Khochfar, S.; Koprowski, M. P.; Narayanan, D.; Nyland, K.; Papovich, C.; Peacock, J. A.; Rieke, G. H.; Robertson, B.; Vernstrom, T.; Werf, P. P. van der; Wilson, G. W.; Yun, M.

    2017-04-01

    We present the results of the first, deep Atacama Large Millimeter Array (ALMA) imaging covering the full ≃4.5 arcmin2 of the Hubble Ultra Deep Field (HUDF) imaged with Wide Field Camera 3/IR on HST. Using a 45-pointing mosaic, we have obtained a homogeneous 1.3-mm image reaching σ1.3 ≃ 35 μJy, at a resolution of ≃0.7 arcsec. From an initial list of ≃50 > 3.5σ peaks, a rigorous analysis confirms 16 sources with S1.3 > 120 μJy. All of these have secure galaxy counterparts with robust redshifts ( = 2.15). Due to the unparalleled supporting data, the physical properties of the ALMA sources are well constrained, including their stellar masses (M*) and UV+FIR star formation rates (SFR). Our results show that stellar mass is the best predictor of SFR in the high-redshift Universe; indeed at z ≥ 2 our ALMA sample contains seven of the nine galaxies in the HUDF with M* ≥ 2 × 1010 M⊙, and we detect only one galaxy at z > 3.5, reflecting the rapid drop-off of high-mass galaxies with increasing redshift. The detections, coupled with stacking, allow us to probe the redshift/mass distribution of the 1.3-mm background down to S1.3 ≃ 10 μJy. We find strong evidence for a steep star-forming 'main sequence' at z ≃ 2, with SFR ∝M* and a mean specific SFR ≃ 2.2 Gyr-1. Moreover, we find that ≃85 per cent of total star formation at z ≃ 2 is enshrouded in dust, with ≃65 per cent of all star formation at this epoch occurring in high-mass galaxies (M* > 2 × 1010 M⊙), for which the average obscured:unobscured SF ratio is ≃200. Finally, we revisit the cosmic evolution of SFR density; we find this peaks at z ≃ 2.5, and that the star-forming Universe transits from primarily unobscured to primarily obscured at z ≃ 4.

  7. Nano-textured high sensitivity ion sensitive field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajmirzaheydarali, M.; Sadeghipari, M.; Akbari, M.

    2016-02-07

    Nano-textured gate engineered ion sensitive field effect transistors (ISFETs), suitable for high sensitivity pH sensors, have been realized. Utilizing a mask-less deep reactive ion etching results in ultra-fine poly-Si features on the gate of ISFET devices where spacing of the order of 10 nm and less is achieved. Incorporation of these nano-sized features on the gate is responsible for high sensitivities up to 400 mV/pH in contrast to conventional planar structures. The fabrication process for this transistor is inexpensive, and it is fully compatible with standard complementary metal oxide semiconductor fabrication procedure. A theoretical modeling has also been presented to predict themore » extension of the diffuse layer into the electrolyte solution for highly featured structures and to correlate this extension with the high sensitivity of the device. The observed ultra-fine features by means of scanning electron microscopy and transmission electron microscopy tools corroborate the theoretical prediction.« less

  8. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 203.36, your qualified well earns your lease an RSV shown in the following table in billions of cubic... 2 or qualified phase 3 ultra-deep wellthat is: Then your lease earns an RSV on this volume of gas... the price conditions in § 203.36, your qualified well earns your lease an RSV shown in the following...

  9. 30 CFR 203.34 - To which production may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false To which production may an RSV earned by... may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my lease not be applied? You may not apply an RSV earned under § 203.31: (a) To production from completions less than 15,000 feet...

  10. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 203.36, your qualified well earns your lease an RSV shown in the following table in billions of cubic... 2 or qualified phase 3 ultra-deep wellthat is: Then your lease earns an RSV on this volume of gas... the price conditions in § 203.36, your qualified well earns your lease an RSV shown in the following...

  11. 30 CFR 203.34 - To which production may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false To which production may an RSV earned by... may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my lease not be applied? You may not apply an RSV earned under § 203.31: (a) To production from completions less than 15,000 feet...

  12. 30 CFR 203.34 - To which production may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false To which production may an RSV earned by... may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my lease not be applied? You may not apply an RSV earned under § 203.31: (a) To production from completions less than 15,000 feet...

  13. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 203.36, your qualified well earns your lease an RSV shown in the following table in billions of cubic... 2 or qualified phase 3 ultra-deep wellthat is: Then your lease earns an RSV on this volume of gas... the price conditions in § 203.36, your qualified well earns your lease an RSV shown in the following...

  14. High-Resolution 7T MR Imaging of the Motor Cortex in Amyotrophic Lateral Sclerosis.

    PubMed

    Cosottini, M; Donatelli, G; Costagli, M; Caldarazzo Ienco, E; Frosini, D; Pesaresi, I; Biagi, L; Siciliano, G; Tosetti, M

    2016-03-01

    Amyotrophic lateral sclerosis is a progressive motor neuron disorder that involves degeneration of both upper and lower motor neurons. In patients with amyotrophic lateral sclerosis, pathologic studies and ex vivo high-resolution MR imaging at ultra-high field strength revealed the co-localization of iron and activated microglia distributed in the deep layers of the primary motor cortex. The aims of the study were to measure the cortical thickness and evaluate the distribution of iron-related signal changes in the primary motor cortex of patients with amyotrophic lateral sclerosis as possible in vivo biomarkers of upper motor neuron impairment. Twenty-two patients with definite amyotrophic lateral sclerosis and 14 healthy subjects underwent a high-resolution 2D multiecho gradient-recalled sequence targeted on the primary motor cortex by using a 7T scanner. Image analysis consisted of the visual evaluation and quantitative measurement of signal intensity and cortical thickness of the primary motor cortex in patients and controls. Qualitative and quantitative MR imaging parameters were correlated with electrophysiologic and laboratory data and with clinical scores. Ultra-high field MR imaging revealed atrophy and signal hypointensity in the deep layers of the primary motor cortex of patients with amyotrophic lateral sclerosis with a diagnostic accuracy of 71%. Signal hypointensity of the deep layers of the primary motor cortex correlated with upper motor neuron impairment (r = -0.47; P < .001) and with disease progression rate (r = -0.60; P = .009). The combined high spatial resolution and sensitivity to paramagnetic substances of 7T MR imaging demonstrate in vivo signal changes of the cerebral motor cortex that resemble the distribution of activated microglia within the cortex of patients with amyotrophic lateral sclerosis. Cortical thinning and signal hypointensity of the deep layers of the primary motor cortex could constitute a marker of upper motor neuron impairment in patients with amyotrophic lateral sclerosis. © 2016 by American Journal of Neuroradiology.

  15. Lyman Break Galaxies in the Hubble Ultra Deep Field through Deep U-Band Imaging

    NASA Astrophysics Data System (ADS)

    Rafelski, Marc; Wolfe, A. M.; Cooke, J.; Chen, H. W.; Armandroff, T. E.; Wirth, G. D.

    2009-12-01

    We introduce an extremely deep U-band image taken of the Hubble Ultra Deep Field (HUDF), with a one sigma depth of 30.7 mag arcsec-2 and a detection limiting magnitude of 28 mag arcsec-2. The observations were carried out on the Keck I telescope using the LRIS-B detector. The U-band image substantially improves the accuracy of photometric redshift measurements of faint galaxies in the HUDF at z=[2.5,3.5]. The U-band for these galaxies is attenuated by lyman limit absorption, allowing for more reliable selections of candidate Lyman Break Galaxies (LBGs) than from photometric redshifts without U-band. We present a reliable sample of 300 LBGs at z=[2.5,3.5] in the HUDF. Accurate redshifts of faint galaxies at z=[2.5,3.5] are needed to obtain empirical constraints on the star formation efficiency of neutral gas at high redshift. Wolfe & Chen (2006) showed that the star formation rate (SFR) density in damped Ly-alpha absorption systems (DLAs) at z=[2.5,3.5] is significantly lower than predicted by the Kennicutt-Schmidt law for nearby galaxies. One caveat to this result that we wish to test is whether LBGs are embedded in DLAs. If in-situ star formation is occurring in DLAs, we would see it as extended low surface brightness emission around LBGs. We shall use the more accurate photometric redshifts to create a sample of LBGs around which we will look for extended emission in the more sensitive and higher resolution HUDF images. The absence of extended emission would put limits on the SFR density of DLAs associated with LBGs at high redshift. On the other hand, detection of faint emission on scales large compared to the bright LBG cores would indicate the presence of in situ star formation in those DLAs. Such gas would presumably fuel the higher star formation rates present in the LBG cores.

  16. HFF-DeepSpace Photometric Catalogs of the 12 Hubble Frontier Fields, Clusters, and Parallels: Photometry, Photometric Redshifts, and Stellar Masses

    NASA Astrophysics Data System (ADS)

    Shipley, Heath V.; Lange-Vagle, Daniel; Marchesini, Danilo; Brammer, Gabriel B.; Ferrarese, Laura; Stefanon, Mauro; Kado-Fong, Erin; Whitaker, Katherine E.; Oesch, Pascal A.; Feinstein, Adina D.; Labbé, Ivo; Lundgren, Britt; Martis, Nicholas; Muzzin, Adam; Nedkova, Kalina; Skelton, Rosalind; van der Wel, Arjen

    2018-03-01

    We present Hubble multi-wavelength photometric catalogs, including (up to) 17 filters with the Advanced Camera for Surveys and Wide Field Camera 3 from the ultra-violet to near-infrared for the Hubble Frontier Fields and associated parallels. We have constructed homogeneous photometric catalogs for all six clusters and their parallels. To further expand these data catalogs, we have added ultra-deep K S -band imaging at 2.2 μm from the Very Large Telescope HAWK-I and Keck-I MOSFIRE instruments. We also add post-cryogenic Spitzer imaging at 3.6 and 4.5 μm with the Infrared Array Camera (IRAC), as well as archival IRAC 5.8 and 8.0 μm imaging when available. We introduce the public release of the multi-wavelength (0.2–8 μm) photometric catalogs, and we describe the unique steps applied for the construction of these catalogs. Particular emphasis is given to the source detection band, the contamination of light from the bright cluster galaxies (bCGs), and intra-cluster light (ICL). In addition to the photometric catalogs, we provide catalogs of photometric redshifts and stellar population properties. Furthermore, this includes all the images used in the construction of the catalogs, including the combined models of bCGs and ICL, the residual images, segmentation maps, and more. These catalogs are a robust data set of the Hubble Frontier Fields and will be an important aid in designing future surveys, as well as planning follow-up programs with current and future observatories to answer key questions remaining about first light, reionization, the assembly of galaxies, and many more topics, most notably by identifying high-redshift sources to target.

  17. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Survey Description

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Decarli, Roberto; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Inami, Hanae; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff

    2016-12-01

    We present the rationale for and the observational description of ASPECS: the ALMA SPECtroscopic Survey in the Hubble Ultra-Deep Field (UDF), the cosmological deep field that has the deepest multi-wavelength data available. Our overarching goal is to obtain an unbiased census of molecular gas and dust continuum emission in high-redshift (z > 0.5) galaxies. The ˜1‧ region covered within the UDF was chosen to overlap with the deepest available imaging from the Hubble Space Telescope. Our ALMA observations consist of full frequency scans in band 3 (84-115 GHz) and band 6 (212-272 GHz) at approximately uniform line sensitivity ({L}{CO}\\prime ˜ 2 × 109 K km s-1 pc2), and continuum noise levels of 3.8 μJy beam-1 and 12.7 μJy beam-1, respectively. The molecular surveys cover the different rotational transitions of the CO molecule, leading to essentially full redshift coverage. The [C II] emission line is also covered at redshifts 6.0\\lt z\\lt 8.0. We present a customized algorithm to identify line candidates in the molecular line scans and quantify our ability to recover artificial sources from our data. Based on whether multiple CO lines are detected, and whether optical spectroscopic redshifts as well as optical counterparts exist, we constrain the most likely line identification. We report 10 (11) CO line candidates in the 3 mm (1 mm) band, and our statistical analysis shows that <4 of these (in each band) are likely spurious. Less than one-third of the total CO flux in the low-J CO line candidates are from sources that are not associated with an optical/NIR counterpart. We also present continuum maps of both the band 3 and band 6 observations. The data presented here form the basis of a number of dedicated studies that are presented in subsequent papers.

  18. Deep ECGNet: An Optimal Deep Learning Framework for Monitoring Mental Stress Using Ultra Short-Term ECG Signals.

    PubMed

    Hwang, Bosun; You, Jiwoo; Vaessen, Thomas; Myin-Germeys, Inez; Park, Cheolsoo; Zhang, Byoung-Tak

    2018-02-08

    Stress recognition using electrocardiogram (ECG) signals requires the intractable long-term heart rate variability (HRV) parameter extraction process. This study proposes a novel deep learning framework to recognize the stressful states, the Deep ECGNet, using ultra short-term raw ECG signals without any feature engineering methods. The Deep ECGNet was developed through various experiments and analysis of ECG waveforms. We proposed the optimal recurrent and convolutional neural networks architecture, and also the optimal convolution filter length (related to the P, Q, R, S, and T wave durations of ECG) and pooling length (related to the heart beat period) based on the optimization experiments and analysis on the waveform characteristics of ECG signals. The experiments were also conducted with conventional methods using HRV parameters and frequency features as a benchmark test. The data used in this study were obtained from Kwangwoon University in Korea (13 subjects, Case 1) and KU Leuven University in Belgium (9 subjects, Case 2). Experiments were designed according to various experimental protocols to elicit stressful conditions. The proposed framework to recognize stress conditions, the Deep ECGNet, outperformed the conventional approaches with the highest accuracy of 87.39% for Case 1 and 73.96% for Case 2, respectively, that is, 16.22% and 10.98% improvements compared with those of the conventional HRV method. We proposed an optimal deep learning architecture and its parameters for stress recognition, and the theoretical consideration on how to design the deep learning structure based on the periodic patterns of the raw ECG data. Experimental results in this study have proved that the proposed deep learning model, the Deep ECGNet, is an optimal structure to recognize the stress conditions using ultra short-term ECG data.

  19. 30 CFR 203.33 - To which production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false To which production do I apply the RSV earned... production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my lease or in my unit? (a) You must apply the RSV allowed in § 203.31(a) and (b) to gas volumes produced from qualified...

  20. 30 CFR 203.33 - To which production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false To which production do I apply the RSV earned... production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my lease or in my unit? (a) You must apply the RSV allowed in § 203.31(a) and (b) to gas volumes produced from qualified...

  1. 30 CFR 203.33 - To which production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false To which production do I apply the RSV earned... production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my lease or in my unit? (a) You must apply the RSV allowed in § 203.31(a) and (b) to gas volumes produced from qualified...

  2. THE MULTIWAVELENGTH SURVEY BY YALE-CHILE (MUSYC): DEEP MEDIUM-BAND OPTICAL IMAGING AND HIGH-QUALITY 32-BAND PHOTOMETRIC REDSHIFTS IN THE ECDF-S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardamone, Carolin N.; Van Dokkum, Pieter G.; Urry, C. Megan

    2010-08-15

    We present deep optical 18-medium-band photometry from the Subaru telescope over the {approx}30' x 30' Extended Chandra Deep Field-South, as part of the Multiwavelength Survey by Yale-Chile (MUSYC). This field has a wealth of ground- and space-based ancillary data, and contains the GOODS-South field and the Hubble Ultra Deep Field. We combine the Subaru imaging with existing UBVRIzJHK and Spitzer IRAC images to create a uniform catalog. Detecting sources in the MUSYC 'BVR' image we find {approx}40,000 galaxies with R {sub AB} < 25.3, the median 5{sigma} limit of the 18 medium bands. Photometric redshifts are determined using the EAzYmore » code and compared to {approx}2000 spectroscopic redshifts in this field. The medium-band filters provide very accurate redshifts for the (bright) subset of galaxies with spectroscopic redshifts, particularly at 0.1 < z < 1.2 and at z {approx}> 3.5. For 0.1 < z < 1.2, we find a 1{sigma} scatter in {Delta}z/(1 + z) of 0.007, similar to results obtained with a similar filter set in the COSMOS field. As a demonstration of the data quality, we show that the red sequence and blue cloud can be cleanly identified in rest-frame color-magnitude diagrams at 0.1 < z < 1.2. We find that {approx}20% of the red sequence galaxies show evidence of dust emission at longer rest-frame wavelengths. The reduced images, photometric catalog, and photometric redshifts are provided through the public MUSYC Web site.« less

  3. HST Imaging of the Brightest z ∼ 8–9 Galaxies from UltraVISTA: The Extreme Bright End of the UV Luminosity Function

    NASA Astrophysics Data System (ADS)

    Stefanon, Mauro; Labbé, Ivo; Bouwens, Rychard J.; Brammer, Gabriel B.; Oesch, Pascal; Franx, Marijn; Fynbo, Johan P. U.; Milvang-Jensen, Bo; Muzzin, Adam; Illingworth, Garth D.; Le Fèvre, Olivier; Caputi, Karina I.; Holwerda, Benne W.; McCracken, Henry J.; Smit, Renske; Magee, Dan

    2017-12-01

    We report on the discovery of three especially bright candidate {z}{phot}≳ 8 galaxies. Five sources were targeted for follow-up with the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3), selected from a larger sample of 16 bright (24.8≲ H≲ 25.5 mag) candidate z≳ 8 Lyman break galaxies (LBGs) identified over 1.6 degrees2 of the COSMOS/UltraVISTA field. These were selected as Y and J dropouts by leveraging the deep (Y-to-{K}{{S}}∼ 25.3{--}24.8 mag, 5σ ) NIR data from the UltraVISTA DR3 release, deep ground-based optical imaging from the CFHTLS and Suprime-Cam programs, and Spitzer/IRAC mosaics combining observations from the SMUVS and SPLASH programs. Through the refined spectral energy distributions, which now also include new HyperSuprimeCam g-, r-, i-, z-, and Y-band data, we confirm that 3/5 galaxies have robust {z}{phot}∼ 8.0{--}8.7, consistent with the initial selection. The remaining 2/5 galaxies have a nominal {z}{phot}∼ 2. However, with HST data alone, these objects have increased probability of being at z∼ 9. We measure mean UV continuum slopes β =-1.74+/- 0.35 for the three z∼ 8{--}9 galaxies, marginally bluer than similarly luminous z∼ 4{--}6 in CANDELS but consistent with previous measurements of similarly luminous galaxies at z∼ 7. The circularized effective radius for our brightest source is 0.9 ± 0.3 kpc, similar to previous measurements for a bright z∼ 11 galaxy and bright z∼ 7 galaxies. Finally, enlarging our sample to include the six brightest z∼ 8 LBGs identified over UltraVISTA (i.e., including three other sources from Labbé et al.) we estimate for the first time the volume density of galaxies at the extreme bright end ({M}{UV}∼ -22 mag) of the z∼ 8 UV luminosity function. Despite this exceptional result, the still large statistical uncertainties do not allow us to discriminate between a Schechter and a double-power-law form.

  4. Marshall Space Flight Center - Launching the Future of Science and Exploration

    NASA Technical Reports Server (NTRS)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  5. 30 CFR 203.1 - What is MMS's authority to grant royalty relief?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (water less than 400 meters deep) and you produce from an ultra-deep well (top of the perforated interval... less than 400 meters deep and you produce from a deep well (top of the perforated interval is at least... from any lease if: (1) Your lease is in deep water (water at least 200 meters deep); (2) Your lease is...

  6. 30 CFR 203.35 - What administrative steps must I take to use the RSV earned by a qualified phase 2 or phase 3...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the RSV earned by a qualified phase 2 or phase 3 ultra-deep well? 203.35 Section 203.35 Mineral... steps must I take to use the RSV earned by a qualified phase 2 or phase 3 ultra-deep well? To use an RSV... of the size of the RSV earned by your lease. (2) If you produced from a qualified phase 2 or phase 3...

  7. 30 CFR 203.35 - What administrative steps must I take to use the RSV earned by a qualified phase 2 or phase 3...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the RSV earned by a qualified phase 2 or phase 3 ultra-deep well? 203.35 Section 203.35 Mineral... steps must I take to use the RSV earned by a qualified phase 2 or phase 3 ultra-deep well? To use an RSV... of the size of the RSV earned by your lease. (2) If you produced from a qualified phase 2 or phase 3...

  8. 30 CFR 203.35 - What administrative steps must I take to use the RSV earned by a qualified phase 2 or phase 3...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the RSV earned by a qualified phase 2 or phase 3 ultra-deep well? 203.35 Section 203.35 Mineral... steps must I take to use the RSV earned by a qualified phase 2 or phase 3 ultra-deep well? To use an RSV... of the size of the RSV earned by your lease. (2) If you produced from a qualified phase 2 or phase 3...

  9. 30 CFR 203.44 - What administrative steps must I take to use the royalty suspension volume?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on... in writing of your intent to begin drilling operations on all deep wells and phase 1 ultra-deep wells...

  10. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: CO Luminosity Functions and the Evolution of the Cosmic Density of Molecular Gas

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Popping, Gergö; Riechers, Dominik; Smail, Ian R.; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto J.; Bauer, Franz E.; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff

    2016-12-01

    In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z ˜ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 109 K km s-1 pc2). We find clear evidence of an evolution in the CO luminosity function with respect to z ˜ 0, with more CO-luminous galaxies present at z ˜ 2. The observed galaxies at z ˜ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3-10 from z ˜ 2 to z ˜ 0 (with significant error bars), and possibly a decline at z > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation (z ˜ 2).

  11. Implications of the Deep Minimum for Slow Solar Wind Origin

    NASA Astrophysics Data System (ADS)

    Antiochos, S. K.; Mikic, Z.; Lionello, R.; Titov, V. S.; Linker, J. A.

    2009-12-01

    The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of the Deep Minimum, affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at the Deep Minimum and describe further observational and theoretical tests. This work has been supported by the NASA HTP, SR&T, and LWS programs.

  12. Ultra-wide-field imaging in diabetic retinopathy; an overview.

    PubMed

    Ghasemi Falavarjani, Khalil; Wang, Kang; Khadamy, Joobin; Sadda, Srinivas R

    2016-06-01

    To present an overview on ultra-wide-field imaging in diabetic retinopathy. A comprehensive search of the pubmed database was performed using the search terms of "ultra-wide-field imaging", "ultra-wide-field fluorescein angiography" and "diabetic retinopathy". The relevant original articles were reviewed. New advances in ultra-wide-field imaging allow for precise measurements of the peripheral retinal lesions. A consistent finding amongst these articles was that ultra-wide-field imaging improved detection of peripheral lesion. There was discordance among the studies, however, on the correlation between peripheral diabetic lesions and diabetic macular edema. Visualization of the peripheral retina using ultra-wide-field imaging improves diagnosis and classification of diabetic retinopathy. Additional studies are needed to better define the association of peripheral diabetic lesions with diabetic macular edema.

  13. Emission-Line Galaxies from the PEARS Hubble Ultra Deep Field: A 2-D Detection Method and First Results

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, james; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; hide

    2007-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) grism PEARS (Probing Evolution And Reionization Spectroscopically) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS North and South fields. One important subset of objects in these data are emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [0 1111 emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [0 1111 emitters having rest-frame EW> 100A). There are 12 galaxies with multiple emitting knots; several show evidence of variations in H-alpha flux in the knots, suggesting that the differing star formation properties across a single galaxy can in general be probed at redshifts approximately greater than 0.2 - 0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  14. The Spectral Energy Distributions of z ~ 8 Galaxies from the IRAC Ultra Deep Fields: Emission Lines, Stellar Masses, and Specific Star Formation Rates at 650 Myr

    NASA Astrophysics Data System (ADS)

    Labbé, I.; Oesch, P. A.; Bouwens, R. J.; Illingworth, G. D.; Magee, D.; González, V.; Carollo, C. M.; Franx, M.; Trenti, M.; van Dokkum, P. G.; Stiavelli, M.

    2013-11-01

    Using new ultradeep Spitzer/InfraRed Array Camera (IRAC) photometry from the IRAC Ultra Deep Field program, we investigate the stellar populations of a sample of 63 Y-dropout galaxy candidates at z ~ 8, only 650 Myr after the big bang. The sources are selected from HST/ACS+WFC3/IR data over the Hubble Ultra Deep Field (HUDF), two HUDF parallel fields, and wide area data over the CANDELS/GOODS-South. The new Spitzer/IRAC data increase the coverage in [3.6] and [4.5] to ~120h over the HUDF reaching depths of ~28 (AB,1σ). The improved depth and inclusion of brighter candidates result in direct >=3σ InfraRed Array Camera (IRAC) detections of 20/63 sources, of which 11/63 are detected at >=5σ. The average [3.6]-[4.5] colors of IRAC detected galaxies at z ~ 8 are markedly redder than those at z ~ 7, observed only 130 Myr later. The simplest explanation is that we witness strong rest-frame optical emission lines (in particular [O III] λλ4959, 5007 + Hβ) moving through the IRAC bandpasses with redshift. Assuming that the average rest-frame spectrum is the same at both z ~ 7 and z ~ 8 we estimate a rest-frame equivalent width of {W}_{[O\\,\\scriptsize{III}]\\ \\lambda \\lambda 4959,5007+H\\beta }=670^{+260}_{-170} Å contributing 0.56^{+0.16}_{-0.11} mag to the [4.5] filter at z ~ 8. The corresponding {W}_{H\\alpha }=430^{+160}_{-110} Å implies an average specific star formation rate of sSFR=11_{-5}^{+11} Gyr-1 and a stellar population age of 100_{-50}^{+100} Myr. Correcting the spectral energy distribution for the contribution of emission lines lowers the average best-fit stellar masses and mass-to-light ratios by ~3 ×, decreasing the integrated stellar mass density to \\rho ^*(z=8,M_{\\rm{UV}}<-18)=0.6^{+0.4}_{-0.3}\\times 10^6 \\,M_\\odot Mpc-3. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #11563, 9797. Based on observations with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA through contract 125790 issued by JPL/Caltech. Based on service mode observations collected at the European Southern Observatory, Paranal, Chile (ESO Program 073.A-0764A). Based on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  15. MUSE deep-fields: the Ly α luminosity function in the Hubble Deep Field-South at 2.91 < z < 6.64

    NASA Astrophysics Data System (ADS)

    Drake, Alyssa B.; Guiderdoni, Bruno; Blaizot, Jérémy; Wisotzki, Lutz; Herenz, Edmund Christian; Garel, Thibault; Richard, Johan; Bacon, Roland; Bina, David; Cantalupo, Sebastiano; Contini, Thierry; den Brok, Mark; Hashimoto, Takuya; Marino, Raffaella Anna; Pelló, Roser; Schaye, Joop; Schmidt, Kasper B.

    2017-10-01

    We present the first estimate of the Ly α luminosity function using blind spectroscopy from the Multi Unit Spectroscopic Explorer, MUSE, in the Hubble Deep Field-South. Using automatic source-detection software, we assemble a homogeneously detected sample of 59 Ly α emitters covering a flux range of -18.0 < log10 (F) < -16.3 (erg s-1 cm-2), corresponding to luminosities of 41.4 < log10 (L) < 42.8 (erg s-1). As recent studies have shown, Ly α fluxes can be underestimated by a factor of 2 or more via traditional methods, and so we undertake a careful assessment of each object's Ly α flux using a curve-of-growth analysis to account for extended emission. We describe our self-consistent method for determining the completeness of the sample, and present an estimate of the global Ly α luminosity function between redshifts 2.91 < z < 6.64 using the 1/Vmax estimator. We find that the luminosity function is higher than many number densities reported in the literature by a factor of 2-3, although our result is consistent at the 1σ level with most of these studies. Our observed luminosity function is also in good agreement with predictions from semi-analytic models, and shows no evidence for strong evolution between the high- and low-redshift halves of the data. We demonstrate that one's approach to Ly α flux estimation does alter the observed luminosity function, and caution that accurate flux assessments will be crucial in measurements of the faint-end slope. This is a pilot study for the Ly α luminosity function in the MUSE deep-fields, to be built on with data from the Hubble Ultra Deep Field that will increase the size of our sample by almost a factor of 10.

  16. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.41 If I have... not . . . And if it later . . . Then your lease . . . (1) produced gas or oil from any deep well or...

  17. 30 CFR 203.40 - Which leases are eligible for royalty relief as a result of drilling a deep well or a phase 1...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a result of drilling a deep well or a phase 1 ultra-deep well? 203.40 Section 203.40 Mineral... MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.40 Which...

  18. A 16 deg2 survey of emission-line galaxies at z < 1.5 in HSC-SSP Public Data Release 1

    NASA Astrophysics Data System (ADS)

    Hayashi, Masao; Tanaka, Masayuki; Shimakawa, Rhythm; Furusawa, Hisanori; Momose, Rieko; Koyama, Yusei; Silverman, John D.; Kodama, Tadayuki; Komiyama, Yutaka; Leauthaud, Alexie; Lin, Yen-Ting; Miyazaki, Satoshi; Nagao, Tohru; Nishizawa, Atsushi J.; Ouchi, Masami; Shibuya, Takatoshi; Tadaki, Ken-ichi; Yabe, Kiyoto

    2018-01-01

    We present initial results from the Subaru Strategic Program (SSP) with Hyper Suprime-Cam (HSC) on a comprehensive survey of emission-line galaxies at z < 1.5 based on narrowband imaging. The first Public Data Release provides us with data from two narrowband filters, specifically NB816 and NB921 over 5.7 deg2 and 16.2 deg2 respectively. The 5 σ limiting magnitudes are 25.2 mag (UltraDeep layer, 1.4 deg2) and 24.8 mag (Deep layer, 4.3 deg2) for NB816, and 25.1 mag (UltraDeep, 2.9 deg2) and 24.6-24.8 mag (Deep, 13.3 deg2) for NB921. The wide-field imaging allows us to construct unprecedentedly large samples of 8054 H α emitters at z ≈ 0.25 and 0.40, 8656 [O III] emitters at z ≈ 0.63 and 0.84, and 16877 [O II] emitters at z ≈ 1.19 and 1.47. We map the cosmic web on scales out to about 50 comoving Mpc that includes galaxy clusters, identified by red sequence galaxies, located at the intersection of filamentary structures of star-forming galaxies. The luminosity functions of emission-line galaxies are measured with precision and are consistent with published studies. The wide field coverage of the data enables us to measure the luminosity functions up to brighter luminosities than previous studies. The comparison of the luminosity functions between the different HSC-SSP fields suggests that a survey volume of >5 × 105 Mpc3 is essential to overcome cosmic variance. Since the current data have not reached the full depth expected for the HSC-SSP, the color cut in i - NB816 or z - NB921 induces a bias towards star-forming galaxies with large equivalent widths, primarily seen in the stellar mass functions for the H α emitters at z ≈ 0.25-0.40. Even so, the emission-line galaxies clearly cover a wide range of luminosity, stellar mass, and environment, thus demonstrating the usefulness of the narrowband data from the HSC-SSP for investigating star-forming galaxies at z < 1.5.

  19. VizieR Online Data Catalog: Redshifts of 65 CANDELS supernovae (Rodney+, 2014)

    NASA Astrophysics Data System (ADS)

    Rodney, S. A.; Riess, A. G.; Strolger, L.-G.; Dahlen, T.; Graur, O.; Casertano, S.; Dickinson, M. E.; Ferguson, H. C.; Garnavich, P.; Hayden, B.; Jha, S. W.; Jones, D. O.; Kirshner, R. P.; Koekemoer, A. M.; McCully, C.; Mobasher, B.; Patel, B.; Weiner, B. J.; Cenko, S. B.; Clubb, K. I.; Cooper, M.; Filippenko, A. V.; Frederiksen, T. F.; Hjorth, J.; Leibundgut, B.; Matheson, T.; Nayyeri, H.; Penner, K.; Trump, J.; Silverman, J. M.; U, V.; Azalee Bostroem, K.; Challis, P.; Rajan, A.; Wolff, S.; Faber, S. M.; Grogin, N. A.; Kocevski, D.

    2015-01-01

    In this paper we present a measurement of the Type Ia supernova explosion rate as a function of redshift (SNR(z)) from a sample of 65 supernovae discovered in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) supernova program. This supernova survey is a joint operation of two Hubble Space Telescope (HST) Multi-Cycle Treasury (MCT) programs: CANDELS (PIs: Faber and Ferguson; Grogin et al., 2011ApJS..197...35G; Koekemoer et al., 2011ApJS..197...36K), and the Cluster Lensing and Supernovae search with Hubble (CLASH; PI: Postman; Postman et al. 2012, cat. J/ApJS/199/25). The supernova discovery and follow-up for both programs were allocated to the HST MCT supernova program (PI: Riess). The results presented here are based on the full five fields and ~0.25deg2 of the CANDELS program, observed from 2010 to 2013. A companion paper presents the SN Ia rates from the CLASH sample (Graur et al., 2014ApJ...783...28G). A composite analysis that combines the CANDELS+CLASH supernova sample and revisits past HST surveys will be presented in a future paper. The three-year CANDELS program was designed to probe galaxy evolution out to z~8 with deep infrared and optical imaging of five well-studied extragalactic fields: GOODS-S, GOODS-N (the Great Observatories Origins Deep Survey South and North; Giavalisco et al. 2004, cat. II/261), COSMOS (the Cosmic Evolution Survey, Scoville et al., 2007ApJS..172....1S; Koekemoer et al., 2007ApJS..172..196K), UDS (the UKIDSS Ultra Deep Survey; Lawrence et al. 2007, cat. II/314; Cirasuolo et al., 2007MNRAS.380..585C), EGS (the Extended Groth Strip; Davis et al. 2007, cat. III/248). As described fully in Grogin et al. (2011ApJS..197...35G), the CANDELS program includes both "wide" and "deep" fields. The wide component of CANDELS comprises the COSMOS, UDS, and EGS fields, plus one-third of the GOODS-S field and one half of the GOODS-N field--a total survey area of 730 arcmin2. The "deep" component of CANDELS came from the central 67arcmin2 of each of the GOODS-S and GOODS-N fields. The CANDELS fields analyzed in this work are described in Table 1. (6 data files).

  20. Deep Bore Storage of Nuclear Waste Using MMW (Millimeter Wave) Technology. Full Project Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth D.; Woskov, Paul; Einstein, Herbert

    This DOE Nuclear STTR project DE-SC001238 investigated the use of MMW directed energy to form rock melt and steel plugs in deep wellbores to further isolate highly radioactive nuclear waste in ultra-deep basement rocks for long term storage. This current project builds upon a prior DOE project, DE-EE0005504, which developed the basic low power, low 28 GHz frequency waveguide setup, process and instruments. This research adds to our understanding of using MMW power to melt and vaporize rocks and steel/ metals and laid plans for future higher power field prototype testing. This technology also has potential for deep well drillingmore » for nuclear storage, geothermal and oil and gas industries. It also has the potential for simultaneously sealing and securing the wellbore with a thick rock melt liner as the wellbore is drilled, called 'mono-bore drilling'. This allows for higher levels of safety and protection of the environment during deep drilling operations while providing vast cost savings. The larger purpose of this project was to find answers to key questions in developing MMW technology for its many subsurface applications.« less

  1. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 200 meters but entirely less than 400 meters deep that: (1) Occurs before December 18, 2008; and (2... § 203.31(b) applies. In both situations, your lease must be partly or entirely in less than 200 meters...

  2. Dust attenuation in 2 < z < 3 star-forming galaxies from deep ALMA observations of the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Dunlop, J. S.; Cullen, F.; Bourne, N.; Best, P. N.; Khochfar, S.; Bowler, R. A. A.; Biggs, A. D.; Geach, J. E.; Scott, D.; Michałowski, M. J.; Rujopakarn, W.; van Kampen, E.; Kirkpatrick, A.; Pope, A.

    2018-05-01

    We present the results of a new study of the relationship between infrared excess (IRX ≡ LIR/LUV), ultraviolet (UV) spectral slope (β) and stellar mass at redshifts 2 < z < 3, based on a deep Atacama Large Millimeter Array (ALMA) 1.3-mm continuum mosaic of the Hubble Ultra Deep Field. Excluding the most heavily obscured sources, we use a stacking analysis to show that z ≃ 2.5 star-forming galaxies in the mass range 9.25≤ log (M_{\\ast }/M_{⊙}) ≤ 10.75 are fully consistent with the IRX-β relation expected for a relatively grey attenuation curve, similar to the commonly adopted Calzetti law. Based on a large, mass-complete sample of 2 ≤ z ≤ 3 star-forming galaxies drawn from multiple surveys, we proceed to derive a new empirical relationship between β and stellar mass, making it possible to predict UV attenuation (A1600) and IRX as a function of stellar mass, for any assumed attenuation law. Once again, we find that z ≃ 2.5 star-forming galaxies follow A1600-M* and IRX-M* relations consistent with a relatively grey attenuation law, and find no compelling evidence that star-forming galaxies at this epoch follow a reddening law as steep as the Small Magellanic Cloud (SMC) extinction curve. In fact, we use a simple simulation to demonstrate that previous determinations of the IRX-β relation may have been biased towards low values of IRX at red values of β, mimicking the signature expected for an SMC-like dust law. We show that this provides a plausible mechanism for reconciling apparently contradictory results in the literature and that, based on typical measurement uncertainties, stellar mass provides a cleaner prediction of UV attenuation than β. Although the situation at lower stellar masses remains uncertain, we conclude that for 2 < z < 3 star-forming galaxies with log (M_{\\ast }/M_{⊙}) ≥ 9.75, both the IRX-β and IRX-M* relations are well described by a Calzetti-like attenuation law.

  3. A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Quan; Piao, Rui-Qi; Zhao, Jing-Jing; Meng, Xiao-Yun; Tong, Kai

    2015-07-01

    A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong field enhancement in the air gap region and low propagation loss, which enables the realization of lasing at the deep subwavelength scale. By optimizing the geometric parameters of the structure, a minimal lasing threshold is achieved while maintaining the capacity of ultra-deep subwavelength mode confinement. Compared with the previous coupled nanowire pair based hybrid plasmonic structure, a lower threshold can be obtained with the same geometric parameters. The proposed nanolaser can be integrated into a miniature chip as a nanoscale light source and has the potential to be widely used in optical communication and optical sensing technology. Project supported by the National Natural Science Foundation of China (Grant No. 61172044) and the Natural Science Foundation of Hebei Province, China (Grant No. F2014501150).

  4. The MUSE Hubble Ultra Deep Field Survey. VII. Fe II* emission in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Finley, Hayley; Bouché, Nicolas; Contini, Thierry; Paalvast, Mieke; Boogaard, Leindert; Maseda, Michael; Bacon, Roland; Blaizot, Jérémy; Brinchmann, Jarle; Epinat, Benoît; Feltre, Anna; Marino, Raffaella Anna; Muzahid, Sowgat; Richard, Johan; Schaye, Joop; Verhamme, Anne; Weilbacher, Peter M.; Wisotzki, Lutz

    2017-11-01

    Non-resonant Fe II* (λ2365, λ2396, λ2612, λ2626) emission can potentially trace galactic winds in emission and provide useful constraints to wind models. From the 3.15' × 3.15' mosaic of the Hubble Ultra Deep Field (UDF) obtained with the VLT/MUSE integral field spectrograph, we identify a statistical sample of 40 Fe II* emitters and 50 MgIII (λλ2796,2803) emitters from a sample of 271 [O II]λλ3726,3729 emitters with reliable redshifts from z = 0.85-1.50 down to 2 × 10-18 (3σ) ergs s-1 cm-2 (for [O II]), covering the M⋆ range from 108-1011 M⊙. The Fe II* and Mg II emitters follow the galaxy main sequence, but with a clear dichotomy. Galaxies with masses below 109 M⊙ and star formation rates (SFRs) of ≲ 1 M⊙ yr-1 have MgIII emission without accompanying Fe II* emission, whereas galaxies with masses above 1010 M⊙ and SFRs ≳ 10 M⊙ yr-1 have Fe II* emission without accompanying MgIII emission. Between these two regimes, galaxies have both MgIII and Fe II* emission, typically with MgIII P Cygni profiles. Indeed, the MgIII profile shows a progression along the main sequence from pure emission to P Cygni profiles to strong absorption, due to resonant trapping. Combining the deep MUSE data with HST ancillary information, we find that galaxies with pure MgIII emission profiles have lower SFR surface densities than those with either MgIII P Cygni profiles or Fe II* emission. These spectral signatures produced through continuum scattering and fluorescence, MgIII P Cygni profiles and Fe II* emission, are better candidates for tracing galactic outflows than pure MgIII emission, which may originate from HIII regions. We compare the absorption and emission rest-frame equivalent widths for pairs of FeIII transitions to predictions from outflow models and find that the observations consistently have less total re-emission than absorption, suggesting either dust extinction or non-isotropic outflow geometries.

  5. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis; Homer Robertson; Alan Black

    2006-06-22

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed. {lg_bullet} TerraTek concluded Task 3 ''Small-scale cutting performance tests.'' {sm_bullet} Significant testing was performed on nine different rocks. {sm_bullet} Five rocks were used for the final testing. The final tests were based on statistical design of experiments. {sm_bullet} Two full-faced bits, a small diameter and a large diameter, were run in Berea sandstone. {lg_bullet} Analysis of data was completed and indicates that there is decreased specific energy as the rotational speed increases (Task 4). Data analysis from early trials was used to direct the efforts of the final testing for Phase I (Task 5). {lg_bullet} Technology transfer (Task 6) was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black).« less

  6. TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Bruce G.; Elmegreen, Debra Meloy, E-mail: bge@watson.ibm.co, E-mail: elmegreen@vassar.ed

    2010-10-20

    Tadpole galaxies have a head-tail shape with a large clump of star formation at the head and a diffuse tail or streak of stars off to one side. We measured the head and tail masses, ages, surface brightnesses, and sizes for 66 tadpoles in the Hubble Ultra Deep Field (UDF) and looked at the distribution of neighbor densities and tadpole orientations with respect to neighbors. The heads have masses of 10{sup 7}-10{sup 8} M{sub sun} and photometric ages of {approx}0.1 Gyr for z {approx} 2. The tails have slightly larger masses than the heads and comparable or slightly older ages.more » The most obvious interpretation of tadpoles as young merger remnants is difficult to verify. They have no enhanced proximity to other resolved galaxies as a class, and the heads, typically <0.2 kpc in diameter, usually have no obvious double-core structure. Another possibility is ram pressure interaction between a gas-rich galaxy and a diffuse cosmological flow. Ram pressure can trigger star formation on one side of a galaxy disk, giving the tadpole shape when viewed edge-on. Ram pressure can also strip away gas from a galaxy and put it into a tail, which then forms new stars and gravitationally drags along old stars with it. Such an effect might have already been observed in the Virgo Cluster. Another possibility is that tadpoles are edge-on disks with large, off-center clumps. Analogous lop-sided star formation in UDF clump clusters is shown.« less

  7. The onset of spiral structure in the universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.

    2014-01-20

    The onset of spiral structure in galaxies appears to occur between redshifts 1.4 and 1.8 when disks have developed a cool stellar component, rotation dominates over turbulent motions in the gas, and massive clumps become less frequent. During the transition from clumpy to spiral disks, two unusual types of spirals are found in the Hubble Ultra Deep Field that are massive, clumpy, and irregular like their predecessor clumpy disks, yet spiral-like or sheared like their descendants. One type is 'woolly' with massive clumpy arms all over the disk and is brighter than other disk galaxies at the same redshift, whilemore » another type has irregular multiple arms with high pitch angles, star formation knots, and no inner symmetry like today's multiple-arm galaxies. The common types of spirals seen locally are also present in a redshift range around z ∼ 1, namely grand design with two symmetric arms, multiple arm with symmetry in the inner parts and several long, thin arms in the outer parts, and flocculent, with short, irregular, and patchy arms that are mostly from star formation. Normal multiple-arm galaxies are found only closer than z ∼ 0.6 in the Ultra Deep Field. Grand design galaxies extend furthest to z ∼ 1.8, presumably because interactions can drive a two-arm spiral in a disk that would otherwise have a more irregular structure. The difference between these types is understandable in terms of the usual stability parameters for gas and stars, and the ratio of the velocity dispersion to rotation speed.« less

  8. 30 CFR 203.34 - To which production may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., on a lease that is located entirely or partly in water less than 200 meters deep; or (2) May 18, 2007, on a lease that is located entirely in water more than 200 meters deep. ... Leases Not Subject to Deep Water Royalty Relief § 203.34 To which production may an RSV earned by...

  9. Recent Ultra High Energy neutrino bounds and multimessenger observations with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Zas, Enrique

    2018-01-01

    The overall picture of the highest energy particles produced in the Universe is changing because of measurements made with the Pierre Auger Observatory. Composition studies of cosmic rays point towards an unexpected mixed composition of intermediate mass nuclei, more isotropic than anticipated, which is reshaping the future of the field and underlining the priority to understand composition at the highest energies. The Observatory is competitive in the search for neutrinos of all flavors above about 100 PeV by looking for very inclined showers produced deep in the atmosphere by neutrinos interacting either in the atmosphere or in the Earth's crust. It covers a large field of view between -85° and 60° declination in equatorial coordinates. Neutrinos are expected because of the existence of ultra high energy cosmic rays. They provide valuable complementary information, their fluxes being sensitive to the primary cosmic ray masses and their directions reflecting the source positions. We report the results of the neutrino search providing competitive bounds to neutrino production and strong constraints to a number of production models including cosmogenic neutrinos due to ultra high energy protons. We also report on two recent contributions of the Observatory to multimessenger studies by searching for correlations of neutrinos both with cosmic rays and with gravitational waves. The correlations of the directions of the highest energy astrophysical neutrinos discovered with IceCube with the highest energy cosmic rays detected with the Auger Observatory and the Telescope Array revealed an excess that is not statistically significant and is being monitored. The targeted search for neutrinos correlated with the discovery of the gravitational wave events GW150914 and GW151226 with advanced LIGO has led to the first bounds on the energy emitted by black hole mergers in Ultra-High Energy Neutrinos.

  10. The MUSE Hubble Ultra Deep Field Survey. VI. The faint-end of the Lyα luminosity function at 2.91 < z < 6.64 and implications for reionisation

    NASA Astrophysics Data System (ADS)

    Drake, A. B.; Garel, T.; Wisotzki, L.; Leclercq, F.; Hashimoto, T.; Richard, J.; Bacon, R.; Blaizot, J.; Caruana, J.; Conseil, S.; Contini, T.; Guiderdoni, B.; Herenz, E. C.; Inami, H.; Lewis, J.; Mahler, G.; Marino, R. A.; Pello, R.; Schaye, J.; Verhamme, A.; Ventou, E.; Weilbacher, P. M.

    2017-11-01

    We present the deepest study to date of the Lyα luminosity function in a blank field using blind integral field spectroscopy from MUSE. We constructed a sample of 604 Lyα emitters (LAEs) across the redshift range 2.91 < z < 6.64 using automatic detection software in the Hubble Ultra Deep Field. The deep data cubes allowed us to calculate accurate total Lyα fluxes capturing low surface-brightness extended Lyα emission now known to be a generic property of high-redshift star-forming galaxies. We simulated realistic extended LAEs to fully characterise the selection function of our samples, and performed flux-recovery experiments to test and correct for bias in our determination of total Lyα fluxes. We find that an accurate completeness correction accounting for extended emission reveals a very steep faint-end slope of the luminosity function, α, down to luminosities of log10L erg s-1< 41.5, applying both the 1 /Vmax and maximum likelihood estimators. Splitting the sample into three broad redshift bins, we see the faint-end slope increasing from -2.03-0.07+ 1.42 at z ≈ 3.44 to -2.86-∞+0.76 at z ≈ 5.48, however no strong evolution is seen between the 68% confidence regions in L∗-α parameter space. Using the Lyα line flux as a proxy for star formation activity, and integrating the observed luminosity functions, we find that LAEs' contribution to the cosmic star formation rate density rises with redshift until it is comparable to that from continuum-selected samples by z ≈ 6. This implies that LAEs may contribute more to the star-formation activity of the early Universe than previously thought, as any additional intergalactic medium (IGM) correction would act to further boost the Lyα luminosities. Finally, assuming fiducial values for the escape of Lyα and LyC radiation, and the clumpiness of the IGM, we integrated the maximum likelihood luminosity function at 5.00

  11. Ultra-Large Solar Sail

    NASA Technical Reports Server (NTRS)

    Burton, Rodney; Coverstone, Victoria

    2009-01-01

    UltraSail is a next-generation ultra-large (km2 class) sail system. Analysis of the launch, deployment, stabilization, and control of these sails shows that high-payload-mass fractions for interplanetary and deep-space missions are possible. UltraSail combines propulsion and control systems developed for formation-flying microsatellites with a solar sail architecture to achieve controllable sail areas approaching 1 km2. Electrically conductive CP-1 polyimide film results in sail subsystem area densities as low as 5 g/m2. UltraSail produces thrust levels many times those of ion thrusters used for comparable deep-space missions. The primary innovation involves the near-elimination of sail-supporting structures by attaching each blade tip to a formation- flying microsatellite, which deploys the sail and then articulates the sail to provide attitude control, including spin stabilization and precession of the spin axis. These microsatellite tips are controlled by microthrusters for sail-film deployment and mission operations. UltraSail also avoids the problems inherent in folded sail film, namely stressing, yielding, or perforating, by storing the film in a roll for launch and deployment. A 5-km long by 2 micrometer thick film roll on a mandrel with a 1 m circumference (32 cm diameter) has a stored thickness of 5 cm. A 5 m-long mandrel can store a film area of 25,000 m2, and a four-blade system has an area of 0.1 sq km.

  12. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2x3, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>lO, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  13. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan F.; Barbier, L. M.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D. D.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; hide

    2006-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2-6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. In addition to JWST s ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  14. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z>6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  15. On the Nature of Ultra-faint Dwarf Galaxy Candidates. II. The Case of Cetus II

    NASA Astrophysics Data System (ADS)

    Conn, Blair C.; Jerjen, Helmut; Kim, Dongwon; Schirmer, Mischa

    2018-04-01

    We obtained deep Gemini GMOS-S g, r photometry of the ultra-faint dwarf galaxy candidate Cetus II with the aim of providing stronger constraints on its size, luminosity, and stellar population. Cetus II is an important object in the size–luminosity plane, as it occupies the transition zone between dwarf galaxies and star clusters. All known objects smaller than Cetus II (r h ∼ 20 pc) are reported to be star clusters, while most larger objects are likely dwarf galaxies. We found a prominent excess of main-sequence stars in the color–magnitude diagram of Cetus II, best described by a single stellar population with an age of 11.2 Gyr, metallicity of [Fe/H] = ‑1.28 dex, an [α/Fe] = 0.0 dex at a heliocentric distance of 26.3 ± 1.2 kpc. As well as being spatially located within the Sagittarius dwarf tidal stream, these properties are well matched to the Sagittarius galaxy’s Population B stars. Interestingly, like our recent findings on the ultra-faint dwarf galaxy candidate Tucana V, the stellar field in the direction of Cetus II shows no evidence of a concentrated overdensity despite tracing the main sequence for over six magnitudes. These results strongly support the picture that Cetus II is not an ultra-faint stellar system in the Milky Way halo, but made up of stars from the Sagittarius tidal stream.

  16. 30 CFR 203.2 - How can I obtain royalty relief?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 203.49). (g) Located in a designated GOM shallow water area Drill and produce gas from an ultra-deep...) Located in a designated GOM deep water area (i.e., 200 meters or greater) and acquired in a lease sale... 203.79). (c) Located in a designated GOM deep water area and acquired in a lease sale held before...

  17. 30 CFR 203.44 - What administrative steps must I take to use the royalty suspension volume?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ultra-deep well on a lease that is located entirely in water more than 200 meters and less than 400 meters deep. (e) The MMS Regional Supervisor for Production and Development may extend the deadline for...

