Sample records for ultra densely arrayed

  1. Systematic detection of seismic events at Mount St. Helens with an ultra-dense array

    NASA Astrophysics Data System (ADS)

    Meng, X.; Hartog, J. R.; Schmandt, B.; Hotovec-Ellis, A. J.; Hansen, S. M.; Vidale, J. E.; Vanderplas, J.

    2016-12-01

    During the summer of 2014, an ultra-dense array of 900 geophones was deployed around the crater of Mount St. Helens and continuously operated for 15 days. This dataset provides us an unprecedented opportunity to systematically detect seismic events around an active volcano and study their underlying mechanisms. We use a waveform-based matched filter technique to detect seismic events from this dataset. Due to the large volume of continuous data ( 1 TB), we performed the detection on the GPU cluster Stampede (https://www.tacc.utexas.edu/systems/stampede). We build a suite of template events from three catalogs: 1) the standard Pacific Northwest Seismic Network (PNSN) catalog (45 events); 2) the catalog from Hansen&Schmandt (2015) obtained with a reverse-time imaging method (212 events); and 3) the catalog identified with a matched filter technique using the PNSN permanent stations (190 events). By searching for template matches in the ultra-dense array, we find 2237 events. We then calibrate precise relative magnitudes for template and detected events, using a principal component fit to measure waveform amplitude ratios. The magnitude of completeness and b-value of the detected catalog is -0.5 and 1.1, respectively. Our detected catalog shows several intensive swarms, which are likely driven by fluid pressure transients in conduits or slip transients on faults underneath the volcano. We are currently relocating the detected catalog with HypoDD and measuring the seismic velocity changes at Mount St. Helens using the coda wave interferometry of detected repeating earthquakes. The accurate temporal-spatial migration pattern of seismicity and seismic property changes should shed light on the physical processes beneath Mount St. Helens.

  2. Ultra-wideband WDM VCSEL arrays by lateral heterogeneous integration

    NASA Astrophysics Data System (ADS)

    Geske, Jon

    Advancements in heterogeneous integration are a driving factor in the development of evermore sophisticated and functional electronic and photonic devices. Such advancements will merge the optical and electronic capabilities of different material systems onto a common integrated device platform. This thesis presents a new lateral heterogeneous integration technology called nonplanar wafer bonding. The technique is capable of integrating multiple dissimilar semiconductor device structures on the surface of a substrate in a single wafer bond step, leaving different integrated device structures adjacent to each other on the wafer surface. Material characterization and numerical simulations confirm that the material quality is not compromised during the process. Nonplanar wafer bonding is used to fabricate ultra-wideband wavelength division multiplexed (WDM) vertical-cavity surface-emitting laser (VCSEL) arrays. The optically-pumped VCSEL arrays span 140 nm from 1470 to 1610 nm, a record wavelength span for devices operating in this wavelength range. The array uses eight wavelength channels to span the 140 nm with all channels separated by precisely 20 nm. All channels in the array operate single mode to at least 65°C with output power uniformity of +/- 1 dB. The ultra-wideband WDM VCSEL arrays are a significant first step toward the development of a single-chip source for optical networks based on coarse WDM (CWDM), a low-cost alternative to traditional dense WDM. The CWDM VCSEL arrays make use of fully-oxidized distributed Bragg reflectors (DBRs) to provide the wideband reflectivity required for optical feedback and lasing across 140 rim. In addition, a novel optically-pumped active region design is presented. It is demonstrated, with an analytical model and experimental results, that the new active-region design significantly improves the carrier uniformity in the quantum wells and results in a 50% lasing threshold reduction and a 20°C improvement in the peak

  3. Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber

    PubMed Central

    Jen, Yi-Jun; Huang, Yu-Jie; Liu, Wei-Chih; Lin, Yueh Weng

    2017-01-01

    Metals have been formed into nanostructures to absorb light with high efficiency through surface plasmon resonances. An ultra-thin plasmonic structure that exhibits strong absorption over wide ranges of wavelengths and angles of incidence is sought. In this work, a nearly perfect plasmonic nanostructure is fabricated using glancing angle deposition. The difference between the morphologies of obliquely deposited aluminum and silver nanohelices is exploited to form a novel three-dimensional structure, which is an aluminum-silver nanohelix array on a pattern-free substrate. With a thickness of only 470 nm, densely distributed nanohelices support rod-to-rod localized surface plasmons for broadband and polarization-independent light extinction. The extinctance remains high over wavelengths from 400 nm to 2000 nm and angles of incidence from 0° to 70°. PMID:28045135

  4. Coherent ultra dense wavelength division multiplexing passive optical networks

    NASA Astrophysics Data System (ADS)

    Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António

    2015-12-01

    In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).

  5. Mesons from Laser-Induced Processes in Ultra-Dense Hydrogen H(0)

    PubMed Central

    2017-01-01

    Large signals of charged light mesons are observed in the laser-induced particle flux from ultra-dense hydrogen H(0) layers. The mesons are formed in such layers on metal surfaces using < 200 mJ laser pulse-energy. The time variation of the signal to metal foil collectors and the magnetic deflection to a movable pin collector are now studied. Relativistic charged particles with velocity up to 500 MeV u-1 thus 0.75 c are observed. Characteristic decay time constants for meson decay are observed, for charged and neutral kaons and also for charged pions. Magnetic deflections agree with charged pions and kaons. Theoretical predictions of the decay chains from kaons to muons in the particle beam agree with the results. Muons are detected separately by standard scintillation detectors in laser-induced processes in ultra-dense hydrogen H(0) as published previously. The muons formed do not decay appreciably within the flight distances used here. Most of the laser-ejected particle flux with MeV energy is not deflected by the magnetic fields and is thus neutral, either being neutral kaons or the ultra-dense HN(0) precursor clusters. Photons give only a minor part of the detected signals. PACS: 67.63.Gh, 14.40.-n, 79.20.Ds, 52.57.-z. PMID:28081199

  6. Experimental Charging Behavior of Orion UltraFlex Array Designs

    NASA Technical Reports Server (NTRS)

    Golofaro, Joel T.; Vayner, Boris V.; Hillard, Grover B.

    2010-01-01

    The present ground based investigations give the first definitive look describing the charging behavior of Orion UltraFlex arrays in both the Low Earth Orbital (LEO) and geosynchronous (GEO) environments. Note the LEO charging environment also applies to the International Space Station (ISS). The GEO charging environment includes the bounding case for all lunar mission environments. The UltraFlex photovoltaic array technology is targeted to become the sole power system for life support and on-orbit power for the manned Orion Crew Exploration Vehicle (CEV). The purpose of the experimental tests is to gain an understanding of the complex charging behavior to answer some of the basic performance and survivability issues to ascertain if a single UltraFlex array design will be able to cope with the projected worst case LEO and GEO charging environments. Stage 1 LEO plasma testing revealed that all four arrays successfully passed arc threshold bias tests down to -240 V. Stage 2 GEO electron gun charging tests revealed that only the front side area of indium tin oxide coated array designs successfully passed the arc frequency tests

  7. Ultra-high-aspect-orthogonal and tunable three dimensional polymeric nanochannel stack array for BioMEMS applications

    NASA Astrophysics Data System (ADS)

    Heo, Joonseong; Kwon, Hyukjin J.; Jeon, Hyungkook; Kim, Bumjoo; Kim, Sung Jae; Lim, Geunbae

    2014-07-01

    Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation.Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even

  8. An Ultra-Wideband Millimeter-Wave Phased Array

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  9. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks

    PubMed Central

    Li, Ming; Chen, Pengpeng; Gao, Shouwan

    2016-01-01

    Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes. PMID:27649170

  10. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks.

    PubMed

    Li, Ming; Chen, Pengpeng; Gao, Shouwan

    2016-09-13

    Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes.

  11. A systematic method of interconnection optimization for dense-array concentrator photovoltaic system.

    PubMed

    Siaw, Fei-Lu; Chong, Kok-Keong

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

  12. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    PubMed Central

    Siaw, Fei-Lu

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%. PMID:24453823

  13. Progress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture

    DTIC Science & Technology

    2012-05-09

    REPORT Progress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The goal of...including the development of a large-alphabet quantum key distribution protocol that uses measurements in mutually unbiased bases. 1. REPORT DATE (DD-MM... quantum information, integrated optics, photonic integrated chip Dirk Englund, Karl Berggren, Jeffrey Shapiro, Chee Wei Wong, Franco Wong, and Gregory

  14. Dense Array Optimization of Cross-Flow Turbines

    NASA Astrophysics Data System (ADS)

    Scherl, Isabel; Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2017-11-01

    Cross-flow turbines, where the axis of rotation is perpendicular to the freestream flow, can be used to convert the kinetic energy in wind or water currents to electrical power. By taking advantage of mean and time-resolved wake structures, the optimal density of an array of cross-flow turbines has the potential for higher power output per unit area of land or sea-floor than an equivalent array of axial-flow turbines. In addition, dense arrays in tidal or river channels may be able to further elevate efficiency by exploiting flow confinement and surface proximity. In this work, a two-turbine array is optimized experimentally in a recirculating water channel. The spacing between turbines, as well as individual and coordinated turbine control strategies are optimized. Array efficiency is found to exceed the maximum efficiency for a sparse array (i.e., no interaction between turbines) for stream-wise rotor spacing of less than two diameters. Results are discussed in the context of wake measurements made behind a single rotor.

  15. A new generation of ultra-dense optical I/O for silicon photonics

    NASA Astrophysics Data System (ADS)

    Wlodawski, Mitchell S.; Kopp, Victor I.; Park, Jongchul; Singer, Jonathan; Hubner, Eric E.; Neugroschl, Daniel; Chao, Norman; Genack, Azriel Z.

    2014-03-01

    In response to the optical packaging needs of a rapidly growing silicon photonics market, Chiral Photonics, Inc. (CPI) has developed a new generation of ultra-dense-channel, bi-directional, all-optical, input/output (I/O) couplers that bridge the data transport gap between standard optical fibers and photonic integrated circuits. These couplers, called Pitch Reducing Optical Fiber Arrays (PROFAs), provide a means to simultaneously match both the mode field and channel spacing (i.e. pitch) between an optical fiber array and a photonic integrated circuit (PIC). Both primary methods for optically interfacing with PICs, via vertical grating couplers (VGCs) and edge couplers, can be addressed with PROFAs. PROFAs bring the signal-carrying cores, either multimode or singlemode, of many optical fibers into close proximity within an all-glass device that can provide low loss coupling to on-chip components, including waveguides, gratings, detectors and emitters. Two-dimensional (2D) PROFAs offer more than an order of magnitude enhancement in channel density compared to conventional one-dimensional (1D) fiber arrays. PROFAs can also be used with low vertical profile solutions that simplify optoelectronic packaging while reducing PIC I/O real estate usage requirements. PROFA technology is based on a scalable production process for microforming glass preform assemblies as they are pulled through a small oven. An innovative fiber design, called the "vanishing core," enables tailoring the mode field along the length of the PROFA to meet the coupling needs of disparate waveguide technologies, such as fiber and onchip. Examples of single- and multi-channel couplers fabricated using this technology will be presented.

  16. Locating sources within a dense sensor array using graph clustering

    NASA Astrophysics Data System (ADS)

    Gerstoft, P.; Riahi, N.

    2017-12-01

    We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.

  17. Ultra-Dense Quantum Communication Using Integrated Photonic Architecture: First Annual Report

    DTIC Science & Technology

    2011-08-24

    REPORT Ultra-Dense Quantum Communication Using Integrated Photonic Architecture: First Annual Report 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The...goal of this program is to establish a fundamental information-theoretic understand of quantum secure communication and to devise a practical...scalable implementation of quantum key distribution protocols in an integrated photonic architecture. We report our progress on experimental and

  18. Optically addressed ultra-wideband phased antenna array

    NASA Astrophysics Data System (ADS)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  19. Gold ultra-microelectrode arrays: application to the steady-state voltammetry of hydroxide ion in aqueous solution.

    PubMed

    Ordeig, Olga; Banks, Craig E; Davies, Trevor J; del Campo, F Javier; Muñoz, Francesc Xavier; Compton, Richard G

    2006-05-01

    Gold ultra-microelectrode arrays are used to explore the electrochemical oxidation of hydroxide ions and are shown to be analytical useful. Two types of ultra-microelectrode arrays are used; the first consist of 256 individual electrodes of 5 microm in radius, 170 of which are electrochemically active in a cubic arrangement which are separated from their nearest neighbour by a distance of 100 microm. The second array compromises 2597 electrodes of 2.5 microm in radius and of which 1550 of which are electrochemically active in a hexagonal arrangement separated by the nearest neighbour by 55 microm. Well defined voltammetric waves are found with peak currents proportional to the concentration of hydroxide ions in the range 50 microM to 1 mM. Detection limits of 20 microM using the 170 ultra-microelectrode and 10 microM with the 1550 ultra-microelectrode array are shown to be possible but with a higher sensitivity of 4 mA M(-1) observed using the 1550 ultra-microelectrode array compared to 1.2 mA M(-1) with the 170 ultra-microelectrode array.

  20. Densely Aligned Graphene Nanoribbon Arrays and Bandgap Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Justin; Chen, Changxin; Gong, Ming

    Graphene has attracted great interest for future electronics due to its high mobility and high thermal conductivity. However, a two-dimensional graphene sheet behaves like a metal, lacking a bandgap needed for the key devices components such as field effect transistors (FETs) in digital electronics. It has been shown that, partly due to quantum confinement, graphene nanoribbons (GNRs) with ~2 nm width can open up sufficient bandgaps and evolve into semiconductors to exhibit high on/off ratios useful for FETs. However, a challenging problem has been that, such ultra-narrow GNRs (~2 nm) are difficult to fabricate, especially for GNRs with smooth edgesmore » throughout the ribbon length. Despite high on/off ratios, these GNRs show very low mobility and low on-state conductance due to dominant scattering effects by imperfections and disorders at the edges. Wider GNRs (>5 nm) show higher mobility, higher conductance but smaller bandgaps and low on/off ratios undesirable for FET applications. It is highly desirable to open up bandgaps in graphene or increase the bandgaps in wide GNRs to afford graphene based semiconductors for high performance (high on-state current and high on/off ratio) electronics. Large scale ordering and dense packing of such GNRs in parallel are also needed for device integration but have also been challenging thus far. It has been shown theoretically that uniaxial strains can be applied to a GNR to engineer its bandgap. The underlying physics is that under uniaxial strain, the Dirac point moves due to stretched C-C bonds, leading to an increase in the bandgap of armchair GNRs by up to 50% of its original bandgap (i.e. bandgap at zero strain). For zigzag GNRs, due to the existence of the edge states, changes of bandgap are smaller under uniaxial strain and can be increased by ~30%. This work proposes a novel approach to the fabrication of densely aligned graphene nanoribbons with highly smooth edges afforded by anisotropic etching and uniaxial

  1. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmlid, Leif, E-mail: holmlid@chem.gu.se; Kotzias, Bernhard

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H{sub 2N}(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H{sub 4}(0) andmore » H{sub 3}(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H{sub 2N}(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.« less

  2. Retrieving Coherent Receiver Function Images with Dense Arrays

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Zhan, Z.

    2016-12-01

    Receiver functions highlight converted phases (e.g., Ps, PpPs, sP) and have been widely used to study seismic interfaces. With a dense array, receiver functions (RFs) at multiple stations form a RF image that can provide more robust/detailed constraints. However, due to noise in data, non-uniqueness of deconvolution, and local structures that cannot be detected across neighboring stations, traditional RF images are often noisy and hard to interpret. Previous attempts to enhance coherence by stacking RFs from multiple events or post-filtering the RF images have not produced satisfactory improvements. Here, we propose a new method to retrieve coherent RF images with dense arrays. We take advantage of the waveform coherency at neighboring stations and invert for a small number of coherent arrivals for their RFs. The new RF images contain only the coherent arrivals required to fit data well. Synthetic tests and preliminary applications on real data demonstrate that the new RF images are easier to interpret and improve our ability to infer Earth structures using receiver functions.

  3. Microchannel cross load array with dense parallel input

    DOEpatents

    Swierkowski, Stefan P.

    2004-04-06

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  4. A swimming pool array for ultra high energy showers

    NASA Astrophysics Data System (ADS)

    Yodh, Gaurang B.; Shoup, Anthony; Barwick, Steve; Goodman, Jordan A.

    1992-11-01

    A very preliminary design concept for an array using water Cherenkov counters, built out of commercially available backyard swimming pools, to sample the electromagnetic and muonic components of ultra high energy showers at large lateral distances is presented. The expected performance of the pools is estimated using the observed lateral distributions by scintillator and water Cherenkov arrays at energies above 1019 eV and simulations.

  5. Clustering-based energy-saving algorithm in ultra-dense network

    NASA Astrophysics Data System (ADS)

    Huang, Junwei; Zhou, Pengguang; Teng, Deyang; Zhang, Renchi; Xu, Hao

    2017-06-01

    In Ultra-dense Networks (UDN), dense deployment of low power small base stations will cause serious small cells interference and a large amount of energy consumption. The purpose of this paper is to explore the method of reducing small cells interference and energy saving system in UDN, and we innovatively propose a sleep-waking-active (SWA) scheme. The scheme decreases the user outage causing by failure to detect users’ service requests, shortens the opening time of active base stations directly switching to sleep mode; we further proposes a Vertex Surrounding Clustering(VSC) algorithm, which first colours the small cells with the most strongest interference and next extends to the adjacent small cells. VSC algorithm can use the least colour to stain the small cell, reduce the number of iterations and promote the efficiency of colouring. The simulation results show that SWA scheme can effectively improve the system Energy Efficiency (EE), the VSC algorithm can reduce the small cells interference and optimize the users’ Spectrum Efficiency (SE) and throughput.

  6. Using Network Theory to Understand Seismic Noise in Dense Arrays

    NASA Astrophysics Data System (ADS)

    Riahi, N.; Gerstoft, P.

    2015-12-01

    Dense seismic arrays offer an opportunity to study anthropogenic seismic noise sources with unprecedented detail. Man-made sources typically have high frequency, low intensity, and propagate as surface waves. As a result attenuation restricts their measurable footprint to a small subset of sensors. Medium heterogeneities can further introduce wave front perturbations that limit processing based on travel time. We demonstrate a non-parametric technique that can reliably identify very local events within the array as a function of frequency and time without using travel-times. The approach estimates the non-zero support of the array covariance matrix and then uses network analysis tools to identify clusters of sensors that are sensing a common source. We verify the method on simulated data and then apply it to the Long Beach (CA) geophone array. The method exposes a helicopter traversing the array, oil production facilities with different characteristics, and the fact that noise sources near roads tend to be around 10-20 Hz.

  7. Leptons from decay of mesons in the laser-induced particle pulse from ultra-dense protium p(0)

    NASA Astrophysics Data System (ADS)

    Holmlid, Leif

    2016-10-01

    Kaons and pions are observed by their characteristic decay times of 12, 52 and 26 ns after impact of relatively weak ns-long laser pulses on ultra-dense hydrogen H(0), as reported previously. The signal using an ultra-dense protium p(0) generator with natural hydrogen is now studied. Deflection in a weak magnetic field or penetration through metal foils cannot distinguish between the types of decaying mesons. The signals observed are thus not caused by the decaying mesons themselves, but by the fast particles often at >50MeV u-1 formed in their decay. The fast particles are concluded to be mainly muons from their relatively small magnetic deflection and strong penetration. This is further supported by published studies on the direct observation of the beta decay of muons in scintillators and solid converters using the same type of p(0) generator.

  8. Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.

    PubMed

    Han, Zhao Jun; Ostrikov, Kostya

    2012-04-04

    Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.

  9. High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy.

    PubMed

    Cai, Hongbing; Meng, Qiushi; Zhao, Hui; Li, Mingling; Dai, Yanmeng; Lin, Yue; Ding, Huaiyi; Pan, Nan; Tian, Yangchao; Luo, Yi; Wang, Xiaoping

    2018-06-13

    The confinement of light into nanometer-sized metallic nanogaps can lead to an extremely high field enhancement, resulting in dramatically enhanced absorption, emission, and surface-enhanced Raman scattering (SERS) of molecules embedded in nanogaps. However, low-cost, high-throughput, and reliable fabrication of ultra-high-dense nanogap arrays with precise control of the gap size still remains a challenge. Here, by combining colloidal lithography and atomic layer deposition technique, a reproducible method for fabricating ultra-high-dense arrays of hexagonal close-packed annular nanogaps over large areas is demonstrated. The annular nanogap arrays with a minimum diameter smaller than 100 nm and sub-1 nm gap width have been produced, showing excellent SERS performance with a typical enhancement factor up to 3.1 × 10 6 and a detection limit of 10 -11 M. Moreover, it can also work as a high-quality field enhancement substrate for studying two-dimensional materials, such as MoSe 2 . Our method provides an attractive approach to produce controllable nanogaps for enhanced light-matter interaction at the nanoscale.

  10. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Next generation 5G mobile architectures will take advantage of the millimeter-wave spectrum to deliver unprecedented bandwidth. Concurrently, there is a need to consolidate numerous disparate allocations into a single, multi-functional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter-wave array to operate across the six 5G and ISM bands spanning 24-71 GHz. Critically, the array is realized using low-cost PCB. The design concept and optimized layout are presented, and fabrication and measurement considerations are discussed.

  11. Experimental Tests of UltraFlex Array Designs in Low Earth Orbital and Geosynchronous Charging Environments

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel T.; Vayner, Boris V.; Hillard, Grover B.

    2011-01-01

    The present ground based investigations give the first definitive look describing the expected on-orbit charging behavior of Orion UltraFlex array coupons in the Low Earth Orbital and Geosynchronous Environments. Furthermore, it is important to note that the LEO charging environment also applies to the International Space Station as well as to the lunar mission charging environments. The GEO charging environment includes the bounding case for all lunar orbital and lunar surface mission environments. The UltraFlex thin film photovoltaic array technology has been targeted to become the sole power system for life support and on-orbit power for the manned Aires Crew Exploration Vehicle. It is therefore, crucial to gain an understanding of the complex charging behavior to answer some of the basic performance and survivability issues in an attempt to ascertain that a single UltraFlex array design will be able to cope with the projected worst case LEO and GEO charging environments. Testing was limited to four array coupons, two coupons each from two different array manufactures, Emcore and Spectrolab. The layout of each array design is identical and varies only in the actual cell technology used. The individual array cells from each manufacturer have an antireflection layered coating and come in two different varieties either uncoated (only AR coating) or coated with a thin conducting ITO layer. The LEO Plasma tests revealed that all four coupons passed the arc threshold -120 V bias tests. GEO electron gun charging tests revealed that only front side area of ITO coated coupons passed tests. Only the Emcore AR array passed backside Stage 2 GEO Tests.

  12. Performance optimization of dense-array concentrator photovoltaic system considering effects of circumsolar radiation and slope error.

    PubMed

    Wong, Chee-Woon; Chong, Kok-Keong; Tan, Ming-Hui

    2015-07-27

    This paper presents an approach to optimize the electrical performance of dense-array concentrator photovoltaic system comprised of non-imaging dish concentrator by considering the circumsolar radiation and slope error effects. Based on the simulated flux distribution, a systematic methodology to optimize the layout configuration of solar cells interconnection circuit in dense array concentrator photovoltaic module has been proposed by minimizing the current mismatch caused by non-uniformity of concentrated sunlight. An optimized layout of interconnection solar cells circuit with minimum electrical power loss of 6.5% can be achieved by minimizing the effects of both circumsolar radiation and slope error.

  13. An ultra-dense SNP linkage map for the octoploid, cultivated strawberry and its application in genetic research

    USDA-ARS?s Scientific Manuscript database

    We will present an ultra-dense genetic linkage map for the octoploid, cultivated strawberry (Fragaria x ananassa) consisting of over 13K Axiom® based SNP markers and 150 previously mapped reference SSR loci. The high quality of the map is demonstrated by the short sizes of each of the 28 linkage gro...

  14. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    PubMed

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  15. Localization of dense intracranial electrode arrays using magnetic resonance imaging

    PubMed Central

    Doyle, Werner K.; Halgren, Eric; Carlson, Chad; Belcher, Thomas L.; Cash, Sydney S.; Devinsky, Orrin; Thesen, Thomas

    2013-01-01

    Intracranial electrode arrays are routinely used in the pre-surgical evaluation of patients with medically refractory epilepsy, and recordings from these electrodes have been increasingly employed in human cognitive neurophysiology due to their high spatial and temporal resolution. For both researchers and clinicians, it is critical to localize electrode positions relative to the subject-specific neuroanatomy. In many centers, a post-implantation MRI is utilized for electrode detection because of its higher sensitivity for surgical complications and the absence of radiation. However, magnetic susceptibility artifacts surrounding each electrode prohibit unambiguous detection of individual electrodes, especially those that are embedded within dense grid arrays. Here, we present an efficient method to accurately localize intracranial electrode arrays based on pre- and post-implantation MR images that incorporates array geometry and the individual's cortical surface. Electrodes are directly visualized relative to the underlying gyral anatomy of the reconstructed cortical surface of individual patients. Validation of this approach shows high spatial accuracy of the localized electrode positions (mean of 0.96 mm±0.81 mm for 271 electrodes across 8 patients). Minimal user input, short processing time, and utilization of radiation-free imaging are strong incentives to incorporate quantitatively accurate localization of intracranial electrode arrays with MRI for research and clinical purposes. Co-registration to a standard brain atlas further allows inter-subject comparisons and relation of intracranial EEG findings to the larger body of neuroimaging literature. PMID:22759995

  16. Ultra-fast dynamics in the nonlinear optical response of silver nanoprism ordered arrays.

    PubMed

    Sánchez-Esquivel, Héctor; Raygoza-Sanchez, Karen Y; Rangel-Rojo, Raúl; Kalinic, Boris; Michieli, Niccolò; Cesca, Tiziana; Mattei, Giovanni

    2018-03-15

    In this work we present the study of the ultra-fast dynamics of the nonlinear optical response of a honeycomb array of silver triangular nanoprisms, performed using a femtosecond pulsed laser tuned with the dipolar surface plasmon resonance of the nanoarray. Nonlinear absorption and refraction, and their time-dependence, were explored using the z-scan and time-resolved excite-probe techniques. Nonlinear absorption is shown to change sign with the input irradiance and the behavior was explained on the basis of a three-level model. The response time was determined to be in the picosecond regime. A technique based on a variable frequency chopper was also used in order to discriminate the thermal and electronic contributions to the nonlinearity, which were found to have opposite signs. All these findings propel the investigated nanoprism arrays as good candidates for applications in advanced ultra-fast nonlinear nanophotonic devices.

  17. Ultra-low-mass flexible planar solar arrays using 50-micron-thick solar cells

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Rayl, G.

    1978-01-01

    A conceptual design study has been completed which has shown the feasibility of ultra-low-mass planar solar arrays with specific power of 200 watts/kilogram. The beginning of life (BOL) power output of the array designs would be 10 kW at 1 astronomical unit (AU) and a 55C deg operating temperature. Two designs were studied: a retractable rollout design and a non-retractable fold-out. The designs employed a flexible low-mass blanket and low-mass structures. The blanket utilized 2 x 2 cm high-efficiency (13.5% at 28C deg AM0), ultra-thin (50 micron), silicon solar cells protected by thin (75 micron) plastic encapsulants. The structural design utilized the 'V'-stiffened approach which allows a lower mass boom to be used. In conjunction with the conceptual design, modules using the thin cells and plastic encapsulant were designed and fabricated.

  18. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  19. Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays.

    PubMed

    Luo, Qing; Xu, Xiaoxin; Liu, Hongtao; Lv, Hangbing; Gong, Tiancheng; Long, Shibing; Liu, Qi; Sun, Haitao; Banerjee, Writam; Li, Ling; Gao, Jianfeng; Lu, Nianduan; Liu, Ming

    2016-08-25

    Vertical crossbar arrays provide a cost-effective approach for high density three-dimensional (3D) integration of resistive random access memory. However, an individual selector device is not allowed to be integrated with the memory cell separately. The development of V-RRAM has impeded the lack of satisfactory self-selective cells. In this study, we have developed a high performance bilayer self-selective device using HfO2 as the memory switching layer and a mixed ionic and electron conductor as the selective layer. The device exhibits high non-linearity (>10(3)) and ultra-low half-select leakage (<0.1 pA). A four layer vertical crossbar array was successfully demonstrated based on the developed self-selective device. High uniformity, ultra-low leakage, sub-nA operation, self-compliance, and excellent read/write disturbance immunity were achieved. The robust array level performance shows attractive potential for low power and high density 3D data storage applications.

  20. Plasmonic phased array feeder enabling ultra-fast beam steering at millimeter waves.

    PubMed

    Bonjour, R; Burla, M; Abrecht, F C; Welschen, S; Hoessbacher, C; Heni, W; Gebrewold, S A; Baeuerle, B; Josten, A; Salamin, Y; Haffner, C; Johnston, P V; Elder, D L; Leuchtmann, P; Hillerkuss, D; Fedoryshyn, Y; Dalton, L R; Hafner, C; Leuthold, J

    2016-10-31

    In this paper, we demonstrate an integrated microwave phoneeded for beamtonics phased array antenna feeder at 60 GHz with a record-low footprint. Our design is based on ultra-compact plasmonic phase modulators (active area <2.5µm2) that not only provide small size but also ultra-fast tuning speed. In our design, the integrated circuit footprint is in fact only limited by the contact pads of the electrodes and by the optical feeding waveguides. Using the high speed of the plasmonic modulators, we demonstrate beam steering with less than 1 ns reconfiguration time, i.e. the beam direction is reconfigured in-between 1 GBd transmitted symbols.

  1. Evaluation of a dense seismic array for acquisition of high quality data in the ACROSS observation

    NASA Astrophysics Data System (ADS)

    Tsuruga, K.; Kunitomo, T.; Hasada, Y.; Kumazawa, M.; Shigeta, N.; Kasahara, J.

    2004-12-01

    ACROSS is an active monitoring methodology to detect any subtle temporal change of physical properties in the Earth's interior. We demonstrate the potentiality of the ACROSS observation with a dense sensor array. We have conducted a dense seismic array observation at the distance of 1 km from the ACROSS source since 2003. The array is composed of 36 three-component velocity seismometers buried at 1.8 m deep in an area 25 m square. All the data are recorded accurately referring to a GPS clock. We derived and analyzed a transfer function (TF) from the source to a receiver by the following steps: (1) evaluating a force vector as source characteristics, (2) converting the observed data to the displacement vectors by incorporating all the corrections of the instruments, (3) stacking the observed data for an enough time to suppress the temporal noise, (4) extracting ACROSS signal and evaluating noise level, (5) representing TF in a tensor form with the estimated errors, (6) slant-stacking with variable ray parameters, (7) estimating the travel times and amplitudes of the wave arrivals by Sompi Event Analysis (Hasada et al., 2001) and representing the result by a pulse sequence, and (8) deriving the polarization vector for each arrival to identify all the wave modes. We analyzed TF of SH-wave component from 16 to 20 Hz as an example. We obtained good quality TF with S/N ratio up to 104 by stacking for 12 days at the step (3). The spatial noise originated from the local heterogeneity around the array was eliminated by the step (6). Several arrivals were recognized within the time windows from 0.6 to 1.8 s. The maximum amplitude of event traces was detected at the travel time of 1.064 s with a ray parameter of 7.9x10-4 s/m. We also found the scattered waves probably generated by the heterogeneities around the array. The ACROSS dense array observation would provide a lot of information on the underground heterogeneities. Consequently, we have the important and challenging

  2. Biasing, acquisition, and interpretation of a dense Langmuir probe array in NSTX.

    PubMed

    Jaworski, M A; Kallman, J; Kaita, R; Kugel, H; LeBlanc, B; Marsala, R; Ruzic, D N

    2010-10-01

    A dense array of 99 Langmuir probes has been installed in the lower divertor region of the National Spherical Torus Experiment (NSTX). This array is instrumented with a system of electronics that allows flexibility in the choice of probes to bias as well as the type of measurement (including standard swept, single probe, triple probe, and operation as passive floating potential and scrape-off-layer SOL current monitors). The use of flush-mounted probes requires careful interpretation. The time dependent nature of the SOL makes swept-probe traces difficult to interpret. To overcome these challenges, the single- and triple-Langmuir probe signals are used in complementary fashion to determine the temperature and density at the probe location. A comparison to midplane measurements is made.

  3. Effect of magnetic quantization on ion acoustic waves ultra-relativistic dense plasma

    NASA Astrophysics Data System (ADS)

    Javed, Asif; Rasheed, A.; Jamil, M.; Siddique, M.; Tsintsadze, N. L.

    2017-11-01

    In this paper, we have studied the influence of magnetic quantization of orbital motion of the electrons on the profile of linear and nonlinear ion-acoustic waves, which are propagating in the ultra-relativistic dense magneto quantum plasmas. We have employed both Thomas Fermi and Quantum Magneto Hydrodynamic models (along with the Poisson equation) of quantum plasmas. To investigate the large amplitude nonlinear structure of the acoustic wave, Sagdeev-Pseudo-Potential approach has been adopted. The numerical analysis of the linear dispersion relation and the nonlinear acoustic waves has been presented by drawing their graphs that highlight the effects of plasma parameters on these waves in both the linear and the nonlinear regimes. It has been noticed that only supersonic ion acoustic solitary waves can be excited in the above mentioned quantum plasma even when the value of the critical Mach number is less than unity. Both width and depth of Sagdeev potential reduces on increasing the magnetic quantization parameter η. Whereas the amplitude of the ion acoustic soliton reduces on increasing η, its width appears to be directly proportional to η. The present work would be helpful to understand the excitation of nonlinear ion-acoustic waves in the dense astrophysical environments such as magnetars and in intense-laser plasma interactions.

  4. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shi-Qiang; Bruce Buchholz, D.; Zhou, Wei

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retainedmore » the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.« less

  5. Optimized micromirror arrays for adaptive optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalicek, M. Adrian

    This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 {mu}m minimum feature sizes and 0.1 {mu}m mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces canmore » be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2{endash}3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98{percent} or better. Combining the process planarization with a {open_quotes}planarized-by-design{close_quotes} approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive

  6. Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils.

    PubMed

    Li, Han-Zhen; Yu, Tong-Pu; Liu, Jin-Jin; Yin, Yan; Zhu, Xing-Long; Capdessus, Remi; Pegoraro, Francesco; Sheng, Zheng-Ming; McKenna, Paul; Shao, Fu-Qiu

    2017-12-11

    Matter can be transferred into energy and the opposite transformation is also possible by use of high-power lasers. A laser pulse in plasma can convert its energy into γ-rays and then e - e + pairs via the multi-photon Breit-Wheeler process. Production of dense positrons at GeV energies is very challenging since extremely high laser intensity ~10 24  Wcm -2 is required. Here we propose an all-optical scheme for ultra-bright γ-ray emission and dense positron production with lasers at intensity of 10 22-23  Wcm -2 . By irradiating two colliding elliptically-polarized lasers onto two diamondlike carbon foils, electrons in the focal region of one foil are rapidly accelerated by the laser radiation pressure and interact with the other intense laser pulse which penetrates through the second foil due to relativistically induced foil transparency. This symmetric configuration enables efficient Compton back-scattering and results in ultra-bright γ-photon emission with brightness of ~10 25 photons/s/mm 2 /mrad 2 /0.1%BW at 15 MeV and intensity of 5 × 10 23  Wcm -2 . Our first three-dimensional simulation with quantum-electrodynamics incorporated shows that a GeV positron beam with density of 2.5 × 10 22 cm -3 and flux of 1.6 × 10 10 /shot is achieved. Collective effects of the pair plasma may be also triggered, offering a window on investigating laboratory astrophysics at PW laser facilities.

  7. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE PAGES

    Abbasi, R.; Takai, H.; Allen, C.; ...

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore » design and performance of the TARA transmitter and receiver systems.« less

  8. A comparison of earthquake backprojection imaging methods for dense local arrays

    NASA Astrophysics Data System (ADS)

    Beskardes, G. D.; Hole, J. A.; Wang, K.; Michaelides, M.; Wu, Q.; Chapman, M. C.; Davenport, K. K.; Brown, L. D.; Quiros, D. A.

    2018-03-01

    Backprojection imaging has recently become a practical method for local earthquake detection and location due to the deployment of densely sampled, continuously recorded, local seismograph arrays. While backprojection sometimes utilizes the full seismic waveform, the waveforms are often pre-processed and simplified to overcome imaging challenges. Real data issues include aliased station spacing, inadequate array aperture, inaccurate velocity model, low signal-to-noise ratio, large noise bursts and varying waveform polarity. We compare the performance of backprojection with four previously used data pre-processing methods: raw waveform, envelope, short-term averaging/long-term averaging and kurtosis. Our primary goal is to detect and locate events smaller than noise by stacking prior to detection to improve the signal-to-noise ratio. The objective is to identify an optimized strategy for automated imaging that is robust in the presence of real-data issues, has the lowest signal-to-noise thresholds for detection and for location, has the best spatial resolution of the source images, preserves magnitude, and considers computational cost. Imaging method performance is assessed using a real aftershock data set recorded by the dense AIDA array following the 2011 Virginia earthquake. Our comparisons show that raw-waveform backprojection provides the best spatial resolution, preserves magnitude and boosts signal to detect events smaller than noise, but is most sensitive to velocity error, polarity error and noise bursts. On the other hand, the other methods avoid polarity error and reduce sensitivity to velocity error, but sacrifice spatial resolution and cannot effectively reduce noise by stacking. Of these, only kurtosis is insensitive to large noise bursts while being as efficient as the raw-waveform method to lower the detection threshold; however, it does not preserve the magnitude information. For automatic detection and location of events in a large data set, we

  9. A dense array stimulator to generate arbitrary spatio-temporal tactile stimuli

    PubMed Central

    Killebrew, Justin H.; Bensmaïa, Sliman J.; Dammann, John F.; Denchev, Peter; Hsiao, Steven S.; Craig, James C.