  18. The Hyper Suprime-Cam SSP Survey: Overview and survey design

    NASA Astrophysics Data System (ADS)

    Aihara, Hiroaki; Arimoto, Nobuo; Armstrong, Robert; Arnouts, Stéphane; Bahcall, Neta A.; Bickerton, Steven; Bosch, James; Bundy, Kevin; Capak, Peter L.; Chan, James H. H.; Chiba, Masashi; Coupon, Jean; Egami, Eiichi; Enoki, Motohiro; Finet, Francois; Fujimori, Hiroki; Fujimoto, Seiji; Furusawa, Hisanori; Furusawa, Junko; Goto, Tomotsugu; Goulding, Andy; Greco, Johnny P.; Greene, Jenny E.; Gunn, James E.; Hamana, Takashi; Harikane, Yuichi; Hashimoto, Yasuhiro; Hattori, Takashi; Hayashi, Masao; Hayashi, Yusuke; Hełminiak, Krzysztof G.; Higuchi, Ryo; Hikage, Chiaki; Ho, Paul T. P.; Hsieh, Bau-Ching; Huang, Kuiyun; Huang, Song; Ikeda, Hiroyuki; Imanishi, Masatoshi; Inoue, Akio K.; Iwasawa, Kazushi; Iwata, Ikuru; Jaelani, Anton T.; Jian, Hung-Yu; Kamata, Yukiko; Karoji, Hiroshi; Kashikawa, Nobunari; Katayama, Nobuhiko; Kawanomoto, Satoshi; Kayo, Issha; Koda, Jin; Koike, Michitaro; Kojima, Takashi; Komiyama, Yutaka; Konno, Akira; Koshida, Shintaro; Koyama, Yusei; Kusakabe, Haruka; Leauthaud, Alexie; Lee, Chien-Hsiu; Lin, Lihwai; Lin, Yen-Ting; Lupton, Robert H.; Mandelbaum, Rachel; Matsuoka, Yoshiki; Medezinski, Elinor; Mineo, Sogo; Miyama, Shoken; Miyatake, Hironao; Miyazaki, Satoshi; Momose, Rieko; More, Anupreeta; More, Surhud; Moritani, Yuki; Moriya, Takashi J.; Morokuma, Tomoki; Mukae, Shiro; Murata, Ryoma; Murayama, Hitoshi; Nagao, Tohru; Nakata, Fumiaki; Niida, Mana; Niikura, Hiroko; Nishizawa, Atsushi J.; Obuchi, Yoshiyuki; Oguri, Masamune; Oishi, Yukie; Okabe, Nobuhiro; Okamoto, Sakurako; Okura, Yuki; Ono, Yoshiaki; Onodera, Masato; Onoue, Masafusa; Osato, Ken; Ouchi, Masami; Price, Paul A.; Pyo, Tae-Soo; Sako, Masao; Sawicki, Marcin; Shibuya, Takatoshi; Shimasaku, Kazuhiro; Shimono, Atsushi; Shirasaki, Masato; Silverman, John D.; Simet, Melanie; Speagle, Joshua; Spergel, David N.; Strauss, Michael A.; Sugahara, Yuma; Sugiyama, Naoshi; Suto, Yasushi; Suyu, Sherry H.; Suzuki, Nao; Tait, Philip J.; Takada, Masahiro; Takata, Tadafumi; Tamura, Naoyuki; Tanaka, Manobu M.; Tanaka, Masaomi; Tanaka, Masayuki; Tanaka, Yoko; Terai, Tsuyoshi; Terashima, Yuichi; Toba, Yoshiki; Tominaga, Nozomu; Toshikawa, Jun; Turner, Edwin L.; Uchida, Tomohisa; Uchiyama, Hisakazu; Umetsu, Keiichi; Uraguchi, Fumihiro; Urata, Yuji; Usuda, Tomonori; Utsumi, Yousuke; Wang, Shiang-Yu; Wang, Wei-Hao; Wong, Kenneth C.; Yabe, Kiyoto; Yamada, Yoshihiko; Yamanoi, Hitomi; Yasuda, Naoki; Yeh, Sherry; Yonehara, Atsunori; Yuma, Suraphong

    2018-01-01

    Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2-m Subaru telescope on the summit of Mauna Kea in Hawaii. A team of scientists from Japan, Taiwan, and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg2 in five broad bands (grizy), with a 5 σ point-source depth of r ≈ 26. The Deep layer covers a total of 26 deg2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey.

  19. Oxidation preventative capping layer for deep-ultra-violet and soft x-ray multilayers

    DOEpatents

    Prisbrey, Shon T.

    2004-07-06

    The invention uses iridium and iridium compounds as a protective capping layer on multilayers having reflectivity in the deep ultra-violet to soft x-ray regime. The iridium compounds can be formed in one of two ways: by direct deposition of the iridium compound from a prepared target or by depositing a thin layer (e.g., 5-50 angstroms) of iridium directly onto an element. The deposition energy of the incoming iridium is sufficient to activate the formation of the desired iridium compound. The compounds of most interest are iridium silicide (IrSi.sub.x) and iridium molybdenide (IrMo.sub.x).

  20. Genomic variation in macrophage-cultured European porcine reproductive and respiratory syndrome virus Olot/91 revealed using ultra-deep next generation sequencing.

    PubMed

    Lu, Zen H; Brown, Alexander; Wilson, Alison D; Calvert, Jay G; Balasch, Monica; Fuentes-Utrilla, Pablo; Loecherbach, Julia; Turner, Frances; Talbot, Richard; Archibald, Alan L; Ait-Ali, Tahar

    2014-03-04

    Porcine Reproductive and Respiratory Syndrome (PRRS) is a disease of major economic impact worldwide. The etiologic agent of this disease is the PRRS virus (PRRSV). Increasing evidence suggest that microevolution within a coexisting quasispecies population can give rise to high sequence heterogeneity in PRRSV. We developed a pipeline based on the ultra-deep next generation sequencing approach to first construct the complete genome of a European PRRSV, strain Olot/9, cultured on macrophages and then capture the rare variants representative of the mixed quasispecies population. Olot/91 differs from the reference Lelystad strain by about 5% and a total of 88 variants, with frequencies as low as 1%, were detected in the mixed population. These variants included 16 non-synonymous variants concentrated in the genes encoding structural and nonstructural proteins; including Glycoprotein 2a and 5. Using an ultra-deep sequencing methodology, the complete genome of Olot/91 was constructed without any prior knowledge of the sequence. Rare variants that constitute minor fractions of the heterogeneous PRRSV population could successfully be detected to allow further exploration of microevolutionary events.

  1. Insights about minority HIV-1 strains in transmitted drug resistance mutation dynamics and disease progression.

    PubMed

    Leda, Ana Rachel; Hunter, James; Oliveira, Ursula Castro; Azevedo, Inacio Junqueira; Sucupira, Maria Cecilia Araripe; Diaz, Ricardo Sobhie

    2018-04-19

    The presence of minority transmitted drug resistance mutations was assessed using ultra-deep sequencing and correlated with disease progression among recently HIV-1-infected individuals from Brazil. Samples at baseline during recent infection and 1 year after the establishment of the infection were analysed. Viral RNA and proviral DNA from 25 individuals were subjected to ultra-deep sequencing of the reverse transcriptase and protease regions of HIV-1. Viral strains carrying transmitted drug resistance mutations were detected in 9 out of the 25 patients, for all major antiretroviral classes, ranging from one to five mutations per patient. Ultra-deep sequencing detected strains with frequencies as low as 1.6% and only strains with frequencies >20% were detected by population plasma sequencing (three patients). Transmitted drug resistance strains with frequencies <14.8% did not persist upon established infection. The presence of transmitted drug resistance mutations was negatively correlated with the viral load and with CD4+ T cell count decay. Transmitted drug resistance mutations representing small percentages of the viral population do not persist during infection because they are negatively selected in the first year after HIV-1 seroconversion.

  2. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes.

    PubMed

    Wen, Liewei; Ding, Wenzheng; Yang, Sihua; Xing, Da

    2016-01-01

    The ultra-short pulse microwave could excite to the strong thermoacoustic (TA) shock wave and deeply penetrate in the biological tissues. Based on this, we developed a novel deep-seated tumor therapy modality with mitochondria-targeting single wall carbon nanotubes (SWNTs) as microwave absorbing agents, which act efficiently to convert ultra-short microwave energy into TA shock wave and selectively destroy the targeted mitochondria, thereby inducing apoptosis in cancer cells. After the treatment of SWNTs (40 μg/mL) and ultra-short microwave (40 Hz, 1 min), 77.5% of cancer cells were killed and the vast majority were caused by apoptosis that initiates from mitochondrial damage. The orthotopic liver cancer mice were established as deep-seated tumor model to investigate the anti-tumor effect of mitochondria-targeting TA therapy. The results suggested that TA therapy could effectively inhibit the tumor growth without any observable side effects, while it was difficult to achieve with photothermal or photoacoustic therapy. These discoveries implied the potential application of TA therapy in deep-seated tumor models and should be further tested for development into a promising therapeutic modality for cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Improving OBS operations in ultra-deep ocean during the Southern Mariana Trench expeditions

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Lin, J.; Xu, M.; Zhou, Z.

    2017-12-01

    The Mariana Trench Research Initiative, led by the South China Sea Institute of Oceanology of the Chinese Academy of Sciences and through international collaboration, focuses on investigating the deep and shallow lithospheric structure, earthquake characteristics, extreme geological environments, and the controlling geodynamic mechanisms for the formation of Earth's deepest basins in the southern Mariana Trench. Two multidisciplinary research expeditions were executed during December 2016 and June 2017, respectively, on board R/V Shiyan 3. A main task of the Mariana Initiative is to conduct the Southern Mariana OBS Experiment (SMOE), the first OBS seismic experiment across the Challenger Deep. The SMOE expeditions include both active and passive source seismic experiments and employed a large number of broadband OBS instruments. Due to the deep water, rough weather, strong winds, and other unfavorable factors, it was challenging to deploy/recover the OBSs. During the two expeditions we developed and experimented with a number of ways to improve the success rate of OBS operations in the harsh ultra-deep ocean environment of the Southern Mariana Trench. All newly acquired OBSs underwent a series of uniquely designed deep-ocean tests to improve the instrument performance and maximize reliability during their deployment under the ultra-high pressure conditions. The OBS deployment and recovery followed a unified standard operation procedure and aided by an instrumental checklist, which were specifically designed and strictly enforced for operation during the expeditions. Furthermore, an advanced ship-based radio positioning system was developed to rapidly and accurately locate the OBS instruments when they reached the sea surface; the system proved its effectiveness even under extreme weather conditions. Through the development and application of the novel methods for operation in deep oceans, we overcame the rough sea and other unfavorable factors during the first two expeditions to the southern Mariana Trench and achieved a highly successful OBS operation program.

  4. Temporal Analysis of the Honey Bee Microbiome Reveals Four Novel Viruses and Seasonal Prevalence of Known Viruses, Nosema, and Crithidia

    PubMed Central

    Engel, Juan C.; Ruby, J. Graham; Ganem, Donald; Andino, Raul; DeRisi, Joseph L.

    2011-01-01

    Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼1011 viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January. PMID:21687739

  5. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia.

    PubMed

    Runckel, Charles; Flenniken, Michelle L; Engel, Juan C; Ruby, J Graham; Ganem, Donald; Andino, Raul; DeRisi, Joseph L

    2011-01-01

    Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼10(11) viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January.

  6. ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CO LUMINOSITY FUNCTIONS AND THE EVOLUTION OF THE COSMIC DENSITY OF MOLECULAR GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel

    2016-12-10

    In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z  ∼ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 10{sup 9} K km s{sup −1} pc{sup 2}). We find clear evidence ofmore » an evolution in the CO luminosity function with respect to z  ∼ 0, with more CO-luminous galaxies present at z  ∼ 2. The observed galaxies at z  ∼ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3–10 from z  ∼ 2 to z  ∼ 0 (with significant error bars), and possibly a decline at z  > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation ( z  ∼ 2).« less

  7. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Elbaz, David; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Gónzalez-López, Jorge; Inami, Hanae; Ivison, Rob; Hodge, Jacqueline; Karim, Alex; Magnelli, Benjamin; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; van der Wel, Arjen; van der Werf, Paul

    2016-12-01

    We study the molecular gas properties of high-z galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets an ˜1 arcmin2 region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3 and 1 mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities {L}{IR}\\gt {10}11 {L}⊙ , I.e., a detection in CO emission was expected. Out of these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than those typically found in starburst/sub-mm galaxy/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in the context of previous molecular gas observations at high redshift (star formation law, gas depletion times, gas fractions): the CO-detected galaxies in the UDF tend to reside on the low-{L}{IR} envelope of the scatter in the {L}{IR}{--}{L}{CO}\\prime relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of ˜1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ({M}{{H}2}/M *) is consistent with earlier measurements of main-sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor ˜2-5× smaller than those based on CO. When we account for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.

  8. Trends in Performance and Characteristics of Ultra-Stable Oscillators for Deep Space Radio Science Experiments

    NASA Technical Reports Server (NTRS)

    Asmar, Sami

    1997-01-01

    Telecommunication systems of spacecraft on deep space missions also function as instruments for Radio Science experiments. Radio scientists utilize the telecommunication links between spacecraft and Earth to examine very small changes in the phase/frequency, amplitude, and/or polarization of radio signals to investigate a host of physical phenomena in the solar system. Several missions augmented the radio communication system with an Ultra-Stable Oscillator (USO) in order to provide a highly stable reference signal for oneway downlink. This configuration is used in order to enable better investigations of the atmospheres of the planets occulting the line-of-sight to the spacecraft; one-way communication was required and the transponders' built-in auxiliary oscillators were neither sufficiently stable nor spectrally pure for the occultation experiments. Since Radio Science instrumentation is distributed between the spacecraft and the ground stations, the Deep Space Network (DSN) is also equipped to function as a world-class instrument for Radio Science research. For a detailed account of Radio Science experiments, methodology, key discoveries, and the DSN's historical contribution to the field, see Asmar and Renzetti (1993). The tools of Radio Science can be and have also been utilized in addressing several mission engineering challenges; e.g., characterization of spacecraft nutation and anomalous motion, antenna calibrations, and communications during surface landing phases. Since the first quartz USO was flown on Voyager, the technology has advanced significantly, affording future missions higher sensitivity in reconstructing the temperature pressure profiles of the atmospheres under study as well as other physical phenomena of interest to Radio Science. This paper surveys the trends in stability and spectral purity performance, design characteristics including size and mass, as well as cost and history of these clocks in space.

  9. New ultra deep blue emitters based on chrysene chromophores

    NASA Astrophysics Data System (ADS)

    Shin, Hwangyu; Kang, Seokwoo; Jung, Hyocheol; Lee, Hayoon; Lee, Jaehyun; Kim, Beomjin; Park, Jongwook

    2016-09-01

    Chrysene, which has a wide band gap, was selected as an emission core to develop and study new materials that emit ultra-deep-blue light with high efficiency. Six compounds introducing various side groups were designed and synthesized: 6, 12-bis(30,50-diphenylphenyl)chrysene (TP-C-TP), 6-(30,50-diphenylphenyl)-12-(3,5-diphenylbiphenyl-400-yl)chrysene (TP-C-TPB) and 6,12-bis(300,500-diphenylbiphenyl-40-yl)chrysene (TPB-C-TPB), which contained bulky aromatic si de groups; and N,N,N0 ,N0-tetraphenyl-chrysene-6,12-diamine (DPA-C-DPA), [12-(4-diphenylamino-phenyl)-chrysene-6-yl]-diphenylamine(DPA-C-TPA) and 6,12-bis[4-(diphenylamino)phenyl]chrysene (TPA-C-TPA), which contained aromatic amine groups, were designed to afford improved hole injection properties. The synthesized materials showed maxi mum absorption wavelengths at 342-402 nm in the film state and exhibited deep-blue photoluminescence (PL) emission s at 417-464 nm. The use of TP-C-TPB in a non-doped organic light emitting diode (OLED) device resulted in ultra-deep-blue emission with an external quantum efficiency (EQE) of 4.02% and Commission Internationale de L'Eclairage coo rdinates (CIE x, y) of (0.154, 0.042) through effective control of the internal conjugation length and suppression of the p -p* stacking. The use of TPA-C-TPA, which includes an aromatic amine side group, afforded an excellent EQE of 4.83 % and excellent color coordinates CIE x, y of (0.147, 0.077).

  10. Note: Ultra-high frequency ultra-low dc power consumption HEMT amplifier for quantum measurements in millikelvin temperature range.

    PubMed

    Korolev, A M; Shnyrkov, V I; Shulga, V M

    2011-01-01

    We have presented theory and experimentally demonstrated an efficient method for drastically reducing the power consumption of the rf/microwave amplifiers based on HEMT in unsaturated dc regime. Conceptual one-stage 10 dB-gain amplifier showed submicrowatt level of the power consumption (0.95 μW at frequency of 0.5 GHz) when cooled down to 300 mK. Proposed technique has a great potential to design the readout amplifiers for ultra-deep-cooled cryoelectronic quantum devices.

  11. A Large-Scale Super-Structure at z=0.65 in the UKIDSS Ultra-Deep Survey Field

    NASA Astrophysics Data System (ADS)

    Galametz, Audrey; Candels Clustering Working Group

    2017-07-01

    In hierarchical structure formation scenarios, galaxies accrete along high density filaments. Superclusters represent the largest density enhancements in the cosmic web with scales of 100 to 200 Mpc. As they represent the largest components of LSS, they are very powerful tools to constrain cosmological models. Since they also offer a wide range of density, from infalling group to high density cluster core, they are also the perfect laboratory to study the influence of environment on galaxy evolution. I will present a newly discovered large scale structure at z=0.65 in the UKIDSS UDS field. Although statistically predicted, the presence of such structure in UKIDSS, one of the most extensively covered and studied extragalactic field, remains a serendipity. Our follow-up confirmed more than 15 group members including at least three galaxy clusters with M200 10^14Msol . Deep spectroscopy of the quiescent core galaxies reveals that the most massive structure knots are at very different formation stage with a range of red sequence properties. Statistics allow us to map formation age across the structure denser knots and identify where quenching is most probably occurring across the LSS. Spectral diagnostics analysis also reveals an interesting population of transition galaxies we suspect are transforming from star-forming to quiescent galaxies.

  12. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z greater than 6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z greater than 10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (less than 50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems, and discuss recent progress in constructing the observatory.

  13. Monitoring therapy responses at the leukemic subclone level by ultra-deep amplicon resequencing in acute myeloid leukemia.

    PubMed

    Ojamies, P N; Kontro, M; Edgren, H; Ellonen, P; Lagström, S; Almusa, H; Miettinen, T; Eldfors, S; Tamborero, D; Wennerberg, K; Heckman, C; Porkka, K; Wolf, M; Kallioniemi, O

    2017-05-01

    In our individualized systems medicine program, personalized treatment options are identified and administered to chemorefractory acute myeloid leukemia (AML) patients based on exome sequencing and ex vivo drug sensitivity and resistance testing data. Here, we analyzed how clonal heterogeneity affects the responses of 13 AML patients to chemotherapy or targeted treatments using ultra-deep (average 68 000 × coverage) amplicon resequencing. Using amplicon resequencing, we identified 16 variants from 4 patients (frequency 0.54-2%) that were not detected previously by exome sequencing. A correlation-based method was developed to detect mutation-specific responses in serial samples across multiple time points. Significant subclone-specific responses were observed for both chemotherapy and targeted therapy. We detected subclonal responses in patients where clinical European LeukemiaNet (ELN) criteria showed no response. Subclonal responses also helped to identify putative mechanisms underlying drug sensitivities, such as sensitivity to azacitidine in DNMT3A mutated cell clones and resistance to cytarabine in a subclone with loss of NF1 gene. In summary, ultra-deep amplicon resequencing method enables sensitive quantification of subclonal variants and their responses to therapies. This approach provides new opportunities for designing combinatorial therapies blocking multiple subclones as well as for real-time assessment of such treatments.

  14. Quantum state engineering with ultra-short-period (AlN)m/(GaN)n superlattices for narrowband deep-ultraviolet detection.

    PubMed

    Gao, Na; Lin, Wei; Chen, Xue; Huang, Kai; Li, Shuping; Li, Jinchai; Chen, Hangyang; Yang, Xu; Ji, Li; Yu, Edward T; Kang, Junyong

    2014-12-21

    Ultra-short-period (AlN)m/(GaN)n superlattices with tunable well and barrier atomic layer numbers were grown by metal-organic vapour phase epitaxy, and employed to demonstrate narrowband deep ultraviolet photodetection. High-resolution transmission electron microscopy and X-ray reciprocal space mapping confirm that superlattices containing well-defined, coherently strained GaN and AlN layers as thin as two atomic layers (∼ 0.5 nm) were grown. Theoretical and experimental results demonstrate that an optical absorption band as narrow as 9 nm (210 meV) at deep-ultraviolet wavelengths can be produced, and is attributable to interband transitions between quantum states along the [0001] direction in ultrathin GaN atomic layers isolated by AlN barriers. The absorption wavelength can be precisely engineered by adjusting the thickness of the GaN atomic layers because of the quantum confinement effect. These results represent a major advance towards the realization of wavelength selectable and narrowband photodetectors in the deep-ultraviolet region without any additional optical filters.

  15. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy.

    PubMed

    Wessel, Matthew M; Aaker, Grant D; Parlitsis, George; Cho, Minhee; D'Amico, Donald J; Kiss, Szilárd

    2012-04-01

    To evaluate patients with diabetic retinopathy using ultra-wide-field fluorescein angiography and to compare the visualized retinal pathology with that seen on an overly of conventional 7 standard field (7SF) imaging. Two hundred and eighteen eyes of 118 diabetic patients who underwent diagnostic fluorescein angiography using the Optos Optomap Panoramic 200A imaging system were included. The visualized area of the retina, retinal nonperfusion, retinal neovascularization, and panretinal photocoagulation were quantified by two independent masked graders. The respective areas identified on the ultra-wide-field fluorescein angiography image were compared with an overly of a modified 7SF image as outlined in the Early Treatment Diabetic Retinopathy Study. Ultra-wide-field fluorescein angiograms imaging, on average, demonstrated 3.2 times more total retinal surface area than 7SF. When compared with 7SF, ultra-wide-field fluorescein angiography showed 3.9 times more nonperfusion (P < 0.001), 1.9 times more neovascularization (P = 0.036), and 3.8 times more panretinal photocoagulation (P < 0.001). In 22 eyes (10%), ultra-wide-field fluorescein angiography demonstrated retinal pathology (including nonperfusion and neovascularization) not evident in an 7SF overly. Compared with conventional 7SF imaging, ultra-wide-field fluorescein angiography reveals significantly more retinal vascular pathology in patients with diabetic retinopathy. Improved retinal visualization may alter the classification of diabetic retinopathy and may therefore influence follow-up and treatment of these patients.

  16. System and method for magnetic current density imaging at ultra low magnetic fields

    DOEpatents

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  17. 30 CFR 203.43 - To which production do I apply the RSV earned from qualified deep wells or qualified phase 1...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false To which production do I apply the RSV earned... production do I apply the RSV earned from qualified deep wells or qualified phase 1 ultra-deep wells on my lease? (a) You must apply the RSV prescribed in § 203.41(b) and (c) to gas volumes produced from...

  18. 30 CFR 203.43 - To which production do I apply the RSV earned from qualified deep wells or qualified phase 1...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false To which production do I apply the RSV earned... production do I apply the RSV earned from qualified deep wells or qualified phase 1 ultra-deep wells on my lease? (a) You must apply the RSV prescribed in § 203.41(b) and (c) to gas volumes produced from...

  19. 30 CFR 203.43 - To which production do I apply the RSV earned from qualified deep wells or qualified phase 1...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false To which production do I apply the RSV earned... production do I apply the RSV earned from qualified deep wells or qualified phase 1 ultra-deep wells on my lease? (a) You must apply the RSV prescribed in § 203.41(b) and (c) to gas volumes produced from...

  20. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling... has produced gas or oil from a well with a perforated interval the top of which is 18,000 feet TVD SS or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep...

  1. Scanning the Horizon: Coast Guard Strategy in a Hot, Flat, Crowded World

    DTIC Science & Technology

    2010-03-12

    Mexico. From 1992 to 2007, deepwater offshore rigs drilling in deep water in the Gulf of Mexico increased from three to 30, and deepwater oil production...discusses the Coast Guard’s Integrated Deepwater System program, which includes recapitalization of its deep-water vessels and aircraft.89 At the...water and ultra deep water drilling. Discussion of increased outer continental shelf activity in higher level strategic planning indicates that

  2. The MUSE Hubble Ultra Deep Field Survey. X. Lyα equivalent widths at 2.9 < z < 6.6

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Garel, T.; Guiderdoni, B.; Drake, A. B.; Bacon, R.; Blaizot, J.; Richard, J.; Leclercq, F.; Inami, H.; Verhamme, A.; Bouwens, R.; Brinchmann, J.; Cantalupo, S.; Carollo, M.; Caruana, J.; Herenz, E. C.; Kerutt, J.; Marino, R. A.; Mitchell, P.; Schaye, J.

    2017-11-01

    We present rest-frame Lyα equivalent widths (EW0) of 417 Lyα emitters (LAEs) detected with Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT) at 2.9 200 Å above 1σ uncertainties. Two of these 12 LAEs show signatures of merger or AGN activity: the weak Civλ1549 emission line. For the remaining 10 very large EW0 LAEs, we find that the EW0 values can be reproduced by young stellar ages (< 100 Myr) and low metallicities (≲ 0.02 Z⊙). Otherwise, at least part of the Lyα emission in these LAEs needs to arise from anisotropic radiative transfer effects, fluorescence by hidden AGN or quasi-stellar object activity, or gravitational cooling.

  3. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Continuum Number Counts, Resolved 1.2 mm Extragalactic Background, and Properties of the Faintest Dusty Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Aravena, M.; Decarli, R.; Walter, F.; Da Cunha, E.; Bauer, F. E.; Carilli, C. L.; Daddi, E.; Elbaz, D.; Ivison, R. J.; Riechers, D. A.; Smail, I.; Swinbank, A. M.; Weiss, A.; Anguita, T.; Assef, R. J.; Bell, E.; Bertoldi, F.; Bacon, R.; Bouwens, R.; Cortes, P.; Cox, P.; Gónzalez-López, J.; Hodge, J.; Ibar, E.; Inami, H.; Infante, L.; Karim, A.; Le Le Fèvre, O.; Magnelli, B.; Ota, K.; Popping, G.; Sheth, K.; van der Werf, P.; Wagg, J.

    2016-12-01

    We present an analysis of a deep (1σ = 13 μJy) cosmological 1.2 mm continuum map based on ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field. In the 1 arcmin2 covered by ASPECS we detect nine sources at \\gt 3.5σ significance at 1.2 mm. Our ALMA-selected sample has a median redshift of z=1.6+/- 0.4, with only one galaxy detected at z > 2 within the survey area. This value is significantly lower than that found in millimeter samples selected at a higher flux density cutoff and similar frequencies. Most galaxies have specific star formation rates (SFRs) similar to that of main-sequence galaxies at the same epoch, and we find median values of stellar mass and SFRs of 4.0× {10}10 {M}⊙ and ˜ 40 {M}⊙ yr-1, respectively. Using the dust emission as a tracer for the interstellar medium (ISM) mass, we derive depletion times that are typically longer than 300 Myr, and we find molecular gas fractions ranging from ˜0.1 to 1.0. As noted by previous studies, these values are lower than those using CO-based ISM estimates by a factor of ˜2. The 1 mm number counts (corrected for fidelity and completeness) are in agreement with previous studies that were typically restricted to brighter sources. With our individual detections only, we recover 55% ± 4% of the extragalactic background light (EBL) at 1.2 mm measured by the Planck satellite, and we recover 80% ± 7% of this EBL if we include the bright end of the number counts and additional detections from stacking. The stacked contribution is dominated by galaxies at z˜ 1{--}2, with stellar masses of (1-3) × 1010 M {}⊙ . For the first time, we are able to characterize the population of galaxies that dominate the EBL at 1.2 mm.

  4. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: The Infrared Excess of UV-Selected z = 2-10 Galaxies as a Function of UV-Continuum Slope and Stellar Mass

    NASA Astrophysics Data System (ADS)

    Bouwens, Rychard J.; Aravena, Manuel; Decarli, Roberto; Walter, Fabian; da Cunha, Elisabete; Labbé, Ivo; Bauer, Franz E.; Bertoldi, Frank; Carilli, Chris; Chapman, Scott; Daddi, Emanuele; Hodge, Jacqueline; Ivison, Rob J.; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Ota, Kazuaki; Riechers, Dominik; Smail, Ian R.; van der Werf, Paul; Weiss, Axel; Cox, Pierre; Elbaz, David; Gonzalez-Lopez, Jorge; Infante, Leopoldo; Oesch, Pascal; Wagg, Jeff; Wilkins, Steve

    2016-12-01

    We make use of deep 1.2 mm continuum observations (12.7 μJy beam-1 rms) of a 1 arcmin2 region in the Hubble Ultra Deep Field to probe dust-enshrouded star formation from 330 Lyman-break galaxies spanning the redshift range z = 2-10 (to ˜2-3 M ⊙ yr-1 at 1σ over the entire range). Given the depth and area of ASPECS, we would expect to tentatively detect 35 galaxies, extrapolating the Meurer z ˜ 0 IRX-β relation to z ≥ 2 (assuming dust temperature T d ˜ 35 K). However, only six tentative detections are found at z ≳ 2 in ASPECS, with just three at >3σ. Subdividing our z = 2-10 galaxy samples according to stellar mass, UV luminosity, and UV-continuum slope and stacking the results, we find a significant detection only in the most massive (>109.75 M ⊙) subsample, with an infrared excess (IRX = L IR/L UV) consistent with previous z ˜ 2 results. However, the infrared excess we measure from our large selection of sub-L ∗ (<109.75 M ⊙) galaxies is {0.11}-0.42+0.32 ± 0.34 (bootstrap and formal uncertainties) and {0.14}-0.14+0.15 ± 0.18 at z = 2-3 and z = 4-10, respectively, lying below even an IRX-β relation for the Small Magellanic Cloud (95% confidence). These results demonstrate the relevance of stellar mass for predicting the IR luminosity of z ≳ 2 galaxies. We find that the evolution of the IRX-stellar mass relationship depends on the evolution of the dust temperature. If the dust temperature increases monotonically with redshift (\\propto {(1+z)}0.32) such that T d ˜ 44-50 K at z ≥ 4, current results are suggestive of little evolution in this relationship to z ˜ 6. We use these results to revisit recent estimates of the z ≥ 3 star formation rate density.

  5. The MUSE Hubble Ultra Deep Field Survey. VIII. Extended Lyman-α haloes around high-z star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Leclercq, Floriane; Bacon, Roland; Wisotzki, Lutz; Mitchell, Peter; Garel, Thibault; Verhamme, Anne; Blaizot, Jérémy; Hashimoto, Takuya; Herenz, Edmund Christian; Conseil, Simon; Cantalupo, Sebastiano; Inami, Hanae; Contini, Thierry; Richard, Johan; Maseda, Michael; Schaye, Joop; Marino, Raffaella Anna; Akhlaghi, Mohammad; Brinchmann, Jarle; Carollo, Marcella

    2017-11-01

    We report the detection of extended Lyα haloes around 145 individual star-forming galaxies at redshifts 3 ≤ z ≤ 6 in the Hubble Ultra Deep Field observed with the Multi-Unit Spectroscopic Explorer (MUSE) at ESO-VLT. Our sample consists of continuum-faint (- 15 ≥ MUV ≥ -22) Lyα emitters (LAEs). Using a 2D, two-component (continuum-like and halo) decomposition of Lyα emission assuming circular exponential distributions, we measure scale lengths and luminosities of Lyα haloes. We find that 80% of our objects having reliable Lyα halo measurements show Lyα emission that is significantly more extended than the UV continuum detected by HST (by a factor ≈4 to >20). The median exponential scale length of the Lyα haloes in our sample is ≈4.5 kpc with a few haloes exceeding 10 kpc. By comparing the maximal detected extent of the Lyα emission with the predicted dark matter halo virial radii of simulated galaxies, we show that the detected Lyα emission of our selected sample of Lyα emitters probes a significant portion of the cold circum-galactic medium of these galaxies (>50% in average). This result therefore shows that there must be significant HI reservoirs in the circum-galactic medium and reinforces the idea that Lyα haloes are ubiquitous around high-redshift Lyα emitting galaxies. Our characterization of the Lyα haloes indicates that the majority of the Lyα flux comes from the halo (≈65%) and that their scale lengths seem to be linked to the UV properties of the galaxies (sizes and magnitudes). We do not observe a significant Lyα halo size evolution with redshift, although our sample for z> 5 is very small. We also explore the diversity of the Lyα line profiles in our sample and we find that the Lyα lines cover a large range of full width at half maximum (FWHM) from 118 to 512 km s-1. While the FWHM does not seem to be correlated to the Lyα scale length, most compact Lyα haloes and those that are not detected with high significance tend to have narrower Lyα profiles (<350 km s-1). Finally, we investigate the origin of the extended Lyα emission but we conclude that our data do not allow us to disentangle the possible processes, i.e. scattering from star-forming regions, fluorescence, cooling radiation from cold gas accretion, and emission from satellite galaxies. MUSE Ultra Deep Field Lyα haloes catalog (Table B.1) is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A8

  6. Building the Case for SNAP: Creation of Multi-Band, Simulated Images With Shapelets

    NASA Technical Reports Server (NTRS)

    Ferry, Matthew A.

    2005-01-01

    Dark energy has simultaneously been the most elusive and most important phenomenon in the shaping of the universe. A case for a proposed space-telescope called SNAP (SuperNova Acceleration Probe) is being built, a crucial component of which is image simulations. One method for this is "Shapelets," developed at Caltech. Shapelets form an orthonormal basis and are uniquely able to represent realistic space images and create new images based on real ones. Previously, simulations were created using the Hubble Deep Field (HDF) as a basis Set in one band. In this project, image simulations are created.using the 4 bands of the Hubble Ultra Deep Field (UDF) as a basis set. This provides a better basis for simulations because (1) the survey is deeper, (2) they have a higher resolution, and (3) this is a step closer to simulating the 9 bands of SNAP. Image simulations are achieved by detecting sources in the UDF, decomposing them into shapelets, tweaking their parameters in realistic ways, and recomposing them into new images. Morphological tests were also run to verify the realism of the simulations. They have a wide variety of uses, including the ability to create weak gravitational lensing simulations.

  7. Ultra-high magnetic resonance imaging (MRI): a potential examination for deep brain stimulation devices and the limitation study concerning MRI-related heating injury.

    PubMed

    Chen, Ying-Chuan; Li, Jun-Ju; Zhu, Guan-Yu; Shi, Lin; Yang, An-Chao; Jiang, Yin; Zhang, Xin; Zhang, Jian-Guo

    2017-03-01

    Nowadays, the patients with deep brain stimulation (DBS) devices are restricted to undertake 1.5T magnetic resonance imaging (MRI) according to the guideline. Nevertheless, we conducted an experiment to test pathological change near the leads in different field-strength MRI. Twenty-four male New Zealand rabbits were assigned to Group 1 (G1, n = 6, 7.0T, DBS), Group 2 (G2, n = 6, 3.0T, DBS), Group 3 (G3, n = 6, 1.5T, DBS), and Group 4 (G4, n = 6, 1.5T, paracentesis). DBS leads were implanted in G1, G2 and G3, targeting left nucleus ventralis posterior thalami. Paracentesis was performed in G4. 24 h after MRI scan, all animals were killed for examining pathological alternation (at different distance from lead) via transmission electron microscopy. Our results suggest that the severity of tissue injury correlates with the distance to electrode instead of field strength of MRI. Up to now, the reason for the restriction of MRI indicated no significantly different pathological change.

  8. A new probe of the magnetic field power spectrum in cosmic web filaments

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.; Greiner, Maksim; Ensslin, Torsten A.

    2015-08-01

    Establishing the properties of magnetic fields on scales larger than galaxy clusters is critical for resolving the unknown origin and evolution of galactic and cluster magnetism. More generally, observations of magnetic fields on cosmic scales are needed for assessing the impacts of magnetism on cosmology, particle physics, and structure formation over the full history of the Universe. However, firm observational evidence for magnetic fields in large scale structure remains elusive. In an effort to address this problem, we have developed a novel statistical method to infer the magnetic field power spectrum in cosmic web filaments using observation of the two-point correlation of Faraday rotation measures from a dense grid of extragalactic radio sources. Here we describe our approach, which embeds and extends the pioneering work of Kolatt (1998) within the context of Information Field Theory (a statistical theory for Bayesian inference on spatially distributed signals; Enfllin et al., 2009). We describe prospects for observation, for example with forthcoming data from the ultra-deep JVLA CHILES Con Pol survey and future surveys with the SKA.

  9. Autonomous Command Operation of the WIRE Spacecraft

    NASA Technical Reports Server (NTRS)

    Prior, Mike; Walyus, Keith; Saylor, Rick

    1999-01-01

    This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period.

  10. Application of Multi-Threshold NULL Convention Logic to Adaptive Beamforming Circuits for Ultra-Low Power

    DTIC Science & Technology

    2016-03-31

    Abstract: With the decrease of transistor feature sizes into the ultra-deep submicron range, leakage power becomes an important design challenge for...MTNCL design showed substantial improvements in terms of active energy and leakage power compared to the equivalent synchronous design. Keywords...switching could use a large portion of power. Additionally, leakage power has come to dominate power consumption as process sizes shrink. Adaptive

  11. On the Nature of Ultra-faint Dwarf Galaxy Candidates. I. DES1, Eridanus III, and Tucana V

    NASA Astrophysics Data System (ADS)

    Conn, Blair C.; Jerjen, Helmut; Kim, Dongwon; Schirmer, Mischa

    2018-01-01

    We use deep Gemini/GMOS-S g, r photometry to study the three ultra-faint dwarf galaxy candidates DES1, Eridanus III (Eri III), and Tucana V (Tuc V). Their total luminosities, M V (DES1) = ‑1.42 ± 0.50 and M V (Eri III) = ‑2.07 ± 0.50, and mean metallicities, [{Fe}/{{H}}]=-{2.38}-0.19+0.21 and [{Fe}/{{H}}]=-{2.40}-0.12+0.19, are consistent with them being ultra-faint dwarf galaxies, as they fall just outside the 1σ confidence band of the luminosity–metallicity relation for Milky Way satellite galaxies. However, their positions in the size–luminosity relation suggest that they are star clusters. Interestingly, DES1 and Eri III are at relatively large Galactocentric distances, with DES1 located at {D}{GC}=74+/- 4 {kpc} and Eri III at {D}{GC}=91+/- 4 {kpc}. In projection, both objects are in the tail of gaseous filaments trailing the Magellanic Clouds and have similar 3D separations from the Small Magellanic Cloud (SMC): {{Δ }}{D}{SMC,{DES}1}=31.7 kpc and {{Δ }}{D}{SMC,{Eri}{III}}=41.0 kpc, respectively. It is plausible that these stellar systems are metal-poor SMC satellites. Tuc V represents an interesting phenomenon in its own right. Our deep photometry at the nominal position of Tuc V reveals a low-level excess of stars at various locations across the GMOS field without a well-defined center. An SMC Northern Overdensity–like isochrone would be an adequate match to the Tuc V color–magnitude diagram, and the proximity to the SMC (12.°1 {{Δ }}{D}{SMC,{Tuc}{{V}}}=13 kpc) suggests that Tuc V is either a chance grouping of stars related to the SMC halo or a star cluster in an advanced stage of dissolution.

  12. HST Imaging of the (Almost) Dark ALFALFA Source AGC 229385

    NASA Astrophysics Data System (ADS)

    Brunker, Samantha; Salzer, John Joseph; McQuinn, Kristen B.; Janowiecki, Steven; Leisman, Luke; Rhode, Katherine L.; Adams, Elizabeth A.; Cannon, John M.; Giovanelli, Riccardo; Haynes, Martha P.

    2017-06-01

    We present deep HST imaging photometry of the extreme galaxy AGC 229385. This system was first discovered as an HI source in the ALFALFA all-sky HI survey. It was cataloged as an (almost) dark galaxy because it did not exhibit any obvious optical counterpart in the available wide-field survey data (e.g., SDSS). Deep optical imaging with the WIYN 3.5-m telescope revealed an ultra-low surface brightness stellar component located at the center of the HI detection. With a peak central surface brightness of 26.4 mag/sq. arcsec in g and very blue colors (g-r = -0.1), the stellar component to this gas-rich system is quite enigmatic. We have used our HST images to produce a deep CMD of the resolved stellar population present in AGC 229385. We clearly detect a red-giant branch and use it to infer a distance of 5.50 ± 0.23 Mpc. The CMD is dominated by older stars, contrary to expectations given the blue optical colors obtained from our ground-based photometry. Our new distance is substantially lower than earlier estimates, and shows that AGC 229385 is an extreme dwarf galaxy with one of the highest MHI/L ratios known.

  13. UltraSail CubeSat Solar Sail Flight Experiment

    NASA Technical Reports Server (NTRS)

    Carroll, David; Burton, Rodney; Coverstone, Victoria; Swenson, Gary

    2013-01-01

    UltraSail is a next-generation, highrisk, high-payoff sail system for the launch, deployment, stabilization, and control of very large (km2 class) solar sails enabling high payload mass fractions for interplanetary and deep space spacecraft. UltraSail is a non-traditional approach to propulsion technology achieved by combining propulsion and control systems developed for formation- flying microsatellites with an innovative solar sail architecture to achieve controllable sail areas approaching 1 km2, sail subsystem area densities approaching 1 g/m2, and thrust levels many times those of ion thrusters used for comparable deep space missions. UltraSail can achieve outer planetary rendezvous, a deep-space capability now reserved for high-mass nuclear and chemical systems. There is a twofold rationale behind the UltraSail concept for advanced solar sail systems. The first is that sail-andboom systems are inherently size-limited. The boom mass must be kept small, and column buckling limits the boom length to a few hundred meters. By eliminating the boom, UltraSail not only offers larger sail area, but also lower areal density, allowing larger payloads and shorter mission transit times. The second rationale for UltraSail is that sail films present deployment handling difficulties as the film thickness approaches one micrometer. The square sail requires that the film be folded in two directions for launch, and similarly unfolded for deployment. The film is stressed at the intersection of two folds, and this stress varies inversely with the film thickness. This stress can cause the film to yield, forming a permanent crease, or worse, to perforate. By rolling the film as UltraSail does, creases are prevented. Because the film is so thin, the roll thickness is small. Dynamic structural analysis of UltraSail coupled with dynamic control analysis shows that the system can be designed to eliminate longitudinal torsional waves created while controlling the pitch of the blades, while using solar photon pressure to slew the spin axis. Vacuum tests have also verified that electrostatic and molecular adhesion forces can substantially be eliminated by making the film electrically conductive, reducing the peel force of the film off the storage roll to levels of 100s of micro-N. The innovation demonstrated the capability of deploying a six-micron aluminum- coated film from a reel through a slit in vacuum. The innovation also demonstrated a spin-stabilized method for deploying a long reel of solar sail film using solar pressure to spin-up and orbit raise the satellite, and also a gravity gradient method for deploying a long reel of solar sail film using solar pressure to orbit raise the satellite. The solar sail mass fraction of 25% is consistent with high specific impulse ion systems, but without the added weight and cost of a power source and processing unit. The large sail area, coupled with low film density, is giving UltraSail a high payload fraction. The UltraSail deployment scheme unrolls a micrometerscale reflection-coated polyimide film from a storage mandrel to a maximum length of several kilometers with the aid of a blade tip satellite.

  14. The assembly of stellar haloes in massive Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Buitrago, F.

    2017-03-01

    Massive (Mstellar >= 5×1010 M⊙) Early-Type Galaxies (ETGs) must build an outer stellar envelope over cosmic time in order to account for their remarkable size evolution. This is similar to what occurs to nearby Late-Type Galaxies (LTGs), which create their stellar haloes out of the debris of lower mass systems. We analysed the outer parts of massive ETGs at z < 1 by exploiting the Hubble Ultra Deep Field imaging. These galaxies store 10-30% of their stellar mass at distances 10 < R/kpc < 50, in contrast to the low percentages (< 5%) found for LTGs. We find evidence for a progressive outskirt development with redshift driven solely via merging.

  15. Exploring the extremely low surface brightness sky: distances to 23 newly discovered objects in Dragonfly fields

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter

    2016-10-01

    We are obtaining deep, wide field images of nearby galaxies with the Dragonfly Telephoto Array. This telescope is optimized for low surface brightness imaging, and we are finding many low surface brightness objects in the Dragonfly fields. In Cycle 22 we obtained ACS imaging for 7 galaxies that we had discovered in a Dragonfly image of the galaxy M101. Unexpectedly, the ACS data show that only 3 of the galaxies are members of the M101 group, and the other 4 are very large Ultra Diffuse Galaxies (UDGs) at much greater distance. Building on our Cycle 22 program, here we request ACS imaging for 23 newly discovered low surface brightness objects in four Dragonfly fields centered on the galaxies NGC 1052, NGC 1084, NGC 3384, and NGC 4258. The immediate goals are to construct the satellite luminosity functions in these four fields and to constrain the number density of UDGs that are not in rich clusters. More generally, this complete sample of extremely low surface brightness objects provides the first systematic insight into galaxies whose brightness peaks at >25 mag/arcsec^2.

  16. Multimodal Retinal Imaging in Incontinentia Pigmenti Including Optical Coherence Tomography Angiography: Findings From an Older Cohort With Mild Phenotype.

    PubMed

    Liu, Tin Yan Alvin; Han, Ian C; Goldberg, Morton F; Linz, Marguerite O; Chen, Connie J; Scott, Adrienne W

    2018-05-01

    Incontinentia pigmenti (IP) is a rare, X-linked dominant disease with potentially severe ocular complications that predominantly affect the peripheral retina. However, little is known about its effects on the macula. To describe the structural and vascular abnormalities observed in the maculas of patients with IP and to correlate these findings with peripheral pathologies. Prospective, cross-sectional study at Wilmer Eye Institute, Johns Hopkins University. Five participants with a clinical diagnosis of IP were included and underwent multimodal imaging with ultra-wide-field fluorescein angiography (FA), spectral-domain optical coherence tomography (OCT), and OCT angiography. The structural and vascular abnormalities observed on spectral-domain OCT and OCT angiography and their correlation with peripheral pathologies seen on ultra-wide-field FA. A total of 9 eyes from 5 patients (median age, 20.5 years; range, 8.4-54.2 years) were included. Median Snellen visual acuity was 20/32 (range, 20/16 to 20/63). ultra-wide-field FA-identified retinal vascular abnormalities in all 7 eyes in which FA was obtained. These abnormalities included microaneurysms, areas of nonperfusion, and vascular anastomoses, most of which were peripheral to the standard view of 30° FA with peripheral sweeps. Structural abnormalities were observed in 6 eyes on spectral-domain OCT, including inner retinal thinning and irregularities in the outer plexiform layer. Optical coherence tomography angiography abnormalities were noted in all 9 eyes, including decreased vascular density, abnormal vascular loops, and flow loss in the superficial and deep plexuses, which corresponded to areas of retinal thinning on spectral-domain OCT. Although our study is limited by the small sample size, the findings suggest that multimodal imaging is useful for detecting structural and vascular abnormalities that may not be apparent on ophthalmoscopy in patients with IP. Macular pathologies, especially a decrease in vascular density on OCT angiography, are common. Further studies are needed to characterize further the association between macular and peripheral abnormalities in patients with IP.

  17. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Lane, Arthur L. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor)

    2017-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  18. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Lane, Arthur L. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  19. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    NASA Technical Reports Server (NTRS)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  20. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOEpatents

    Kraus, Robert H.; Matlashov, Andrei N.; Espy, Michelle A.; Volegov, Petr L.

    2010-03-30

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  1. Observing the Earliest Galaxies: Looking for the Sources of Reionization

    NASA Astrophysics Data System (ADS)

    Illingworth, Garth

    2015-04-01

    Systematic searches for the earliest galaxies in the reionization epoch finally became possible in 2009 when the Hubble Space Telescope was updated with a powerful new infrared camera during the final Shuttle servicing mission SM4 to Hubble. The reionization epoch represents the last major phase transition of the universe and was a major event in cosmic history. The intense ultraviolet radiation from young star-forming galaxies is increasingly considered to be the source of the photons that reionized intergalactic hydrogen in the period between the ``dark ages'' (the time before the first stars and galaxies at about 100-200 million years after the Big Bang) and the end of reionization around 800-900 million years. Yet finding and measuring the earliest galaxies in this era of cosmic dawn has proven to a challenging task, even with Hubble's new infrared camera. I will discuss the deep imaging undertaken by Hubble and the remarkable insights that have accrued from the imaging datasets taken over the last decade on the Hubble Ultra-Deep Field (HUDF, HUDF09/12) and other regions. The HUDF datasets are central to the story and have been assembled into the eXtreme Deep Field (XDF), the deepest image ever from Hubble data. The XDF, when combined with results from shallower wide-area imaging surveys (e.g., GOODS, CANDELS) and with detections of galaxies from the Frontier Fields, has provided significant insights into the role of galaxies in reionization. Yet many questions remain. The puzzle is far from being fully solved and, while much will done over the next few years, the solution likely awaits the launch of JWST. NASA/STScI Grant HST-GO-11563.

  2. Geochemical and isotopic determination of deep groundwater contributions and salinity to the shallow groundwater and surface water systems, Mesilla Basin, New Mexico, Texas, and Mexico

    NASA Astrophysics Data System (ADS)

    Robertson, A.; Carroll, K. C.; Kubicki, C.; Purtshert, R.

    2017-12-01

    The Mesilla Basin/Conejos-Médanos aquifer system, extending from southern New Mexico to Chihuahua, Mexico, is a priority transboundary aquifer under the 2006 United States­-Mexico Transboundary Aquifer Assessment Act. Declining water levels, deteriorating water quality, and increasing groundwater use by municipal, industrial, and agricultural users on both sides of the international border raise concerns about long-term aquifer sustainability. Relative contributions of present-day and "paleo" recharge to sustainable fresh groundwater yields has not been determined and evidence suggests that a large source of salinity at the distal end of the Mesilla Basin is saline discharge from deep groundwater flow. The magnitude and distribution of those deep saline flow paths are not determined. The contribution of deep groundwater to discharge and salinity in the shallow groundwater and surface water of the Mesilla Basin will be determined by collecting discrete groundwater samples and analyzing for aqueous geochemical and isotopic tracers, as well as the radioisotopes of argon and krypton. Analytes include major ions, trace elements, the stable isotopes of water, strontium and boron isotopes, uranium isotopes, the carbon isotopes of dissolved inorganic carbon, noble gas concentrations and helium isotope ratios. Dissolved gases are extracted and captured from groundwater wells using membrane contactors in a process known as ultra-trace sampling. Gas samples are analyzed for radioisotope ratios of krypton by the ATTA method and argon by low-level counting. Effectiveness of the ultra-trace sampling device and method was evaluated by comparing results of tritium concentrations to the krypton-85 content. Good agreement between the analyses, especially in samples with undetectable tritium, indicates that the ultra-trace procedure is effective and confirms that introduction of atmospheric air has not occurred. The geochemistry data indicate a complex system of geochemical endmembers, and mixing between these endmembers. Ongoing work seeks to better constrain groundwater ages and mixing models through the coupled use of conventional aqueous geochemical and isotopic analysis and the ultra-trace constituents.

  3. Collective behaviours: from biochemical kinetics to electronic circuits.

    PubMed

    Agliari, Elena; Barra, Adriano; Burioni, Raffaella; Di Biasio, Aldo; Uguzzoni, Guido

    2013-12-10

    In this work we aim to highlight a close analogy between cooperative behaviors in chemical kinetics and cybernetics; this is realized by using a common language for their description, that is mean-field statistical mechanics. First, we perform a one-to-one mapping between paradigmatic behaviors in chemical kinetics (i.e., non-cooperative, cooperative, ultra-sensitive, anti-cooperative) and in mean-field statistical mechanics (i.e., paramagnetic, high and low temperature ferromagnetic, anti-ferromagnetic). Interestingly, the statistical mechanics approach allows a unified, broad theory for all scenarios and, in particular, Michaelis-Menten, Hill and Adair equations are consistently recovered. This framework is then tested against experimental biological data with an overall excellent agreement. One step forward, we consistently read the whole mapping from a cybernetic perspective, highlighting deep structural analogies between the above-mentioned kinetics and fundamental bricks in electronics (i.e. operational amplifiers, flashes, flip-flops), so to build a clear bridge linking biochemical kinetics and cybernetics.

  4. Collective behaviours: from biochemical kinetics to electronic circuits

    NASA Astrophysics Data System (ADS)

    Agliari, Elena; Barra, Adriano; Burioni, Raffaella; di Biasio, Aldo; Uguzzoni, Guido

    2013-12-01

    In this work we aim to highlight a close analogy between cooperative behaviors in chemical kinetics and cybernetics; this is realized by using a common language for their description, that is mean-field statistical mechanics. First, we perform a one-to-one mapping between paradigmatic behaviors in chemical kinetics (i.e., non-cooperative, cooperative, ultra-sensitive, anti-cooperative) and in mean-field statistical mechanics (i.e., paramagnetic, high and low temperature ferromagnetic, anti-ferromagnetic). Interestingly, the statistical mechanics approach allows a unified, broad theory for all scenarios and, in particular, Michaelis-Menten, Hill and Adair equations are consistently recovered. This framework is then tested against experimental biological data with an overall excellent agreement. One step forward, we consistently read the whole mapping from a cybernetic perspective, highlighting deep structural analogies between the above-mentioned kinetics and fundamental bricks in electronics (i.e. operational amplifiers, flashes, flip-flops), so to build a clear bridge linking biochemical kinetics and cybernetics.

  5. 30 CFR 203.36 - Do I keep royalty relief if prices rise significantly?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Office of Natural Resources Revenue royalties on all gas production to which an RSV otherwise would be... BCF of RSV earned under § 203.31(a) by a phase 2 ultra-deep well on a lease that is located in water partly or entirely less than 200 meters deep issued before December 18, 2008; and (ii) Any RSV earned...

  6. 30 CFR 203.36 - Do I keep royalty relief if prices rise significantly?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Office of Natural Resources Revenue royalties on all gas production to which an RSV otherwise would be... BCF of RSV earned under § 203.31(a) by a phase 2 ultra-deep well on a lease that is located in water partly or entirely less than 200 meters deep issued before December 18, 2008; and (ii) Any RSV earned...