    2007-01-01

    The generation and presentation of tactile stimuli presents a unique challenge. Unlike vision and audition, in which standard equipment such as monitors and audio systems can be used for most experiments, tactile stimuli and/or stimulators often have to be tailor-made for a given study. Here, we present a novel tactile stimulator designed to present arbitrary spatio-temporal stimuli to the skin. The stimulator consists of 400 pins, arrayed over a 1 cm2 area, each under independent computer control. The dense array allows for an unprecedented number of stimuli to be presented within an experimental session (e.g., up to 1200 stimuli per minute) and for stimuli to be generated adaptively. The stimulator can be used in a variety of modes and can deliver indented and scanned patterns as well as stimuli defined by mathematical spatio-temporal functions (e.g., drifting sinusoids). We describe the hardware and software of the system, and discuss previous and prospective applications. PMID:17134760

  10. Achieving ultra-high temperatures with a resistive emitter array

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  11. Ultra-Wideband Phased Array for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2016-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: fifth generation mobile architecture (5G): 28, 38, 39, 64-71 GHz, as well as Industrial, Scientific, and Medical bands (ISM): 24 and 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 24-72 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication.

  12. High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Son; Lu, Xingxu; Tang, Wenxiang

    High performance of an ultra-low Pt loading diesel oxidation catalyst can be achieved by using a combination of novel nano-array structured support, precise control of ultrafine active Pt particles, and an addition of H 2 as a promoter into the exhausts. Highly stable mesoporous rutile TiO 2 nano-array was uniformly grown on three-dimensional (3-D) cordierite honeycomb monoliths using a solvothermal synthesis. Atomic layer deposition was employed for precise dispersion of ultrafine Pt particles (0.95 ± 0.24 nm) on TiO 2 nano-array with a Pt loading of 1.1 g/ft 3. Despite low Pt loading, the Pt/TiO 2 nano-array catalyst shows impressivemore » low-temperature oxidation reactivity, with the conversion of CO and total hydrocarbon (THC) reaching 50% at 224 and 285 °C, respectively, in the clean diesel combustion (CDC) simulated exhaust conditions. The excellent activity is attributed to the unique nano-array structure that promotes gas-solid interaction and ultra-small Pt particle dispersion that increase surface Pt atoms. We also demonstrate that addition of more H 2 into the exhaust can lower light-off temperature for CO and THC by up to ~60 °C and ~30 °C, respectively.« less

  13. High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs

    DOE PAGES

    Hoang, Son; Lu, Xingxu; Tang, Wenxiang; ...

    2017-11-15

    High performance of an ultra-low Pt loading diesel oxidation catalyst can be achieved by using a combination of novel nano-array structured support, precise control of ultrafine active Pt particles, and an addition of H 2 as a promoter into the exhausts. Highly stable mesoporous rutile TiO 2 nano-array was uniformly grown on three-dimensional (3-D) cordierite honeycomb monoliths using a solvothermal synthesis. Atomic layer deposition was employed for precise dispersion of ultrafine Pt particles (0.95 ± 0.24 nm) on TiO 2 nano-array with a Pt loading of 1.1 g/ft 3. Despite low Pt loading, the Pt/TiO 2 nano-array catalyst shows impressivemore » low-temperature oxidation reactivity, with the conversion of CO and total hydrocarbon (THC) reaching 50% at 224 and 285 °C, respectively, in the clean diesel combustion (CDC) simulated exhaust conditions. The excellent activity is attributed to the unique nano-array structure that promotes gas-solid interaction and ultra-small Pt particle dispersion that increase surface Pt atoms. We also demonstrate that addition of more H 2 into the exhaust can lower light-off temperature for CO and THC by up to ~60 °C and ~30 °C, respectively.« less

  14. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target.

    PubMed

    Li, Han-Zhen; Yu, Tong-Pu; Hu, Li-Xiang; Yin, Yan; Zou, De-Bin; Liu, Jian-Xun; Wang, Wei-Quan; Hu, Shun; Shao, Fu-Qiu

    2017-09-04

    We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 10 23 W/cm 2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 10 24 photons s -1 mm -2 mrad -2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e - e + pair bunches are produced with the positron energy density as high as 10 17 J/m 3 and number of 10 9 . Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.

  15. Early commercial demonstration of space solar power using ultra-lightweight arrays

    NASA Astrophysics Data System (ADS)

    Reed, Kevin; Willenberg, Harvey J.

    2009-11-01

    Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.

  16. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS)

    NASA Astrophysics Data System (ADS)

    Guler, Seyhmus; Dannhauer, Moritz; Erem, Burak; Macleod, Rob; Tucker, Don; Turovets, Sergei; Luu, Phan; Erdogmus, Deniz; Brooks, Dana H.

    2016-06-01

    Objective. Transcranial direct current stimulation (tDCS) aims to alter brain function non-invasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical current to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ROIs. However, this creates a need for methods to determine effective and safe stimulus patterns as the number of degrees of freedom is much higher with such arrays. Several approaches to this problem have appeared in the literature. In this paper, we describe a new method for calculating optimal electrode stimulus patterns for targeted and directional modulation in dense array tDCS which differs in some important aspects with methods reported to date. Approach. We optimize stimulus pattern of dense arrays with fixed electrode placement to maximize the current density in a particular direction in the ROI. We impose a flexible set of safety constraints on the current power in the brain, individual electrode currents, and total injected current, to protect subject safety. The proposed optimization problem is convex and thus efficiently solved using existing optimization software to find unique and globally optimal electrode stimulus patterns. Main results. Solutions for four anatomical ROIs based on a realistic head model are shown as exemplary results. To illustrate the differences between our approach and previously introduced methods, we compare our method with two of the other leading methods in the literature. We also report on extensive simulations that show the effect of the values chosen for each proposed safety constraint bound on the optimized stimulus patterns. Significance. The proposed optimization approach employs volume based ROIs, easily adapts to different sets of safety constraints, and takes negligible time to compute. An in-depth comparison study gives

  17. Biasing, Acquisition and Interpretation of a Dense Langmuir Probe Array in NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaworski, M. A.; Kallman, J.; Kaita, R.

    2010-09-22

    A dense array of 99 Langmuir probes has been installed in the lower divertor region of the National Spherical Torus Experiments (NSTX). This array is instrumented with a system of elec- tronics that allows flexibility in the choice of probes to bias as well as the type of measurement (including standard swept, single probe, triple probe and operation as passive floating potential and scrape-off-layer (SOL) current monitors). The use of flush-mounted probes requires careful inter- pretation. The time dependent nature of the SOL makes swept-probe traces difficult to interpret. To overcome these challenges, the single- and triple-Langmuir probe signals aremore » used in comple- mentary fashion to determine the temperature and density at the probe location. A comparison to mid-plane measurements is made. Work is supported by DOE contracts DE-AC02-09CHI1466 and DE-PS02-07ER07-29.« less

  18. Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array

    NASA Astrophysics Data System (ADS)

    Tang, Jianguan; Li, Liang; Guo, Huiyong; Yu, Haihu; Wen, Hongqiao; Yang, Minghong

    2017-04-01

    A distributed acoustic sensing system (DAS) with low-coherence ASE and Michelson interferometer based on continuous width-band ultra-weak fiber Bragg grating (UW-FBG) array is proposed and experimentally demonstrated. The experimental result shows that the proposed system has better performance in detecting acoustic waves than the conventional hydrophone.

  19. Estimating seismic site response in Christchurch City (New Zealand) from dense low-cost aftershock arrays

    USGS Publications Warehouse

    Kaiser, Anna E.; Benites, Rafael A.; Chung, Angela I.; Haines, A. John; Cochran, Elizabeth S.; Fry, Bill

    2011-01-01

    The Mw 7.1 September 2010 Darfield earthquake, New Zealand, produced widespread damage and liquefaction ~40 km from the epicentre in Christchurch city. It was followed by the even more destructive Mw 6.2 February 2011 Christchurch aftershock directly beneath the city’s southern suburbs. Seismic data recorded during the two large events suggest that site effects contributed to the variations in ground motion observed throughout Christchurch city. We use densely-spaced aftershock recordings of the Darfield earthquake to investigate variations in local seismic site response within the Christchurch urban area. Following the Darfield main shock we deployed a temporary array of ~180 low-cost 14-bit MEMS accelerometers linked to the global Quake-Catcher Network (QCN). These instruments provided dense station coverage (spacing ~2 km) to complement existing New Zealand national network strong motion stations (GeoNet) within Christchurch city. Well-constrained standard spectral ratios were derived for GeoNet stations using a reference station on Miocene basalt rock in the south of the city. For noisier QCN stations, the method was adapted to find a maximum likelihood estimate of spectral ratio amplitude taking into account the variance of noise at the respective stations. Spectral ratios for QCN stations are similar to nearby GeoNet stations when the maximum likelihood method is used. Our study suggests dense low-cost accelerometer aftershock arrays can provide useful information on local-scale ground motion properties for use in microzonation. Preliminary results indicate higher amplifications north of the city centre and strong high-frequency amplification in the small, shallower basin of Heathcote Valley.

  20. 113Gb/s (10 x 11.3Gb/s) ultra-low power EAM driver array.

    PubMed

    Vaernewyck, Renato; Bauwelinck, Johan; Yin, Xin; Pierco, Ramses; Verbrugghe, Jochen; Torfs, Guy; Li, Zhisheng; Qiu, Xing-Zhi; Vandewege, Jan; Cronin, Richard; Borghesani, Anna; Moodie, David

    2013-01-14

    This paper presents an ultra-low power SiGe BiCMOS IC for driving a 10 channel electro-absorption modulator (EAM) array at 113Gb/s for wavelength division multiplexing passive optical network (WDM-PON) applications. With an output swing of 2.5V(pp), the EAM driver array consumes only 2.2W or 220mW per channel, 50% below the state of the art. Both the output swing and bias are configurable between 1.5 and 3.0V(pp) and 0.75-2.15V respectively.

  1. Seismic Imaging of a Prospective Geothermal Play, Using a Dense Geophone Array

    NASA Astrophysics Data System (ADS)

    Trow, A.; Pankow, K. L.; Wannamaker, P. E.; Lin, F. C.; Ward, K. M.

    2017-12-01

    In the summer of 2016 a dense array of 48 Nodal Seismic geophones was deployed near Beaver, Utah on the eastern flank of the Mineral Mountains. The array aperture was approximately 20 kilometers and recorded continuous seismic data for 30 days. Geophones were centered on a previously known shallow (5km depth) magnetolluric (MT) low-resistivity body. This region of low resistivity was interpreted to possibly contain hydrothermal/geothermal fluids and was targeted for further seismic investigation. The seismic array geometry was designed to optimize seismic event detection for small (magnitude of completeness zero) earthquakes and to facilitate seismic imaging at depths of 5 km and deeper. For the duration of the experiment, one ML 1 earthquake was detected underneath the array with 15 other earthquakes detected to the east and south in the more seismically active Pavant Range. Different passive imaging techniques, including ambient noise and earthquake tomography are being explored in order to produce a seismic velocity image. Understanding the subsurface, specifically the fracture network and fluid content of the bedrock is important for characterization of a geothermal prospect. If it is rich in fluids, it can be assumed that some fracture network is in place to accommodate such fluids. Both fractures and fluid content of the prospect will have an effect on the seismic velocities in the basement structure. These properties can help determine the viability of a geothermal system for power production.

  2. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: Fifth generation mobile architecture (5G): 28, 38, 39, 6471 GHz; Industrial, Scientific, and Medical bands (ISM): 24, 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 2472 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication. The results of this work are presented in this poster.

  3. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells

    PubMed Central

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-01

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping. PMID:28336851

  4. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells.

    PubMed

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-13

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%-2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm² photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.

  5. Development of an underground HPGe array facility for ultra low radioactivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sala, E.; Kang, W. G.; Kim, Y. D.

    Low Level Counting techniques using low background facilities are continuously under development to increase the possible sensitivity needed for rare physics events experiments. The CUP (Center for Underground Physics) group of IBS is developing, in collaboration with Canberra, a ultra low background instrument composed of two arrays facing each other with 7 HPGe detectors each. The low radioactive background of each detector has been evaluated and improved by the material selection of the detector components. Samples of all the building materials have been provided by the manufacturer and the contaminations had been measured using an optimized low background 100% HPGemore » with a dedicated shielding. The evaluation of the intrinsic background has been performed using MonteCarlo simulations and considering the contribution of each material with the measured contamination. To further reduce the background, the instrument will be placed in the new underground laboratory at YangYang exploiting the 700m mountain coverage and radon-free air supplying system. The array has been designed to perform various Ultra Low background measurements; the sensitivity we are expecting will allow not only low level measurements of Ra and Th contaminations in Copper or other usually pure materials, but also the search for rare decays. In particular some possible candidates and configurations to detect the 0νECEC (for example {sup 106}Cd and {sup 156}Dy) and rare β decays ({sup 96}Zr, {sup 180m}Ta , etc ) are under study.« less

  6. Structural control of ultra-fine CoPt nanodot arrays via electrodeposition process

    NASA Astrophysics Data System (ADS)

    Wodarz, Siggi; Hasegawa, Takashi; Ishio, Shunji; Homma, Takayuki

    2017-05-01

    CoPt nanodot arrays were fabricated by combining electrodeposition and electron beam lithography (EBL) for the use of bit-patterned media (BPM). To achieve precise control of deposition uniformity and coercivity of the CoPt nanodot arrays, their crystal structure and magnetic properties were controlled by controlling the diffusion state of metal ions from the initial deposition stage with the application of bath agitation. Following bath agitation, the composition gradient of the CoPt alloy with thickness was mitigated to have a near-ideal alloy composition of Co:Pt =80:20, which induces epitaxial-like growth from Ru substrate, thus resulting in the improvement of the crystal orientation of the hcp (002) structure from its initial deposition stages. Furthermore, the cross-sectional transmission electron microscope (TEM) analysis of the nanodots deposited with bath agitation showed CoPt growth along its c-axis oriented in the perpendicular direction, having uniform lattice fringes on the hcp (002) plane from the Ru underlayer interface, which is a significant factor to induce perpendicular magnetic anisotropy. Magnetic characterization of the CoPt nanodot arrays showed increase in the perpendicular coercivity and squareness of the hysteresis loops from 2.0 kOe and 0.64 (without agitation) to 4.0 kOe and 0.87 with bath agitation. Based on the detailed characterization of nanodot arrays, the precise crystal structure control of the nanodot arrays with ultra-high recording density by electrochemical process was successfully demonstrated.

  7. Channel length scaling behavior in transistors based on individual versus dense arrays of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Brady, Gerald J.; Jinkins, Katherine R.; Arnold, Michael S.

    2017-09-01

    Recent advances in the solution-phase sorting and assembly of semiconducting single-walled carbon nanotubes (SWCNTs) have enabled significant gains in the performance of field-effect transistors (FETs) constructed from dense arrays of aligned SWCNTs. However, the channel length (LCH) downscaling behaviors of these arrays, which contain some organizational disorder (i.e., rotational misalignment and non-uniform pitch), have not yet been studied in detail below LCH of 100 nm. This study compares the behaviors of individualized SWCNTs with arrays of aligned, solution-cast SWCNTs in FETs with LCH ranging from 30 to 240 nm. The on-state conductance of both individual and array SWCNTs rises with decreasing LCH. Nearly ballistic transport is observed for LCH < 40 nm in both cases, reaching a conductance of 0.82 Go per SWCNT in arrays, where Go = 2e2/h is the quantum conductance. In the off-state, the off-current and subthreshold swing of the individual SWCNTs remain nearly invariant with decreasing LCH whereas array SWCNT FETs suffer from increasing off-state current and deteriorating subthreshold swing for LCH below 100 nm. We analyze array disorder using atomic force microscopy, which shows that crossing SWCNTs that arise from misoriented alignment raise SWCNTs off of the substrate for large portions of the channel when LCH is small. Electrostatics modeling analysis indicates that these raised SWCNTs are a likely contributor to the deteriorating off-current and subthreshold characteristics of arrays. These results demonstrate that improved inter-SWCNT pitch uniformity and alignment with minimal inter-SWCNT interactions will be necessary in order for solution processed SWCNT arrays to reach subthreshold performance on par with isolated SWCNTs. These results are also promising because they show that arrays of solution-processed SWCNTs can nearly reach ballistic conductance in the on-state despite imperfections in pitch and alignment.

  8. Near-field observations of microearthquake source physics using dense array

    NASA Astrophysics Data System (ADS)

    Chen, X.; Nakata, N.; Abercrombie, R. E.

    2017-12-01

    The recorded waveform includes contributions from earthquake source properties and propagation effects, leading to long-standing trade-off problems between site/path effects and source effects. This problem is especially significant for small earthquakes where the corner frequencies are within similar ranges of near-site attenuation effects. Fortunately, this problem can be remedied by dense near-field recordings at high frequency, and large databases with wide magnitude range. The 2016 IRIS wavefield experiment provides high-quality recordings of earthquake sequences in north-central Oklahoma with about 400 sensors in 15 km area. Preliminary processing of the IRIS wavefield array resulted with about 20,000 microearthquakes ranging from M-1 to M2, while only 2 earthquakes are listed in the catalog during the same time period. A preliminary examination of the catalog reveals three similar magnitude earthquakes (M 2) occurred at similar locations within 9 seconds of each other. Utilizing this catalog, we will combine individual empirical Green's function (EGF) analysis and stacking over multiple EGFs to examine if there are any systematic variations of source time functions and spectral ratios across the array, which will provide constrains of rupture complexity, directivity and earthquake interactions. For example, this would help us to understand if these three earthquakes rupture overlapping fault patches from cascading failure, or from repeated rupture at the same slip patch due to external stress loading. Deciphering the interaction at smaller scales with near-field observations is important for a controlled earthquake experiment.

  9. Experimental results for a prototype 3-D acoustic imaging system using an ultra-sparse planar array

    NASA Astrophysics Data System (ADS)

    Impagliazzo, John M.; Chiang, Alice M.; Broadstone, Steven R.

    2002-11-01

    A handheld high resolution sonar has been under development to provide Navy Divers with a 3-D acoustic imaging system for mine reconnaissance. An ultra-sparse planar array, consisting of 121 1 mm x1 mm, 2 MHz elements, was fabricated to provide 3-D acoustic images. The array was 10 cm x10 cm. A full array at this frequency with elements at half-wavelength spacing would consist of 16384 elements. The first phase of testing of the planar array was completed in September 2001 with the characterization of the array in the NUWC Acoustic Test Facility (ATF). The center frequency was 2 MHz with a 667 kHz bandwidth. A system-level technology demonstration will be conducted in July 2002 with a real-time beamformer and near real-time 3-D imaging software. The demonstration phase consists of imaging simple targets at a range of 3 m in the ATF. Experimental results obtained will be reported on. [Work supported by the Defense Applied Research Project Agency, Advance Technology Office, Dr. Theo Kooij, Program Manager.

  10. TREMOR: A wireless MEMS accelerograph for dense arrays

    USGS Publications Warehouse

    Evans, J.R.; Hamstra, R.H.; Kundig, C.; Camina, P.; Rogers, J.A.

    2005-01-01

    The ability of a strong-motion network to resolve wavefields can be described on three axes: frequency, amplitude, and space. While the need for spatial resolution is apparent, for practical reasons that axis is often neglected. TREMOR is a MEMS-based accelerograph using wireless Internet to minimize lifecycle cost. TREMOR instruments can economically augment traditional ones, residing between them to improve spatial resolution. The TREMOR instrument described here has dynamic range of 96 dB between ??2 g, or 102 dB between ??4 g. It is linear to ???1% of full scale (FS), with a response function effectively shaped electronically. We developed an economical, very low noise, accurate (???1%FS) temperature compensation method. Displacement is easily recovered to 10-cm accuracy at full bandwidth, and better with care. We deployed prototype instruments in Oakland, California, beginning in 1998, with 13 now at mean spacing of ???3 km - one of the most densely instrumented urban centers in the United States. This array is among the quickest in returning (PGA, PGV, Sa) vectors to ShakeMap, ???75 to 100 s. Some 13 events have been recorded. A ShakeMap and an example of spatial variability are shown. Extensive tests of the prototypes for a commercial instrument are described here and in a companion paper. ?? 2005, Earthquake Engineering Research Institute.

  11. Coupled modes in magnetized dense plasma with relativistic-degenerate electrons

    NASA Astrophysics Data System (ADS)

    Khan, S. A.

    2012-01-01

    Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

  12. Development of an Ultra-Wideband Receiver for the North America Array

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.; Soriano, M.; Hoppe, D.; Russell, D.; D'Addario, L.; Long, E.; Bowen, J.; Samoska, L.; Lazio, J.

    2016-11-01

    The North America Array (NAA) is a concept for a radio astronomical interferometric array operating in the 1.2 GHz to 116 GHz frequency range. It has been designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage beyond the current Karl G. Jansky Very Large Array (VLA). It will have a continuous frequency coverage of 1.2 GHz to 50 GHz and 70 to 116 GHz, and a total aperture 10 times more sensitive than the VLA (and 25 times more sensitive than a 34-m-diameter antenna of the Deep Space Network [DSN]). One of the key goals for the NAA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range in contrast to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs. To minimize implementation, operational, and maintenance costs, we are developing a receiver that is compact, simple to assemble, and that consumes less power. The objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower-band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feedhorn, low-noise amplifier (LNA), and downconverters to analog intermediate frequencies. Both the feedhorn and the LNA are cryogenically cooled. Key features of this design are a quad-ridge feedhorn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30°K at the low end of the band. In this article, we report on the status of this receiver package development, including the feed design and LNA implementation. We present simulation studies of the feed horn carried out to optimize illumination

  13. Replication-guided nucleosome packing and nucleosome breathing expedite the formation of dense arrays

    PubMed Central

    Osberg, Brendan; Nuebler, Johannes; Korber, Philipp; Gerland, Ulrich

    2014-01-01

    The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. How cells achieve such high coverage within a short time, e.g. after DNA replication, remains poorly understood. It is known that random sequential adsorption of impenetrable particles on a line reaches high density extremely slowly, due to a jamming phenomenon. The nucleosome-shifting action of remodeling enzymes has been proposed as a mechanism to resolve such jams. Here, we suggest two biophysical mechanisms which assist rapid filling of DNA with nucleosomes, and we quantitatively characterize these mechanisms within mathematical models. First, we show that the ‘softness’ of nucleosomes, due to nucleosome breathing and stepwise nucleosome assembly, significantly alters the filling behavior, speeding up the process relative to ‘hard’ particles with fixed, mutually exclusive DNA footprints. Second, we explore model scenarios in which the progression of the replication fork could eliminate nucleosome jamming, either by rapid filling in its wake or via memory of the parental nucleosome positions. Taken together, our results suggest that biophysical effects promote rapid nucleosome filling, making the reassembly of densely packed nucleosomes after DNA replication a simpler task for cells than was previously thought. PMID:25428353

  14. Predicted reentrant melting of dense hydrogen at ultra-high pressures

    PubMed Central

    Geng, Hua Y.; Wu, Q.

    2016-01-01

    The phase diagram of hydrogen is one of the most important challenges in high-pressure physics and astrophysics. Especially, the melting of dense hydrogen is complicated by dimer dissociation, metallization and nuclear quantum effect of protons, which together lead to a cold melting of dense hydrogen when above 500 GPa. Nonetheless, the variation of the melting curve at higher pressures is virtually uncharted. Here we report that using ab initio molecular dynamics and path integral simulations based on density functional theory, a new atomic phase is discovered, which gives an uplifting melting curve of dense hydrogen when beyond 2 TPa, and results in a reentrant solid-liquid transition before entering the Wigner crystalline phase of protons. The findings greatly extend the phase diagram of dense hydrogen, and put metallic hydrogen into the group of alkali metals, with its melting curve closely resembling those of lithium and sodium. PMID:27834405

  15. Decay of Hurricanes Tracked by Dense Seismic Array

    NASA Astrophysics Data System (ADS)

    Lamontagne, A.; Tanimoto, T.

    2014-12-01

    Tropical cyclones (hurricanes and typhoons) are mostly atmospheric phenomena but they also generate significant ground motions in the solid earth when they become strong. If a dense seismological array existed along the path of a hurricane, we could learn about some processes near the hurricane eye and the change of its intensity through seismic data. We found a few cases of tropical cyclones that passed through the Transportable Array of Earthscope (TA) in the last four years. They provide some interesting time-evolving characteristics of hurricanes but in most cases seismic signals are too weak to gain any insight into the processes. The only exception we have found so far is Hurricane Isaac in 2012. Hurricane Isaac was mostly a tropical storm during its lifetime but it became a hurricane about 12 hours before the first landfall at the mouth of the Mississippi river at 0000 UTC August 29. The eye then went back over the ocean, but stayed near the coast, and made landfall again at 0800 UTC August 29. After this landfall, it went through the TA. This gave us an opportunity to study the decay of this hurricane based on seismic data. Our basic data are amplitude-distance plots for each 6-hour hurricane location. We confine our analysis to frequencies below 0.02 Hz because in higher frequency bands seismic waves were broader oceans, not necessarily near the hurricane eye. Right after the landfall, we found a sharp peak at about 75 km from the eye. This is most likely the location of the eyewall, where a strong ascending flow is known to exist. Over the next 12 hours, we see this peak deteriorate, which is undoubtedly related to the decay of the hurricane after landfall. The peak remained at the same location for these 12 hours and then in the following 18 hours started to move farther from the eye, to about 250 km. Therefore, we can monitor how the eyewall deteriorated over the 30 hours after landfall. The emphasis of this study will be on Hurricane Isaac but we will

  16. Intense ionizing radiation from laser-induced processes in ultra-dense deuterium D(-1)

    NASA Astrophysics Data System (ADS)

    Olofson, Frans; Holmlid, Leif

    2014-09-01

    Nuclear fusion in ultra-dense deuterium D(-1) has been reported from our laboratory in a few studies using pulsed lasers with energy < 0.2 J. The direct observation of massive particles with energy 1-20 MeV u-1 is conclusive proof for fusion processes, either as a cause or as a result. Continuing the step-wise approach necessary for untangling a complex problem, the high-energy photons from the laser-induced plasma are now studied. The focus is here on the photoelectrons formed. The photons penetrating a copper foil have energy > 80 keV. The total charge created is up to 2 μC or 1 × 1013 photoelectrons per laser shot at 0.13 J pulse energy, assuming isotropic photon emission. The variation of the photoelectron current with laser intensity is faster than linear for some systems, which indicates rapid approach to volume ignition. On a permanent magnet at approximately 1 T, a laser pulse-energy threshold exists for the laser-induced processes probably due to the floating of most clusters of D(-1) in the magnetic field. This Meissner effect was reported previously.

  17. The impact of ultra-low amounts of amino-modified MMT on dynamics and properties of densely cross-linked cyanate ester resins

    NASA Astrophysics Data System (ADS)

    Bershtein, Vladimir; Fainleib, Alexander; Egorova, Larisa; Gusakova, Kristina; Grigoryeva, Olga; Kirilenko, Demid; Konnikov, Semen; Ryzhov, Valery; Yakushev, Pavel; Lavrenyuk, Natalia

    2015-04-01

    Thermostable nanocomposites based on densely cross-linked cyanate ester resins (CER), derived from bisphenol E and doped by 0.01 to 5 wt. % amino-functionalized 2D montmorillonite (MMT) nanoparticles, were synthesized and characterized using Fourier transform infrared (FTIR), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), wide-angle X-ray diffraction (WAXD), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), far-infrared (Far-IR), and creep rate spectroscopy (CRS) techniques. It was revealed that ultra-low additives, e.g., 0.025 to 0.1 wt. %, of amino-MMT nanolayers covalently embedded into CER network exerted an anomalously large impact on its dynamics and properties resulting, in particular, in some suppression of dynamics, increasing the onset of glass transition temperature by 30° to 40° and twofold rise of modulus in temperature range from 20°C to 200°C. Contrarily, the effects became negligibly small or even negative at increased amino-MMT contents, especially at 2 and 5 wt. %. That could be explained by TEM/EDXS data displaying predominance of individual amino-MMT nanolayers and their thin (2 to 3 nanolayers) stacks over more thick tactoids (5 to 10 nanolayers) and the large amino-MMT aggregates (100 to 500 nm in thickness) reversing the composite structure produced with increasing of amino-MMT content within CER matrix. The revealed effect of ultra-low amino-MMT content testifies in favor of the idea about the extraordinarily enhanced long-range action of the `constrained dynamics' effect in the case of densely cross-linked polymer networks.

  18. Observations of basin ground motions from a dense seismic array in San Jose, California

    USGS Publications Warehouse

    Frankel, A.; Carver, D.; Cranswick, E.; Bice, T.; Sell, R.; Hanson, S.

    2001-01-01

    We installed a dense array of 41 digital seismographs in San Jose, California, to evaluate in detail the effects of a deep sedimentary basin and shallow sedimentary deposits on earthquake ground motions. This urban array is located near the eastern edge of the Santa Clara Valley and spans the Evergreen sedimentary basin identified by gravity data. Average station spacing is 1 km, with three stations initially spaced 110 m apart. Despite the high-noise urban environment, the stations of the array successfully triggered on and recorded small local earthquakes (M 2.5-2.8 at 10-25 km distance) and larger regional events such as the M 5.0 Bolinas earthquake (90 km distance), M 4.6-5.6 earthquakes near Mammoth Lakes (270 km distance), M 4.9-5.6 events in western Nevada (420 km distance) and the M 7.1 Hector Mine earthquake (590 km distance). Maps of spectral ratios across the array show that the highest amplitudes in all frequency bands studied (0.125-8 Hz) are generally observed at stations farther from the eastern edge of the Santa Clara Valley. Larger spectral amplitudes are often observed above the western edge of the Evergreen Basin. Snapshots of the recorded wavefield crossing the array for regional events to the east reveal that large, low-frequency (0.125-0.5 Hz) arrivals after the S-wave travel from south to north across the array. A moving-window, cross-correlation analysis finds that these later arrivals are surface waves traveling from the south. The timing and propagation direction of these arrivals indicates that they were likely produced by scattering of incident S waves at the border of the Santa Clara Valley to the south of the array. It is remarkable that the largest low-frequency phases at many of the valley sites for regional events to the east are basin surface waves coming from a direction about 70 degrees different from that of the epicenters. Basin surface waves emanating from the eastern edge of the valley are also identified by the cross

  19. Complexity quantification of dense array EEG using sample entropy analysis.

    PubMed

    Ramanand, Pravitha; Nampoori, V P N; Sreenivasan, R

    2004-09-01

    In this paper, a time series complexity analysis of dense array electroencephalogram signals is carried out using the recently introduced Sample Entropy (SampEn) measure. This statistic quantifies the regularity in signals recorded from systems that can vary from the purely deterministic to purely stochastic realm. The present analysis is conducted with an objective of gaining insight into complexity variations related to changing brain dynamics for EEG recorded from the three cases of passive, eyes closed condition, a mental arithmetic task and the same mental task carried out after a physical exertion task. It is observed that the statistic is a robust quantifier of complexity suited for short physiological signals such as the EEG and it points to the specific brain regions that exhibit lowered complexity during the mental task state as compared to a passive, relaxed state. In the case of mental tasks carried out before and after the performance of a physical exercise, the statistic can detect the variations brought in by the intermediate fatigue inducing exercise period. This enhances its utility in detecting subtle changes in the brain state that can find wider scope for applications in EEG based brain studies.

  20. High figure of merit ultra-compact 3-channel parallel-connected photonic crystal mini-hexagonal-H1 defect microcavity sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Chunhong; Sun, Fujun; Fu, Zhongyuan; Ding, Zhaoxiang; Wang, Chao; Zhou, Jian; Wang, Jiawen; Tian, Huiping

    2017-08-01

    In this paper, a photonic crystal (PhC) butt-coupled mini-hexagonal-H1 defect (MHHD) microcavity sensor is proposed. The MHHD microcavity is designed by introducing six mini-holes into the initial H1 defect region. Further, based on a well-designed 1 ×3 PhC Beam Splitter and three optimal MHHD microcavity sensors with different lattice constants (a), a 3-channel parallel-connected PhC sensor array on monolithic silicon on insulator (SOI) is proposed. Finite-difference time-domain (FDTD) simulations method is performed to demonstrate the high performance of our structures. As statistics show, the quality factor (Q) of our optimal MHHD microcavity attains higher than 7×104, while the sensitivity (S) reaches up to 233 nm/RIU(RIU = refractive index unit). Thus, the figure of merit (FOM) >104 of the sensor is obtained, which is enhanced by two orders of magnitude compared to the previous butt-coupled sensors [1-4]. As for the 3-channel parallel-connected PhC MHHD microcavity sensor array, the FOMs of three independent MHHD microcavity sensors are 8071, 8250 and 8250, respectively. In addition, the total footprint of the proposed 3-channel parallel-connected PhC sensor array is ultra-compactness of 12.5 μm ×31 μm (width × length). Therefore, the proposed high FOM sensor array is an ideal platform for realizing ultra-compact highly parallel refractive index (RI) sensing.

  1. Development of Ultra-Low Power Metal Oxide Sensors and Arrays for Embedded Applications

    NASA Astrophysics Data System (ADS)

    Lutz, Brent; Wind, Rikard; Kostelecky, Clayton; Routkevitch, Dmitri; Deininger, Debra

    2011-09-01

    Metal oxide semiconductor sensors are widely used as individual sensors and in arrays, and a variety of designs for low power microhotplates have been demonstrated.1 Synkera Technologies has developed an embeddable chemical microsensor platform, based on a unique ceramic MEMS technology, for practical implementation in cell phones and other mobile electronic devices. Key features of this microsensor platform are (1) small size, (2) ultra-low power consumption, (3) high chemical sensitivity, (4) accurate response to a wide-range of threats, and (5) low cost. The sensor platform is enabled by a combination of advances in ceramic micromachining, and precision deposition of sensing films inside the high aspect ratio pores of anodic aluminum oxide (AAO).

  2. Dense Array Studies of Volcano-Tectonic and Long-Period Earthquakes Beneath Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Glasgow, M. E.; Hansen, S. M.; Schmandt, B.; Thomas, A.

    2017-12-01

    back-projecting 3-C data with a local 3-D P and S velocity model. Earthquakes will be classified using the previously stated techniques, and we will seek to use the dense array of 3-C waveforms to invert for focal mechanisms and, ideally, moment tensor sources down to M0.

  3. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-19

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  4. Two-way and three-way approaches to ultra high performance liquid chromatography-photodiode array dataset for the quantitative resolution of a two-component mixture containing ciprofloxacin and ornidazole.

    PubMed

    Dinç, Erdal; Ertekin, Zehra Ceren; Büker, Eda

    2016-09-01

    Two-way and three-way calibration models were applied to ultra high performance liquid chromatography with photodiode array data with coeluted peaks in the same wavelength and time regions for the simultaneous quantitation of ciprofloxacin and ornidazole in tablets. The chromatographic data cube (tensor) was obtained by recording chromatographic spectra of the standard and sample solutions containing ciprofloxacin and ornidazole with sulfadiazine as an internal standard as a function of time and wavelength. Parallel factor analysis and trilinear partial least squares were used as three-way calibrations for the decomposition of the tensor, whereas three-way unfolded partial least squares was applied as a two-way calibration to the unfolded dataset obtained from the data array of ultra high performance liquid chromatography with photodiode array detection. The validity and ability of two-way and three-way analysis methods were tested by analyzing validation samples: synthetic mixture, interday and intraday samples, and standard addition samples. Results obtained from two-way and three-way calibrations were compared to those provided by traditional ultra high performance liquid chromatography. The proposed methods, parallel factor analysis, trilinear partial least squares, unfolded partial least squares, and traditional ultra high performance liquid chromatography were successfully applied to the quantitative estimation of the solid dosage form containing ciprofloxacin and ornidazole. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High-resolution shallow structure revealed with ambient noise tomography on a dense array

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Thurber, C. H.; Luo, Y.; Matzel, E.; Team, P.

    2016-12-01

    A dense seismic array was deployed by the PoroTomo research team at Brady Hot Springs, Nevada in March 2016. The array consisted of 238 short-period three-component geophones (5-Hz corner frequency) with about 60 m spacing. Over the 15 day deployment, the array recorded over 6,000 active source signals (vibroseis sweeps) and ambient noise that was dominated by traffic noise.We adopted the one-bit method to better reduce the effect of the active source. Spectral whitening was performed between 0.5 and 2 Hz. The continuous record was chopped into 1 minute segments. The 1-minute cross-correlation functions were initially stacked linearly, and then the phase-weighted stacking method was applied to improve signal quality. More than two million noise correlation functions (NCFs) have been obtained.The Rayleigh wave group velocity was measured on the symmetric component of the NCFs with the frequency-time analysis method. The average group velocity is about 400 m/s at 4 Hz, which is consistent with preliminary active source result. To avoid mis-picking possible precursors, the arrival time was picked at the peak in a two-second time window predicted with the average group velocity of the fundamental mode. The quality of the arrival measurements is defined by the signal-to-noise ratio. We were able to pick reliable arrivals at about 35% of the station-pairs. Since the straight-ray assumption may not be valid in a strongly heterogeneous medium, the wave path was traced with a finite difference scheme and the LSQR method was utilized to invert group velocity. The heterogeneous features of the group velocity map are consistent with a local geologic map. The PoroTomo project is funded by a grant from the U.S. Department of Energy.

  6. Arbitrary electron acoustic waves in degenerate dense plasmas

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2017-05-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  7. Adapting Controlled-source Coherence Analysis to Dense Array Data in Earthquake Seismology

    NASA Astrophysics Data System (ADS)

    Schwarz, B.; Sigloch, K.; Nissen-Meyer, T.

    2017-12-01

    Exploration seismology deals with highly coherent wave fields generated by repeatable controlled sources and recorded by dense receiver arrays, whose geometry is tailored to back-scattered energy normally neglected in earthquake seismology. Owing to these favorable conditions, stacking and coherence analysis are routinely employed to suppress incoherent noise and regularize the data, thereby strongly contributing to the success of subsequent processing steps, including migration for the imaging of back-scattering interfaces or waveform tomography for the inversion of velocity structure. Attempts have been made to utilize wave field coherence on the length scales of passive-source seismology, e.g. for the imaging of transition-zone discontinuities or the core-mantle-boundary using reflected precursors. Results are however often deteriorated due to the sparse station coverage and interference of faint back-scattered with transmitted phases. USArray sampled wave fields generated by earthquake sources at an unprecedented density and similar array deployments are ongoing or planned in Alaska, the Alps and Canada. This makes the local coherence of earthquake data an increasingly valuable resource to exploit.Building on the experience in controlled-source surveys, we aim to extend the well-established concept of beam-forming to the richer toolbox that is nowadays used in seismic exploration. We suggest adapted strategies for local data coherence analysis, where summation is performed with operators that extract the local slope and curvature of wave fronts emerging at the receiver array. Besides estimating wave front properties, we demonstrate that the inherent data summation can also be used to generate virtual station responses at intermediate locations where no actual deployment was performed. Owing to the fact that stacking acts as a directional filter, interfering coherent wave fields can be efficiently separated from each other by means of coherent subtraction. We

  8. Conformal and Spectrally Agile Ultra Wideband Phased Array Antenna for Communication and Sensing

    NASA Technical Reports Server (NTRS)

    Novak, M.; Alwan, Elias; Miranda, Felix; Volakis, John

    2015-01-01

    There is a continuing need for reducing size and weight of satellite systems, and is also strong interest to increase the functional role of small- and nano-satellites (for instance SmallSats and CubeSats). To this end, a family of arrays is presented, demonstrating ultra-wideband operation across the numerous satellite communications and sensing frequencies up to the Ku-, Ka-, and Millimeter-Wave bands. An example design is demonstrated to operate from 3.5-18.5 GHz with VSWR2 at broadside, and validated through fabrication of an 8 x 8 prototype. This design is optimized for low cost, using Printed Circuit Board (PCB) fabrication. With the same fabrication technology, scaling is shown to be feasible up to a 9-49 GHz band. Further designs are discussed, which extend this wideband operation beyond the Ka-band, for instance from 20-80 GHz. Finally we will discuss recent efforts in the direct integration of such arrays with digital beamforming back-ends. It will be shown that using a novel on-site coding architecture, orders of magnitude reduction in hardware size, power, and cost is accomplished in this transceiver.

  9. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocca, Jorge J.

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achievedmore » using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm -3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.« less

  10. AAO-based nanoreservoir arrays: A quick and easy support for TEM characterization

    NASA Astrophysics Data System (ADS)

    Mace, M.; Sahaf, H.; Moyen, E.; Bedu, F.; Masson, L.; Hanbücken, M.

    2010-12-01

    Large-scale arrays of calibrated, nanometer sized reservoirs are prepared by adapting the well-established electrochemical method used so far for the preparation of anodic aluminium oxide (AAO) membranes. The bottom plane of the assembly is prepared to be transparent for high-energy electrons, enabling their use as a universal sample support for transmission electron microscopy studies of nanoparticles. The nanoreservoir substrates can be cleaned under ultra-high-vacuum conditions and filled, by evaporating different materials. Filled nanoreservoirs can locally be sealed with a thin carbon layer using focused-ion-beam-induced deposition (FIBID). Nanoparticles, grow at various adsorption places on the walls and bottom planes inside the nanoreservoirs. They can be characterized by transmission electron microscopy (TEM) without further sample preparation in different crystallographic directions. Due to the dense array-arrangement of the reservoirs, very good statistics can already be obtained on one single sample. The controlled fabrication of the nanoreservoir array and first TEM results obtained on Au nanoparticles before and after sealing of the reservoirs, are presented.

  11. Virtual source reflection imaging of the Socorro Magma Body, New Mexico, using a dense seismic array

    NASA Astrophysics Data System (ADS)

    Finlay, T. S.; Worthington, L. L.; Schmandt, B.; Hansen, S. M.; Bilek, S. L.; Aster, R. C.; Ranasinghe, N. R.

    2017-12-01

    The Socorro Magma Body (SMB) is one of the largest known actively inflating continental magmatic intrusions. Previous studies have relied on sparse instrument coverage to determine its spatial extent, depth, and seismic signature, which characterized the body as a thin sill with a surface at 19 km below the Earth's surface. However, over the last two decades, InSAR and magneto-telluric (MT) studies have shed new light on the SMB and invigorated the scientific debate of the spatial distribution and uplift rate of the SMB. We return to seismic imaging of the SMB with the Sevilleta Array, a 12-day deployment of approximately 800 vertical component, 10-Hz geophones north of Socorro, New Mexico above and around the estimated northern half of the SMB. Teleseismic virtual source reflection profiling (TVR) employs the free surface reflection off of a teleseismic P as a virtual source in dense arrays, and has been used successfully to image basin structure and the Moho in multiple tectonic environments. The Sevilleta Array recorded 62 teleseismic events greater than M5. Applying TVR to the data collected by the Sevilleta Array, we present stacks from four events that produced the with high signal-to-noise ratios and simple source-time functions: the February 11, 2015 M6.7 in northern Argentina, the February 19, 2015 M5.4 in Kamchatka, Russia, and the February 21, 2015 M5.1 and February 22, 2015 M5.5 in western Colombia. Preliminary results suggest eastward-dipping reflectors at approximately 5 km depth near the Sierra Ladrones range in the northwestern corner of the array. Further analysis will focus on creating profiles across the area of maximum SMB uplift and constraining basin geometry.

  12. Fault zone property near Xinfengjiang Reservoir using dense, across-fault seismic array

    NASA Astrophysics Data System (ADS)

    Lee, M. H. B.; Yang, H.; Sun, X.

    2017-12-01

    Properties of fault zones are important to the understanding of earthquake process. Around the fault zone is a damaged zone which is characterised by a lower seismic velocity. This is detectable as a low velocity zone and measure some physical property of the fault zone, which is otherwise difficult sample directly. A dense, across-fault array of short period seismometer is deployed on an inactive fault near Xinfengjiang Reservoir. Local events were manually picked. By computing the synthetic arrival time, we were able to constrain the parameters of the fault zone Preliminary result shows that the fault zone is around 350 m wide with a P and S velocity increase of around 10%. The fault is geologically inferred, and this result suggested that it may be a geological layer. The other possibility is that the higher velocity is caused by a combination of fault zone healing and fluid intrusion. Whilst the result was not able to tell us the nature of the fault, it demonstrated that this method is able to derive properties from a fault zone.

  13. Development of Ultra-Low Noise, High Performance III-V Quantum Well Infrared Photodetectors (QWIPs) for Focal Plane Array Staring Image Sensor Systems

    DTIC Science & Technology

    1994-02-06

    Ultra-Low Noise , High Performance lll-V Quantum Well Infrared Photodetectors ( QWIPs ) for Focal Plane Array Staring Image Sensor Systems i Submitted to i... QWIP , the noise is increased by the square root of the gain ,(g and the detectivity D" is reduced by this same factor. As shown in Fig. 3.18, the optimum...PI .4totekotP044l .t.,me. O IM A. AGENCY use ONLY (Leave blank) 1. y.p0AT J *fY E AND OATES CO r S - 0 1 DWveop cTteOf Ultra-Low Noise , High

  14. Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection.

    PubMed

    Dong, Ze; Yu, Jianjun; Chien, Hung-Chang; Chi, Nan; Chen, Lin; Chang, Gee-Kung

    2011-06-06

    We introduce an "ultra-dense" concept into next-generation WDM-PON systems, which transmits a Nyquist-WDM uplink with centralized uplink optical carriers and digital coherent detection for the future access network requiring both high capacity and high spectral efficiency. 80-km standard single mode fiber (SSMF) transmission of Nyquist-WDM signal with 13 coherent 25-GHz spaced wavelength shaped optical carriers individually carrying 100-Gbit/s polarization-multiplexing quadrature phase-shift keying (PM-QPSK) upstream data has been experimentally demonstrated with negligible transmission penalty. The 13 frequency-locked wavelengths with a uniform optical power level of -10 dBm and OSNR of more than 50 dB are generated from a single lightwave via a multi-carrier generator consists of an optical phase modulator (PM), a Mach-Zehnder modulator (MZM), and a WSS. Following spacing the carriers at the baud rate, sub-carriers are individually spectral shaped to form Nyquist-WDM. The Nyquist-WDM channels have less than 1-dB crosstalk penalty of optical signal-to-noise ratio (OSNR) at 2 × 10(-3) bit-error rate (BER). Performance of a traditional coherent optical OFDM scheme and its restrictions on symbol synchronization and power difference are also experimentally compared and studied.

  15. Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics.

    PubMed

    Kim, Sang Il; Lee, Kyu Hyoung; Mun, Hyeon A; Kim, Hyun Sik; Hwang, Sung Woo; Roh, Jong Wook; Yang, Dae Jin; Shin, Weon Ho; Li, Xiang Shu; Lee, Young Hee; Snyder, G Jeffrey; Kim, Sung Wng

    2015-04-03

    The widespread use of thermoelectric technology is constrained by a relatively low conversion efficiency of the bulk alloys, which is evaluated in terms of a dimensionless figure of merit (zT). The zT of bulk alloys can be improved by reducing lattice thermal conductivity through grain boundary and point-defect scattering, which target low- and high-frequency phonons. Dense dislocation arrays formed at low-energy grain boundaries by liquid-phase compaction in Bi(0.5)Sb(1.5)Te3 (bismuth antimony telluride) effectively scatter midfrequency phonons, leading to a substantially lower lattice thermal conductivity. Full-spectrum phonon scattering with minimal charge-carrier scattering dramatically improved the zT to 1.86 ± 0.15 at 320 kelvin (K). Further, a thermoelectric cooler confirmed the performance with a maximum temperature difference of 81 K, which is much higher than current commercial Peltier cooling devices. Copyright © 2015, American Association for the Advancement of Science.

  16. Optimized design and research of secondary microprism for dense array concentrating photovoltaic module

    NASA Astrophysics Data System (ADS)

    Yang, Guanghui; Chen, Bingzhen; Liu, Youqiang; Guo, Limin; Yao, Shun; Wang, Zhiyong

    2015-10-01

    As the critical component of concentrating photovoltaic module, secondary concentrators can be effective in increasing the acceptance angle and incident light, as well as improving the energy uniformity of focal spots. This paper presents a design of transmission-type secondary microprism for dense array concentrating photovoltaic module. The 3-D model of this design is established by Solidworks and important parameters such as inclination angle and component height are optimized using Zemax. According to the design and simulation results, several secondary microprisms with different parameters are fabricated and tested in combination with Fresnel lens and multi-junction solar cell. The sun-simulator IV test results show that the combination has the highest output power when secondary microprism height is 5mm and top facet side length is 7mm. Compared with the case without secondary microprism, the output power can improve 11% after the employment of secondary microprisms, indicating the indispensability of secondary microprisms in concentrating photovoltaic module.

  17. Ambient seismic noise monitoring of the Super-Sauze landslide from a very dense temporary seismic array

    NASA Astrophysics Data System (ADS)

    Chtouki, Toufik; Vergne, Jerome; Provost, Floriane; Malet, Jean-Philippe; Burtin, Arnaud; Hibert, Clément

    2017-04-01

    The Super-Sauze landslide is located on the southern part of the Barcelonnette Basin (French Alps) and has developed in a soft clay-shale environment. It is one of the four sites continuously monitored through a wide variety of geophysical and hydro-geological techniques in the framework of the OMIV French national landslide observatory. From early June to mid-July 2016, a temporary dense seismic array has been installed in the most active part of the landslide and at its surroundings. 50 different sites with an average inter-station distance of 50m have been instrumented with 150 miniaturized and autonomous seismic stations (Zland nodes), allowing a continuous record of the seismic signal at frequencies higher than 0.2Hz over an almost regular grid. Concurrently, a Ground-Based InSAR device allowed for a precise and continuous monitoring of the surface deformation. Overall, this experiment is intended to better characterize the spatio-temporal evolution of the deformation processes related to various type of forcing. We analyze the continuous records of ambient seismic noise recorded by the dense array. Using power spectral densities, we characterize the various types of natural and anthropogenic seismic sources, including the effect of water turbulence and bedload transport in the small nearby torrents. We also compute the correlation of the ambient diffuse seismic noise in various frequency bands for the 2448 station pairs to recover the empirical Green functions between them. The temporal evolution of the coda part of these noise correlation functions allows monitoring and localizing shear wave velocity variations in the sliding mass. Here we present some preliminary results of this analysis and compare the seismic variations to meteorological data and surface deformation.

  18. Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing

    NASA Astrophysics Data System (ADS)

    Fu, Dong; Zhang, Zuyin; Li, Jian; Wu, Haoyue; Wang, Wenbo; Wei, Xin

    2017-05-01

    By exploiting the radiative coupling between the electromagnetic field scattered by individual Si dimer and the collective wave diffracted (Rayleigh Anomalies) in the plane of Si dimers array, optical resonance with extremely narrow linewidth is achieved, accompanied with dramatic enhancement of electric field in the gap of the dimer. We analyze the optical properties of Si dimers array by decomposing it into three fundamental sub-systems. Theoretical investigation employing the coupled dipole approximation is complemented with numerical simulations. The result shows that polarization angle has significant influence on the orientation of the field scattered by individual Si dimer, which determines the efficiency of radiative coupling and further impacts on the electric field enhancement. Moreover, we explore the feasibility of application in refractive sensing. It is shown that the figure of merit value for the proposed system of Si dimers array is as high as 306. The Si dimers array that takes advantage of multiple coupling creates new possibility to implement field-enhanced spectroscopy and refractive sensing with ultra-high sensitivity.

  19. Volumetric Heating of Ultra-High Energy Density Relativistic Plasmas by Ultrafast Laser Irradiation of Aligned Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Bargsten, Clayton; Hollinger, Reed; Shlyaptsev, Vyacheslav; Pukhov, Alexander; Keiss, David; Townsend, Amanda; Wang, Yong; Wang, Shoujun; Prieto, Amy; Rocca, Jorge

    2014-10-01

    We have demonstrated the volumetric heating of near-solid density plasmas to keV temperatures by ultra-high contrast femtosecond laser irradiation of arrays of vertically aligned nanowires with an average density up to 30% solid density. X-ray spectra show that irradiation of Ni and Au nanowire arrays with laser pulses of relativistic intensities ionizes plasma volumes several micrometers in depth to the He-like and Co-like (Au 52 +) stages respectively. The penetration depth of the heat into the nanowire array was measured monitoring He-like Co lines from irradiated arrays in which the nanowires are composed of a Co segment buried under a selected length of Ni. The measurement shows the ionization reaches He-like Co for depth of up to 5 μm within the target. This volumetric plasma heating approach creates a new laboratory plasma regime in which extreme plasma parameters can be accessed with table-top lasers. Scaling to higher laser intensities promises to create plasmas with temperatures and pressures approaching those in the center of the sun. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  20. Optical characterization of nonimaging dish concentrator for the application of dense-array concentrator photovoltaic system.

    PubMed

    Tan, Ming-Hui; Chong, Kok-Keong; Wong, Chee-Woon

    2014-01-20

    Optimization of the design of a nonimaging dish concentrator (NIDC) for a dense-array concentrator photovoltaic system is presented. A new algorithm has been developed to determine configuration of facet mirrors in a NIDC. Analytical formulas were derived to analyze the optical performance of a NIDC and then compared with a simulated result obtained from a numerical method. Comprehensive analysis of optical performance via analytical method has been carried out based on facet dimension and focal distance of the concentrator with a total reflective area of 120 m2. The result shows that a facet dimension of 49.8 cm, focal distance of 8 m, and solar concentration ratio of 411.8 suns is the most optimized design for the lowest cost-per-output power, which is US$1.93 per watt.

  1. Pairwise graphical models for structural health monitoring with dense sensor arrays

    NASA Astrophysics Data System (ADS)

    Mohammadi Ghazi, Reza; Chen, Justin G.; Büyüköztürk, Oral

    2017-09-01

    Through advances in sensor technology and development of camera-based measurement techniques, it has become affordable to obtain high spatial resolution data from structures. Although measured datasets become more informative by increasing the number of sensors, the spatial dependencies between sensor data are increased at the same time. Therefore, appropriate data analysis techniques are needed to handle the inference problem in presence of these dependencies. In this paper, we propose a novel approach that uses graphical models (GM) for considering the spatial dependencies between sensor measurements in dense sensor networks or arrays to improve damage localization accuracy in structural health monitoring (SHM) application. Because there are always unobserved damaged states in this application, the available information is insufficient for learning the GMs. To overcome this challenge, we propose an approximated model that uses the mutual information between sensor measurements to learn the GMs. The study is backed by experimental validation of the method on two test structures. The first is a three-story two-bay steel model structure that is instrumented by MEMS accelerometers. The second experimental setup consists of a plate structure and a video camera to measure the displacement field of the plate. Our results show that considering the spatial dependencies by the proposed algorithm can significantly improve damage localization accuracy.

  2. En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays.

    PubMed

    Boncel, Slawomir; Pattinson, Sebastian W; Geiser, Valérie; Shaffer, Milo S P; Koziol, Krzysztof K K

    2014-01-01

    The catalytic chemical vapour deposition (c-CVD) technique was applied in the synthesis of vertically aligned arrays of nitrogen-doped carbon nanotubes (N-CNTs). A mixture of toluene (main carbon source), pyrazine (1,4-diazine, nitrogen source) and ferrocene (catalyst precursor) was used as the injection feedstock. To optimize conditions for growing the most dense and aligned N-CNT arrays, we investigated the influence of key parameters, i.e., growth temperature (660, 760 and 860 °C), composition of the feedstock and time of growth, on morphology and properties of N-CNTs. The presence of nitrogen species in the hot zone of the quartz reactor decreased the growth rate of N-CNTs down to about one twentieth compared to the growth rate of multi-wall CNTs (MWCNTs). As revealed by electron microscopy studies (SEM, TEM), the individual N-CNTs (half as thick as MWCNTs) grown under the optimal conditions were characterized by a superior straightness of the outer walls, which translated into a high alignment of dense nanotube arrays, i.e., 5 × 10(8) nanotubes per mm(2) (100 times more than for MWCNTs grown in the absence of nitrogen precursor). In turn, the internal crystallographic order of the N-CNTs was found to be of a 'bamboo'-like or 'membrane'-like (multi-compartmental structure) morphology. The nitrogen content in the nanotube products, which ranged from 0.0 to 3.0 wt %, was controlled through the concentration of pyrazine in the feedstock. Moreover, as revealed by Raman/FT-IR spectroscopy, the incorporation of nitrogen atoms into the nanotube walls was found to be proportional to the number of deviations from the sp(2)-hybridisation of graphene C-atoms. As studied by XRD, the temperature and the [pyrazine]/[ferrocene] ratio in the feedstock affected the composition of the catalyst particles, and hence changed the growth mechanism of individual N-CNTs into a 'mixed base-and-tip' (primarily of the base-type) type as compared to the purely 'base'-type for undoped

  3. Characterization of Charge Separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) Ion Source for Mass Spectrometry

    PubMed Central

    Forbes, Thomas P.; Dixon, R. Brent; Muddiman, David C.; Degertekin, F. Levent; Fedorov, Andrei G.

    2009-01-01

    An initial investigation into the effects of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source is reported in order to gain understanding of ionization mechanisms and to improve analyte ionization efficiency and operation stability. In RF-only mode, AMUSE ejects on average, an equal number of slightly positive and slightly negative charged droplets due to random charge fluctuations, providing inefficient analyte ionization. Charge separation at the nozzle orifice is achieved by the application of an external electric field. By bringing the counter electrode close to the nozzle array, strong electric fields can be applied at relatively low DC potentials. It has been demonstrated, through a number of electrode/electrical potential configurations that increasing charge separation leads to improvement in signal abundance, signal-to-noise ratio, and signal stability. PMID:19525123

  4. Characterization of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source for mass spectrometry.

    PubMed

    Forbes, Thomas P; Dixon, R Brent; Muddiman, David C; Degertekin, F Levent; Fedorov, Andrei G

    2009-09-01

    An initial investigation into the effects of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source is reported to gain understanding of ionization mechanisms and to improve analyte ionization efficiency and operation stability. In RF-only mode, AMUSE ejects, on average, an equal number of slightly positive and slightly negative charged droplets due to random charge fluctuations, providing inefficient analyte ionization. Charge separation at the nozzle orifice is achieved by the application of an external electric field. By bringing the counter electrode close to the nozzle array, strong electric fields can be applied at relatively low DC potentials. It has been demonstrated, through a number of electrode/electrical potential configurations, that increasing charge separation leads to improvement in signal abundance, signal-to-noise ratio, and signal stability.

  5. Ultrafast visualization of the structural evolution of dense hydrogen towards warm dense matter

    NASA Astrophysics Data System (ADS)

    Fletcher, Luke

    2016-10-01

    Hot dense hydrogen far from equilibrium is ubiquitous in nature occurring during some of the most violent and least understood events in our universe such as during star formation, supernova explosions, and the creation of cosmic rays. It is also a state of matter important for applications in inertial confinement fusion research and in laser particle acceleration. Rapid progress occurred in recent years characterizing the high-pressure structural properties of dense hydrogen under static or dynamic compression. Here, we show that spectrally and angularly resolved x-ray scattering measure the thermodynamic properties of dense hydrogen and resolve the ultrafast evolution and relaxation towards thermodynamic equilibrium. These studies apply ultra-bright x-ray pulses from the Linac Coherent Light (LCLS) source. The interaction of rapidly heated cryogenic hydrogen with a high-peak power optical laser is visualized with intense LCLS x-ray pulses in a high-repetition rate pump-probe setting. We demonstrate that electron-ion coupling is affected by the small number of particles in the Debye screening cloud resulting in much slower ion temperature equilibration than predicted by standard theory. This work was supported by the DOE Office of Science, Fusion Energy Science under FWP 100182.

  6. Implementation Status of a Ultra-Wideband Receiver Package for the next-generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Velazco, Jose; Soriano, Melissa; Hoppe, Daniel; Russell, Damon; D'Addario, Larry; Long, Ezra; Bowen, James; Samoska, Lorene; Janzen, Andrew

    2017-01-01

    The next-generation Very Large Array (ngVLA) is a concept for a radio astronomical interferometric array operating in the frequency range 1.2 GHz to 116 GHz and designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage above the current Very Large Array (VLA). As notional design goals, it would have a continuous frequency coverage of 1.2 GHz to 48 GHz and be 10 times more sensitive than the VLA (and 25 times more sensitive than a 34 m diameter antenna of the Deep Space Network [DSN]). One of the key goals for the ngVLA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range, which can be contrasted to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs, and the objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feed horn, low-noise amplifier (LNA), and down-converters to analog intermediate frequencies. Key features of this design are a quad-ridge feed horn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30 K at the low end of the band. We will report on the status of this receiver package development including the feed design and LNA implementation. We will present simulation studies of the feed horn including the insertion of dielectric components for improved illumination efficiencies across the band of interest. In addition, we will show experimental results of low-noise 35nm InP HEMT amplifier testing performed across the 8-50 GHz frequency range

  7. A Comparison of Earthquake Back-Projection Imaging Methods for Dense Local Arrays, and Application to the 2011 Virginia Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    Beskardes, G. D.; Hole, J. A.; Wang, K.; Wu, Q.; Chapman, M. C.; Davenport, K. K.; Michaelides, M.; Brown, L. D.; Quiros, D. A.

    2016-12-01

    Back-projection imaging has recently become a practical method for local earthquake detection and location due to the deployment of densely sampled, continuously recorded, local seismograph arrays. Back-projection is scalable to earthquakes with a wide range of magnitudes from very tiny to very large. Local dense arrays provide the opportunity to capture very tiny events for a range applications, such as tectonic microseismicity, source scaling studies, wastewater injection-induced seismicity, hydraulic fracturing, CO2 injection monitoring, volcano studies, and mining safety. While back-projection sometimes utilizes the full seismic waveform, the waveforms are often pre-processed to overcome imaging issues. We compare the performance of back-projection using four previously used data pre-processing methods: full waveform, envelope, short-term averaging / long-term averaging (STA/LTA), and kurtosis. The goal is to identify an optimized strategy for an entirely automated imaging process that is robust in the presence of real-data issues, has the lowest signal-to-noise thresholds for detection and for location, has the best spatial resolution of the energy imaged at the source, preserves magnitude information, and considers computational cost. Real data issues include aliased station spacing, low signal-to-noise ratio (to <1), large noise bursts and spatially varying waveform polarity. For evaluation, the four imaging methods were applied to the aftershock sequence of the 2011 Virginia earthquake as recorded by the AIDA array with 200-400 m station spacing. These data include earthquake magnitudes from -2 to 3 with highly variable signal to noise, spatially aliased noise, and large noise bursts: realistic issues in many environments. Each of the four back-projection methods has advantages and disadvantages, and a combined multi-pass method achieves the best of all criteria. Preliminary imaging results from the 2011 Virginia dataset will be presented.

  8. Crustal structure of the Izu Collision zone, central Japan, revealed by dense seismic array observations

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Sato, H.; Abe, S.; Kato, N.; Ishikawa, M.; Obara, K.

    2009-12-01

    In central Japan, the Philippine Sea Plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region. In western Kanto region, the Izu-Bonin arc (IBA) within the PSP has been colliding from the south with the Honshu arc, forming a complex structure called the Izu-Collision zone (ICZ). Several active faults were formed in and around the ICZ. The geometry of the subducting PSP and the overlying crustal structure of the ICZ are important to constrain the process of earthquake occurrence and the crustal evolution process associated with arc-arc collision. Recent seismic experiments reveal the geometry of the subducting PSP beneath the Kanto region (Sato et al., 2005). The Japanese islands, including the ICZ, are covered with dense arrays of permanent seismic stations, which provide good constraints on velocity structures by a tomographic method. Such studies reveal a general picture of the lithospheric structure such as a descending plate configuration (e.g. Matsubara et al., 2008). However, since an average spacing of the permanent station is typically 20 km, a detailed structure in the upper crust, which is imperative for an understanding of the active tectonics, cannot be well constrained by permanent array alone. Two dense seismic array observations were conducted to obtain a structural image beneath the ICZ. One is a 40-km-long line (EW-line) located in the northern part of the ICZ and the other is a 55-km-long line (NS-line) located in the central part of the ICZ. Seventy-five 3-component portable seismographs were deployed on EW-line with 500 to 700 m interval and waveforms were recorded during a four-month period from October, 2008. Forty 3-component portable seismographs were deployed on NS-line with about 1 km spacing and waveforms were recorded during the three month period from January, 2006. In order to obtain a high-resolution velocity model, a well-controlled hypocenter is essential. Due to this, we combined the seismic array data with

  9. Structure of the North Anatolian Fault Zone from the Auto-Correlation of Ambient Seismic Noise Recorded at a Dense Seismometer Array

    NASA Astrophysics Data System (ADS)

    Taylor, D. G.; Rost, S.; Houseman, G.

    2015-12-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquake or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct reflection images for the entire crust and upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using auto-correlations of vertical and horizontal components of ground motion, both P- and S-wave velocity information can be retrieved from the wavefield to constrain crustal structure further to established methods. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the fault zone in the region. The combined analysis of auto-correlations using vertical and horizontal components will lead to further insight into the fault zone structure throughout the crust and upper mantle.

  10. Fast and Accurate Construction of Ultra-Dense Consensus Genetic Maps Using Evolution Strategy Optimization

    PubMed Central

    Mester, David; Ronin, Yefim; Schnable, Patrick; Aluru, Srinivas; Korol, Abraham

    2015-01-01

    Our aim was to develop a fast and accurate algorithm for constructing consensus genetic maps for chip-based SNP genotyping data with a high proportion of shared markers between mapping populations. Chip-based genotyping of SNP markers allows producing high-density genetic maps with a relatively standardized set of marker loci for different mapping populations. The availability of a standard high-throughput mapping platform simplifies consensus analysis by ignoring unique markers at the stage of consensus mapping thereby reducing mathematical complicity of the problem and in turn analyzing bigger size mapping data using global optimization criteria instead of local ones. Our three-phase analytical scheme includes automatic selection of ~100-300 of the most informative (resolvable by recombination) markers per linkage group, building a stable skeletal marker order for each data set and its verification using jackknife re-sampling, and consensus mapping analysis based on global optimization criterion. A novel Evolution Strategy optimization algorithm with a global optimization criterion presented in this paper is able to generate high quality, ultra-dense consensus maps, with many thousands of markers per genome. This algorithm utilizes "potentially good orders" in the initial solution and in the new mutation procedures that generate trial solutions, enabling to obtain a consensus order in reasonable time. The developed algorithm, tested on a wide range of simulated data and real world data (Arabidopsis), outperformed two tested state-of-the-art algorithms by mapping accuracy and computation time. PMID:25867943

  11. Source characterization of a small earthquake cluster at Edmond, Oklahoma using a very dense array

    NASA Astrophysics Data System (ADS)

    Ng, R.; Nakata, N.

    2017-12-01

    Recent seismicity in Oklahoma has caught the attention of the public in the last few years since seismicity is commonly related to loss in urban areas. To account for the increase in public interest, improve the understanding of damaging ground motions produced in earthquakes and develop better seismic hazard assessment, we must characterize the seismicity in Oklahoma and its associated structure and source parameters. Regional changes in subsurface stresses have increased seismic activities due to reactivation of faults in places such as central Oklahoma. It is imperative for seismic investigation and modeling to characterize subsurface structural features that may influence the damaging effects of ground motion. We analyze the full-waveform data collected from a temporary dense array of 72 portable seismometers with a 110 meter spacing that were active for a one-month period from May to June 2017, deployed at Edmond, Oklahoma. The data from this one-month duration array captured over 10,000 events and enabled us to make measurements of small-scale lateral variations of earthquake wavefields. We examine the waveform for events using advanced methods of detection, location and determine the source mechanism. We compare our results with selected events listed in the Oklahoma Geological Survey (OGS) and United States Geological Survey (USGS) catalogue. Based on the detection and located small events, we will discuss the causative fault structure at the area and present the results of the investigation.

  12. Development of Ultra-Low Noise, High Performance III-V Quantum Well Infrared Photodetectors (QWIPs) for Focal Plane Array Staring Image Sensor Systems

    DTIC Science & Technology

    1993-11-01

    Development of Ultra-Low Noise , High Performance III-V Quantum Well Infrared Photodetectors ( QWIPs )I for Focal Plane Array Staring Image Sensor Systems...experimental studies of dark current, photocurrent, noise fig- ures optical absorption, spectral responsivity and detectivity for different types of QWIPs ...the Boltzmann constant, and T is the temperature. S The noise in the QWIPs is mainly due to the random fluctuations of thermally excited carriers. The

  13. The energy spectrum of ultra-high-energy cosmic rays measured by the Telescope Array FADC fluorescence detectors in monocular mode

    NASA Astrophysics Data System (ADS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Hanlon, W.; Hayashi, K.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Hiyama, K.; Honda, K.; Iguchi, T.; Ikeda, D.; Ikuta, K.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Iwamoto, S.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kanbe, T.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kido, E.; Kim, H. B.; Kim, H. K.; Kim, J. H.; Kim, J. H.; Kitamoto, K.; Kitamura, S.; Kitamura, Y.; Kobayashi, K.; Kobayashi, Y.; Kondo, Y.; Kuramoto, K.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, S.; Martens, K.; Matsuda, T.; Matsuura, T.; Matsuyama, T.; Matthews, J. N.; Myers, I.; Minamino, M.; Miyata, K.; Murano, Y.; Nagataki, S.; Nakamura, T.; Nam, S. W.; Nonaka, T.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Oku, D.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Roh, S. Y.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, J. I.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Sonley, T. J.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzuki, S.; Takahashi, Y.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Tsuyuguchi, Y.; Uchihori, Y.; Udo, S.; Ukai, H.; Vasiloff, G.; Wada, Y.; Wong, T.; Yamakawa, Y.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2013-08-01

    We present a measurement of the energy spectrum of ultra-high-energy cosmic rays performed by the Telescope Array experiment using monocular observations from its two new FADC-based fluorescence detectors. After a short description of the experiment, we describe the data analysis and event reconstruction procedures. Since the aperture of the experiment must be calculated by Monte Carlo simulation, we describe this calculation and the comparisons of simulated and real data used to verify the validity of the aperture calculation. Finally, we present the energy spectrum calculated from the merged monocular data sets of the two FADC-based detectors, and also the combination of this merged spectrum with an independent, previously published monocular spectrum measurement performed by Telescope Array's third fluorescence detector [T. Abu-Zayyad et al., The energy spectrum of Telescope Array's middle drum detector and the direct comparison to the high resolution fly's eye experiment, Astroparticle Physics 39 (2012) 109-119, http://dx.doi.org/10.1016/j.astropartphys.2012.05.012, Available from: ]. This combined spectrum corroborates the recently published Telescope Array surface detector spectrum [T. Abu-Zayyad, et al., The cosmic-ray energy spectrum observed with the surface detector of the Telescope Array experiment, ApJ 768 (2013) L1, http://dx.doi.org/10.1088/2041-8205/768/1/L1, Available from: ] with independent systematic uncertainties.

  14. Ultra-broadband near-field antenna for terahertz plasmonic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polischuk, O. V., E-mail: polischuk.sfire@mail.ru; Popov, V. V., E-mail: popov-slava@yahoo.co.uk; Knap, W.

    A new type of ultra-broadband near-field antenna for terahertz frequencies is proposed. This antenna is a short-period planar metal array. It is theoretically shown that irradiation of the short-period array antenna by a plane homogeneous terahertz waves excite a highly inhomogeneous near electric field near the metal array. In this case, the amplitude of the excited inhomogeneous near electric field is almost independent of frequency in the entire terahertz frequency range. The excitation of plasma oscillations in a two-dimensional electron system using the antenna under study is numerically simulated in the resonant and non-resonant plasmonic response modes. This type ofmore » antenna can be used for developing ultra-broadband plasmonic detectors of terahertz radiation.« less

  15. Accessing sparse arrays in parallel memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, U.; Gajski, D.; Kuck, D.

    The concept of dense and sparse execution of arrays is introduced. Arrays themselves can be stored in a dense or sparse manner in a parallel memory with m memory modules. The paper proposes hardware for speeding up the execution of array operations of the form c(c/sub 0/+ci)=a(a/sub 0/+ai) op b(b/sub 0/+bi), where a/sub 0/, a, b/sub 0/, b, c/sub 0/, c are integer constants and i is an index variable. The hardware handles 'sparse execution', in which the operation op is not executed for every value of i. The hardware also makes provision for 'sparse storage', in which memory spacemore » is not provided for every array element. It is shown how to access array elements of the above form without conflict in an efficient way. The efficiency is obtained by using some specialised units which are basically smart memories with priority detection, one's counting or associative searching. Generalisation to multidimensional arrays is shown possible under restrictions defined in the paper. 12 references.« less

  16. Development of Ultra-Low Noise, High Performance III-V Quantum Well Infrared Photodetectors (QWIPs) for Focal Plane Array Staring Image Sensor Systems

    DTIC Science & Technology

    1993-08-01

    Development of Ultra-Low Noise , High Performance III-V Quantum Well Infrared Photodetectors ( QWIPs ) for Focal Plane Array Staring Image Sensor Systems...using a 2-D square mesh grating coupler to achieve maximum responsivity for an InGaAs SBTM QWIP , and (iv) performed noise characterization on four...different types of Ir-V QWIPs and identified their noise sources. Detailed results and accomplishments are discussed in this report. 1 SJ •aTEtcRMrtlS

  17. Imaging San Jacinto Fault damage zone structure using dense linear arrays: application of ambient noise tomography, Rayleigh wave ellipticity, and site amplification

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.

    2017-12-01

    The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.

  18. Internal structure of the San Jacinto fault zone in the trifurcation area southeast of Anza, California, from data of dense seismic arrays

    NASA Astrophysics Data System (ADS)

    Qin, L.; Ben-Zion, Y.; Qiu, H.; Share, P.-E.; Ross, Z. E.; Vernon, F. L.