  7. 30 CFR 203.36 - Do I keep royalty relief if prices rise significantly?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Office of Natural Resources Revenue royalties on all gas production to which an RSV otherwise would be... BCF of RSV earned under § 203.31(a) by a phase 2 ultra-deep well on a lease that is located in water partly or entirely less than 200 meters deep issued before December 18, 2008; and (ii) Any RSV earned...

  8. 30 CFR 203.32 - What other requirements or restrictions apply to royalty relief for a qualified phase 2 or phase...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.32 What... (either an original well or a sidetrack) drilled across a lease line, then either: (1) The lease with the...

  9. Vacuum Bloch-Siegert shift in Landau polaritons with ultra-high cooperativity

    NASA Astrophysics Data System (ADS)

    Li, Xinwei; Bamba, Motoaki; Zhang, Qi; Fallahi, Saeed; Gardner, Geoff C.; Gao, Weilu; Lou, Minhan; Yoshioka, Katsumasa; Manfra, Michael J.; Kono, Junichiro

    2018-06-01

    A two-level system resonantly interacting with an a.c. magnetic or electric field constitutes the physical basis of diverse phenomena and technologies. However, Schrödinger's equation for this seemingly simple system can be solved exactly only under the rotating-wave approximation, which neglects the counter-rotating field component. When the a.c. field is sufficiently strong, this approximation fails, leading to a resonance-frequency shift known as the Bloch-Siegert shift. Here, we report the vacuum Bloch-Siegert shift, which is induced by the ultra-strong coupling of matter with the counter-rotating component of the vacuum fluctuation field in a cavity. Specifically, an ultra-high-mobility two-dimensional electron gas inside a high-Q terahertz cavity in a quantizing magnetic field revealed ultra-narrow Landau polaritons, which exhibited a vacuum Bloch-Siegert shift up to 40 GHz. This shift, clearly distinguishable from the photon-field self-interaction effect, represents a unique manifestation of a strong-field phenomenon without a strong field.

  10. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Search for [CII] Line and Dust Emission in 6

    NASA Astrophysics Data System (ADS)

    Aravena, M.; Decarli, R.; Walter, F.; Bouwens, R.; Oesch, P. A.; Carilli, C. L.; Bauer, F. E.; Da Cunha, E.; Daddi, E.; Gónzalez-López, J.; Ivison, R. J.; Riechers, D. A.; Smail, I.; Swinbank, A. M.; Weiss, A.; Anguita, T.; Bacon, R.; Bell, E.; Bertoldi, F.; Cortes, P.; Cox, P.; Hodge, J.; Ibar, E.; Inami, H.; Infante, L.; Karim, A.; Magnelli, B.; Ota, K.; Popping, G.; van der Werf, P.; Wagg, J.; Fudamoto, Y.

    2016-12-01

    We present a search for [C II] line and dust continuum emission from optical dropout galaxies at z > 6 using ASPECS, our Atacama Large Millimeter submillimeter Array Spectroscopic Survey in the Hubble Ultra-deep Field (UDF). Our observations, which cover the frequency range of 212-272 GHz, encompass approximately the range of 6 < z < 8 for [C II] line emission and reach a limiting luminosity of L [C II] ˜ (1.6-2.5) × 108 L ⊙. We identify 14 [C II] line emitting candidates in this redshift range with significances >4.5σ, two of which correspond to blind detections with no optical counterparts. At this significance level, our statistical analysis shows that about 60% of our candidates are expected to be spurious. For one of our blindly selected [C II] line candidates, we tentatively detect the CO(6-5) line in our parallel 3 mm line scan. None of the line candidates are individually detected in the 1.2 mm continuum. A stack of all [C II] candidates results in a tentative detection with S 1.2 mm = 14 ± 5 μJy. This implies a dust-obscured star-formation rate (SFR) of (3 ± 1) M ⊙ yr-1. We find that the two highest-SFR objects have candidate [C II] lines with luminosities that are consistent with the low-redshift L [C II] versus SFR relation. The other candidates have significantly higher [C II] luminosities than expected from their UV-based SFR. At the current sensitivity, it is unclear whether the majority of these sources are intrinsically bright [C II] emitters, or spurious sources. If only one of our line candidates was real (a scenario greatly favored by our statistical analysis), we find a source density for [C II] emitters at 6 < z < 8 that is significantly higher than predicted by current models and some extrapolations from galaxies in the local universe.

  11. Ultra-wide-field imaging in diabetic retinopathy.

    PubMed

    Ghasemi Falavarjani, Khalil; Tsui, Irena; Sadda, Srinivas R

    2017-10-01

    Since 1991, 7-field images captured with 30-50 degree cameras in the Early Treatment Diabetic Retinopathy Study were the gold standard for fundus imaging to study diabetic retinopathy. Ultra-wide-field images cover significantly more area (up to 82%) of the fundus and with ocular steering can in many cases image 100% of the fundus ("panretinal"). Recent advances in image analysis of ultra-wide-field imaging allow for precise measurements of the peripheral retinal lesions. There is a growing consensus in the literature that ultra-wide-field imaging improves detection of peripheral lesions in diabetic retinopathy and leads to more accurate classification of the disease. There is discordance among studies, however, on the correlation between peripheral diabetic lesions and diabetic macular edema and optimal management strategies to treat diabetic retinopathy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption

    NASA Astrophysics Data System (ADS)

    Jiménez, N.; Huang, W.; Romero-García, V.; Pagneux, V.; Groby, J.-P.

    2016-09-01

    Using the concepts of slow sound and critical coupling, an ultra-thin acoustic metamaterial panel for perfect and quasi-omnidirectional absorption is theoretically and experimentally conceived in this work. The system is made of a rigid panel with a periodic distribution of thin closed slits, the upper wall of which is loaded by Helmholtz Resonators (HRs). The presence of resonators produces a slow sound propagation shifting the resonance frequency of the slit to the deep sub-wavelength regime ( λ/88 ). By controlling the geometry of the slit and the HRs, the intrinsic visco-thermal losses can be tuned in order to exactly compensate the energy leakage of the system and fulfill the critical coupling condition to create the perfect absorption of sound in a large range of incidence angles due to the deep subwavelength behavior.

  13. Ultra-Deep Sequencing Analysis of the Hepatitis A Virus 5'-Untranslated Region among Cases of the Same Outbreak from a Single Source

    PubMed Central

    Wu, Shuang; Nakamoto, Shingo; Kanda, Tatsuo; Jiang, Xia; Nakamura, Masato; Miyamura, Tatsuo; Shirasawa, Hiroshi; Sugiura, Nobuyuki; Takahashi-Nakaguchi, Azusa; Gonoi, Tohru; Yokosuka, Osamu

    2014-01-01

    Hepatitis A virus (HAV) is a causative agent of acute viral hepatitis for which an effective vaccine has been developed. Here we describe ultra-deep pyrosequences (UDPSs) of HAV 5'-untranslated region (5'UTR) among cases of the same outbreak, which arose from a single source, associated with a revolving sushi bar. We determined the reference sequence from HAV-derived clone from an attendant by the Sanger method. Sixteen UDPSs from this outbreak and one from another sporadic case were compared with this reference. Nucleotide errors yielded a UDPS error rate of < 1%. This study confirmed that nucleotide substitutions of this region are transition mutations in outbreak cases, that insertion was observed only in non-severe cases, and that these nucleotide substitutions were different from those of the sporadic case. Analysis of UDPSs detected low-prevalence HAV variations in 5'UTR, but no specific mutations associated with severity in these outbreak cases. To our surprise, HAV strains in this outbreak conserved HAV IRES sequence even if we performed analysis of UDPSs. UDPS analysis of HAV 5'UTR gave us no association between the disease severity of hepatitis A and HAV 5'UTR substitutions. It might be more interesting to perform ultra-deep sequencing of full length HAV genome in order to reveal possible unknown genomic determinants associated with disease severity. Further studies will be needed. PMID:24396287

  14. Looking for Galaxies in All the Right Places: A Search for Stellar Populations in ALFALFA’s Ultra-compact High Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2018-01-01

    Nearby gas-rich dwarf galaxies are excellent laboratories for investigating the baryonic feedback processes that govern star formation and galaxy evolution in galaxies at the extreme end of the mass function. Detecting and studying such objects may help resolve the well-known tension between cosmological model predictions for low-mass dark matter halos and observations. The ALFALFA neutral hydrogen (Hi) survey has detected a sample of isolated ultra-compact high-velocity Hi clouds (UCHVCs) with kinematic properties that make them likely members of the Local Volume, but that have no optical counterparts in existing optical surveys. This UCHVC sample possesses Hi properties (at 1 Mpc, Hi masses of ~105-106 M⊙, Hi diameters of ~2-3 kpc, and dynamical masses of ~107-108 M⊙) similar to other known ultra-faint dwarf galaxies like Leo T. Following the discovery of Leo P, an extremely metal-poor, gas-rich star-forming dwarf galaxy associated with an ALFALFA UCHVC, we have initiated a campaign to obtain deep optical imaging of 56 UCHVCs using the wide field-of-view, high-resolution ODI camera on the WIYN 3.5-m telescope. Here we present a brief overview of our campaign to search for resolved stellar populations associated with the UCHVCs in our optical images, and initial results from our survey.After creating a stellar catalog from the pipeline-reduced and stacked ODI g- and i-band images, we apply a color-magnitude filter tuned for old, metal-poor stellar populations to select red giant branch stars at distances between 250 kpc and 2 Mpc. The spatial distribution of the stars selected by the filter is then smoothed, and overdensities in the fields are identified. Of the 22 targets analyzed to date, seven have associated stellar populations detected at a high confidence (92% to 99.9% significance). The detected objects have a range of distances (from 350 kpc to 1.6 Mpc) and have optical properties similar to those of ultra-faint dwarf galaxies. These objects have extreme Hi-to-stellar mass ratios, and given their isolation, may represent a progenitor population to the ultra-faint dwarfs. They also help constrain the conditions needed for star formation in the lowest-mass galaxies.

  15. Three-dimensional charge coupled device

    DOEpatents

    Conder, Alan D.; Young, Bruce K. F.

    1999-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  16. Process for fabricating a charge coupled device

    DOEpatents

    Conder, Alan D.; Young, Bruce K. F.

    2002-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  17. A candidate redshift z ≈ 10 galaxy and rapid changes in that population at an age of 500 Myr.

    PubMed

    Bouwens, R J; Illingworth, G D; Labbe, I; Oesch, P A; Trenti, M; Carollo, C M; van Dokkum, P G; Franx, M; Stiavelli, M; González, V; Magee, D; Bradley, L

    2011-01-27

    Searches for very-high-redshift galaxies over the past decade have yielded a large sample of more than 6,000 galaxies existing just 900-2,000 million years (Myr) after the Big Bang (redshifts 6 > z > 3; ref. 1). The Hubble Ultra Deep Field (HUDF09) data have yielded the first reliable detections of z ≈ 8 galaxies that, together with reports of a γ-ray burst at z ≈ 8.2 (refs 10, 11), constitute the earliest objects reliably reported to date. Observations of z ≈ 7-8 galaxies suggest substantial star formation at z > 9-10 (refs 12, 13). Here we use the full two-year HUDF09 data to conduct an ultra-deep search for z ≈ 10 galaxies in the heart of the reionization epoch, only 500 Myr after the Big Bang. Not only do we find one possible z ≈ 10 galaxy candidate, but we show that, regardless of source detections, the star formation rate density is much smaller (∼10%) at this time than it is just ∼200 Myr later at z ≈ 8. This demonstrates how rapid galaxy build-up was at z ≈ 10, as galaxies increased in both luminosity density and volume density from z ≈ 10 to z ≈ 8. The 100-200 Myr before z ≈ 10 is clearly a crucial phase in the assembly of the earliest galaxies.

  18. Review on the progress of ultra-precision machining technologies

    NASA Astrophysics Data System (ADS)

    Yuan, Julong; Lyu, Binghai; Hang, Wei; Deng, Qianfa

    2017-06-01

    Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the developments of ultra-precision machining technologies, especially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.

  19. Magnetic Resonance Relaxometry at Low and Ultra low Fields.

    PubMed

    Volegov, P; Flynn, M; Kraus, R; Magnelind, P; Matlashov, A; Nath, P; Owens, T; Sandin, H; Savukov, I; Schultz, L; Urbaitis, A; Zotev, V; Espy, M

    2010-01-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are ubiquitous tools in science and medicine. NMR provides powerful probes of local and macromolecular chemical structure and dynamics. Recently it has become possible and practical to perform MR at very low fields (from 1 μT to 1 mT), the so-called ultra-low field (ULF) regime. Pulsed pre-polarizing fields greatly enhance the signal strength and allow flexibility in signal acquisition sequences. Improvements in SQUID sensor technology allow ultra-sensitive detection in a pulsed field environment.In this regime the proton Larmor frequencies (1 Hz - 100 kHz) of ULF MR overlap (on a time scale of 10 μs to 100 ms) with "slow" molecular dynamic processes such as diffusion, intra-molecular motion, chemical reactions, and biological processes such as protein folding, catalysis and ligand binding. The frequency dependence of relaxation at ultra-low fields may provide a probe for biomolecular dynamics on the millisecond timescale (protein folding and aggregation, conformational motions of enzymes, binding and structural fluctuations of coupled domains in allosteric mechanisms) relevant to host-pathogen interactions, biofuels, and biomediation. Also this resonance-enhanced coupling at ULF can greatly enhance contrast in medical applications of ULF-MRI resulting in better diagnostic techniques.We have developed a number of instruments and techniques to study relaxation vs. frequency at the ULF regime. Details of the techniques and results are presented.Ultra-low field methods are already being applied at LANL in brain imaging, and detection of liquid explosives at airports. However, the potential power of ultra-low field MR remains to be fully exploited.

  20. Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal

    DTIC Science & Technology

    2014-04-01

    ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...collaboration with Applied Research Associates, Inc. (ARA). Several types of commercial UHPW water blasting systems were tested on an ungrooved portland cement

  1. Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance.

    PubMed

    Wu, Yingcheng; Wu, Peiwen; Chao, Yanhong; He, Jing; Li, Hongping; Lu, Linjie; Jiang, Wei; Zhang, Beibei; Li, Huaming; Zhu, Wenshuai

    2018-01-12

    Hexagonal boron nitride has been regarded to be an efficient catalyst in aerobic oxidation fields, but limited by the less-exposed active sites. In this contribution, we proposed a simple green liquid nitrogen gas exfoliation strategy for preparation of porous monolayer nanosheets (BN-1). Owing to the reduced layer numbers, decreased lateral sizes and artificially-constructed pores, increased exposure of active sites was expected, further contributed to an enhanced aerobic oxidative desulfurization (ODS) performance up to ∼98% of sulfur removal, achieving ultra-deep desulfurization. This work not only introduced an excellent catalyst for aerobic ODS, but also provided a strategy for construction of some other highly-efficient monolayer two-dimensional materials for enhanced catalytic performance.

  2. Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance

    NASA Astrophysics Data System (ADS)

    Wu, Yingcheng; Wu, Peiwen; Chao, Yanhong; He, Jing; Li, Hongping; Lu, Linjie; Jiang, Wei; Zhang, Beibei; Li, Huaming; Zhu, Wenshuai

    2018-01-01

    Hexagonal boron nitride has been regarded to be an efficient catalyst in aerobic oxidation fields, but limited by the less-exposed active sites. In this contribution, we proposed a simple green liquid nitrogen gas exfoliation strategy for preparation of porous monolayer nanosheets (BN-1). Owing to the reduced layer numbers, decreased lateral sizes and artificially-constructed pores, increased exposure of active sites was expected, further contributed to an enhanced aerobic oxidative desulfurization (ODS) performance up to ˜98% of sulfur removal, achieving ultra-deep desulfurization. This work not only introduced an excellent catalyst for aerobic ODS, but also provided a strategy for construction of some other highly-efficient monolayer two-dimensional materials for enhanced catalytic performance.

  3. Ultra-High Density Holographic Memory Module with Solid-State Architecture

    NASA Technical Reports Server (NTRS)

    Markov, Vladimir B.

    2000-01-01

    NASA's terrestrial. space, and deep-space missions require technology that allows storing. retrieving, and processing a large volume of information. Holographic memory offers high-density data storage with parallel access and high throughput. Several methods exist for data multiplexing based on the fundamental principles of volume hologram selectivity. We recently demonstrated that a spatial (amplitude-phase) encoding of the reference wave (SERW) looks promising as a way to increase the storage density. The SERW hologram offers a method other than traditional methods of selectivity, such as spatial de-correlation between recorded and reconstruction fields, In this report we present the experimental results of the SERW-hologram memory module with solid-state architecture, which is of particular interest for space operations.

  4. UltraSail - Ultra-Lightweight Solar Sail Concept

    NASA Technical Reports Server (NTRS)

    Burton, Rodney L.; Coverstone, Victoria L.; Hargens-Rysanek, Jennifer; Ertmer, Kevin M.; Botter, Thierry; Benavides, Gabriel; Woo, Byoungsam; Carroll, David L.; Gierow, Paul A.; Farmer, Greg

    2005-01-01

    UltraSail is a next-generation high-risk, high-payoff sail system for the launch, deployment, stabilization and control of very large (sq km class) solar sails enabling high payload mass fractions for high (Delta)V. Ultrasail is an innovative, non-traditional approach to propulsion technology achieved by combining propulsion and control systems developed for formation-flying micro-satellites with an innovative solar sail architecture to achieve controllable sail areas approaching 1 sq km, sail subsystem area densities approaching 1 g/sq m, and thrust levels many times those of ion thrusters used for comparable deep space missions. Ultrasail can achieve outer planetary rendezvous, a deep space capability now reserved for high-mass nuclear and chemical systems. One of the primary innovations is the near-elimination of sail supporting structures by attaching each blade tip to a formation-flying micro-satellite which deploys the sail, and then articulates the sail to provide attitude control, including spin stabilization and precession of the spin axis. These tip micro-satellites are controlled by 3-axis micro-thruster propulsion and an on-board metrology system. It is shown that an optimum spin rate exists which maximizes payload mass.

  5. Recent developments in novel freezing and thawing technologies applied to foods.

    PubMed

    Wu, Xiao-Fei; Zhang, Min; Adhikari, Benu; Sun, Jincai

    2017-11-22

    This article reviews the recent developments in novel freezing and thawing technologies applied to foods. These novel technologies improve the quality of frozen and thawed foods and are energy efficient. The novel technologies applied to freezing include pulsed electric field pre-treatment, ultra-low temperature, ultra-rapid freezing, ultra-high pressure and ultrasound. The novel technologies applied to thawing include ultra-high pressure, ultrasound, high voltage electrostatic field (HVEF), and radio frequency. Ultra-low temperature and ultra-rapid freezing promote the formation and uniform distribution of small ice crystals throughout frozen foods. Ultra-high pressure and ultrasound assisted freezing are non-thermal methods and shorten the freezing time and improve product quality. Ultra-high pressure and HVEF thawing generate high heat transfer rates and accelerate the thawing process. Ultrasound and radio frequency thawing can facilitate thawing process by volumetrically generating heat within frozen foods. It is anticipated that these novel technologies will be increasingly used in food industries in the future.

  6. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    PubMed

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  7. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  8. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Reid, Ray D. (Inventor); Hug, William F. (Inventor)

    2010-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  9. Diffractive charmonium spectrum in high energy collisions in the basis light-front quantization approach

    DOE PAGES

    Chen, Guangyao; Li, Yang; Maris, Pieter; ...

    2017-04-14

    Using the charmonium light-front wavefunctions obtained by diagonalizing an effective Hamiltonian with the one-gluon exchange interaction and a confining potential inspired by light-front holography in the basis light-front quantization formalism, we compute production of charmonium states in diffractive deep inelastic scattering and ultra-peripheral heavy ion collisions within the dipole picture. Our method allows us to predict yields of all vector charmonium states below the open flavor thresholds in high-energy deep inelastic scattering, proton-nucleus and ultra-peripheral heavy ion collisions, without introducing any new parameters in the light-front wavefunctions. The obtained charmonium cross section is in reasonable agreement with experimental data atmore » HERA, RHIC and LHC. We observe that the cross-section ratio σΨ(2s)/σJ/Ψ reveals significant independence of model parameters« less

  10. The enhancement of rapidly quenched galaxies in distant clusters at 0.5 < z < 1.0

    NASA Astrophysics Data System (ADS)

    Socolovsky, Miguel; Almaini, Omar; Hatch, Nina A.; Wild, Vivienne; Maltby, David T.; Hartley, William G.; Simpson, Chris

    2018-05-01

    We investigate the relationship between environment and galaxy evolution in the redshift range 0.5 < z < 1.0. Galaxy overdensities are selected using a friends-of-friends algorithm, applied to deep photometric data in the Ultra-Deep Survey field. A study of the resulting stellar mass functions reveals clear differences between cluster and field environments, with a strong excess of low-mass rapidly quenched galaxies in cluster environments compared to the field. Cluster environments also show a corresponding deficit of young, low-mass star-forming galaxies, which show a sharp radial decline towards cluster centres. By comparing mass functions and radial distributions, we conclude that young star-forming galaxies are rapidly quenched as they enter overdense environments, becoming post-starburst galaxies before joining the red sequence. Our results also point to the existence of two environmental quenching pathways operating in galaxy clusters, operating on different time-scales. Fast quenching acts on galaxies with high specific star formation rates, operating on time-scales shorter than the cluster dynamical time (<1 Gyr). In contrast, slow quenching affects galaxies with moderate specific star formation rates, regardless of their stellar mass, and acts on longer time-scales (≳ 1 Gyr). Of the cluster galaxies in the stellar mass range 9.0 < log (M/M⊙) < 10.5 quenched during this epoch, we find that 73 per cent were transformed through fast quenching, while the remaining 27 per cent followed the slow quenching route.

  11. Probing stellar mass build-up in galaxies at z=4-7 with CANDELS and S-CANDELS

    NASA Astrophysics Data System (ADS)

    Song, Mimi; Finkelstein, Steven L.; Ashby, Matthew; Merlin, Emiliano

    2015-01-01

    Over the last few years the advent of the Hubble Space Telescope (HST) Wide Field Camera 3 has enabled us to build statistically significant samples of galaxies out to z=8. We have subsequently witnessed remarkable progress in our understanding of galaxy evolution in the early universe. However, our understanding of the galaxy stellar mass growth in this era has been limited due to the lack of rest-frame optical data at a comparable depth as the HST data. Here we present results on the galaxy stellar mass function at z=4-7 from a sample of ~7500 galaxies over an area of ~280 square arcmin in the CANDELS GOODS-South and North fields, as well as the Hubble Ultra Deep Field. Utilizing deep IRAC data from the S-CANDELS and IUDF10 programs to robustly constrain the stellar masses of galaxies in our sample, we measure the stellar-mass to rest-frame ultraviolet (UV) luminosity trends in each of our redshift bins. We convolve these trends with recent measurements of the rest-frame ultraviolet luminosity function to derive the stellar mass functions. Contrary to initial studies at these redshifts, we find steeper low-mass-end slopes (-1.6 at z=4, and -2.0 at z=7), similar to recent simulations. Our results provide the most accurate estimates to date of the cosmic stellar mass density over the first two billion years after the Big Bang.

  12. SPLASH-SXDF Multi-wavelength Photometric Catalog

    NASA Astrophysics Data System (ADS)

    Mehta, Vihang; Scarlata, Claudia; Capak, Peter; Davidzon, Iary; Faisst, Andreas; Hsieh, Bau Ching; Ilbert, Olivier; Jarvis, Matt; Laigle, Clotilde; Phillips, John; Silverman, John; Strauss, Michael A.; Tanaka, Masayuki; Bowler, Rebecca; Coupon, Jean; Foucaud, Sébastien; Hemmati, Shoubaneh; Masters, Daniel; McCracken, Henry Joy; Mobasher, Bahram; Ouchi, Masami; Shibuya, Takatoshi; Wang, Wei-Hao

    2018-04-01

    We present a multi-wavelength catalog in the Subaru/XMM-Newton Deep Field (SXDF) as part of the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH). We include the newly acquired optical data from the Hyper-Suprime-Cam Subaru Strategic Program, accompanied by IRAC coverage from the SPLASH survey. All available optical and near-infrared data is homogenized and resampled on a common astrometric reference frame. Source detection is done using a multi-wavelength detection image including the u-band to recover the bluest objects. We measure multi-wavelength photometry and compute photometric redshifts as well as physical properties for ∼1.17 million objects over ∼4.2 deg2, with ∼800,000 objects in the 2.4 deg2 HSC-Ultra-Deep coverage. Using the available spectroscopic redshifts from various surveys over the range of 0 < z < 6, we verify the performance of the photometric redshifts and we find a normalized median absolute deviation of 0.023 and outlier fraction of 3.2%. The SPLASH-SXDF catalog is a valuable, publicly available resource, perfectly suited for studying galaxies in the early universe and tracing their evolution through cosmic time.

  13. Major technological innovations introduced in the large antennas of the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.

    2002-01-01

    The NASA Deep Space Network (DSN) is the largest and most sensitive scientific, telecommunications and radio navigation network in the world. Its principal responsibilities are to provide communications, tracking, and science services to most of the world's spacecraft that travel beyond low Earth orbit. The network consists of three Deep Space Communications Complexes. Each of the three complexes consists of multiple large antennas equipped with ultra sensitive receiving systems. A centralized Signal Processing Center (SPC) remotely controls the antennas, generates and transmits spacecraft commands, and receives and processes the spacecraft telemetry.

  14. Ultra thin metallic coatings to control near field radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, R.

    2016-09-01

    We present a theoretical calculation of the changes in the near field radiative heat transfer between two surfaces due to the presence of ultra thin metallic coatings on semiconductors. Depending on the substrates, the radiative heat transfer is modulated by the thickness of the ultra thin film. In particular we consider gold thin films with thicknesses varying from 4 to 20 nm. The ultra-thin film has an insulator-conductor transition close to a critical thickness of dc = 6.4 nm and there is an increase in the near field spectral heat transfer just before the percolation transition. Depending on the substrates (Si or SiC) and the thickness of the metallic coatings we show how the near field heat transfer can be increased or decreased as a function of the metallic coating thickness. The calculations are based on available experimental data for the optical properties of ultrathin coatings.

  15. [Electric traction magnetic fields of ultra-low frequency as an occupational risk factor of ischemic heart disease].

    PubMed

    Ptitsyna, N G; Kudrin, V A; Villorezi, D; Kopytenko, Iu A; Tiasto, M I; Kopytenko, E A; Bochko, V A; Iuchchi, N

    1996-01-01

    The study was inspired by earlier results that displayed influence of variable natural geomagnetic field (0.005-10 Hz range-ultra-low frequencies) on circulatory system, indicated possible correlation between industrial ultra-low frequency fields and prevalence of myocardial infarction. The authors conducted unique measurements of ultra-low frequency fields produced by electric engines. The results were compared with data on morbidity among railway transport workers. The findings are that level of magnetic variations in electric locomotive cabin can exceed 280 micro Tesla, whereas that in car sections reaches 50 micro Tesla. Occurrence of coronary heart disease among the locomotive operators appeared to be 2.0 + 0.2 times higher than that among the car section operators. Higher risk of coronary heart disease in the locomotive operators is associated with their increased occupational magnetic load.

  16. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications

    PubMed Central

    Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing

    2016-01-01

    Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10−4 × (λres/n)3. Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics. PMID:27046540

  17. Ultra-wide-field fundus autofluorescence in multiple evanescent white dot syndrome.

    PubMed

    Hashimoto, Hideaki; Kishi, Shoji

    2015-04-01

    To observe the progression of affected lesions using ultra-wide-field fundus autofluorescence (FAF) in multiple evanescent white dot syndrome. Retrospective, observational case series. setting: Institutional. 14 eyes of 13 patients (mean age, 35.8 years) with acute disease unilaterally. Patients underwent ultra-wide-field FAF, spectral-domain optical coherence tomography (SD OCT), multifocal electroretinography (mfERG), and Goldmann or automated perimetry; the best-corrected visual acuity (BCVA) and refractive error were measured. Ability of ultra-wide-field FAF to detect lesions with greater sensitivity compared with color fundus photography. Ultra-wide-field FAF imaging enabled improved visualization of the affected lesions and showed that the core lesion was in the posterior fundus involving the peripapillary retina and posterior pole and surrounded by hyper-autofluorescent spots outside the vascular arcade. The posterior lesions expanded rapidly and peripheral spots spread farther peripherally and reached a maximal extent during the acute stage. During follow-up, the peripheral hyper-autofluorescent spots resolved and then hyper-autofluorescence of the posterior fundus gradually faded. SD OCT showed diffuse disruption of the photoreceptor inner segment/outer segment junction (IS/OS) in the posterior fundus during the acute stage. The correlation between the IS/OS abnormality and hyper-autofluorescent areas was unclear. The disrupted IS/OS was restored with normalization of the FAF. Ultra-wide-field FAF showed that the lesions arise from the peripapillary retina and the posterior pole and spread peripherally in a centrifugal manner during the acute stage. The hyper-autofluorescent spots faded from the periphery in a centripetal manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  19. CHILES Con Pol: An ultra-deep JVLA survey probing galaxy evolution and cosmic magnetism

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.; Momjian, Emmanuel; van Gorkom, Jacqueline; Rupen, Michael P.; Greiner, Maksim; Ensslin, Torsten A.; Bonzini, Margherita; Padovani, Paolo; Harrison, Ian; Brown, Michael L.; Gim, Hansung; Yun, Min S.; Maddox, Natasha; Stewart, Adam; Fender, Rob P.; Tremou, Evangelia; Chomiuk, Laura; Peters, Charee; Wilcots, Eric M.; Lazio, Joseph

    2015-08-01

    We are undertaking a 1000 hour campaign with the Karl G. Jansky VLA to survey 0.2 square degrees of the COSMOS field in full polarization continuum at 1.4 GHz. Our observations are part of a joint program with the spectral line COSMOS HI Large Extragalactic Survey (CHILES). When complete, we expect our CHILES Continuum Polarization (CHILES Con Pol) survey to reach an SKA-era sensitivity of 500 nJy per 4 arcsecond resolving beam, the deepest view of the radio sky yet. CHILES Con Pol will open new and fertile parameter space, with sensitivity to star formation rates of 10 Msun per year out to an unprecedented redshift of z=2, and ultra-luminous infrared galaxies and sub-millimeter galaxies out to redshifts of z=8 and beyond. This rich resource will extend the utility of radio band studies beyond the usual radio quasar and radio galaxy populations, opening sensitivity to the starforming and radio-quiet AGN populations that form the bulk of extragalactic sources detected in the optical, X-ray, and infrared bands. In this talk I will outline the key science of CHILES Con Pol, including galaxy evolution and novel measurements of intergalactic magnetic fields. I will present initial results from the first 180 hours of the survey and describe our forthcoming Data Release 1. I invite the astronomical community to consider unique science that can be pursued with CHILES Con Pol radio data.

  20. Performance limits of tunnel transistors based on mono-layer transition-metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xiang-Wei, E-mail: xwjiang@semi.ac.cn; Li, Shu-Shen; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2014-05-12

    Performance limits of tunnel field-effect transistors based on mono-layer transition metal dichalcogenides are investigated through numerical quantum mechanical simulations. The atomic mono-layer nature of the devices results in a much smaller natural length λ, leading to much larger electric field inside the tunneling diodes. As a result, the inter-band tunneling currents are found to be very high as long as ultra-thin high-k gate dielectric is possible. The highest on-state driving current is found to be close to 600 μA/μm at V{sub g} = V{sub d} = 0.5 V when 2 nm thin HfO{sub 2} layer is used for gate dielectric, outperforming most of the conventional semiconductor tunnelmore » transistors. In the five simulated transition-metal dichalcogenides, mono-layer WSe{sub 2} based tunnel field-effect transistor shows the best potential. Deep analysis reveals that there is plenty room to further enhance the device performance by either geometry, alloy, or strain engineering on these mono-layer materials.« less

  1. Deep-submicron Graphene Field-Effect Transistors with State-of-Art fmax

    PubMed Central

    Lyu, Hongming; Lu, Qi; Liu, Jinbiao; Wu, Xiaoming; Zhang, Jinyu; Li, Junfeng; Niu, Jiebin; Yu, Zhiping; Wu, Huaqiang; Qian, He

    2016-01-01

    In order to conquer the short-channel effects that limit conventional ultra-scale semiconductor devices, two-dimensional materials, as an option of ultimate thin channels, receive wide attention. Graphene, in particular, bears great expectations because of its supreme carrier mobility and saturation velocity. However, its main disadvantage, the lack of bandgap, has not been satisfactorily solved. As a result, maximum oscillation frequency (fmax) which indicates transistors’ power amplification ability has been disappointing. Here, we present submicron field-effect transistors with specially designed low-resistance gate and excellent source/drain contact, and therefore significantly improved fmax. The fabrication was assisted by the advanced 8-inch CMOS back-end-of-line technology. A 200-nm-gate-length GFET achieves fT/fmax = 35.4/50 GHz. All GFET samples with gate lengths ranging from 200 nm to 400 nm possess fmax 31–41% higher than fT, closely resembling Si n-channel MOSFETs at comparable technology nodes. These results re-strengthen the promise of graphene field-effect transistors in next generation semiconductor electronics. PMID:27775009

  2. Development of a novel low frequency GPR system for ultra-deep detection in Mine

    NASA Astrophysics Data System (ADS)

    Xu, Xianlei; Peng, Suping; Yang, Feng

    2016-04-01

    Mine disasters sources is the main source of the underground coal mine accidents in China. This paper describes the development of a novel explosion proof ground penetrating radar (GPR) for mine disasters sources detection, aiming to solve the current problems of the small detection range and low precision in the mine advanced detection in China. A high performance unipolar pulse transmitting unit is developed by using avalanche transistors, and an effective pulse excitation source network. And a new pluggable combined low-frequency antenna involving three frequencies with 12.5MHz, 25 MHz and 50MHz, is designed and developed. The plate-type structure is designed, aiming to enhance the directivity of the antenna, and the achievement of the antenna impedance matching is implemented in the feed point based on the extensions interface design, enhancing the antenna bandwidth and reducing the standing wave interference. Moreover, a high precision stepper delay circuit is designed by transforming the number of the operational amplifier step and using the differential compensation between the metal-oxide semiconductor field effect transistors, aiming to improve the accuracy of the signal acquisition system. In order to adapt to the mine environment, the explosion-proof design is implemented for the GPR system, including the host, transmitter, receiver, battery box, antenna, and other components.Mine detection experiments is carried out and the results show: the novel GPR system can effectively detect the location and depth of the geological disasters source with the depth greater than30 m and the diameter greater than 3m, the maximum detection depth can be up to 80m, which break the current detection depth limitations within 30m, providing an effective technical support for the ultra-deep mine disasters detection and the safety problems in coal mine production.

  3. Tracing Evolution of Starbursts and AGNs using Ultra-deep Radio and mm/smm Surveys

    NASA Astrophysics Data System (ADS)

    Yun, Min S.; Gim, Hansung; Morrison, Glenn; Hales, Christopher A.; Momjian, Emmanuel; Owen, Frazer; Kellermann, Ken; Aretxaga, Itziar; Giavalisco, Mauro; Hughes, David; Lowenthal, James; Miller, Neal; Kawabe, Ryohei; Kohno, Kotaro

    2015-08-01

    There is growing evidence supporting a rapid build up of metals among massive galaxies during their rapid growth via an intense starburst in the early epochs. These star formation activities may be largely obscured in the UV and optical light, as in the local universe. If the growth of supermassive blackholes occurs at or nearly the same time, the accompanying AGN activity may also be heavily obscured. Ultra-deep surveys in the radio and far-infrared can offer extinction-free view of these systems, and the advent of new facilities such as the Jansky VLA, ALMA, and LMT now allows us to probe directly the population of starburst galaxies that are responsible for the bulk of the stellar mass build-up during the epoch of galaxy growth (SFR > 10-100 M⊙/yr at z≈2 or earlier). We will present our analysis of the properties of the micro-Jansky radio sources identified by new Jansky VLA surveys of the GOODS and COSMOS fields using the rich archival data already available (Herschel, Spitzer, Chandra, ALMA, LMT, etc.). Specifically, we find evidence for two populations of microJy radio sources with distinct spectral index distribution. We explore whether this reflects differences in the underlying powering mechanisms by examining their radio-FIR correlation and X-ray properties. We also find the previously reported apparent systematic change in the "q-value" with increasing redshift, and we examine the reality of this trend in some detail. Finally, we will also examine the spatial extent of activities for a subset of the sample where high angular resolution (better than 1") information is available.

  4. THE SPECTRAL EVOLUTION OF THE FIRST GALAXIES. I. JAMES WEBB SPACE TELESCOPE DETECTION LIMITS AND COLOR CRITERIA FOR POPULATION III GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zackrisson, Erik; Rydberg, Claes-Erik; Oestlin, Goeran

    The James Webb Space Telescope (JWST) is expected to revolutionize our understanding of the high-redshift universe, and may be able to test the prediction that the first, chemically pristine (Population III) stars are formed with very high characteristic masses. Since isolated Population III stars are likely to be beyond the reach of JWST, small Population III galaxies may offer the best prospects of directly probing the properties of metal-free stars. Here, we present Yggdrasil, a new spectral synthesis code geared toward the first galaxies. Using this model, we explore the JWST imaging detection limits for Population III galaxies and investigatemore » to what extent such objects may be identified based on their JWST colors. We predict that JWST should be able to detect Population III galaxies with stellar population masses as low as {approx}10{sup 5} M{sub sun} at z {approx} 10 in ultra deep exposures. Over limited redshift intervals, it may also be possible to use color criteria to select Population III galaxy candidates for follow-up spectroscopy. The colors of young Population III galaxies dominated by direct starlight can be used to probe the stellar initial mass function (IMF), but this requires almost complete leakage of ionizing photons into the intergalactic medium. The colors of objects dominated by nebular emission show no corresponding IMF sensitivity. We also note that a clean selection of Population III galaxies at z {approx} 7-8 can be achieved by adding two JWST/MIRI filters to the JWST/NIRCam filter sets usually discussed in the context of JWST ultra deep fields.« less

  5. Unveiling the extreme nature of the hyper faint galaxy Virgo I

    NASA Astrophysics Data System (ADS)

    Crnojevic, Denija

    2017-08-01

    We request HST/ACS imaging to obtain a deep color-magnitude diagram of the newly discovered candidate Milky Way satellite Virgo I. With an estimated absolute magnitude of only M_V -0.8 and a Galactocentric radius of 90 kpc, Virgo I is one of the faintest and most distant dwarfs ever observed, and could be identified as a prototype ''hyper'' faint galaxy. The detailed characterization of the smallest inhabited dark matter subhalos is crucial to guide hierarchical galaxy formation models, and in particular to constrain reionization, the nature of the dark matter particle, etc. With the advent of deep wide-field, ground-based surveys, the potential of uncovering these lowest-mass galaxies is quickly turning into reality, as demonstrated by the discovery in the past two years of tens of new Local Group members in the ultra-faint regime (M_V>-8). Virgo I represents a new record in galaxy physical properties, and urges us to be prepared for the likely emergence of an entirely new class of such objects in the era of future wide-field surveys (e.g., LSST). Only high resolution HST observations can enable us to confirm the nature of Virgo I, providing significantly more accurate estimates for its distance and structural properties, when compared to the discovery Subaru/HyperSuprimeCam imaging. Our proposed dataset will constitute a fundamental step in the upcoming hunt for galaxies with similarly extreme properties.

  6. The SCUBA-2 Cosmology Legacy Survey: the clustering of submillimetre galaxies in the UKIDSS UDS field

    NASA Astrophysics Data System (ADS)

    Wilkinson, Aaron; Almaini, Omar; Chen, Chian-Chou; Smail, Ian; Arumugam, Vinodiran; Blain, Andrew; Chapin, Edward L.; Chapman, Scott C.; Conselice, Christopher J.; Cowley, William I.; Dunlop, James S.; Farrah, Duncan; Geach, James; Hartley, William G.; Ivison, Rob J.; Maltby, David T.; Michałowski, Michał J.; Mortlock, Alice; Scott, Douglas; Simpson, Chris; Simpson, James M.; van der Werf, Paul; Wild, Vivienne

    2017-01-01

    Submillimetre galaxies (SMGs) are among the most luminous dusty galaxies in the Universe, but their true nature remains unclear; are SMGs the progenitors of the massive elliptical galaxies we see in the local Universe, or are they just a short-lived phase among more typical star-forming galaxies? To explore this problem further, we investigate the clustering of SMGs identified in the SCUBA-2 Cosmology Legacy Survey. We use a catalogue of submillimetre (850 μm) source identifications derived using a combination of radio counterparts and colour/infrared selection to analyse a sample of 610 SMG counterparts in the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Survey (UKIDSS) Ultra Deep Survey (UDS), making this the largest high-redshift sample of these galaxies to date. Using angular cross-correlation techniques, we estimate the halo masses for this large sample of SMGs and compare them with passive and star-forming galaxies selected in the same field. We find that SMGs, on average, occupy high-mass dark matter haloes (Mhalo > 1013 M⊙) at redshifts z > 2.5, consistent with being the progenitors of massive quiescent galaxies in present-day galaxy clusters. We also find evidence of downsizing, in which SMG activity shifts to lower mass haloes at lower redshifts. In terms of their clustering and halo masses, SMGs appear to be consistent with other star-forming galaxies at a given redshift.

  7. Evaluation on the Presence of Nano Silver Particle in Improving a Conventional Water-based Drilling Fluid

    NASA Astrophysics Data System (ADS)

    Husin, H.; Ahmad, N.; Jamil, N.; Chyuan, O. H.; Roslan, A.

    2018-05-01

    Worldwide demand in oil and gas energy consumption has been driving many of oil and gas companies to explore new oil and gas resource field in an ultra-deep water environment. As deeper well is drilled, more problems and challenges are expected. The successful of drilling operation is highly dependent on properties of drilling fluids. As a way to operate drilling in challenging and extreme surroundings, nanotechnology with their unique properties is employed. Due to unique physicochemical, electrical, thermal, hydrodynamic properties and exceptional interaction potential of nanomaterials, nanoparticles are considered to be the most promising material of choice for smart fluid design for oil and gas field application. Throughout this paper, the effect of nano silver particle in improving a conventional water based drilling fluid was evaluated. Results showed that nano silver gave a significant improvement to the conventional water based drilling fluid in terms of its rheological properties and filtration test performance.

  8. Collective behaviours: from biochemical kinetics to electronic circuits

    PubMed Central

    Agliari, Elena; Barra, Adriano; Burioni, Raffaella; Di Biasio, Aldo; Uguzzoni, Guido

    2013-01-01

    In this work we aim to highlight a close analogy between cooperative behaviors in chemical kinetics and cybernetics; this is realized by using a common language for their description, that is mean-field statistical mechanics. First, we perform a one-to-one mapping between paradigmatic behaviors in chemical kinetics (i.e., non-cooperative, cooperative, ultra-sensitive, anti-cooperative) and in mean-field statistical mechanics (i.e., paramagnetic, high and low temperature ferromagnetic, anti-ferromagnetic). Interestingly, the statistical mechanics approach allows a unified, broad theory for all scenarios and, in particular, Michaelis-Menten, Hill and Adair equations are consistently recovered. This framework is then tested against experimental biological data with an overall excellent agreement. One step forward, we consistently read the whole mapping from a cybernetic perspective, highlighting deep structural analogies between the above-mentioned kinetics and fundamental bricks in electronics (i.e. operational amplifiers, flashes, flip-flops), so to build a clear bridge linking biochemical kinetics and cybernetics. PMID:24322327

  9. Microwave photonics with superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Gu, Xiu; Kockum, Anton Frisk; Miranowicz, Adam; Liu, Yu-xi; Nori, Franco

    2017-11-01

    In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons. This emerging field of superconducting quantum microwave circuits has been driven by many new interesting phenomena in microwave photonics and quantum information processing. For instance, the interaction between superconducting quantum circuits and single microwave photons can reach the regimes of strong, ultra-strong, and even deep-strong coupling. Many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed, e.g., giant Kerr effects, multi-photon processes, and single-atom induced bistability of microwave photons. These developments may lead to improved understanding of the counterintuitive properties of quantum mechanics, and speed up applications ranging from microwave photonics to superconducting quantum information processing. In this article, we review experimental and theoretical progress in microwave photonics with superconducting quantum circuits. We hope that this global review can provide a useful roadmap for this rapidly developing field.

  10. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate exogenous contrast agent for efficient Raman spectroscopy from molecules.

  11. Organic field effect transistor with ultra high amplification

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio

    2016-09-01

    High-gain transistors are essential for the large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show organic transistors fabricated on plastic foils enabling unipolar amplifiers with ultra-gain. The proposed approach is general and opens up new opportunities for ultra-large signal amplification in organic circuits and sensors.

  12. Handheld Optical Coherence Tomography Angiography and Ultra-Wide-Field Optical Coherence Tomography in Retinopathy of Prematurity.

    PubMed

    Campbell, J Peter; Nudleman, Eric; Yang, Jianlong; Tan, Ou; Chan, R V Paul; Chiang, Michael F; Huang, David; Liu, Gangjun

    2017-09-01

    Retinopathy of prematurity (ROP) is a leading cause of childhood blindness worldwide. Optical coherence tomography (OCT) has improved the care of adults with vitreoretinal disease, and OCT angiography (OCTA) is demonstrating promise as a technique to visualize the retinal vasculature with lower risk and cost than fluorescein angiography. However, to date, there are no commercially available devices able to obtain ultra-wide-field OCT or OCTA images in neonates. To obtain ultra-wide-field OCT and OCTA images in neonates with ROP using a prototype handheld OCT and OCTA device. This observational case series was conducted from March 1 to April 1, 2017, in an academic medical center among 4 neonates with ROP in the neonatal intensive care unit and in the operating room. Acquisition of wide-field OCT and OCTA images using a handheld prototype OCTA and ultra-wide-field OCT device. Images were obtained from 4 neonates (1 girl and 3 boys; mean age, 38 weeks' postmenstrual age [range, 34-43 weeks]) with various stages of ROP: 3 in the neonatal intensive care unit and 1 in the operating room. The system can obtain noncontact en face OCT images and horizontal line scans with an approximately 40° field of view and up to 100° (ultra-wide-field) using a contact lens-based approach in a single 2-second scan. In addition, 20° × 20° (approximately 4 × 4-mm) OCTA scans were obtained in patients with ROP in a single 2-second scan. Optical coherence tomography and OCTA are gaining popularity in pediatric retinal imaging. This study reports on OCTA and ultra-wide-field OCT images in 4 neonates with various stages of ROP that were obtained using a prototype handheld device. Additional studies will be needed to prove the clinical value of this technology.

  13. An ALMA survey of CO in submillimetre galaxies: companions, triggering, and the environment in blended sources

    NASA Astrophysics Data System (ADS)

    Wardlow, Julie L.; Simpson, J. M.; Smail, Ian; Swinbank, A. M.; Blain, A. W.; Brandt, W. N.; Chapman, S. C.; Chen, Chian-Chou; Cooke, E. A.; Dannerbauer, H.; Gullberg, B.; Hodge, J. A.; Ivison, R. J.; Knudsen, K. K.; Scott, Douglas; Thomson, A. P.; Wei, A.; van der Werf, P. P.

    2018-06-01

    We present ALMA observations of the mid-J12CO emission from six single-dish selected 870-μm sources in the Extended Chandra Deep Field-South (ECDFS) and UKIDSS Ultra-Deep Survey (UDS) fields. These six single-dish submillimetre sources were selected based on previous ALMA continuum observations, which showed that each comprised a blend of emission from two or more individual submillimetre galaxies (SMGs), separated on 5-10″ scales. The six single-dish submillimetre sources targeted correspond to a total of 14 individual SMGs, of which seven have previously-measured robust optical/near-infrared spectroscopic redshifts, which were used to tune our ALMA observations. We detect CO(3-2) or CO(4-3) at z = 2.3-3.7 in seven of the 14 SMGs, and in addition serendipitously detect line emission from three gas-rich companion galaxies, as well as identify four new 3.3-mm selected continuum sources in the six fields. Joint analysis of our CO spectroscopy and existing data suggests that 64( ± 18)% of the SMGs in blended submillimetre sources are unlikely to be physically associated. However, three of the SMG fields (50%) contain new, serendipitously-detected CO-emitting (but submillimetre-faint) sources at similar redshifts to the 870-μm selected SMGs we targeted. These data suggest that the SMGs inhabit overdense regions, but that these are not sufficiently overdense on ˜100 kpc scales to influence the source blending given the short lifetimes of SMGs. We find that 21 ± 12% of SMGs have spatially-distinct and kinematically-close companion galaxies (˜8-150 kpc and ≲ 300 km s-1), which may have enhanced their star-formation via gravitational interactions.

  14. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Implications for Spectral Line Intensity Mapping at Millimeter Wavelengths and CMB Spectral Distortions

    NASA Astrophysics Data System (ADS)

    Carilli, C. L.; Chluba, J.; Decarli, R.; Walter, F.; Aravena, M.; Wagg, J.; Popping, G.; Cortes, P.; Hodge, J.; Weiss, A.; Bertoldi, F.; Riechers, D.

    2016-12-01

    We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C II] 158 μm line emission from very high redshift galaxies (z ˜ 6-7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T B = 0.94 ± 0.09 μK. In the 242 GHz band, the mean brightness is: T B = 0.55 ± 0.033 μK. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.

  15. Can Minor Merging Account for the Size Growth of Quiescent Galaxies? New Results from the CANDELS Survey

    NASA Astrophysics Data System (ADS)

    Newman, Andrew B.; Ellis, Richard S.; Bundy, Kevin; Treu, Tommaso

    2012-02-01

    The presence of extremely compact galaxies at z ~ 2 and their subsequent growth in physical size has been the cause of much puzzlement. We revisit the question using deep infrared Wide Field Camera 3 data to probe the rest-frame optical structure of 935 galaxies selected with 0.4 < z < 2.5 and stellar masses M * > 1010.7 M ⊙ in the UKIRT Ultra Deep Survey and GOODS-South fields of the CANDELS survey. At each redshift, the most compact sources are those with little or no star formation, and the mean size of these systems at fixed stellar mass grows by a factor of 3.5 ± 0.3 over this redshift interval. The data are sufficiently deep to identify companions to these hosts whose stellar masses are ten times smaller. By searching for these around 404 quiescent hosts within a physical annulus 10 h -1 kpc < R < 30 h -1 kpc, we estimate the minor merger rate over 0.4 < z < 2. We find that 13%-18% of quiescent hosts have likely physical companions with stellar mass ratios of 0.1 or greater. Mergers of these companions will typically increase the host mass by 6% ± 2% per merger timescale. We estimate the minimum growth rate necessary to explain the declining abundance of compact galaxies. Using a simple model motivated by recent numerical simulations, we then assess whether mergers of the faint companions with their hosts are sufficient to explain this minimal rate. We find that mergers may explain most of the size evolution observed at z <~ 1 if a relatively short merger timescale is assumed, but the rapid growth seen at higher redshift likely requires additional physical processes.

  16. Evolution of simeprevir-resistant variants over time by ultra-deep sequencing in HCV genotype 1b.

    PubMed

    Akuta, Norio; Suzuki, Fumitaka; Sezaki, Hitomi; Suzuki, Yoshiyuki; Hosaka, Tetsuya; Kobayashi, Masahiro; Kobayashi, Mariko; Saitoh, Satoshi; Ikeda, Kenji; Kumada, Hiromitsu

    2014-08-01

    Using ultra-deep sequencing technology, the present study was designed to investigate the evolution of simeprevir-resistant variants (amino acid substitutions of aa80, aa155, aa156, and aa168 positions in HCV NS3 region) over time. In Toranomon Hospital, 18 Japanese patients infected with HCV genotype 1b, received triple therapy of simeprevir/PEG-IFN/ribavirin (DRAGON or CONCERT study). Sustained virological response rate was 67%, and that was significantly higher in patients with IL28B rs8099917 TT than in those with non-TT. Six patients, who did not achieve sustained virological response, were tested for resistant variants by ultra-deep sequencing, at the baseline, at the time of re-elevation of viral loads, and at 96 weeks after the completion of treatment. Twelve of 18 resistant variants, detected at re-elevation of viral load, were de novo resistant variants. Ten of 12 de novo resistant variants become undetectable over time, and that five of seven resistant variants, detected at baseline, persisted over time. In one patient, variants of Q80R at baseline (0.3%) increased at 96-week after the cessation of treatment (10.2%), and de novo resistant variants of D168E (0.3%) also increased at 96-week after the cessation of treatment (9.7%). In conclusion, the present study indicates that the emergence of simeprevir-resistant variants after the start of treatment could not be predicted at baseline, and the majority of de novo resistant variants become undetectable over time. Further large-scale prospective studies should be performed to investigate the clinical utility in detecting simeprevir-resistant variants. © 2014 Wiley Periodicals, Inc.

  17. Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period

    PubMed Central

    Li, Guangyuan; Zhang, Jiasen

    2014-01-01

    Ultra-broadband, efficient and unidirectional surface plasmon polariton (SPP) launching is of great concern in plasmonic devices and circuits. To address this challenge, a novel method adopting deep-subwavelength slits of subwavelength period (λSPP/4 ~ λSPP/3) in a thick metal film and under backside illumination is proposed. A new band pattern featuring broadband and wide angular characteristics, which is due to the coupling of the zeroth-order SPP resonance at the superstrate–metal interface and the first-order SPP resonance at the metal–substrate interface, is observed for the first time in the dispersion diagram. Unidirectional SPP launching efficiency of ~50%, ultra-broad bandwidth of up to 780 nm, covering the entire optical fiber communication bands, and relatively wide angular range of 7° are achieved. This remarkable efficient, ultra-broadband and wide angular performance is demonstrated by carefully designed experiments in the near infrared regime, showing good agreement with numerical results. PMID:25081812

  18. Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period.