    2018-04-01

    We image the internal structure of the San Jacinto fault zone (SJFZ) in the trifurcation area southeast of Anza, California, with seismic records from dense linear and rectangular arrays. The examined data include recordings from more than 20 000 local earthquakes and nine teleseismic events. Automatic detection algorithms and visual inspection are used to identify P and S body waves, along with P- and S-types fault zone trapped waves (FZTW). The location at depth of the main branch of the SJFZ, the Clark fault, is identified from systematic waveform changes across lines of sensors within the dense rectangular array. Delay times of P arrivals from teleseismic and local events indicate damage asymmetry across the fault, with higher damage to the NE, producing a local reversal of the velocity contrast in the shallow crust with respect to the large-scale structure. A portion of the damage zone between the main fault and a second mapped surface trace to the NE generates P- and S-types FZTW. Inversions of high-quality S-type FZTW indicate that the most likely parameters of the trapping structure are width of ˜70 m, S-wave velocity reduction of 60 per cent, Q value of 60 and depth of ˜2 km. The local reversal of the shallow velocity contrast across the fault with respect to large-scale structure is consistent with preferred propagation of earthquake ruptures in the area to the NW.

  19. Ultra-dense magnetoresistive mass memory

    NASA Technical Reports Server (NTRS)

    Daughton, J. M.; Sinclair, R.; Dupuis, T.; Brown, J.

    1992-01-01

    This report details the progress and accomplishments of Nonvolatile Electronics (NVE), Inc., on the design of the wafer scale MRAM mass memory system during the fifth quarter of the project. NVE has made significant progress this quarter on the one megabit design in several different areas. A test chip, which will verify a working GMR bit with the dimensions required by the 1 Meg chip, has been designed, laid out, and is currently being processed in the NVE labs. This test chip will allow electrical specifications, tolerances, and processing issues to be finalized before construction of the actual chip, thus providing a greater assurance of success of the final 1 Meg design. A model has been developed to accurately simulate the parasitic effects of unselected sense lines. This model gives NVE the ability to perform accurate simulations of the array electronic and test different design concepts. Much of the circuit design for the 1 Meg chip has been completed and simulated and these designs are included. Progress has been made in the wafer scale design area to verify the reliable operation of the 16 K macrocell. This is currently being accomplished with the design and construction of two stand alone test systems which will perform life tests and gather data on reliabiliy and wearout mechanisms for analysis.

  20. Power budget of direct-detection ultra-dense WDM-Nyquist-SCM PON with low-complexity SSBI mitigation

    NASA Astrophysics Data System (ADS)

    Soeiro, Ricardo O. J.; Alves, Tiago M. F.; Cartaxo, Adolfo V. T.

    2017-07-01

    The power budget (PB) of a direct-detection ultra-dense wavelength division/subcarrier multiplexing (SCM) passive optical network (PON) is assessed numerically for downstream, when a low-complexity iterative signal-to-signal beat interference (SSBI) mitigation technique is employed. Each SCM signal, inserted in a 12.5 GHz width optical channel, is comprised of two or three electrically generated and multiplexed 16-quadrature-amplitude-modulation (QAM) or 32-QAM Nyquist pulse-shaped subcarriers, each with a 7% forward error correction bit rate of 10.7 Gbit/s. The PB and maximum number of optical network units (ONUs) served by each optical line terminal (OLT) are compared with and without SSBI mitigation. When SSBI mitigation is realized, PB gains up to 4.5 dB are attained relative to the PB in the absence of SSBI mitigation. The PB gain enabled by the SSBI mitigation technique proposed in this work increases the number of ONUs served per OLT at least by a factor of 2, for the cases of higher spectral efficiency. In particular, for a SCM signal comprised of three subcarriers, the maximum number of ONUs served per OLT is between 2 and 32, and between 8 and 64, in the absence of SSBI mitigation, and when SSBI mitigation is employed, respectively, depending on the fiber length (up to 50 km) and order of QAM.

  1. Study of Ultra-High Energy Cosmic Ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-04-01

    Previous measurements of the composition of Ultra-High Energy Cosmic Rays (UHECRs) made by the High Resolution Fly's Eye (HiRes) and Pierre Auger Observatory (PAO) are seemingly contradictory, but utilize different detection methods, as HiRes was a stereo detector and PAO is a hybrid detector. The five year Telescope Array (TA) Middle Drum hybrid composition measurement is similar in some, but not all, respects in methodology to PAO, and good agreement is evident between data and a light, largely protonic, composition when comparing the measurements to predictions obtained with the QGSJetII-03 and QGSJet-01c models. These models are also in agreement with previous HiRes stereo measurements, confirming the equivalence of the stereo and hybrid methods. The data is incompatible with a pure iron composition, for all models examined, over the available range of energies. The elongation rate and mean values of Xmax are in good agreement with Pierre Auger Observatory data. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique.

  2. Ultra-thin g-C{sub 3}N{sub 4} nanosheets wrapped silicon nanowire array for improved chemical stability and enhanced photoresponse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Beibei; Yu, Hongtao; Quan, Xie, E-mail: quanxie@dlut.edu.cn

    2014-11-15

    Highlights: • g-C{sub 3}N{sub 4}, as an oxygen free and metal free protective material for Si, was proposed. • g-C{sub 3}N{sub 4} nanosheets wrapped Si nanowire array was synthesized. • SiNW/g-C{sub 3}N{sub 4} exhibited enhancement of photoelectrochemical stability and photocurrent. - Abstract: In order to inhibit the oxidation of Si materials in aqueous solution, Si nanowire array was wrapped by ultra-thin g-C{sub 3}N{sub 4} nanosheets via an electrophoresis process. Scanning electron microscopy and transmission electron microscopy images showed that g-C{sub 3}N{sub 4} nanosheets were evenly distributed on the surface of Si nanowire array. X-ray diffraction patterns indicated that Si nanowiremore » array/g-C{sub 3}N{sub 4} nanosheets were composed of Si (4 0 0 crystal plane) and g-C{sub 3}N{sub 4} (0 0 2 and 1 0 0 crystal planes). The cyclic voltammetry curves revealed that the corrosion of Si nanowire array was restrained under the protection of g-C{sub 3}N{sub 4} nanosheets. Furthermore, the photocurrent density of Si nanowire array/g-C{sub 3}N{sub 4} nanosheets increased by nearly 3 times compared to that of bare Si nanowire array due to the effective charge separation caused by the built-in electric field at the interface. This work will facilitate the applications of Si materials in aqueous solution, such as solar energy harvest and photocatalytic pollution control.« less

  3. Development of an Ultraflex-Based Thin Film Solar Array for Space Applications

    NASA Technical Reports Server (NTRS)

    White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan; Piszczor, Michael F.

    2003-01-01

    As flexible thin film photovoltaic (FTFPV) cell technology is developed for space applications, integration into a viable solar array structure that optimizes the attributes of this cell technology is critical. An advanced version of ABLE'sS UltraFlex solar array platform represents a near-term, low-risk approach to demonstrating outstanding array performance with the implementation of FTFPV technology. Recent studies indicate that an advanced UltraFlex solar array populated with 15% efficient thin film cells can achieve over 200 W/kg EOL. An overview on the status of hardware development and the future potential of this technology is presented.

  4. Investigating social cognition in infants and adults using dense array electroencephalography ((d)EEG).

    PubMed

    Akano, Adekemi J; Haley, David W; Dudek, Joanna

    2011-06-27

    Dense array electroencephalography ((d)EEG), which provides a non-invasive window for measuring brain activity and a temporal resolution unsurpassed by any other current brain imaging technology¹, ² is being used increasingly in the study of social cognitive functioning in infants and adults. While (d)EEG is enabling researchers to examine brain activity patterns with unprecedented levels of sensitivity, conventional EEG recording systems continue to face certain limitations, including 1) poor spatial resolution and source localization³,⁴2) the physical discomfort for test subjects of enduring the individual application of numerous electrodes to the surface of the scalp, and 3) the complexity for researchers of learning to use multiple software packages to collect and process data. Here we present an overview of an established methodology that represents a significant improvement on conventional methodologies for studying EEG in infants and adults. Although several analytical software techniques can be used to establish indirect indices of source localization to improve the spatial resolution of (d)EEG, the HydroCel Geodesic Sensor Net (HCGSN) by Electrical Geodesics, Inc. (EGI), a dense sensory array that maintains equal distances among adjacent recording electrodes on all surfaces of the scalp, further enhances spatial resolution⁴,⁵(,)⁶ compared to standard (d)EEG systems. The sponge-based HCGSN can be applied rapidly and without scalp abrasion, making it ideal for use with adults⁷,⁸ children⁹,¹⁰, ¹¹,¹² and infants¹², in both research and clinical ⁴,⁵,⁶,¹³,¹⁴,¹⁵settings. This feature allows for considerable cost and time savings by decreasing the average net application time compared to other (d)EEG systems. Moreover, the HCGSN includes unified, seamless software applications for all phases of data, greatly simplifying the collection, processing, and analysis of (d)EEG data. The HCGSN features a low-profile electrode

  5. Dynamics of task sets: evidence from dense-array event-related potentials.

    PubMed

    Poulsen, Catherine; Luu, Phan; Davey, Colin; Tucker, Don M

    2005-06-01

    Prior research suggests that task sets facilitate coherent, goal-directed behavior by providing an internal, contextual frame that biases selection toward context-relevant stimulus attributes and responses. Questions about how task sets are engaged, maintained, and shifted have recently become a major focus of research on executive control processes. We employed dense-array (128-channel) event-related potential (ERP) methodology to examine the dynamics of brain systems engaged during the preparation and implementation of task switching. The EEG was recorded while participants performed letter and digit judgments to pseudorandomly-ordered, univalent (#3, A%) and bivalent (G5) stimulus trials, with the appropriate task cued by a colored rectangle presented 450 ms before target onset. Results revealed spatial and temporal variations in brain activity that could be related to preparatory processes common to both switch and repeat trials, switch-specific control processes engaged to reconfigure and maintain task set under conflict, and visual priming benefits of task repetition. Despite extensive practice and improvement, both behavioral and ERP results indicated that subjects maintained high levels of executive control processing with extended task engagement. The patterns of ERP activity obtained in the present study fit well with functional neuroanatomical models of self-regulation of action. The frontopolar and right-lateralized frontal switch effects obtained in the present study are consistent with the role of these regions in adapting to changing contextual contingencies. In contrast, the centroparietal P3b and N384 effects related to the contextual ambiguity of bivalent trials are consistent with the context monitoring and updating functions associated with the posterior cingulate learning circuit.

  6. Magnetic Calorimeter Arrays with High Sensor Inductance and Dense Wiring

    NASA Astrophysics Data System (ADS)

    Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Devasia, A. M.; Nagler, P. C.; Smith, S. J.; Yoon, W.

    2018-05-01

    We describe prototype arrays of magnetically coupled microcalorimeters fabricated with an approach scalable to very large format arrays. The superconducting interconnections and sensor coils have sufficiently low inductance in the wiring and sufficiently high inductance in the coils in each pixel, to enable arrays containing greater than 4000 sensors and 100,000 X-ray absorbers to be used in future astrophysics missions such as Lynx. We have used projection lithography to create submicron patterns (e.g., 400 nm lines and spaces) in our niobium sensor coils and wiring, integrated with gold-erbium sensor films and gold X-ray absorbers. Our prototype devices will explore the device physics of metallic magnetic calorimeters as feature sizes are reduced to nanoscale.

  7. Dense-array concentrator photovoltaic system using non-imaging dish concentrator and crossed compound parabolic concentrator

    NASA Astrophysics Data System (ADS)

    Chong, Kok-Keong; Yew, Tiong-Keat; Wong, Chee-Woon; Tan, Ming-Hui; Tan, Woei-Chong; Lai, An-Chow; Lim, Boon-Han; Lau, Sing-Liong; Rahman, Faidz Abdul

    2015-04-01

    Solar concentrating device plays an important role by making use of optical technology in the design, which can be either reflector or lens to deliver high flux of sunlight onto the Concentrator Photovoltaic (CPV) module receiver ranging from hundreds to thousand suns. To be more competitive compared with fossil fuel, the current CPV systems using Fresnel lens and Parabolic dish as solar concentrator that are widely deployed in United States, Australia and Europe are facing great challenge to produce uniformly focused sunlight on the solar cells as to reduce the cost of electrical power generation. The concept of non-imaging optics is not new, but it has not fully explored by the researchers over the world especially in solving the problem of high concentration solar energy, which application is only limited to be a secondary focusing device or low concentration device using Compound Parabolic Concentrator. With the current advancement in the computer processing power, we has successfully invented the non-imaging dish concentrator (NIDC) using numerical simulation method to replace the current parabolic dish as primary focusing device with high solar concentration ratio (more than 400 suns) and large collective area (from 25 to 125 m2). In this paper, we disclose our research and development on dense array CPV system based on non-imaging optics. The geometry of the NIDC is determined using a special computational method. In addition, an array of secondary concentrators, namely crossed compound parabolic concentrators, is also proposed to further focus the concentrated sunlight by the NIDC onto active area of solar cells of the concentrator photovoltaic receiver. The invention maximizes the absorption of concentrated sunlight for the electric power generation system.

  8. Active-Source Seismic Tomography at Bradys Geothermal Field, Nevada, with Dense Nodal and Fiber-Optic Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Thurber, C. H.; Parker, L.; Li, P.; Fratta, D.; Zeng, X.; Feigl, K. L.; Ak, E.; Lord, N.

    2017-12-01

    We deployed a dense seismic array to image the shallow structure in the injection area of the Brady Hot Springs geothermal site in Nevada. The array was composed of 238 5 Hz, three-component nodal instruments and 8,700 m of distributed acoustic sensing (DAS) fiber-optic cable installed in surface trenches plus about 400 m installed in a borehole. The geophone array had about 60 m instrument spacing in the target zone, whereas DAS channel separations were about 1 m. The acquisition systems provided 15 days of continuous records including active source and ambient noise signals. A large vibroseis truck (T-Rex) was operated at 196 locations, exciting a swept-frequency signal from 5 to 80 Hz over 20 seconds using three vibration modes. Sweeps were repeated up to four times during different modes of geothermal plant operation: normal operation, shut-down, high and oscillatory injection and production, and normal operation again. The cross-correlation method was utilized to remove the sweep signal from the geophone records. The first P arrivals were automatically picked from the cross-correlation functions using a combination of methods, and the travel times were used to invert for the 3D P-wave velocity structure. Models with 100 m and 50 m horizontal node spacing were obtained, with vertical node spacing of 10 to 50 m. The travel time data were fit to about 30 ms, close to our estimated picking uncertainty. We will present our 3D Vp model and the result of our search for measurable temporal changes, along with preliminary results for a 3D Vs model. The work presented herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award Number DE-EE0006760.

  9. Optical performance of prototype horn-coupled TES bolometer arrays for SAFARI

    NASA Astrophysics Data System (ADS)

    Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Hijmering, Richard; Ridder, Marcel L.

    2016-07-01

    The SAFARI Detector Test Facility is an ultra-low background optical testbed for characterizing ultra-sensitive prototype horn-coupled TES bolmeters for SAFARI, the grating spectrometer on board the proposed SPICA satellite. The testbed contains internal cold and hot black-body illuminators and a light-pipe for illumination with an external source. We have added reimaging optics to facilitate array optical measurements. The system is now being used for optical testing of prototype detector arrays read out with frequency-domain multiplexing. We present our latest optical measurements of prototype arrays and discuss these in terms of the instrument performance.

  10. Development of the Ultra-Light Stretched Lens Array

    NASA Technical Reports Server (NTRS)

    O'Neill, M. J.; McDanal, A. J.; George, P. J.; Piszczor, M. F.; Edwards, D. L.; Botke, M. M.; Jaster, P. A.; Brandhorst, H. W.; Eskenazi, M.I.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    At the last IEEE (Institute of Electrical and Electronics Engineers) PVSC (Photovoltaic Specialists Conference), the new stretched lens array (SLA) concept was introduced. Since that conference, the SLA team has made significant advances in the SLA technology, including component level improvements, array level optimization, space environment exposure testing, and prototype hardware fabrication and evaluation. This paper will describe the evolved version of the SLA, highlighting the improvements in the lens, solar cell, rigid panel structure, and complete solar array wing. The near term SLA will provide outstanding wing level performance: greater than 180 W/kg specific power, greater than 300 W/sq m power density, greater than 300 V operational voltage, and excellent durability in the space environment.

  11. A Novel Femtosecond-gated, High-resolution, Frequency-shifted Shearing Interferometry Technique for Probing Pre-plasma Expansion in Ultra-intense Laser Experiments

    DTIC Science & Technology

    2014-07-17

    frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experimentsa) Ultra-intense laser -matter...interaction experiments (>1018 W/cm2) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the...interferometry technique for probing pre- plasma expansion in ultra-intense laser experimentsa) Report Title Ultra-intense laser -matter interaction

  12. Ionospheric holes made by ballistic missiles from North Korea detected with a Japanese dense GPS array

    NASA Astrophysics Data System (ADS)

    Ozeki, Masaru; Heki, Kosuke

    2010-09-01

    A dense array of global positioning system (GPS) receivers is a useful tool to study ionospheric disturbances. Here we report observations by a Japanese GPS array of ionospheric holes, i.e., localized electron depletion. They were made by neutral molecules in exhaust plumes (e.g., water) of ballistic missiles from North Korea, Taepodong-1 and -2, launched on 31 August, 1998, and 5 April, 2009, respectively. Negative anomaly of electron density emerged ˜6 min after the launches in the middle of the Japan Sea, and extended eastward along the missile tracks. By comparing the numerical simulation of electron depletion and the observed change in ionospheric total electron content, we suggest that the exhaust plumes from the Taepodong-2 second stage effused up to ˜1.5 × 1026 water molecules per second. The ionospheric hole signature was used to constrain the Taepodong-2 trajectory together with other information, e.g., coordinates of the launch pad, time and coordinates of the first stage splashdown, and height and time of the second stage passage over Japan. The Taepodong-2 is considered to have reached the ionospheric F region in ˜6 min, flown above northeastern Japan ˜7 min after the launch, and crashed to the Pacific Ocean without attaining the first astronautical velocity. The ionospheric hole in the 1998 Taepodong-1 launch was much less in size, but it is difficult to compare directly the thrusts of the two missiles due to uncertainty of the Taepodong-1 trajectory.

  13. Detection of small earthquakes with dense array data: example from the San Jacinto fault zone, southern California

    NASA Astrophysics Data System (ADS)

    Meng, Haoran; Ben-Zion, Yehuda

    2018-01-01

    We present a technique to detect small earthquakes not included in standard catalogues using data from a dense seismic array. The technique is illustrated with continuous waveforms recorded in a test day by 1108 vertical geophones in a tight array on the San Jacinto fault zone. Waveforms are first stacked without time-shift in nine non-overlapping subarrays to increase the signal-to-noise ratio. The nine envelope functions of the stacked records are then multiplied with each other to suppress signals associated with sources affecting only some of the nine subarrays. Running a short-term moving average/long-term moving average (STA/LTA) detection algorithm on the product leads to 723 triggers in the test day. Using a local P-wave velocity model derived for the surface layer from Betsy gunshot data, 5 s long waveforms of all sensors around each STA/LTA trigger are beamformed for various incident directions. Of the 723 triggers, 220 are found to have localized energy sources and 103 of these are confirmed as earthquakes by verifying their observation at 4 or more stations of the regional seismic network. This demonstrates the general validity of the method and allows processing further the validated events using standard techniques. The number of validated events in the test day is >5 times larger than that in the standard catalogue. Using these events as templates can lead to additional detections of many more earthquakes.

  14. Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Yehuda; Vernon, Frank L.; Ozakin, Yaman; Zigone, Dimitri; Ross, Zachary E.; Meng, Haoran; White, Malcolm; Reyes, Juan; Hollis, Dan; Barklage, Mitchell

    2015-07-01

    We discuss several outstanding aspects of seismograms recorded during >4 weeks by a spatially dense Nodal array, straddling the damage zone of the San Jacinto fault in southern California, and some example results. The waveforms contain numerous spikes and bursts of high-frequency waves (up to the recorded 200 Hz) produced in part by minute failure events in the shallow crust. The high spatial density of the array facilitates the detection of 120 small local earthquakes in a single day, most of which not detected by the surrounding ANZA and regional southern California networks. Beamforming results identify likely ongoing cultural noise sources dominant in the frequency range 1-10 Hz and likely ongoing earthquake sources dominant in the frequency range 20-40 Hz. Matched-field processing and back-projection of seismograms provide alternate event location. The median noise levels during the experiment at different stations, waves generated by Betsy gunshots, and wavefields from nearby earthquakes point consistently to several structural units across the fault. Seismic trapping structure and local sedimentary basin produce localized motion amplification and stronger attenuation than adjacent regions. Cross correlations of high-frequency noise recorded at closely spaced stations provide a structural image of the subsurface material across the fault zone. The high spatial density and broad frequency range of the data can be used for additional high resolution studies of structure and source properties in the shallow crust.

  15. Gold nanochestnut arrays as ultra-sensitive SERS substrate for detecting trace pesticide residue.

    PubMed

    Geng, Fei; Zhao, Huaping; Fu, Qun; Mi, Yan; Miao, Likun; Li, Wei; Dong, Yulian; Wu, Minghong; Lei, Yong

    2018-07-20

    In comparison to conventional spectroscopic techniques based on chromatography, surface-enhanced Raman spectroscopy (SERS) enables the rapid identification and detection of trace pesticide residues present in trace amounts in the environment and foods. Herein, a facile approach to fabricate unique gold nanochestnuts (GNCs) as an ultra-sensitive SERS substrate for detecting trace pesticide residues has been developed based on anodic aluminum oxide (AAO) templates. The GNCs are synthesized through the galvanic replacement of Ag on the top of Ni nanorod arrays. The as-prepared GNCs have well-controlled structural parameters, and importantly have unique anisotropic morphologies that benefit the enhancement in SERS performance. As a result, rhodamine 6 G (R6G) can be efficiently detected with GNCs as the SERS substrate even with a concentration of only 10 -12 M, and the Raman enhancement factor reaches up to 5.4 × 10 9 at this concentration. Further SERS measurement of thiram indicates a remarkable SERS-active sensitivity of the as-prepared GNCs with a detection limit of thiram up to 10 -14 M. The GNCs also exhibit a high signal-to-noise ratio.

  16. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGES

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10 25 m -3 and 1.6 x 10 28 m -3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlargingmore » the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  17. Study of dispersion of mass distribution of ultra-high energy cosmic rays using a surface array of muon and electromagnetic detectors

    NASA Astrophysics Data System (ADS)

    Vícha, Jakub; Trávníček, Petr; Nosek, Dalibor; Ebr, Jan

    2015-09-01

    We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.

  18. Promising Results from Three NASA SBIR Solar Array Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael

    2005-01-01

    Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW

  19. Large-eddy simulation of dense gas dispersion over a simplified urban area

    NASA Astrophysics Data System (ADS)

    Wingstedt, E. M. M.; Osnes, A. N.; Åkervik, E.; Eriksson, D.; Reif, B. A. Pettersson

    2017-03-01

    Dispersion of neutral and dense gas over a simplified urban area, comprising four cubes, has been investigated by the means of large-eddy simulations (LES). The results have been compared to wind tunnel experiments and both mean and fluctuating quantities of velocity and concentration are in very good agreement. High-quality inflow profiles are necessary to achieve physically realistic LES results. In this study, profiles matching the atmospheric boundary layer flow in the wind tunnel, are generated by means of a separate precursor simulation. Emission of dense gas dramatically alters the flow in the near source region and introduces an upstream dispersion. The resulting dispersion patterns of neutral and dense gas differ significantly, where the plume in the latter case is wider and shallower. The dense gas is highly affected by the cube array, which seems to act as a barrier, effectively deflecting the plume. This leads to higher concentrations outside of the array than inside. On the contrary, the neutral gas plume has a Gaussian-type shape, with highest concentrations along the centreline. It is found that the dense gas reduces the vertical and spanwise turbulent momentum transport and, as a consequence, the turbulence kinetic energy. The reduction coincides with the area where the gradient Richardson number exceeds its critical value, i.e. where the flow may be characterized as stably stratified. Interestingly, this region does not correspond to where the concentration of dense gas is the highest (close to the ground), as this is also where the largest velocity gradients are to be found. Instead there is a layer in the middle of the dense gas cloud where buoyancy is dynamically dominant.

  20. Fabrication of micro-lens array on convex surface by meaning of micro-milling

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Du, Yunlong; Wang, Bo; Shan, Debin

    2014-08-01

    In order to develop the application of the micro-milling technology, and to fabricate ultra-precision optical surface with complex microstructure, in this paper, the primary experimental research on micro-milling complex microstructure array is carried out. A complex microstructure array surface with vary parameters is designed, and the mathematic model of the surface is set up and simulated. For the fabrication of the designed microstructure array surface, a micro three-axis ultra-precision milling machine tool is developed, aerostatic guideway drove directly by linear motor is adopted in order to guarantee the enough stiffness of the machine, and novel numerical control strategy with linear encoders of 5nm resolution used as the feedback of the control system is employed to ensure the extremely high motion control accuracy. With the help of CAD/CAM technology, convex micro lens array on convex spherical surface with different scales on material of polyvinyl chloride (PVC) and pure copper is fabricated using micro tungsten carbide ball end milling tool based on the ultra-precision micro-milling machine. Excellent nanometer-level micro-movement performance of the axis is proved by motion control experiment. The fabrication is nearly as the same as the design, the characteristic scale of the microstructure is less than 200μm and the accuracy is better than 1μm. It prove that ultra-precision micro-milling technology based on micro ultra-precision machine tool is a suitable and optional method for micro manufacture of microstructure array surface on different kinds of materials, and with the development of micro milling cutter, ultraprecision micro-milling complex microstructure surface will be achieved in future.

  1. New Ultra-Compact Dwarf Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    How do ultra-compact dwarf galaxies (UCDs) galaxies that are especially small and dense form and evolve? Scientists have recently examined distant galaxy clusters, searching for more UCDs to help us answer this question.Origins of DwarfsIn recent years we have discovered a growing sample of small, very dense galaxies. Galaxies that are tens to hundreds of light-years across, with masses between a million and a billion solar masses, fall into category of ultra-compact dwarfs (UCDs).An example of an unresolved compact object from the authors survey that is likely an ultra-compact dwarf galaxy. [Adapted from Zhang Bell 2017]How do these dense and compact galaxies form? Two possibilities are commonly suggested:An initially larger galaxy was tidally stripped during interactions with other galaxies in a cluster, leaving behind only its small, dense core as a UCD.UCDs formed as compact galaxies at very early cosmic times. The ones living in a massive dark matter halo may have been able to remain compact over time, evolving into the objectswe see today.To better understand which of these formation scenarios applies to which galaxies, we need a larger sample size! Our census of UCDs is fairly limited and because theyare small and dim, most of the ones weve discovered are in the nearby universe. To build a good sample, we need to find UCDs at higher redshifts as well.A New SampleIn a recent study, two scientists from University of Michigan have demonstrated how we might find more UCDs. Yuanyuan Zhang (also affiliated with Fermilab) and Eric Bell used the Cluster Lensing and Supernova Survey with Hubble (CLASH) to search 17 galaxy clusters at intermediate redshifts of 0.2 z 0.6, looking for unresolved objects that might be UCDs.The mass and size distributions of the UCD candidates reported in this study, in the context of previously known nuclear star clusters, globular clusters (GCs), UCDs, compact elliptical galaxies (cEs), and dwarf galaxies. [Zhang Bell 2017]Zhang and

  2. Site response, shallow shear-wave velocity, and wave propagation at the San Jose, California, dense seismic array

    USGS Publications Warehouse

    Hartzell, S.; Carver, D.; Williams, R.A.; Harmsen, S.; Zerva, A.

    2003-01-01

    Ground-motion records from a 52-element dense seismic array near San Jose, California, are analyzed to obtain site response, shallow shear-wave velocity, and plane-wave propagation characteristics. The array, located on the eastern side of the Santa Clara Valley south of the San Francisco Bay, is sited over the Evergreen basin, a 7-km-deep depression with Miocene and younger deposits. Site response values below 4 Hz are up to a factor of 2 greater when larger, regional records are included in the analysis, due to strong surface-wave development within the Santa Clara Valley. The pattern of site amplification is the same, however, with local or regional events. Site amplification increases away from the eastern edge of the Santa Clara Valley, reaching a maximum over the western edge of the Evergreen basin, where the pre-Cenozoic basement shallows rapidly. Amplification then decreases further to the west. This pattern may be caused by lower shallow shear-wave velocities and thicker Quaternary deposits further from the edge of the Santa Clara Valley and generation/trapping of surface waves above the shallowing basement of the western Evergreen basin. Shear-wave velocities from the inversion of site response spectra based on smaller, local earthquakes compare well with those obtained independently from our seismic reflection/refraction measurements. Velocities from the inversion of site spectra that include larger, regional records do not compare well with these measurements. A mix of local and regional events, however, is appropriate for determination of site response to be used in seismic hazard evaluation, since large damaging events would excite both body and surface waves with a wide range in ray parameters. Frequency-wavenumber, plane-wave analysis is used to determine the backazimuth and apparent velocity of coherent phases at the array. Conventional, high-resolution, and multiple signal characterization f-k power spectra and stacked slowness power spectra are

  3. 24-71 GHz PCB Array for 5G ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Millimeter-wave 5G mobile architectures need to consolidate disparate frequency bands into a single, multifunctional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter wave array to operate across six 5G and ISM bands spanning 24-71 GHz. Importantly, the array is realized using low-cost PCB. The paper presents the design and optimized layout, and discusses fabrication and measurements.

  4. Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays.

    PubMed

    Gosso, Sara; Turturici, Marco; Franchino, Claudio; Colombo, Elisabetta; Pasquarelli, Alberto; Carbone, Emilio; Carabelli, Valentina

    2014-08-01

    Here we describe the ability of a high-density diamond microelectrode array targeted to resolve multi-site detection of fast exocytotic events from single cells. The array consists of nine boron-doped nanocrystalline diamond ultra-microelectrodes (9-Ch NCD-UMEA) radially distributed within a circular area of the dimensions of a single cell. The device can be operated in voltammetric or chronoamperometric configuration. Sensitivity to catecholamines, tested by dose-response calibrations, set the lowest detectable concentration of adrenaline to ∼5 μm. Catecholamine release from bovine or mouse chromaffin cells could be triggered by electrical stimulation or external KCl-enriched solutions. Spikes detected from the cell apex using carbon fibre microelectrodes showed an excellent correspondence with events measured at the bottom of the cell by the 9-Ch NCD-UMEA, confirming the ability of the array to resolve single quantal secretory events. Subcellular localization of exocytosis was provided by assigning each quantal event to one of the nine channels based on its location. The resulting mapping highlights the heterogeneous distribution of secretory activity in cell microdomains of 12-27 μm2. In bovine chromaffin cells, secretion was highly heterogeneous with zones of high and medium activity in 54% of the cell surface and zones of low or no activity in the remainder. The 'non-active' ('silent') zones covered 24% of the total and persisted for 6-8 min, indicating stable location. The 9-Ch NCD-UMEA therefore appears suitable for investigating the microdomain organization of neurosecretion with high spatial resolution. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  5. Piezo-generator integrating a vertical array of GaN nanowires.

    PubMed

    Jamond, N; Chrétien, P; Houzé, F; Lu, L; Largeau, L; Maugain, O; Travers, L; Harmand, J C; Glas, F; Lefeuvre, E; Tchernycheva, M; Gogneau, N

    2016-08-12

    We demonstrate the first piezo-generator integrating a vertical array of GaN nanowires (NWs). We perform a systematic multi-scale analysis, going from single wire properties to macroscopic device fabrication and characterization, which allows us to establish for GaN NWs the relationship between the material properties and the piezo-generation, and to propose an efficient piezo-generator design. The piezo-conversion of individual MBE-grown p-doped GaN NWs in a dense array is assessed by atomic force microscopy (AFM) equipped with a Resiscope module yielding an average output voltage of 228 ± 120 mV and a maximum value of 350 mV generated per NW. In the case of p-doped GaN NWs, the piezo-generation is achieved when a positive piezo-potential is created inside the nanostructures, i.e. when the NWs are submitted to compressive deformation. The understanding of the piezo-generation mechanism in our GaN NWs, gained from AFM analyses, is applied to design a piezo-generator operated under compressive strain. The device consists of NW arrays of several square millimeters in size embedded into spin-on glass with a Schottky contact for rectification and collection of piezo-generated carriers. The generator delivers a maximum power density of ∼12.7 mW cm(-3). This value sets the new state of the art for piezo-generators based on GaN NWs and more generally on nitride NWs, and offers promising prospects for the use of GaN NWs as high-efficiency ultra-compact energy harvesters.

  6. Spectrally Resolved Intensities of Ultra-Dense Hot Aluminum Plasmas

    NASA Astrophysics Data System (ADS)

    Gil, J. M.; Rodríguez, R.; Florido, R.; Rubiano, J. G.; Martel, P.; Mínguez, E.; Sauvan, P.; Angelo, P.; Schott, R.; Dalimier, E.; Mancini, R.

    2008-10-01

    We present a first study of spectroscopic determination of electron temperature and density spatial profiles of aluminum K-shell line emission spectra from laser-shocked aluminum experiments performed at LULI. The radiation emitted by the aluminum plasma was dispersed with an ultra-high resolution spectrograph (λ/Δλ≈6000). From the recorded films one can extract a set of time-integrated emission lineouts associated with the corresponding spatial region of the plasma. The observed spectra include the Lyα, Heβ, Heγ, Lyβ and Lyγ line emissions and their associated He- and Li-like satellites thus covering a photon energy range from 1700 eV to 2400 eV approximately. The data analysis rely on the ABAKO/RAPCAL computational package, which has been recently developed at the University of Las Palmas de Gran Canaria and takes into account non-equilibrium collisional-radiative atomic kinetics, Stark broadened line shapes and radiation transport calculations.

  7. The Stretched Lens Array (SLA): An Ultra-Light Photovoltaic Concentrator

    NASA Technical Reports Server (NTRS)

    ONeill, Mark J.; Pisczor, Michael F.; Eskenazi, Michael I.; McDanal, A. J.; George, Patrick J.; Botke, Matthew M.; Brandhorst, Henry W.; Edwards, David L.; Jaster, Paul A.

    2002-01-01

    A high-performance, ultralight, photovoltaic concentrator array is being developed for space power. The stretched lens array (SLA) uses stretched-membrane, silicone Fresnel lenses to concentrate sunlight onto triple-junction photovoltaic cells. The cells are mounted to a composite radiator structure. The entire solar array wing, including lenses, photovoltaic cell flex circuits, composite panels, hinges, yoke, wiring harness, and deployment mechanisms, has a mass density of 1.6 kg/sq.m. NASA Glenn has measured 27.4% net SLA panel efficiency, or 375 W/sq.m. power density, at room temperature. At GEO operating cell temperature (80 C), this power density will be 300 W/sq.m., resulting in more than 180 W/kg specific power at the full wing level. SLA is a direct ultralight descendent of the successful SCARLET array on NASA's Deep Space 1 spacecraft. This paper describes the evolution from SCARLET to SLA, summarizes the SLA's key features, and provides performance and mass data for this new concentrator array.

  8. Seismicity and Crustal Anisotropy Beneath the Western Segment of the North Anatolian Fault: Results from a Dense Seismic Array

    NASA Astrophysics Data System (ADS)

    Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Cambaz, D.; Mutlu, A. K.; Kahraman, M.; Houseman, G. A.; Rost, S.; Thompson, D. A.; Cornwell, D. G.; Utkucu, M.; Gülen, L.

    2013-12-01

    The North Anatolian Fault (NAF) is one of the major strike slip fault systems on Earth comparable to San Andreas Fault in some ways. Devastating earthquakes have occurred along this system causing major damage and casualties. In order to comprehensively investigate the shallow and deep crustal structure beneath the western segment of NAF, a temporary dense seismic network for North Anatolia (DANA) consisting of 73 broadband sensors was deployed in early May 2012 surrounding a rectangular grid of by 70 km and a nominal station spacing of 7 km with the aim of further enhancing the detection capability of this dense seismic array. This joint project involves researchers from University of Leeds, UK, Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI), and University of Sakarya and primarily focuses on upper crustal studies such as earthquake locations (especially micro-seismic activity), receiver functions, moment tensor inversions, shear wave splitting, and ambient noise correlations. To begin with, we obtained the hypocenter locations of local earthquakes that occured within the DANA network. The dense 2-D grid geometry considerably enhanced the earthquake detection capability which allowed us to precisely locate events with local magnitudes (Ml) less than 1.0. Accurate earthquake locations will eventually lead to high resolution images of the upper crustal structure beneath the northern and southern branches of NAF in Sakarya region. In order to put additional constraints on the active tectonics of the western part of NAF, we also determined fault plane solutions using Regional Moment Tensor Inversion (RMT) and P wave first motion methods. For the analysis of high quality fault plane solutions, data from KOERI and the DANA project were merged. Furthermore, with the aim of providing insights on crustal anisotropy, shear wave splitting parameters such as lag time and fast polarization direction were obtained for local events recorded

  9. Dense Array of Spikes on HIV-1 Virion Particles.

    PubMed

    Stano, Armando; Leaman, Daniel P; Kim, Arthur S; Zhang, Lei; Autin, Ludovic; Ingale, Jidnyasa; Gift, Syna K; Truong, Jared; Wyatt, Richard T; Olson, Arthur J; Zwick, Michael B

    2017-07-15

    HIV spikes were screened on the basis of high binding by bnAbs and low binding by nonneutralizing antibodies. Levels of spikes on cells correlated well with those on progeny virions. Importantly, high-Env virus-like particles (hVLPs) were produced with a manifest array of well-defined spikes, and these were shown to be superior in activating desirable B cells. Our study describes HIV particles that are densely coated with functional spikes, which should facilitate the study of HIV spikes and their development as immunogens. Copyright © 2017 American Society for Microbiology.

  10. Case study: dairies utilizing ultra-high stock density grazing in the Northeast

    USDA-ARS?s Scientific Manuscript database

    Ultra-high stock density (UHSD) grazing has gained interest in the forage industry. However, little credible research exists to support anecdotal claims that forage and soil improvement occur through trampling high proportions (75+%) of mature forage into the soil by grazing dense groups of cattle o...

  11. Ultrahigh Detective Heterogeneous Photosensor Arrays with In-Pixel Signal Boosting Capability for Large-Area and Skin-Compatible Electronics.

    PubMed

    Kim, Jaehyun; Kim, Jaekyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Myungwon; Moon, Juhyuk; Yang, Lin; Kim, Myung-Gil; Kim, Yong-Hoon; Park, Sung Kyu

    2016-04-01

    An ultra-thin and large-area skin-compatible heterogeneous organic/metal-oxide photosensor array is demonstrated which is capable of sensing and boosting signals with high detectivity and signal-to-noise ratio. For the realization of ultra-flexible and high-sensitive heterogeneous photosensor arrays on a polyimide substrate having organic sensor arrays and metal-oxide boosting circuitry, solution-processing and room-temperature alternating photochemical conversion routes are applied. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. On the role of ultra-thin oxide cathode synthesis on the functionality of micro-solid oxide fuel cells: Structure, stress engineering and in situ observation of fuel cell membranes during operation

    NASA Astrophysics Data System (ADS)

    Lai, Bo-Kuai; Kerman, Kian; Ramanathan, Shriram

    Microstructure and stresses in dense La 0.6Sr 0.4Co 0.8Fe 0.2O 3 (LSCF) ultra-thin films have been investigated to increase the physical thickness of crack-free cathodes and active area of thermo-mechanically robust micro-solid oxide fuel cell (μSOFC) membranes. Processing protocols employ low deposition rates to create a highly granular nanocrystalline microstructure in LSCF thin films and high substrate temperatures to produce linear temperature-dependent stress evolution that is dominated by compressive stresses in μSOFC membranes. Insight and trade-off on the synthesis are revealed by probing microstructure evolution and electrical conductivity in LSCF thin films, in addition to in situ monitoring of membrane deformation while measuring μSOFC performance at varying temperatures. From these studies, we were able to successfully fabricate failure-resistant square μSOFC (LSCF/YSZ/Pt) membranes with width of 250 μm and crack-free cathodes with thickness of ∼70 nm. Peak power density of ∼120 mW cm -2 and open circuit voltage of ∼0.6 V at 560 °C were achieved on a μSOFC array chip containing ten such membranes. Mechanisms affecting fuel cell performance are discussed. Our results provide fundamental insight to pathways of microstructure and stress engineering of ultra-thin, dense oxide cathodes and μSOFC membranes.

  13. Ultra-large scale AFM of lipid droplet arrays: investigating the ink transfer volume in dip pen nanolithography.

    PubMed

    Förste, Alexander; Pfirrmann, Marco; Sachs, Johannes; Gröger, Roland; Walheim, Stefan; Brinkmann, Falko; Hirtz, Michael; Fuchs, Harald; Schimmel, Thomas

    2015-05-01

    There are only few quantitative studies commenting on the writing process in dip-pen nanolithography with lipids. Lipids are important carrier ink molecules for the delivery of bio-functional patters in bio-nanotechnology. In order to better understand and control the writing process, more information on the transfer of lipid material from the tip to the substrate is needed. The dependence of the transferred ink volume on the dwell time of the tip on the substrate was investigated by topography measurements with an atomic force microscope (AFM) that is characterized by an ultra-large scan range of 800 × 800 μm(2). For this purpose arrays of dots of the phospholipid1,2-dioleoyl-sn-glycero-3-phosphocholine were written onto planar glass substrates and the resulting pattern was imaged by large scan area AFM. Two writing regimes were identified, characterized of either a steady decline or a constant ink volume transfer per dot feature. For the steady state ink transfer, a linear relationship between the dwell time and the dot volume was determined, which is characterized by a flow rate of about 16 femtoliters per second. A dependence of the ink transport from the length of pauses before and in between writing the structures was observed and should be taken into account during pattern design when aiming at best writing homogeneity. The ultra-large scan range of the utilized AFM allowed for a simultaneous study of the entire preparation area of almost 1 mm(2), yielding good statistic results.

  14. Ultra-large scale AFM of lipid droplet arrays: investigating the ink transfer volume in dip pen nanolithography

    NASA Astrophysics Data System (ADS)

    Förste, Alexander; Pfirrmann, Marco; Sachs, Johannes; Gröger, Roland; Walheim, Stefan; Brinkmann, Falko; Hirtz, Michael; Fuchs, Harald; Schimmel, Thomas

    2015-05-01

    There are only few quantitative studies commenting on the writing process in dip-pen nanolithography with lipids. Lipids are important carrier ink molecules for the delivery of bio-functional patters in bio-nanotechnology. In order to better understand and control the writing process, more information on the transfer of lipid material from the tip to the substrate is needed. The dependence of the transferred ink volume on the dwell time of the tip on the substrate was investigated by topography measurements with an atomic force microscope (AFM) that is characterized by an ultra-large scan range of 800 × 800 μm2. For this purpose arrays of dots of the phospholipid1,2-dioleoyl-sn-glycero-3-phosphocholine were written onto planar glass substrates and the resulting pattern was imaged by large scan area AFM. Two writing regimes were identified, characterized of either a steady decline or a constant ink volume transfer per dot feature. For the steady state ink transfer, a linear relationship between the dwell time and the dot volume was determined, which is characterized by a flow rate of about 16 femtoliters per second. A dependence of the ink transport from the length of pauses before and in between writing the structures was observed and should be taken into account during pattern design when aiming at best writing homogeneity. The ultra-large scan range of the utilized AFM allowed for a simultaneous study of the entire preparation area of almost 1 mm2, yielding good statistic results.

  15. Imaging subsurface hydrothermal structure using a dense geophone array in Yellowstone

    NASA Astrophysics Data System (ADS)

    Wu, S. M.; Lin, F. C.; Farrell, J.; Smith, R. B.

    2016-12-01

    The recent development of ambient noise cross-correlation and the availability of large N seismic arrays allow for the study of detailed shallow crustal structure. In this study, we apply multi-component noise cross-correlation to explore shallow hydrothermal structure near Old Faithful geyser in Yellowstone National Park using a temporary geophone array. The array was composed of 133 three-component 5-Hz geophones and was deployed for two weeks during November 2015. The average station spacing is 50 meters and the full aperture of the array is around 1 km with good azimuthal and spatial coverage. The Upper Geyser Basin, where Old Faithful is located, has the largest concentration of geysers in the world. This unique active hydrothermal environment and hence the extremely inhomogeneous noise source distribution makes the construction of empirical Green's functions difficult based on the traditional noise cross-correlation method. In this presentation, we show examples of the constructed cross-correlation functions and demonstrate their spatial and temporal relationships with known hydrothermal activity. We also demonstrate how useful seismic signals can be extracted from these cross-correlation functions and used for subsurface imaging. In particular, we will discuss the existence of a recharge cavity beneath Old Faithful revealed by the noise cross-correlations. In addition, we also investigated the temporal structure variation based on time-lapse noise cross-correlations and these preliminary results will also be discussed.

  16. Ge/Si(001) heterostructures with dense arrays of Ge quantum dots: morphology, defects, photo-emf spectra and terahertz conductivity.

    PubMed

    Yuryev, Vladimir A; Arapkina, Larisa V; Storozhevykh, Mikhail S; Chapnin, Valery A; Chizh, Kirill V; Uvarov, Oleg V; Kalinushkin, Victor P; Zhukova, Elena S; Prokhorov, Anatoly S; Spektor, Igor E; Gorshunov, Boris P

    2012-07-23

    : Issues of Ge hut cluster array formation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Dynamics of the RHEED patterns in the process of Ge hut array formation is investigated at low and high temperatures of Ge deposition. Different dynamics of RHEED patterns during the deposition of Ge atoms in different growth modes is observed, which reflects the difference in adatom mobility and their 'condensation' fluxes from Ge 2D gas on the surface for different modes, which in turn control the nucleation rates and densities of Ge clusters. Data of HRTEM studies of multilayer Ge/Si heterostructures are presented with the focus on low-temperature formation of perfect films.Heteroepitaxial Si p-i-n-diodes with multilayer stacks of Ge/Si(001) quantum dot dense arrays built in intrinsic domains have been investigated and found to exhibit the photo-emf in a wide spectral range from 0.8 to 5 μm. An effect of wide-band irradiation by infrared light on the photo-emf spectra has been observed. Photo-emf in different spectral ranges has been found to be differently affected by the wide-band irradiation. A significant increase in photo-emf is observed in the fundamental absorption range under the wide-band irradiation. The observed phenomena are explained in terms of positive and neutral charge states of the quantum dot layers and the Coulomb potential of the quantum dot ensemble. A new design of quantum dot infrared photodetectors is proposed.By using a coherent source spectrometer, first measurements of terahertz dynamical conductivity (absorptivity) spectra of Ge/Si(001) heterostructures were performed at frequencies ranged from 0.3 to 1.2 THz in the temperature interval from 300 to 5 K. The effective dynamical conductivity of the heterostructures with Ge quantum dots has been discovered to be significantly higher than that of the structure with the same amount of bulk

  17. Teleseismic Array Studies of Earth's Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Alexandrakis, Catherine

    2011-12-01

    The core mantle boundary (CMB) is an inaccessible and complex region, knowledge of which is vital to our understanding of many Earth processes. Above it is the heterogeneous lower-mantle. Below the boundary is the outer-core, composed of liquid iron, and/or nickel and some lighter elements. Elucidation of how these two distinct layers interact may enable researchers to better understand the geodynamo, global tectonics, and overall Earth history. One parameter that can be used to study structure and limit potential chemical compositions is seismic-wave velocity. Current global-velocity models have significant uncertainties in the 200 km above and below the CMB. In this thesis, these regions are studied using three methods. The upper outer core is studied using two seismic array methods. First, a modified vespa, or slant-stack method is applied to seismic observations at broadband seismic arrays, and at large, dense groups of broadband seismic stations dubbed 'virtual' arrays. Observations of core-refracted teleseismic waves, such as SmKS, are used to extract relative arrivaltimes. As with previous studies, lower -mantle heterogeneities influence the extracted arrivaltimes, giving significant scatter. To remove raypath effects, a new method was developed, called Empirical Transfer Functions (ETFs). When applied to SmKS waves, this method effectively isolates arrivaltime perturbations caused by outer core velocities. By removing raypath effects, the signals can be stacked further reducing scatter. The results of this work were published as a new 1D outer-core model, called AE09. This model describes a well-mixed outer core. Two array methods are used to detect lower mantle heterogeneities, in particular Ultra-Low Velocity Zones (ULVZs). The ETF method and beam forming are used to isolate a weak P-wave that diffracts along the CMB. While neither the ETF method nor beam forming could adequately image the low-amplitude phase, beam forms of two events indicate precursors

  18. Development of Ultra-Low Noise, High Sensitivity Planar Metal Grating Coupled AlGaAs/GaAs Multiquantum Well IR Detectors for Focal Plane Array Staring IR Sensor Systems

    DTIC Science & Technology

    1992-02-01

    Development of Ultra-Low Noise , High Sensitivity Planar Metal Grating Coupled AlGaAs/GaAs Multiquantum Well IR Detectors for Focal Plane Array Staring IR...dark current at 77 K was 10 times lower than the conventional QWIP reported in the literature. anid the BTM QWIP showed a largely enhanced intersubband...bias voltage in the BTM and SBTM1 QWIPs . The results reveal thiat therinionic emission is dominant current conduction mechianismn at higher temp

  19. Design Method For Ultra-High Resolution Linear CCD Imagers

    NASA Astrophysics Data System (ADS)

    Sheu, Larry S.; Truong, Thanh; Yuzuki, Larry; Elhatem, Abdul; Kadekodi, Narayan

    1984-11-01

    This paper presents the design method to achieve ultra-high resolution linear imagers. This method utilizes advanced design rules and novel staggered bilinear photo sensor arrays with quadrilinear shift registers. Design constraint in the detector arrays and shift registers are analyzed. Imager architecture to achieve ultra-high resolution is presented. The characteristics of MTF, aliasing, speed, transfer efficiency and fine photolithography requirements associated with this architecture are also discussed. A CCD imager with advanced 1.5 um minimum feature size was fabricated. It is intended as a test vehicle for the next generation small sampling pitch ultra-high resolution CCD imager. Standard double-poly, two-phase shift registers were fabricated at an 8 um pitch using the advanced design rules. A special process step that blocked the source-drain implant from the shift register area was invented. This guaranteed excellent performance of the shift registers regardless of the small poly overlaps. A charge transfer efficiency of better than 0.99995 and maximum transfer speed of 8 MHz were achieved. The imager showed excellent performance. The dark current was less than 0.2 mV/ms, saturation 250 mV, adjacent photoresponse non-uniformity ± 4% and responsivity 0.7 V/ μJ/cm2 for the 8 μm x 6 μm photosensor size. The MTF was 0.6 at 62.5 cycles/mm. These results confirm the feasibility of the next generation ultra-high resolution CCD imagers.

  20. Telescope Array Results on UHE Cosmic Rays and the Plan

    NASA Astrophysics Data System (ADS)

    Sagawa, Hiroyuki

    The Telescope Array (TA) is the largest experiment in the Northern Hemisphere studying the origin and nature of ultra-high-energy cosmic rays. The TA detector consists of a surface array of 507 scintillation counters covering approximately 700 km2, and 38 fluorescence telescopes located at three sites looking over the surface array. Here, recent TA results using the first five years of data and our ongoing and near-future plans are presented.

  1. OH megamasers: dense gas & the infrared radiation field

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Zhang, JiangShui; Liu, Wei; Xu, Jie

    2018-06-01

    To investigate possible factors related to OH megamaser formation (OH MM, L_{H2O}>10L_{⊙}), we compiled a large HCN sample from all well-sampled HCN measurements so far in local galaxies and identified with the OH MM, OH kilomasers (L_{H2O}<10L_{⊙}, OH kMs), OH absorbers and OH non-detections (non-OH MM). Through comparative analysis on their infrared emission, CO and HCN luminosities (good tracers for the low-density gas and the dense gas, respectively), we found that OH MM galaxies tend to have stronger HCN emission and no obvious difference on CO luminosity exists between OH MM and non-OH MM. This implies that OH MM formation should be related to the dense molecular gas, instead of the low-density molecular gas. It can be also supported by other facts: (1) OH MMs are confirmed to have higher mean molecular gas density and higher dense gas fraction (L_{HCN}/L_{CO}) than non-OH MMs. (2) After taking the distance effect into account, the apparent maser luminosity is still correlated with the HCN luminosity, while no significant correlation can be found at all between the maser luminosity and the CO luminosity. (3) The OH kMs tend to have lower values than those of OH MMs, including the dense gas luminosity and the dense gas fraction. (4) From analysis of known data of another dense gas tracer HCO^+, similar results can also be obtained. However, from our analysis, the infrared radiation field can not be ruled out for the OH MM trigger, which was proposed by previous works on one small sample (Darling in ApJ 669:L9, 2007). On the contrary, the infrared radiation field should play one more important role. The dense gas (good tracers of the star formation) and its surrounding dust are heated by the ultra-violet (UV) radiation generated by the star formation and the heating of the high-density gas raises the emission of the molecules. The infrared radiation field produced by the re-radiation of the heated dust in turn serves for the pumping of the OH MM.

  2. Development of Ultra-Low-Noise TES Bolometer Arrays

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Khosropanah, P.; Ridder, M. L.; Hijmering, R. A.; Gao, J. R.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2× 10^{-19} hbox {W}/√{{ {Hz}}}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner ({<}0.25 \\upmu hbox {m}) and narrower ({<}1 \\upmu hbox {m}) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20 \\upmu hbox {m}), narrow (0.5-0.7 \\upmu hbox {m}), and long (340-460 \\upmu hbox {m}) SiN legs and show Tc of {˜ }93 hbox {mK} and Rn of {˜ }158 hbox {m}{Ω }. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1-3 MHz) system. TESs without the absorber show NEPs as low as 1.1 × 10^{-19} hbox {W}/√{{ {Hz}}} with a reasonable response speed ({<}1 hbox {ms}), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher hbox {NEP}_{el} ({˜ }5 × 10^{-19} hbox {W}/√{{ {Hz}}}) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.

  3. Damped Kadomtsev-Petviashvili Equation for Weakly Dissipative Solitons in Dense Relativistic Degenerate Plasmas

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Ata-ur-Rahman; Khan, S. A.; Hadi, F.

    2017-12-01

    We have investigated the properties of three-dimensional electrostatic ion solitary structures in highly dense collisional plasma composed of ultra-relativistically degenerate electrons and non-relativistic degenerate ions. In the limit of low ion-neutral collision rate, we have derived a damped Kadomtsev-Petviashvili (KP) equation using perturbation analysis. Supplemented by vanishing boundary conditions, the time varying solution of damped KP equation leads to a weakly dissipative compressive soliton. The real frequency behavior and linear damping of solitary pulse due to ion-neutral collisions is discussed. In the presence of weak transverse perturbations, soliton evolution with damping parameter and plasma density is delineated pointing out the extent of propagation using typical parameters of dense plasma in the interior of white dwarfs.

  4. Development Of Eej Model Based On Dense Ground-based Magnetometer Array

    NASA Astrophysics Data System (ADS)

    Matsushita, H.; Yoshikawa, A.; Uozumi, T.; Fujimoto, A.; Abe, S.; Ishitsuka I, J. K.; Veliz, O.; Rosales, D.; Safor, E.; Beteta, V.

    2016-12-01

    Equatorial Electro-jet(here after called EEJ) is the electric current which flows very narrow region in ionosphere of the earth, which is between +- 3 degree from dip latitude. The EEJ was noticed as the significant enhancement of daily variation of magnetic field, and later Hirono, (1950) explained it by adapting Cowling effect to the ionosphere of the earth. The EE index, is one of ICSWSE space weather indices, was developed by Uozumi et al., (2008). Then, ICSWSE has continued to monitor the EEJ activity by using this EE index. Fujimoto et al., (2016) investigated the relationship between solar activity and long term variation of EEJ, and Hamid et al., (2015) investigated longitudinal dependency of EEJ, both of them were based on EE index. The EE index provides EDst value, which is correspond to magnetic field change at dip equator caused by magnetospheric current such as ring current, and EUEL value, which is correspond to the one caused by ionospheric current such as EEJ and Sq. However, actual EEJ is not magnetic field but the current, and it has not only current intensity but also the width. Some previous paper reported the EEJ structure such as current density or the width of EEJ using satellite data (e.g. Lühr et al., 2004; Jadhav et al., 2002), which is good when it checks the longitudinal dependency because it shifts longitude in a day. However, the ground-based magnetometer may be well useful to investigate the day-to-day variability of EEJ because it is fixed to same location. So, we developed a model of EEJ, which can estimate the EEJ current structure by ground magnetometer using dense magnetometer array near dip equator. In this study, the EEJ structures along 75W and 135E longitude are represented, and are compared each other. The result shows that large standard deviation of both current density and the half width are identified, while previous studies reported constant half width (e.g. Lühr et al., 2004). When our EEJ model is compared with CM4

  5. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis.

    PubMed

    Shekhar, Shashank; Stokes, Paul; Khondaker, Saiful I

    2011-03-22

    We report ultrahigh density assembly of aligned single-walled carbon nanotube (SWNT) two-dimensional arrays via AC dielectrophoresis using high-quality surfactant-free and stable SWNT solutions. After optimization of frequency and trapping time, we can reproducibly control the linear density of the SWNT between prefabricated electrodes from 0.5 SWNT/μm to more than 30 SWNT/μm by tuning the concentration of the nanotubes in the solution. Our maximum density of 30 SWNT/μm is the highest for aligned arrays via any solution processing technique reported so far. Further increase of SWNT concentration results in a dense array with multiple layers. We discuss how the orientation and density of the nanotubes vary with concentrations and channel lengths. Electrical measurement data show that the densely packed aligned arrays have low sheet resistances. Selective removal of metallic SWNTs via controlled electrical breakdown produced field-effect transistors with high current on-off ratio. Ultrahigh density alignment reported here will have important implications in fabricating high-quality devices for digital and analog electronics.

  6. Giga-pixel fluorescent imaging over an ultra-large field-of-view using a flatbed scanner.

    PubMed

    Göröcs, Zoltán; Ling, Yuye; Yu, Meng Dai; Karahalios, Dimitri; Mogharabi, Kian; Lu, Kenny; Wei, Qingshan; Ozcan, Aydogan

    2013-11-21

    We demonstrate a new fluorescent imaging technique that can screen for fluorescent micro-objects over an ultra-wide field-of-view (FOV) of ~532 cm(2), i.e., 19 cm × 28 cm, reaching a space-bandwidth product of more than 2 billion. For achieving such a large FOV, we modified the hardware and software of a commercially available flatbed scanner, and added a custom-designed absorbing fluorescent filter, a two-dimensional array of external light sources for computer-controlled and high-angle fluorescent excitation. We also re-programmed the driver of the scanner to take full control of the scanner hardware and achieve the highest possible exposure time, gain and sensitivity for detection of fluorescent micro-objects through the gradient index self-focusing lens array that is positioned in front of the scanner sensor chip. For example, this large FOV of our imaging platform allows us to screen more than 2.2 mL of undiluted whole blood for detection of fluorescent micro-objects within <5 minutes. This high-throughput fluorescent imaging platform could be useful for rare cell research and cytometry applications by enabling rapid screening of large volumes of optically dense media. Our results constitute the first time that a flatbed scanner has been converted to a fluorescent imaging system, achieving a record large FOV.

  7. Development of Ultra-Low Noise, High Sensitivity Planar Metal Grating Coupled AlGaAs/GaAs Multiquantum Well IR Detectors for Focal Plane Array Staring IR Sensor Systems

    DTIC Science & Technology

    1992-05-01

    Development of Ultra-Low Noise , High Sensitivity Planar Metal Grating Coupled AlGaAs/GaAs Multiquantum Well IR Detectors for Focal Plane Array...February 1 - April 30, 1992 Project Title: Development of low- noise high-detectivity planar metal grating coupled III-V multiquantum-well/superlattice...low- noise and high-detectivity planar metal grating coupled bound-to- miniband (BTM) GaAs/AlGaAs and step-bound-to-miniband (SBTM) InGaAs/AlGaAs /GaAs

  8. Ultra-high aggregate bandwidth two-dimensional multiple-wavelength diode laser arrays

    NASA Astrophysics Data System (ADS)

    Chang-Hasnain, Connie

    1994-04-01

    Two-dimensional (2D) multi-wavelength vertical cavity surface emitting laser (VCSEL) arrays is promising for ultrahigh aggregate capacity optical networks. A 2D VCSEL array emitting 140 distinct wavelengths was reported by implementing a spatially graded layer in the VCSEL structure, which in turn creates a wavelength spread. In this program, we concentrated on novel epitaxial growth techniques to make reproducible and repeatable multi-wavelength VCSEL arrays.

  9. Composition Studies with the Telescope Array Surface Detector

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Mikhail; Piskunov, Maxim; Rubtsov, Grigory; Troitsky, Sergey; Zhezher, Yana

    The results on ultra-high-energy cosmic-ray chemical composition based on the data from the Telescope Array surface-detector are presented. The method is based on the multivariate boosted decision tree (BDT) analysis which uses surface-detector observables. The results on average atomic mass in the energy range 1018.0-1020.0 eV are presented. A comparison with the Telescope Array hybrid results and the Pierre Auger Observatory surface detector results is shown.

  10. Generation of warm dense matter using an argon based capillary discharge laser

    NASA Astrophysics Data System (ADS)

    Rossall, A. K.; Tallents, G. J.

    2015-06-01

    Argon based capillary discharge lasers operating in the extreme ultra violet (EUV) at 46.9 nm with output up to 0.5 mJ energy per pulse and repetition rates up to 10 Hz are capable of focused irradiances of 109-1012 W cm-2 and can be used to generate plasma in the warm dense matter regime by irradiating solid material. To model the interaction between such an EUV laser and solid material, the 2D radiative-hydrodynamic code POLLUX has been modified to include absorption via direct photo-ionisation, a super-configuration model to describe the ionization-dependent electronic configurations and a calculation of plasma refractive indices for ray tracing of the incident EUV laser radiation. A simulation study is presented, demonstrating how capillary discharge lasers of 1200 ps pulse duration can be used to generate warm dense matter at close to solid densities with temperatures of a few eV and energy densities up to 1 × 105 J cm-3. Plasmas produced by EUV laser irradiation are shown to be useful for examining the properties of warm dense matter as, for example, plasma emission is not masked by hotter, less dense plasma emission that occurs with visible/infra-red laser target irradiation.

  11. Carbon fiber on polyimide ultra-microelectrodes

    NASA Astrophysics Data System (ADS)

    Gillis, Winthrop F.; Lissandrello, Charles A.; Shen, Jun; Pearre, Ben W.; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J.; Chew, Daniel J.; White, Alice E.; Otchy, Timothy M.; Gardner, Timothy J.

    2018-02-01

    Objective. Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Approach. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Main results. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR  >10 and  >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Significance. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated

  12. Carbon fiber on polyimide ultra-microelectrodes.

    PubMed

    Gillis, Winthrop F; Lissandrello, Charles A; Shen, Jun; Pearre, Ben W; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J; Chew, Daniel J; White, Alice E; Otchy, Timothy M; Gardner, Timothy J

    2018-02-01

    Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR  >10 and  >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated manufacturing process.

  13. Propagation of Ion Solitary Pulses in Dense Astrophysical Electron-Positron-Ion Magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Ata-Ur-Rahman; A. Khan, S.; Qamar, A.

    2015-12-01

    In this paper, we theoretically investigate the existence and propagation of low amplitude nonlinear ion waves in a dense plasma under the influence of a strong magnetic field. The plasma consists of ultra-relativistic and degenerate electrons and positrons and non-degenerate cold ions. Firstly, the appearance of two distinct linear modes and their evolution is studied by deriving a dispersion equation with the aid of Fourier analysis. Secondly, the dynamics of low amplitude ion solitary structures is investigated via a Korteweg-de Vries equation derived by employing a reductive perturbation method. The effects of various plasma parameters like positron concentration, strength of magnetic field, obliqueness of field, etc., are discussed in detail. At the end, analytical results are supplemented through numerical analysis by using typical representative parameters consistent with degenerate and ultra-relativistic magnetoplasmas of astrophysical regimes.

  14. Megagauss magnetic fields in ultra-intense laser generated dense plasmas

    NASA Astrophysics Data System (ADS)

    Shaikh, Moniruzzaman; Lad, Amit D.; Jana, Kamalesh; Sarkar, Deep; Dey, Indranuj; Kumar, G. Ravindra

    2017-01-01

    Table-top terawatt lasers can create relativistic light intensities and launch megaampere electron pulses in a solid. These pulses induce megagauss (MG) magnetic pulses, which in turn strongly affect the hot electron transport via electromagnetic instabilities. It is therefore crucial to characterize the MG magnetic fields in great detail. Here, we present measurements of the spatio-temporal evolution of MG magnetic fields produced by a high contrast (picosecond intensity contrast 10-9) laser in a dense plasma on a solid target. The MG magnetic field is measured using the magneto-optic Cotton-Mouton effect, with a time delayed second harmonic (400 nm) probe. The magnetic pulse created by the high contrast laser in a glass target peaks much faster and has a more rapid fall than that induced by a low contrast (10-6) laser.

  15. Ultra-fast AC electro-osmotic micropump with arrays of asymmetric ring electrode pairs in 3D cylindrical microchannel

    NASA Astrophysics Data System (ADS)

    Gao, Xiaobo; Li, Yu Xiao

    2018-04-01

    AC electro-osmotic (ACEO) micropumps presently involve the planar or nonplanar electrode pair array in the rectangular microchannel. However, this paper presented a theoretical model of an ultra-fast 3D ring ACEO micropump with arrays of asymmetric ring electrode pairs in the cylindrical microchannel. The theory is on the basis of the interaction between the nonuniform electric field and ions of an electric double layer (EDL) on the surface of ring electrodes. Therefore, we first established the equivalent hollow cylinder capacitance of EDL for ring ACEO micropumps. Then, the 3D Poisson-Boltzmann model by solving the electric field and fluidic flow field with the charge conservation and the slip velocity boundary conditions was numerically calculated. For a dilute strong electrolyte solution, the conductivity as a function of the electrolyte concentration can be obtained by the modified Kohlrausch's dilution empirical equation with the molar conductivity. The results revealed that the flow rate of ring ACEO was higher than the planar ACEO, which agreed well with the experiment. The dependences of the time-averaged pumping velocity on the frequency and concentration have similar bell profiles with a maximal value. Moreover, the optimal velocity with proper geometric parameters was obtained at a given frequency, voltage, concentration, and radius. The high-speed ring ACEO micropump will be significant for the experimental studies to further improve the flow rate and be hopeful for applications of microfluidic mixing, particle manipulation, and so on.

  16. Microstructured graphene arrays for highly sensitive flexible tactile sensors.

    PubMed

    Zhu, Bowen; Niu, Zhiqiang; Wang, Hong; Leow, Wan Ru; Wang, Hua; Li, Yuangang; Zheng, Liyan; Wei, Jun; Huo, Fengwei; Chen, Xiaodong

    2014-09-24

    A highly sensitive tactile sensor is devised by applying microstructured graphene arrays as sensitive layers. The combination of graphene and anisotropic microstructures endows this sensor with an ultra-high sensitivity of -5.53 kPa(-1) , an ultra-fast response time of only 0.2 ms, as well as good reliability, rendering it promising for the application of tactile sensing in artificial skin and human-machine interface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ge/Si(001) heterostructures with dense arrays of Ge quantum dots: morphology, defects, photo-emf spectra and terahertz conductivity

    PubMed Central

    2012-01-01

    Issues of Ge hut cluster array formation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Dynamics of the RHEED patterns in the process of Ge hut array formation is investigated at low and high temperatures of Ge deposition. Different dynamics of RHEED patterns during the deposition of Ge atoms in different growth modes is observed, which reflects the difference in adatom mobility and their ‘condensation’ fluxes from Ge 2D gas on the surface for different modes, which in turn control the nucleation rates and densities of Ge clusters. Data of HRTEM studies of multilayer Ge/Si heterostructures are presented with the focus on low-temperature formation of perfect films. Heteroepitaxial Si p–i–n-diodes with multilayer stacks of Ge/Si(001) quantum dot dense arrays built in intrinsic domains have been investigated and found to exhibit the photo-emf in a wide spectral range from 0.8 to 5 μm. An effect of wide-band irradiation by infrared light on the photo-emf spectra has been observed. Photo-emf in different spectral ranges has been found to be differently affected by the wide-band irradiation. A significant increase in photo-emf is observed in the fundamental absorption range under the wide-band irradiation. The observed phenomena are explained in terms of positive and neutral charge states of the quantum dot layers and the Coulomb potential of the quantum dot ensemble. A new design of quantum dot infrared photodetectors is proposed. By using a coherent source spectrometer, first measurements of terahertz dynamical conductivity (absorptivity) spectra of Ge/Si(001) heterostructures were performed at frequencies ranged from 0.3 to 1.2 THz in the temperature interval from 300 to 5 K. The effective dynamical conductivity of the heterostructures with Ge quantum dots has been discovered to be significantly higher than that of the structure with the same amount

  18. Embedded binaries and their dense cores

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Stahler, Steven W.

    2017-08-01

    We explore the relationship between young, embedded binaries and their parent cores, using observations within the Perseus Molecular Cloud. We combine recently published Very Large Array observations of young stars with core properties obtained from Submillimetre Common-User Bolometer Array 2 observations at 850 μm. Most embedded binary systems are found towards the centres of their parent cores, although several systems have components closer to the core edge. Wide binaries, defined as those systems with physical separations greater than 500 au, show a tendency to be aligned with the long axes of their parent cores, whereas tight binaries show no preferred orientation. We test a number of simple, evolutionary models to account for the observed populations of Class 0 and I sources, both single and binary. In the model that best explains the observations, all stars form initially as wide binaries. These binaries either break up into separate stars or else shrink into tighter orbits. Under the assumption that both stars remain embedded following binary break-up, we find a total star formation rate of 168 Myr-1. Alternatively, one star may be ejected from the dense core due to binary break-up. This latter assumption results in a star formation rate of 247 Myr-1. Both production rates are in satisfactory agreement with current estimates from other studies of Perseus. Future observations should be able to distinguish between these two possibilities. If our model continues to provide a good fit to other star-forming regions, then the mass fraction of dense cores that becomes stars is double what is currently believed.

  19. Dense arrays of millimeter-sized glass lenses fabricated at wafer-level.

    PubMed

    Albero, Jorge; Perrin, Stéphane; Bargiel, Sylwester; Passilly, Nicolas; Baranski, Maciej; Gauthier-Manuel, Ludovic; Bernard, Florent; Lullin, Justine; Froehly, Luc; Krauter, Johann; Osten, Wolfgang; Gorecki, Christophe

    2015-05-04

    This paper presents the study of a fabrication technique of lenses arrays based on the reflow of glass inside cylindrical silicon cavities. Lenses whose sizes are out of the microfabrication standards are considered. In particular, the case of high fill factor arrays is discussed in detail since the proximity between lenses generates undesired effects. These effects, not experienced when lenses are sufficiently separated so that they can be considered as single items, are corrected by properly designing the silicon cavities. Complete topographic as well as optical characterizations are reported. The compatibility of materials with Micro-Opto-Electromechanical Systems (MOEMS) integration processes makes this technology attractive for the miniaturization of inspection systems, especially those devoted to imaging.

  20. Hybrid metasurface for ultra-broadband terahertz modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyes, Jane E.; Withayachumnankul, Withawat; Grady, Nathaniel K.

    2014-11-05

    We demonstrate an ultra-broadband free-space terahertz modulator based on a semiconductor-integrated metasurface. The modulator is made of a planar array of metal cut-wires on a silicon-on-sapphire substrate, where the silicon layer functions as photoconductive switches. Without external excitation, the cut-wire array exhibits a Lorentzian resonant response with a transmission passband spanning dc up to the fundamental dipole resonance above 2 THz. Under photoexcitation with 1.55 eV near-infrared light, the silicon regions in the cut-wire gaps become highly conductive, causing a transition of the resonant metasurface to a wire grating with a Drude response. In effect, the low-frequency passband below 2more » THz evolves into a stopband for the incident terahertz waves. Experimental validations confirm a bandwidth of at least 100%, spanning 0.5 to 1.5 THz with -10 dB modulation depth. This modulation depth is far superior to -5 dB achievable from a plain silicon-on-sapphire substrate with effectively 25 times higher pumping energy. The proposed concept of ultra-broadband metasurface modulator can be readily extended to electrically controlled terahertz wave modulation.« less

  1. Vertically aligned carbon nanotubes for microelectrode arrays applications.

    PubMed

    Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric

    2012-09-01

    In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology.

  2. Highlights from the Telescope Array Experiment

    NASA Astrophysics Data System (ADS)

    Sagawa, H.

    2014-10-01

    The Telescope Array (TA) is the largest experiment in the Northern Hemisphere currently studying the origin and nature of ultra-high-energy cosmic rays above ˜1018 eV by measuring their energy spectrum, mass composition, and arrival directions. It is located in the western desert of central Utah, USA. The TA detector consists of a surface array of 507 scintillation counters, deployed on a square grid of 1.2-km spacing that covers approximately 700 km2, and 38 fluorescence telescopes located at three sites looking over the surface array. The TA commenced hybrid observation with both sets of detectors in 2008. Here, we present recent results from these 5 years of data and outline our ongoing and near future plans.

  3. Self-assembled nanoparticle arrays as nanomasks for pattern transfer

    NASA Astrophysics Data System (ADS)

    Sachan, M.; Bonnoit, C.; Hogg, C.; Evarts, E.; Bain, J. A.; Majetich, S. A.; Park, J.-H.; Zhu, J.-G.

    2008-07-01

    Argon ion milling was used to transfer the pattern of sparse 12 nm iron oxide nanoparticles into underlying thin films of Pt and magnetic tunnel junction stacks and quantify their etching rates and morphological evolution. Under typical milling conditions, Pt milled at 10 nm min-1, while the isolated particles of iron oxide used for the mask milled at 5 nm min-1. Dilute dispersions of nanoparticles were used to produce the sparse nanomasks, and high resolution scanning electron microscopy (SEM) and atomic force microscopy were used to monitor the evolution of etched structures as a function of milling time. SEM measurements indicate an apparent 20% increase in feature diameter before the features began to diminish under additional milling, suggesting redeposition as a limiting feature in the milling of dense arrays. Simulations of the milling process in nanoparticle arrays that include redeposition are consistent with this observation. These simulations predict that an edge-to-edge spacing of 3 nm in a dense array is feasible, but that redeposition reduces the final structure aspect ratio from that of the masking array by as much as a factor of two.