    PubMed

    Li, Guangyuan; Zhang, Jiasen

    2014-08-01

    Ultra-broadband, efficient and unidirectional surface plasmon polariton (SPP) launching is of great concern in plasmonic devices and circuits. To address this challenge, a novel method adopting deep-subwavelength slits of subwavelength period (λSPP/4 ~ λSPP/3) in a thick metal film and under backside illumination is proposed. A new band pattern featuring broadband and wide angular characteristics, which is due to the coupling of the zeroth-order SPP resonance at the superstrate-metal interface and the first-order SPP resonance at the metal-substrate interface, is observed for the first time in the dispersion diagram. Unidirectional SPP launching efficiency of ~50%, ultra-broad bandwidth of up to 780 nm, covering the entire optical fiber communication bands, and relatively wide angular range of 7° are achieved. This remarkable efficient, ultra-broadband and wide angular performance is demonstrated by carefully designed experiments in the near infrared regime, showing good agreement with numerical results.

  19. The deep Earth may not be cooling down

    NASA Astrophysics Data System (ADS)

    Andrault, Denis; Monteux, Julien; Le Bars, Michael; Samuel, Henri

    2016-06-01

    The Earth is a thermal engine generating the fundamental processes of geomagnetic field, plate tectonics and volcanism. Large amounts of heat are permanently lost at the surface yielding the classic view of the deep Earth continuously cooling down. Contrary to this conventional depiction, we propose that the temperature profile in the deep Earth has remained almost constant for the last ∼4.3 billion years. The core-mantle boundary (CMB) has reached a temperature of ∼4400 K in probably less than 1 million years after the Moon-forming impact, regardless the initial core temperature. This temperature corresponds to an abrupt increase in mantle viscosity atop the CMB, when ∼60% of partial crystallization was achieved, accompanied with a major decrease in heat flow at the CMB. Then, the deep Earth underwent a very slow cooling until it reached ∼4100 K today. This temperature at, or just below, the mantle solidus is suggested by seismological evidence of ultra-low velocity zones in the D;-layer. Such a steady thermal state of the CMB temperature excludes thermal buoyancy from being the predominant mechanism to power the geodynamo over geological time. An alternative mechanism to sustain the geodynamo is mechanical forcing by tidal distortion and planetary precession. Motions in the outer core are generated by the conversion of gravitational and rotational energies of the Earth-Moon-Sun system. Mechanical forcing remains efficient to drive the geodynamo even for a sub-adiabatic temperature gradient in the outer core. Our thermal model of the deep Earth is compatible with an average CMB heat flow of 3.0 to 4.7 TW. Furthermore, the regime of core instabilities and/or secular changes in the astronomical forces could have supplied the lowermost mantle with a heat source of variable intensity through geological time. Episodic release of large amounts of heat could have remelted the lowermost mantle, thereby inducing the dramatic volcanic events that occurred during the Earth's history. In this scenario, because the Moon is a necessary ingredient to sustain the magnetic field, the habitability on Earth appears to require the existence of a large satellite.

  20. Towards an understanding of dark matter: Precise gravitational lensing analysis complemented by robust photometric redshifts

    NASA Astrophysics Data System (ADS)

    Coe, Daniel Aaron

    The goal of thesis is to help scientists resolve one of the great mysteries of our time: the nature of Dark Matter. Dark Matter is currently believed to make up over 80% of the material in our universe, yet we have so far inferred but a few of its basic properties. Here we study the Dark Matter surrounding a galaxy cluster, Abell 1689, via the most direct method currently available--gravitational lensing. Abell 1689 is a "strong" gravitational lens, meaning it produces multiple images of more distant galaxies. The observed positions of these images can be measured very precisely and act as a blueprint allowing us to reconstruct the Dark Matter distribution of the lens. Until now, such mass models of Abell 1689 have reproduced the observed multiple images well but with significant positional offsets. Using a new method we develop here, we obtain a new mass model which perfectly reproduces the observed positions of 168 knots identified within 135 multiple images of 42 galaxies. An important ingredient to our mass model is the accurate measurement of distances to the lensed galaxies via their photometric redshifts. Here we develop tools which improve the accuracy of these measurements based on our study of the Hubble Ultra Deep Field, the only image yet taken to comparable depth as the magnified regions of Abell 1689. We present results both for objects in the Hubble Ultra Deep Field and for galaxies gravitationally lensed by Abell 1689. As part of this thesis, we also provide reviews of Dark Matter and Gravitational Lensing, including a chapter devoted to the mass profiles of Dark Matter halos realized in simulations. The original work presented here was performed primarily by myself under the guidance of Narciso Benítez and Holland Ford as a member of the Advanced Camera for Surveys GTO Science Team at Johns Hopkins University and the Instituto de Astrofisica de Andalucfa. My advisors served on my thesis committee along with Rick White, Gabor Domokos, and Steve Zelditch.

  1. Ultra-broadband near-field antenna for terahertz plasmonic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polischuk, O. V., E-mail: polischuk.sfire@mail.ru; Popov, V. V., E-mail: popov-slava@yahoo.co.uk; Knap, W.

    A new type of ultra-broadband near-field antenna for terahertz frequencies is proposed. This antenna is a short-period planar metal array. It is theoretically shown that irradiation of the short-period array antenna by a plane homogeneous terahertz waves excite a highly inhomogeneous near electric field near the metal array. In this case, the amplitude of the excited inhomogeneous near electric field is almost independent of frequency in the entire terahertz frequency range. The excitation of plasma oscillations in a two-dimensional electron system using the antenna under study is numerically simulated in the resonant and non-resonant plasmonic response modes. This type ofmore » antenna can be used for developing ultra-broadband plasmonic detectors of terahertz radiation.« less

  2. Design and progress report for compact cryocooled sapphire oscillator 'VCSO'

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi T.; Tjoelker, Robert L.

    2005-01-01

    We report on the development of a compact cryocooled sapphiere oscillator 'VCSO', designed as a higher-performance replacement for ultra-stable quartz oscillators in local oscillator, cleanup, and flywheel applications in the frequency generation and distribution subsystems of NASA's Deep Space Network (DSN).

  3. MASA's Ultra-Long Duration Balloon Project - Teaching an Old Dog New Tricks

    NASA Technical Reports Server (NTRS)

    Smith, I.; Cutts, J.

    1999-01-01

    The leviathan silently slides through the upper atmosphere of the blue planet, its eye steadily staring into the cold, dark recesses of deep space. Periodically the eye looks at different points in the blackness while processing the information it sees.

  4. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer

    DOE PAGES

    Hong, Matthew K. H.; Macintyre, Geoff; Wedge, David C.; ...

    2015-04-01

    Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones,more » even years after removal of the prostate. As a result, analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.« less

  5. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer.

    PubMed

    Hong, Matthew K H; Macintyre, Geoff; Wedge, David C; Van Loo, Peter; Patel, Keval; Lunke, Sebastian; Alexandrov, Ludmil B; Sloggett, Clare; Cmero, Marek; Marass, Francesco; Tsui, Dana; Mangiola, Stefano; Lonie, Andrew; Naeem, Haroon; Sapre, Nikhil; Phal, Pramit M; Kurganovs, Natalie; Chin, Xiaowen; Kerger, Michael; Warren, Anne Y; Neal, David; Gnanapragasam, Vincent; Rosenfeld, Nitzan; Pedersen, John S; Ryan, Andrew; Haviv, Izhak; Costello, Anthony J; Corcoran, Niall M; Hovens, Christopher M

    2015-04-01

    Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones, even years after removal of the prostate. Analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.

  6. Ultra-deep mutant spectrum profiling: improving sequencing accuracy using overlapping read pairs.

    PubMed

    Chen-Harris, Haiyin; Borucki, Monica K; Torres, Clinton; Slezak, Tom R; Allen, Jonathan E

    2013-02-12

    High throughput sequencing is beginning to make a transformative impact in the area of viral evolution. Deep sequencing has the potential to reveal the mutant spectrum within a viral sample at high resolution, thus enabling the close examination of viral mutational dynamics both within- and between-hosts. The challenge however, is to accurately model the errors in the sequencing data and differentiate real viral mutations, particularly those that exist at low frequencies, from sequencing errors. We demonstrate that overlapping read pairs (ORP) -- generated by combining short fragment sequencing libraries and longer sequencing reads -- significantly reduce sequencing error rates and improve rare variant detection accuracy. Using this sequencing protocol and an error model optimized for variant detection, we are able to capture a large number of genetic mutations present within a viral population at ultra-low frequency levels (<0.05%). Our rare variant detection strategies have important implications beyond viral evolution and can be applied to any basic and clinical research area that requires the identification of rare mutations.

  7. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2013-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  8. A green deep eutectic solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil.

    PubMed

    Ferrone, Vincenzo; Genovese, Salvatore; Carlucci, Maura; Tiecco, Matteo; Germani, Raimondo; Preziuso, Francesca; Epifano, Francesco; Carlucci, Giuseppe; Taddeo, Vito Alessandro

    2018-04-15

    A green dispersive liquid-liquid microextraction (DLLME) using deep eutectic solvent (DES) as the extracting solvent has been developed and applied for the simultaneous quantification of ferulic acid, umbelliferone, boropinic acid, 7-isopentenyloxycoumarin, 4'-geranyloxyferulic acid (GOFA), and auraptene in some vegetable oils using ultra high performance liquid chromatography (UHPLC) with photodiode array detection (PDA). All parameters in the extraction step, including selection and loading of both extracting and dispersing solvents, amount of both extractant and disperser solvent were investigated and optimized. PhAA/TMG DES achieved higher recovery and enrichment factor compared to other DESs. The validated method showed good linearity with correlation coefficients, r 2 >0.9990 for all the analytes. Furthermore, this is the first time that eco-friendly solvents are used for the extraction of oxyprenylated phenylpropanoids and the corresponding extract analyzed with ultra high performance liquid chromatography with photodiode array detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, Judith Alison

    1999-01-01

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.

  10. A VLT Large Programme to Study Galaxies at z ~ 2: GMASS — the Galaxy Mass Assembly Ultra-deep Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Kurk, Jaron; Cimatti, Andrea; Daddi, Emanuele; Mignoli, Marco; Bolzonella, Micol; Pozzetti, Lucia; Cassata, Paolo; Halliday, Claire; Zamorani, Gianni; Berta, Stefano; Brusa, Marcella; Dickinson, Mark; Franceschini, Alberto; Rodighiero, Guilia; Rosati, Piero; Renzini, Alvio

    2009-03-01

    We report on the motivation, sample selection and first results of our VLT FORS2 Large Programme (173.A-0687), which has obtained the longest targeted spectra of distant galaxies obtained so far with the VLT. These long exposures, up to 77 hours for objects included in three masks, were required to detect spectral features of extremely faint galaxies, such as absorption lines of passive galaxies at z > 1.4, a population that had previously escaped attention due to its faintness in the optical wavelength regime, but which represents a critical phase in the evolution of massive galaxies. The ultra-deep spectroscopy allowed us to estimate the stellar metallicity of star-forming galaxies at z ~ 2, to trace colour bimodality up to z = 2 and to characterise a galaxy cluster progenitor at z = 1.6. The approximately 200 spectra produced by GMASS constitute a lasting legacy, populating the “redshift desert” in GOODS-S.

  11. Subseafloor Microbial Life in Venting Fluids from the Mid Cayman Rise Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Reveillaud, J.; Reddington, E.; McDermott, J. M.; Sylva, S. P.; Breier, J. A.; German, C. R.; Seewald, J.

    2012-12-01

    In hard rock seafloor environments, fluids emanating from hydrothermal vents are one of the best windows into the subseafloor and its resident microbial community. The functional consequences of an extensive population of microbes living in the subseafloor remains unknown, as does our understanding of how these organisms interact with one another and influence the biogeochemistry of the oceans. Here we report the abundance, activity, and diversity of microbes in venting fluids collected from two newly discovered deep-sea hydrothermal vents along the ultra-slow spreading Mid-Cayman Rise (MCR). Fluids for geochemical and microbial analysis were collected from the Von Damm and Piccard vent fields, which are located within 20 km of one another, yet have extremely different thermal, geological, and depth regimes. Geochemical data indicates that both fields are highly enriched in volatiles, in particular hydrogen and methane, important energy sources for and by-products of microbial metabolism. At both sites, total microbial cell counts in the fluids ranged in concentration from 5 x 10 4 to 3 x 10 5 cells ml-1 , with background seawater concentrations of 1-2 x 10 4 cells ml-1 . In addition, distinct cell morphologies and clusters of cells not visible in background seawater were seen, including large filaments and mineral particles colonized by microbial cells. These results indicate local enrichments of microbial communities in the venting fluids, distinct from background populations, and are consistent with previous enumerations of microbial cells in venting fluids. Stable isotope tracing experiments were used to detect utilization of acetate, formate, and dissolve inorganic carbon and generation of methane at 70 °C under anaerobic conditions. At Von Damm, a putatively ultra-mafic hosted site located at ~2200 m with a maximum temperature of 226 °C, stable isotope tracing experiments indicate methanogenesis is occurring in most fluid samples. No activity was detected in Piccard vent fluids, a basalt-hosted black smoker site located at ~4950 m with a maximum temperature of 403 °C. However, hyperthermophilic and thermophilic heterotrophs of the genus Thermococcus were isolated from Piccard vent fluids, but not Von Damm. These obligate anaerobes, growing optimally at 55-90 °C, are ubiquitous at hydrothermal systems and serve as a readily cultivable indicator organism of subseafloor populations. Finally, molecular analysis of vent fluids is on-going and will define the microbial population structure in this novel ecosystem and allow for direct comparisons with other deep-sea and subsurface habitats as part of our continuing efforts to explore the deep microbial biosphere on Earth.

  12. Accelerated Evolution of the Lyα Luminosity Function at z >~ 7 Revealed by the Subaru Ultra-deep Survey for Lyα Emitters at z = 7.3

    NASA Astrophysics Data System (ADS)

    Konno, Akira; Ouchi, Masami; Ono, Yoshiaki; Shimasaku, Kazuhiro; Shibuya, Takatoshi; Furusawa, Hisanori; Nakajima, Kimihiko; Naito, Yoshiaki; Momose, Rieko; Yuma, Suraphong; Iye, Masanori

    2014-12-01

    We present the ultra-deep Subaru narrowband imaging survey for Lyα emitters (LAEs) at z = 7.3 in the Subaru/XMM-Newton Deep Survey (SXDS) and Cosmic Evolution Survey (COSMOS) fields (~0.5 deg2) with a total integration time of 106 hr. Exploiting our new sharp bandwidth filter, NB101, installed on the Suprime-Cam, we have reached L(Lyα) = 2.4 × 1042 erg s-1 (5σ) for z = 7.3 LAEs, about four times deeper than previous Subaru z >~ 7 studies, which allows us to reliably investigate the evolution of the Lyα luminosity function (LF) for the first time down to the luminosity limit same as those of Subaru z = 3.1-6.6 LAE samples. Surprisingly, we only find three and four LAEs in the SXDS and COSMOS fields, respectively, while one expects a total of ~65 LAEs by our survey in the case of no Lyα LF evolution from z = 6.6 to 7.3. We identify a decrease of the Lyα LF from z = 6.6 to 7.3 at the >90% confidence level from our z = 7.3 Lyα LF with the best-fit Schechter parameters of L*{Lyα } = 2.7+8.0-1.2 × 1042 {erg} {s}-1 and φ * = 3.7+17.6-3.3 × 10-4 {Mpc}-3 for a fixed α = -1.5. Moreover, the evolution of the Lyα LF is clearly accelerated at z > 6.6 beyond the measurement uncertainties including cosmic variance. Because no such accelerated evolution of the UV-continuum LF or the cosmic star formation rate (SFR) is found at z ~ 7, but suggested only at z > 8, this accelerated Lyα LF evolution is explained by physical mechanisms different from a pure SFR decrease but related to the Lyα production and escape in the process of cosmic reionization. Because a simple accelerating increase of intergalactic medium neutral hydrogen absorbing Lyα cannot be reconciled with Thomson scattering of optical depth measurements from WMAP and Planck, our findings may support new physical pictures suggested by recent theoretical studies, such as the existence of HI clumpy clouds within cosmic ionized bubbles that are selectively absorbing Lyα and the large ionizing photon escape fraction of galaxies causing weak Lyα emission.

  13. A direct calibration of the IRX-β relation in Lyman-break Galaxies at z=3-5

    NASA Astrophysics Data System (ADS)

    Koprowski, M. P.; Coppin, K. E. K.; Geach, J. E.; McLure, R. J.; Almaini, O.; Blain, A. W.; Bremer, M.; Bourne, N.; Chapman, S. C.; Conselice, C. J.; Dunlop, J. S.; Farrah, D.; Hartley, W.; Karim, A.; Knudsen, K. K.; Michałowski, M. J.; Scott, D.; Simpson, C.; Smith, D. J. B.; van der Werf, P. P.

    2018-06-01

    We use a sample of 4209 Lyman break galaxies (LBGs) at z ≃ 3, 4 and 5 in the UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra Deep Survey (UDS) field to investigate the relationship between the observed slope of the stellar continuum emission in the ultraviolet, β, and the thermal dust emission, as quantified via the so-called `infrared excess' (IRX ≡ LIR/LUV). Through a stacking analysis we directly measure the 850μm flux density of LBGs in our deep (0.9 mJy) James Clerk Maxwell Telescope (JCMT) SCUBA-2 850-μm map, as well as deep public Herschel/SPIRE 250-, 350- and 500-μm imaging. We establish functional forms for the IRX-β relation to z ˜ 5, confirming that there is no significant redshift evolution of the relation and that the resulting average IRX-β curve is consistent with a Calzetti-like attenuation law. By comparing our results with recent works in the literature, we confirm that discrepancies in the slope of the IRX-β relation are driven by biases in the methodology used to determine the ultraviolet slopes. Consistent results are found when IRX-β is evaluated by stacking in bins of stellar mass, and we argue that the near-linear IRX-M⋆ relationship is a better proxy for correcting observed UV luminosities to total star formation rates, provided an accurate handle on M⋆ can be had, and also gives clues as to the physical driver of the role of dust-obscured star formation in high-redshift galaxies.

  14. Enhanced hole boring with two-color relativistic laser pulses in the fast ignition scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Changhai; Tian, Ye; Li, Wentao

    A scheme of using two-color laser pulses for hole boring into overdense plasma as well as energy transfer into electron and ion beams has been studied using particle-in-cell simulations. Following an ultra-short ultra-intense hole-boring laser pulse with a short central wavelength in extreme ultra-violet range, the main infrared driving laser pulse can be guided in the hollow channel preformed by the former laser and propagate much deeper into an overdense plasma, as compared to the case using the infrared laser only. In addition to efficiently transferring the main driving laser energy into energetic electrons and ions generation deep inside themore » overdense plasma, the ion beam divergence can be greatly reduced. The results might be beneficial for the fast ignition concept of inertial confinement fusion.« less

  15. Programmable Ultra-Lightweight System Adaptable Radio

    NASA Technical Reports Server (NTRS)

    Werkheiser, Arthur

    2015-01-01

    The programmable ultra-lightweight system adaptable radio (PULSAR) is a NASA Marshall Space Flight Center transceiver designed for the CubeSat market, but has the potential for other markets. The PULSAR project aims to reduce size, weight, and power while increasing telemetry data rate. The current version of the PULSAR has a mass of 2.2 kg and a footprint of 10.8 cm2. The height depends on the specific configuration. The PULSAR S-Band Communications Subsystem is an S- and X-band transponder system comprised of a receiver/detector (receiver) element, a transmitter element(s), and related power distribution, command, control, and telemetry element for operation and information interfaces. It is capable of receiving commands, encoding and transmitting telemetry, as well as providing tracking data in a manner compatible with Earthbased ground stations, near Earth network, and deep space network station resources. The software-defined radio's (SDR's) data format characteristics can be defined and reconfigured during spaceflight or prior to launch. The PULSAR team continues to evolve the SDR to improve the performance and form factor to meet the requirements that the CubeSat market space requires. One of the unique features is that the actual radio design can change (somewhat), but not require any hardware modifications due to the use of field programmable gate arrays.

  16. The elder abuse and neglect phenomenon in the ultra-Orthodox Jewish society: social workers' perspectives.

    PubMed

    Band-Winterstein, Tova

    2018-02-13

    In the last 30 years, elder abuse and neglect has been recognized as a social and health-related problem. The aim of this paper is to describe the phenomenon of elder abuse and neglect in a separatist faith-based society (ultra-Orthodox Jewish society-UOJS). A qualitative-phenomenological study with 28 social workers who underwent in-depth semi-structured interviews based on an interview guide consisting of the following items: visibility of the elder abuse and neglect phenomenon in the ultra-Orthodox society, and dilemmas and sensitive issues that arise when working with this population. Three main themes emerged: (1) Between the commandment to honor one's parents and concealment patterns: Cultural barriers to exposing the abuse and neglect phenomenon; (2) "Life is demanding:" The unique expression of abusive and neglectful behavior in the UOJS; (3) Culturally related dilemmas when intervening with cases of elder abuse and neglect. Ultra-Orthodox Jewish cultural belief is a differentiating component in the context of elder abuse and neglect. Social workers need to develop a deep understanding of the unique characteristics of the phenomenon and cultural sensitivity to cope with it to address the well-being of older ultra-Orthodox Jews.

  17. A robust and cost-effective approach to sequence and analyze complete genomes of small RNA viruses

    USDA-ARS?s Scientific Manuscript database

    Background: Next-generation sequencing (NGS) allows ultra-deep sequencing of nucleic acids. The use of sequence-independent amplification of viral nucleic acids without utilization of target-specific primers provides advantages over traditional sequencing methods and allows detection of unsuspected ...

  18. Deep-UV-sensitive high-frame-rate backside-illuminated CCD camera developments

    NASA Astrophysics Data System (ADS)

    Dawson, Robin M.; Andreas, Robert; Andrews, James T.; Bhaskaran, Mahalingham; Farkas, Robert; Furst, David; Gershstein, Sergey; Grygon, Mark S.; Levine, Peter A.; Meray, Grazyna M.; O'Neal, Michael; Perna, Steve N.; Proefrock, Donald; Reale, Michael; Soydan, Ramazan; Sudol, Thomas M.; Swain, Pradyumna K.; Tower, John R.; Zanzucchi, Pete

    2002-04-01

    New applications for ultra-violet imaging are emerging in the fields of drug discovery and industrial inspection. High throughput is critical for these applications where millions of drug combinations are analyzed in secondary screenings or high rate inspection of small feature sizes over large areas is required. Sarnoff demonstrated in1990 a back illuminated, 1024 X 1024, 18 um pixel, split-frame-transfer device running at > 150 frames per second with high sensitivity in the visible spectrum. Sarnoff designed, fabricated and delivered cameras based on these CCDs and is now extending this technology to devices with higher pixel counts and higher frame rates through CCD architectural enhancements. The high sensitivities obtained in the visible spectrum are being pushed into the deep UV to support these new medical and industrial inspection applications. Sarnoff has achieved measured quantum efficiencies > 55% at 193 nm, rising to 65% at 300 nm, and remaining almost constant out to 750 nm. Optimization of the sensitivity is being pursued to tailor the quantum efficiency for particular wavelengths. Characteristics of these high frame rate CCDs and cameras will be described and results will be presented demonstrating high UV sensitivity down to 150 nm.

  19. Chandra ACIS Sub-pixel Resolution

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Anderson, C. S.; Mossman, A. E.; Allen, G. E.; Fabbiano, G.; Glotfelty, K. J.; Karovska, M.; Kashyap, V. L.; McDowell, J. C.

    2011-05-01

    We investigate how to achieve the best possible ACIS spatial resolution by binning in ACIS sub-pixel and applying an event repositioning algorithm after removing pixel-randomization from the pipeline data. We quantitatively assess the improvement in spatial resolution by (1) measuring point source sizes and (2) detecting faint point sources. The size of a bright (but no pile-up), on-axis point source can be reduced by about 20-30%. With the improve resolution, we detect 20% more faint sources when embedded on the extended, diffuse emission in a crowded field. We further discuss the false source rate of about 10% among the newly detected sources, using a few ultra-deep observations. We also find that the new algorithm does not introduce a grid structure by an aliasing effect for dithered observations and does not worsen the positional accuracy

  20. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts.

    PubMed

    Shprits, Yuri Y; Drozdov, Alexander Y; Spasojevic, Maria; Kellerman, Adam C; Usanova, Maria E; Engebretson, Mark J; Agapitov, Oleksiy V; Zhelavskaya, Irina S; Raita, Tero J; Spence, Harlan E; Baker, Daniel N; Zhu, Hui; Aseev, Nikita A

    2016-09-28

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.

  1. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    PubMed Central

    Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.

    2016-01-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes. PMID:27678050

  2. Ultra-wide-field and autofluorescence imaging of choroidal dystrophies.

    PubMed

    Yuan, Alex; Kaines, Andrew; Jain, Atul; Reddy, Shantan; Schwartz, Steven D; Sarraf, David

    2010-10-28

    The authors retrospectively identified 2 cases of gyrate atrophy, 3 cases of choroideremia, and 1 case of the carrier state of choroideremia who underwent ultra-wide-field fundus photography and fluorescein angiography. The findings were studied and compared to standard fundus photography and fluorescein angiography. Gyrate atrophy demonstrated a diffuse confluent extent of chorioretinal atrophy extending from the anterior to the posterior pole to the periphery. Choroideremia demonstrated a patchy irregular pattern of chorioretinal atrophy extending from the posterior pole to the periphery. Peripheral reticular degeneration without chorioretinal atrophy was appreciated in the carrier state. Ultra-wide-field imaging of these choroidal dystrophies demonstrated distinctive patterns that may aid in their identification and diagnosis. Copyright 2010, SLACK Incorporated.

  3. Ultra-fast transient plasmonics using transparent conductive oxides

    NASA Astrophysics Data System (ADS)

    Ferrera, Marcello; Carnemolla, Enrico G.

    2018-02-01

    During the last decade, plasmonic- and metamaterial-based applications have revolutionized the field of integrated photonics by allowing for deep subwavelength confinement and full control over the effective permittivity and permeability of the optical environment. However, despite the numerous remarkable proofs of principle that have been experimentally demonstrated, few key issues remain preventing a widespread of nanophotonic technologies. Among these fundamental limitations, we remind the large ohmic losses, incompatibility with semiconductor industry standards, and largely reduced dynamic tunability of the optical properties. In this article, in the larger context of the new emerging field of all-dielectric nanophotonics, we present our recent progresses towards the study of large optical nonlinearities in transparent conducting oxides (TCOs) also giving a general overview of the most relevant and recent experimental attainments using TCO-based technology. However, it is important to underline that the present article does not represent a review paper but rather an original work with a broad introduction. Our work lays in a sort of ‘hybrid’ zone in the middle between high index contrast systems, whose behaviour is well described by applying Mie scattering theory, and standard plasmonic elements where optical modes originate from the electromagnetic coupling with the electronic plasma at the metal-to-dielectric interface. Beside remaining in the context of plasmonic technologies and retaining all the fundamental peculiarities that promoted the success of plasmonics in the first place, our strategy has the additional advantage to allow for large and ultra-fast tunability of the effective complex refractive index by accessing the index-near-zero regime in bulk materials at telecom wavelength.

  4. [Methodological aspects of functional neuroimaging at high field strength: a critical review].

    PubMed

    Scheef, L; Landsberg, M W; Boecker, H

    2007-09-01

    The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications.

  5. Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type UltraBattery for micro-HEV applications

    NASA Astrophysics Data System (ADS)

    Furukawa, J.; Takada, T.; Monma, D.; Lam, L. T.

    The UltraBattery has been invented by the CSIRO Energy Technology in Australia and has been developed and produced by the Furukawa Battery Co., Ltd., Japan. This battery is a hybrid energy storage device which combines a super capacitor and a lead-acid battery in single unit cells, taking the best from both technologies without the need of extra, expensive electronic controls. The capacitor enhances the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging, thus enabling it to provide and absorb charge rapidly during vehicle acceleration and braking. The laboratory results of the prototype valve-regulated UltraBatteries show that the capacity, power, available energy, cold cranking and self-discharge of these batteries have met, or exceeded, all the respective performance targets set for both minimum and maximum power-assist HEVs. The cycling performance of the UltraBatteries under micro-, mild- and full-HEV duties is at least four times longer than that of the state-of-the-art lead-acid batteries. Importantly, the cycling performance of UltraBatteries is proven to be comparable or even better than that of the Ni-MH cells. On the other hand, the field trial of UltraBatteries in the Honda Insight HEV shows that the vehicle has surpassed 170,000 km and the batteries are still in a healthy condition. Furthermore, the UltraBatteries demonstrate very good acceptance of the charge from regenerative braking even at high state-of-charge, e.g., 70% during driving. Therefore, no equalization charge is required for the UltraBatteries during field trial. The HEV powered by UltraBatteries gives slightly higher fuel consumption (cf., 4.16 with 4.05 L/100 km) and CO 2 emissions (cf., 98.8 with 96 g km -1) compared with that by Ni-MH cells. There are no differences in driving experience between the Honda Insight powered by UltraBatteries and by Ni-MH cells. Given such comparable performance, the UltraBattery pack costs considerably less - only 20-40% of that of the Ni-MH pack by one estimate. In parallel with the field trial, a similar 144-V valve-regulated UltraBattery pack was also evaluated under simulated medium-HEV duty in our laboratories. In this study, the laboratory performance of the 144-V valve-regulated UltraBattery pack under simulated medium-HEV duty and that of the recently developed flooded-type UltraBattery under micro-HEV duty will be discussed. The flooded-type UltraBattery is expected to be favorable to the micro-HEVs because of reduced cost compared with the equivalent valve-regulated counterpart.

  6. Field evaluation of indoor thermal fog and ultra-low volume applications for control of Aedes aegypti, in Thailand

    USDA-ARS?s Scientific Manuscript database

    Efficacies of a hand-held thermal fogger (PatriotTM) and hand-held Ultra-low volume (ULV) sprayer (TwisterTM) with combinations of two different adulticides and an insect growth regulator (pyriproxyfen) were field assessed and compared for their impact on reducing dengue vector populations in Thaila...

  7. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.

    PubMed

    Wang, Sheng; Sun, Siqi; Li, Zhen; Zhang, Renyu; Xu, Jinbo

    2017-01-01

    Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question. Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact-assisted models also have much better quality than template-based models especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5 for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for only 10 of them. Further, even if trained mostly by soluble proteins, our deep learning method works very well on membrane proteins. In the recent blind CAMEO benchmark, our fully-automated web server implementing this method successfully folded 6 targets with a new fold and only 0.3L-2.3L effective sequence homologs, including one β protein of 182 residues, one α+β protein of 125 residues, one α protein of 140 residues, one α protein of 217 residues, one α/β of 260 residues and one α protein of 462 residues. Our method also achieved the highest F1 score on free-modeling targets in the latest CASP (Critical Assessment of Structure Prediction), although it was not fully implemented back then. http://raptorx.uchicago.edu/ContactMap/.

  8. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model

    PubMed Central

    Li, Zhen; Zhang, Renyu

    2017-01-01

    Motivation Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. Method This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question. Results Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact-assisted models also have much better quality than template-based models especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5 for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for only 10 of them. Further, even if trained mostly by soluble proteins, our deep learning method works very well on membrane proteins. In the recent blind CAMEO benchmark, our fully-automated web server implementing this method successfully folded 6 targets with a new fold and only 0.3L-2.3L effective sequence homologs, including one β protein of 182 residues, one α+β protein of 125 residues, one α protein of 140 residues, one α protein of 217 residues, one α/β of 260 residues and one α protein of 462 residues. Our method also achieved the highest F1 score on free-modeling targets in the latest CASP (Critical Assessment of Structure Prediction), although it was not fully implemented back then. Availability http://raptorx.uchicago.edu/ContactMap/ PMID:28056090

  9. Mass Modeling of Frontier Fields Cluster MACS J1149.5+2223 Using Strong and Weak Lensing

    NASA Astrophysics Data System (ADS)

    Finney, Emily Quinn; Bradač, Maruša; Huang, Kuang-Han; Hoag, Austin; Morishita, Takahiro; Schrabback, Tim; Treu, Tommaso; Borello Schmidt, Kasper; Lemaux, Brian C.; Wang, Xin; Mason, Charlotte

    2018-05-01

    We present a gravitational-lensing model of MACS J1149.5+2223 using ultra-deep Hubble Frontier Fields imaging data and spectroscopic redshifts from HST grism and Very Large Telescope (VLT)/MUSE spectroscopic data. We create total mass maps using 38 multiple images (13 sources) and 608 weak-lensing galaxies, as well as 100 multiple images of 31 star-forming regions in the galaxy that hosts supernova Refsdal. We find good agreement with a range of recent models within the HST field of view. We present a map of the ratio of projected stellar mass to total mass (f ⋆) and find that the stellar mass fraction for this cluster peaks on the primary BCG. Averaging within a radius of 0.3 Mpc, we obtain a value of < {f}\\star > ={0.012}-0.003+0.004, consistent with other recent results for this ratio in cluster environments, though with a large global error (up to δf ⋆ = 0.005) primarily due to the choice of IMF. We compare values of f ⋆ and measures of star formation efficiency for this cluster to other Hubble Frontier Fields clusters studied in the literature, finding that MACS1149 has a higher stellar mass fraction than these other clusters but a star formation efficiency typical of massive clusters.

  10. Ultra Thin Poly-Si Nanosheet Junctionless Field-Effect Transistor with Nickel Silicide Contact

    PubMed Central

    Lin, Yu-Ru; Tsai, Wan-Ting; Wu, Yung-Chun; Lin, Yu-Hsien

    2017-01-01

    This study demonstrated an ultra thin poly-Si junctionless nanosheet field-effect transistor (JL NS-FET) with nickel silicide contact. For the nickel silicide film, two-step annealing and a Ti capping layer were adopted to form an ultra thin uniform nickel silicide film with low sheet resistance (Rs). The JL NS-FET with nickel silicide contact exhibited favorable electrical properties, including a high driving current (>107A), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this study compared the electrical characteristics of JL NS-FETs with and without nickel silicide contact. PMID:29112139

  11. Ultra Thin Poly-Si Nanosheet Junctionless Field-Effect Transistor with Nickel Silicide Contact.

    PubMed

    Lin, Yu-Ru; Tsai, Wan-Ting; Wu, Yung-Chun; Lin, Yu-Hsien

    2017-11-07

    This study demonstrated an ultra thin poly-Si junctionless nanosheet field-effect transistor (JL NS-FET) with nickel silicide contact. For the nickel silicide film, two-step annealing and a Ti capping layer were adopted to form an ultra thin uniform nickel silicide film with low sheet resistance (Rs). The JL NS-FET with nickel silicide contact exhibited favorable electrical properties, including a high driving current (>10⁷A), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this study compared the electrical characteristics of JL NS-FETs with and without nickel silicide contact.

  12. First data release of the Hyper Suprime-Cam Subaru Strategic Program

    NASA Astrophysics Data System (ADS)

    Aihara, Hiroaki; Armstrong, Robert; Bickerton, Steven; Bosch, James; Coupon, Jean; Furusawa, Hisanori; Hayashi, Yusuke; Ikeda, Hiroyuki; Kamata, Yukiko; Karoji, Hiroshi; Kawanomoto, Satoshi; Koike, Michitaro; Komiyama, Yutaka; Lang, Dustin; Lupton, Robert H.; Mineo, Sogo; Miyatake, Hironao; Miyazaki, Satoshi; Morokuma, Tomoki; Obuchi, Yoshiyuki; Oishi, Yukie; Okura, Yuki; Price, Paul A.; Takata, Tadafumi; Tanaka, Manobu M.; Tanaka, Masayuki; Tanaka, Yoko; Uchida, Tomohisa; Uraguchi, Fumihiro; Utsumi, Yousuke; Wang, Shiang-Yu; Yamada, Yoshihiko; Yamanoi, Hitomi; Yasuda, Naoki; Arimoto, Nobuo; Chiba, Masashi; Finet, Francois; Fujimori, Hiroki; Fujimoto, Seiji; Furusawa, Junko; Goto, Tomotsugu; Goulding, Andy; Gunn, James E.; Harikane, Yuichi; Hattori, Takashi; Hayashi, Masao; Hełminiak, Krzysztof G.; Higuchi, Ryo; Hikage, Chiaki; Ho, Paul T. P.; Hsieh, Bau-Ching; Huang, Kuiyun; Huang, Song; Imanishi, Masatoshi; Iwata, Ikuru; Jaelani, Anton T.; Jian, Hung-Yu; Kashikawa, Nobunari; Katayama, Nobuhiko; Kojima, Takashi; Konno, Akira; Koshida, Shintaro; Kusakabe, Haruka; Leauthaud, Alexie; Lee, Chien-Hsiu; Lin, Lihwai; Lin, Yen-Ting; Mandelbaum, Rachel; Matsuoka, Yoshiki; Medezinski, Elinor; Miyama, Shoken; Momose, Rieko; More, Anupreeta; More, Surhud; Mukae, Shiro; Murata, Ryoma; Murayama, Hitoshi; Nagao, Tohru; Nakata, Fumiaki; Niida, Mana; Niikura, Hiroko; Nishizawa, Atsushi J.; Oguri, Masamune; Okabe, Nobuhiro; Ono, Yoshiaki; Onodera, Masato; Onoue, Masafusa; Ouchi, Masami; Pyo, Tae-Soo; Shibuya, Takatoshi; Shimasaku, Kazuhiro; Simet, Melanie; Speagle, Joshua; Spergel, David N.; Strauss, Michael A.; Sugahara, Yuma; Sugiyama, Naoshi; Suto, Yasushi; Suzuki, Nao; Tait, Philip J.; Takada, Masahiro; Terai, Tsuyoshi; Toba, Yoshiki; Turner, Edwin L.; Uchiyama, Hisakazu; Umetsu, Keiichi; Urata, Yuji; Usuda, Tomonori; Yeh, Sherry; Yuma, Suraphong

    2018-01-01

    The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most important outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded 300 nights of observing time at the Subaru Telescope, and it started in 2014 March. This paper presents the first public data release of HSC-SSP. This release includes data taken in the first 1.7 yr of observations (61.5 nights), and each of the Wide, Deep, and UltraDeep layers covers about 108, 26, and 4 square degrees down to depths of i ˜ 26.4, ˜26.5, and ˜27.0 mag, respectively (5 σ for point sources). All the layers are observed in five broad bands (grizy), and the Deep and UltraDeep layers are observed in narrow bands as well. We achieve an impressive image quality of 0{^''.}6 in the i band in the Wide layer. We show that we achieve 1%-2% point spread function (PSF) photometry (root mean square) both internally and externally (against Pan-STARRS1), and ˜10 mas and 40 mas internal and external astrometric accuracy, respectively. Both the calibrated images and catalogs are made available to the community through dedicated user interfaces and database servers. In addition to the pipeline products, we also provide value-added products such as photometric redshifts and a collection of public spectroscopic redshifts. Detailed descriptions of all the data can be found online. The data release website is https://hsc-release.mtk.nao.ac.jp.

  13. An overview of monogenetic carbonatitic magmatism from Uganda, Italy, China and Spain: Volcanologic and geochemical features

    NASA Astrophysics Data System (ADS)

    Stoppa, Francesco; Schiazza, Mariangela

    2013-01-01

    We address general features of carbonatite monogenetic volcanic fields located in continental settings which are peculiar being associated with kamafugites or melilite-bearing leucitites. Instructive examples are the Toro Ankole in Uganda, West Qinling in China, and Campo de Calatrava in Spain and the Intra-mountain Ultra-alkaline Province (IUP) of Italy. Maars are the typical volcanic forms, occurring in isolation or in clusters along fault systems. Concentric-shelled juvenile lapilli and bombs, having a upper-mantle peridotite kernel, are unique to this type of volcanism. These pyroclasts are interpreted as the result of deep-seated fragmentation of magma having a high carbon dioxide-water (CO2/H2O) ratio. The presence of discrete, large peridotitic nodules implies a high-velocity propagation of magma, while the associated large CO2 emission suggests a high proportion of juvenile CO2. Magma fragmentation is inferred to occur as a consequence of explosive CO2 exsolution at the upper mantle level (diatresis) followed by immiscibility. Based on field evidence, carbonatitic maar formation could be due to violent CO2 expansion and does not require phreatomagmatic phenomena. Extrusive carbonatites and associated rocks represent very primitive melts having a distinct High Field Strength Elements (HFSE) distribution, the source of which is related to enriched mantle. Carbonated peridotite is a stable paragenesis at depths of 400-600 km; thus, primary carbonatitic silicate magma can be produced at these depths as a consequence of rising deeper melt/fluids that are trapped at the transition zone. In our opinion, carbonatitic carbon is linked to the primary process of deep-mantle differentiation and Earth's core degassing.

  14. Pulsed Laser Techniques to Determine Lattice and Radiative Thermal Conductivity of Deep Planetary Materials at Extreme Pressure-Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Lobanov, S.; Goncharov, A. F.; Holtgrewe, N.; Konopkova, Z.; McWilliams, R. S.

    2017-12-01

    Thermal conductivity of deep planetary materials determines the planetary heat transport mode and properties (e.g. magnetic field) and can be used to decipher the planetary thermal history. Due to the lack of direct measurements of the lattice and radiative conductivity of the relevant materials at the planetary conditions, the current geodynamical models use theoretical calculations and extrapolations of the available experimental data. Here we describe our pulsed laser techniques that enable direct measurements of the lattice and radiative lattice conductivity of the Earth's mantle and core materials and also of noble gases and simple molecules present in the interiors of giant planets (e.g. hydrogen). Flash heating laser techniques working in a pump-probe mode that include time resolved two-side radiative and thermoreflection temperature probes employ various laser and photo-detector configurations, which provide a measure of the thermal fluxes propagating through the samples confined in the diamond anvil cell cavity. A supercontinuum ultra-bright broadband laser source empower accurate measurements of the optical properties of planetary materials used to extract the radiative conductivity. Finite element calculations serve to extract the temperature and pressure dependent thermal conductivity and temperature gradients across the sample. We report thermal conductivity measurements of the Earth's minerals (postperovskite, bridgmanite, ferropericlase) and their assemblies (pyrolite) and core materials (Fe and alloys with Si and O) at the realistic deep Earth's pressure temperature conditions. We thank J.-F.Lin, M. Murakami, J. Badro for contributing to this work.

  15. Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits.

    PubMed

    Cai, Yijun; Zhu, Jinfeng; Liu, Qing Huo; Lin, Timothy; Zhou, Jianyang; Ye, Longfang; Cai, Zhiping

    2015-12-14

    Modulating spatial near-infrared light for ultra-compact electro-optic devices is a critical issue in optical communication and imaging applications. To date, spatial near-infrared modulators based on graphene have been reported, but they showed limited modulation effects due to the relatively weak light-graphene interaction. In combination with graphene and metallic nanoslits, we design a kind of ultrathin near-infrared perfect absorber with enhanced spatial modulation effects and independence on a wide range of incident angles. The modulated spectral shift of central wavelength is up to 258.2 nm in the near-infrared range, which is more promising in applications than state-of-the-art devices. The modulation enhancement is attributed to the plasmonic nanoslit mode, in which the optical electric field is highly concentrated in the deep subwavelength scale and the light-graphene interaction is significantly strengthened. The physical insight is deeply revealed by a combination of equivalent circuit and electromagnetic field analysis. The design principles are not only crucial for spatial near-infrared modulators, but also provide a key guide for developing active near-infrared patch nanoantennas based on graphene.

  16. The Chajnantor Sub/Millimeter Survey Telescope

    NASA Astrophysics Data System (ADS)

    Golwala, Sunil

    2018-01-01

    We are developing the Chajnantor Sub/millimeter Survey Telescope, a project to build a 30-m telescope operating at wavelengths as short as 850 µm with 1 degree field of view for imaging and multi-object spectroscopic surveys. This project will provide massive new data sets for studying star formation at high redshift and in the local universe, feedback mechanisms in galaxy evolution, the structure of galaxy clusters, and the cosmological peculiar velocity field. We will highlight CSST's capabilities for studying galaxy evolution, where it will: trace the evolution of dusty, star-forming galaxies from high redshift to the z ≍ 1-3 epoch when they dominate the cosmic star formation rate; connect this population to the high-redshift rest-frame UV/optical galaxy population; use these dusty galaxies, the most biased overdensities, to guide ultra-deep followup at z > 3.5 and possibly z > 7; measure the brightness of important submm/FIR spectral lines like [CII]; search for molecular and atomic outflows; and do calorimetry of the CGM via the thermal SZ effect. We will describe the expected surveys addressing these science goals, the novel telescope design, and the planned survey instrumentation.

  17. Synthetic Spin-Orbit and Light Field Coupling in Ultra-cold Quantum Gases

    NASA Astrophysics Data System (ADS)

    Dong, Lin

    Ultra-cold quantum gases subjected to light-induced synthetic gauge potentials have become an emergent field of theoretical and experimental studies. Because of the novel application of two-photon Raman transitions, ultra-cold neutral atoms behave like charged particles in magnetic field. The Raman coupling naturally gives rise to an effective spin-orbit interaction which couples the atoms center-of-mass motion to its selected pseudo-spin degrees of freedom. Combined with unprecedented controllability of interactions, geometry, disorder strength, spectroscopy, and high resolution measurement of momentum distribution, etc., we are truly in an exciting era of fulfilling and going beyond Richard Feynman's vision. of realizing quantum simulators to better understand the quantum mechanical nature of the universe, manifested immensely in the ultra-cold regimes. In this dissertation, we present a collection of theoretical progresses made by the doctoral candidate and his colleagues and collaborators. From the past few years of work, we mainly address three aspects of the synthetic spin-orbit and light field induced coupling in ultracold quantum gases: a) The ground-state physics of singleparticle system, two-body bound states, and many-body systems, all of which are subjected to spin-orbit coupling originated from synthetic gauge potentials; b) The symmetry breaking, topological phase transition and quench dynamics, which are conveniently offered by the realized experimental setup; c) The proposal and implications of light field induced dynamical spin-orbit coupling for atoms inside optical cavity. Our work represents an important advancement of theoretical understanding to the active research frontier of ultra-cold atom physics with spin-orbit coupling.

  18. Smectite Dehydration, Membrane Filtration, and Pore-Water Freshening in Deep Ultra-Low Permeability Formations: Deep Processes in the Nankai Accretionary Wedge

    NASA Astrophysics Data System (ADS)

    Brown, K. M.; Sample, J. C.; Even, E.; Poeppe, D.; Henry, P.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.

    2014-12-01

    We address the fundamental questions surrounding the nature of water and chemical transport processes deep within sedimentary basin and accretionary-wedge environments. Consolidation and permeability studies conducted to 165 MPa (~10km depth) indicate that ultra-tight clay formations (10-18 m2 to10-21 m2) can substantially modify the fluids migrating through then. Pore-water extractions conducted on smectite/illite rich core samples obtained from 1-3 km depths at IODP (NanTroSEIZE, Chikyu) deep-riser drilling Site C0002, at the elevated loads required to squeeze waters from such deeply buried sediment (stresses up to 100 MPa),resulted in anomalous patterns of sequential freshening with progressive loading. More accurate laboratory investigations (both incremental loading and Constant Rate of Strain test) revealed that such freshening initiates above 20 MPa and progresses with consolidation to become greater than 20% by effective normal load of 165 MPa. Log-log plots of stress vs. hydraulic conductivity reveal that trends remain linear to elevated stresses and total porosities as low at 14%. The implications are that stress induced smectite dehydration and/or membrane filtration effects cause remarkable changes in pore water chemistry with fluid migration through deep, tight, clay-rich formations. These changes should occur in addition to any thermally induced diagenetic and clay-dehydration effects on pore water chemistry. Work is progressing to evaluate the impact of clay composition and temperature to ascertain if purely illitic compositions show similar trends and if the mass fractionation of water and other isotopes also occurs. Such studies will ascertain if the presence of smectite is a prerequisite for freshening or if membrane filtration is a major process in earth systems containing common clay minerals. The results have major implications for interpretations of mass chemical balances, pore water profiles, and the hydrologic, geochemical, and stress state controls on deep system behavior in all deep accretionary wedge and basin environments where clays are abundant. This research used samples provided by the International Ocean Discovery Program (IODP).

  19. First high-resolution near-seafloor survey of magnetic anomalies of the South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, J.; Xu, X.; Li, C.; Sun, Z.; Zhu, J.; Zhou, Z.; Qiu, N.

    2013-12-01

    We successfully conducted the first high-resolution near-seafloor magnetic survey of the Central, Southwest, and Northern Central Basins of the South China Sea (SCS) during two cruises on board Chinese R/V HaiYangLiuHao in October-November 2012 and March-April 2013, respectively. Measurements of magnetic field were made along four long survey lines, including (1) a NW-SE across-isochron profile transecting the Southwest Basin and covering all ages of the oceanic crust (Line CD); (2) a N-S across-isochron profile transecting the Central Basin (Line AB); and (3) two sub-parallel NE-SW across-isochron profiles transecting the Northern Central Basin of the SCS (Lines D and E). A three-axis magnetometer was mounted on a deep-tow vehicle, flying within 0.6 km above the seafloor. The position of the tow vehicle was provided by an ultra-short baseline navigation system along Lines D and E, while was estimated using shipboard GPS along Lines AB and CD. To investigate crustal magnetization, we first removed the International Geomagnetic Reference Field (IGRF) of 2010 from the measured magnetic data, and then downward continued the resultant magnetic field data to a horizontal plane at a water depth of 4.5 km to correct for variation due to the fishing depth of the deep-tow vehicle. Finally, we calculated magnetic anomalies at various water depths after reduction-to-the-pole corrections. We also constructed polarity reversal block (PRB) models of crustal magnetization by matching peaks and troughs of the observed magnetic field anomaly. Our analysis yielded the following results: (1) The near-bottom magnetic anomaly showed peak-to-trough amplitudes of more than 2,500 nT, which are several times of the anomaly amplitudes at the sea surface, illustrating that deep-tow measurements acquired much higher spatial resolutions. (2) The deep-tow data revealed several distinctive magnetic anomalies with wavelengths of 5-15 km and amplitudes of several hundred nT. These short-wavelength anomalies were unrecognized in sea surface measurements. (3) Preliminary results showed that the study regions might have experienced several episodes of magnetic reversal events that were not recognized in existing models. (4) We are currently investigating the geomagnetic timing of these relatively short-duration events to determine the detailed spreading history of the sub-basins of the SCS. These high-resolution near-seafloor magnetic survey lines are located close to the planned drilling sites of IODP Expedition 349 scheduled for January-March 2014.

  20. Nonlinear quasi-static analysis of ultra-deep-water top-tension riser

    NASA Astrophysics Data System (ADS)

    Gao, Guanghai; Qiu, Xingqi; Wang, Ke; Liu, Jianjun

    2017-09-01

    In order to analyse the ultra-deep-water top-tension riser deformation in drilling conditions, a nonlinear quasi-static analysis model and equation are established. The riser in this model is regarded as a simply supported beam located in the vertical plane and is subjected to non-uniform axial and lateral forces. The model and the equation are solved by the finite element method. The effects of riser outside diameter, top tension ratio, sea surface current velocity, drag force coefficient, floating system drift distance and water depth on the riser lateral displacement are discussed. Results show that the riser lateral displacement increase with the increase in the sea surface current velocity, drag force coefficient and water depth, whereas decrease with the increase in the riser outside diameter, top tension ratio. The top tension ratio has an important influence on the riser deformation and it should be set reasonably under different circumstances. The drift of the floating system has a complicated influence on the riser deformation and it should avoid a large drift distance in the proceedings of drilling and production.

  1. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors.

    PubMed

    Kawahito, Shoji; Seo, Min-Woong

    2016-11-06

    This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e - rms ) when compared with the CMS gain of two (2.4 e - rms ), or 16 (1.1 e - rms ).

  2. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, J.A.

    1999-06-15

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.

  3. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors

    PubMed Central

    Kawahito, Shoji; Seo, Min-Woong

    2016-01-01

    This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e−rms) when compared with the CMS gain of two (2.4 e−rms), or 16 (1.1 e−rms). PMID:27827972

  4. Ultra-widefield retinal imaging through a black intraocular lens.

    PubMed

    Yusuf, Imran H; Fung, Timothy H M; Patel, Chetan K

    2015-09-01

    To evaluate the feasibility of ultra-widefield retinal imaging in patients with near infrared (IR)-transmitting black intraocular lenses (IOLs). Oxford Eye Hospital, Oxford, United Kingdom. Laboratory evaluation of a diagnostic technology with interventional case report. The field of retinal imaging through a Morcher poly(methyl methacrylate) (PMMA) black IOL was determined in a purpose-built adult schematic model eye with the HRA2 Spectralis confocal scanning laser ophthalmoscope using standard imaging, Staurenghi retina lens-assisted imaging, and ultra-widefield noncontact imaging. Retinal imaging using each modality was then performed on a patient implanted with another Morcher PMMA black IOL model. Ultra-widefield noncontact imaging and lens-assisted imaging captured up to 150 degrees of field (versus 40 degrees with a standard confocal scanning laser ophthalmoscope). Ultra-widefield retinal images were successfully acquired in a patient eye with a black IOL. This study has identified the first ultra-widefield retinal imaging modalities for patients with near IR-transmitting black IOLs. Should larger studies confirm this finding, noncontact ultra-widefield confocal scanning laser ophthalmoscopy might be considered the gold standard imaging technique for retinal surveillance in patients with near IR-transmitting black IOLs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. Thermoelectric properties of an ultra-thin topological insulator.