  4. Ultra-thin layer chromatography and surface enhanced Raman spectroscopy on silver nanorod array substrates prepared by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-06-01

    We demonstrate the potential use of silver nanorod (AgNR) array substrates for on-chip separation and detection of chemical mixtures by ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The capability of the AgNR substrates to separate different compounds in a mixture was explored using a mixture of the food colorant Brilliant Blue FCF and lactic acid, and the mixtures of Methylene Violet and BSA at various concentrations. After the UTLC process, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the capability of separating Brilliant Blue from lactic acid, as well as revealing the SERS signal of Methylene Violet from the massive BSA background after a simple UTLC step. This technique may have significant practical implications in actual detection of small molecules from complex food or clinical backgrounds.

  5. Shielding concepts for low-background proportional counter arrays in surface laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, Craig E.; Humble, Paul H.; Mace, Emily K.

    2016-02-01

    Development of ultra low background gas proportional counters has made the contribution from naturally occurring radioactive isotopes – primarily and activity in the uranium and thorium decay chains – inconsequential to instrumental sensitivity levels when measurements are performed in above ground surface laboratories. Simple lead shielding is enough to mitigate against gamma rays as gas proportional counters are already relatively insensitive to naturally occurring gamma radiation. The dominant background in these surface laboratory measurements using ultra low background gas proportional counters is due to cosmic ray generated muons, neutrons, and protons. Studies of measurements with ultra low background gas proportionalmore » counters in surface and underground laboratories as well as radiation transport Monte Carlo simulations suggest a preferred conceptual design to achieve the highest possible sensitivity from an array of low background gas proportional counters when operated in a surface laboratory. The basis for a low background gas proportional counter array and the preferred shielding configuration is reported, especially in relation to measurements of radioactive gases having low energy decays such as 37Ar.« less

  6. NEPP Update of Independent Single Event Upset Field Programmable Gate Array Testing

    NASA Technical Reports Server (NTRS)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Pellish, Jonathan

    2017-01-01

    This presentation provides a NASA Electronic Parts and Packaging (NEPP) Program update of independent Single Event Upset (SEU) Field Programmable Gate Array (FPGA) testing including FPGA test guidelines, Microsemi RTG4 heavy-ion results, Xilinx Kintex-UltraScale heavy-ion results, Xilinx UltraScale+ single event effect (SEE) test plans, development of a new methodology for characterizing SEU system response, and NEPP involvement with FPGA security and trust.

  7. Seismicity detection around the subduting seamount off Ibaraki the Japan Trench using dense OBS array data

    NASA Astrophysics Data System (ADS)

    Nakatani, Y.; Mochizuki, K.; Shinohara, M.; Yamada, T.; Hino, R.; Ito, Y.; Murai, Y.; Sato, T.

    2013-12-01

    A subducting seamount which has a height of about 3 km was revealed off Ibaraki in the Japan Trench by a seismic survey (Mochizuki et al., 2008). Mochizuki et al. (2008) also interpreted that interplate coupling was weak over the seamount because seismicity was low and the slip of the recent large earthquake did not propagate over it. To carry out further investigation, we deployed dense ocean bottom seismometers (OBSs) array around the seamount for about a year. During the observation period, seismicity off Ibaraki was activated due to the occurrence of the 2011 Tohoku earthquake. The southern edge of the mainshock rupture area was considered to be located around off Ibaraki by many source analyses. Moreover, Kubo et al. (2013) proposes the seamount played an important role in the rupture termination of the largest aftershock. Therefore, in this study, we try to understand about spatiotemporal variation of seismicity around the seamount before and after the Mw 9.0 event as a first step to elucidate relationship between the subducting seamount and seismogenic behavior. We used velocity waveforms of 1 Hz long-term OBSs which were densely deployed at station intervals of about 6 km. The sampling rate is 200 Hz and the observation period is from October 16, 2010 to September 19, 2011. Because of the ambient noise and effects of thick seafloor sediments, it is difficult to apply methods which have been used to on-land observational data for detecting seismicity to OBS data and to handle continuous waveforms automatically. We therefore apply back-projection method (e.g., Kiser and Ishii, 2012) to OBS waveform data which estimate energy-release source by stacking waveforms. Among many back-projection methods, we adopt a semblance analysis (e.g., Honda et al., 2008) which can detect feeble waves. First of all, we constructed a 3-D velocity structure model off Ibaraki by compiling the results of marine seismic surveys (e.g., Nakahigashi et al., 2012). Then, we divided a

  8. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins.

    PubMed

    Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen

    2018-03-16

    Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O 3 ) microengineering technique. The UV/O 3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ∼ -0.101 ± 0.005 kPa -1 (<1 kPa), a fast response/relaxation speed of ∼10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O 3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.

  9. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins

    NASA Astrophysics Data System (ADS)

    Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen

    2018-03-01

    Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O3) microengineering technique. The UV/O3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ˜ -0.101 ± 0.005 kPa-1 (<1 kPa), a fast response/relaxation speed of ˜10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.

  10. Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less

  11. Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells

    DOE PAGES

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-13

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less

  12. Dense plasma focus production in a hypocycloidal pinch

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1975-01-01

    A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.

  13. Copper-encapsulated vertically aligned carbon nanotube arrays.

    PubMed

    Stano, Kelly L; Chapla, Rachel; Carroll, Murphy; Nowak, Joshua; McCord, Marian; Bradford, Philip D

    2013-11-13

    A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution. Once dried, the salt forms a stabilizing crystal network throughout the array. After calcination and H2 reduction, Cu nanoparticles are left decorating the CNT surfaces. Studies were carried out to determine the optimal processing parameters to maximize Cu content in the composite. These included the duration of Py-C deposition and system process pressure as well as the implementation of subsequent and multiple Cu salt solution infiltrations. The optimized procedure yielded a nanoscale hybrid material where the anisotropic alignment from the VACNT array was preserved, and the mass of the stabilized arrays was increased by over 24-fold because of the addition of Cu. The procedure has been adapted for other Cu salts and can also be used for other metal salts altogether, including Ni, Co, Fe, and Ag. The resulting composite is ideally suited for application in thermal management devices because of its low density, mechanical integrity, and potentially high thermal conductivity. Additionally, further processing of the material via pressing and sintering can yield consolidated, dense bulk composites.

  14. Redundant Array Configurations for 21 cm Cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Parsons, Aaron R.

    2016-08-01

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.

  15. REDUNDANT ARRAY CONFIGURATIONS FOR 21 cm COSMOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, Joshua S.; Parsons, Aaron R., E-mail: jsdillon@berkeley.edu

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed followingmore » these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.« less

  16. Depth of Ultra High Energy Cosmic Ray Induced Air Shower Maxima Measured by the Telescope Array Black Rock and Long Ridge FADC Fluorescence Detectors and Surface Array in Hybrid Mode

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; di Matteo, A.; Fujii, T.; Fujita, K.; Fukushima, M.; Furlich, G.; Goto, T.; Hanlon, W.; Hayashi, M.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jeong, H. M.; Jeong, S. M.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kuznetsov, M.; Kwon, Y. J.; Lee, K. H.; Lubsandorzhiev, B.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuyama, T.; Matthews, J. N.; Mayta, R.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, R.; Nakamura, T.; Nonaka, T.; Oda, H.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Okuda, T.; Omura, Y.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sahara, R.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Scott, L. M.; Seki, T.; Sekino, K.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takagi, Y.; Takahashi, Y.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Wong, T.; Yamamoto, M.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhezher, Y.; Zundel, Z.; Telescope Array Collaboration

    2018-05-01

    The Telescope Array (TA) observatory utilizes fluorescence detectors and surface detectors (SDs) to observe air showers produced by ultra high energy cosmic rays in Earth’s atmosphere. Cosmic-ray events observed in this way are termed hybrid data. The depth of air shower maximum is related to the mass of the primary particle that generates the shower. This paper reports on shower maxima data collected over 8.5 yr using the Black Rock Mesa and Long Ridge fluorescence detectors in conjunction with the array of SDs. We compare the means and standard deviations of the observed {X}\\max distributions with Monte Carlo {X}\\max distributions of unmixed protons, helium, nitrogen, and iron, all generated using the QGSJet II-04 hadronic model. We also perform an unbinned maximum likelihood test of the observed data, which is subjected to variable systematic shifting of the data {X}\\max distributions to allow us to test the full distributions, and compare them to the Monte Carlo to see which elements are not compatible with the observed data. For all energy bins, QGSJet II-04 protons are found to be compatible with TA hybrid data at the 95% confidence level after some systematic {X}\\max shifting of the data. Three other QGSJet II-04 elements are found to be compatible using the same test procedure in an energy range limited to the highest energies where data statistics are sparse.

  17. Seafloor Pressure Array Studies at Ultra-Low Frequencies

    DTIC Science & Technology

    1991-01-01

    broadband instrument design and deployment. In order to measure broadband noise routinely, a low frequency pressure gauge designed for deep ocean...below the microseism band (Moore et al, 1981). A differential pressure gauge , developed for low frequency recordings by Cox et al (1984) and sensitive to...design differential pressure gauge (Cox et al, 1984) with a sensitivity -3- ULF Seafloor Pressure Array Studies range of 0.01-5 Hz. The high

  18. Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes.

    PubMed

    Liu, Kai; Zhu, Feng; Liu, Liang; Sun, Yinghui; Fan, Shoushan; Jiang, Kaili

    2012-06-07

    Defects of carbon nanotubes, weak tube-tube interactions, and weak carbon nanotube joints are bottlenecks for obtaining high-strength carbon nanotube yarns. Some solution processes are usually required to overcome these drawbacks. Here we fabricate ultra-long and densely packed pure carbon nanotube yarns by a two-rotator twisting setup with the aid of some tensioning rods. The densely packed structure enhances the tube-tube interactions, thus making high tensile strengths of carbon nanotube yarns up to 1.6 GPa. We further use a sweeping laser to thermally treat as-produced yarns for recovering defects of carbon nanotubes and possibly welding carbon nanotube joints, which improves their Young's modulus by up to ∼70%. The spinning and laser sweeping processes are solution-free and capable of being assembled together to produce high-strength yarns continuously as desired.

  19. GFZ Wireless Seismic Array (GFZ-WISE), a Wireless Mesh Network of Seismic Sensors: New Perspectives for Seismic Noise Array Investigations and Site Monitoring

    PubMed Central

    Picozzi, Matteo; Milkereit, Claus; Parolai, Stefano; Jaeckel, Karl-Heinz; Veit, Ingo; Fischer, Joachim; Zschau, Jochen

    2010-01-01

    Over the last few years, the analysis of seismic noise recorded by two dimensional arrays has been confirmed to be capable of deriving the subsoil shear-wave velocity structure down to several hundred meters depth. In fact, using just a few minutes of seismic noise recordings and combining this with the well known horizontal-to-vertical method, it has also been shown that it is possible to investigate the average one dimensional velocity structure below an array of stations in urban areas with a sufficient resolution to depths that would be prohibitive with active source array surveys, while in addition reducing the number of boreholes required to be drilled for site-effect analysis. However, the high cost of standard seismological instrumentation limits the number of sensors generally available for two-dimensional array measurements (i.e., of the order of 10), limiting the resolution in the estimated shear-wave velocity profiles. Therefore, new themes in site-effect estimation research by two-dimensional arrays involve the development and application of low-cost instrumentation, which potentially allows the performance of dense-array measurements, and the development of dedicated signal-analysis procedures for rapid and robust estimation of shear-wave velocity profiles. In this work, we present novel low-cost wireless instrumentation for dense two-dimensional ambient seismic noise array measurements that allows the real–time analysis of the surface-wavefield and the rapid estimation of the local shear-wave velocity structure for site response studies. We first introduce the general philosophy of the new system, as well as the hardware and software that forms the novel instrument, which we have tested in laboratory and field studies. PMID:22319298

  20. The Detection of an Extremely Bright Fast Radio Burst in a Phased Array Feed Survey

    NASA Astrophysics Data System (ADS)

    Bannister, K. W.; Shannon, R. M.; Macquart, J.-P.; Flynn, C.; Edwards, P. G.; O'Neill, M.; Osłowski, S.; Bailes, M.; Zackay, B.; Clarke, N.; D'Addario, L. R.; Dodson, R.; Hall, P. J.; Jameson, A.; Jones, D.; Navarro, R.; Trinh, J. T.; Allison, J.; Anderson, C. S.; Bell, M.; Chippendale, A. P.; Collier, J. D.; Heald, G.; Heywood, I.; Hotan, A. W.; Lee-Waddell, K.; Madrid, J. P.; Marvil, J.; McConnell, D.; Popping, A.; Voronkov, M. A.; Whiting, M. T.; Allen, G. R.; Bock, D. C.-J.; Brodrick, D. P.; Cooray, F.; DeBoer, D. R.; Diamond, P. J.; Ekers, R.; Gough, R. G.; Hampson, G. A.; Harvey-Smith, L.; Hay, S. G.; Hayman, D. B.; Jackson, C. A.; Johnston, S.; Koribalski, B. S.; McClure-Griffiths, N. M.; Mirtschin, P.; Ng, A.; Norris, R. P.; Pearce, S. E.; Phillips, C. J.; Roxby, D. N.; Troup, E. R.; Westmeier, T.

    2017-05-01

    We report the detection of an ultra-bright fast radio burst (FRB) from a modest, 3.4-day pilot survey with the Australian Square Kilometre Array Pathfinder. The survey was conducted in a wide-field fly’s-eye configuration using the phased-array-feed technology deployed on the array to instantaneously observe an effective area of 160 deg2, and achieve an exposure totaling 13200 deg2 hr . We constrain the position of FRB 170107 to a region 8\\prime × 8\\prime in size (90% containment) and its fluence to be 58 ± 6 Jy ms. The spectrum of the burst shows a sharp cutoff above 1400 MHz, which could be due to either scintillation or an intrinsic feature of the burst. This confirms the existence of an ultra-bright (> 20 Jy ms) population of FRBs.

  1. An Ultra Low Cost Wireless Communications Laboratory for Education and Research

    ERIC Educational Resources Information Center

    Linn, Y.

    2012-01-01

    This paper presents an ultra-low-cost wireless communications laboratory that is based on a commercial off-the-shelf field programmable gate array (FPGA) development board that is both inexpensive and available worldwide. The total cost of the laboratory is under USD $200, but it includes complete transmission, channel emulation, reception…

  2. Simultaneous and rapid determination of deoxynivalenol and its acetylate derivatives in wheat flour and rice by ultra high performance liquid chromatography with photo diode array detection.

    PubMed

    Xu, Jiao-Jiao; Zhou, Jian; Huang, Bai-Fen; Cai, Zeng-Xuan; Xu, Xiao-Min; Ren, Yi-Ping

    2016-06-01

    A simple and reliable method of ultra high performance liquid chromatography coupled with photo-diode array detection has been proposed for the simultaneous determination of deoxynivalenol and its acetylated derivatives in wheat flour and rice, especially focusing on the optimization of sample extraction, cleanup, and chromatographic separation conditions. Sample pretreatment consisted of a first step using a quick, easy, cheap, effective, rugged, and safe based extraction procedure and a subsequent cleanup step based on solid-phase extraction. The method was extensively validated in wheat flour and rice, obtaining satisfactory analytical performance with good linearity (R(2) ≥ 0.999), acceptable recoveries (80.0-104.4%), and repeatability (RSDs 1.3-10.7%). The limits of detection (21.7-57.4 μg/kg) and quantitation (72.3-191.4 μg/kg) for deoxynivalenols were lower than those usually permitted by various countries' legislation in these food matrices. The method was applied to 34 wheat and rice samples. The results were further compared with results of ultra high performance liquid chromatography with electrospray ionization tandem mass spectrometry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Miniaturized ceramic platform for metal oxide gas sensors array

    NASA Astrophysics Data System (ADS)

    Samotaev, N. N.

    2016-10-01

    In work is developing an ultra-fast, low cost and technology flexible process for production array of ceramic MEMS microhotplates for using in semiconductor gas sensors orientated to small series applications, where is sufficient to produce 10-100 samples with a different layout of heaters and membrane per day.

  4. M&A For Lithography Of Sparse Arrays Of Sub-Micrometer Features

    DOEpatents

    Brueck, Steven R.J.; Chen, Xiaolan; Zaidi, Saleem; Devine, Daniel J.

    1998-06-02

    Methods and apparatuses are disclosed for the exposure of sparse hole and/or mesa arrays with line:space ratios of 1:3 or greater and sub-micrometer hole and/or mesa diameters in a layer of photosensitive material atop a layered material. Methods disclosed include: double exposure interferometric lithography pairs in which only those areas near the overlapping maxima of each single-period exposure pair receive a clearing exposure dose; double interferometric lithography exposure pairs with additional processing steps to transfer the array from a first single-period interferometric lithography exposure pair into an intermediate mask layer and a second single-period interferometric lithography exposure to further select a subset of the first array of holes; a double exposure of a single period interferometric lithography exposure pair to define a dense array of sub-micrometer holes and an optical lithography exposure in which only those holes near maxima of both exposures receive a clearing exposure dose; combination of a single-period interferometric exposure pair, processing to transfer resulting dense array of sub-micrometer holes into an intermediate etch mask, and an optical lithography exposure to select a subset of initial array to form a sparse array; combination of an optical exposure, transfer of exposure pattern into an intermediate mask layer, and a single-period interferometric lithography exposure pair; three-beam interferometric exposure pairs to form sparse arrays of sub-micrometer holes; five- and four-beam interferometric exposures to form a sparse array of sub-micrometer holes in a single exposure. Apparatuses disclosed include arrangements for the three-beam, five-beam and four-beam interferometric exposures.

  5. Determination of the Trajectory of Ballistic Missiles Using a Dense GPS Array

    NASA Astrophysics Data System (ADS)

    Heki, K.; Ozeki, M.

    2009-12-01

    The dense array of ~1000 Global Positioning System (GPS) receivers in Japan provides useful information on atmosphere and ionosphere in terms of delays of microwaves in propagation media. Here we introduce its brand-new application, determination of the trajectories of ballistic missiles by using their electron depletion signatures in ionosphere. Booker (1961) first detected F-region ion depletion associated with a missile passage. Later, formation of an ionospheric hole by the launch of Skylab was observed, and Mendillo et al. (1975) attributed the electron depletion to the water molecules in the rocket exhaust. In Japan, ionospheric depletion after the launch of the H-IIA rocket was observed at GPS receivers in southern Japan using differences in phases between the two carrier frequencies L1 and L2 (Furuya & Heki, 2008). The so-called Taepodong-1, and -2 (the North Korean government claims that they successfully launched satellites), ballistic missiles with liquid fuel engines, were launched from Musudanri, North Korea, in August 1998, and April 2009, respectively. Their first stage engines splashed down onto the Japan Sea, and their second stage engines flew over northeastern Japan and reached the Pacific Ocean. We investigated GPS data before and after the launches, and detected that linear electron depletion areas appear in the northern part of the Japan Sea (~300 km east of the launch pad) approximately six minutes after the launch. Such electron depletion occurs as a result of exchange of positive charges between oxygen ions and water molecules, and dissociative recombination of water with electrons. The ionospheric hole rapidly grows and gradually decays as the water molecules diffuse. By comparing the numerical simulation results of ionospheric hole formation (water diffusion and chemical reaction) and the observed change in ionospheric total electron content (TEC), we conclude that the Taepodong-1 exhaust included water molecules ~0.5 percent of those in

  6. Chemical surface deposition of ultra-thin semiconductors

    DOEpatents

    McCandless, Brian E.; Shafarman, William N.

    2003-03-25

    A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

  7. Bubble Transport through Micropillar Arrays

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth; Savas, Omer

    2012-11-01

    In current energy research, artificial photosynthetic devices are being designed to split water and harvest hydrogen gas using energy from the sun. In one such design, hydrogen gas bubbles evolve on the catalytic surfaces of arrayed micropillars. If these bubbles are not promptly removed from the surface, they can adversely affect gas evolution rates, water flow rates, sunlight capture, and heat management of the system. Therefore, an efficient method of collecting the evolved gas bubbles is crucial. Preliminary flow visualization has been conducted of bubbles advecting through dense arrays of pillars. Bubbles moving through square and hexagonal arrays are tracked, and the results are qualitatively described. Initial attempts to correlate bubble motion with relevant lengthscales and forces are also presented. These observations suggest how bubble transport within such pillar arrays can be managed, as well as guide subsequent experiments that investigate bubble evolution and collection. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993.

  8. Studies Of Infrasonic Propagation Using Dense Seismic Networks

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A.; deGroot-Hedlin, C. D.; Drob, D. P.

    2011-12-01

    Although there are approximately 100 infrasonic arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Relatively large infrasonic signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasonic arrays. The dense sampling of the infrasonic wavefield has allowed us to observe complete travel-time branches of infrasound and address important research problems in infrasonic propagation. We present our analysis of infrasound created by a series of rocket motor detonations that occurred at the UTTR facility in Utah in 2007. These data were well recorded by the USArray seismometers. We use the precisely located blasts to assess the utility of G2S mesoscale models and methods to synthesize infrasonic propagation. We model the travel times of the branches using a ray-based approach and the complete wavefield using a FDTD algorithm. Although results from both rays and FDTD approaches predict the travel times to within several seconds, only about 40% of signals are predicted using rays largely due to penetration of sound into shadow zones. FDTD predicts some sound penetration into the shadow zone, but the observed shadow zones, as defined by the seismic data, have considerably narrower spatial extent than either method predicts, perhaps due to un-modeled small-scale structure in the atmosphere.

  9. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    DOE PAGES

    Booth, N.; Robinson, A. P. L.; Hakel, P.; ...

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, themore » inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.« less

  10. Geometrical optics of dense aerosols: forming dense plasma slabs.

    PubMed

    Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J

    2013-11-01

    Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.

  11. Production of dense plasmas in a hypocycloidal pinch apparatus

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1977-01-01

    A high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production have been made. The collapse fronts of the current sheets are well organized, and dense plasma foci are produced on the axis with radial stability in excess of 5 microsec. A plasma density greater than 10 to the 18th power per cu cm is determined with Stark broadening and CO2 laser absorption. Essentially complete absorption of a high-energy CO2 laser beam has been observed. A plasma temperature of approximately 1 keV is measured with differential transmission of soft X-rays through thin foils. The advantages of this apparatus over the coaxial plasma focus are improvements in (1) plasma volume, (2) stability, (3) containment time, (4) access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.

  12. Study of cross-shaped ultrasonic array sensor applied to partial discharge location in transformer oil.

    PubMed

    Li, Jisheng; Xin, Xiaohu; Luo, Yongfen; Ji, Haiying; Li, Yanming; Deng, Junbo

    2013-11-01

    A conformal combined sensor is designed and it is used in Partial Discharge (PD) location experiments in transformer oil. The sensor includes a cross-shaped ultrasonic phased array of 13 elements and an ultra-high-frequency (UHF) electromagnetic rectangle array of 2 × 2 elements. Virtual expansion with high order cumulants, the ultrasonic array can achieve the effect of array with 61 elements. This greatly improves the aperture and direction sharpness of original array and reduces the cost of follow-up hardware. With the cross-shaped ultrasonic array, the results of PD location experiments are precise and the maximum error of the direction of arrival (DOA) is less than 5°.

  13. Comparative efficiency analysis of fiber-array and conventional beam director systems in volume turbulence.

    PubMed

    Vorontsov, Mikhail; Filimonov, Grigory; Ovchinnikov, Vladimir; Polnau, Ernst; Lachinova, Svetlana; Weyrauch, Thomas; Mangano, Joseph

    2016-05-20

    The performance of two prominent laser beam projection system types is analyzed through wave-optics numerical simulations for various atmospheric turbulence conditions, propagation distances, and adaptive optics (AO) mitigation techniques. Comparisons are made between different configurations of both a conventional beam director (BD) using a monolithic-optics-based Cassegrain telescope and a fiber-array BD that uses an array of densely packed fiber collimators. The BD systems considered have equal input power and aperture diameters. The projected laser beam power inside the Airy size disk at the target plane is used as the performance metric. For the fiber-array system, both incoherent and coherent beam combining regimes are considered. We also present preliminary results of side-by-side atmospheric beam projection experiments over a 7-km propagation path using both the AO-enhanced beam projection system with a Cassegrain telescope and the coherent fiber-array BD composed of 21 densely packed fiber collimators. Both wave-optics numerical simulation and experimental results demonstrate that, for similar system architectures and turbulence conditions, coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target.

  14. Harmful Gas Recognition Exploiting a CTL Sensor Array

    PubMed Central

    Wang, Qihui; Xie, Lijun; Zhu, Bo; Zheng, Yao; Cao, Shihua

    2013-01-01

    In this paper, a novel cataluminescence (CTL)-based sensor array consisting of nine types of catalytic materials is developed for the recognition of several harmful gases, namely carbon monoxide, acetone, chloroform and toluene. First, the experimental setup is constructed by using sensing nanomaterials, a heating plate, a pneumatic pump, a gas flow meter, a digital temperature device, a camera and a BPCL Ultra Weak Chemiluminescence Analyzer. Then, unique CTL patterns for the four types of harmful gas are obtained from the sensor array. The harmful gases are successful recognized by the PCA method. The optimal conditions are also investigated. Finally, experimental results show high sensitivity, long-term stability and good linearity of the sensor array, which combined with simplicity, make our system a promising application in this field. PMID:24113681

  15. Ordered and Ultra-High Aspect Ratio Nanocapillary Arrays as a Model System

    DTIC Science & Technology

    2015-10-13

    formation and deep pore growth of anodized aluminum oxide ( AAO )-based nanocapillary arrays as the basis for high density, safe and high rate gas... anodized aluminum oxide , nanocapillary arrays 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME... Aluminum Page 7 Copyright © 2015 Mainstream Engineering Corporation CPE Mitigation Schemes  Control thermal and flow profile -> even anodization

  16. A high specific power solar array for low to mid-power spacecraft

    NASA Technical Reports Server (NTRS)

    Jones, P. Alan; White, Stephen F.; Harvey, T. Jeffery; Smith, Brian S.

    1993-01-01

    UltraFlex is the generic term for a solar array system which delivers on-orbit power in the 400 to 6,000 watt per wing sizes with end-of-life specific power performance ranging to 150 watts-per-kilogram. Such performance is accomplished with off-the-shelf solar cells and state-of the-art materials and processes. Much of the recent work in photovoltaics is centered on advanced solar cell development. Successful as such work has been, no integrated solar array system has emerged which meets NASA's stated goals of 'increasing the end-of-life performance of space solar cells and arrays while minimizing their mass and cost.' This issue is addressed; namely, is there an array design that satisfies the usual requirements for space-rated hardware and that is inherently reliable, inexpensive, easily manufactured and simple, which can be used with both advanced cells currently in development and with inexpensive silicon cells? The answer is yes. The UltraFlex array described incorporates use of a blanket substrate which is thermally compatible with silicon and other materials typical of advanced multi-junction devices. The blanket materials are intrinsically insensitive to atomic oxygen degradation, are space rated, and are compatible with standard cell bonding processes. The deployment mechanism is simple and reliable and the structure is inherently stiff (high natural frequency). Mechanical vibration modes are also readily damped. The basic design is presented as well as supporting analysis and development tests.

  17. A high specific power solar array for low to mid-power spacecraft

    NASA Astrophysics Data System (ADS)

    Jones, P. Alan; White, Stephen F.; Harvey, T. Jeffery; Smith, Brian S.

    1993-05-01

    UltraFlex is the generic term for a solar array system which delivers on-orbit power in the 400 to 6,000 watt per wing sizes with end-of-life specific power performance ranging to 150 watts-per-kilogram. Such performance is accomplished with off-the-shelf solar cells and state-of the-art materials and processes. Much of the recent work in photovoltaics is centered on advanced solar cell development. Successful as such work has been, no integrated solar array system has emerged which meets NASA's stated goals of 'increasing the end-of-life performance of space solar cells and arrays while minimizing their mass and cost.' This issue is addressed; namely, is there an array design that satisfies the usual requirements for space-rated hardware and that is inherently reliable, inexpensive, easily manufactured and simple, which can be used with both advanced cells currently in development and with inexpensive silicon cells? The answer is yes. The UltraFlex array described incorporates use of a blanket substrate which is thermally compatible with silicon and other materials typical of advanced multi-junction devices. The blanket materials are intrinsically insensitive to atomic oxygen degradation, are space rated, and are compatible with standard cell bonding processes. The deployment mechanism is simple and reliable and the structure is inherently stiff (high natural frequency). Mechanical vibration modes are also readily damped. The basic design is presented as well as supporting analysis and development tests.

  18. Crowding-facilitated macromolecular transport in attractive micropost arrays.

    PubMed

    Chien, Fan-Tso; Lin, Po-Keng; Chien, Wei; Hung, Cheng-Hsiang; Yu, Ming-Hung; Chou, Chia-Fu; Chen, Yeng-Long

    2017-05-02

    Our study of DNA dynamics in weakly attractive nanofabricated post arrays revealed crowding enhances polymer transport, contrary to hindered transport in repulsive medium. The coupling of DNA diffusion and adsorption to the microposts results in more frequent cross-post hopping and increased long-term diffusivity with increased crowding density. We performed Langevin dynamics simulations and found maximum long-term diffusivity in post arrays with gap sizes comparable to the polymer radius of gyration. We found that macromolecular transport in weakly attractive post arrays is faster than in non-attractive dense medium. Furthermore, we employed hidden Markov analysis to determine the transition of macromolecular adsorption-desorption on posts and hopping between posts. The apparent free energy barriers are comparable to theoretical estimates determined from polymer conformational fluctuations.

  19. Ultra-low-noise transition edge sensors for the SAFARI L-band on SPICA

    NASA Astrophysics Data System (ADS)

    Goldie, D. J.; Gao, J. R.; Glowacka, D. M.; Griffin, D. K.; Hijmering, R.; Khosropanah, P.; Jackson, B. D.; Mauskopf, P. D.; Morozov, D.; Murphy, J. A.; Ridder, M.; Trappe, N.; O'Sullivan, C.; Withington, S.

    2012-09-01

    The Far-Infrared Fourier transform spectrometer instrument SAFARI-SPICA which will operate with cooled optics in a low-background space environment requires ultra-sensitive detector arrays with high optical coupling efficiencies over extremely wide bandwidths. In earlier papers we described the design, fabrication and performance of ultra-low-noise Transition Edge Sensors (TESs) operated close to 100mk having dark Noise Equivalent Powers (NEPs) of order 4 × 10-19W/√Hz close to the phonon noise limit and an improvement of two orders of magnitude over TESs for ground-based applications. Here we describe the design, fabrication and testing of 388-element arrays of MoAu TESs integrated with far-infrared absorbers and optical coupling structures in a geometry appropriate for the SAFARI L-band (110 - 210 μm). The measured performance shows intrinsic response time τ ~ 11ms and saturation powers of order 10 fW, and a dark noise equivalent powers of order 7 × 10-19W/√Hz. The 100 × 100μm2 MoAu TESs have transition temperatures of order 110mK and are coupled to 320×320μm2 thin-film β-phase Ta absorbers to provide impedance matching to the incoming fields. We describe results of dark tests (i.e without optical power) to determine intrinsic pixel characteristics and their uniformity, and measurements of the optical performance of representative pixels operated with flat back-shorts coupled to pyramidal horn arrays. The measured and modeled optical efficiency is dominated by the 95Ω sheet resistance of the Ta absorbers, indicating a clear route to achieve the required performance in these ultra-sensitive detectors.

  20. Reverse Phase-ultra Flow Liquid Chromatography-diode Array Detector Quantification of Anticancerous and Antidiabetic Drug Mangiferin from 11 Species of Swertia from India.

    PubMed

    Kshirsagar, Parthraj R; Gaikwad, Nikhil B; Panda, Subhasis; Hegde, Harsha V; Pai, Sandeep R

    2016-01-01

    Genus Swertia is valued for its great medicinal potential, mainly Swertia chirayita (Roxb. ex Fleming) H. Karst. is used in traditional medicine for a wide range of diseases. Mangiferin one of xanthoids is referred with enormous pharmacological potentials. The aim of the study was to quantify and compare the anticancerous and antidiabetic drug mangiferin from 11 Swertia species from India. The study also evaluates hierarchical relationships between the species based on mangiferin content using multivariate analysis. The reverse phase-ultra flow liquid chromatography-diode array detector analyses was performed and chromatographic separation was achieved on a Lichrospher 100, C18e (5 μm) column (250-4.6 mm). Mobile phase consisting of 0.2% triethylamine (pH-4 with O-phosphoric acid) and acetonitrile (85:15) was used for separation with injection volume 20 μL and detection wave length at 257 nm. Results indicated that concentration of mangiferin has been found to vary largely between Swertia species collected from different regions. Content of mangiferin was found to be highest in Swertia minor compared to other Swertia species studied herein from the Western Ghats and Himalayan region also. The same was also evident in the multivariate analysis, wherein S. chirayita, S. minor and Swertia paniculata made a separate clade. Conclusively, the work herein provides insights of mangiferin content from 11 Swertia species of India and also presents their hierarchical relationships. To best of the knowledge this is the first report of higher content of mangiferin from any Swertia species. The present study quantifies and compares mangiferin in 11 species of Swertia from India. The study also evaluates hierarchical relationships between the species based on mangiferin content using multivariate analysis. The mangiferin content was highest in S. minor compared to the studied Swertia species. To the best of our knowledge this is the first report of higher content of mangiferin

  1. Conceptual approach study of a 200 watt per kilogram solar array

    NASA Technical Reports Server (NTRS)

    Stanhouse, R. W.; Fox, D.; Wilson, W.

    1976-01-01

    Solar array candidate configurations (flexible rollup, flexible flat-pact, semi-rigid panel, semi-rigid flat-pack) were analyzed with particular attention to the specific power (W/kg) requirement. Two of these configurations (flexible rollup and flexible flat-pack) are capable of delivering specific powers equal to or exceeding the baseline requirement of 200 W/kg. Only the flexible rollup is capable of in-flight retraction and subsequent redeployment. The wrap-around contact photovoltaic cell configuration has been chosen over the conventional cell. The demand for ultra high specific power forces the selection of ultra-thin cells and cover material. Based on density and mass range considerations, it was concluded that 13 micrometers of FEP Teflon is sufficient to protect the cell from a total proton fluency of 2(10 to the 12th power) particles/sq cm over a three-year interplanetary mission. The V-stiffened, lattice boom deployed, flexible substrate rollup array holds the greatest promise of meeting the baseline requirements set for this study.

  2. Ultra-high aggregate bandwidth two-dimensional multiple-wavelength diode laser arrays

    NASA Astrophysics Data System (ADS)

    Chang-Hasnain, Connie

    1993-12-01

    Two-dimensional (2D) multi-wavelength vertical cavity surface emitting laser (VCSEL) arrays is promising for ultrahigh aggregate capacity optical networks. A 2D VCSEL array emitting 140 distinct wavelengths was reported by implementing a spatially graded layer in the VCSEL structure, which in turn creates a wavelength spread. Concentrtion was on epitaxial growth techniques to make reproducible and repeatable multi-wavelength VCSEL arrays. Our approach to fabricate the spatially graded layer involves creating a nonuniform substrate surface temperature across the wafer during the growth of the cavity spacer region using the fact that the molecular beam epitaxy growth of GaAs is highly sensitive to the substrate temperature. Growth is investigated with the use of a patterned spacer (either a Ga or Si substrate) placed in-between the substrate and its heater. The temperature distribution on such wafers is used to guide our experiments. A reflectivity measurement apparatus that is capable of mapping a 2 in. wafer with a 100 microns diameter resolution was built for diagnosing our wafers. In this first six-month report, our calculations, the various experimental results, and a discussion on future directions are presented.

  3. Strain and ground-motion monitoring at magmatic areas: ultra-long and ultra-dense networks using fibre optic sensing systems

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Reinsch, Thomas; Henninges, Jan; Blanck, Hanna; Ryberg, Trond

    2016-04-01

    The fibre optic distributed acoustic sensing technology (DAS) is a "new" sensing system for exploring earth crustal elastic properties and monitoring both strain and seismic waves with unprecedented acquisition characteristics. The DAS technology principle lies in sending successive and coherent pulses of light in an optical fibre and measuring the back-scattered light issued from elastic scattering at random defaults within the fibre. The read-out unit includes an interferometer, which measures light interference patterns continuously. The changes are related to the distance between such defaults and therefore the strain within the fibre can be detected. Along an optical fibre, DAS can be used to acquire acoustic signals with a high spatial (every meter over kilometres) and high temporal resolution (thousand of Hz). Fibre optic technologies were, up to now, mainly applied in perimeter surveillance applications and pipeline monitoring and in boreholes. Previous experiments in boreholes have shown that the DAS technology is well suited for probing subsurface elastic properties, showing new ways for cheaper VSP investigations of the Earth crust. Here, we demonstrate that a cable deployed at ground surface can also help in exploring subsurface properties at crustal scale and monitor earthquake activity in a volcanic environment. Within the framework of the EC funded project IMAGE, we observed a >15 km-long fibre optic cable at the surface connected to a DAS read-out unit. Acoustic data was acquired continuously for 9 days. Hammer shots were performed along the surface cable in order to locate individual acoustic traces and calibrate the spatial distribution of the acoustic information. During the monitoring period both signals from on- and offshore explosive sources and natural seismic events could be recorded. We compare the fibre optic data to conventional seismic records from a dense seismic network deployed on Reykjanes. We show that we can probe and monitor earth

  4. Template-free synthesis of vanadium oxides nanobelt arrays as high-rate cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Qin, Mulan; Liang, Qiang; Pan, Anqiang; Liang, Shuquan; Zhang, Qing; Tang, Yan; Tan, Xiaoping

    2014-12-01

    A facile hydrothermal route has been developed to fabricate the metastable VO2 (B) ultra-thin nanobelt arrays, which can be converted into V2O5 porous nanobelt arrays after calcinating VO2 (B) in air at 400 °C for 1 h. The influence of hydrothermal time to the crystallinity and morphology of the VO2 phase has been studied. A possible mechanism for the formation of VO2 nanobelt arrays has been proposed in this paper. As a cathode material for lithium ion batteries, the V2O5 nanobelt arrays show excellent rate capability and cycling stability. An initial discharge capacity of 142 mA h g-1 can be delivered at a current density of 50 mA g-1 with almost no capacity fading after 100 cycles. Even at a current density of 1000 mA g-1, they still exhibit the capacity of 130 mA h g-1 and superior capacity retention capability. The excellent electrochemical properties are attributed to the ultra-thin thickness and the porous structures of the nanobelts.

  5. The impact of solar cell technology on planar solar array performance

    NASA Technical Reports Server (NTRS)

    Mills, Michael W.; Kurland, Richard M.

    1989-01-01

    The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.

  6. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kawakatu, Nozomu; Kohno, Kotaro

    2016-08-01

    We present a positive correlation between the mass of dense molecular gas ({M}{{dense}}) of ˜100 pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ({\\dot{M}}{{BH}}) in a total of 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture θ med = 220 pc). A typical {M}{{dense}} of CNDs is 107-8 {M}⊙ , estimated from the luminosity of the dense gas tracer, the HCN(1-0) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between the nuclear star-formation rate and {\\dot{M}}{{BH}} revealed previously. Moreover, the {M}{{dense}}{--}{\\dot{M}}{{BH}} correlation was tighter for CND-scale gas than for the gas on kiloparsec or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas greater than kiloparesec scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Millimeter/submillimeter Array, we used a mass accretion model where angular momentum loss due to supernova explosions is vital. Based on the model prediction, we suggest that only the partial fraction of the mass accreted from the CND ({\\dot{M}}{{acc}}) is consumed as {\\dot{M}}{{BH}}. However, {\\dot{M}}{{acc}} agrees well with the total nuclear mass flow rate (I.e., {\\dot{M}}{{BH}} + outflow rate). Although these results are still tentative with large uncertainties, they support the view that star formation in CNDs can drive mass accretion onto supermassive black holes in Seyfert galaxies.

  7. High Density Diffusion-Free Nanowell Arrays

    PubMed Central

    Takulapalli, Bharath R; Qiu, Ji; Magee, D. Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin; LaBaer, Joshua; Wiktor, Peter

    2012-01-01

    Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA), is a robust, in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced inter-spot spacing. To address this limitation, we have developed an innovative platform using photolithographically-etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8,000 nanowell arrays. This is the highest density of individual proteins in nano-vessels demonstrated on a single slide. We further present proof of principle results on ultra-high density protein arrays capable of up to 24,000 nanowells on a single slide. PMID:22742968

  8. Dense Cores in Galaxies Out to z = 2.5 in SDSS, UltraVISTA, and the Five 3D-HST/CANDELS Fields

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter G.; Bezanson, Rachel; van der Wel, Arjen; Nelson, Erica June; Momcheva, Ivelina; Skelton, Rosalind E.; Whitaker, Katherine E.; Brammer, Gabriel; Conroy, Charlie; Förster Schreiber, Natascha M.; Fumagalli, Mattia; Kriek, Mariska; Labbé, Ivo; Leja, Joel; Marchesini, Danilo; Muzzin, Adam; Oesch, Pascal; Wuyts, Stijn

    2014-08-01

    The dense interiors of massive galaxies are among the most intriguing environments in the universe. In this paper,we ask when these dense cores were formed and determine how galaxies gradually assembled around them. We select galaxies that have a stellar mass >3 × 1010 M ⊙ inside r = 1 kpc out to z = 2.5, using the 3D-HST survey and data at low redshift. Remarkably, the number density of galaxies with dense cores appears to have decreased from z = 2.5 to the present. This decrease is probably mostly due to stellar mass loss and the resulting adiabatic expansion, with some contribution from merging. We infer that dense cores were mostly formed at z > 2.5, consistent with their largely quiescent stellar populations. While the cores appear to form early, the galaxies in which they reside show strong evolution: their total masses increase by a factor of 2-3 from z = 2.5 to z = 0 and their effective radii increase by a factor of 5-6. As a result, the contribution of dense cores to the total mass of the galaxies in which they reside decreases from ~50% at z = 2.5 to ~15% at z = 0. Because of their early formation, the contribution of dense cores to the total stellar mass budget of the universe is a strong function of redshift. The stars in cores with M 1 kpc > 3 × 1010 M ⊙ make up ~0.1% of the stellar mass density of the universe today but 10%-20% at z ~ 2, depending on their initial mass function. The formation of these cores required the conversion of ~1011 M ⊙ of gas into stars within ~1 kpc, while preventing significant star formation at larger radii.

  9. Carbon Nanotube Electrode Arrays For Enhanced Chemical and Biological Sensing

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2003-01-01

    Applications of carbon nanotubes for ultra-sensitive electrical sensing of chemical and biological species have been a major focus in NASA Ames Center for Nanotechnology. Great progress has been made toward controlled growth and chemical functionalization of vertically aligned carbon nanotube arrays and integration into micro-fabricated chip devices. Carbon nanotube electrode arrays devices have been used for sub-attomole detection of DNA molecules. Interdigitated carbon nanotubes arrays devices have been applied to sub ppb (part per billion) level chemical sensing for many molecules at room temperature. Stability and reliability have also been addressed in our device development. These results show order of magnitude improvement in device performance, size and power consumption as compared to micro devices, promising applications of carbon nanotube electrode arrays for clinical molecular diagnostics, personal medical testing and monitoring, and environmental monitoring.

  10. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    NASA Astrophysics Data System (ADS)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.

    2016-06-01

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.

  11. Nanostructure array plasmas generated by femtosecond pulses at highly relativistic intensities

    NASA Astrophysics Data System (ADS)

    Hollinger, R. C.; Wong, Y.; Wong, S.; Rockwood, A.; Glasby, J.; Shlyaptsev, V.; Rocca, J. J.; Capeluto, M. G.; Kaymak, V.; Pukhov, A.

    2017-10-01

    The irradiation of high aspect ratio ordered nanostructure arrays with ultra-high contrast femtosecond laser pulses of relativistic intensity provides a unique combination of nearly complete optical absorption and drastically enhanced light penetration into near-solid density targets. This allows the material to be volumetrically heated deep into the ultra-high energy density regime. In previous experiments we have shown that irradiation of Ni and Au nanostructures with femtosecond pulses focused to an intensity of 5x1018 Wcm-2 generate multi-KeV near solid density plasmas in which atoms are ionized to the Ni+26 and Au+52 charge states. Here we present the first results of the irradiation of nanostructure arrays with highly relativistic pulses of intensities up to 5x1021Wcm-2. Silver and Rhodium nanowire arrays were irradiated with frequency-doubled pulses of 30 fs duration from a petawatt-class Ti:Sa laser. Time integrated x-ray spectra show the presence of He-like and Li-like emission. Results of experiments conducted with a variety of different nanowires diameters with a range of interwire spacings will be presented and compared to the result of 3D particle-in-cell-simulations. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy.

  12. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers

    PubMed Central

    2013-01-01

    In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>−oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm−2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors. PMID:23773702

  13. Ultra-processed products are becoming dominant in the global food system.

    PubMed

    Monteiro, C A; Moubarac, J-C; Cannon, G; Ng, S W; Popkin, B

    2013-11-01

    The relationship between the global food system and the worldwide rapid increase of obesity and related diseases is not yet well understood. A reason is that the full impact of industrialized food processing on dietary patterns, including the environments of eating and drinking, remains overlooked and underestimated. Many forms of food processing are beneficial. But what is identified and defined here as ultra-processing, a type of process that has become increasingly dominant, at first in high-income countries, and now in middle-income countries, creates attractive, hyper-palatable, cheap, ready-to-consume food products that are characteristically energy-dense, fatty, sugary or salty and generally obesogenic. In this study, the scale of change in purchase and sales of ultra-processed products is examined and the context and implications are discussed. Data come from 79 high- and middle-income countries, with special attention to Canada and Brazil. Results show that ultra-processed products dominate the food supplies of high-income countries, and that their consumption is now rapidly increasing in middle-income countries. It is proposed here that the main driving force now shaping the global food system is transnational food manufacturing, retailing and fast food service corporations whose businesses are based on very profitable, heavily promoted ultra-processed products, many in snack form. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  14. Powering the future - a new generation of high-performance solar arrays

    NASA Astrophysics Data System (ADS)

    Geyer, Freddy; Caswell, Doug; Signorini, Carla

    2007-08-01

    Funded by ESA's Advanced Research in Telecommunication (ARTES) programme, Thales Alenia Space has developed a new generation of high-power ultra-lightweight solar arrays for telecommunications satellites. Thanks to close cooperation with its industrial partners in Europe, the company has generically qualified a solar array io meet market needs. Indeed, three flight projects were already using the new design as qualification was completed. In addition, the excellent mechanical and thermal behaviour of the new panel structure are contributing to other missions such as Pleïades and LISA Pathfinder.

  15. Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays

    NASA Technical Reports Server (NTRS)

    Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.

    2004-01-01

    We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.

  16. HI-bearing Ultra Diffuse Galaxies in the ALFALFA Survey

    NASA Astrophysics Data System (ADS)

    Leisman, Lukas; Janowiecki, Steven; Jones, Michael G.; ALFALFA Almost Darks Team

    2018-01-01

    The Arecibo Legacy Fast ALFA (Arecibo L-band Feed Array) extragalactic HI survey, with over 30,000 high significance extragalactic sources, is well positioned to locate gas-bearing, low surface brightness sources missed by optical detection algorithms. We investigate the nature of a population of HI-bearing sources in ALFALFA with properties similar to "ultra-diffuse" galaxies (UDGs): galaxies with stellar masses of dwarf galaxies, but radii of L* galaxies. These "HI-bearing ultra-diffuse" sources (HUDS) constitute a small, but pertinent, fraction of the dwarf-mass galaxies in ALFALFA. They are bluer and have more irregular morphologies than the optically-selected UDGs found in clusters, and they appear to be gas-rich for their stellar mass, indicating low star formation efficiency. To illuminate potential explanations for the extreme properties of these sources we explore their environments and estimate their halo properties. We conclude that environmental mechanism are unlikely the cause of HUDS' properties, as they exist in environments equivalent to that of the other ALFALFA sources of similar HI-masses, however, we do find some suggestion that these HUDS may reside in high spin parameter halos, a potential explanation for their "ultra-diffuse" nature.

  17. Copper nanorod array assisted silicon waveguide polarization beam splitter

    PubMed Central

    Kim, Sangsik; Qi, Minghao

    2014-01-01

    We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology. PMID:24787839

  18. Copper nanorod array assisted silicon waveguide polarization beam splitter.

    PubMed

    Kim, Sangsik; Qi, Minghao

    2014-04-21

    We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology.

  19. New constraints on micro-seismicity and stress state in the western part of the North Anatolian Fault Zone: Observations from a dense seismic array

    NASA Astrophysics Data System (ADS)

    Altuncu Poyraz, Selda; Teoman, M. Uğur; Türkelli, Niyazi; Kahraman, Metin; Cambaz, Didem; Mutlu, Ahu; Rost, Sebastian; Houseman, Gregory A.; Thompson, David A.; Cornwell, David; Utkucu, Murat; Gülen, Levent

    2015-08-01

    With the aim of extensively investigating the crustal structure beneath the western segment of the North Anatolian Fault Zone where it splays into northern and southern branches, a temporary seismic network (dense array for North Anatolia-DANA) consisting of 70 stations was deployed in early May 2012 and operated for 18 months in the Sakarya region during the FaultLab experiment. Out of 2437 events contaminated by explosions, we extracted 1371 well located earthquakes. The enhanced station coverage having a nominal station spacing of 7 km, lead to a minimum magnitude calculation of 0.1. Horizontal and vertical location uncertainties within the array do not exceed 0.8 km and 0.9 km, respectively. We observe considerable seismic activity along both branches of the fault where the depth of the seismogenic zone was mostly confined to 15 km. Using our current earthquake catalog we obtained a b-value of 1. We also mapped the b-value variation with depth and observed a gradual decrease. Furthermore, we determined the source parameters of 41 earthquakes with magnitudes greater than 1.8 using P-wave first motion polarity method. Regional Moment Tensor Inversion method was also applied to earthquakes with magnitudes greater than 3.0. Focal mechanism solutions confirm that Sakarya and its vicinity is stressed by a compressional regime showing a primarily oblique-slip motion character. Stress tensor analysis indicates that the maximum principal stress is aligned in WNW-ESE direction and the tensional axis is aligned in NNE-SSW direction.

  20. Dense array recordings in the San Bernardino Valley of landers-big bear aftershocks: Basin surface waves, Moho reflections, and three-dimensional simulations

    USGS Publications Warehouse

    Frankel, Arthur

    1994-01-01

    Fourteen GEOS seismic recorders were deployed in the San Bernardino Valley to study the propagation of short-period (T ≈ 1 to 3 sec) surface waves and Moho reflections. Three dense arrays were used to determine the direction and speed of propagation of arrivals in the seismograms. The seismograms for a shallow (d ≈ 1 km) M 4.9 aftershock of the Big Bear earthquake exhibit a very long duration (60 sec) of sustained shaking at periods of about 2 sec. Array analysis indicates that these late arrivals are dominated by surface waves traveling in various directions across the Valley. Some energy is arriving from a direction 180° from the epicenter and was apparently reflected from the edge of the Valley opposite the source. A close-in aftershock (Δ = 25 km, depth = 7 km) displays substantial short-period surface waves at deep-soil sites. A three-dimensional (3D) finite difference simulation produces synthetic seismograms with durations similar to those of the observed records for this event, indicating the importance of S-wave to surface-wave conversion near the edge of the basin. Flat-layered models severely underpredict the duration and spectral amplification of this deep-soil site. I show an example where the coda wave amplitude ratio at 1 to 2 Hz between a deep-soil and a rock site does not equal the S-wave amplitude ratio, because of the presence of surface waves in the coda of the deep-soil site. For one of the events studied (Δ ≈ 90 km), there are sizable phases that are critically reflected from the Moho (PmP and SmS). At one of the rock sites, the SmS phase has a more peaked spectrum that the direct S wave.

  1. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms.

    PubMed

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; Lamar Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-02-09

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.

  2. Ultra-Wide Patch Antenna Array Design at 60 GHz Band for Remote Vital Sign Monitoring with Doppler Radar Principle

    NASA Astrophysics Data System (ADS)

    Rabbani, Muhammad Saqib; Ghafouri-Shiraz, Hooshang

    2017-05-01

    In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24-65.88 GHz) with improved gain and beam-width capabilities for remote detection of respiration and heart beat rate of a person with Doppler radar principle. The antennas measured and simulation results showed close agreement. The breathing rate (BR) and heart rate (HR) of a 31-year-old man have been accurately detected from various distances ranging from 5 to 200 cm with both single-antenna and dual-antenna operations. In the case of single-antenna operation, the signal is transmitted and received with the same antenna, whereas in dual-antenna operation, two identical antennas are employed, one for signal transmission and the other for reception. It has been found that in case of the single-antenna operation, the accuracy of the remote vital sign monitoring (RVSM) is good for short distance; however, in the case of the dual-antenna operations, the RVSM can be accurately carried out at relatively much longer distance. On the other hand, it has also been seen that the visual results are more obvious with higher gain antennas when the radar beam is confined just on the subject's body area.

  3. Progress and prospects of silicon-based design for optical phased array

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Peng, Chao; Chang-Hasnain, Connie

    2016-03-01

    The high-speed, high-efficient, compact phase modulator array is indispensable in the Optical-phased array (OPA) which has been considered as a promising technology for realizing flexible and efficient beam steering. In our research, two methods are presented to utilize high-contrast grating (HCG) as high-efficient phase modulator. One is that HCG possesses high-Q resonances that origins from the cancellation of leaky waves. As a result, sharp resonance peaks appear on the reflection spectrum thus HCGs can be utilized as efficient phase shifters. Another is that low-Q mode HCG is utilized as ultra-lightweight mirror. With MEMS technology, small HCG displacement (~50 nm) leads to large phase change (~1.7π). Effective beam steering is achieved in Connie Chang-Hasnian's group. On the other hand, we theoretically and experimentally investigate the system design for silicon-based optical phased array, including the star coupler, phased array, emission elements and far-field patterns. Further, the non-uniform optical phased array is presented.

  4. Studies of Muons in Extensive Air Showers from Ultra-High Energy Cosmic Rays Observed with the Telescope Array Surface Detector

    NASA Astrophysics Data System (ADS)

    Takeishi, R.; Sagawa, H.; Fukushima, M.; Takeda, M.; Nonaka, T.; Kawata, K.; Kido, E.; Sakurai, N.; Okuda, T.; Ogio, S.; Matthews, J. N.; Stokes, B.

    The number of muons in the air shower induced by ultra-high energy cosmic rays (UHECRs) has been measured with surface detector (SD) arrays of various experiments. Monte Carlo (MC) prediction of the number of muons in air showers depends on hadronic interaction models and the primary cosmic ray composition. By comparing the measured number of muons with the MC prediction, hadronic interaction models can be tested. The Pierre Auger Observatory reported that the number of muons measured by water Cherenkov type SD is about 1.8 times larger than the MC prediction for proton with QGSJET II-03 model. The number of muons in the Auger data is also larger than the MC prediction for iron. The Telescope Array experiment adopts plastic scintillator type SD, which is sensitive to the electromagnetic component that is the major part of secondary particles in the air shower. To search for the high muon purity condition in air showers observed by the TA, we divided air shower events into subsets by the zenith angle θ, the azimuth angle ϕ relative to the shower arrival direction projected onto the ground, and the distance R from shower axis. As a result, we found subsets with the high muon purity 65%, and compared the charge density between observed data and MC. The typical ratios of the charge density of the data to that of the MC are 1.71 ± 0.10 at 1870 m < R < 2150 m and 3.24 ± 0.40 at 2850 m < R < 3280 m. The difference in the charge density between the data and the MC is larger at the higher muon purity. These results imply that the excess of the charge density in the data is partly explained by the muon excess.

  5. Ultra compact triplexing filters based on SOI nanowire AWGs

    NASA Astrophysics Data System (ADS)

    Jiashun, Zhang; Junming, An; Lei, Zhao; Shijiao, Song; Liangliang, Wang; Jianguang, Li; Hongjie, Wang; Yuanda, Wu; Xiongwei, Hu

    2011-04-01

    An ultra compact triplexing filter was designed based on a silicon on insulator (SOI) nanowire arrayed waveguide grating (AWG) for fiber-to-the-home FTTH. The simulation results revealed that the design performed well in the sense of having a good triplexing function. The designed SOI nanowire AWGs were fabricated using ultraviolet lithography and induced coupler plasma etching. The experimental results showed that the crosstalk was less than -15 dB, and the 3 dB-bandwidth was 11.04 nm. The peak wavelength output from ports a, c, and b were 1455, 1510 and 1300 nm, respectively, which deviated from our original expectations. The deviation of the wavelength is mainly caused by 45 nm width deviation of the arrayed waveguides during the course of the fabrication process and partly caused by material dispersion.

  6. Thin-Film Photovoltaic Solar Array Parametric Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Jacobs, Mark K.; Ponnusamy, Deva

    2000-01-01

    This paper summarizes a study that had the objective to develop a model and parametrically determine the circumstances for which lightweight thin-film photovoltaic solar arrays would be more beneficial, in terms of mass and cost, than arrays using high-efficiency crystalline solar cells. Previous studies considering arrays with near-term thin-film technology for Earth orbiting applications are briefly reviewed. The present study uses a parametric approach that evaluated the performance of lightweight thin-film arrays with cell efficiencies ranging from 5 to 20 percent. The model developed for this study is described in some detail. Similar mass and cost trends for each array option were found across eight missions of various power levels in locations ranging from Venus to Jupiter. The results for one specific mission, a main belt asteroid tour, indicate that only moderate thin-film cell efficiency (approx. 12 percent) is necessary to match the mass of arrays using crystalline cells with much greater efficiency (35 percent multi-junction GaAs based and 20 percent thin-silicon). Regarding cost, a 12 percent efficient thin-film array is projected to cost about half is much as a 4-junction GaAs array. While efficiency improvements beyond 12 percent did not significantly further improve the mass and cost benefits for thin-film arrays, higher efficiency will be needed to mitigate the spacecraft-level impacts associated with large deployed array areas. A low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is briefly described. The paper concludes with the observation that with the characteristics assumed for this study, ultra-lightweight arrays using efficient, thin-film cells on flexible substrates may become a leading alternative for a wide variety of space missions.

  7. Disrupted latent inhibition in individuals at ultra high-risk for developing psychosis.

    PubMed

    Kraus, Michael; Rapisarda, Attilio; Lam, Max; Thong, Jamie Y J; Lee, Jimmy; Subramaniam, Mythily; Collinson, Simon L; Chong, Siow Ann; Keefe, Richard S E

    2016-12-01

    The addition of off-the-shelf cognitive measures to established prodromal criteria has resulted in limited improvement in the prediction of conversion to psychosis. Tests that assess cognitive processes central to schizophrenia might better identify those at highest risk. The latent inhibition paradigm assesses a subject's tendency to ignore irrelevant stimuli, a process integral to healthy perceptual and cognitive function that has been hypothesized to be a key deficit underlying the development of schizophrenia. In this study, 142 young people at ultra high-risk for developing psychosis and 105 controls were tested on a within-subject latent inhibition paradigm. Additionally, we later inquired about the strategy that each subject employed to complete the test, and further investigated the relationship between reported strategy and the extent of latent inhibition exhibited. Unlike controls, ultra high-risk subjects did not demonstrate a significant latent inhibition effect. This difference between groups became greater when controlling for strategy. The lack of latent inhibition effect in our ultra high-risk sample suggests that individuals at ultra high-risk for psychosis are impaired in their allocation of attentional resources based on past predictive value of repeated stimuli. This fundamental deficit in the allocation of attention may contribute to the broader array of cognitive impairments and clinical symptoms displayed by individuals at ultra high-risk for psychosis.

  8. Detecting Micro-seismicity and Long-duration Tremor-like Events from the Oklahoma Wavefield Experiment

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, Z.; Peng, Z.; Zhang, C.; Nakata, N.

    2017-12-01

    Oklahoma has experienced abrupt increase of induced seismicity in the last decade. An important way to fully understand seismic activities in Oklahoma is to obtain more complete earthquake catalogs and detect different types of seismic events. The IRIS Community Wavefield Demonstration Experiment was deployed near Enid, Oklahoma in Summer of 2016. The dataset from this ultra-dense array provides an excellent opportunity for detecting microseismicity in that region with wavefield approaches. Here we examine continuous waveforms recorded by 3 seismic lines using local coherence for ultra-dense arrays (Li et al., 2017), which is a measure of cross-correlation of waveform at each station with its nearby stations. So far we have detected more than 5,000 events from 06/22/2016 to 07/20/2016, and majority of them are not listed on the regional catalog of Oklahoma or global catalogs, indicating that they are local events. We also identify 15-20 long-period long-duration events, some of them lasting for more than 500 s. Such events have been found at major plate-boundary faults (also known as deep tectonic tremor), as well as during hydraulic fracturing, slow-moving landslides and glaciers. Our next step is to locate these possible tremor-like events with their relative arrival times across the array and compare their occurrence times with solid-earth tides and injection histories to better understand their driving mechanisms.

  9. Ultra-narrow pulse generator with precision-adjustable pulse width

    NASA Astrophysics Data System (ADS)

    Fu, Zaiming; Liu, Hanglin

    2018-05-01

    In this paper, a novel ultra-narrow pulse generation approach is proposed. It is based on the decomposition and synthesis of pulse edges. Through controlling their relative delay, an ultra-narrow pulse could be generated. By employing field programmable gate array digital synthesis technology, the implemented pulse generator is with programmable ability. The amplitude of pulse signals is controlled by the radio frequency amplifiers and bias tees, and high precision can be achieved. More importantly, the proposed approach can break through the limitation of device's propagation delay and optimize the resolution and the accuracy of the pulse width significantly. The implemented pulse generator has two channels, whose minimum pulse width, frequency range, and amplitude range are 100 ps, 15 MHz-1.5 GHz, and 0.1 Vpp-1.8 Vpp, respectively. Both resolution of pulse width and channel delay are 1 ps, and amplitude resolution is 10 mVpp.

  10. Characterisation of chemical components for identifying historical Chinese textile dyes by ultra high performance liquid chromatography - photodiode array - electrospray ionisation mass spectrometer.

    PubMed

    Han, Jing; Wanrooij, Jantien; van Bommel, Maarten; Quye, Anita

    2017-01-06

    This research makes the first attempt to apply Ultra High Performance Liquid Chromatography (UHPLC) coupled to both Photodiode Array detection (PDA) and Electrospray Ionisation Mass Spectrometer (ESI-MS) to the chemical characterisation of common textile dyes in ancient China. Three different extraction methods, respectively involving dimethyl sulfoxide (DMSO)-oxalic acid, DMSO and hydrochloric acid, are unprecedentedly applied together to achieve an in-depth understanding of the chemical composition of these dyes. The first LC-PDA-MS database of the chemical composition of common dyes in ancient China has been established. The phenomena of esterification and isomerisation of the dye constituents of gallnut, gardenia and saffron, and the dye composition of acorn cup dyed silk are clarified for the first time. 6-Hydroxyrubiadin and its glycosides are first reported on a dyed sample with Rubia cordifolia from China. UHPLC-PDA-ESI-MS with a C18 BEH shield column shows significant advantages in the separation and identification of similar dye constituents, particularly in the cases of analysing pagoda bud and turmeric dyed sample extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. An image-based array trigger for imaging atmospheric Cherenkov telescope arrays

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Krennrich, Frank; Weinstein, Amanda; Eisch, Jonathan; Byrum, Karen; Anderson, John; Drake, Gary

    2018-05-01

    It is anticipated that forthcoming, next generation, atmospheric Cherenkov telescope arrays will include a number of medium-sized telescopes that are constructed using a dual-mirror Schwarzschild-Couder configuration. These telescopes will sample a wide (8 °) field of view using a densely pixelated camera comprising over 104 individual readout channels. A readout frequency congruent with the expected single-telescope trigger rates would result in substantial data rates. To ameliorate these data rates, a novel, hardware-level Distributed Intelligent Array Trigger (DIAT) is envisioned. A copy of the DIAT operates autonomously at each telescope and uses reduced resolution imaging data from a limited subset of nearby telescopes to veto events prior to camera readout and any subsequent network transmission of camera data that is required for centralized storage or aggregation. We present the results of Monte-Carlo simulations that evaluate the efficacy of a "Parallax width" discriminator that can be used by the DIAT to efficiently distinguish between genuine gamma-ray initiated events and unwanted background events that are initiated by hadronic cosmic rays.

  12. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, S., E-mail: shahzadm100@gmail.com; Sadiq, Safeer; Haque, Q.

    2016-06-15

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found whichmore » depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.« less

  13. Nanowire array and nanowire solar cells and methods for forming the same

    DOEpatents

    Yang, Peidong [Berkeley, CA; Greene, Lori [Berkeley, CA; Law, Matthew [Berkeley, CA

    2007-09-04

    Homogeneous and dense arrays of nanowires are described. The nanowires can be formed in solution and can have average diameters of 40-300 nm and lengths of 1-3 .mu.m. They can be formed on any suitable substrate. Photovoltaic devices are also described.

  14. Nanowire array and nanowire solar cells and methods for forming the same

    DOEpatents

    Yang, Peidong; Greene, Lori E.; Law, Matthew

    2009-06-09

    Homogeneous and dense arrays of nanowires are described. The nanowires can be formed in solution and can have average diameters of 40-300 nm and lengths of 1-3 .mu.m. They can be formed on any suitable substrate. Photovoltaic devices are also described.

  15. Fly's eye condenser based on chirped microlens arrays

    NASA Astrophysics Data System (ADS)

    Wippermann, Frank C.; Zeitner, Uwe-D.; Dannberg, Peter; Bräuer, Andreas; Sinzinger, Stefan

    2007-09-01

    Lens array arrangements are commonly used for the beam shaping of almost arbitrary input intensity distributions into a top-hat. The setup usually consists of a Fourier lens and two identical regular microlens arrays - often referred to as tandem lens array - where the second one is placed in the focal plane of the first microlenses. Due to the periodic structure of regular arrays the output intensity distribution is modulated by equidistant sharp intensity peaks which are disturbing the homogeneity. The equidistantly located intensity peaks can be suppressed when using a chirped and therefore non-periodic microlens array. A far field speckle pattern with more densely and irregularly located intensity peaks results leading to an improved homogeneity of the intensity distribution. In contrast to stochastic arrays, chirped arrays consist of individually shaped lenses defined by a parametric description of the cells optical function which can be derived completely from analytical functions. This gives the opportunity to build up tandem array setups enabling to achieve far field intensity distribution with an envelope of a top-hat. We propose a new concept for fly's eye condensers incorporating a chirped tandem microlens array for the generation of a top-hat far field intensity distribution with improved homogenization under coherent illumination. The setup is compliant to reflow of photoresist as fabrication technique since plane substrates accommodating the arrays are used. Considerations for the design of the chirped microlens arrays, design rules, wave optical simulations and measurements of the far field intensity distributions are presented.

  16. Consumption of ultra-processed foods and likely impact on human health. Evidence from Canada.

    PubMed

    Moubarac, Jean-Claude; Martins, Ana Paula Bortoletto; Claro, Rafael Moreira; Levy, Renata Bertazzi; Cannon, Geoffrey; Monteiro, Carlos Augusto

    2013-12-01

    To investigate consumption of ultra-processed products in Canada and to assess their association with dietary quality. Application of a classification of foodstuffs based on the nature, extent and purpose of food processing to data from a national household food budget survey. Foods are classified as unprocessed/minimally processed foods (Group 1), processed culinary ingredients (Group 2) or ultra-processed products (Group 3). All provinces and territories of Canada, 2001. Households (n 5643). Food purchases provided a mean per capita energy availability of 8908 (se 81) kJ/d (2129 (se 19) kcal/d). Over 61·7 % of dietary energy came from ultra-processed products (Group 3), 25·6 % from Group 1 and 12·7 % from Group 2. The overall diet exceeded WHO upper limits for fat, saturated fat, free sugars and Na density, with less fibre than recommended. It also exceeded the average energy density target of the World Cancer Research Fund/American Institute for Cancer Research. Group 3 products taken together are more fatty, sugary, salty and energy-dense than a combination of Group 1 and Group 2 items. Only the 20 % lowest consumers of ultra-processed products (who consumed 33·2 % of energy from these products) were anywhere near reaching all nutrient goals for the prevention of obesity and chronic non-communicable diseases. The 2001 Canadian diet was dominated by ultra-processed products. As a group, these products are unhealthy. The present analysis indicates that any substantial improvement of the diet would involve much lower consumption of ultra-processed products and much higher consumption of meals and dishes prepared from minimally processed foods and processed culinary ingredients.

  17. Rhabdomyolysis and exercise-associated hyponatremia in ultra-bikers and ultra-runners.

    PubMed

    Chlíbková, Daniela; Knechtle, Beat; Rosemann, Thomas; Tomášková, Ivana; Novotný, Jan; Žákovská, Alena; Uher, Tomáš

    2015-01-01

    Exercise-associated hyponatremia (EAH), rhabdomyolysis and renal failure appear to be a unique problem in ultra-endurance racers. We investigated the combined occurrence of EAH and rhabdomyolysis in seven different ultra-endurance races and disciplines (i.e. multi-stage mountain biking, 24-h mountain biking, 24-h ultra-running and 100-km ultra-running). Two (15.4%) ultra-runners (man and woman) from hyponatremic ultra-athletes (n = 13) and four (4%) ultra-runners (four men) from the normonatremic group (n = 100) showed rhabdomyolysis following elevated blood creatine kinase (CK) levels > 10,000 U/L without the development of renal failure and the necessity of a medical treatment. Post-race creatine kinase, plasma and urine creatinine significantly increased, while plasma [Na(+)] and creatine clearance decreased in hyponatremic and normonatremic athletes, respectively. The percentage increase of CK was higher in the hyponatremic compared to the normonatremic group (P < 0.05). Post-race CK levels were higher in ultra-runners compared to mountain bikers (P < 0.01), in faster normonatremic (P < 0.05) and older and more experienced hyponatremic ultra-athletes (P < 0.05). In all finishers, pre-race plasma [K(+)] was related to post-race CK (P < 0.05). Hyponatremic ultra-athletes tended to develop exercise-induced rhabdomyolysis more frequently than normonatremic ultra-athletes. Ultra-runners tended to develop rhabdomyolysis more frequently than mountain bikers. We found no association between post-race plasma [Na(+)] and CK concentration in both hypo- and normonatremic ultra-athletes.

  18. Muon Detector R&D in Telescope Array Experiment

    NASA Astrophysics Data System (ADS)

    Nonaka, T.; Takamura, M.; Honda, K.; Matthews, J. N.; Ogio, S.; Sakurai, N.; Sagawa, H.; Stokes, B. T.; Tsujimoto, M.; Yashiro, K.

    The Telescope Array (TA) experiment, located in the western desert of Utah, U.S.A., at 39.38° north and 112.9° west, is collecting data of ultra high energy cosmic rays in the energy range 1018-1020 eV. The experiment has a Surface Detector (SD) array surrounded by three Fluorescence Detector (FD) stations to enable simultaneous detection of shower particles and fluorescence photons generated by the extensive air shower. Measurement of shower particles at the ground level, with different absorber thickness, enables a more detailed studies of the experiment's energy scale and of hadron interaction models. In this report, we present a design and the first observation result of a surface muon detector using lead plates and concrete as absorbers.

  19. Investigations into the impact of various substrates and ZnO ultra thin seed layers prepared by atomic layer deposition on growth of ZnO nanowire array

    PubMed Central

    2012-01-01

    The impact of various substrates and zinc oxide (ZnO) ultra thin seed layers prepared by atomic layer deposition on the geometric morphology of subsequent ZnO nanowire arrays (NWs) fabricated by the hydrothermal method was investigated. The investigated substrates included B-doped ZnO films, indium tin oxide films, single crystal silicon (111), and glass sheets. Scanning electron microscopy and X-ray diffraction measurements revealed that the geometry and aligment of the NWs were controlled by surface topography of the substrates and thickness of the ZnO seed layers, respectively. According to atomic force microscopy data, we suggest that the substrate, fluctuate amplitude and fluctuate frequency of roughness on ZnO seed layers have a great impact on the alignment of the resulting NWs, whereas the influence of the seed layers' texture was negligible. PMID:22759838

  20. Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2006-09-25

    Laser plasma interaction experiments have been perform performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. Electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were cautiously compared with relevant 1D numerical simulation. Finally these results provide a first experience of searching for the time-space position of the so-called warm dense plasma in an ultra fast laser target interaction process. These experiments aim to prepare nearmore » solid-density plasmas for Thomson scattering experiments using the short wavelength free-electron laser FLASH, DESY Hamburg.« less

  1. Cluster Computing For Real Time Seismic Array Analysis.

    NASA Astrophysics Data System (ADS)

    Martini, M.; Giudicepietro, F.

    A seismic array is an instrument composed by a dense distribution of seismic sen- sors that allow to measure the directional properties of the wavefield (slowness or wavenumber vector) radiated by a seismic source. Over the last years arrays have been widely used in different fields of seismological researches. In particular they are applied in the investigation of seismic sources on volcanoes where they can be suc- cessfully used for studying the volcanic microtremor and long period events which are critical for getting information on the volcanic systems evolution. For this reason arrays could be usefully employed for the volcanoes monitoring, however the huge amount of data produced by this type of instruments and the processing techniques which are quite time consuming limited their potentiality for this application. In order to favor a direct application of arrays techniques to continuous volcano monitoring we designed and built a small PC cluster able to near real time computing the kinematics properties of the wavefield (slowness or wavenumber vector) produced by local seis- mic source. The cluster is composed of 8 Intel Pentium-III bi-processors PC working at 550 MHz, and has 4 Gigabytes of RAM memory. It runs under Linux operating system. The developed analysis software package is based on the Multiple SIgnal Classification (MUSIC) algorithm and is written in Fortran. The message-passing part is based upon the LAM programming environment package, an open-source imple- mentation of the Message Passing Interface (MPI). The developed software system includes modules devote to receiving date by internet and graphical applications for the continuous displaying of the processing results. The system has been tested with a data set collected during a seismic experiment conducted on Etna in 1999 when two dense seismic arrays have been deployed on the northeast and the southeast flanks of this volcano. A real time continuous acquisition system has been simulated by

  2. MEMS-Based Solid Propellant Rocket Array Thruster

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi

    The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.

  3. The development and test of ultra-large-format multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1984-01-01

    The specific tasks that were accomplished with each of the key elements of the multi-anode microchannel array detector system are described. The modes of operation of position-sensitive electronic readout systems for use with high-gain microchannel plates are described and their performance characteristics compared and contrasted. Multi-anode microchannel array detector systems with formats as large as 256 x 1024 pixels are currently under evaluation. Preliminary performance data for sealed ultraviolet and visible-light detector tubes show that the detector systems have unique characteristics which make them complementary to photoconductive array detectors, such as CCDs, and superior to alternative pulse-counting detector systems employing high-gain MCPs.