    PubMed

    Islam, S K Firoz; Ghosh, T K

    2014-04-23

    Thermoelectric coefficients of an ultra-thin topological insulator are presented here. The hybridization between top and bottom surface states of a topological insulator plays a significant role. In the absence of a magnetic field, the thermopower increases and thermal conductivity decreases with an increase in the hybridization energy. In the presence of a magnetic field perpendicular to the ultra-thin topological insulator, thermoelectric coefficients exhibit quantum oscillations with inverse magnetic field, whose frequency is strongly modified by the Zeeman energy and whose phase factor is governed by the product of the Landé g-factor and the hybridization energy. In addition to the numerical results, the low-temperature approximate analytical results for the thermoelectric coefficients are also provided. It is also observed that for a given magnetic field these transport coefficients oscillate with hybridization energy, at a frequency that depends on the Landé g-factor.

  6. Effects of magnetic field strength and particle aggregation on relaxivity of ultra-small dual contrast iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ta, Hang T.; Li, Zhen; Wu, Yuao; Cowin, Gary; Zhang, Shaohua; Yago, Anya; Whittaker, Andrew K.; Xu, Zhi Ping

    2017-11-01

    This study aims to compare the relaxivities of ultra-small dual positive and negative contrast iron oxide nanoparticles (DCION) at different magnetic field strengths ranging from 4.7 to 16.4 T at physiological temperatures; and to investigate the effect of particle aggregation on relaxivities. Relaxivities of DCIONs were determined by magnetic resonance imaging scanners at 4.7, 7, 9.4, and 16.4 T. Both longitudinal (T 1) and transverse relaxation times (T 2) were measured by appropriate spin-echo sequences. It has been found that both longitudinal and transverse relaxivities are significantly dependent on the magnetic field strength. Particle aggregation also strongly affects the relaxivities. Awareness of the field strength and particle colloid stability is crucial for the comparison and evaluation of relaxivity values of these ultra-small iron oxide nanoparticles, and also for their medical applications as contrast agents.

  7. Instability analysis of charges trapped in the oxide of metal-ultra thin oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Aziz, A.; Kassmi, K.; Maimouni, R.; Olivié, F.; Sarrabayrouse, G.; Martinez, A.

    2005-09-01

    In this paper, we present the theoretical and experimental results of the influence of a charge trapped in ultra-thin oxide of metal/ultra-thin oxide/semiconductor structures (MOS) on the I(Vg) current-voltage characteristics when the conduction is of the Fowler-Nordheim (FN) tunneling type. The charge, which is negative, is trapped near the cathode (metal/oxide interface) after constant current injection by the metal (Vg<0). Of particular interest is the influence on the Δ Vg(Vg) shift over the whole I(Vg) characteristic at high field (greater than the injection field (>12.5 MV/cm)). It is shown that the charge centroid varies linearly with respect to the voltage Vg. The behavior at low field (<12.5 MV/cm) is analyzed in référence A. Aziz, K. Kassmi, Ka. Kassmi, F. Olivié, Semicond. Sci. Technol. 19, 877 (2004) and considers that the trapped charge centroid is fixed. The results obtained make it possible to analyze the influence of the injected charge and the applied field on the centroid position of the trapped charge, and to highlight the charge instability in the ultra-thin oxide of MOS structures.

  8. Symmetric rotating-wave approximation for the generalized single-mode spin-boson system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Victor V.; Scholes, Gregory D.; Brumer, Paul

    2011-10-15

    The single-mode spin-boson model exhibits behavior not included in the rotating-wave approximation (RWA) in the ultra and deep-strong coupling regimes, where counter-rotating contributions become important. We introduce a symmetric rotating-wave approximation that treats rotating and counter-rotating terms equally, preserves the invariances of the Hamiltonian with respect to its parameters, and reproduces several qualitative features of the spin-boson spectrum not present in the original rotating-wave approximation both off-resonance and at deep-strong coupling. The symmetric rotating-wave approximation allows for the treatment of certain ultra- and deep-strong coupling regimes with similar accuracy and mathematical simplicity as does the RWA in the weak-coupling regime.more » Additionally, we symmetrize the generalized form of the rotating-wave approximation to obtain the same qualitative correspondence with the addition of improved quantitative agreement with the exact numerical results. The method is readily extended to higher accuracy if needed. Finally, we introduce the two-photon parity operator for the two-photon Rabi Hamiltonian and obtain its generalized symmetric rotating-wave approximation. The existence of this operator reveals a parity symmetry similar to that in the Rabi Hamiltonian as well as another symmetry that is unique to the two-photon case, providing insight into the mathematical structure of the two-photon spectrum, significantly simplifying the numerics, and revealing some interesting dynamical properties.« less

  9. Improvement of spin-exchange optical pumping of xenon-129 using in situ NMR measurement in ultra-low magnetic field

    NASA Astrophysics Data System (ADS)

    Takeda, Shun; Kumagai, Hiroshi

    2018-02-01

    Hyperpolarized (HP) noble gas has attracted attention in NMR / MRI. In an ultra-low magnetic field, the effectiveness of signal enhancement by HP noble gas should be required because reduction of the signal intensity is serious. One method of generating HP noble gas is spin exchange optical pumping which uses selective excitation of electrons of alkali metal vapor and spin transfer to nuclear spin by collision to noble gas. Although SEOP does not require extreme cooling or strong magnetic field, generally it required large-scale equipment including high power light source to generate HP noble gas with high efficiency. In this study, we construct a simply generation system of HP xenon-129 by SEOP with an ultralow magnetic field (up to 1 mT) and small-scale light source (about 1W). In addition, we measure in situ NMR signal at the same time, and then examine efficient conditions for SEOP in ultra-low magnetic fields.

  10. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-06-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.

  11. Microchip capillary gel electrophoresis using programmed field strength gradients for the ultra-fast analysis of genetically modified organisms in soybeans.

    PubMed

    Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho

    2005-08-12

    We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.

  12. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink

    PubMed Central

    Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung

    2016-01-01

    We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm). PMID:26806215

  13. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink.

    PubMed

    Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung

    2016-01-25

    We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm).

  14. Ultra-deep sequencing reveals high prevalence and broad structural diversity of hepatitis B surface antigen mutations in a global population

    PubMed Central

    Gencay, Mikael; Hübner, Kirsten; Gohl, Peter; Seffner, Anja; Weizenegger, Michael; Neofytos, Dionysios; Batrla, Richard; Woeste, Andreas; Kim, Hyon-suk; Westergaard, Gaston; Reinsch, Christine; Brill, Eva; Thu Thuy, Pham Thi; Hoang, Bui Huu; Sonderup, Mark; Spearman, C. Wendy; Pabinger, Stephan; Gautier, Jérémie; Brancaccio, Giuseppina; Fasano, Massimo; Santantonio, Teresa; Gaeta, Giovanni B.; Nauck, Markus; Kaminski, Wolfgang E.

    2017-01-01

    The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its “a” determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents. A total of 1553 HBsAg positive blood samples of subjects originating from 20 different countries across Africa, America, Asia and central Europe were characterized for amino acid variation in the MHR. Using highly sensitive ultra-deep sequencing, we found 72.8% of the successfully sequenced subjects (n = 1391) demonstrated amino acid sequence variation in the HBsAg MHR. This indicates that the global variation frequency in the HBsAg MHR is threefold higher than previously reported. The majority of the amino acid mutations were found in the HBV genotypes B (28.9%) and C (25.4%). Collectively, we identified 345 distinct amino acid mutations in the MHR. Among these, we report 62 previously unknown mutations, which extends the worldwide pool of currently known HBsAg MHR mutations by 22%. Importantly, topological analysis identified the “a” determinant upstream flanking region as the structurally most diverse subdomain of the HBsAg MHR. The highest prevalence of “a” determinant region mutations was observed in subjects from Asia, followed by the African, American and European cohorts, respectively. Finally, we found that more than half (59.3%) of all HBV subjects investigated carried multiple MHR mutations. Together, this worldwide ultra-deep sequencing based genotyping study reveals that the global prevalence and structural complexity of variation in the hepatitis B surface antigen have, to date, been significantly underappreciated. PMID:28472040

  15. Ultra-deep sequencing reveals high prevalence and broad structural diversity of hepatitis B surface antigen mutations in a global population.

    PubMed

    Gencay, Mikael; Hübner, Kirsten; Gohl, Peter; Seffner, Anja; Weizenegger, Michael; Neofytos, Dionysios; Batrla, Richard; Woeste, Andreas; Kim, Hyon-Suk; Westergaard, Gaston; Reinsch, Christine; Brill, Eva; Thu Thuy, Pham Thi; Hoang, Bui Huu; Sonderup, Mark; Spearman, C Wendy; Pabinger, Stephan; Gautier, Jérémie; Brancaccio, Giuseppina; Fasano, Massimo; Santantonio, Teresa; Gaeta, Giovanni B; Nauck, Markus; Kaminski, Wolfgang E

    2017-01-01

    The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its "a" determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents. A total of 1553 HBsAg positive blood samples of subjects originating from 20 different countries across Africa, America, Asia and central Europe were characterized for amino acid variation in the MHR. Using highly sensitive ultra-deep sequencing, we found 72.8% of the successfully sequenced subjects (n = 1391) demonstrated amino acid sequence variation in the HBsAg MHR. This indicates that the global variation frequency in the HBsAg MHR is threefold higher than previously reported. The majority of the amino acid mutations were found in the HBV genotypes B (28.9%) and C (25.4%). Collectively, we identified 345 distinct amino acid mutations in the MHR. Among these, we report 62 previously unknown mutations, which extends the worldwide pool of currently known HBsAg MHR mutations by 22%. Importantly, topological analysis identified the "a" determinant upstream flanking region as the structurally most diverse subdomain of the HBsAg MHR. The highest prevalence of "a" determinant region mutations was observed in subjects from Asia, followed by the African, American and European cohorts, respectively. Finally, we found that more than half (59.3%) of all HBV subjects investigated carried multiple MHR mutations. Together, this worldwide ultra-deep sequencing based genotyping study reveals that the global prevalence and structural complexity of variation in the hepatitis B surface antigen have, to date, been significantly underappreciated.

  16. When less is more: 'slicing' sequencing data improves read decoding accuracy and de novo assembly quality.

    PubMed

    Lonardi, Stefano; Mirebrahim, Hamid; Wanamaker, Steve; Alpert, Matthew; Ciardo, Gianfranco; Duma, Denisa; Close, Timothy J

    2015-09-15

    As the invention of DNA sequencing in the 70s, computational biologists have had to deal with the problem of de novo genome assembly with limited (or insufficient) depth of sequencing. In this work, we investigate the opposite problem, that is, the challenge of dealing with excessive depth of sequencing. We explore the effect of ultra-deep sequencing data in two domains: (i) the problem of decoding reads to bacterial artificial chromosome (BAC) clones (in the context of the combinatorial pooling design we have recently proposed), and (ii) the problem of de novo assembly of BAC clones. Using real ultra-deep sequencing data, we show that when the depth of sequencing increases over a certain threshold, sequencing errors make these two problems harder and harder (instead of easier, as one would expect with error-free data), and as a consequence the quality of the solution degrades with more and more data. For the first problem, we propose an effective solution based on 'divide and conquer': we 'slice' a large dataset into smaller samples of optimal size, decode each slice independently, and then merge the results. Experimental results on over 15 000 barley BACs and over 4000 cowpea BACs demonstrate a significant improvement in the quality of the decoding and the final assembly. For the second problem, we show for the first time that modern de novo assemblers cannot take advantage of ultra-deep sequencing data. Python scripts to process slices and resolve decoding conflicts are available from http://goo.gl/YXgdHT; software Hashfilter can be downloaded from http://goo.gl/MIyZHs stelo@cs.ucr.edu or timothy.close@ucr.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. The outskirts of spiral galaxies: touching stellar halos at z˜0 and z˜1

    NASA Astrophysics Data System (ADS)

    Bakos, J.; Trujillo, I.

    Taking advantage of ultra-deep imaging of SDSS Stripe82 and the Hubble Ultra Deep Field by HST, we explore the properties of stellar halos at two relevant epochs of cosmic history. At z˜0 we find that the radial surface brightness profiles of disks have a smooth continuation into the stellar halo that starts to affect the surface brightness profiles at mu r'˜28 {mag arcsec-2}, and at a radial distance of gtrsim 4-10 inner scale-lengths. The light contribution of the stellar halo to the total galaxy light varies from ˜1% to ˜5%, but in case of ongoing mergers, the halo light fraction can be as high as ˜10%. The integrated (g'-r') color of the stellar halo of our galaxies range from ˜0.4 to ˜1.2. By confronting these colors with model predictions, these halos can be attributed to moderately aged and metal-poor populations, however the extreme red colors (˜1) cannot be explained by populations of conventional IMFs. Very red halo colors can be attributed to stellar populations dominated by very low mass stars of low to intermediate metallicity produced by bottom-heavy IMFs. At z˜1 stellar halos appear to be ˜2 magnitudes brighter than their local counterparts, meanwhile they exhibit bluer colors ((g'-r')≲0.3 mag), as well. The stellar populations corresponding to these colors are compatible with having ages ≲1 Gyr. This latter observation strongly suggests the possibility that these halos were formed between z˜1 and z˜2. This result matches very well the theoretical predictions that locate most of the formation of the stellar halos at those early epochs. A pure passive evolutionary scenario, where the stellar populations of our high-z haloes simply fade to match the stellar halo properties found in the local universe, is consistent with our data.

  18. The VIMOS Ultra Deep Survey first data release: Spectra and spectroscopic redshifts of 698 objects up to zspec 6 in CANDELS

    NASA Astrophysics Data System (ADS)

    Tasca, L. A. M.; Le Fèvre, O.; Ribeiro, B.; Thomas, R.; Moreau, C.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Schaerer, D.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2017-04-01

    This paper describes the first data release (DR1) of the VIMOS Ultra Deep Survey (VUDS). The VUDS-DR1 is the release of all low-resolution spectroscopic data obtained in 276.9 arcmin2 of the CANDELS-COSMOS and CANDELS-ECDFS survey areas, including accurate spectroscopic redshifts zspec and individual spectra obtained with VIMOS on the ESO-VLT. A total of 698 objects have a measured redshift, with 677 galaxies, two type-I AGN, and a small number of 19 contaminating stars. The targets of the spectroscopic survey are selected primarily on the basis of their photometric redshifts to ensure a broad population coverage. About 500 galaxies have zspec > 2, 48of which have zspec > 4; the highest reliable redshifts reach beyond zspec = 6. This data set approximately doubles the number of galaxies with spectroscopic redshifts at z > 3 in these fields. We discuss the general properties of the VUDS-DR1 sample in terms of the spectroscopic redshift distribution, the distribution of Lyman-α equivalent widths, and physical properties including stellar masses M⋆ and star formation rates derived from spectral energy distribution fitting with the knowledge of zspec. We highlight the properties of the most massive star-forming galaxies, noting the wide range in spectral properties, with Lyman-α in emission or in absorption, and in imaging properties with compact, multi-component, or pair morphologies. We present the catalogue database and data products. All VUDS-DR1 data are publicly available and can be retrieved from a dedicated query-based database. Future VUDS data releases will follow this VUDS-DR1 to give access to the spectra and associated measurement of 8000 objects in the full 1 square degree of the VUDS survey. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791. http://cesam.lam.fr/vuds

  19. High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T.

    PubMed

    Nassirpour, Sahar; Chang, Paul; Henning, Anke

    2018-03-01

    Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths, MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution and loss of SNR due to T 2 relaxation effects) and presents the first metabolite maps acquired at 9.4T in the healthy human brain at both high (voxel size of 97.6µL) and ultra-high (voxel size of 24.4µL) spatial resolutions in a scan time of 11 and 46min respectively. In comparison to lower field strengths, more anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-aminobutyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the methodology behind these maps is provided. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TerraTek, A Schlumberger Company

    2008-12-31

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.« less

  1. Multi-resonance frequency spin dependent charge pumping and spin dependent recombination - applied to the 4H-SiC/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Anders, M. A.; Lenahan, P. M.; Lelis, A. J.

    2017-12-01

    We report on a new electrically detected magnetic resonance (EDMR) approach involving spin dependent charge pumping (SDCP) and spin dependent recombination (SDR) at high (K band, about 16 GHz) and ultra-low (360 and 85 MHz) magnetic resonance frequencies to investigate the dielectric/semiconductor interface in 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs). A comparison of SDCP and SDR allows for a comparison of deep level defects and defects with energy levels throughout most of the bandgap. Additionally, a comparison of high frequency and ultra-low frequency measurements allows for (1) the partial separation of spin-orbit coupling and hyperfine effects on magnetic resonance spectra, (2) the observation of otherwise forbidden half-field effects, which make EDMR, at least, in principle, quantitative, and (3) the observation of Breit-Rabi shifts in superhyperfine measurements. (Observation of the Breit-Rabi shift helps in both the assignment and the measurement of superhyperfine parameters.) We find that, as earlier work also indicates, the SiC silicon vacancy is the dominating defect in n-MOSFETs with as-grown oxides and that post-oxidation NO anneals significantly reduce their population. In addition, we provide strong evidence that NO anneals result in the presence of nitrogen very close to a large fraction of the silicon vacancies. The results indicate that the presence of nearby nitrogen significantly shifts the silicon vacancy energy levels. Our results also show that the introduction of nitrogen introduces a disorder at the interface. This nitrogen induced disorder may provide at least a partial explanation for the relatively modest improvement in mobility after the NO anneals. Finally, we compare the charge pumping and SDCP response as a function of gate amplitude and charge pumping frequency.

  2. First confirmed ultra-compact dwarf galaxy in the NGC 5044 group

    NASA Astrophysics Data System (ADS)

    Faifer, Favio R.; Escudero, Carlos G.; Scalia, María C.; Smith Castelli, Analía V.; Norris, Mark; De Rossi, María E.; Forte, Juan C.; Cellone, Sergio A.

    2017-03-01

    Context. Ultra-compact dwarfs (UCDs) are stellar systems displaying colours and metallicities between those of globular clusters (GCs) and early-type dwarf galaxies, as well as sizes of Reff ≲ 100 pc and luminosities in the range -13.5

  3. Review of total cross sections and forward scattering parameters at ultra-high energies

    NASA Astrophysics Data System (ADS)

    Block, M. M.; White, A. R.

    1991-10-01

    We review the field of the elastic scattering of pp and (bar p)p at the ultra-high energies. The recent total cross section, sigma (sub tot), and rho-value results from the Fermilab Tevatron Collider experiments presented at the 4th 'Blois' Workshop on Elastic and Diffractive Scattering (Elba, Italy, in May, 1991), allow us a comprehensive overview of the field.

  4. Impact on the deep biosphere of CO2 geological sequestration in (ultra)mafic rocks and retroactive consequences on its fate

    NASA Astrophysics Data System (ADS)

    Ménez, Bénédicte; Gérard, Emmanuelle; Rommevaux-Jestin, Céline; Dupraz, Sébastien; Guyot, François; Arnar Alfreősson, Helgi; Reynir Gíslason, Sigurőur; Sigurőardóttir, Hólmfríiur

    2010-05-01

    Due to their reactivity and high potential of carbonation, mafic and ultramafic rocks constitute targets of great interest to safely and permanently sequestrate anthropogenic CO2 and thus, limit the potential major environmental consequences of its increasing atmospheric level. In addition, subsurface (ultra)mafic environments are recognized to harbor diverse and active microbial populations that may be stimulated or decimated following CO2 injection (± impurities) and subsequent acidification. However, the nature and amplitude of the involved biogeochemical pathways are still unknown. To avoid unforeseen consequences at all time scales (e.g. reservoir souring and clogging, bioproduction of H2S and CH4), the impact of CO2 injection on deep biota with unknown ecology, and their retroactive effects on the capacity and long-term stability of CO2 storage sites, have to be determined. We present here combined field and experimental investigations focused on the Icelandic pilot site, implemented in the Hengill area (SW Iceland) at the Hellisheidi geothermal power plant (thanks to the CarbFix program, a consortium between the University of Iceland, Reykjavik Energy, the French CNRS of Toulouse and Columbia University in N.Y., U.S.A. and to the companion French ANR-CO2FIX project). This field scale injection of CO2 charged water is here designed to study the feasibility of storing permanently CO2 in basaltic rocks and to optimize industrial methods. Prior to the injection, the microbiological initial state was characterized through regular sampling at various seasons (i.e., October '08, July '09, February '10). DNA was extracted and amplified from the deep and shallow observatory wells, after filtration of 20 to 30 liters of groundwater collected in the depth interval 400-980 m using a specifically developed sampling protocol aiming at reducing contamination risks. An inventory of living indigenous bacteria and archaea was then done using molecular methods based on the amplification of small subunit ribosomal RNA genes (SSU rDNAs). The stratigraphic levels targeted to store the injected CO2 as aqueous phase harbor numerous new species close to cultivable species belonging to the genus Thermus or Proteobacteria species known to be linked in particular with the hydrogen and iron cycles. After injection, the evolution of these microbial communities will be monitored using the Denaturing Gradient Gel Electrophoresis technique. Beyond the ecological impact of storing high levels of CO2 in deep environments, particularly important is the ability of intraterrestrial microbes to potentially interact with the injected fluids. For example, carbonation has been shown to be strongly influenced by microbiological activities that can locally modify pH and induce nucleation of solid carbonates. To improve the understanding of these processes and to better constrain the influence of deep biota on the evolving chemical and petrophysical properties of the reservoir, an experimental and numerical modeling is carried out in parallel, using model strains representative of the subsurface (including acetogens, sulphate and iron reducing bacteria), as single-species or consortia. A set of batch experiments in presence of crushed olivine or basalts was especially designed to evaluate how microbial activity could overcome the slow kinetics of mineral-fluid reactions and reduce the energy needed to hasten the carbonation process.

  5. GRB afterglows in the nonrelativistic phase

    NASA Astrophysics Data System (ADS)

    Huang, Y. F.; Lu, T.

    2008-10-01

    When discussing the afterglows of gamma-ray bursts analytically, it is usually assumed that the external shock is always ultra-relativisitc, with the bulk Lorentz factor much larger than 1. However, we show that the deceleration of the external shock is actually very quick. The afterglow may typically enter the nonrelativistic phase in several days to teens of days, and may even enter the deep Newtonian phase in tens of days to several months. One thus should be careful in using those familiar analytical expressions that are derived only under the ultra-relativistic assumption. To explain the observed afterglows that typically last for a few weeks to several months, we need to consider the dynamics and radiation in the nonrelativisitic phase.

  6. Technical Note: Deep learning based MRAC using rapid ultra-short echo time imaging.

    PubMed

    Jang, Hyungseok; Liu, Fang; Zhao, Gengyan; Bradshaw, Tyler; McMillan, Alan B

    2018-05-15

    In this study, we explore the feasibility of a novel framework for MR-based attenuation correction for PET/MR imaging based on deep learning via convolutional neural networks, which enables fully automated and robust estimation of a pseudo CT image based on ultrashort echo time (UTE), fat, and water images obtained by a rapid MR acquisition. MR images for MRAC are acquired using dual echo ramped hybrid encoding (dRHE), where both UTE and out-of-phase echo images are obtained within a short single acquisition (35 sec). Tissue labeling of air, soft tissue, and bone in the UTE image is accomplished via a deep learning network that was pre-trained with T1-weighted MR images. UTE images are used as input to the network, which was trained using labels derived from co-registered CT images. The tissue labels estimated by deep learning are refined by a conditional random field based correction. The soft tissue labels are further separated into fat and water components using the two-point Dixon method. The estimated bone, air, fat, and water images are then assigned appropriate Hounsfield units, resulting in a pseudo CT image for PET attenuation correction. To evaluate the proposed MRAC method, PET/MR imaging of the head was performed on 8 human subjects, where Dice similarity coefficients of the estimated tissue labels and relative PET errors were evaluated through comparison to a registered CT image. Dice coefficients for air (within the head), soft tissue, and bone labels were 0.76±0.03, 0.96±0.006, and 0.88±0.01. In PET quantification, the proposed MRAC method produced relative PET errors less than 1% within most brain regions. The proposed MRAC method utilizing deep learning with transfer learning and an efficient dRHE acquisition enables reliable PET quantification with accurate and rapid pseudo CT generation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Deep-tow geophysical survey above large exhumed mantle domains of the eastern Southwest Indian ridge

    NASA Astrophysics Data System (ADS)

    Bronner, A.; Munschy, M.; Sauter, D.; Carlut, J.; Searle, R.; Cannat, M.

    2012-04-01

    The recent discovery of a new type of seafloor, the "smooth seafloor", formed with no or very little volcanic activity along the easternmost part of the ultra-slow spreading Southwest Indian ridge (SWIR) shows an unexpected complexity in processes of generation of the oceanic lithosphere. There, detachment faulting is thought to be a mechanism for efficient exhumation of deep-seated mantle rocks. We present here a deep-tow geological-geophysical survey over smooth seafloor at the eastern SWIR (62-64°N) combining multibeam bathymetric data, magnetic data, geology mapping from sidescan sonar (TOBI) images and results from dredge sampling. We introduce a new type of calibration approach for deep-tow fluxgate magnetometer. We show that magnetic data can be corrected from the magnetic effect of the vehicle with no recourse to its attitude (pitch, roll and heading) but only using the 3 components recorded by the magnetometer and an approximation of the scalar intensity of the Earth magnetic field. The collected dredge samples as well as the sidescan sonar images confirm the presence of large areas of exhumed mantle-derived peridodites surrounded by a few volcanic constructions. We investigate the possibility that magnetic anomalies are either caused by serpentinized peridotites and/or magmatic intrusions. We show that the magnetic signature of the smooth seafloor is clearly weaker than the surrounding volcanic areas. Moreover, the calculated magnetization of a source layer as well as the comparison between deep-tow and sea-surface magnetic data argue for strong East-West variability in the distribution of the magnetized sources. This variability may result from fluid-rock interactions along the detachment faults as well as from the occurrence of small sized and thin volcanic patches and thus questions the seafloor spreading origin of the corresponding magnetic anomalies. Finally, we provide magnetic arguments, as calculation of block rotation or spreading asymmetry in order to better constrain tectonic mechanisms that occur during the formation of this peculiar seafloor.

  8. Deep-tow magnetic survey above large exhumed mantle domains of the eastern Southwest Indian ridge

    NASA Astrophysics Data System (ADS)

    Bronner, A.; Munschy, M.; Carlut, J. H.; Searle, R. C.; Sauter, D.; Cannat, M.

    2011-12-01

    The recent discovery of a new type of seafloor, the "smooth seafloor", formed with no or very little volcanic activity along the ultra-slow spreading Southwest Indian ridge (SWIR) shows an unexpected complexity in processes of generation of the oceanic lithosphere. There, detachment faulting is thought to be a mechanism for efficient exhumation of deep-seated mantle rocks. We present here a deep-tow geological-geophysical survey over smooth seafloor at the eastern SWIR (62-64°N) combining magnetic data, geology mapping from side-scan sonar images and results from dredge sampling. We introduce a new type of calibration approach for deep-tow fluxgate magnetometer. We show that magnetic data can be corrected from the magnetic effect of the vehicle with no recourse to its attitude (pitch, roll and heading) but only using the 3 components recorded by the magnetometer and an approximation of the scalar intensity of the Earth magnetic field. The collected dredge samples as well as the side-scan images confirm the presence of large areas of exhumed mantle-derived peridodites surrounded by a few volcanic constructions. This allows us to hypothesis that magnetic anomalies are caused by serpentinized peridotites or magmatic intrusions. We show that the magnetic signature of the smooth seafloor is clearly weaker than the surrounding volcanic areas. Moreover, the calculated magnetization of a source layer as well as the comparison between deep-tow and sea-surface magnetic data argue for strong East-West variability in the distribution of the magnetized sources. This variability may results from fluid-rocks interaction along the detachment faults as well as from the repartition of the volcanic material and thus questions the seafloor spreading origin of the corresponding magnetic anomalies. Finally, we provide magnetic arguments, as calculation of block rotation or spreading asymmetry in order to better constrain tectonic mechanisms that occur during the formation of this peculiar seafloor.

  9. Accelerated evolution of the Lyα luminosity function at z ≳ 7 revealed by the Subaru ultra-deep survey for Lyα emitters at z = 7.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konno, Akira; Ouchi, Masami; Ono, Yoshiaki

    2014-12-10

    We present the ultra-deep Subaru narrowband imaging survey for Lyα emitters (LAEs) at z = 7.3 in the Subaru/XMM-Newton Deep Survey (SXDS) and Cosmic Evolution Survey (COSMOS) fields (∼0.5 deg{sup 2}) with a total integration time of 106 hr. Exploiting our new sharp bandwidth filter, NB101, installed on the Suprime-Cam, we have reached L(Lyα) = 2.4 × 10{sup 42} erg s{sup –1} (5σ) for z = 7.3 LAEs, about four times deeper than previous Subaru z ≳ 7 studies, which allows us to reliably investigate the evolution of the Lyα luminosity function (LF) for the first time down to themore » luminosity limit same as those of Subaru z = 3.1-6.6 LAE samples. Surprisingly, we only find three and four LAEs in the SXDS and COSMOS fields, respectively, while one expects a total of ∼65 LAEs by our survey in the case of no Lyα LF evolution from z = 6.6 to 7.3. We identify a decrease of the Lyα LF from z = 6.6 to 7.3 at the >90% confidence level from our z = 7.3 Lyα LF with the best-fit Schechter parameters of L{sub Lyα}{sup ∗}=2.7{sub −1.2}{sup +8.0}×10{sup 42} erg s{sup −1} and ϕ{sup ∗}=3.7{sub −3.3}{sup +17.6}×10{sup −4} Mpc{sup −3} for a fixed α = –1.5. Moreover, the evolution of the Lyα LF is clearly accelerated at z > 6.6 beyond the measurement uncertainties including cosmic variance. Because no such accelerated evolution of the UV-continuum LF or the cosmic star formation rate (SFR) is found at z ∼ 7, but suggested only at z > 8, this accelerated Lyα LF evolution is explained by physical mechanisms different from a pure SFR decrease but related to the Lyα production and escape in the process of cosmic reionization. Because a simple accelerating increase of intergalactic medium neutral hydrogen absorbing Lyα cannot be reconciled with Thomson scattering of optical depth measurements from WMAP and Planck, our findings may support new physical pictures suggested by recent theoretical studies, such as the existence of HI clumpy clouds within cosmic ionized bubbles that are selectively absorbing Lyα and the large ionizing photon escape fraction of galaxies causing weak Lyα emission.« less

  10. Testing of ultra-urban stormwater best management practices.

    DOT National Transportation Integrated Search

    2001-01-01

    Ultra urban areas where conventional best management practices (BMPs) are neither feasible nor cost-effective present a challenge to stormwater management. Although new BMPs have been developed for such space limited environments, the field performan...

  11. The SCUBA-2 Cosmology Legacy Survey: Multiwavelength Counterparts to 103 Submillimeter Galaxies in the UKIDSS-UDS Field

    NASA Astrophysics Data System (ADS)

    Chen, Chian-Chou; Smail, Ian; Ivison, Rob J.; Arumugam, Vinodiran; Almaini, Omar; Conselice, Christopher J.; Geach, James E.; Hartley, Will G.; Ma, Cheng-Jiun; Mortlock, Alice; Simpson, Chris; Simpson, James M.; Swinbank, A. Mark; Aretxaga, Itziar; Blain, Andrew; Chapman, Scott C.; Dunlop, James S.; Farrah, Duncan; Halpern, Mark; Michałowski, Michał J.; van der Werf, Paul; Wilkinson, Aaron; Zavala, Jorge A.

    2016-04-01

    We present multiwavelength identifications for the counterparts of 1088 submillimeter sources detected at 850 μm in the SCUBA-2 Cosmology Legacy Survey study of the UKIRT Infrared Deep Sky Survey-Ultra-Deep Survey (UDS) field. By utilizing an Atacama Large Millimeter Array (ALMA) pilot study on a subset of our bright SCUBA-2 sample as a training set, along with the deep optical-near-infrared (OIR) data available in this field, we develop a novel technique, Optical-IR Triple Color (OIRTC), using z - K, K - [3.6], [3.6] - [4.5] colors to select the candidate submillimeter galaxy (SMG) counterparts. By combining radio identification and the OIRTC technique, we find counterpart candidates for 80% of the Class = 1 ≥ 4σ SCUBA-2 sample, defined as those that are covered by both radio and OIR imaging and the base sample for our scientific analyses. Based on the ALMA training set, we expect the accuracy of these identifications to be 82% ± 20%, with a completeness of 69% ± 16%, essentially as accurate as the traditional p-value technique but with higher completeness. We find that the fraction of SCUBA-2 sources having candidate counterparts is lower for fainter 850 μm sources, and we argue that for follow-up observations sensitive to SMGs with S850 ≳ 1 mJy across the whole ALMA beam, the fraction with multiple counterparts is likely to be >40% for SCUBA-2 sources at S850 ≳ 4 mJy. We find that the photometric redshift distribution for the SMGs is well fit by a lognormal distribution, with a median redshift of z = 2.3 ± 0.1. After accounting for the sources without any radio and/or OIRTC counterpart, we estimate the median redshift to be z = 2.6 ± 0.1 for SMGs with S850 > 1 mJy. We also use this new large sample to study the clustering of SMGs and the far-infrared properties of the unidentified submillimeter sources by stacking their Herschel SPIRE far-infrared emission.

  12. Ultra-weak sector, Higgs boson mass, and the dilaton

    DOE PAGES

    Allison, Kyle; Hill, Christopher T.; Ross, Graham G.

    2014-09-26

    The Higgs boson mass may arise from a portal coupling to a singlet fieldmore » $$\\sigma$$ which has a very large VEV $$f \\gg m_\\text{Higgs}$$. This requires a sector of "ultra-weak" couplings $$\\zeta_i$$, where $$\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $$\\sigma$$ in the $$\\zeta_i \\rightarrow 0$$ limit. The singlet field $$\\sigma$$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.« less

  13. The Galactic Magnetic Field and Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Urban, Federico R.

    The Galactic Magnetic Field is a peeving and importune screen between Ultra-High Energy Cosmic Rays and us cosmologists, engaged in the combat to unveil their properties and origin, as it deviates their paths towards the Earth in unpredictable ways. I will, in this order: briefly review the available field models on the market; explain a little trick which allows one to obtain cosmic rays deflection variances without even knowing what the (random) GMF model is; and argue that there is a lack of anisotropy in the large scales cosmic rays signal, which the Galactic field can do nothing about.

  14. Born in weak fields: below-threshold photoelectron dynamics

    NASA Astrophysics Data System (ADS)

    Williams, J. B.; Saalmann, U.; Trinter, F.; Schöffler, M. S.; Weller, M.; Burzynski, P.; Goihl, C.; Henrichs, K.; Janke, C.; Griffin, B.; Kastirke, G.; Neff, J.; Pitzer, M.; Waitz, M.; Yang, Y.; Schiwietz, G.; Zeller, S.; Jahnke, T.; Dörner, R.

    2017-02-01

    We investigate the dynamics of ultra-low kinetic energy photoelectrons. Many experimental techniques employed for the detection of photoelectrons require the presence of (more or less) weak electric extraction fields in order to perform the measurement. Our studies show that ultra-low energy photoelectrons exhibit a characteristic shift in their apparent measured momentum when the target system is exposed to such static electric fields. Already fields as weak as 1 V cm-1 have an observable influence on the detected electron momentum. This apparent shift is demonstrated by an experiment on zero energy photoelectrons emitted from He and explained through theoretical model calculations.

  15. Star Formation in low mass galaxies

    NASA Astrophysics Data System (ADS)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have extremely low masses (105-107 M⊙). They are much fainter equivalents of the "green pea" galaxies found in SDSS. These objects are followed up with HectoSpec on the MMT to confirm their redshift as well as study their star formation properties in detail.

  16. Evaluation of Environmentally Assisted Cracking of Armour Wires in Flexible Pipes, Power Cables and Umbilicals

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiying

    Environmentally assisted cracking (EAC) of armour wires in flexible pipes, power cables and umbilicals is a major concern with the development of oil and gas fields and wind farms in harsh environments. Hydrogen induced cracking (HIC) or hydrogen embrittlement (HE) of steel armour wires used in deep-water and ultra-deep-water has been evaluated. Simulated tests have been carried out in simulated sea water, under conditions where the susceptibility is the highest, i.e. at room temperature, at the maximum negative cathodic potential and at the maximum stress level expected in service for 150 hours. Examinations of the tested specimens have not revealed cracking or blistering, and measurement of hydrogen content has confirmed hydrogen charging. In addition, sulphide stress cracking (SSC) and chloride stress cracking (CSC) of nickel-based alloy armour wires used in harsh down-hole environments has been evaluated. Simulated tests have been carried out in simulated solution containing high concentration of chloride, with high hydrogen sulphide partial pressure, at high stress level and at 120 °C for 720 hours. Examinations of the tested specimens have not revealed cracking or blistering. Subsequent tensile tests of the tested specimens at ambient pressure and temperature have revealed properties similar to the as-received specimens.

  17. Reliability Considerations for Ultra- Low Power Space Applications

    NASA Technical Reports Server (NTRS)

    White, Mark; Johnston, Allan

    2012-01-01

    NASA, the aerospace community, and other high reliability (hi-rel) users of advanced microelectronic products face many challenges as technology continues to scale into the deep sub- micron region and ULP devices are sought after. Technology trends, ULP microelectronics, scaling and performance tradeoffs, reliability considerations, and spacecraft environments will be presented from a ULP perspective for space applications.

  18. Hydrostatic collapse research in support of the Oman India gas pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, P.R.; McKeehan, D.S.

    1995-12-01

    This paper provides a summary of the collapse test program conducted as part of the technical development for the Ultra Deep Oman to India Pipeline. The paper describes the motivation for conducting the collapse test program, outlines the test objectives and procedures, presents the results obtained, and draws conclusions on the factors affecting collapse resistance.

  19. New ultrasensitive pickup device for deep-sea robots: underwater super-HARP color TV camera

    NASA Astrophysics Data System (ADS)

    Maruyama, Hirotaka; Tanioka, Kenkichi; Uchida, Tetsuo

    1994-11-01

    An ultra-sensitive underwater super-HARP color TV camera has been developed. The characteristics -- spectral response, lag, etc. -- of the super-HARP tube had to be designed for use underwater because the propagation of light in water is very different from that in air, and also depends on the light's wavelength. The tubes have new electrostatic focusing and magnetic deflection functions and are arranged in parallel to miniaturize the camera. A deep sea robot (DOLPHIN 3K) was fitted with this camera and used for the first sea test in Sagami Bay, Japan. The underwater visual information was clear enough to promise significant improvements in both deep sea surveying and safety. It was thus confirmed that the Super- HARP camera is very effective for underwater use.

  20. THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: IMPLICATIONS FOR SPECTRAL LINE INTENSITY MAPPING AT MILLIMETER WAVELENGTHS AND CMB SPECTRAL DISTORTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carilli, C. L.; Walter, F.; Chluba, J.

    We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C ii]more » 158 μ m line emission from very high redshift galaxies ( z  ∼ 6–7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T{sub B}  = 0.94 ± 0.09 μ K. In the 242 GHz band, the mean brightness is: T{sub B}  = 0.55 ± 0.033 μ K. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.« less

  1. Fast Spectroscopic Imaging and Field Compensation Using Frequency Modulation at Ultra-High-Field

    NASA Astrophysics Data System (ADS)

    Jang, Albert Woo Ju

    The high energy phosphates (HEP) in the myocardium, which are critical to understanding the cardiac function in both normal and pathophysiologic states, can be assessed non-invasively in vivo using phosphorus-31 (31P) spectroscopy. Compared to proton, for the same volume and magnetic field strength, the available signal-to-noise (SNR) ratio of the HEP metabolites is orders of magnitude lower mainly due to its intrinsically low concentration. Hence, cardiac spectroscopy greatly benefits when performed at ultra-high-fields (UHF, ≥ 7 T), both in terms of increased SNR and increased spectroscopic resolution. However, at ultra-high-field strengths, complications arise from the RF transmit wavelength becoming comparable or smaller than the field-of-view (FOV), thus exhibiting wave-like behavior. Furthermore, even with the spectroscopic resolution afforded at UHF, measuring myocardial inorganic phosphate (Pi) is still a challenge and has been a major barrier in extracting the ATP turnover rate. Recently, an indirect way of extracting the ATP hydrolysis rate forgoing direct measurement of Pi was established. In this work, we combine this method with the T1 nom method to monitor the transmural distribution of forward creatine kinase reaction (kf,CK) and ATP hydrolysis rate (kr,ATPase) of the myocardium, effectively reducing data acquisition time by up to an order of magnitude. In addition, a new class of 2D FM pulses and multidimensional adiabatic pulses are presented, which can compensate for B1 inhomogeneity through its spatiotemporal properties. These pulses should be valuable for spectroscopic applications at ultra-high-fields.

  2. The VANDELS ESO public spectroscopic survey

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Fèvre, O. Le; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < λ < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0 ≤ z ≤ 7.0, over a total area of ≃ 0.2 deg2 centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < tint < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 ≤ z ≤ 5.5, b) massive quiescent galaxies at 1.0 ≤ z ≤ 2.5, c) fainter star-forming galaxies at 3.0 ≤ z ≤ 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.

  3. The VANDELS ESO spectroscopic survey

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Le Fèvre, O.; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < λ < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0 ≤ z ≤ 7.0, over a total area of ≃ 0.2 deg2 centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < tint < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 ≤ z ≤ 5.5, b) massive quiescent galaxies at 1.0 ≤ z ≤ 2.5, c) fainter star-forming galaxies at 3.0 ≤ z ≤ 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.

  4. Post-mortem inference of the human hippocampal connectivity and microstructure using ultra-high field diffusion MRI at 11.7 T.

    PubMed

    Beaujoin, Justine; Palomero-Gallagher, Nicola; Boumezbeur, Fawzi; Axer, Markus; Bernard, Jeremy; Poupon, Fabrice; Schmitz, Daniel; Mangin, Jean-François; Poupon, Cyril

    2018-06-01

    The human hippocampus plays a key role in memory management and is one of the first structures affected by Alzheimer's disease. Ultra-high magnetic resonance imaging provides access to its inner structure in vivo. However, gradient limitations on clinical systems hinder access to its inner connectivity and microstructure. A major target of this paper is the demonstration of diffusion MRI potential, using ultra-high field (11.7 T) and strong gradients (750 mT/m), to reveal the extra- and intra-hippocampal connectivity in addition to its microstructure. To this purpose, a multiple-shell diffusion-weighted acquisition protocol was developed to reach an ultra-high spatio-angular resolution with a good signal-to-noise ratio. The MRI data set was analyzed using analytical Q-Ball Imaging, Diffusion Tensor Imaging (DTI), and Neurite Orientation Dispersion and Density Imaging models. High Angular Resolution Diffusion Imaging estimates allowed us to obtain an accurate tractography resolving more complex fiber architecture than DTI models, and subsequently provided a map of the cross-regional connectivity. The neurite density was akin to that found in the histological literature, revealing the three hippocampal layers. Moreover, a gradient of connectivity and neurite density was observed between the anterior and the posterior part of the hippocampus. These results demonstrate that ex vivo ultra-high field/ultra-high gradients diffusion-weighted MRI allows the mapping of the inner connectivity of the human hippocampus, its microstructure, and to accurately reconstruct elements of the polysynaptic intra-hippocampal pathway using fiber tractography techniques at very high spatial/angular resolutions.

  5. An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Storm, Jan-Hendrik; Hömmen, Peter; Drung, Dietmar; Körber, Rainer

    2017-02-01

    The magnetic field noise in superconducting quantum interference devices (SQUIDs) used for biomagnetic research such as magnetoencephalography or ultra-low-field nuclear magnetic resonance is usually limited by instrumental dewar noise. We constructed a wideband, ultra-low noise system with a 45 mm diameter superconducting pick-up coil inductively coupled to a current sensor SQUID. Thermal noise in the liquid helium dewar is minimized by using aluminized polyester fabric as superinsulation and aluminum oxide strips as heat shields. With a magnetometer pick-up coil in the center of the Berlin magnetically shielded room 2 (BMSR2), a noise level of around 150 aT Hz-1/2 is achieved in the white noise regime between about 20 kHz and the system bandwidth of about 2.5 MHz. At lower frequencies, the resolution is limited by magnetic field noise arising from the walls of the shielded room. Modeling the BMSR2 as a closed cube with continuous μ-metal walls, we can quantitatively reproduce its measured field noise.

  6. Development of UItra-Low Temperature Motor Controllers: Ultra Low Temperatures Evaluation and Characterization of Semiconductor Technologies For The Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.

    2003-01-01

    Electronics designed for low temperature operation will result in more efficient systems than room temperature. This improvement is a result of better electronic, electrical, and thermal properties of materials at low temperatures. In particular, the performance of certain semiconductor devices improves with decreasing temperature down to ultra-low temperature (-273 'C). The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components and systems suitable for applications in deep space missions. Research is being conducted on devices and systems for use down to liquid helium temperatures (-273 'C). Some of the components that are being characterized include semiconductor switching devices, resistors, magnetics, and capacitors. The work performed this summer has focused on the evaluation of silicon-, silicon-germanium- and gallium-Arsenide-based (GaAs) bipolar, MOS and CMOS discrete components and integrated circuits (ICs), from room temperature (23 'C) down to ultra low temperatures (-263 'C).

  7. 60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform.

    PubMed

    Zou, Zhi; Zhou, Linjie; Li, Xinwan; Chen, Jianping

    2015-08-10

    We demonstrate integrated basic photonic components and Bragg gratings using 60-nm-thick silicon-on-insulator strip waveguides. The ultra-thin waveguides exhibit a propagation loss of 0.61 dB/cm and a bending loss of approximately 0.015 dB/180° with a 30 μm bending radius (including two straight-bend waveguide junctions). Basic structures based on the ultra-thin waveguides, including micro-ring resonators, 1 × 2 MMI couplers, and Mach-Zehnder interferometers are realized. Upon thinning-down, the waveguide effective refractive index is reduced, making the fabrication of Bragg gratings possible using the standard 248-nm deep ultra-violet (DUV) photolithography process. The Bragg grating exhibits a stopband width of 1 nm and an extinction ratio of 35 dB, which is practically applicable as an optical filter or a delay line. The transmission spectrum can be thermally tuned via an integrated resistive micro-heater formed by a heavily doped silicon slab beside the waveguide.

  8. Depth-resolved ultra-violet spectroscopic photo current-voltage measurements for the analysis of AlGaN/GaN high electron mobility transistor epilayer deposited on Si

    NASA Astrophysics Data System (ADS)

    Ozden, Burcu; Yang, Chungman; Tong, Fei; Khanal, Min P.; Mirkhani, Vahid; Sk, Mobbassar Hassan; Ahyi, Ayayi Claude; Park, Minseo

    2014-10-01

    We have demonstrated that the depth-dependent defect distribution of the deep level traps in the AlGaN/GaN high electron mobility transistor (HEMT) epi-structures can be analyzed by using the depth-resolved ultra-violet (UV) spectroscopic photo current-voltage (IV) (DR-UV-SPIV). It is of great importance to analyze deep level defects in the AlGaN/GaN HEMT structure, since it is recognized that deep level defects are the main source for causing current collapse phenomena leading to reduced device reliability. The AlGaN/GaN HEMT epi-layers were grown on a 6 in. Si wafer by metal-organic chemical vapor deposition. The DR-UV-SPIV measurement was performed using a monochromatized UV light illumination from a Xe lamp. The key strength of the DR-UV-SPIV is its ability to provide information on the depth-dependent electrically active defect distribution along the epi-layer growth direction. The DR-UV-SPIV data showed variations in the depth-dependent defect distribution across the wafer. As a result, rapid feedback on the depth-dependent electrical homogeneity of the electrically active defect distribution in the AlGaN/GaN HEMT epi-structure grown on a Si wafer with minimal sample preparation can be elucidated from the DR-UV-SPIV in combination with our previously demonstrated spectroscopic photo-IV measurement with the sub-bandgap excitation.

  9. Passive shimming of the fringe field of a superconducting magnet for ultra-low field hyperpolarized noble gas MRI.

    PubMed

    Parra-Robles, Juan; Cross, Albert R; Santyr, Giles E

    2005-05-01

    Hyperpolarized noble gases (HNGs) provide exciting possibilities for MR imaging at ultra-low magnetic field strengths (<0.15 T) due to the extremely high polarizations available from optical pumping. The fringe field of many superconductive magnets used in clinical MR imaging can provide a stable magnetic field for this purpose. In addition to offering the benefit of HNG MR imaging alongside conventional high field proton MRI, this approach offers the other useful advantage of providing different field strengths at different distances from the magnet. However, the extremely strong field gradients associated with the fringe field present a major challenge for imaging since impractically high active shim currents would be required to achieve the necessary homogeneity. In this work, a simple passive shimming method based on the placement of a small number of ferromagnetic pieces is proposed to reduce the fringe field inhomogeneities to a level that can be corrected using standard active shims. The method explicitly takes into account the strong variations of the field over the volume of the ferromagnetic pieces used to shim. The method is used to obtain spectra in the fringe field of a high-field (1.89 T) superconducting magnet from hyperpolarized 129Xe gas samples at two different ultra-low field strengths (8.5 and 17 mT). The linewidths of spectra measured from imaging phantoms (30 Hz) indicate a homogeneity sufficient for MRI of the rat lung.

  10. NEPP Update of Independent Single Event Upset Field Programmable Gate Array Testing

    NASA Technical Reports Server (NTRS)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Pellish, Jonathan

    2017-01-01

    This presentation provides a NASA Electronic Parts and Packaging (NEPP) Program update of independent Single Event Upset (SEU) Field Programmable Gate Array (FPGA) testing including FPGA test guidelines, Microsemi RTG4 heavy-ion results, Xilinx Kintex-UltraScale heavy-ion results, Xilinx UltraScale+ single event effect (SEE) test plans, development of a new methodology for characterizing SEU system response, and NEPP involvement with FPGA security and trust.

  11. Variable Stars in the Field of the Hydra II Ultra-Faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, Anna Katherina; Olsen, Knut A.; Blum, Robert D.; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas; Besla, Gurtina; Gallart, Carme; Van Der Marel, Roeland P.; Majewski, Steven R.; Munoz, Ricardo; Kaleida, Catherine C.; Saha, Abhijit; Conn, Blair; Jin, Shoko

    2016-06-01

    We searched for variable stars in Hydra II, one of the recently discovered ultra-faint dwarf satellites of the Milky Way, using gri time-series obtained with the Dark Energy Camera (DECam) at Cerro Tololo Inter-American Observatory, Chile. We discovered one RR Lyrae star in the galaxy which was used to derive a distance of 154±8 kpc to this system and to re-calculate its absolute magnitude and half-light radius.A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  12. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOEpatents

    Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

    2013-03-05

    Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

  13. Ultra High Work, High Efficiency Turbines For UAVs

    DTIC Science & Technology

    2006-06-01

    same amount of work, thereby reducing the weight of the LPT. Howell et al. and Arts and Coton , 15-17 estimated that a 34% reduction in blade count...dimple a few mm in diameter and 0.1 mm to 0.3 mm deep. A typical surface finish on newly manufactured blading is typically 1-2 μm. In- use LP

  14. Neuroversion: using electroconvulsive therapy as a bridge to deep brain stimulation implantation.

    PubMed

    Williams, Nolan R; Sahlem, Greg; Pannu, Jaspreet; Takacs, Istvan; Short, Baron; Revuelta, Gonzalo; George, Mark S

    2017-02-01

    Parkinson's disease (PD) is a movement disorder with significant neuropsychiatric comorbidities. Electroconvulsive therapy (ECT) is effective in treating these neuropsychiatric symptoms; however, clinicians are reluctant to use ECT in patients with deep brain stimulation (DBS) implantations for fear of damaging the device, as well as potential cognitive side effects. Right unilateral ultra-brief pulse (RUL UBP) ECT has a more favorable cognitive side-effect profile yet has never been reported in PD patients with DBS implants. We present a case series of three patients with a history of PD that all presented with psychiatric decompensation immediately prior to planned DBS surgery. All three patients had DBS electrode(s) in place at the time and an acute course of ECT was utilized in a novel method to "bridge" these individuals to neurosurgery. The patients all experienced symptom resolution (psychosis and/or depression and/or anxiety) without apparent cognitive side effects. This case series not only illustrates that right unilateral ultra-brief pulse can be utilized in patients with DBS electrodes but also illustrates that this intervention can be utilized as a neuromodulatory "bridge", where nonoperative surgical candidates with unstable psychiatric symptoms can be converted to operative candidates in a manner similar to electrical cardioversion.

  15. Development of ultra-high temperature material characterization capabilities using digital image correlation analysis

    NASA Astrophysics Data System (ADS)

    Cline, Julia Elaine

    2011-12-01

    Ultra-high temperature deformation measurements are required to characterize the thermo-mechanical response of material systems for thermal protection systems for aerospace applications. The use of conventional surface-contacting strain measurement techniques is not practical in elevated temperature conditions. Technological advancements in digital imaging provide impetus to measure full-field displacement and determine strain fields with sub-pixel accuracy by image processing. In this work, an Instron electromechanical axial testing machine with a custom-designed high temperature gripping mechanism is used to apply quasi-static tensile loads to graphite specimens heated to 2000°F (1093°C). Specimen heating via Joule effect is achieved and maintained with a custom-designed temperature control system. Images are captured at monotonically increasing load levels throughout the test duration using an 18 megapixel Canon EOS Rebel T2i digital camera with a modified Schneider Kreutznach telecentric lens and a combination of blue light illumination and narrow band-pass filter system. Images are processed using an open-source Matlab-based digital image correlation (DIC) code. Validation of source code is performed using Mathematica generated images with specified known displacement fields in order to gain confidence in accurate software tracking capabilities. Room temperature results are compared with extensometer readings. Ultra-high temperature strain measurements for graphite are obtained at low load levels, demonstrating the potential for non-contacting digital image correlation techniques to accurately determine full-field strain measurements at ultra-high temperature. Recommendations are given to improve the experimental set-up to achieve displacement field measurements accurate to 1/10 pixel and strain field accuracy of less than 2%.

  16. Super earth interiors and validity of Birch's Law for ultra-high pressure metals and ionic solids

    NASA Astrophysics Data System (ADS)

    Ware, Lucas Andrew

    2015-01-01

    Super Earths, recently detected by the Kepler Mission, expand the ensemble of known terrestrial planets beyond our Solar System's limited group. Birch's Law and velocity-density systematics have been crucial in constraining our knowledge of the composition of Earth's mantle and core. Recently published static diamond anvil cell experimental measurements of sound velocities in iron, a key deep element in most super Earth models, are inconsistent with each other with regard to the validity of Birch's Law. We examine the range of validity of Birch's Law for several metallic elements, including iron, and ionic solids shocked with a two-stage light gas gun into the ultra-high pressure, temperature fluid state and make comparisons to the recent static data.

  17. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface.

    PubMed

    Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M; Brown, Gail J; Sun, Nian X

    2014-01-14

    Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.

  18. Dosimetric comparison of moderate deep inspiration breath-hold and free-breathing intensity-modulated radiotherapy for left-sided breast cancer.

    PubMed

    Chi, F; Wu, S; Zhou, J; Li, F; Sun, J; Lin, Q; Lin, H; Guan, X; He, Z

    2015-05-01

    This study determined the dosimetric comparison of moderate deep inspiration breath-hold using active breathing control and free-breathing intensity-modulated radiotherapy (IMRT) after breast-conserving surgery for left-sided breast cancer. Thirty-one patients were enrolled. One free breathe and two moderate deep inspiration breath-hold images were obtained. A field-in-field-IMRT free-breathing plan and two field-in-field-IMRT moderate deep inspiration breath-holding plans were compared in the dosimetry to target volume coverage of the glandular breast tissue and organs at risks for each patient. The breath-holding time under moderate deep inspiration extended significantly after breathing training (P<0.05). There was no significant difference between the free-breathing and moderate deep inspiration breath-holding in the target volume coverage. The volume of the ipsilateral lung in the free-breathing technique were significantly smaller than the moderate deep inspiration breath-holding techniques (P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. There were no significant differences in target volume coverage between the three plans for the field-in-field-IMRT (all P>0.05). The dose to ipsilateral lung, coronary artery and heart in the field-in-field-IMRT were significantly lower for the free-breathing plan than for the two moderate deep inspiration breath-holding plans (all P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. The whole-breast field-in-field-IMRT under moderate deep inspiration breath-hold with active breathing control after breast-conserving surgery in left-sided breast cancer can reduce the irradiation volume and dose to organs at risks. There are no significant differences between various moderate deep inspiration breath-holding states in the dosimetry of irradiation to the field-in-field-IMRT target volume coverage and organs at risks. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  19. Flexible deep brain neural probes based on a parylene tube structure

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiguo; Kim, Eric; Luo, Hao; Zhang, Jinsheng; Xu, Yong

    2018-01-01

    Most microfabricated neural probes have limited shank length, which prevents them from reaching many deep brain structures. This paper reports deep brain neural probes with ultra-long penetrating shanks based on a simple but novel parylene tube structure. The mechanical strength of the parylene tube shank is temporarily enhanced during implantation by inserting a metal wire. The metal wire can be removed after implantation, making the implanted probe very flexible and thus minimizing the stress caused by micromotions of brain tissues. Optogenetic stimulation and chemical delivery capabilities can be potentially integrated by taking advantage of the tube structure. Single-shank prototypes with a shank length of 18.2 mm have been developed. The microfabrication process comprises of deep reactive ion etching (DRIE) of silicon, parylene conformal coating/refilling, and XeF2 isotropic silicon etching. In addition to bench-top insertion characterization, the functionality of developed probes has been preliminarily demonstrated by implanting into the amygdala of a rat and recording neural signals.

  20. Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor.

    PubMed

    Salit, K; Salit, M; Krishnamurthy, Subramanian; Wang, Y; Kumar, P; Shahriar, M S

    2011-11-07

    We demonstrate an ultra-low light level optical modulator using a tapered nano fiber embedded in a hot rubidium vapor. The control and signal beams are co-propagating but orthogonally polarized, leading to a degenerate V-system involving coherent superpositions of Zeeman sublevels. The modulation is due primarily to the quantum Zeno effect for the signal beam induced by the control beam. For a control power of 40 nW and a signal power of 100 pW, we observe near 100% modulation. The ultra-low power level needed for the modulation is due to a combination of the Zeno effect and the extreme field localization in the evanescent field around the taper.

  1. Ultra-wide bandpass filter based on long-period fiber gratings and the evanescent field coupling between two fibers.

    PubMed

    Kim, Myoung Jin; Jung, Yong Min; Kim, Bok Hyeon; Han, Won-Taek; Lee, Byeong Ha

    2007-08-20

    We demonstrate a fiber-based bandpass filter with an ultra-wide spectral bandwidth. The ultra-wide band feature is achieved by inscribing a long-period fiber grating (LPG) in a specially-designed low index core single mode fiber. To get the bandpass function, the evanescent field coupling between two attached fibers is utilized. By applying strain, the spectral shape of the pass-band is adjusted to flat-top and Gaussian shapes. For the flat-top case, the bandwidth is obtained ~ 160 nm with an insertion loss of ~ 2 dB. With strain, the spectral shape is switched into a Gaussian one, which has ~ 120 nm FWHM and ~ 4.18 dB insertion loss at the peak.

  2. Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoguang; Li, Qiang; Liu, Tao; Kang, Renke; Jin, Zhuji; Guo, Dongming

    2017-03-01

    Hard and brittle materials, such as silicon, SiC, and optical glasses, are widely used in aerospace, military, integrated circuit, and other fields because of their excellent physical and chemical properties. However, these materials display poor machinability because of their hard and brittle properties. Damages such as surface micro-crack and subsurface damage often occur during machining of hard and brittle materials. Ultra-precision machining is widely used in processing hard and brittle materials to obtain nanoscale machining quality. However, the theoretical mechanism underlying this method remains unclear. This paper provides a review of present research on the molecular dynamics simulation of ultra-precision machining of hard and brittle materials. The future trends in this field are also discussed.

  3. Ionic liquid gating on atomic layer deposition passivated GaN: Ultra-high electron density induced high drain current and low contact resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong; Du, Yuchen; Ye, Peide D., E-mail: yep@purdue.edu

    2016-05-16

    Herein, we report on achieving ultra-high electron density (exceeding 10{sup 14 }cm{sup −2}) in a GaN bulk material device by ionic liquid gating, through the application of atomic layer deposition (ALD) of Al{sub 2}O{sub 3} to passivate the GaN surface. Output characteristics demonstrate a maximum drain current of 1.47 A/mm, the highest reported among all bulk GaN field-effect transistors, with an on/off ratio of 10{sup 5} at room temperature. An ultra-high electron density exceeding 10{sup 14 }cm{sup −2} accumulated at the surface is confirmed via Hall-effect measurement and transfer length measurement. In addition to the ultra-high electron density, we also observe a reductionmore » of the contact resistance due to the narrowing of the Schottky barrier width on the contacts. Taking advantage of the ALD surface passivation and ionic liquid gating technique, this work provides a route to study the field-effect and carrier transport properties of conventional semiconductors in unprecedented ultra-high charge density regions.« less

  4. Ultra-low field MRI: bringing MRI to new arenas

    DOE PAGES

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett; ...

    2016-11-01

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  5. Ultra-low field MRI: bringing MRI to new arenas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  6. The Hubble Space Telescope Frontier Fields Program

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt

    2017-08-01

    The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  7. The HST Frontier Fields: Complete High-Level Science Data Products for All 6 Clusters

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team

    2017-01-01

    The Hubble Space Telescope Frontier Fields program (PI: J. Lotz) is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  8. The HST Frontier Fields: Complete Observations and High-Level Science Data Products for All 6 Clusters

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team

    2017-06-01

    The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  9. Development of Non-Proprietary Ultra-High Performance Concrete : Research Topic Statement

    DOT National Transportation Integrated Search

    2014-05-29

    Ultra-high performance concrete became commercially available in the U.S. in 2000. Since then, UHPC has been actively promoted by the Federal Highway Administration. UHPC has mostly been used in the U.S. for field-cast connections of prefabricated br...

  10. Design, construction, and field testing of an ultra high performance concrete pi-girder bridge.

    DOT National Transportation Integrated Search

    2011-01-01

    The Jakway Park Bridge in Buchanan County, Iowa is the first bridge constructed with a new prestesssed girder system composed of : precast Ultra-High Performance Concrete (UHPC). These girders employ an integral deck to facilitate construction and ar...

  11. REMOTE MONITORING AND DATA VERIFICATION WHEN USING A PACKAGE PLANT

    EPA Science Inventory

    A remote telemetry system (RTS) has been fabricated, laboratory tested, and integrated into the field operation of 10,000 gal/day ultra filtration package plant (UFPP). The UFPP utilizes bag filtration, disinfection by chlorination, and an ultra filtration membrane to produce fin...

  12. Localization of ultra-low frequency waves in multi-ion plasmas of the planetary magnetosphere

    DOE PAGES

    Kim, Eun -Hwa; Johnson, Jay R.; Lee, Dong -Hun

    2015-01-01

    By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Lastly, our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH wavesmore » can be localized in different locations along the field line.« less

  13. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    DOEpatents

    Volegov, Petr L [Los Alamos, NM; Matlashov, Andrei N [Los Alamos, NM; Mosher, John C [Los Alamos, NM; Espy, Michelle A [Los Alamos, NM; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  14. On the maximum energy of shock-accelerated cosmic rays at ultra-relativistic shocks

    NASA Astrophysics Data System (ADS)

    Reville, B.; Bell, A. R.

    2014-04-01

    The maximum energy to which cosmic rays can be accelerated at weakly magnetised ultra-relativistic shocks is investigated. We demonstrate that for such shocks, in which the scattering of energetic particles is mediated exclusively by ion skin-depth scale structures, as might be expected for a Weibel-mediated shock, there is an intrinsic limit on the maximum energy to which particles can be accelerated. This maximum energy is determined from the requirement that particles must be isotropized in the downstream plasma frame before the mean field transports them far downstream, and falls considerably short of what is required to produce ultra-high-energy cosmic rays. To circumvent this limit, a highly disorganized field is required on larger scales. The growth of cosmic ray-induced instabilities on wavelengths much longer than the ion-plasma skin depth, both upstream and downstream of the shock, is considered. While these instabilities may play an important role in magnetic field amplification at relativistic shocks, on scales comparable to the gyroradius of the most energetic particles, the calculated growth rates have insufficient time to modify the scattering. Since strong modification is a necessary condition for particles in the downstream region to re-cross the shock, in the absence of an alternative scattering mechanism, these results imply that acceleration to higher energies is ruled out. If weakly magnetized ultra-relativistic shocks are disfavoured as high-energy particle accelerators in general, the search for potential sources of ultra-high-energy cosmic rays can be narrowed.

  15. Ultra-sensitive speciation analysis of mercury by CE-ICP-MS together with field-amplified sample stacking injection and dispersive solid-phase extraction.

    PubMed

    Chen, YiQuan; Cheng, Xian; Mo, Fan; Huang, LiMei; Wu, Zujian; Wu, Yongning; Xu, LiangJun; Fu, FengFu

    2016-04-01

    A simple dispersive solid-phase extraction (DSPE) used to extract and preconcentrate ultra-trace MeHg, EtHg and Hg(2+) from water sample, and a sensitive method for the simultaneous analysis of MeHg, EtHg and Hg(2+) by using capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) with field-amplified sample stacking injection (FASI) were first reported in this study. The DSPE used thiol cotton particles as adsorbent, and is simple and effective. It can be used to extract and preconcentrate ultra-trace mercury compounds in water samples within 30 min with a satisfied recovery and no mercury species alteration during the process. The FASI enhanced the sensitivity of CE-ICP-MS with 25-fold, 29-fold and 27-fold for MeHg, EtHg and Hg(2+) , respectively. Using FASI-CE-ICP-MS together with DSPE, we have successfully determined ultra-trace MeHg, EtHg and Hg(2+) in tap water with a limits of quantification (LOQs) of 0.26-0.45 pg/mL, an RSD (n = 3) < 6% and a recovery of 92-108%. Ultra-high sensitivity, as well as much less sample and reagent consumption and low operating cost, make our method a valuable technique to the speciation analysis of ultra-trace mercury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    NASA Astrophysics Data System (ADS)

    Cadena, M. S. Reyes; Chapul, L. Sánchez; Pérez, Javiér; García, M. N. Jiménez; López, M. A. Jiménez; Espíndola, M. E. Sánchez; Perez, R. Paniagua; Hernández, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodríguez

    2008-08-01

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-β) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.

  17. The Intriguing Case of the (Almost) Dark Galaxy AGC 229385

    NASA Astrophysics Data System (ADS)

    Salzer, John

    2015-10-01

    The ALFALFA blind HI survey has catalogued tens of thousands of HI sources over 7000 square degrees of high Galactic latitude sky. While the vast majority of the sources in ALFALFA have optical counterparts in existing wide-field surveys like SDSS, a class of objects has been identified that have no obvious optical counterparts in existing catalogs. Dubbed almost dark galaxies, these objects represent an extreme in the continuum of galaxy properties, with the highest HI mass-to-optical light ratios ever measured. We propose to use HST to observe AGC 229385, an almost dark object found in deep WIYN imaging to have an ultra-low surface brightness stellar component with extremely blue colors. AGC 229385 falls well off of all galaxy scaling relationships, including the Baryonic Tully-Fisher relation. Ground-based optical and HI data have been able to identify this object as extreme, but are insufficient to constrain the properties of its stellar component or its distance - for this, we need HST. Our science goals are twofold: to better constrain the distance to AGC 229385, and to investigate the stellar population(s) in this mysterious object. The requested observations will not only provide crucial insight into the properties and evolution of this specific system but will also help us understand this important class of ultra low surface brightness, gas-rich galaxies. The proposed observations are designed to be exploratory, yet they promise to pay rich dividends for a modest investment in observing time.

  18. Fabrication of a wide-field NIR integral field unit for SWIMS using ultra-precision cutting

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yutaro; Yamagata, Yutaka; Morita, Shin-ya; Motohara, Kentaro; Ozaki, Shinobu; Takahashi, Hidenori; Konishi, Masahiro; Kato, Natsuko M.; Kobayakawa, Yutaka; Terao, Yasunori; Ohashi, Hirofumi

    2016-07-01

    We describe overview of fabrication methods and measurement results of test fabrications of optical surfaces for an integral field unit (IFU) for Simultaneous color Wide-field Infrared Multi-object Spectrograph, SWIMS, which is a first-generation instrument for the University of Tokyo Atacama Observatory 6.5-m telescope. SWIMS-IFU provides entire near-infrared spectrum from 0.9 to 2.5 μm simultaneously covering wider field of view of 17" × 13" compared with current near-infrared IFUs. We investigate an ultra-precision cutting technique to monolithically fabricate optical surfaces of IFU optics such as an image slicer. Using 4- or 5-axis ultra precision machine we compare the milling process and shaper cutting process to find the best way of fabrication of image slicers. The measurement results show that the surface roughness almost satisfies our requirement in both of two methods. Moreover, we also obtain ideal surface form in the shaper cutting process. This method will be adopted to other mirror arrays (i.e. pupil mirror and slit mirror, and such monolithic fabrications will also help us to considerably reduce alignment procedure of each optical elements.

  19. (Almost) Dark Galaxies in the ALFALFA Survey: Isolated H I-bearing Ultra-diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Leisman, Lukas; Haynes, Martha P.; Janowiecki, Steven; Hallenbeck, Gregory; Józsa, Gyula; Giovanelli, Riccardo; Adams, Elizabeth A. K.; Bernal Neira, David; Cannon, John M.; Janesh, William F.; Rhode, Katherine L.; Salzer, John J.

    2017-06-01

    We present a sample of 115 very low optical surface brightness, highly extended, H I-rich galaxies carefully selected from the ALFALFA survey that have similar optical absolute magnitudes, surface brightnesses, and radii to recently discovered “ultra-diffuse” galaxies (UDGs). However, these systems are bluer and have more irregular morphologies than other UDGs, are isolated, and contain significant reservoirs of H I. We find that while these sources have normal star formation rates for H I-selected galaxies of similar stellar mass, they have very low star formation efficiencies. We further present deep optical and H I-synthesis follow-up imaging of three of these H I-bearing ultra-diffuse sources. We measure H I diameters extending to ˜40 kpc, but note that while all three sources have large H I diameters for their stellar mass, they are consistent with the H I mass-H I radius relation. We further analyze the H I velocity widths and rotation velocities for the unresolved and resolved sources, respectively, and find that the sources appear to inhabit halos of dwarf galaxies. We estimate spin parameters, and suggest that these sources may exist in high spin parameter halos, and as such may be potential H I-rich progenitors to the ultra-diffuse galaxies observed in cluster environments.

  20. The Low-Mass Stellar Initial Mass Function: Ultra-Faint Dwarf Galaxies Revisited

    NASA Astrophysics Data System (ADS)

    Platais, Imants

    2017-08-01

    The stellar Initial Mass Function plays a critical role in the evolution of the baryonic content of the Universe. The form of the low-mass IMF - stars of mass less than the solar mass - determines the fraction of baryons locked up for a Hubble time, and thus indicates how gas and metals are cycled through galaxies. Inferences from resolved stellar populations, where the low-mass luminosity function and associated IMF can be derived from direct star counts, generally favor an invariant and universal IMF. However, a recent study of ultra-faint dwarf galaxies Hercules and Leo IV indicates a bottom-lite IMF, over a narrow range of stellar mass (only 0.55-0.75 M_sun), correlated with the internal velocity dispersion and/or metallicity. We propose to obtain ultra-deep imaging for a significantly closer ultra-faint dwarf, Bootes I, which will allow us to construct the luminosity function down to M_v=+10 (equivalent to 0.35 solar mass). We will also re-analyze the HST archival observations for the Hercules and Leo IV dwarfs using the same updated techniques as for Bootes I. The combined datasets should provide a reliable answer to the question of how variable is the low-mass stellar IMF.

  1. Pipeline repair development in support of the Oman to India gas pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abadie, W.; Carlson, W.

    1995-12-01

    This paper provides a summary of development which has been conducted to date for the ultra deep, diverless pipeline repair system for the proposed Oman to India Gas Pipeline. The work has addressed critical development areas involving testing and/or prototype development of tools and procedures required to perform a diverless pipeline repair in water depths of up to 3,525 m.

  2. Developments in Ultra-Stable Quartz Oscillators for Deep Space Reliability

    DTIC Science & Technology

    2004-12-01

    langatate , and III-V compounds such as gallium orthophosphate) exhibit superior electromechanical coupling in a single material phase around room...higher figures of merit than quartz. Indeed, langatate , despite the infancy of its development, has already demonstrated a quality factor that is...Langasite, Langanite, and Langatate Bulk-Wave Y-cut Resonators,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, UFFC-47, 355-360.

  3. THE CHALLENGE OF ACQUIRING ALPINE LARGE VOLUME LAKE WATER SAMPLES FOR ULTRA TRACE LEVEL ANALYSIS

    EPA Science Inventory

    The National Exposure Research Laboratory-Las Vegas, Nevada is interested in the emerging field technology of in-situ extraction of contaminants from surface water. A current research project involves ultra-trace level determination of agricultural pesticides from alpine lakes. T...

  4. Electric Field Strength Of Coherent Radio Emission In Rock Salt Concerning Ultra High-Energy Neutrino Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Y.; Chiba, M.; Yasuda, O.

    2006-07-12

    Detection possibility of ultra high-energy (UHE) neutrino (E >1015 eV) in natural huge rock salt formation has been studied. Collision between the UHE neutrino and the rock salt produces electromagnetic (EM) shower. Charge difference (excess electrons) between electrons and positrons in EM shower radiates radio wave coherently (Askar'yan effect). Angular distribution and frequency spectrum of electric field strength of radio wave radiated from 3-dimensional EM shower in rock salt are presented.

  5. Investigation of Molecular Exchange Using DEXSY with Ultra-High Pulsed Field Gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gratz, Marcel; Galvosas, Petrik

    2008-12-05

    Diffusion exchange spectroscopy has been employed for the investigation of water exchange between different regions of a cosmetic lotion as well as for the exchange of n-pentane between the inter- and intra-crystalline space in zeolite NaX. We successfully combined this two-dimensional (2D) NMR experiment with methods for the application of ultra-high pulsed field gradients of up to 35 T/m, resulting in observation times and mixing times as short as 2 ms and 2.8 ms, respectively.

  6. 27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells

    PubMed Central

    Zhang, Lei; Hou, Yubin; Li, Zhiyuan; Ji, Xinmiao; Wang, Ze; Wang, Huizhen; Tian, Xiaofei; Yu, Fazhi; Yang, Zhenye; Pi, Li; Mitchison, Timothy J; Lu, Qingyou; Zhang, Xin

    2017-01-01

    Purified microtubules have been shown to align along the static magnetic field (SMF) in vitro because of their diamagnetic anisotropy. However, whether mitotic spindle in mammalian cells can be aligned by magnetic field has not been experimentally proved. In particular, the biological effects of SMF of above 20 T (Tesla) on mammalian cells have never been reported. Here we found that in both CNE-2Z and RPE1 human cells spindle orients in 27 T SMF. The direction of spindle alignment depended on the extent to which chromosomes were aligned to form a planar metaphase plate. Our results show that the magnetic torque acts on both microtubules and chromosomes, and the preferred direction of spindle alignment relative to the field depends more on chromosome alignment than microtubules. In addition, spindle morphology was also perturbed by 27 T SMF. This is the first reported study that investigated the mammalian cellular responses to ultra-high magnetic field of above 20 T. Our study not only found that ultra-high magnetic field can change the orientation and morphology of mitotic spindles, but also provided a tool to probe the role of spindle orientation and perturbation in developmental and cancer biology. DOI: http://dx.doi.org/10.7554/eLife.22911.001 PMID:28244368

  7. First Discovery and Investigation of a High-Temperature Hydrothermal Vent Field on the Ultra- Slow Spreading Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Tao, C.; Lin, J.; Guo, S.; Chen, Y. J.; Wu, G.; Han, X.; German, C. R.; Yoerger, D. R.; Zhu, J.; Zhou, N.; Su, X.; Baker, E. T.; Party, S.

    2007-12-01

    Two recent cruises on board the Chinese research vessel Dayang Yihao have successfully investigated the first active hydrothermal vent field to be located along the ultraslow spreading Southwest Indian Ridge (SWIR) and collected hydrothermal sulfide deposit samples. The newly discovered hydrothermal vent field is located on the western end of a magmatically robust spreading segment immediately west of the Gallieni transform fault. Preliminary evidence of strong turbidity anomalies was first measured during a Nov. 2005 cruise on board Dayang Yihao (InterRidge News, vol. 15, pp. 33-34, 2006). Color video footages of the seafloor in the vent-field area were first obtained by a deep-towed video camera in February 2007 during DY115-19 Leg 1, when significant water column turbidity anomalies, noticeable temperature anomalies and methane anomalies were also measured. The vent field was then precisely located, mapped, and photographed in great detail in February- March 2007 during the DY115-19 Leg 2, using the autonomous underwater vehicle ABE of the Woods Hole Oceanographic Institution. A high-resolution bathymetric map, more than 5,000 near-bottom color photos, and several types of water column data were all obtained during three phases of ABE dives. Within the approximately 120-m-long by 100-m-wide hydrothermal field, three groups of active high-temperature vents were identified and color images of black smokers and associated biological communities were obtained from ABE, flying 5 m above the seafloor. Hydrothermal sulfide deposits were then successfully obtained using a TV-guided grab.

  8. First Discovery and Investigation of a High-Temperature Hydrothermal Vent Field on the Ultra- Slow Spreading Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Tao, C.; Lin, J.; Guo, S.; Chen, Y. J.; Wu, G.; Han, X.; German, C. R.; Yoerger, D. R.; Zhu, J.; Zhou, N.; Su, X.; Baker, E. T.; Party, S.

    2004-12-01

    Two recent cruises on board the Chinese research vessel Dayang Yihao have successfully investigated the first active hydrothermal vent field to be located along the ultraslow spreading Southwest Indian Ridge (SWIR) and collected hydrothermal sulfide deposit samples. The newly discovered hydrothermal vent field is located on the western end of a magmatically robust spreading segment immediately west of the Gallieni transform fault. Preliminary evidence of strong turbidity anomalies was first measured during a Nov. 2005 cruise on board Dayang Yihao (InterRidge News, vol. 15, pp. 33-34, 2006). Color video footages of the seafloor in the vent-field area were first obtained by a deep-towed video camera in February 2007 during DY115-19 Leg 1, when significant water column turbidity anomalies, noticeable temperature anomalies and methane anomalies were also measured. The vent field was then precisely located, mapped, and photographed in great detail in February- March 2007 during the DY115-19 Leg 2, using the autonomous underwater vehicle ABE of the Woods Hole Oceanographic Institution. A high-resolution bathymetric map, more than 5,000 near-bottom color photos, and several types of water column data were all obtained during three phases of ABE dives. Within the approximately 120-m-long by 100-m-wide hydrothermal field, three groups of active high-temperature vents were identified and color images of black smokers and associated biological communities were obtained from ABE, flying 5 m above the seafloor. Hydrothermal sulfide deposits were then successfully obtained using a TV-guided grab.

  9. N and Cr ion implantation of natural ruby surfaces and their characterization

    NASA Astrophysics Data System (ADS)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan; Magudapathy, P.; Panigrahi, B. K.; Nayak, B. B.; Mishra, B. K.

    2016-04-01

    Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV-Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 1017 N-ions/cm2 fluence, formation of colour centres (F+, F2, F2+ and F22+) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  10. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

    PubMed

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-11

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  11. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-01

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  12. Cluster mass calibration at high redshift: HST weak lensing analysis of 13 distant galaxy clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    NASA Astrophysics Data System (ADS)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; von der Linden, A.; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.

    2018-02-01

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (zmedian = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z)M500c/1014 M⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81^{+0.24}_{-0.14}(stat.) {± } 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.

  13. High Scalability Video ISR Exploitation

    DTIC Science & Technology

    2012-10-01

    Surveillance, ARGUS) on the National Image Interpretability Rating Scale (NIIRS) at level 6. Ultra-high quality cameras like the Digital Cinema 4K (DC-4K...Scale (NIIRS) at level 6. Ultra-high quality cameras like the Digital Cinema 4K (DC-4K), which recognizes objects smaller than people, will be available...purchase ultra-high quality cameras like the Digital Cinema 4K (DC-4K) for use in the field. However, even if such a UAV sensor with a DC-4K was flown

  14. The Morphology of Passively Evolving Galaxies at Z-2 from HST/WFC3 in the Hubble Ultra Deep Field

    NASA Technical Reports Server (NTRS)

    Cassata, P.; Giavalisco, M.; Guo, Yicheng; Ferguson, H.; Koekemoer, A.; Renzini, A.; Fontana, A.; Salimbeni, S.; Dickinson, M.; Casertano, S.; hide

    2009-01-01

    We discuss near-IR images of six passive galaxies (SSFR< 10(exp -2)/Gyr) at redshift 1.3 < z < 2.4 with stellar mass M approx 10(exp 11) solar mass, selected from the Great Observatories Origins Deep Survey (GOODS), obtained with WFC3/IR and the Hubble Space Telescope (HST). These WFC3 images provide the deepest and highest angular resolution view of the optical rest-frame morphology of such systems to date. We find that the light profile of these; galaxies is generally regular and well described by a Sersic model with index typical of today's spheroids. We confirm the existence of compact and massive early-type galaxies at z approx. 2: four out of six galaxies have T(sub e) approx. 1 kpc or less. The WFC3 images achieve limiting surface brightness mu approx. 26.5 mag/sq arcsec in the F160W bandpass; yet there is no evidence of a faint halo in the five compact galaxies of our sample, nor is a halo observed in their stacked image. We also find very weak "morphological k-correction" in the galaxies between the rest-frame UV (from the ACS z band), and the rest-frame optical (WFC3 H band): the visual classification, Sersic indices and physical sizes of these galaxies are independent or only mildly dependent on the wavelength, within the errors.

  15. Blueschist- and Eclogite facies Pseudotachylytes: Products of Earthquakes in Collision- and Subduction zones

    NASA Astrophysics Data System (ADS)

    Andersen, T. B.; Austrheim, H.; John, T.; Medvedev, S.; Mair, K.

    2009-04-01

    Pseudotachylytes are the products of violent geological processes such as metorite impacts and seismic faulting. The fault-rock weakening processes leading to release of earthquakes are commonly related to phenomena such as grain size reduction and gouge formation, pressurization of pore-fluids and in some cases to melting by frictional heating. Explaining the frequently observed intermediate and deep earthquakes by brittle failure is, however, inherently difficult to reconcile because of extremely high normal stresses occuring at depth. In recent years several mechanisms for seismic events on deep faults have been suggested. These include: a) The most commonly accepted mechanism, dehydration embrittlement coupled to prograde metamorphic dehydration of wet rocks, such as serpentinites, at depth. b) Grain-size dependent flow-laws coupled with shear heating instability has been suggested as an alternative to explain repeated seismic faulting in Wadati-Benioff zones. c) Self-localized-thermal-runaway (SLTR) has been forwarded as a mechanism for ultimate failure of visco-elastic materials and as mechanism to explain the co-existence of shear zones and pseudotachylyte fault veins formed at eclogite facies conditions. All these mechanism point to the importance of metamorphism and/or metasomatism in understanding the mechanism(s) of intermediate- and deep earthquakes. Exhumed high to ultra-high pressure [(U)HP] metamorphic rocks are recognized in many orogenic belts. These complexes provide avenues to study a number of important products of geological processes including earthquakes with hypocentres at great depths. (U)HP co-seismic fault rocks are difficult to find in the field; nevertheless, a number of occurrences of co-seismic fault rocks from such complexes have been described after the initial discovery of such rocks in Norway (see: Austrheim and Boundy, Science 1994). In this talk we review some observations and interpretations based on these hitherto rarely observed but important co-seismic fault rocks from deep-crust and mantle complexes.

  16. Low-abundance HIV drug-resistant viral variants in treatment-experienced persons correlate with historical antiretroviral use.

    PubMed

    Le, Thuy; Chiarella, Jennifer; Simen, Birgitte B; Hanczaruk, Bozena; Egholm, Michael; Landry, Marie L; Dieckhaus, Kevin; Rosen, Marc I; Kozal, Michael J

    2009-06-29

    It is largely unknown how frequently low-abundance HIV drug-resistant variants at levels under limit of detection of conventional genotyping (<20% of quasi-species) are present in antiretroviral-experienced persons experiencing virologic failure. Further, the clinical implications of low-abundance drug-resistant variants at time of virologic failure are unknown. Plasma samples from 22 antiretroviral-experienced subjects collected at time of virologic failure (viral load 1380 to 304,000 copies/mL) were obtained from a specimen bank (from 2004-2007). The prevalence and profile of drug-resistant mutations were determined using Sanger sequencing and ultra-deep pyrosequencing. Genotypes were interpreted using Stanford HIV database algorithm. Antiretroviral treatment histories were obtained by chart review and correlated with drug-resistant mutations. Low-abundance drug-resistant mutations were detected in all 22 subjects by deep sequencing and only in 3 subjects by Sanger sequencing. In total they accounted for 90 of 247 mutations (36%) detected by deep sequencing; the majority of these (95%) were not detected by standard genotyping. A mean of 4 additional mutations per subject were detected by deep sequencing (p<0.0001, 95%CI: 2.85-5.53). The additional low-abundance drug-resistant mutations increased a subject's genotypic resistance to one or more antiretrovirals in 17 of 22 subjects (77%). When correlated with subjects' antiretroviral treatment histories, the additional low-abundance drug-resistant mutations correlated with the failing antiretroviral drugs in 21% subjects and correlated with historical antiretroviral use in 79% subjects (OR, 13.73; 95% CI, 2.5-74.3, p = 0.0016). Low-abundance HIV drug-resistant mutations in antiretroviral-experienced subjects at time of virologic failure can increase a subject's overall burden of resistance, yet commonly go unrecognized by conventional genotyping. The majority of unrecognized resistant mutations correlate with historical antiretroviral use. Ultra-deep sequencing can provide important historical resistance information for clinicians when planning subsequent antiretroviral regimens for highly treatment-experienced patients, particularly when their prior treatment histories and longitudinal genotypes are not available.

  17. Low-Abundance HIV Drug-Resistant Viral Variants in Treatment-Experienced Persons Correlate with Historical Antiretroviral Use

    PubMed Central

    Le, Thuy; Chiarella, Jennifer; Simen, Birgitte B.; Hanczaruk, Bozena; Egholm, Michael; Landry, Marie L.; Dieckhaus, Kevin; Rosen, Marc I.; Kozal, Michael J.

    2009-01-01

    Background It is largely unknown how frequently low-abundance HIV drug-resistant variants at levels under limit of detection of conventional genotyping (<20% of quasi-species) are present in antiretroviral-experienced persons experiencing virologic failure. Further, the clinical implications of low-abundance drug-resistant variants at time of virologic failure are unknown. Methodology/Principal Findings Plasma samples from 22 antiretroviral-experienced subjects collected at time of virologic failure (viral load 1380 to 304,000 copies/mL) were obtained from a specimen bank (from 2004–2007). The prevalence and profile of drug-resistant mutations were determined using Sanger sequencing and ultra-deep pyrosequencing. Genotypes were interpreted using Stanford HIV database algorithm. Antiretroviral treatment histories were obtained by chart review and correlated with drug-resistant mutations. Low-abundance drug-resistant mutations were detected in all 22 subjects by deep sequencing and only in 3 subjects by Sanger sequencing. In total they accounted for 90 of 247 mutations (36%) detected by deep sequencing; the majority of these (95%) were not detected by standard genotyping. A mean of 4 additional mutations per subject were detected by deep sequencing (p<0.0001, 95%CI: 2.85–5.53). The additional low-abundance drug-resistant mutations increased a subject's genotypic resistance to one or more antiretrovirals in 17 of 22 subjects (77%). When correlated with subjects' antiretroviral treatment histories, the additional low-abundance drug-resistant mutations correlated with the failing antiretroviral drugs in 21% subjects and correlated with historical antiretroviral use in 79% subjects (OR, 13.73; 95% CI, 2.5–74.3, p = 0.0016). Conclusions/Significance Low-abundance HIV drug-resistant mutations in antiretroviral-experienced subjects at time of virologic failure can increase a subject's overall burden of resistance, yet commonly go unrecognized by conventional genotyping. The majority of unrecognized resistant mutations correlate with historical antiretroviral use. Ultra-deep sequencing can provide important historical resistance information for clinicians when planning subsequent antiretroviral regimens for highly treatment-experienced patients, particularly when their prior treatment histories and longitudinal genotypes are not available. PMID:19562031

  18. Structural setting and magnetic properties of pseudotachylyte in a deep crustal shear zone, western Canadian shield

    NASA Astrophysics Data System (ADS)

    Orlandini, O. F.; Mahan, K. H.; Brown, L. L.; Regan, S.; Williams, M. L.

    2012-12-01

    Seismic slip commonly produces pseudotachylytes, a glassy vein-filling substance that is typically interpreted as either a frictional melt or an ultra-triturated cataclasite. In either form, pseudotachylytes are commonly magnetite enriched, even in magnetite-free host rocks, and therefore are potentially useful as high fidelity recorders of natural magnetic fields at the time of slip in a wide array of lithologies. Pseudotachylytes generally have high magnetic susceptibility and thus should preserve the dominant field present as the material passes the Curie temperatures of magnetic minerals, primarily magnetite. Two potential sources have been proposed for the dominant magnetic field recorded: the earth's magnetic field at the time of slip or the temporary and orders of magnitude more intense field created by the presence of coseismic currents along the failure plane. Pseudotachylytes of the Cora Lake shear zone (CLsz) in the Athabasca Granulite Terrain, western Canadian shield, are consistently hosted in high strain ultramylonitic orthogneiss. Sinistral and extensional oblique-slip in the CLsz occurred at high-pressure granulite-grade conditions of ~1.0 GPa and >800°C and may have persisted to somewhat lower P-T conditions (~0.8 GPa, 700 °C) during ductile deformation. Pseudotachylyte-bearing slip surfaces have sinistral offset, matching the larger shear zone, and clasts of wall rock in the more brecciated veins display field evidence for ductile shear along the same plane prior to brittle failure. The presence of undeformed pseudotachylyte in kinematically compatible fracture arrays localized in ultramylonite indicates that brittle failure may have occurred in the waning stages of shear zone activity and at similar deep crustal conditions. Field-documented occurrences of pseudotachylyte include 2 cm-thick veins that run subparallel to mylonitic foliation and contain small flow-aligned clasts and large, heavily brecciated foliation-crosscutting zones up to seven centimeters thick. Field studies of pseudotachylytes in the Cora Lake shear zone confirm high magnetic susceptibility, both by strongly interfering with hand-held compasses and by testing with a hand-held magnetic susceptibility meter (over 7 x10-2 SI). More detailed laboratory analyses are planned in order to clarify the spatial association between veins of pseudotachylyte and areas of magnetic susceptibility. Investigation is also currently underway to determine if the remnant field preserved in these pseudotachylytes dominantly reflects a signature of the Earth's paleomagnetic field or that of a lightning-like coseismic current.

  19. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadena, M. S. Reyes; Chapul, L. Sanchez; Perez, Javier

    2008-08-11

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-{beta}) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animalsmore » subjected to ELF together with the transfer factor.« less

  20. The SCUBA-2 Cosmology Legacy Survey: galaxies in the deep 850 μm survey, and the star-forming `main sequence'

    NASA Astrophysics Data System (ADS)

    Koprowski, M. P.; Dunlop, J. S.; Michałowski, M. J.; Roseboom, I.; Geach, J. E.; Cirasuolo, M.; Aretxaga, I.; Bowler, R. A. A.; Banerji, M.; Bourne, N.; Coppin, K. E. K.; Chapman, S.; Hughes, D. H.; Jenness, T.; McLure, R. J.; Symeonidis, M.; Werf, P. van der

    2016-06-01

    We investigate the properties of the galaxies selected from the deepest 850-μm survey undertaken to date with (Submillimetre Common-User Bolometer Array 2) SCUBA-2 on the James Clerk Maxwell Telescope as part of the SCUBA-2 Cosmology Legacy Survey. A total of 106 sources (>5σ) were uncovered at 850 μm from an area of ≃150 arcmin2 in the centre of the COSMOS/UltraVISTA/Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) field, imaged to a typical depth of σ850 ≃ 0.25 mJy. We utilize the available multifrequency data to identify galaxy counterparts for 80 of these sources (75 per cent), and to establish the complete redshift distribution for this sample, yielding bar{z} = 2.38± 0.09. We have also been able to determine the stellar masses of the majority of the galaxy identifications, enabling us to explore their location on the star formation rate:stellar mass (SFR:M*) plane. Crucially, our new deep 850-μm-selected sample reaches flux densities equivalent to SFR ≃ 100 M⊙ yr-1, enabling us to confirm that sub-mm galaxies form the high-mass end of the `main sequence' (MS) of star-forming galaxies at z > 1.5 (with a mean specific SFR of sSFR = 2.25 ± 0.19 Gyr-1 at z ≃ 2.5). Our results are consistent with no significant flattening of the MS towards high masses at these redshifts. However, our results add to the growing evidence that average sSFR rises only slowly at high redshift, resulting in log10sSFR being an apparently simple linear function of the age of the Universe.

  1. THE SCUBA-2 COSMOLOGY LEGACY SURVEY: MULTIWAVELENGTH COUNTERPARTS TO 10{sup 3} SUBMILLIMETER GALAXIES IN THE UKIDSS-UDS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chian-Chou; Smail, Ian; Ma, Cheng-Jiun

    We present multiwavelength identifications for the counterparts of 1088 submillimeter sources detected at 850 μm in the SCUBA-2 Cosmology Legacy Survey study of the UKIRT Infrared Deep Sky Survey-Ultra-Deep Survey (UDS) field. By utilizing an Atacama Large Millimeter Array (ALMA) pilot study on a subset of our bright SCUBA-2 sample as a training set, along with the deep optical–near-infrared (OIR) data available in this field, we develop a novel technique, Optical–IR Triple Color (OIRTC), using z − K, K − [3.6], [3.6] − [4.5] colors to select the candidate submillimeter galaxy (SMG) counterparts. By combining radio identification and the OIRTC technique, we find counterpart candidates formore » 80% of the Class = 1 ≥ 4σ SCUBA-2 sample, defined as those that are covered by both radio and OIR imaging and the base sample for our scientific analyses. Based on the ALMA training set, we expect the accuracy of these identifications to be 82% ± 20%, with a completeness of 69% ± 16%, essentially as accurate as the traditional p-value technique but with higher completeness. We find that the fraction of SCUBA-2 sources having candidate counterparts is lower for fainter 850 μm sources, and we argue that for follow-up observations sensitive to SMGs with S{sub 850} ≳ 1 mJy across the whole ALMA beam, the fraction with multiple counterparts is likely to be >40% for SCUBA-2 sources at S{sub 850} ≳ 4 mJy. We find that the photometric redshift distribution for the SMGs is well fit by a lognormal distribution, with a median redshift of z = 2.3 ± 0.1. After accounting for the sources without any radio and/or OIRTC counterpart, we estimate the median redshift to be z = 2.6 ± 0.1 for SMGs with S{sub 850} > 1 mJy. We also use this new large sample to study the clustering of SMGs and the far-infrared properties of the unidentified submillimeter sources by stacking their Herschel SPIRE far-infrared emission.« less

  2. 30 CFR 203.32 - What other requirements or restrictions apply to royalty relief for a qualified phase 2 or phase...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a qualified ultra-deep well on your lease is within a unitized portion of your lease, the RSV earned... interval that initially produces earns the RSV or (2) If the perforated interval crosses a lease line, the lease where the surface of the well is located earns the RSV. (c) Any RSV earned under § 203.31 is in...

  3. 30 CFR 203.32 - What other requirements or restrictions apply to royalty relief for a qualified phase 2 or phase...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a qualified ultra-deep well on your lease is within a unitized portion of your lease, the RSV earned... interval that initially produces earns the RSV or (2) If the perforated interval crosses a lease line, the lease where the surface of the well is located earns the RSV. (c) Any RSV earned under § 203.31 is in...

  4. 30 CFR 203.32 - What other requirements or restrictions apply to royalty relief for a qualified phase 2 or phase...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a qualified ultra-deep well on your lease is within a unitized portion of your lease, the RSV earned... interval that initially produces earns the RSV or (2) If the perforated interval crosses a lease line, the lease where the surface of the well is located earns the RSV. (c) Any RSV earned under § 203.31 is in...

  5. Deep desulfurization of hydrocarbon fuels

    DOEpatents

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  6. Ordered and Ultra-High Aspect Ratio Nanocapillary Arrays as a Model System

    DTIC Science & Technology

    2015-10-13

    formation and deep pore growth of anodized aluminum oxide ( AAO )-based nanocapillary arrays as the basis for high density, safe and high rate gas... anodized aluminum oxide , nanocapillary arrays 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME... Aluminum Page 7 Copyright © 2015 Mainstream Engineering Corporation CPE Mitigation Schemes  Control thermal and flow profile -> even anodization

  7. Seafloor Pressure Array Studies at Ultra-Low Frequencies

    DTIC Science & Technology

    1991-01-01

    broadband instrument design and deployment. In order to measure broadband noise routinely, a low frequency pressure gauge designed for deep ocean...below the microseism band (Moore et al, 1981). A differential pressure gauge , developed for low frequency recordings by Cox et al (1984) and sensitive to...design differential pressure gauge (Cox et al, 1984) with a sensitivity -3- ULF Seafloor Pressure Array Studies range of 0.01-5 Hz. The high

  8. Optimization of chemical compositions in low-carbon Al-killed enamel steel produced by ultra-fast continuous annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Futao, E-mail: dongft@sina.com; Du, Linxiu; Liu, Xianghua

    2013-10-15

    The influence of Mn,S and B contents on microstructural characteristics, mechanical properties and hydrogen trapping ability of low-carbon Al-killed enamel steel was investigated. The materials were produced and processed in a laboratory and the ultra-fast continuous annealing processing was performed using a continuous annealing simulator. It was found that increasing Mn,S contents in steel can improve its hydrogen trapping ability which is attributed by refined ferrite grains, more dispersed cementite and added MnS inclusions. Nevertheless, it deteriorates mechanical properties of steel sheet. Addition of trace boron results in both good mechanical properties and significantly improved hydrogen trapping ability. The boronmore » combined with nitrogen segregating at grain boundaries, cementite and MnS inclusions, provides higher amount of attractive hydrogen trapping sites and raises the activation energy for hydrogen desorption from them. - Highlights: • We study microstructures and properties in low-carbon Al-killed enamel steel. • Hydrogen diffusion coefficients are measured to reflect fish-scale resistance. • Manganese improves hydrogen trapping ability but decrease deep-drawing ability. • Boron improves both hydrogen trapping ability and deep-drawing ability. • Both excellent mechanical properties and fish-scale resistance can be matched.« less

  9. Breaking the 1000-gene barrier for Mimivirus using ultra-deep genome and transcriptome sequencing.

    PubMed

    Legendre, Matthieu; Santini, Sébastien; Rico, Alain; Abergel, Chantal; Claverie, Jean-Michel

    2011-03-04

    Mimivirus, a giant dsDNA virus infecting Acanthamoeba, is the prototype of the mimiviridae family, the latest addition to the family of the nucleocytoplasmic large DNA viruses (NCLDVs). Its 1.2 Mb-genome was initially predicted to encode 917 genes. A subsequent RNA-Seq analysis precisely mapped many transcript boundaries and identified 75 new genes. We now report a much deeper analysis using the SOLiD™ technology combining RNA-Seq of the Mimivirus transcriptome during the infectious cycle (202.4 Million reads), and a complete genome re-sequencing (45.3 Million reads). This study corrected the genome sequence and identified several single nucleotide polymorphisms. Our results also provided clear evidence of previously overlooked transcription units, including an important RNA polymerase subunit distantly related to Euryarchea homologues. The total Mimivirus gene count is now 1018, 11% greater than the original annotation. This study highlights the huge progress brought about by ultra-deep sequencing for the comprehensive annotation of virus genomes, opening the door to a complete one-nucleotide resolution level description of their transcriptional activity, and to the realistic modeling of the viral genome expression at the ultimate molecular level. This work also illustrates the need to go beyond bioinformatics-only approaches for the annotation of short protein and non-coding genes in viral genomes.

  10. Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing.

    PubMed

    López-Carrasco, Amparo; Ballesteros, Cristina; Sentandreu, Vicente; Delgado, Sonia; Gago-Zachert, Selma; Flores, Ricardo; Sanjuán, Rafael

    2017-09-01

    Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses.

  11. Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing

    PubMed Central

    Ballesteros, Cristina; Sentandreu, Vicente; Gago-Zachert, Selma

    2017-01-01

    Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses. PMID:28910391

  12. The VIMOS Ultra Deep Survey: Lyα emission and stellar populations of star-forming galaxies at 2 < z < 2.5

    NASA Astrophysics Data System (ADS)

    Hathi, N. P.; Le Fèvre, O.; Ilbert, O.; Cassata, P.; Tasca, L. A. M.; Lemaux, B. C.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Guaita, L.; Koekemoer, A.; Paltani, S.; Pforr, J.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; Cuby, J. G.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2016-04-01

    The aim of this paper is to investigate spectral and photometric properties of 854 faint (IAB ≲ 25 mag) star-forming galaxies (SFGs) at 2 < z < 2.5 using the VIMOS Ultra-Deep Survey (VUDS) spectroscopic data and deep multi-wavelength photometric data in three extensively studied extragalactic fields (ECDFS, VVDS, COSMOS). These SFGs were targeted for spectroscopy as a result of their photometric redshifts. The VUDS spectra are used to measure the UV spectral slopes (β) as well as Lyα equivalent widths (EW). On average, the spectroscopically measured β (-1.36 ± 0.02), is comparable to the photometrically measured β (-1.32 ± 0.02), and has smaller measurement uncertainties. The positive correlation of β with the spectral energy distribution (SED)-based measurement of dust extinction Es(B-V) emphasizes the importance of β as an alternative dust indicator at high redshifts. To make a proper comparison, we divide these SFGs into three subgroups based on their rest-frame Lyα EW: SFGs with no Lyα emission (SFGN; EW ≤ 0 Å), SFGs with Lyα emission (SFGL; EW > 0 Å), and Lyα emitters (LAEs; EW ≥ 20 Å). The fraction of LAEs at these redshifts is ~10%, which is consistent with previous observations. We compared best-fitSED-estimated stellar parameters of the SFGN, SFGL and LAE samples. For the luminosities probed here (~ L∗), we find that galaxies with and without Lyα in emission have small but significant differences in their SED-based properties. We find that LAEs have less dust, and lower star-formation rates (SFR) compared to non-LAEs. We also find that LAEs are less massive compared to non-LAEs, though the difference is smaller and less significant compared to the SFR and Es(B-V). When we divide the LAEs according to their Spitzer/IRAC 3.6 μm fluxes, we find that the fraction of IRAC-detected (m3.6 ≲ 25 mag) LAEs is much higher than the fraction of IRAC-detected narrow band (NB)-selected LAEs at z ≃ 2-3. This could imply that UV-selected LAEs host a more evolved stellar population, which represents a later stage of galaxy evolution, compared to NB-selected LAEs. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.

  13. [Ultra] luminous infrared galaxies selected at 90 μm in the AKARI deep field: a study of AGN types contributing to their infrared emission

    NASA Astrophysics Data System (ADS)

    Małek, K.; Bankowicz, M.; Pollo, A.; Buat, V.; Takeuchi, T. T.; Burgarella, D.; Goto, T.; Malkan, M.; Matsuhara, H.

    2017-02-01

    Aims: The aim of this work is to characterize physical properties of ultra luminous infrared galaxies (ULIRGs) and luminous infrared galaxies (LIRGs) detected in the far-infrared (FIR) 90 μm band in the AKARI Deep Field-South (ADF-S) survey. In particular, we want to estimate the active galactic nucleus (AGN) contribution to the LIRGs and ULIRGs' infrared emission and which types of AGNs are related to their activity. Methods: We examined 69 galaxies at redshift ≥0.05 detected at 90 μm by the AKARI satellite in the ADF-S, with optical counterparts and spectral coverage from the ultraviolet to the FIR. We used two independent spectral energy distribution fitting codes: one fitting the SED from FIR to FUV (CIGALE) (we use the results from CIGALE as a reference) and gray-body + power spectrum fit for the infrared part of the spectra (CMCIRSED) in order to identify a subsample of ULIRGs and LIRGs, and to estimate their properties. Results: Based on the CIGALE SED fitting, we have found that LIRGs and ULIRGs selected at the 90 μm AKARI band compose 56% of our sample (we found 17 ULIRGs and 22 LIRGs, spanning over the redshift range 0.06

  14. Galaxies at z~7-8: z850-Dropouts in the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Bouwens, R. J.; Thompson, R. I.; Illingworth, G. D.; Franx, M.; van Dokkum, P. G.; Fan, X.; Dickinson, M. E.; Eisenstein, D. J.; Rieke, M. J.

    2004-12-01

    We have detected likely z~7-8 galaxies in the 144''×144'' Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) observations of the Hubble Ultra Deep Field. Objects are required to be >=3 σ detections in both NICMOS bands, J110 and H160. The selection criteria for this sample are (z850-J110)AB>0.8, (z850-J110)AB>0.66(J110-H160)AB+0.8, (J110-H160)AB<1.2 and no detection at less than 8500 Å. The five selected sources have total magnitudes H160,AB~27. Four of the five sources are quite blue compared to typical lower redshift dropout galaxies and are clustered within a 1 arcmin2 region. Because all five sources are near the limit of the NICMOS data, we have carefully evaluated their reality. Each of the candidates is visible in different splits of the data and a median stack. We analyzed several noise images and estimate the number of spurious sources to be 1+/-1. A search using an independent reduction of this same data set clearly revealed three of the five candidates and weakly detected a fourth candidate, suggesting that the contamination could be higher. For comparison with predictions from lower redshift samples, we take a conservative approach and adopt four z~7-8 galaxies as our sample. With the same detection criteria on simulated data sets, assuming no evolution from z~3.8, we predict 10 sources at z~7-8, or 14 if we use a more realistic (1+z)-1 size scaling. We estimate that the rest-frame continuum UV (~1800 Å) luminosity density at z~7.5 (integrated down to 0.3L*z=3) is just 0.20+0.12-0.08 times that found at z~3.8 (or 0.20+0.23-0.12 times this quantity including cosmic variance). Effectively this sets an upper limit on the luminosity density down to 0.3L*z=3 and is consistent with significant evolution at the bright end of the luminosity function from z~7.5 to 3.8. Even with the lower UV luminosity density at z~7.5, it appears that galaxies could still play an important role in reionization at these redshifts, although definitive measurements remain to be made. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  15. An Ultra Low Cost Wireless Communications Laboratory for Education and Research

    ERIC Educational Resources Information Center

    Linn, Y.

    2012-01-01

    This paper presents an ultra-low-cost wireless communications laboratory that is based on a commercial off-the-shelf field programmable gate array (FPGA) development board that is both inexpensive and available worldwide. The total cost of the laboratory is under USD $200, but it includes complete transmission, channel emulation, reception…

  16. Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...

  17. A Huygens Surface Approach to Antenna Implementation in Near-Field Radar Imaging System Simulations

    DTIC Science & Technology

    2015-08-01

    environment. The model consists of an ultra - wideband , forward-looking radar imaging system, equipped with a multi-static antenna array and mounted on a...of the receiving antenna. 2.2 Huygens Surface Implementation Details The NAFDTD code implements the excitation waveform as a short, ultra - wideband ...

  18. Recording Visual Evoked Potentials and Auditory Evoked P300 at 9.4T Static Magnetic Field

    PubMed Central

    Hahn, David; Boers, Frank; Shah, N. Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4T were not different from those recorded at 0T. The amplitudes of ERPs were higher at 9.4T when compared to recordings at 0T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses. PMID:23650538

  19. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    PubMed

    Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  20. Ultra-large nonlinear parameter in graphene-silicon waveguide structures.

    PubMed

    Donnelly, Christine; Tan, Dawn T H

    2014-09-22

    Mono-layer graphene integrated with optical waveguides is studied for the purpose of maximizing E-field interaction with the graphene layer, for the generation of ultra-large nonlinear parameters. It is shown that the common approach used to minimize the waveguide effective modal area does not accurately predict the configuration with the maximum nonlinear parameter. Both photonic and plasmonic waveguide configurations and graphene integration techniques realizable with today's fabrication tools are studied. Importantly, nonlinear parameters exceeding 10(4) W(-1)/m, two orders of magnitude larger than that in silicon on insulator waveguides without graphene, are obtained for the quasi-TE mode in silicon waveguides incorporating mono-layer graphene in the evanescent part of the optical field. Dielectric loaded surface plasmon polariton waveguides incorporating mono-layer graphene are observed to generate nonlinear parameters as large as 10(5) W(-1)/m, three orders of magnitude larger than that in silicon on insulator waveguides without graphene. The ultra-large nonlinear parameters make such waveguides promising platforms for nonlinear integrated optics at ultra-low powers, and for previously unobserved nonlinear optical effects to be studied in a waveguide platform.

  1. Overview of deep learning in medical imaging.

    PubMed

    Suzuki, Kenji

    2017-09-01

    The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a lesser number of training cases than did CNNs. "Deep learning", or ML with image input, in medical imaging is an explosively growing, promising field. It is expected that ML with image input will be the mainstream area in the field of medical imaging in the next few decades.

  2. Microgap ultra-violet detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.

    1994-01-01

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse.

  3. Microgap ultra-violet detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.

    1994-09-20

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4,000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap is disclosed. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse. 2 figs.

  4. Ultra-high vacuum photoelectron linear accelerator

    DOEpatents

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  5. Diagnosis of multiple sclerosis through the lens of ultra-high-field MRI

    NASA Astrophysics Data System (ADS)

    Sati, Pascal

    2018-06-01

    The long-standing relationship between ultra-high-field (7 T) MRI and multiple sclerosis (MS) has brought new insights to our understanding of lesion evolution and its associated pathology. With the recent FDA approval of a commercially available scanner, 7 T MRI is finally entering the clinic with great expectations about its potential added value. By looking through the prism of MS diagnosis, this perspective article discusses current limitations and prospects of 7 T MRI techniques relevant to helping clinicians diagnose patients encountered in daily practice.

  6. Simulations of ultra-high energy cosmic rays in the local Universe and the origin of cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Hackstein, S.; Vazza, F.; Brüggen, M.; Sorce, J. G.; Gottlöber, S.

    2018-04-01

    We simulate the propagation of cosmic rays at ultra-high energies, ≳1018 eV, in models of extragalactic magnetic fields in constrained simulations of the local Universe. We use constrained initial conditions with the cosmological magnetohydrodynamics code ENZO. The resulting models of the distribution of magnetic fields in the local Universe are used in the CRPROPA code to simulate the propagation of ultra-high energy cosmic rays. We investigate the impact of six different magneto-genesis scenarios, both primordial and astrophysical, on the propagation of cosmic rays over cosmological distances. Moreover, we study the influence of different source distributions around the Milky Way. Our study shows that different scenarios of magneto-genesis do not have a large impact on the anisotropy measurements of ultra-high energy cosmic rays. However, at high energies above the Greisen-Zatsepin-Kuzmin (GZK)-limit, there is anisotropy caused by the distribution of nearby sources, independent of the magnetic field model. This provides a chance to identify cosmic ray sources with future full-sky measurements and high number statistics at the highest energies. Finally, we compare our results to the dipole signal measured by the Pierre Auger Observatory. All our source models and magnetic field models could reproduce the observed dipole amplitude with a pure iron injection composition. Our results indicate that the dipole is observed due to clustering of secondary nuclei in direction of nearby sources of heavy nuclei. A light injection composition is disfavoured, since the increase in dipole angular power from 4 to 8 EeV is too slow compared to observation by the Pierre Auger Observatory.

  7. Duplex investigations in children: Are clinical signs in children with venous disorders relevant?

    PubMed

    Birgitte Maessen-Visch, M; Smeets, L; van Vleuten, C

    2015-12-01

    Ultra sound colored duplex sonography is the preferred method in diagnosing chronic venous disease. Data in children on incidence, indications, and results are lacking. From the total of 9180 duplex investigations performed in our hospital from 2009 to 2012, data on indication and results of the investigation as well as patient characteristics were evaluated retrospectively for the proportion of pediatric patients. Duplex investigations were performed 49 times in 38 children (6-18 years), with an average of 1.3 times (1-6 times) per child. Forty percent showed abnormalities: 17 times deep venous thrombosis was suspected; deep venous thrombosis was objectified in 18%. In the 21 investigations performed for varicosis-related complaints, varicose veins or venous malformations were objectified in 57%. Edema was never a symptom of chronic venous disease. Duplex investigation is not often performed in children. In children with established deep venous thrombosis, a family history with deep venous thrombosis is common. In general, edema was not seen in children with varicose veins and, therefore, does not seem a reliable clinical sign at young age. © The Author(s) 2014.

  8. The HST Frontier Fields: High-Level Science Data Products for the First 4 Completed Clusters, and Latest Data on the Remaining Clusters

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Borncamp, David; Gunning, Heather C.; Hilbert, Bryan; Khandrika, Harish G.; Lucas, Ray A.; Ogaz, Sara; Porterfield, Blair; Grogin, Norman A.; Robberto, Massimo; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team

    2016-01-01

    The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The first four of these clusters are now complete, namely Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223, with each of these having been observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, using ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W). The remaining two clusters, Abell 370 and Abell S1063, are currently in progress. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including a total of 24 separate cumulative-depth data releases during each epoch, as well as full-depth version 1.0 releases at the end of each completed epoch. These products include all the full-depth distortion-corrected mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The resulting high-level science products are delivered via the Mikulski Archive for Space Telescopes (MAST) to the community on a rapid timescale to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  9. The HST Frontier Fields: High-Level Science Data Products for the First 4 Completed Clusters, and for the Last 2 Clusters Currently in Progress

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Borncamp, David; Gunning, Heather C.; Hilbert, Bryan; Khandrika, Harish G.; Lucas, Ray A.; Ogaz, Sara; Porterfield, Blair; Sunnquist, Ben; Grogin, Norman A.; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team

    2016-06-01

    The Hubble Space Telescope Frontier Fields program (PI: J. Lotz) is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The first four of these clusters are now complete, namely Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223, with each of these having been observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, using ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W). The remaining two clusters, Abell 370 and Abell S1063, are currently in progress, with the first epoch for each having been completed. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth v0.5 data releases during each epoch, as well as full-depth version 1.0 releases after the completion of each epoch. These products include all the full-depth distortion-corrected mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  10. An ultra-small NiFe2O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property.

    PubMed

    Yan, Feng; Guo, Dong; Zhang, Shen; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-02-08

    Herein, ultra-small NiFe 2 O 4 hollow particles, with the diameter and wall thickness of only 6 and 1.8 nm, respectively, were anchored on a graphene surface based on the nanoscale Kirkendall effect. The hybrid exhibits an excellent electromagnetic wave absorption property, comparable or superior to that of most reported absorbers. Our strategy may open a way to grow ultra-small hollow particles on graphene for applications in many fields such as eletromagnetic wave absorption and energy storage and conversion.

  11. The galaxy UV luminosity function at z ≃ 2-4; new results on faint-end slope and the evolution of luminosity density

    NASA Astrophysics Data System (ADS)

    Parsa, Shaghayegh; Dunlop, James S.; McLure, Ross J.; Mortlock, Alice

    2016-03-01

    We present a new, robust measurement of the evolving rest-frame ultraviolet (UV) galaxy luminosity function (LF) over the key redshift range from z ≃ 2 to z ≃ 4. Our results are based on the high dynamic range provided by combining the Hubble Ultra Deep Field (HUDF), CANDELS/GOODS-South, and UltraVISTA/COSMOS surveys. We utilize the unparalleled multifrequency photometry available in this survey `wedding cake' to compile complete galaxy samples at z ≃ 2, 3, 4 via photometric redshifts (calibrated against the latest spectroscopy) rather than colour-colour selection, and to determine accurate rest-frame UV absolute magnitudes (M1500) from spectral energy distribution (SED) fitting. Our new determinations of the UV LF extend from M1500 ≃ -22 (AB mag) down to M1500 = -14.5, -15.5 and -16 at z ≃ 2, 3 and 4, respectively (thus, reaching ≃ 3-4 mag fainter than previous blank-field studies at z ≃ 2,3). At z ≃ 2, 3, we find a much shallower faint-end slope (α = -1.32 ± 0.03) than reported in some previous studies (α ≃ -1.7), and demonstrate that this new measurement is robust. By z ≃ 4, the faint-end slope has steepened slightly, to α = -1.43 ± 0.04, and we show that these measurements are consistent with the overall evolutionary trend from z = 0 to 8. Finally, we find that while characteristic number density (φ*) drops from z ≃ 2 to z ≃ 4, characteristic luminosity (M*) brightens by ≃ 1 mag. This, combined with the new flatter faint-end slopes, has the consequence that UV luminosity density (and hence unobscured star formation density) peaks at z ≃ 2.5-3, when the Universe was ≃ 2.5 Gyr old.

  12. Diffusion Properties and 3D Architecture of Human Lower Leg Muscles Assessed with Ultra-High-Field-Strength Diffusion-Tensor MR Imaging and Tractography: Reproducibility and Sensitivity to Sex Difference and Intramuscular Variability.

    PubMed

    Fouré, Alexandre; Ogier, Augustin C; Le Troter, Arnaud; Vilmen, Christophe; Feiweier, Thorsten; Guye, Maxime; Gondin, Julien; Besson, Pierre; Bendahan, David

    2018-05-01

    Purpose To demonstrate the reproducibility of the diffusion properties and three-dimensional structural organization measurements of the lower leg muscles by using diffusion-tensor imaging (DTI) assessed with ultra-high-field-strength (7.0-T) magnetic resonance (MR) imaging and tractography of skeletal muscle fibers. On the basis of robust statistical mapping analyses, this study also aimed at determining the sensitivity of the measurements to sex difference and intramuscular variability. Materials and Methods All examinations were performed with ethical review board approval; written informed consent was obtained from all volunteers. Reproducibility of diffusion tensor indexes assessment including eigenvalues, mean diffusivity, and fractional anisotropy (FA) as well as muscle volume and architecture (ie, fiber length and pennation angle) were characterized in lower leg muscles (n = 8). Intramuscular variability and sex differences were characterized in young healthy men and women (n = 10 in each group). Student t test, statistical parametric mapping, correlation coefficients (Spearman rho and Pearson product-moment) and coefficient of variation (CV) were used for statistical data analysis. Results High reproducibility of measurements (mean CV ± standard deviation, 4.6% ± 3.8) was determined in diffusion properties and architectural parameters. Significant sex differences were detected in FA (4.2% in women for the entire lower leg; P = .001) and muscle volume (21.7% in men for the entire lower leg; P = .008), whereas architecture parameters were almost identical across sex. Additional differences were found independently of sex in diffusion properties and architecture along several muscles of the lower leg. Conclusion The high-spatial-resolution DTI assessed with 7.0-T MR imaging allows a reproducible assessment of structural organization of superficial and deep muscles, giving indirect information on muscle function. © RSNA, 2018 Online supplemental material is available for this article.

  13. New Results About the Earth’s Van Allen Radiation Belts

    NASA Astrophysics Data System (ADS)

    Baker, Daniel

    2015-01-01

    The first great scientific discovery of the Space Age was that the Earth is enshrouded in toroids, or 'belts', of very high-energy magnetically trapped charged particles. Early observations of the radiation environment clearly indicated that the Van Allen belts could be delineated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies showed that electrons in the energy range 100 keV < E< 1 MeV often populated both the inner and outer zones with a pronounced 'slot' region relatively devoid of energetic electrons existing between them. This two-belt structure for the Van Allen moderate-energy electron component was explained as being due to strong interactions of electrons with electromagnetic waves just inside the cold plasma (plasmapause) boundary. The energy distribution, spatial extent and particle species makeup of the Van Allen belts has been subsequently explored by several space missions. However, recent observations by the NASA dual-spacecraft Van Allen Probes mission have revealed wholly unexpected properties of the radiation belts, especially at highly relativistic (E > 2 MeV) and ultra-relativistic (E > 5 MeV) kinetic energies. In this presentation we show using high spatial and temporal resolution data from the Relativistic Electron-Proton Telescope (REPT) experiment on board the Van Allen Probes that multiple belts can exist concurrently and that an exceedingly sharp inner boundary exists for ultra-relativistic electrons. Using additionally available Van Allen Probes data, we demonstrate that these remarkable features of energetic electrons are not due to a physical boundary within Earth's intrinsic magnetic field. Neither is it likely that human-generated electromagnetic transmitter wave fields might produce such effects. Rather, we conclude from these unique measurements that slow natural inward radial diffusion combined with weak, but persistent, wave-particle pitch angle scattering deep inside the Earth's magnetosphere can conspire to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate.

  14. The First Pan-Starrs Medium Deep Field Variable Star Catalog

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather

    2013-01-01

    We present the first Pan-Starrs 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-Starrs 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, and is located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totalling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter. We have located and classified several hundred periodic variable stars within the Medium Deep fields, and we present the first catalog listing the properties of these variable stars.

  15. LETTER TO THE EDITOR: Similarity laws for collisionless interaction of superstrong electromagnetic fields with a plasma

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Remington, B. A.

    2006-03-01

    Several similarity laws for the collisionless interaction of ultra-intense electromagnetic fields with a plasma of an arbitrary initial shape are presented. Both ultra-relativistic and non-relativistic cases are covered. The ion motion is included. A relation to the S-similarity described in Pukhov et al (2004 Plasma Phys. Control. Fusion 46 B179) and Gordienko and Pukhov (2005 Phys. Plasmas 12 043109) is established. A brief discussion of possible ways of experimental verification of scaling laws is presented. The results can be of interest for experiments and numerical simulations in the areas of ion acceleration, harmonic generation, magnetic field generation and Coulomb explosion of clusters.

  16. Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors

    DOE PAGES

    Lereu, Aude L.; Zerrad, M.; Passian, Ali; ...

    2017-07-07

    In photonics, the field concentration and enhancement have been major objectives for achieving size reduction and device integration. Plasmonics offers resonant field confinement and enhancement, but ultra-sharp optical resonances in all-dielectric multi-layer thin films are emerging as a powerful contestant. Thus, applications capitalizing upon stronger and sharper optical resonances and larger field enhancements could be faced with a choice for the superior platform. Here in this paper, we present a comparison between plasmonic and dielectric multi-layer thin films for their resonance merits. We show that the remarkable characteristics of the resonance behavior of optimized dielectric multi-layers can outweigh those ofmore » their metallic counterpart.« less

  17. (Almost) Dark Galaxies in the ALFALFA Survey: Isolated H i-bearing Ultra-diffuse Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leisman, Lukas; Haynes, Martha P.; Giovanelli, Riccardo

    2017-06-20

    We present a sample of 115 very low optical surface brightness, highly extended, H i-rich galaxies carefully selected from the ALFALFA survey that have similar optical absolute magnitudes, surface brightnesses, and radii to recently discovered “ultra-diffuse” galaxies (UDGs). However, these systems are bluer and have more irregular morphologies than other UDGs, are isolated, and contain significant reservoirs of H i. We find that while these sources have normal star formation rates for H i-selected galaxies of similar stellar mass, they have very low star formation efficiencies. We further present deep optical and H i-synthesis follow-up imaging of three of thesemore » H i-bearing ultra-diffuse sources. We measure H i diameters extending to ∼40 kpc, but note that while all three sources have large H i diameters for their stellar mass, they are consistent with the H i mass–H i radius relation. We further analyze the H i velocity widths and rotation velocities for the unresolved and resolved sources, respectively, and find that the sources appear to inhabit halos of dwarf galaxies. We estimate spin parameters, and suggest that these sources may exist in high spin parameter halos, and as such may be potential H i-rich progenitors to the ultra-diffuse galaxies observed in cluster environments.« less

  18. Diverse styles of submarine venting on the ultra-slow spreading Mid-Cayman Rise (Invited)

    NASA Astrophysics Data System (ADS)

    German, C. R.; Bowen, A.; Coleman, M. L.; Honig, D. L.; Huber, J. A.; Jakuba, M.; Kinsey, J. C.; Kurz, M. D.; Leroy, S.; McDermott, J.; Mercier de Lepinay, B. F.; Nakamura, K.; Seewald, J.; Smith, J.; Sylva, S.; van Dover, C. L.; Whitcomb, L. L.; Yoerger, D. R.

    2010-12-01

    Thirty years after the first discovery of high-temperature submarine venting, the vast majority of the global Mid Ocean Ridge remains unexplored for hydrothermal activity. Of particular interest are the world’s ultra-slow spreading ridges which were the last to be demonstrated to host high-temperature venting, but may host systems particularly relevant to pre-biotic chemistry and the origins of life. Here we report first evidence for diverse and very deep hydrothermal vents along the ~110 km long, ultra-slow spreading Mid-Cayman Rise collected using a combination of CTD-rosette operations and dives of the Hybrid Remotely Operated Vehicle (HROV) Nereus in 2009 followed by shore based work-up of samples for geochemical and microbiological analyses. Our data indicate that the Mid-Cayman Rise hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction, including both mafic and ultra-mafic systems and, at ~5000 m, the deepest known hydrothermal vent. Although submarine hydrothermal circulation, in which seawater percolates through and reacts with host lithologies, occurs on all mid-ocean ridges, the diversity of vent-types identified here and their relative geographic isolation make the Mid-Cayman Rise unique in the oceans. These new sites offer prospects for: an expanded range of vent-fluid compositions; varieties of abiotic organic chemical synthesis and extremophile microorganisms; and unparalleled faunal biodiversity - all in close proximity.

  19. A simple dual online ultra-high pressure liquid chromatography system (sDO-UHPLC) for high throughput proteome analysis.

    PubMed

    Lee, Hangyeore; Mun, Dong-Gi; Bae, Jingi; Kim, Hokeun; Oh, Se Yeon; Park, Young Soo; Lee, Jae-Hyuk; Lee, Sang-Won

    2015-08-21

    We report a new and simple design of a fully automated dual-online ultra-high pressure liquid chromatography system. The system employs only two nano-volume switching valves (a two-position four port valve and a two-position ten port valve) that direct solvent flows from two binary nano-pumps for parallel operation of two analytical columns and two solid phase extraction (SPE) columns. Despite the simple design, the sDO-UHPLC offers many advantageous features that include high duty cycle, back flushing sample injection for fast and narrow zone sample injection, online desalting, high separation resolution and high intra/inter-column reproducibility. This system was applied to analyze proteome samples not only in high throughput deep proteome profiling experiments but also in high throughput MRM experiments.

  20. Constraints on z~10 Galaxies from the Deepest Hubble Space Telescope NICMOS Fields

    NASA Astrophysics Data System (ADS)

    Bouwens, R. J.; Illingworth, G. D.; Thompson, R. I.; Franx, M.

    2005-05-01

    We use all available fields with deep NICMOS imaging to search for J110-dropouts (H160,AB<~28) at z~10. Our primary data set for this search is the two J110+H160 NICMOS fields taken in parallel with the Advanced Camera for Surveys (ACS) Hubble Ultra Deep Field (UDF). The 5 σ limiting magnitudes were ~28.6 in J110 and ~28.5 in H160 (0.6" apertures). Several shallower fields were also used: J110+H160 NICMOS frames available over the Hubble Deep Field (HDF) North, the HDF-South NICMOS parallel, and the ACS UDF (with 5 σ limiting magnitudes in J110 and H160 ranging from 27.0 to 28.2). The primary selection criterion was (J110-H160)AB>1.8. Eleven such sources were found in all search fields using this criterion. Eight of these are clearly ruled out as credible z~10 sources, either as a result of detections (>2 σ) blueward of J110 or their colors redward of the break (H160-K~1.5) (redder than >~98% of lower redshift dropouts). The nature of the three remaining sources could not be determined from the data. This number appears consistent with the expected contamination from low-redshift interlopers. Analysis of the stacked images for the three candidates also suggests some contamination. Regardless of their true redshifts, the actual number of z~10 sources must be three or fewer. To assess the significance of these results, two lower redshift samples (a z~3.8 B-dropout and z~6 i-dropout sample) were projected to z~7-13 using a (1+z)-1 size scaling (for fixed luminosity). They were added to the image frames and the selection was repeated, giving 15.6 and 4.8 J110-dropouts, respectively. This suggests that to the limit of this probe (~0.3L*z=3), there has been evolution from z~3.8 and possibly from z~6. This is consistent with the strong evolution already noted at z~6 and z~7.5 relative to z~3-4. Even assuming that three sources from this probe are at z~10, the rest-frame continuum UV (~1500 Å) luminosity density at z~10 (integrated down to 0.3L*z=3) is just 0.19+0.13-0.09 times that at z~3.8 (or 0.19+0.15-0.10 times, including the small effect from cosmic variance). However, if none of our sources are at z~10, this ratio has a 1 σ upper limit of 0.07. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  1. Ultra-wideband sensors for improved magnetic resonance imaging, cardiovascular monitoring and tumour diagnostics.

    PubMed

    Thiel, Florian; Kosch, Olaf; Seifert, Frank

    2010-01-01

    The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour's contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.

  2. In vivo wide-field calcium imaging of mouse thalamocortical synapses with an 8 K ultra-high-definition camera.

    PubMed

    Yoshida, Eriko; Terada, Shin-Ichiro; Tanaka, Yasuyo H; Kobayashi, Kenta; Ohkura, Masamichi; Nakai, Junichi; Matsuzaki, Masanori

    2018-05-29

    In vivo wide-field imaging of neural activity with a high spatio-temporal resolution is a challenge in modern neuroscience. Although two-photon imaging is very powerful, high-speed imaging of the activity of individual synapses is mostly limited to a field of approximately 200 µm on a side. Wide-field one-photon epifluorescence imaging can reveal neuronal activity over a field of ≥1 mm 2 at a high speed, but is not able to resolve a single synapse. Here, to achieve a high spatio-temporal resolution, we combine an 8 K ultra-high-definition camera with spinning-disk one-photon confocal microscopy. This combination allowed us to image a 1 mm 2 field with a pixel resolution of 0.21 µm at 60 fps. When we imaged motor cortical layer 1 in a behaving head-restrained mouse, calcium transients were detected in presynaptic boutons of thalamocortical axons sparsely labeled with GCaMP6s, although their density was lower than when two-photon imaging was used. The effects of out-of-focus fluorescence changes on calcium transients in individual boutons appeared minimal. Axonal boutons with highly correlated activity were detected over the 1 mm 2 field, and were probably distributed on multiple axonal arbors originating from the same thalamic neuron. This new microscopy with an 8 K ultra-high-definition camera should serve to clarify the activity and plasticity of widely distributed cortical synapses.

  3. Transport studies in polymer electrolyte fuel cell with porous metallic flow field at ultra high current density

    NASA Astrophysics Data System (ADS)

    Srouji, Abdul-Kader

    Achieving cost reduction for polymer electrolyte fuel cells (PEFC) requires a simultaneous effort in increasing power density while reducing precious metal loading. In PEFCs, the cathode performance is often limiting due to both the slow oxygen reduction reaction (ORR), and mass transport limitation caused by limited oxygen diffusion and liquid water flooding at high current density. This study is motivated by the achievement of ultra-high current density through the elimination of the channel/land (C/L) paradigm in PEFC flow field design. An open metallic element (OME) flow field capable of operating at unprecedented ultra-high current density (3 A/cm2) introduces new advantages and limitations for PEFC operation. The first part of this study compares the OME with a conventional C/L flow field, through performance and electrochemical diagnostic tools such as electrochemical impedance spectroscopy (EIS). The results indicate the uniqueness of the OME's mass transport improvement. No sign of operation limitation due to flooding is noted. The second part specifically examines water management at high current density using the OME flow field. A unique experimental setup is developed to measure steady-state and transient net water drag across the membrane, in order to characterize the fundamental aspects of water transport at high current density with the OME. Instead of flooding, the new limitation is identified to be anode side dry-out of the membrane, caused by electroosmotic drag. The OME improves water removal from the cathode, which immediately improves oxygen transport and performance. However, the low water content in the cathode reduces back diffusion of water to the membrane, and electroosmotic drag dominates at high current density, leading to dry-out. The third part employs the OME flow field as a tool that avoids C/L effects endemic to a typical flow field, in order to study oxygen transport resistance at the catalyst layer of a PEFC. In open literature, a resistance of unknown origin, was shown to directly or indirectly scale with Pt loading. A lack of understanding of the mechanism responsible for such resistance is noted, and several possible theories have been proposed. This lack of fundamental understanding of the origins of this resistance adds complexity to computational models which are designed to capture performance behavior with ultra-low loading electrodes. By employing the OME flow field as a tool to study this phenomena, the origins of the transport resistance appearing at ultra-low Platinum (Pt) loading is proposed to be an increase in oxygen dilution resistance through water film.

  4. Ultra-Cold Atoms on Optical Lattices

    ERIC Educational Resources Information Center

    Ghosh, Parag

    2009-01-01

    The field of ultra-cold atoms, since the achievement of Bose-Einstein Condensation (Anderson et al., 1995; Davis et al., 1995; Bradley et al., 1995), have seen an immensely growing interest over the past decade. With the creation of optical lattices, new possibilities of studying some of the widely used models in condensed matter have opened up.…

  5. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOEpatents

    Kaschmitter, James L.

    1996-01-01

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.

  6. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOEpatents

    Kaschmitter, J.L.

    1996-07-23

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

  7. Analyzing Water's Optical Absorption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  8. Ultra high resolution imaging of the human head at 8 tesla: 2K x 2K for Y2K.

    PubMed

    Robitaille, P M; Abduljalil, A M; Kangarlu, A

    2000-01-01

    To acquire ultra high resolution MRI images of the human brain at 8 Tesla within a clinically acceptable time frame. Gradient echo images were acquired from the human head of normal subjects using a transverse electromagnetic resonator operating in quadrature and tuned to 340 MHz. In each study, a group of six images was obtained containing a total of 208 MB of unprocessed information. Typical acquisition parameters were as follows: matrix = 2,000 x 2,000, field of view = 20 cm, slice thickness = 2 mm, number of excitations (NEX) = 1, flip angle = 45 degrees, TR = 750 ms, TE = 17 ms, receiver bandwidth = 69.4 kHz. This resulted in a total scan time of 23 minutes, an in-plane resolution of 100 microm, and a pixel volume of 0.02 mm3. The ultra high resolution images acquired in this study represent more than a 50-fold increase in in-plane resolution relative to conventional 256 x 256 images obtained with a 20 cm field of view and a 5 mm slice thickness. Nonetheless, the ultra high resolution images could be acquired both with adequate image quality and signal to noise. They revealed numerous small venous structures throughout the image plane and provided reasonable delineation between gray and white matter. The elevated signal-to-noise ratio observed in ultra high field magnetic resonance imaging can be utilized to acquire images with a level of resolution approaching the histological level under in vivo conditions. However, brain motion is likely to degrade the useful resolution. This situation may be remedied in part with cardiac gating. Nonetheless, these images represent a significant advance in our ability to examine small anatomical features with noninvasive imaging methods.

  9. SUPERFICIAL AND DEEP CAPILLARY ISCHEMIA AS A PRESENTING SIGN OF RETINAL VASCULOPATHY WITH CEREBRAL LEUKOENCEPHALOPATHY AND SYSTEMIC MANIFESTATIONS.

    PubMed

    Nagiel, Aaron; Lalane, Robert A; Jen, Joanna C; Kreiger, Allan E

    2017-10-12

    The aim of this study was to investigate the presenting sign of retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations, a rare autosomal dominant condition caused by mutations in the TREX1 gene, and to explore the potential efficacy of bevacizumab in preventing capillary occlusions. Observational case report with the use of ultra-widefield fluorescein angiography, optical coherence tomography, and optical coherence tomography angiography. A 31-year-old man with a family history of retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations presented with a scotoma in his left eye. The visual acuity was 20/20 in both eyes, and his examination was notable for scattered cotton wool spots in the retina of both eyes as well as an area of paracentral acute middle maculopathy in the left eye. Ultra-widefield fluorescein angiography revealed peripheral capillary nonperfusion and vascular leakage corresponding to the cotton wool spots. Spectral domain optical coherence tomography and optical coherence tomography angiography confirmed the presence and distribution of superficial capillary plexus and deep capillary plexus ischemia. Neurologic examination and imaging were normal. A trial of monthly intravitreal bevacizumab injections to the left eye over 6 months resulted in diminished capillary leakage. Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations is a rare genetic condition manifested most commonly by cerebral and retinal ischemia. This retinal vasculopathy leads to occlusions of small-caliber retinal vessels in the superficial plexus and deep plexus with resulting cotton wool spots and paracentral acute middle maculopathy, respectively. Recognition of the retinal findings by ophthalmologists and neurologists may avoid unnecessary brain biopsies in diagnosing this rare disorder.

  10. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Na; Li, Siwen; Wang, Jinyi

    2015-05-15

    M{sub 2}(PcAN){sub 2} (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M{sub 2}(PcAN){sub 2}–W-HZSM-5) or the M{sub 2}(PcTN){sub 2} doping W-HZSM-5 (M{sub 2}(PcTN){sub 2}/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 and Cu{sub 2}(PcTN){sub 2}/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV–Vis and calcination temperature was obtained by TG-DSC for Cu{sub 2}(PcTN){sub 2}/W-HZSM-5. Catalysts weremore » characterized by EA, IR, XRD, SEM, TEM, ICP, and N{sub 2} adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. - Graphical abstract: The ODS reaction schematic shows the reaction mechanism of ultra-deep desulfurization. The sulfur compounds are oxidized to their corresponding sulfoxides or sulfones through the use of oxygen and catalysts. The reaction process of ultra-deep desulfurization. - Highlights: • A kind of novel catalyst for deep desulfurization was synthesized. • Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 exhibits excellent catalytic performance for desulfurization. • The reaction conditions that affect desulfurization efficiency are investigated. • The reaction process of model sulfur compounds is proposed.« less

  11. Fabrication of W-Cu alloy via combustion synthesis infiltration under an ultra-gravity field

    NASA Astrophysics Data System (ADS)

    Song, Yuepeng; Li, Qian; Li, Jiangtao; He, Gang; Chen, Yixiang; Kim, Hyoung Seop

    2014-11-01

    Tungsten copper alloy with a tungsten concentrate of 70 vol% was prepared by self-propagating high-temperature synthesis in an ultra-gravity field. The phase structures and components of the W-Cu alloy fabricated via this approach were the same as those via traditional sintering methods. The temperature and stress distributions during this process were simulated using a new scheme of the finite element method. The results indicated that nonequilibrium crystallization conditions can be created for combustion synthesis infiltration in an ultra-gravity field by the rapid infiltration of the liquid copper product into the tungsten compact at high temperature and low viscosity. The cooling rate can be above 100,000 K/s and high stresses in tungsten ( 5 GPa) and copper ( 2.6 GPa) were developed, which passivates the tungsten particle surface, resulting in easy sintering and densifying the W-Cu alloy. The reliability of the simulation was verified through temperature measurement and investigation of the microstructure. The W-Cu composite-formation mechanism was also analyzed and discussed with the simulation results.

  12. The active modulation of drug release by an ionic field effect transistor for an ultra-low power implantable nanofluidic system.

    PubMed

    Bruno, Giacomo; Canavese, Giancarlo; Liu, Xuewu; Filgueira, Carly S; Sacco, Adriano; Demarchi, Danilo; Ferrari, Mauro; Grattoni, Alessandro

    2016-11-10

    We report an electro-nanofluidic membrane for tunable, ultra-low power drug delivery employing an ionic field effect transistor. Therapeutic release from a drug reservoir was successfully modulated, with high energy efficiency, by actively adjusting the surface charge of slit-nanochannels 50, 110, and 160 nm in size, by the polarization of a buried gate electrode and the consequent variation of the electrical double layer in the nanochannel. We demonstrated control over the transport of ionic species, including two relevant hypertension drugs, atenolol and perindopril, that could benefit from such modulation. By leveraging concentration-driven diffusion, we achieve a 2 to 3 order of magnitude reduction in power consumption as compared to other electrokinetic phenomena. The application of a small gate potential (±5 V) in close proximity (150 nm) of 50 nm nanochannels generated a sufficiently strong electric field, which doubled or blocked the ionic flux depending on the polarity of the voltage applied. These compelling findings can lead to next generation, more reliable, smaller, and longer lasting drug delivery implants with ultra-low power consumption.

  13. Impact of built-in fields and contact configuration on the characteristics of ultra-thin GaAs solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aeberhard, Urs, E-mail: u.aeberhard@fz-juelich.de

    2016-07-18

    We discuss the effects of built-in fields and contact configuration on the photovoltaic characteristics of ultra-thin GaAs solar cells. The investigation is based on advanced quantum-kinetic simulations reaching beyond the standard semi-classical bulk picture concerning the consideration of charge carrier states and dynamics in complex potential profiles. The thickness dependence of dark and photocurrent in the ultra-scaled regime is related to the corresponding variation of both, the built-in electric fields and associated modification of the density of states, and the optical intensity in the films. Losses in open-circuit voltage and short-circuit current due to the leakage of electronically and opticallymore » injected carriers at minority carrier contacts are investigated for different contact configurations including electron and hole blocking barrier layers. The microscopic picture of leakage currents is connected to the effect of finite surface recombination velocities in the semi-classical description, and the impact of these non-classical contact regions on carrier generation and extraction is analyzed.« less

  14. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shi-Qiang; Bruce Buchholz, D.; Zhou, Wei

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retainedmore » the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.« less

  15. Progress in Applied Surface, Interface and Thin Film Science 2015. Solar Renewable Energy News IV, November 23-26, 2015, Florence, Italy (SURFINT-SREN IV)

    NASA Astrophysics Data System (ADS)

    2017-02-01

    The main goal of the conference is to contribute to new knowledge in surface, interface, ultra-thin films and very-thin films science of inorganic and organic materials by the most rapid interactive manner - by direct communication among scientists of corresponding research fields. The list of topics indicates that conference interests cover the development of basic theoretical physical and chemical principles and performance of surfaces-, thin films-, and interface-related procedures, and corresponding experimental research on atomic scale. Topical results are applied at development of new inventive industrial equipments needed for investigation of electrical, optical, and structural properties, and other parameters of atomic-size research objects. The conference range spreads, from physical point of view, from fundamental research done on sub-atomic and quantum level to production of devices built on new physical principles. The conference topics include also presentation of principally new devices in following fields: solar cells, liquid crystal displays, high-temperature superconductivity, and sensors. During the event, special attention will be given to evaluation of scientific and technical quality of works prepared by PhD students, to deep ecological meaning of solar cell energy production, and to exhibitions of companies.

  16. SHARDS: Survey for High-z Absorption Red & Dead Sources

    NASA Astrophysics Data System (ADS)

    Pérez-González, P. G.; Cava, A.

    2013-05-01

    SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey with GTC/OSIRIS designed to select and study massive passively evolving galaxies at z=1.0-2.3 in the GOODS-N field using a set of 24 medium-band filters (FWHM~17 nm) covering the 500-950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ~280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) derive for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg_UV or D(4000) indices; (3) measure their redshift with an accuracy Δz/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).

  17. CLUES to the past: Local Group progenitors amongst high-redshift Lyman break galaxies

    NASA Astrophysics Data System (ADS)

    Dayal, Pratika; Libeskind, Noam I.; Dunlop, James S.

    2013-06-01

    We use state-of-the-art numerical simulations to explore the observability and the expected physical properties of the progenitors of the Local Group galaxies at z ≃ 6-8, within 1 billion years of the big bang. We find that the most massive progenitors of the Milky Way (MW) and Andromeda (M31) at z ≃ 6 and 7 are predicted to have absolute ultraviolet (UV) continuum magnitudes MUV ≃ -17 to -18, suggesting that their analogues lie close to the detection limits of the deepest near-infrared (IR) surveys conducted to date [i.e. Hubble Space Telescope Wide Field Camera 3/IR Ultra Deep Field (UDF)12]. This in turn confirms that the majority of currently known z ≃ 6-8 galaxies are expected to be the seeds of present-day galaxies which are more massive than L* spirals. We also discuss the properties of the Local Group progenitors at these early epochs, extending down to absolute magnitudes MUV ≃ -13. The most massive MW/M31 progenitors at z ≃ 7 have stellar masses M* ≃ 107.5-8 M⊙, stellar metallicities Z* ˜ 3-6 per cent Z⊙, and predicted observed UV continuum slopes β ≃ -2.4 to -2.5.

  18. Star Formation in High Redshift Galaxies with Cluster Lenses as Cosmic Telescopes

    NASA Astrophysics Data System (ADS)

    Bradac, Marusa

    2014-07-01

    In the recent years HST enabled us to detect galaxies as far as z~11. They are likely beacons of the epoch of reionization, which marked the end of the so-called ``Dark Ages'' and signified the transformation of the universe from opaque to transparent. However very little is known about those galaxies, and a confirmation of their redshift is still out of our hands. TMT will be a major powerhorse in this endeavor in the future. In addition, clusters of galaxies, when used as cosmic telescopes, can greatly simplify the task of studying and finding highest-z galaxies. With a massive cluster one can gain several magnitudes of magnification over a typical observing field, enabling imaging and spectroscopic studies of intrinsically lower-luminosity galaxies than would otherwise be observable, even with the largest telescopes. We are involved and leading several large surveys (SURFS UP for Spitzer imaging, GLASS for HST spectrscopy, and Frontier Field initiative for ultra deep HST imaging) with the main goal of identifying and studying star formation of galaxies at z=1-11. I will present first results from these surveys, show successful measurements of SFR at z~7 and beyond, and discuss the role TMT will be playing in exploring epoch of reionization.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winn, Barry L.; Broholm, C.; Bird, M.

    X-ray and neutron scattering techniques are capable of acquiring information about the structure and dynamics of quantum matter. However, the high-field magnet systems currently available at x-ray and neutron scattering facilities in the United States are limited to fields of 16 tesla (T) at maximum, which precludes applications that require and/or study ultra-high field states of matter. This gap in capability—and the need to address it—is a central conclusion of the 2005 National Academy of Sciences report by the Committee on Opportunities in High Magnetic Field Science. To address this gap, we propose a magnet development program that would moremore » than double the field range accessible to scattering experiments. With the development and use of new ultra-high field–magnets, the program would bring into view new worlds of quantum matter with profound impacts on our understanding of advanced electronic materials.« less

  20. Dynamics and morphology of chiral magnetic bubbles in perpendicularly magnetized ultra-thin films

    NASA Astrophysics Data System (ADS)

    Sarma, Bhaskarjyoti; Garcia-Sanchez, Felipe; Nasseri, S. Ali; Casiraghi, Arianna; Durin, Gianfranco

    2018-06-01

    We study bubble domain wall dynamics using micromagnetic simulations in perpendicularly magnetized ultra-thin films with disorder and Dzyaloshinskii-Moriya interaction. Disorder is incorporated into the material as grains with randomly distributed sizes and varying exchange constant at the edges. As expected, magnetic bubbles expand asymmetrically along the axis of the in-plane field under the simultaneous application of out-of-plane and in-plane fields. Remarkably, the shape of the bubble has a ripple-like part which causes a kink-like (steep decrease) feature in the velocity versus in-plane field curve. We show that these ripples originate due to the nucleation and interaction of vertical Bloch lines. Furthermore, we show that the Dzyaloshinskii-Moriya interaction field is not constant but rather depends on the in-plane field. We also extend the collective coordinate model for domain wall motion to a magnetic bubble and compare it with the results of micromagnetic simulations.

  1. Free induction decay MR signal measurements toward ultra-low field MRI with an optically pumped atomic magnetometer.

    PubMed

    Oida, Takenori; Kobayashi, Tetsuo

    2013-01-01

    Ultra-low field magnetic resonance imaging (ULF-MRI) has attracted attention because of its low running costs and minimum patient exposure. An optically pumped atomic magnetometer (OPAM) is a magnetic sensor with high sensitivity in the low frequency range, which does not require a cryogenic cooling system. In an effort to develop a ULF-MRI, we attempted to measure the free induction decay MR signals with an OPAM. We successfully detected the MR signals by combining an OPAM and a flux transformer, demonstrating the feasibility of the proposed system.

  2. A Follow-Up of the Multicenter Collaborative Study on HIV-1 Drug Resistance and Tropism Testing Using 454 Ultra Deep Pyrosequencing

    PubMed Central

    St. John, Elizabeth P.; Simen, Birgitte B.; Turenchalk, Gregory S.; Braverman, Michael S.; Abbate, Isabella; Aerssens, Jeroen; Bouchez, Olivier; Gabriel, Christian; Izopet, Jacques; Meixenberger, Karolin; Di Giallonardo, Francesca; Schlapbach, Ralph; Paredes, Roger; Sakwa, James; Schmitz-Agheguian, Gudrun G.; Thielen, Alexander; Victor, Martin

    2016-01-01

    Background Ultra deep sequencing is of increasing use not only in research but also in diagnostics. For implementation of ultra deep sequencing assays in clinical laboratories for routine diagnostics, intra- and inter-laboratory testing are of the utmost importance. Methods A multicenter study was conducted to validate an updated assay design for 454 Life Sciences’ GS FLX Titanium system targeting protease/reverse transcriptase (RTP) and env (V3) regions to identify HIV-1 drug-resistance mutations and determine co-receptor use with high sensitivity. The study included 30 HIV-1 subtype B and 6 subtype non-B samples with viral titers (VT) of 3,940–447,400 copies/mL, two dilution series (52,129–1,340 and 25,130–734 copies/mL), and triplicate samples. Amplicons spanning PR codons 10–99, RT codons 1–251 and the entire V3 region were generated using barcoded primers. Analysis was performed using the GS Amplicon Variant Analyzer and geno2pheno for tropism. For comparison, population sequencing was performed using the ViroSeq HIV-1 genotyping system. Results The median sequencing depth across the 11 sites was 1,829 reads per position for RTP (IQR 592–3,488) and 2,410 for V3 (IQR 786–3,695). 10 preselected drug resistant variants were measured across sites and showed high inter-laboratory correlation across all sites with data (P<0.001). The triplicate samples of a plasmid mixture confirmed the high inter-laboratory consistency (mean% ± stdev: 4.6 ±0.5, 4.8 ±0.4, 4.9 ±0.3) and revealed good intra-laboratory consistency (mean% range ± stdev range: 4.2–5.2 ± 0.04–0.65). In the two dilutions series, no variants >20% were missed, variants 2–10% were detected at most sites (even at low VT), and variants 1–2% were detected by some sites. All mutations detected by population sequencing were also detected by UDS. Conclusions This assay design results in an accurate and reproducible approach to analyze HIV-1 mutant spectra, even at variant frequencies well below those routinely detectable by population sequencing. PMID:26756901

  3. The use of ultra-high pressure liquid chromatography with tandem mass spectrometric detection of analysis of agrochemical residues and mycotoxines in food - challenges and applications

    USDA-ARS?s Scientific Manuscript database

    In the field of food contaminant analysis, the most significant development of recent years has been the integration of ultra-high pressure liquid chromatography (UHPLC), coupled to tandem quadrupole mass spectrometry (MS/MS), into analytical applications. In this review, we describe the emergence o...

  4. Teaching the Thrill of Discovery: Student Exploration of Ultra-Faint Dwarf Galaxies with the NOAO Data Lab

    NASA Astrophysics Data System (ADS)

    Olsen, Knut; Walker, Constance E.; Smith, Blake; NOAO Data Lab Team

    2018-01-01

    We describe an activity aimed at teaching students how ultra-faint Milky Way dwarf galaxies are typically discovered: through filtering of optical photometric catalogs and cross-examination with deep images. The activity, which was developed as part of the Teen Astronomy Café program (https://teensciencecafe.org/cafes/az-teen-astronomy-cafe-tucson/), uses the NOAO Data Lab (http://datalab.noao.edu) and other professional-grade tools to lead high school students through exploration of the object catalog and images from the Survey of the Magellanic Stellar History (SMASH). The students are taught how to use images and color-magnitude diagrams to analyze and interpret stellar populations of increasing complexity, including those of star clusters and the Magellanic Clouds, and culminating with the discovery of the Hydra II ultra-faint dwarf galaxy. The tools and datasets presented allow the students to explore and discover other known stellar systems, as well as unknown candidate star clusters and dwarf galaxies. The ultimate goal of the activity is to give students insight into the methods of modern astronomical research and to allow them to participate in the thrill of discovery.

  5. Assessment of the temporal relationship between daily summertime ultra-fine particulate count concentration with PM2.5 and black carbon soot in Washington, DC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, G.; Abt, E.; Koutrakis, P.

    Several recent epidemiological studies have shown a significant relationship between ambient daily particulate mass concentrations and human health effects as measured by cardio-pulmonary morbidity and mortality. Much of the current research aimed at determining causal agents of these PM health effects focuses on fine mass (PM2.5), which is primarily the combustion-related component of PM10. Some studies have suggested that ultra-fine aerosols (typically defined as those particles that are less than 0.1 or 0.15 micrometers in diameter) may be an important category of particulate matter to consider, as opposed to or in addition to other measures of fine particle mass. Onemore » of the postulated toxicological mechanisms for ultra-fine particles is that it is the number of particles which is most important, and not necessarily their composition or mass. Some studies suggest that the count concentration could be important by overwhelming macrophages. Another possible particle metric that could be important in health-effect outcomes is particle surface area, which may serve as a condensation surface for gas phase components that are then deposited deep in the lung.« less

  6. Retinal Structure of Birds of Prey Revealed by Ultra-High Resolution Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Ruggeri, Marco; Major, James C.; McKeown, Craig; Knighton, Robert W.; Puliafito, Carmen A.

    2010-01-01

    Purpose. To reveal three-dimensional (3-D) information about the retinal structures of birds of prey in vivo. Methods. An ultra-high resolution spectral-domain optical coherence tomography (SD-OCT) system was built for in vivo imaging of retinas of birds of prey. The calibrated imaging depth and axial resolution of the system were 3.1 mm and 2.8 μm (in tissue), respectively. 3-D segmentation was performed for calculation of the retinal nerve fiber layer (RNFL) map. Results. High-resolution OCT images were obtained of the retinas of four species of birds of prey: two diurnal hawks (Buteo platypterus and Buteo brachyurus) and two nocturnal owls (Bubo virginianus and Strix varia). These images showed the detailed retinal anatomy, including the retinal layers and the structure of the deep and shallow foveae. The calculated thickness map showed the RNFL distribution. Traumatic injury to one bird's retina was also successfully imaged. Conclusions. Ultra-high resolution SD-OCT provides unprecedented high-quality 2-D and 3-D in vivo visualization of the retinal structures of birds of prey. SD-OCT is a powerful imaging tool for vision research in birds of prey. PMID:20554605

  7. Ultra-fast magnetic vortex core reversal by a local field pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rückriem, R.; Albrecht, M., E-mail: manfred.albrecht@physik.uni-augsburg.de; Schrefl, T.

    2014-02-03

    Magnetic vortex core reversal of a 20-nm-thick permalloy disk with a diameter of 100 nm was studied by micromagnetic simulations. By applying a global out-of-plane magnetic field pulse, it turned out that the final core polarity is very sensitive to pulse width and amplitude, which makes it hard to control. The reason for this phenomenon is the excitation of radial spin waves, which dominate the reversal process. The excitation of spin waves can be strongly suppressed by applying a local field pulse within a small area at the core center. With this approach, ultra-short reversal times of about 15 ps weremore » achieved, which are ten times faster compared to a global pulse.« less

  8. Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers.

    PubMed

    Gao, Xuejiao; Guan, Bin; Mesli, Abdelmadjid; Chen, Kaixiang; Dan, Yaping

    2018-01-09

    It is known that self-assembled molecular monolayer doping technique has the advantages of forming ultra-shallow junctions and introducing minimal defects in semiconductors. In this paper, we report however the formation of carbon-related defects in the molecular monolayer-doped silicon as detected by deep-level transient spectroscopy and low-temperature Hall measurements. The molecular monolayer doping process is performed by modifying silicon substrate with phosphorus-containing molecules and annealing at high temperature. The subsequent rapid thermal annealing drives phosphorus dopants along with carbon contaminants into the silicon substrate, resulting in a dramatic decrease of sheet resistance for the intrinsic silicon substrate. Low-temperature Hall measurements and secondary ion mass spectrometry indicate that phosphorus is the only electrically active dopant after the molecular monolayer doping. However, during this process, at least 20% of the phosphorus dopants are electrically deactivated. The deep-level transient spectroscopy shows that carbon-related defects are responsible for such deactivation.

  9. Distortion correction in EPI at ultra-high-field MRI using PSF mapping with optimal combination of shift detection dimension.

    PubMed

    Oh, Se-Hong; Chung, Jun-Young; In, Myung-Ho; Zaitsev, Maxim; Kim, Young-Bo; Speck, Oliver; Cho, Zang-Hee

    2012-10-01

    Despite its wide use, echo-planar imaging (EPI) suffers from geometric distortions due to off-resonance effects, i.e., strong magnetic field inhomogeneity and susceptibility. This article reports a novel method for correcting the distortions observed in EPI acquired at ultra-high-field such as 7 T. Point spread function (PSF) mapping methods have been proposed for correcting the distortions in EPI. The PSF shift map can be derived either along the nondistorted or the distorted coordinates. Along the nondistorted coordinates more information about compressed areas is present but it is prone to PSF-ghosting artifacts induced by large k-space shift in PSF encoding direction. In contrast, shift maps along the distorted coordinates contain more information in stretched areas and are more robust against PSF-ghosting. In ultra-high-field MRI, an EPI contains both compressed and stretched regions depending on the B0 field inhomogeneity and local susceptibility. In this study, we present a new geometric distortion correction scheme, which selectively applies the shift map with more information content. We propose a PSF-ghost elimination method to generate an artifact-free pixel shift map along nondistorted coordinates. The proposed method can correct the effects of the local magnetic field inhomogeneity induced by the susceptibility effects along with the PSF-ghost artifact cancellation. We have experimentally demonstrated the advantages of the proposed method in EPI data acquisitions in phantom and human brain using 7-T MRI. Copyright © 2011 Wiley Periodicals, Inc.

  10. Shining in the dark: the spectral evolution of the first black holes

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio; Ferrara, Andrea; Volonteri, Marta; Dubus, Guillaume

    2015-12-01

    Massive black hole (MBH) seeds at redshift z ≳ 10 are now thought to be key ingredients to explain the presence of the supermassive (109-10 M⊙) black holes in place <1 Gyr after the big bang. Once formed, massive seeds grow and emit copious amounts of radiation by accreting the left-over halo gas; their spectrum can then provide crucial information on their evolution. By combining radiation-hydrodynamic and spectral synthesis codes, we simulate the time-evolving spectrum emerging from the host halo of a MBH seed with initial mass 105 M⊙, assuming both standard Eddington-limited accretion, or slim accretion discs, appropriate for super-Eddington flows. The emission occurs predominantly in the observed infrared-submm (1-1000 μm) and X-ray (0.1-100 keV) bands. Such signal should be easily detectable by JWSTaround ˜ 1 μm up to z ˜ 25, and by ATHENA (between 0.1 and 10 keV, up to z ˜ 15). Ultra-deep X-ray surveys like the Chandra Deep Field South could have already detected these systems up to z ˜ 15. Based on this, we provide an upper limit for the z ≳ 6 MBH mass density of ρ• ≲ 2.5 × 102 M⊙ Mpc-3 assuming standard Eddington-limited accretion. If accretion occurs in the slim disc mode the limits are much weaker, ρ• ≲ 7.6 × 103 M⊙ Mpc-3 in the most constraining case.

  11. Long Range Effect of The M7.8 April 2015 Nepal Earth Quake on the Deep Groudwater Outflow in a Thousand-Mile-Away Geothermal Field in Southern China's Guangdong

    NASA Astrophysics Data System (ADS)

    Lu, G.; Yu, S.; Xu, F.; Wang, X.; Yan, K.; Yuen, D. A.

    2015-12-01

    Deep ground waters sustain high temperature and pressure and are susceptible to impact from an earthquake. How an earthquake would have been associated with long-range effect on geological environment of deep groundwater is a question of interest to the scientific community and general public. The massive Richter 8.1 Nepal Earthquake (on April 25, 2015) provided a rare opportunity to test the response of deep groundwater systems. Deep ground waters at elevated temperature would naturally flow to ground surface along preferential flow path such as a deep fault, forming geothermal water flows. Geothermal water flows are susceptible to stress variation and can reflect the physical conditions of supercritical hot water kilometers deep down inside the crust. This paper introduces the monitoring work on the outflow in Xijiang Geothermal Field of Xinyi City, Guangdong Province in southern China. The geothermal field is one of typical geothermal fields with deep faults in Guangdong. The geothermal spring has characteristic daily variation of up to 72% in flow rate, which results from being associated with a north-south run deep fault susceptible to earthquake event. We use year-long monitoring data to illustrate how the Nepal earthquake would have affected the flows at the field site over 2.5 thousand kilometers away. The irregularity of flow is judged by deviation from otherwise good correlation of geothermal spring flow with solid earth tidal waves. This work could potentially provide the basis for further study of deep groundwater systems and insight to earthquake prediction.

  12. Experimental observation of multiphoton Thomson scattering

    NASA Astrophysics Data System (ADS)

    Yan, Wenchao; Golovin, Grigory; Fruhling, Colton; Haden, Daniel; Zhang, Ping; Zhang, Jun; Zhao, Baozhen; Liu, Cheng; Chen, Shouyuan; Banerjee, Sudeep; Umstadter, Donald

    2016-10-01

    With the advent of high-power lasers, several multiphoton processes have been reported involving electrons in strong fields. For electrons that were initially bound to atoms, both multiphoton ionization and scattering have been reported. However, for free electrons, only low-order harmonic generation has been observed until now. This limitation stems from past difficulty in achieving the required ultra-high-field strengths in scattering experiments. Highly relativistic laser intensities are required to reach the multiphoton regime of Thomson scattering, and generate high harmonics from free electrons. The scaling parameter is the normalized vector potential (a0). Previous experiments have observed phenomena in the weakly relativistic case (a0 >> 1). In ultra-intense fields (a0 >>1), the anomalous electron trajectory is predicted to produce a spectrum characterized by the merging of multiple high-order harmonic generation into a continuum. This may be viewed as the multiphoton Thomson scattering regime analogous to the wiggler of a synchrotron. Thus, the light produced reflects the electrons behavior in an ultra-intense lase field. We discuss the first experiments in the highly relativistic case (a0 15). This material is based upon work supported by NSF No. PHY-153700; US DOE, Office of Science, BES, # DE-FG02-05ER15663; AFOSR # FA9550-11-1-0157; and DHS DNDO # HSHQDC-13-C-B0036.

  13. High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength.

    PubMed

    Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W

    2017-11-10

    Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Novel Test Fixture for Characterizing Microcontacts: Performance and Reliability

    DTIC Science & Technology

    2013-03-01

    limited to the resolution of the measuring instrument [30]. A fractal method, on the other hand, random surface texture is characterized by scale...areas and allows the exposed 1805 to be developed away (f). After the 1805 is developed, the exposed SF-11 is subjected to deep ultra violet light (DUV...separated by a combination of fracture and plasticity [78]. Gold exhibited ductile behavior at both T=150K and T=300K [78, 80]. The difference in

  15. Confronting Space Debris: Strategies and Warnings from Comparable Examples Including Deepwater Horizon

    DTIC Science & Technology

    2010-01-01

    Horizon (DH) was an ultra deepwater , semisubmers- ible offshore drilling rig contracted to BP by its owner, Transocean. The rig was capable of...Warnings from Comparable Examples Including Deepwater Horizon 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...research quality and objectivity. StrategieS and WarningS from Comparable exampleS inCluding deepWater Horizon Confronting SpaCe DebriS dave baiocchi

  16. Spectroscopic characterisation of the stellar content of ultra diffuse galaxies

    NASA Astrophysics Data System (ADS)

    Ruiz-Lara, T.; Beasley, M. A.; Falcón-Barroso, J.; Román, J.; Pinna, F.; Brook, C.; Di Cintio, A.; Martín-Navarro, I.; Trujillo, I.; Vazdekis, A.

    2018-05-01

    Understanding the peculiar properties of Ultra Diffuse Galaxies (UDGs) via spectroscopic analysis is a challenging task requiring very deep observations and exquisite data reduction. In this work we perform one of the most complete characterisations of the stellar component of UDGs to date using deep optical spectroscopic data from OSIRIS at GTC. We measure radial and rotation velocities, star formation histories (SFH) and mean population parameters, such as ages and metallicities, for a sample of five UDG candidates in the Coma cluster. From the radial velocities, we confirm the Coma membership of these galaxies. We find that their rotation properties, if detected at all, are compatible with dwarf-like galaxies. The SFHs of the UDG are dominated by old (˜ 7 Gyr), metal-poor ([M/H] ˜ -1.1) and α-enhanced ([Mg/Fe] ˜ 0.4) populations followed by a smooth or episodic decline which halted ˜ 2 Gyr ago, possibly a sign of cluster-induced quenching. We find no obvious correlation between individual SFH shapes and any UDG morphological properties. The recovered stellar properties for UDGs are similar to those found for DDO 44, a local UDG analogue resolved into stars. We conclude that the UDGs in our sample are extended dwarfs whose properties are likely the outcome of both internal processes, such as bursty SFHs and/or high-spin haloes, as well as environmental effects within the Coma cluster.

  17. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    PubMed

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  18. ULTRA-DEEP GEMINI NEAR-INFRARED OBSERVATIONS OF THE BULGE GLOBULAR CLUSTER NGC 6624

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saracino, S.; Dalessandro, E.; Ferraro, F. R.

    2016-11-20

    We used ultra-deep J and K {sub s} images secured with the near-infrared (NIR) GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a ( K {sub s} , J - K {sub s} ) color–magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate NIR CMD from the ground for this cluster, by reaching K {sub s} ∼ 21.5, approximately 8 mag below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at K {submore » s} ∼ 20 we detected the so-called MS “knee” in a purely NIR CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 ( t {sub age} = 12.0 ± 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M ∼ 0.45 M{sub ⊙}, finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution.« less

  19. Ultra-low noise TES bolometer arrays for SAFARI instrument on SPICA

    NASA Astrophysics Data System (ADS)

    Khosropanah, P.; Suzuki, T.; Ridder, M. L.; Hijmering, R. A.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Gao, J. R.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low noise Transition Edge Sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for the SAFARI instrument aboard the SPICA mission. We successfully fabricated TESs with very narrow (0.5-0.7 μm) and thin (0.25 μm) SiN legs on different sizes of SiN islands using deep reactiveion etching process. The pixel size is 840x840 μm2 and there are variety of designs with and without optical absorbers. For TESs without absorbers, we measured electrical NEPs as low as <1x10-19 W/√Hz with response time of 0.3 ms and reached the phonon noise limit. Using TESs with absorbers, we quantified the darkness of our setup and confirmed a photon noise level of 2x10-19 W/√Hz.

  20. Test and Analysis of an Inflatable Parabolic Dish Antenna

    NASA Technical Reports Server (NTRS)

    Gaspar, james L.; Sreekantamurthy, Tham; Mann, Troy; Behun, Vaughn; Romanofsky, Robert; Lambert, Kevin; Pearson, James

    2006-01-01

    NASA is developing ultra-lightweight structures technology for large communication antennas for application to space missions. With these goals in mind, SRS Technologies has been funded by NASA Glenn Research Center (GRC) to undertake the development of a subscale ultra-thin membrane inflatable antenna for deep-space applications. One of the research goals is to develop approaches for prediction of the radio frequency and structural characteristics of inflatable and rigidizable membrane antenna structures. GRC has teamed with NASA Langley Research Center (LaRC) to evaluate inflatable and rigidizable antenna concepts for potential space missions. GRC has completed tests to evaluate RF performance, while LaRC completed structural tests and analysis to evaluate the static shape and structural dynamic responses of a laboratory model of a 0.3 meter antenna. This paper presents the details of the tests and analysis completed to evaluate the radio frequency and structural characteristics of the antenna.

  1. SI: The Stellar Imager

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2006-01-01

    The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.

  2. Temporal reliability of ultra-high field resting-state MRI for single-subject sensorimotor and language mapping.

    PubMed

    Branco, Paulo; Seixas, Daniela; Castro, São Luís

    2018-03-01

    Resting-state fMRI is a well-suited technique to map functional networks in the brain because unlike task-based approaches it requires little collaboration from subjects. This is especially relevant in clinical settings where a number of subjects cannot comply with task demands. Previous studies using conventional scanner fields have shown that resting-state fMRI is able to map functional networks in single subjects, albeit with moderate temporal reliability. Ultra-high resolution (7T) imaging provides higher signal-to-noise ratio and better spatial resolution and is thus well suited to assess the temporal reliability of mapping results, and to determine if resting-state fMRI can be applied in clinical decision making including preoperative planning. We used resting-state fMRI at ultra-high resolution to examine whether the sensorimotor and language networks are reliable over time - same session and one week after. Resting-state networks were identified for all subjects and sessions with good accuracy. Both networks were well delimited within classical regions of interest. Mapping was temporally reliable at short and medium time-scales as demonstrated by high values of overlap in the same session and one week after for both networks. Results were stable independently of data quality metrics and physiological variables. Taken together, these findings provide strong support for the suitability of ultra-high field resting-state fMRI mapping at the single-subject level. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Ultra-Wideband Sensors for Improved Magnetic Resonance Imaging, Cardiovascular Monitoring and Tumour Diagnostics

    PubMed Central

    Thiel, Florian; Kosch, Olaf; Seifert, Frank

    2010-01-01

    The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour’s contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied. PMID:22163498

  4. The research of breaking rock with liquid-solid two-phase jet flow

    NASA Astrophysics Data System (ADS)

    Cheng, X. Z.; Ren, F. S.; Fang, T. C.

    2018-03-01

    Abstracts. Particle impact drilling is an efficient way of breaking rock, which is mainly used in deep drilling and ultra-deep drilling. The differential equation was established based on the theory of Hertz and Newton’s second law, through the analysis of particle impact rock, the depth of particles into the rock was obtained. The mathematical model was established based on the effect of water impact crack. The research results show when water jet speed is more than 40 m/s, rock stability coefficient is more than 1.0, the rock fracture appear. Through the experimental research of particle impact drilling facilities, analysis of cuttings and the crack size which was analyzed through Scanning electron microscope consistent with the theoretical calculation, the validity of the model was verified.

  5. Developing an Advanced Life Support System for the Flexible Path into Deep Space

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Kliss, Mark H.

    2010-01-01

    Long duration human missions beyond low Earth orbit, such as a permanent lunar base, an asteroid rendezvous, or exploring Mars, will use recycling life support systems to preclude supplying large amounts of metabolic consumables. The International Space Station (ISS) life support design provides a historic guiding basis for future systems, but both its system architecture and the subsystem technologies should be reconsidered. Different technologies for the functional subsystems have been investigated and some past alternates appear better for flexible path destinations beyond low Earth orbit. There is a need to develop more capable technologies that provide lower mass, increased closure, and higher reliability. A major objective of redesigning the life support system for the flexible path is achieving the maintainability and ultra-reliability necessary for deep space operations.

  6. Power-gated 32 bit microprocessor with a power controller circuit activated by deep-sleep-mode instruction achieving ultra-low power operation

    NASA Astrophysics Data System (ADS)

    Koike, Hiroki; Ohsawa, Takashi; Miura, Sadahiko; Honjo, Hiroaki; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo

    2015-04-01

    A spintronic-based power-gated micro-processing unit (MPU) is proposed. It includes a power control circuit activated by the newly supported power-off instruction for the deep-sleep mode. These means enable the power-off procedure for the MPU to be executed appropriately. A test chip was designed and fabricated using 90 nm CMOS and an additional 100 nm MTJ process; it was successfully operated. The guideline of the energy reduction effects for this MPU was presented, using the estimation based on the measurement results of the test chip. The result shows that a large operation energy reduction of 1/28 can be achieved when the operation duty is 10%, under the condition of a sufficient number of idle clock cycles.

  7. Analysis of ultra-triathlon performances

    PubMed Central

    Lepers, Romuald; Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas

    2011-01-01

    Despite increased interest in ultra-endurance events, little research has examined ultra-triathlon performance. The aims of this study were: (i) to compare swimming, cycling, running, and overall performances in three ultra-distance triathlons, double Ironman distance triathlon (2IMT) (7.6 km swimming, 360 km cycling, and 84.4 km running), triple Ironman distance triathlon (3IMT) (11.4 km, 540 km, and 126.6 km), and deca Ironman distance triathlon (10IMT) (38 km, 1800 km, and 420 km) and (ii) to examine the relationships between the 2IMT, 3IMT, and 10IMT performances to create predicted equations of the 10IMT performances. Race results from 1985 through 2009 were examined to identify triathletes who performed the three considered ultra-distances. In total, 73 triathletes (68 men and 5 women) were identified. The contribution of swimming to overall ultra-triathlon performance was lower than for cycling and running. Running performance was more important to overall performance for 2IMT and 3IMT compared with 10IMT The 2IMT and 3IMT performances were significantly correlated with 10IMT performances for swimming and cycling, but not for running. 10IMT total time performance might be predicted by the following equation: 10IMT race time (minutes) = 5885 + 3.69 × 3IMT race time (minutes). This analysis of human performance during ultra-distance triathlons represents a unique data set in the field of ultra-endurance events. Additional studies are required to determine the physiological and psychological factors associated with ultra-triathlon performance. PMID:24198579

  8. Short-focus and ultra-wide-angle lens design in wavefront coding

    NASA Astrophysics Data System (ADS)

    Zhang, Jiyan; Huang, Yuanqing; Xiong, Feibing

    2016-10-01

    Wavefront coding (WFC) is a hybrid technology designed to increase depth of field of conventional optics. The goal of our research is to apply this technology to the short-focus and ultra-wide-angle lens which suffers from the aberration related with large field of view (FOV) such as coma and astigmatism. WFC can also be used to compensate for other aberration which is sensitive to the FOV. Ultra-wide-angle lens has a little depth of focus because it has small F number and short-focus. We design a hybrid lens combing WFC with the ultra-wide-angle lens. The full FOV and relative aperture of the final design are up to170° and 1/1.8 respectively. The focal length is 2 mm. We adopt the cubic phase mask (CPM) in the design. The conventional design will have a wide variation of the point spread function (PSF) across the FOV and it is very sensitive with the variation of the FOV. The new design we obtain the PSF is nearly invariant over the whole FOV. But the result of the design also shows the little difference between the horizontal and vertical length of the PSF. We analyze that the CPM is non-symmetric phase mask and the FOV is so large, which will generate variation in the final image quality. For that reason, we apply a new method to avoid that happened. We try to make the rays incident on the CPM with small angle and decrease the deformation of the PSF. The experimental result shows the new method to optimize the CPM is fit for the ultra-wide-angle lens. The research above will be a helpful instruction to design the ultra-wide-angle lens with WFC.

  9. The VIMOS Ultra Deep Survey: Nature, ISM properties, and ionizing spectra of CIII]λ1909 emitters at z = 2-4

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Schaerer, D.; Le Fèvre, O.; Amorín, R.; Talia, M.; Lemaux, B. C.; Tasca, L. A. M.; Vanzella, E.; Zamorani, G.; Bardelli, S.; Grazian, A.; Guaita, L.; Hathi, N. P.; Pentericci, L.; Zucca, E.

    2018-05-01

    Context. Ultraviolet (UV) emission-line spectra are used to spectroscopically confirm high-z galaxies and increasingly also to determine their physical properties. Aims: We construct photoionization models to interpret the observed UV spectra of distant galaxies in terms of the dominant radiation field and the physical condition of the interstellar medium (ISM). These models are applied to new spectroscopic observations from the VIMOS Ultra Deep Survey (VUDS). Methods: We construct a large grid of photoionization models, which use several incident radiation fields (stellar populations, active galactic nuclei (AGNs), mix of stars and AGNs, blackbodies, and others), and cover a wide range of metallicities and ionization parameters. From these models we derive new spectral UV line diagnostics using equivalent widths (EWs) of [CIII]λ1909 doublet, CIVλ1549 doublet and the line ratios of [CIII], CIV, and He IIλ1640 recombination lines. We apply these diagnostics to a sample of 450 [CIII]-emitting galaxies at redshifts z = 2-4 previously identified in VUDS. Results: We demonstrate that our photoionization models successfully reproduce observations of nearby and high-redshift sources with known radiation field and/or metallicity. For star-forming galaxies our models predict that [CIII] EW peaks at sub-solar metallicities, whereas CIV EW peaks at even lower metallicity. Using the UV diagnostics, we show that the average star-forming galaxy (EW([CIII]) 2 Å) based on the composite of the 450 UV-selected galaxies' spectra The inferred metallicity and ionization parameter is typically Z = 0.3-0.5 Z⊙ and logU = -2.7 to - 3, in agreement with earlier works at similar redshifts. The models also indicate an average age of 50-200 Myr since the beginning of the current star-formation, and an ionizing photon production rate, ξion, of logξion/erg-1 Hz = 25.3-25.4. Among the sources with EW([CIII]) >= 10 Å, approximately 30% are likely dominated by AGNs. The metallicity derived for galaxies with EW(CIII) = 10-20 Å is low, Z = 0.02-0.2 Z⊙, and the ionization parameter higher (logU -1.7) than the average star-forming galaxy. To explain the average UV observations of the strongest but rarest [CIII] emitters (EW([CIII]) > 20 Å), we find that stellar photoionization is clearly insufficient. A radiation field consisting of a mix of a young stellar population (logξion/erg-1 Hz 25.7) plus an AGN component is required. Furthermore an enhanced C/O abundance ratio (up to the solar value) is needed for metallicities Z = 0.1-0.2 Z⊙ and logU = -1.7 to - 1.5. Conclusions: A large grid of photoionization models has allowed us to propose new diagnostic diagrams to classify the nature of the ionizing radiation field (star formation or AGN) of distant galaxies using UV emission lines, and to constrain their ISM properties. We have applied this grid to a sample of [CIII]-emitting galaxies at z = 2-4 detected in VUDS, finding a range of physical properties and clear evidence for significant AGN contribution in rare sources with very strong [CIII] emission. The UV diagnostics we propose should also serve as an important basis for the interpretation of upcoming observations of high-redshift galaxies. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.JSPS Overseas Research Fellow.

  10. System to provide 3D information on geological anomaly zone in deep subsea

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kwon, O.; Kim, D.

    2017-12-01

    The study on building the ultra long and deep subsea tunnel of which length is 50km and depth is 200m at least, respectively, is underway in Korea. To analyze the geotechnical information required for designing and building subsea tunnel, topographic/geologiccal information analysis using 2D seabed geophysical prospecting and topographic, geologic, exploration and boring data were analyzed comprehensively and as a result, automation method to identify the geological structure zone under seabed which is needed to design the deep and long seabed tunnel was developed using geostatistical analysis. In addition, software using 3D visualized ground information to provide the information includes Gocad, MVS, Vulcan and DIMINE. This study is intended to analyze the geological anomaly zone for ultra deep seabed l and visualize the geological investigation result so as to develop the exclusive system for processing the ground investigation information which is convenient for the users. Particularly it's compatible depending on file of geophysical prospecting result and is realizable in Layer form and for 3D view as well. The data to be processed by 3D seabed information system includes (1) deep seabed topographic information, (2) geological anomaly zone, (3) geophysical prospecting, (4) boring investigation result and (5) 3D visualization of the section on seabed tunnel route. Each data has own characteristics depending on data and interface to allow interlocking with other data is granted. In each detail function, input data is displayed in a single space and each element is selectable to identify the further information as a project. Program creates the project when initially implemented and all output from detail information is stored by project unit. Each element representing detail information is stored in image file and is supported to store in text file as well. It also has the function to transfer, expand/reduce and rotate the model. To represent the all elements in 3D visualized platform, coordinate and time information are added to the data or data group to establish the conceptual model as a whole. This research was supported by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport of the Korean government(Project Number: 13 Construction Research T01).

  11. Design and Analysis of a Flexible, Reliable Deep Space Life Support System

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2012-01-01

    This report describes a flexible, reliable, deep space life support system design approach that uses either storage or recycling or both together. The design goal is to provide the needed life support performance with the required ultra reliability for the minimum Equivalent System Mass (ESM). Recycling life support systems used with multiple redundancy can have sufficient reliability for deep space missions but they usually do not save mass compared to mixed storage and recycling systems. The best deep space life support system design uses water recycling with sufficient water storage to prevent loss of crew if recycling fails. Since the amount of water needed for crew survival is a small part of the total water requirement, the required amount of stored water is significantly less than the total to be consumed. Water recycling with water, oxygen, and carbon dioxide removal material storage can achieve the high reliability of full storage systems with only half the mass of full storage and with less mass than the highly redundant recycling systems needed to achieve acceptable reliability. Improved recycling systems with lower mass and higher reliability could perform better than systems using storage.

  12. Wide Angle of Incidence-Insensitive Polarization-Independent THz Metamaterial Absorber for Both TE and TM Mode Based on Plasmon Hybridizations.

    PubMed

    Huang, Xiu Tao; Lu, Cong Hui; Rong, Can Can; Wang, Sheng Ming; Liu, Ming Hai

    2018-04-25

    An ultra-wide-angle THz metamaterial absorber (MA) utilizing sixteen-circular-sector (SCR) resonator for both transverse electric (TE) and transverse magnetic (TM) mode is designed and investigated numerically. At normal incidence, the absorptivity of the proposed MA is higher than 93.7% at 9.05 THz for different polarization angles, due to the rotational symmetry structure of the unit cell. Under oblique incidence, the absorptivity can still exceed 90%, even when the incident angle is up to 70° for both TE and TM mode. Especially, the frequency variation in TE mode is less than 0.25% for different incident angles from 0° to 70°. The electric field (E z ) distributions are used to explain the absorption mechanism. Numerical simulation results show that the high absorption with wide-angle independence stems from fundamental dipole resonance and gap surface plasmons. The broadband deep-infrared MA is also obtained by stacking three metal-dielectric layers. The designed MA has great potential in bolometric pixel elements, biomedical sensors, THz imaging, and solar cells.

  13. Barrier height modification and mechanism of carrier transport in Ni/in situ grown Si3N4/n-GaN Schottky contacts

    NASA Astrophysics Data System (ADS)

    Karpov, S. Y.; Zakheim, D. A.; Lundin, W. V.; Sakharov, A. V.; Zavarin, E. E.; Brunkov, P. N.; Lundina, E. Y.; Tsatsulnikov, A. F.

    2018-02-01

    In situ growth of an ultra-thin (up to 2.5 nm) Si3N4 film on the top of n-GaN is shown to reduce remarkably the height of the barrier formed by deposition of Ni-based Schottky contact. The reduction is interpreted in terms of polarization dipole induced at the Si3N4/n-GaN interface and Fermi level pinning at the Ni/Si3N4 interface. Detailed study of temperature-dependent current-voltage characteristics enables identification of the electron transport mechanism in such Schottky diodes under forward bias: thermal/field electron emission over the barrier formed in n-GaN followed by tunneling through the Si3N4 film. At reverse bias and room temperature, the charge transfer is likely controlled by Poole-Frenkel ionization of deep traps in n-GaN. Tunneling exponents at forward and reverse biases and the height of the Ni/Si3N4 Schottky barrier are evaluated experimentally and compared with theoretical predictions.

  14. Performance characteristics of a conformal ultra-wideband multilayer applicator (CUMLA) for hyperthermia in veterinary patients: a pilot evaluation of its use in the adjuvant treatment of non-resectable tumours.

    PubMed

    Smrkovski, O A; Koo, Y; Kazemi, R; Lembcke, L M; Fathy, A; Liu, Q; Phillips, J C

    2013-03-01

    Performance and clinical characteristics of a novel hyperthermia antenna operating at 434 MHz were evaluated for the adjuvant treatment of locally advanced superficial tumours in cats, dogs and horses. Electromagnetic simulations were performed to determine electric field characteristics and compared to simulations for a flat microwave antenna with similar dimensions. Simulation results show a reduced skin surface and backfield irradiation and improved directional irradiation (at broadside) compared to a flat antenna. Radiated power and penetration is notably increased with a penetration depth of 4.59 cm compared to 2.74 cm for the flat antenna. Clinical use of the antenna was then evaluated in six animals with locoregionally advanced solid tumours receiving adjuvant chemotherapy. During clinical applications, therapeutic temperatures were achieved at depths ≥4 cm. Objective responses were seen in all patients; tissue toxicity in one case limited further therapy. This antenna provides compact, efficient, focused and deep-penetrating clinical hyperthermia for the treatment of solid tumours in veterinary patients. © 2011 Blackwell Publishing Ltd.

  15. Linear: A Novel Algorithm for Reconstructing Slitless Spectroscopy from HST/WFC3

    NASA Astrophysics Data System (ADS)

    Ryan, R. E., Jr.; Casertano, S.; Pirzkal, N.

    2018-03-01

    We present a grism extraction package (LINEAR) designed to reconstruct 1D spectra from a collection of slitless spectroscopic images, ideally taken at a variety of orientations, dispersion directions, and/or dither positions. Our approach is to enumerate every transformation between all direct image positions (i.e., a potential source) and the collection of grism images at all relevant wavelengths. This leads to solving a large, sparse system of linear equations, which we invert using the standard LSQR algorithm. We implement a number of color and geometric corrections (such as flat field, pixel-area map, source morphology, and spectral bandwidth), but assume many effects have been calibrated out (such as basic reductions, background subtraction, and astrometric refinement). We demonstrate the power of our approach with several Monte Carlo simulations and the analysis of archival data. The simulations include astrometric and photometric uncertainties, sky-background estimation, and signal-to-noise calculations. The data are G141 observations obtained with the Wide-Field Camera 3 of the Hubble Ultra-Deep Field, and show the power of our formalism by improving the spectral resolution without sacrificing the signal-to-noise (a tradeoff that is often made by current approaches). Additionally, our approach naturally accounts for source contamination, which is only handled heuristically by present softwares. We conclude with a discussion of various observations where our approach will provide much improved spectral 1D spectra, such as crowded fields (star or galaxy clusters), spatially resolved spectroscopy, or surveys with strict completeness requirements. At present our software is heavily geared for Wide-Field Camera 3 IR, however we plan extend the codebase for additional instruments.

  16. Down to 2 nm Ultra Shallow Junctions : Fabrication by IBS Plasma Immersion Ion Implantation Prototype PULSION registered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torregrosa, Frank; Etienne, Hasnaa; Mathieu, Gilles

    Classical beam line implantation is limited in low energies and cannot achieve P+/N junctions requirements for <45nm node. Compared to conventional beam line ion implantation, limited to a minimum of about 200 eV, the efficiency of Plasma Immersion Ion Implantation (PIII) is no more to prove for the realization of Ultra Shallow Junctions (USJ) in semiconductor applications: this technique allows to get ultimate shallow profiles (as implanted) thanks to no lower limitation of energy and offers high dose rate. In the field of the European consortium NANOCMOS, Ultra Shallow Junctions implanted on a semi-industrial PIII prototype (PULSION registered ) designedmore » by the French company IBS, have been studied. Ultra shallow junctions implanted with BF3 at acceleration voltages down to 20V were realized. Contamination level, homogeneity and depth profile are studied. The SIMS profiles obtained show the capability to make ultra shallow profiles (as implanted) down to 2nm.« less

  17. Development of techniques in magnetic resonance and structural studies of the prion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitter, Hans-Marcus L.

    2000-07-01

    Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which themore » dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of biological and pathological interest since conformational changes in the prion protein are believed to cause prion diseases. Finally, an ultra-low field magnetic resonance imaging technique is described that enables imaging and characterization of heterogeneous and porous media. The notion of imaging gases at ultra-low fields would appear to be very difficult due to the prohibitively low polarization and spin densities as well as the low sensitivities of conventional Faraday coil detectors. However, Chapter 5 describes how gas imaging at ultra-low fields is realized by incorporating the high sensitivities of a dc superconducting quantum interference device (SQUID) with the high polarizations attainable through optica11y pumping 129Xe gas.« less

  18. Ultra low-level measurements of actinides by sector field ICP-MS.

    PubMed

    Pointurier, F; Baglan, N; Hémet, P

    2004-01-01

    In the present work, a double-focusing sector field inductively coupled plasma-mass spectrometer was optimised for ultra trace and isotopic analyses of actinide long-lived isotopes in low concentration solutions of the fgml(-1) to the ngml(-1) range. Sensitivities of about 3GHz/(microgml(-1)), with as low a background as 0.1cps, were obtained for U using a conventional concentric pneumatic nebuliser. Detection limits are below the fg range for 239Pu and 240Pu. With natural U, a precision lower than 0.5% RSD is currently obtained for 235U/238U isotopic ratio at the 200pgml(-1) level.

  19. High-field modulated ion-selective field-effect-transistor (FET) sensors with sensitivity higher than the ideal Nernst sensitivity.

    PubMed

    Chen, Yi-Ting; Sarangadharan, Indu; Sukesan, Revathi; Hseih, Ching-Yen; Lee, Geng-Yen; Chyi, Jen-Inn; Wang, Yu-Lin

    2018-05-29

    Lead ion selective membrane (Pb-ISM) coated AlGaN/GaN high electron mobility transistors (HEMT) was used to demonstrate a whole new methodology for ion-selective FET sensors, which can create ultra-high sensitivity (-36 mV/log [Pb 2+ ]) surpassing the limit of ideal sensitivity (-29.58 mV/log [Pb 2+ ]) in a typical Nernst equation for lead ion. The largely improved sensitivity has tremendously reduced the detection limit (10 -10  M) for several orders of magnitude of lead ion concentration compared to typical ion-selective electrode (ISE) (10 -7  M). The high sensitivity was obtained by creating a strong filed between the gate electrode and the HEMT channel. Systematical investigation was done by measuring different design of the sensor and gate bias, indicating ultra-high sensitivity and ultra-low detection limit obtained only in sufficiently strong field. Theoretical study in the sensitivity consistently agrees with the experimental finding and predicts the maximum and minimum sensitivity. The detection limit of our sensor is comparable to that of Inductively-Coupled-Plasma Mass Spectrum (ICP-MS), which also has detection limit near 10 -10  M.

  20. Encoding methods for B1+ mapping in parallel transmit systems at ultra high field

    NASA Astrophysics Data System (ADS)

    Tse, Desmond H. Y.; Poole, Michael S.; Magill, Arthur W.; Felder, Jörg; Brenner, Daniel; Jon Shah, N.

    2014-08-01

    Parallel radiofrequency (RF) transmission, either in the form of RF shimming or pulse design, has been proposed as a solution to the B1+ inhomogeneity problem in ultra high field magnetic resonance imaging. As a prerequisite, accurate B1+ maps from each of the available transmit channels are required. In this work, four different encoding methods for B1+ mapping, namely 1-channel-on, all-channels-on-except-1, all-channels-on-1-inverted and Fourier phase encoding, were evaluated using dual refocusing acquisition mode (DREAM) at 9.4 T. Fourier phase encoding was demonstrated in both phantom and in vivo to be the least susceptible to artefacts caused by destructive RF interference at 9.4 T. Unlike the other two interferometric encoding schemes, Fourier phase encoding showed negligible dependency on the initial RF phase setting and therefore no prior B1+ knowledge is required. Fourier phase encoding also provides a flexible way to increase the number of measurements to increase SNR, and to allow further reduction of artefacts by weighted decoding. These advantages of Fourier phase encoding suggest that it is a good choice for B1+ mapping in parallel transmit systems at ultra high field.

  1. Influence of Surface Passivation on AlN Barrier Stress and Scattering Mechanism in Ultra-thin AlN/GaN Heterostructure Field-Effect Transistors.

    PubMed

    Lv, Y J; Song, X B; Wang, Y G; Fang, Y L; Feng, Z H

    2016-12-01

    Ultra-thin AlN/GaN heterostructure field-effect transistors (HFETs) with, and without, SiN passivation were fabricated by the same growth and device processes. Based on the measured DC characteristics, including the capacitance-voltage (C-V) and output current-voltage (I-V) curves, the variation of electron mobility with gate bias was found to be quite different for devices with, and without, SiN passivation. Although the AlN barrier layer is ultra thin (c. 3 nm), it was proved that SiN passivation induces no additional tensile stress and has no significant influence on the piezoelectric polarization of the AlN layer using Hall and Raman measurements. The SiN passivation was found to affect the surface properties, thereby increasing the electron density of the two-dimensional electron gas (2DEG) under the access region. The higher electron density in the access region after SiN passivation enhanced the electrostatic screening for the non-uniform distributed polarization charges, meaning that the polarization Coulomb field scattering has a weaker effect on the electron drift mobility in AlN/GaN-based devices.

  2. Faraday effect in a short pulse propagating in a resonant medium under an ultra-strong magnetic field

    NASA Astrophysics Data System (ADS)

    Huang, J. G.; Slavcheva, G.; Hess, O.

    2008-04-01

    We propose a dynamical model for description of the nonlinear Faraday rotation experienced by a short pulse propagating in a resonant medium subject to an ultra-strong static magnetic field. Under the assumptions of a sufficiently strong external magnetic field, such that the Zeeman splitting of the quantum system energy levels is large compared to the linewidth of the optical transitions involved and the bandwidth of the incident light, the light effectively interacts with a two-level system. Our numerical simulations show that the Faraday effect under these conditions is significantly distinctive from the one caused by weak to moderately strong magnetic field. Nonlinear coherent effects such as inhomogeneous polarization rotation along the pulse duration and an onset of a circularly polarized stimulated emission and coherent ringing have been demonstrated. Some views on the experimental observation of the predicted phenomena are given.

  3. Effect of Electric Field Gradient on Sub-nanometer Spatial Resolution of Tip-enhanced Raman Spectroscopy

    PubMed Central

    Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao

    2015-01-01

    Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H2TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected. PMID:25784161

  4. Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya

    2017-10-01

    We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.

  5. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: A review.

    PubMed

    Henning, Anke

    2018-03-01

    Magnetic Resonance Spectroscopy (MRS) allows for a non-invasive and non-ionizing determination of in vivo tissue concentrations and metabolic turn-over rates of more than 20 metabolites and compounds in the central nervous system of humans. The aim of this review is to give a comprehensive overview about the advantages, challenges and advances of ultra-high field MRS with regard to methodological development, discoveries and applications from its beginnings around 15 years ago up to the current state. The review is limited to human brain and spinal cord application at field strength of 7T and 9.4T and includes all relevant nuclei ( 1 H, 31 P, 13 C). Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Gradient and shim technologies for ultra high field MRI

    PubMed Central

    Winkler, Simone A.; Schmitt, Franz; Landes, Hermann; DeBever, Josh; Wade, Trevor; Alejski, Andrew

    2017-01-01

    Ultra High Field (UHF) MRI requires improved gradient and shim performance to fully realize the promised gains (SNR as well as spatial, spectral, diffusion resolution) that higher main magnetic fields offer. Both the more challenging UHF environment by itself, as well as the higher currents used in high performance coils, require a deeper understanding combined with sophisticated engineering modeling and construction, to optimize gradient and shim hardware for safe operation and for highest image quality. This review summarizes the basics of gradient and shim technologies, and outlines a number of UHF-related challenges and solutions. In particular, Lorentz forces, vibroacoustics, eddy currents, and peripheral nerve stimulation are discussed. Several promising UHF-relevant gradient concepts are described, including insertable gradient coils aimed at higher performance neuroimaging. PMID:27915120

  7. TRIZ theory in NEA photocathode preparation system

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Huang, Dayong; Li, Xiangjiang; Gao, Youtang

    2016-09-01

    The solutions to the engineering problems were provided according to the innovation principle based on the theory of TRIZ. The ultra high vacuum test and evaluation system for the preparation of negative electron affinity (NEA) photocathode has the characteristics of complex structure and powerful functions. Segmentation principle, advance function principle, curved surface principle, dynamic characteristics principle and nested principle adopted by the design of ultra high vacuum test and evaluation system for cathode preparation were analyzed. The applications of the physical contradiction and the substance-field analysis method of the theory of TRIZ in the cathode preparation ultra high vacuum test and evaluation system were discussed.

  8. Ultra-widefield fluorescein angiography reveals retinal phlebitis in Susac's syndrome.

    PubMed

    Klufas, Michael A; Dinkin, Marc J; Bhaleeya, Swetangi D; Chapman, Kristin O; Riley, Claire S; Kiss, Szilárd

    2014-01-01

    A 23-year-old woman with history of headaches and auditory changes presented with acute-onset visual field loss in the right eye. The combination of multiple retinal branch artery occlusions of the right eye on funduscopic examination, characteristic white matter lesions in the corpus callosum on magnetic resonance imaging, and hearing loss on audiometric testing led to a diagnosis of Susac's syndrome. Ultra-widefield fluorescein angiography revealed involvement of the retinal veins, which has not been previously reported with this condition. Additionally, ultra-widefield indocyanine green angiography demonstrated changes in the choroidal circulation, which are controversial in this syndrome. Copyright 2014, SLACK Incorporated.

  9. 76 FR 56745 - Notice of Availability of Government-Owned Inventions; Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... No. 12/175262: Coupled Electric Field Sensors for DC Target Electric Field Detection; U.S. Patent Application No. 12/732023: Coupled Bi-Stable Microcircuit System for Ultra-Sensitive Electrical and Magnetic... Electric Field Sensing Utilizing Differential Transistors Pairs. FOR FURTHER INFORMATION CONTACT: Brian Suh...

  10. Utilization of Field Enhancement in Plasmonic Waveguides for Subwavelength Light-Guiding, Polarization Handling, Heating, and Optical Sensing.

    PubMed

    Dai, Daoxin; Wu, Hao; Zhang, Wei

    2015-10-09

    Plasmonic nanostructures have attracted intensive attention for many applications in recent years because of the field enhancement at the metal/dielectric interface. First, this strong field enhancement makes it possible to break the diffraction limit and enable subwavelength optical waveguiding, which is desired for nanophotonic integrated circuits with ultra-high integration density. Second, the field enhancement in plasmonic nanostructures occurs only for the polarization mode whose electric field is perpendicular to the metal/dielectric interface, and thus the strong birefringence is beneficial for realizing ultra-small polarization-sensitive/selective devices, including polarization beam splitters, and polarizers. Third, plasmonic nanostructures provide an excellent platform of merging electronics and photonics for some applications, e.g., thermal tuning, photo-thermal detection, etc. Finally, the field enhancement at the metal/dielectric interface helps a lot to realize optical sensors with high sensitivity when introducing plasmonic nanostrutures. In this paper, we give a review for recent progresses on the utilization of field enhancement in plasmonic nanostructures for these applications, e.g., waveguiding, polarization handling, heating, as well as optical sensing.

  11. Utilization of Field Enhancement in Plasmonic Waveguides for Subwavelength Light-Guiding, Polarization Handling, Heating, and Optical Sensing

    PubMed Central

    Dai, Daoxin; Wu, Hao; Zhang, Wei

    2015-01-01

    Plasmonic nanostructures have attracted intensive attention for many applications in recent years because of the field enhancement at the metal/dielectric interface. First, this strong field enhancement makes it possible to break the diffraction limit and enable subwavelength optical waveguiding, which is desired for nanophotonic integrated circuits with ultra-high integration density. Second, the field enhancement in plasmonic nanostructures occurs only for the polarization mode whose electric field is perpendicular to the metal/dielectric interface, and thus the strong birefringence is beneficial for realizing ultra-small polarization-sensitive/selective devices, including polarization beam splitters, and polarizers. Third, plasmonic nanostructures provide an excellent platform of merging electronics and photonics for some applications, e.g., thermal tuning, photo-thermal detection, etc. Finally, the field enhancement at the metal/dielectric interface helps a lot to realize optical sensors with high sensitivity when introducing plasmonic nanostrutures. In this paper, we give a review for recent progresses on the utilization of field enhancement in plasmonic nanostructures for these applications, e.g., waveguiding, polarization handling, heating, as well as optical sensing. PMID:28793600

  12. Exotic geophysical phenomena observed in an environmental neutron flux study using EAS PRISMA detectors

    NASA Astrophysics Data System (ADS)

    Alekseenko, Victor; Bagrova, Anastasia; Cui, Shuwang; He, Yayun; Li, Bingbing; Ma, Xinhua; Pozdnyakov, Egor; Shchegolev, Oleg; Stenkin, Yuri; Stepanov, Vladimir

    2017-06-01

    Some exotic geophysical events are observed by a global net of electron-neutron detectors (en-detectors) developed in the framework of the PRISMA EAS project. Our en-detectors running both on the Earth's surface and underground are continuously measuring the environmental thermal neutron flux. Thermal neutrons are in equilibrium with media and are therefore sensitive to many geophysical phenomena, which are exotic for people studying ultra high-energy cosmic rays or carrying out low background experiments deep underground.

  13. Wireless and passive temperature indicator utilizing the large hysteresis of magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Bergmair, Bernhard; Liu, Jian; Huber, Thomas; Gutfleisch, Oliver; Suess, Dieter

    2012-07-01

    An ultra-low cost, wireless magnetoelastic temperature indicator is presented. It comprises a magnetostrictive amorphous ribbon, a Ni-Mn-Sn-Co magnetic shape memory alloy with a highly tunable transformation temperature, and a bias magnet. It allows to remotely detect irreversible changes due to transgressions of upper or lower temperature thresholds. Therefore, the proposed temperature indicator is particularly suitable for monitoring the temperature-controlled supply chain of, e.g., deep frozen and chilled food or pharmaceuticals.

  14. Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components

    NASA Technical Reports Server (NTRS)

    Reck, Theodore (Inventor); Perez, Jose Vicente Siles (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Jung-Kubiak, Cecile (Inventor); Mehdi, Imran (Inventor); Chattopadhyay, Goutam (Inventor); Lin, Robert H. (Inventor); Peralta, Alejandro (Inventor)

    2016-01-01

    A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.

  15. Ultra-compact Marx-type high-voltage generator

    DOEpatents

    Goerz, David A.; Wilson, Michael J.

    2000-01-01

    An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

  16. Comparison between two scalar field models using rotation curves of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fernández-Hernández, Lizbeth M.; Rodríguez-Meza, Mario A.; Matos, Tonatiuh

    2018-04-01

    Scalar fields have been used as candidates for dark matter in the universe, from axions with masses ∼ 10-5eV until ultra-light scalar fields with masses ∼ Axions behave as cold dark matter while the ultra-light scalar fields galaxies are Bose-Einstein condensate drops. The ultra-light scalar fields are also called scalar field dark matter model. In this work we study rotation curves for low surface brightness spiral galaxies using two scalar field models: the Gross-Pitaevskii Bose-Einstein condensate in the Thomas-Fermi approximation and a scalar field solution of the Klein-Gordon equation. We also used the zero disk approximation galaxy model where photometric data is not considered, only the scalar field dark matter model contribution to rotation curve is taken into account. From the best-fitting analysis of the galaxy catalog we use, we found the range of values of the fitting parameters: the length scale and the central density. The worst fitting results (values of χ red2 much greater than 1, on the average) were for the Thomas-Fermi models, i.e., the scalar field dark matter is better than the Thomas- Fermi approximation model to fit the rotation curves of the analysed galaxies. To complete our analysis we compute from the fitting parameters the mass of the scalar field models and two astrophysical quantities of interest, the dynamical dark matter mass within 300 pc and the characteristic central surface density of the dark matter models. We found that the value of the central mass within 300 pc is in agreement with previous reported results, that this mass is ≈ 107 M ⊙/pc2, independent of the dark matter model. And, on the contrary, the value of the characteristic central surface density do depend on the dark matter model.

  17. Faint submillimeter galaxies revealed by multifield deep ALMA observations: number counts, spatial clustering, and a dark submillimeter line emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Yoshiaki; Ouchi, Masami; Momose, Rieko

    2014-11-01

    We present the statistics of faint submillimeter/millimeter galaxies (SMGs) and serendipitous detections of a submillimeter/millimeter line emitter (SLE) with no multi-wavelength continuum counterpart revealed by the deep ALMA observations. We identify faint SMGs with flux densities of 0.1-1.0 mJy in the deep Band-6 and Band-7 maps of 10 independent fields that reduce cosmic variance effects. The differential number counts at 1.2 mm are found to increase with decreasing flux density down to 0.1 mJy. Our number counts indicate that the faint (0.1-1.0 mJy, or SFR{sub IR} ∼ 30-300 M {sub ☉} yr{sup –1}) SMGs contribute nearly a half of themore » extragalactic background light (EBL), while the remaining half of the EBL is mostly contributed by very faint sources with flux densities of <0.1 mJy (SFR{sub IR} ≲ 30 M {sub ☉} yr{sup –1}). We conduct counts-in-cells analysis with multifield ALMA data for the faint SMGs, and obtain a coarse estimate of galaxy bias, b {sub g} < 4. The galaxy bias suggests that the dark halo masses of the faint SMGs are ≲ 7 × 10{sup 12} M {sub ☉}, which is smaller than those of bright (>1 mJy) SMGs, but consistent with abundant high-z star-forming populations, such as sBzKs, LBGs, and LAEs. Finally, we report the serendipitous detection of SLE-1, which has no continuum counterparts in our 1.2 mm-band or multi-wavelength images, including ultra deep HST/WFC3 and Spitzer data. The SLE has a significant line at 249.9 GHz with a signal-to-noise ratio of 7.1. If the SLE is not a spurious source made by the unknown systematic noise of ALMA, the strong upper limits of our multi-wavelength data suggest that the SLE would be a faint galaxy at z ≳ 6.« less

  18. The UKIRT Infrared Deep Sky Survey (UKIDSS)

    NASA Astrophysics Data System (ADS)

    Lawrence, A.; Warren, S. J.; Almaini, O.; Edge, A. C.; Hambly, N. C.; Jameson, R. F.; Lucas, P.; Casali, M.; Adamson, A.; Dye, S.; Emerson, J. P.; Foucaud, S.; Hewett, P.; Hirst, P.; Hodgkin, S. T.; Irwin, M. J.; Lodieu, N.; McMahon, R. G.; Simpson, C.; Smail, I.; Mortlock, D.; Folger, M.

    2007-08-01

    We describe the goals, design, implementation, and initial progress of the UKIRT Infrared Deep Sky Survey (UKIDSS), a seven-year sky survey which began in 2005 May. UKIDSS is being carried out using the UKIRT Wide Field Camera (WFCAM), which has the largest étendue of any infrared astronomical instrument to date. It is a portfolio of five survey components covering various combinations of the filter set ZYJHK and H2. The Large Area Survey, the Galactic Clusters Survey, and the Galactic Plane Survey cover approximately 7000deg2 to a depth of K ~ 18; the Deep Extragalactic Survey covers 35deg2 to K ~ 21, and the Ultra Deep Survey covers 0.77deg2 to K ~ 23. Summed together UKIDSS is 12 times larger in effective volume than the 2MASS survey. The prime aim of UKIDSS is to provide a long-term astronomical legacy data base; the design is, however, driven by a series of specific goals - for example, to find the nearest and faintest substellar objects, to discover Population II brown dwarfs, if they exist, to determine the substellar mass function, to break the z = 7 quasar barrier; to determine the epoch of re-ionization, to measure the growth of structure from z = 3 to the present day, to determine the epoch of spheroid formation, and to map the Milky Way through the dust, to several kpc. The survey data are being uniformly processed. Images and catalogues are being made available through a fully queryable user interface - the WFCAM Science Archive (http://surveys.roe.ac.uk/wsa). The data are being released in stages. The data are immediately public to astronomers in all ESO member states, and available to the world after 18 months. Before the formal survey began, UKIRT and the UKIDSS consortia collaborated in obtaining and analysing a series of small science verification (SV) projects to complete the commissioning of the camera. We show some results from these SV projects in order to demonstrate the likely power of the eventual complete survey. Finally, using the data from the First Data Release, we assess how well UKIDSS is meeting its design targets so far.

  19. Ultra high field TOF-MRA: A method to visualize small cerebral vessels. 7T TOF-MRA sequence parameters on different MRI scanners - Literature review.

    PubMed

    Grochowski, Cezary; Staśkiewicz, Grzegorz

    Time-of-flight (TOF) angiography is a technique allowing to visualize the blood flow in vessels. 7T ToF-MRA is able to visualize the whole Circle of Willis including small perforating branches without any known side effects as opposed to usually used DSA and CTA with high exposition to the radiation and high doses of contrast as far as CTA is concerned. The aim of this review is to describe ultra-high field ToF-MRA and present different protocol data depending on the scanner used in the study. PubMed, Embase, Ovid, Google Scholar databases were searched. Selection of studies for this systematic review included 7T magnetic resonance angiography studies. We searched for type of head coil used in various studies, flip angle, echo time, repetition time, field-of-view (FOV), number of slices per slab, matrix, voxel size and acquisition time. Visualization for the small perforating vessels of the Circle of Willis, that are not fully visualized using low-field-strength MRA is improving with increasing magnetic field strength, which has been proved by several studies. Ultra-high filed ToF-MRA has found to be a superior method in depicting cerebral microvasculature. 7T ToF-MRA seems to be a reliable method for visualization of arteries up to the second order cerebral arteries and has a potential to replace DSA. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  20. The BCS-BEC crossover: From ultra-cold Fermi gases to nuclear systems

    NASA Astrophysics Data System (ADS)

    Strinati, Giancarlo Calvanese; Pieri, Pierbiagio; Röpke, Gerd; Schuck, Peter; Urban, Michael

    2018-04-01

    This report addresses topics and questions of common interest in the fields of ultra-cold gases and nuclear physics in the context of the BCS-BEC crossover. By this crossover, the phenomena of Bardeen-Cooper-Schrieffer (BCS) superfluidity and Bose-Einstein condensation (BEC), which share the same kind of spontaneous symmetry breaking, are smoothly connected through the progressive reduction of the size of the fermion pairs involved as the fundamental entities in both phenomena. This size ranges, from large values when Cooper pairs are strongly overlapping in the BCS limit of a weak inter-particle attraction, to small values when composite bosons are non-overlapping in the BEC limit of a strong inter-particle attraction, across the intermediate unitarity limit where the size of the pairs is comparable with the average inter-particle distance. The BCS-BEC crossover has recently been realized experimentally, and essentially in all of its aspects, with ultra-cold Fermi gases. This realization, in turn, has raised the interest of the nuclear physics community in the crossover problem, since it represents an unprecedented tool to test fundamental and unanswered questions of nuclear many-body theory. Here, we focus on the several aspects of the BCS-BEC crossover, which are of broad joint interest to both ultra-cold Fermi gases and nuclear matter, and which will likely help to solve in the future some open problems in nuclear physics (concerning, for instance, neutron stars). Similarities and differences occurring in ultra-cold Fermi gases and nuclear matter will then be emphasized, not only about the relative phenomenologies but also about the theoretical approaches to be used in the two contexts. Common to both contexts is the fact that at zero temperature the BCS-BEC crossover can be described at the mean-field level with reasonable accuracy. At finite temperature, on the other hand, inclusion of pairing fluctuations beyond mean field represents an essential ingredient of the theory, especially in the normal phase where they account for precursor pairing effects. After an introduction to present the key concepts of the BCS-BEC crossover, this report discusses the mean-field treatment of the superfluid phase, both for homogeneous and inhomogeneous systems, as well as for symmetric (spin- or isospin-balanced) and asymmetric (spin- or isospin-imbalanced) matter. Pairing fluctuations in the normal phase are then considered, with their manifestations in thermodynamic and dynamic quantities. The last two Sections provide a more specialized discussion of the BCS-BEC crossover in ultra-cold Fermi gases and nuclear matter, respectively. The separate discussion in the two contexts aims at cross communicating to both communities topics and aspects which, albeit arising in one of the two fields, share a strong common interest.

Top