  4. A three-dimensional microelectrode array composed of vertically aligned ultra-dense carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Nick, C.; Yadav, S.; Joshi, R.; Schneider, J. J.; Thielemann, C.

    2015-07-01

    Electrodes based on carbon nanotubes are a promising approach to manufacture highly sensitive sensors with a low limit of signal detection and a high signal-to-noise ratio. This is achieved by dramatically increasing the electrochemical active surface area without increasing the overall geometrical dimensions. Typically, carbon nanotube electrodes are nearly planar and composed of randomly distributed carbon nanotube networks having a limited surface gain for a specific geometrical surface area. To overcome this limitation, we have introduced vertically aligned carbon nanotube (VACNT) networks as electrodes, which are arranged in a microelectrode pattern of 60 single electrodes. Each microelectrode features a very high aspect ratio of more than 300 and thus a dramatically increased surface area. These microelectrodes composed of VACNT networks display dramatically decreased impedance over the entire frequency range compared to planar microelectrodes caused by the enormous capacity increase. This is experimentally verified by electrochemical impedance spectroscopy and cyclic voltammetry.

  5. Synthesis of Conformal Phased Antenna Arrays With A Novel Multiobjective Invasive Weed Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Wen Tao; Hei, Yong Qiang; Shi, Xiao Wei

    2018-04-01

    By virtue of the excellent aerodynamic performances, conformal phased arrays have been attracting considerable attention. However, for the synthesis of patterns with low/ultra-low sidelobes of the conventional conformal arrays, the obtained dynamic range ratios of amplitude excitations could be quite high, which results in stringent requirements on various error tolerances for practical implementation. Time-modulated array (TMA) has the advantages of low sidelobe and reduced dynamic range ratio requirement of amplitude excitations. This paper takes full advantages of conformal antenna arrays and time-modulated arrays. The active-element-pattern, including element mutual coupling and platform effects, is employed in the whole design process. To optimize the pulse durations and the switch-on instants of the time-modulated elements, multiobjective invasive weed optimization (MOIWO) algorithm based on the nondominated sorting of the solutions is proposed. A S-band 8-element cylindrical conformal array is designed and a S-band 16-element cylindrical-parabolic conformal array is constructed and tested at two different steering angles.

  6. Creating Extended and Dense Plasma Channels in Air by Using Spatially and Temporally Shaped Ultra-Intense Laser Pulses

    DTIC Science & Technology

    2011-08-16

    Wolf, Phys. Rev. Lett. 104, 103903 (2010). 6. M. Aközbek, M. Scalora , C. Bowden, and S. L. Chin, Opt. Commun. 191, 353 (2001). 7. A. Couairon, Phys...Aközbek, M. Scalora , C. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in

  7. The hybrid energy spectrum of Telescope Array's Middle Drum Detector and surface array

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M. G.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-08-01

    The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly's Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.

  8. Wideband Array for C, X, and Ku-Band Applications with 5.3:1 Bandwidth

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Félix A.

    2015-01-01

    Satellite communication has largely been accomplished using reflector antennas. However, such antennas are inherently bulky, and rely on mechanical steering. For this reason, ultra-wideband (UWB) and beam forming arrays have received strong interest. These lower weight, size,and cost arrays can combine many satellite applicationsspread throughout the C–Ka bands (4–40 GHz).To this end, we seek to develop an UWB Tightly-Coupled Dipole Array (TCDA) with the following attributes: UWB band operation (3.5–18.5 GHz) with low loss; 45° or more scanning in all planes; Low-cost Printed Circuit Board (PCB) fabrication; Scalable to Ka-band and above.

  9. High Efficient Ultra-Thin Flat Optics Based on Dielectric Metasurfaces

    NASA Astrophysics Data System (ADS)

    Ozdemir, Aytekin

    Metasurfaces which emerged as two-dimensional counterparts of metamaterials, facilitate the realization of arbitrary phase distributions using large arrays with subwavelength and ultra-thin features. Even if metasurfaces are ultra-thin, they still effectively manipulate the phase, amplitude, and polarization of light in transmission or reflection mode. In contrast, conventional optical components are bulky, and they lose their functionality at sub-wavelength scales, which requires conceptually new types of nanoscale optical devices. On the other hand, as the optical systems shrink in size day by day, conventional bulky optical components will have tighter alignment and fabrication tolerances. Since metasurfaces can be fabricated lithographically, alignment can be done during lithographic fabrication, thus eliminating the need for post-fabrication alignments. In this work, various types of metasurface applications are thoroughly investigated for robust wavefront engineering with enhanced characteristics in terms of broad bandwidth, high efficiency and active tunability, while beneficial for application. Plasmonic metasurfaces are not compatible with the CMOS process flow, and, additionally their high absorption and ohmic loss is problematic in transmission based applications. Dielectric metasurfaces, however, offer a strong magnetic response at optical frequencies, and thus they can offer great opportunities for interacting not only with the electric component of a light field, but also with its magnetic component. They show great potential to enable practical device functionalities at optical frequencies, which motivates us to explore them one step further on wavefront engineering and imaging sensor platforms. Therefore, we proposed an efficient ultra-thin flat metalens at near-infrared regime constituted by silicon nanodisks which can support both electric and magnetic dipolar Mie-type resonances. These two dipole resonances can be overlapped at the same frequency

  10. Evaluating the Reverse Time Migration Method on the dense Lapnet / Polenet seismic array in Europe

    NASA Astrophysics Data System (ADS)

    Dupont, Aurélien; Le Pichon, Alexis

    2013-04-01

    In this study, results are obtained using the reverse time migration method used as benchmark to evaluate the implemented method by Walker et al., (2010, 2011). Explosion signals recorded by the USArray and extracted from the TAIRED catalogue (TA Infrasound Reference Event Database user community / Vernon et al., 2012) are investigated. The first one is an explosion at Camp Minden, Louisiana (2012-10-16 04:25:00 UTC) and the second one is a natural gas explosion near Price, Utah (2012-11-20 15:20:00 UTC). We compare our results to automatic solutions (www.iris.edu/spud/infrasoundevent). The good agreement between both solutions validates our detection method. In a second time, we analyse data from the Lapnet / Polenet dense seismic network (Kozlovskaya et al., 2008). Detection and location in two-dimensional space and time of infrasound events presumably due to acoustic-to-seismic coupling, during the 2007-2009 period in Europe, are presented. The aim of this work is to integrate near-real time network performance predictions at regional scales to improve automatic detection of infrasonic sources. The use of dense seismic networks provides a valuable tool to monitor infrasonic phenomena, since seismic location has recently proved to be more accurate than infrasound locations due to the large number of seismic sensors.

  11. Energy Penetration into Arrays of Aligned Nanowires Irradiated with Relativistic Intensities: Scaling to Terabar Pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela

    Ultra-high-energy-density (UHED) matter, characterized by energy densities > 1 x 10 8 J cm -3 and pressures greater than a gigabar, is encountered in the center of stars and in inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Nimore » nanowire arrays irradiated at an intensity of 4 x 10 19 W cm -2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of > 1 x 10 22 W cm -2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 10 10 J cm -3, equivalent to a pressure of 0.35 Tbar.« less

  12. Supernovae as probes of cosmic parameters: estimating the bias from under-dense lines of sight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busti, V.C.; Clarkson, C.; Holanda, R.F.L., E-mail: vinicius.busti@uct.ac.za, E-mail: holanda@uepb.edu.br, E-mail: chris.clarkson@uct.ac.za

    2013-11-01

    Correctly interpreting observations of sources such as type Ia supernovae (SNe Ia) require knowledge of the power spectrum of matter on AU scales — which is very hard to model accurately. Because under-dense regions account for much of the volume of the universe, light from a typical source probes a mean density significantly below the cosmic mean. The relative sparsity of sources implies that there could be a significant bias when inferring distances of SNe Ia, and consequently a bias in cosmological parameter estimation. While the weak lensing approximation should in principle give the correct prediction for this, linear perturbationmore » theory predicts an effectively infinite variance in the convergence for ultra-narrow beams. We attempt to quantify the effect typically under-dense lines of sight might have in parameter estimation by considering three alternative methods for estimating distances, in addition to the usual weak lensing approximation. We find in each case this not only increases the errors in the inferred density parameters, but also introduces a bias in the posterior value.« less

  13. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms

    PubMed Central

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; (Lamar) Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-01-01

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future. PMID:28181593

  14. Automatic Parallelization of Numerical Python Applications using the Global Arrays Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Jeffrey A.; Lewis, Robert R.

    2011-11-30

    Global Arrays is a software system from Pacific Northwest National Laboratory that enables an efficient, portable, and parallel shared-memory programming interface to manipulate distributed dense arrays. The NumPy module is the de facto standard for numerical calculation in the Python programming language, a language whose use is growing rapidly in the scientific and engineering communities. NumPy provides a powerful N-dimensional array class as well as other scientific computing capabilities. However, like the majority of the core Python modules, NumPy is inherently serial. Using a combination of Global Arrays and NumPy, we have reimplemented NumPy as a distributed drop-in replacement calledmore » Global Arrays in NumPy (GAiN). Serial NumPy applications can become parallel, scalable GAiN applications with only minor source code changes. Scalability studies of several different GAiN applications will be presented showing the utility of developing serial NumPy codes which can later run on more capable clusters or supercomputers.« less

  15. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.

    PubMed

    Barako, Michael T; Isaacson, Scott G; Lian, Feifei; Pop, Eric; Dauskardt, Reinhold H; Goodson, Kenneth E; Tice, Jesse

    2017-12-06

    Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm 2 K W -1 , over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.

  16. Analytical Performance of a Venturi-assisted Array of Micromachined UltraSonic Electrosprays (AMUSE) Coupled to Ion Trap Mass Spectrometry for the Analysis of Peptides and Proteins

    PubMed Central

    Hampton, Christina Y.; Forbes, Thomas P.; Varady, Mark J.; Meacham, J. Mark; Fedorov, Andrei G.; Degertekin, F. Levent; Fernández, Facundo M.

    2008-01-01

    The analytical characterization of a novel ion source for mass spectrometry named Array of Micromachined UltraSonic Electrosprays (AMUSE) is presented here. This is a fundamentally different type of ion generation device, consisting of three major components: 1) a piezoelectric transducer that creates ultrasonic waves at one of the resonant frequencies of the sample-filled device, 2) an array of pyramidally-shaped nozzles micromachined on a silicon wafer, and 3) a spacer which prevents contact between the array and transducer ensuring the transfer of acoustic energy to the sample. A high pressure gradient generated at the apices of the nozzle pyramids forces the periodic ejection of multiple droplet streams from the device. With this device, the processes of droplet formation and droplet charging are separated, hence, the limitations of conventional electrospray-type ion sources, including the need for high charging potentials and the addition of organic solvent to decrease surface tension can be avoided. In this work, a Venturi device is coupled with AMUSE in order to increase desolvation, droplet focusing, and signal stability. Results show that ionization of model peptides and small tuning molecules is possible with DC charging potentials of 100 VDC or less. Ionization in RF-only mode (without DC biasing) was also possible. It was observed that, when combined with AMUSE, the Venturi device provides a 10-fold gain in signal-to-noise ratio for 90% aqueous sample solutions. Further reduction in the diameter of the orifices of the micromachined arrays, led to an additional signal gain of at least 3 orders of magnitude, a 2- to 10-fold gain in the signal-to-noise ratio, and an improvement in signal stability from 47% to 8.5% RSD. The effectiveness of this device for the soft ionization of model proteins in aqueous media, such as cytochrome C was also examined, yielding spectra with an average charge state of 8.8 when analyzed with a 100 VDC charging potential

  17. Hemispherical array of sensors with contractively wrapped polymer petals for flow sensing

    NASA Astrophysics Data System (ADS)

    Kanhere, Elgar; Wang, Nan; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael

    2017-11-01

    Hemispherical arrays have inherent advantages that allow simultaneous detection of flow speed and direction due to their shape. Though MEMS technology has progressed leaps and bounds, fabrication of array of sensors on a hemispherical surface is still a challenge. In this work, a novel approach of constructing hemispherical array is presented which employs a technique of contractively wrapping a hemispherical surface with flexible liquid crystal polymer petals. This approach also leverages the offerings from rapid prototyping technology and established standard MEMS fabrication processes. Hemispherical arrays of piezoresistive sensors are constructed with two types of petal wrappings, 4-petals and 8-petals, on a dome. The flow sensing and direction detection abilities of the dome are evaluated through experiments in wind tunnel. Experimental results demonstrate that a dome equipped with a dense array of sensors can provide information pertaining to the stimulus, through visualization of output profile over the entire surface.

  18. RESIF Seismology Datacentre : Recently Released Data and New Services. Computing with Dense Seisimic Networks Data.

    NASA Astrophysics Data System (ADS)

    Volcke, P.; Pequegnat, C.; Grunberg, M.; Lecointre, A.; Bzeznik, B.; Wolyniec, D.; Engels, F.; Maron, C.; Cheze, J.; Pardo, C.; Saurel, J. M.; André, F.

    2015-12-01

    RESIF is a nationwide french project aimed at building a high quality observation system to observe and understand the inner earth. RESIF deals with permanent seismic networks data as well as mobile networks data, including dense/semi-dense arrays. RESIF project is distributed among different nodes providing qualified data to the main datacentre in Université Grenoble Alpes, France. Data control and qualification is performed by each individual nodes : the poster will provide some insights on RESIF broadband seismic component data quality control. We will then present data that has been recently made publicly available. Data is distributed through worldwide FDSN and european EIDA standards protocols. A new web portal is now opened to explore and download seismic data and metadata. The RESIF datacentre is also now connected to Grenoble University High Performance Computing (HPC) facility : a typical use-case will be presented using iRODS technologies. The use of dense observation networks is increasing, bringing challenges in data growth and handling : we will present an example where HDF5 data format was used as an alternative to usual seismology data formats.

  19. THE GREEN BANK TELESCOPE MAPS THE DENSE, STAR-FORMING GAS IN THE NEARBY STARBURST GALAXY M82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepley, Amanda A.; Frayer, David; Leroy, Adam K.

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO{sup +}. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxiesmore » by presenting the most sensitive maps yet of HCN and HCO{sup +} in the starburst galaxy M82. The HCN and HCO{sup +} in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO{sup +} emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.« less

  20. Teleseismic array analysis of upper mantle compressional velocity structure. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Walck, M. C.

    1984-01-01

    Relative array analysis of upper mantle lateral velocity variations in southern California, analysis techniques for dense data profiles, the P-wave upper mantle structure beneath an active spreading center: the Gulf of California, and the upper mantle under the Cascade ranges: a comparison with the Gulf of California are presented.

  1. Molecular Substrate Alteration by Solar Wind Radiation Documented on Flown Genesis Mission Array Materials

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, Eileen K.

    2006-01-01

    The Genesis spacecraft sampling arrays were exposed to various regimes of solar wind during flight that included: 313.01 days of high-speed wind from coronal holes, 335.19 days of low-speed inter-stream wind, 191.79 days of coronal mass ejections, and 852.83 days of bulk solar wind at Lagrange 1 orbit. Ellipsometry measurements taken at NASA s Johnson Space Center show that all nine flown array materials from the four Genesis regimes have been altered by solar wind exposure during flight. These measurements show significant changes in the optical constant for all nine ultra-pure materials that flew on Genesis when compared with their non-flight material standard. This change in the optical constant (n and k) of the material suggests that the molecular structure of the all nine ultra-pure materials have been altered by solar radiation. In addition, 50 samples of float-zone and czochralski silicon bulk array ellipsometry results were modeled with an effective medium approximation layer (EMA substrate layer) revealing a solar radiation molecular damage zone depth below the SiO2 native oxide layer ranging from 392 to 613 . This bulk solar wind radiation penetration depth is comparable to the depth of solar wind implantation depth of Mg measured by SIMS and SARISA.

  2. Ultra high spatial and temporal resolution breast imaging at 7T.

    PubMed

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Clogging and jamming transitions in periodic obstacle arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hong; Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2017-03-29

    We numerically examine clogging transitions for bidisperse disks flowing through a two-dimensional periodic obstacle array. Here, we show that clogging is a probabilistic event that occurs through a transition from a homogeneous flowing state to a heterogeneous or phase-separated jammed state where the disks form dense connected clusters. The probability for clogging to occur during a fixed time increases with increasing particle packing and obstacle number. For driving at different angles with respect to the symmetry direction of the obstacle array, we show that certain directions have a higher clogging susceptibility. It is also possible to have a size-specific cloggingmore » transition in which one disk size becomes completely immobile while the other disk size continues to flow.« less

  4. Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing

    NASA Astrophysics Data System (ADS)

    Chen, Enguo; Wu, Rengmao; Guo, Tailiang

    2014-06-01

    Collimated beam shaping with freeform surface usually employs a predefined mapping to tailor one or multiple freeform surfaces. Limitation on those designs is that the source, the freeform optics and the target are in fixed one-to-one correspondence with each other. To overcome this drawback, this paper presents a kind of freeform microlens array module integrated with an ultra-thin freeform microlens array and a condenser lens to reshape any arbitrary-shape collimated beam into a prescribed uniform rectangular illumination and achieve color mixing. The design theory is explicitly given, and some key issues are addressed. Several different application examples are given, and the target is obtained with high uniformity and energy efficiency. This freeform microlens array module, which shows better flexibility and practicality than the regular designs, can be used not only to reshape any arbitrary-shape collimated beam (or a collimated beam integrated with several sub-collimated beams), but also most importantly to achieve color mixing. With excellent optical performance and ultra-compact volume, this optical module together with the design theory can be further introduced into other applications and will have a huge market potential in the near future.

  5. Wideband Array for C, X, and Ku-Band Applications with 5.3:1 Bandwidth

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    Planar arrays that exploit strong intentional coupling between elements have allowed for very wide bandwidths in low-profile configurations. However, such designs also require complex impedance matching networks that must also be very compact. For many space applications, typically occurring at C-, X-, Ku-, and most recently at Ka-band, such designs require specialized and expensive fabrication techniques. To address this issue, a novel ultra-wideband array is presented, using a simplified feed network to reduce fabrication cost. The array operates from 3.5-18.5 GHz with VSWR less than 2.4 at broadside, and is of very low profile, having a total height of lambda/10 at the lowest frequency of operation. Validation is provided using a 64-element prototype array, fabricated using common Printed Circuit Board (PCB) technology. The low size, weight, and cost of this array make it attractive for space-borne applications.

  6. Making Carbon-Nanotube Arrays Using Block Copolymers: Part 2

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael

    2004-01-01

    Some changes have been incorporated into a proposed method of manufacturing regular arrays of precisely sized, shaped, positioned, and oriented carbon nanotubes. Such arrays could be useful as mechanical resonators for signal filters and oscillators, and as electrophoretic filters for use in biochemical assays. A prior version of the method was described in Block Copolymers as Templates for Arrays of Carbon Nanotubes, (NPO-30240), NASA Tech Briefs, Vol. 27, No. 4 (April 2003), page 56. To recapitulate from that article: As in other previously reported methods, carbon nanotubes would be formed by decomposition of carbon-containing gases over nanometer-sized catalytic metal particles that had been deposited on suitable substrates. Unlike in other previously reported methods, the catalytic metal particles would not be so randomly and densely distributed as to give rise to thick, irregular mats of nanotubes with a variety of lengths, diameters, and orientations. Instead, in order to obtain regular arrays of spaced-apart carbon nanotubes as nearly identical as possible, the catalytic metal particles would be formed in predetermined regular patterns with precise spacings. The regularity of the arrays would be ensured by the use of nanostructured templates made of block copolymers.

  7. Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna

    NASA Technical Reports Server (NTRS)

    duToit, Cornelis

    2014-01-01

    A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each

  8. Dynamics of conical wire array Z-pinch implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampleford, D. J.; Lebedev, S. V.; Bland, S. N.

    2007-10-15

    A modification of the wire array Z pinch, the conical wire array, has applications to the understanding of wire array implosions and potentially to pulse shaping relevant to inertial confinement fusion. Results are presented from imploding conical wire array experiments performed on university scale 1 MA generators--the MAGPIE generator (1 MA, 240 ns) at Imperial College London [I. H. Mitchell et al., Rev. Sci Instrum. 67, 1533 (1996)] and the Nevada Terawatt Facility's Zebra generator (1 MA, 100 ns) at the University of Nevada, Reno [B. Bauer et al., in Dense Z-Pinches, edited by N. Pereira, J. Davis, and P.more » Pulsifer (AIP, New York, 1997), Vol. 409, p. 153]. This paper will discuss the implosion dynamics of conical wire arrays. Data indicate that mass ablation from the wires in this complex system can be reproduced with a rocket model with fixed ablation velocity. Modulations in the ablated plasma are present, the wavelength of which is invariant to a threefold variation in magnetic field strength. The axial variation in the array leads to a zippered precursor column formation. An initial implosion of a magnetic bubble near the cathode is followed by the implosion zippering upwards. Spectroscopic data demonstrating a variation of plasma parameters (e.g., electron temperature) along the Z-pinch axis is discussed, and experimental data are compared to magnetohydrodynamic simulations.« less

  9. Quantification of patulin in fruit leathers by ultra-high-performance liquid chromatography-photodiode array (UPLC-PDA).

    PubMed

    Maragos, Chris M; Busman, Mark; Ma, Liang; Bobell, John

    2015-01-01

    Patulin is a mycotoxin commonly found in certain fruit and fruit products. For this reason many countries have established regulatory limits pertaining to, in particular, apple juice and apple products. Fruit leathers are produced by dehydrating fruit puree, leaving a sweet product that has a leathery texture. A recent report in the literature described the detection of patulin at substantial levels in fruit leathers. To investigate this further, an ultra-high-performance liquid chromatography-photodiode array (UPLC-PDA) method was developed for the sensitive detection of patulin in fruit leathers. Investigations were also made of the suitability of direct analysis in real time-mass spectrometry (DART-MS) for detection of patulin from the surface of fruit leathers. Results indicated DART-MS was insufficiently sensitive for quantification from the surface of home-style apple leathers, although patulin spiked onto the surface of leather or peel could be detected. The UPLC-PDA method was used to determine the fate of patulin during the preparation of home-made fruit leathers. Interestingly, when a home-style process was used, the patulin was not destroyed, but rather increased in concentration as the puree was dehydrated. The UPLC-PDA method was also used to screen for patulin in commercial fruit leathers. Of the 36 products tested, 14 were above the limit of detection (3.5 μg kg(-1)) and nine were above the limit of quantification (12 μg kg(-1)). Positive samples were confirmed by UPLC-MS/MS. Only one sample was found above the US regulatory limit for single-strength apple juice products (50 μg kg(-1)). These results suggest patulin can be concentrated during preparation and can be found in fruit leathers. The limited survey suggests that patulin is fairly prevalent in such commercial products, but that the levels are usually low.

  10. Charge injection and discharging of Si nanocrystals and arrays by atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Boer, E.; Ostraat, M.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.

    2000-01-01

    Charge injection and storage in dense arrays of silicon nanocrystals in SiO(sub 2) is a critical aspect of the performance of potential nanocrystal flash memory structures. The ultimate goal for this class of devices is few-or single- electron storage in a small number of nanocrystal elements.

  11. X-ray absorption of a warm dense aluminum plasma created by an ultra-short laser pulse

    NASA Astrophysics Data System (ADS)

    Lecherbourg, L.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Blancard, C.; Cossé, P.; Faussurier, G.; Shepherd, R.; Audebert, P.

    2007-05-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient aluminum plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum were measured for an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. A detailed opacity code using the density and temperature inferred from the FDI reproduce the measured absorption spectra except in the last stage of the recombination phase.

  12. The ARIANNA Hexagonal Radio Array - performance and prospects

    NASA Astrophysics Data System (ADS)

    Hallgren, Allan

    2016-04-01

    The origin of the highest energy cosmic rays at ˜1020 eV is still unknown. Ultra-high energy neutrinos from the GZK process should provide information on the sources and their properties. A promising and cost effective method for observing GZK-neutrinos is based on detection of Askaryan radio pulses with antennas installed in ice. The ARIANNA project aims at instrumenting a 36*36 km2 large area on the Ross Ice Shelf with an array of radio detection stations. The deployment of a test system for ARIANNA, the Hexagonal Radio Array (HRA), was completed in December 2014. The three first stations were installed in 2012. Solar panels are used to drive the < 10 W stations. The system hibernated at sunset in April and all stations returned to operation in September. The site is essentially free of anthropogenic noise. Simple cuts eliminate background and provides for efficient selection of neutrino events. Prospects for the sensitivity of the full ARIANNA array to the flux of GZK neutrinos are shown.

  13. Illuminating sesmic discontinuities with receiver functions from a dense array in Mexico City

    NASA Astrophysics Data System (ADS)

    Perez-Campos, X.; Rodríguez-Domínguez, M. Á.; González-López, A.; Espindola, V. H.; Quintanar, L.; Ramirez-Guzman, L.

    2017-12-01

    Mexico City, with close to 10 million inhabitants, has grown over a sedimentary basin, from an old dried lake. This has been a big factor in amplifying the seismic waves from large subduction earthquakes, located > 300 km away on the Pacific coast, which represents a significant hazard. For this reason, it is of great interest to improve the knowledge of the seismic structure of the city and its details on spatial variations to reduce the uncertainty in ground motion modeling. In May 2017, such array started its way in Mexico City. It consists of 18 broadband stations, that record in place for 3-5 days, moving then to a new location. In total, the city will be covered with 343 recording sites. In this work, we present preliminary results of receiver functions obtained in such array and in permanent stations of the Seismic Network of the Valley of Mexico. Despite the few teleseismic events, the small spacing between stations ( 500 m) allows identification of converted Ps phases from the Moho discontinuity, as well as other converted phases, which might be related to subtle changes in the vertical and lateral seismic structure. This Project was funded by the Secretaria de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.

  14. Shielded Coaxial Optrode Arrays for Neurophysiology

    PubMed Central

    Naughton, Jeffrey R.; Connolly, Timothy; Varela, Juan A.; Lundberg, Jaclyn; Burns, Michael J.; Chiles, Thomas C.; Christianson, John P.; Naughton, Michael J.

    2016-01-01

    Recent progress in the study of the brain has been greatly facilitated by the development of new tools capable of minimally-invasive, robust coupling to neuronal assemblies. Two prominent examples are the microelectrode array (MEA), which enables electrical signals from large numbers of neurons to be detected and spatiotemporally correlated, and optogenetics, which enables the electrical activity of cells to be controlled with light. In the former case, high spatial density is desirable but, as electrode arrays evolve toward higher density and thus smaller pitch, electrical crosstalk increases. In the latter, finer control over light input is desirable, to enable improved studies of neuroelectronic pathways emanating from specific cell stimulation. Here, we introduce a coaxial electrode architecture that is uniquely suited to address these issues, as it can simultaneously be utilized as an optical waveguide and a shielded electrode in dense arrays. Using optogenetically-transfected cells on a coaxial MEA, we demonstrate the utility of the architecture by recording cellular currents evoked from optical stimulation. We also show the capability for network recording by radiating an area of seven individually-addressed coaxial electrode regions with cultured cells covering a section of the extent. PMID:27375415

  15. Electrochemical properties of Ti3+ doped Ag-Ti nanotube arrays coated with hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Zhang, Hangzhou; Shi, Xiaoguo; Tian, Ang; Wang, Li; Liu, Chuangwei

    2018-04-01

    Ag-Ti nanotube array was prepared by simple anodic oxidation method and uniform hydroxyapatite were electrochemically deposited on the nanotubes, and then characterized by SEM, XRD, XPS and EIS. In order to investigate the influence of Ti3+ on the electrochemical deposition of hydroxyapatite on the nanotubes, the Ag-Ti nanotube array self-doped with Ti3+ was prepared by one step reduction method. The experiment results revealed that the Ti3+ can promote the grow rate of hydroxyapatite coatings on nanotube surface. The hydroxyapatite coated Ag-Ti nanotube arrays with Ti3+ exhibit excellent stability and higher corrosion resistance. Moreover, the compact and dense hydroxyapatite coating can also prevent the Ag atom erosion from the Ag-Ti nanotube.

  16. [Study on ultra-structural pathological changes of rats poisoned by tetramine].

    PubMed

    Zhi, Chuan-hong; Liu, Liang; Liu, Yan

    2005-05-01

    To observe ultra-structural pathological changes of materiality viscera of rats poisoned by different dose of tetramine and to study the toxic mechanism. Acute and subacute tetramine toxicity models were made by oral administration with different dose of tetramine. Brain, heart, liver, spleen and kidney were extracted and observed by electromicroscopic examination. The injuries of brain cells, cardiocytes and liver cells were induced by different dose of tetramine. These were not obviously different of the injuries of the kindy cells and spleen cells of rats poisoned by different dose of tetramine. Ultra-structural pathological changes were abserved including mitochondria slight swelling and neurolemma's array turbulence in the brain cells, mitochondria swelling or abolish and rupture of muscle fiber in the heart cells, mitochondria swelling and the glycogen decreased in the liver cells. The toxic target organs of tetramine are the heart, brain and liver.

  17. Energy Density in Aligned Nanowire Arrays Irradiated with Relativistic Intensities: Path to Terabar Pressure Plasmas

    NASA Astrophysics Data System (ADS)

    Rocca, J.; Bargsten, C.; Hollinger, R.; Shylaptsev, V.; Wang, S.; Rockwood, A.; Wang, Y.; Keiss, D.; Capeluto, M.; Kaymak, V.; Pukhov, A.; Tommasini, R.; London, R.; Park, J.

    2016-10-01

    Ultra-high-energy-density (UHED) plasmas, characterized by energy densities >1 x 108 J cm-3 and pressures greater than a gigabar are encountered in the center of stars and in inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto aligned nanowire array targets. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations validated by these measurements predict that irradiation of nanostructures at increased intensity will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency.

  18. Automated control of linear constricted plasma source array

    DOEpatents

    Anders, Andre; Maschwitz, Peter A.

    2000-01-01

    An apparatus and method for controlling an array of constricted glow discharge chambers are disclosed. More particularly a linear array of constricted glow plasma sources whose polarity and geometry are set so that the contamination and energy of the ions discharged from the sources are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The quality of film along deposition "tracks" opposite the plasma sources can be measured and compared to desired absolute or relative values by optical and/or electrical sensors. Plasma quality can then be adjusted by adjusting the power current values, gas feed pressure/flow, gas mixtures or a combination of some or all of these to improve the match between the measured values and the desired values.

  19. Weight optimization of ultra large space structures

    NASA Technical Reports Server (NTRS)

    Reinert, R. P.

    1979-01-01

    The paper describes the optimization of a solar power satellite structure for minimum mass and system cost. The solar power satellite is an ultra large low frequency and lightly damped space structure; derivation of its structural design requirements required accommodation of gravity gradient torques which impose primary loads, life up to 100 years in the rigorous geosynchronous orbit radiation environment, and prevention of continuous wave motion in a solar array blanket suspended from a huge, lightly damped structure subject to periodic excitations. The satellite structural design required a parametric study of structural configurations and consideration of the fabrication and assembly techniques, which resulted in a final structure which met all requirements at a structural mass fraction of 10%.

  20. Comparison between various patch wise strategies for reconstruction of ultra-spectral cubes captured with a compressive sensing system

    NASA Astrophysics Data System (ADS)

    Oiknine, Yaniv; August, Isaac Y.; Revah, Liat; Stern, Adrian

    2016-05-01

    Recently we introduced a Compressive Sensing Miniature Ultra-Spectral Imaging (CS-MUSI) system. The system is based on a single Liquid Crystal (LC) cell and a parallel sensor array where the liquid crystal cell performs spectral encoding. Within the framework of compressive sensing, the CS-MUSI system is able to reconstruct ultra-spectral cubes captured with only an amount of ~10% samples compared to a conventional system. Despite the compression, the technique is extremely complex computationally, because reconstruction of ultra-spectral images requires processing huge data cubes of Gigavoxel size. Fortunately, the computational effort can be alleviated by using separable operation. An additional way to reduce the reconstruction effort is to perform the reconstructions on patches. In this work, we consider processing on various patch shapes. We present an experimental comparison between various patch shapes chosen to process the ultra-spectral data captured with CS-MUSI system. The patches may be one dimensional (1D) for which the reconstruction is carried out spatially pixel-wise, or two dimensional (2D) - working on spatial rows/columns of the ultra-spectral cube, as well as three dimensional (3D).

  1. Advancements of ultra-high peak power laser diode arrays

    NASA Astrophysics Data System (ADS)

    Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.

    2018-02-01

    Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.

  2. Optimization of return electrodes in neurostimulating arrays

    NASA Astrophysics Data System (ADS)

    Flores, Thomas; Goetz, Georges; Lei, Xin; Palanker, Daniel

    2016-06-01

    Objective. High resolution visual prostheses require dense stimulating arrays with localized inputs of individual electrodes. We study the electric field produced by multielectrode arrays in electrolyte to determine an optimal configuration of return electrodes and activation sequence. Approach. To determine the boundary conditions for computation of the electric field in electrolyte, we assessed current dynamics using an equivalent circuit of a multielectrode array with interleaved return electrodes. The electric field modeled with two different boundary conditions derived from the equivalent circuit was then compared to measurements of electric potential in electrolyte. To assess the effect of return electrode configuration on retinal stimulation, we transformed the computed electric fields into retinal response using a model of neural network-mediated stimulation. Main results. Electric currents at the capacitive electrode-electrolyte interface redistribute over time, so that boundary conditions transition from equipotential surfaces at the beginning of the pulse to uniform current density in steady state. Experimental measurements confirmed that, in steady state, the boundary condition corresponds to a uniform current density on electrode surfaces. Arrays with local return electrodes exhibit improved field confinement and can elicit stronger network-mediated retinal response compared to those with a common remote return. Connecting local return electrodes enhances the field penetration depth and allows reducing the return electrode area. Sequential activation of the pixels in large monopolar arrays reduces electrical cross-talk and improves the contrast in pattern stimulation. Significance. Accurate modeling of multielectrode arrays helps optimize the electrode configuration to maximize the spatial resolution, contrast and dynamic range of retinal prostheses.

  3. Ultra-low noise TES bolometer arrays for SAFARI instrument on SPICA

    NASA Astrophysics Data System (ADS)

    Khosropanah, P.; Suzuki, T.; Ridder, M. L.; Hijmering, R. A.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Gao, J. R.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low noise Transition Edge Sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for the SAFARI instrument aboard the SPICA mission. We successfully fabricated TESs with very narrow (0.5-0.7 μm) and thin (0.25 μm) SiN legs on different sizes of SiN islands using deep reactiveion etching process. The pixel size is 840x840 μm2 and there are variety of designs with and without optical absorbers. For TESs without absorbers, we measured electrical NEPs as low as <1x10-19 W/√Hz with response time of 0.3 ms and reached the phonon noise limit. Using TESs with absorbers, we quantified the darkness of our setup and confirmed a photon noise level of 2x10-19 W/√Hz.

  4. Performance bounds for modal analysis using sparse linear arrays

    NASA Astrophysics Data System (ADS)

    Li, Yuanxin; Pezeshki, Ali; Scharf, Louis L.; Chi, Yuejie

    2017-05-01

    We study the performance of modal analysis using sparse linear arrays (SLAs) such as nested and co-prime arrays, in both first-order and second-order measurement models. We treat SLAs as constructed from a subset of sensors in a dense uniform linear array (ULA), and characterize the performance loss of SLAs with respect to the ULA due to using much fewer sensors. In particular, we claim that, provided the same aperture, in order to achieve comparable performance in terms of Cramér-Rao bound (CRB) for modal analysis, SLAs require more snapshots, of which the number is about the number of snapshots used by ULA times the compression ratio in the number of sensors. This is shown analytically for the case with one undamped mode, as well as empirically via extensive numerical experiments for more complex scenarios. Moreover, the misspecified CRB proposed by Richmond and Horowitz is also studied, where SLAs suffer more performance loss than their ULA counterpart.

  5. Optical design of GaN nanowire arrays for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Winnerl, Julia; Hudeczek, Richard; Stutzmann, Martin

    2018-05-01

    GaN nanowire (NW) arrays are interesting candidates for photocatalytic applications due to their high surface-to-volume ratio and their waveguide character. The integration of GaN NW arrays on GaN-based light emitting diodes (LEDs), serving as a platform for electrically driven NW-based photocatalytic devices, enables an efficient coupling of the light from the planar LED to the GaN NWs. Here, we present a numerical study of the influence of the NW geometries, i.e., the NW diameter, length, and period, and the illumination wavelength on the transmission of GaN NW arrays on transparent substrates. A detailed numerical analysis reveals that the transmission characteristics for large periods are determined by the waveguide character of the single NW, whereas for dense GaN NW arrays inter-wire coupling and diffraction effects originating from the periodic arrangement of the GaN NWs dominate the transmission. The numerically simulated results are confirmed by experimental transmission measurements. We also investigate the influence of a dielectric NW shell and of the surrounding medium on the transmission characteristics of a GaN NW array.

  6. Fabrication of close-packed TES microcalorimeter arrays using superconducting molybdenum/gold transition-edge sensors

    NASA Astrophysics Data System (ADS)

    Finkbeiner, F. M.; Brekosky, R. P.; Chervenak, J. A.; Figueroa-Feliciano, E.; Li, M. J.; Lindeman, M. A.; Stahle, C. K.; Stahle, C. M.; Tralshawala, N.

    2002-02-01

    We present an overview of our efforts in fabricating Transition-Edge Sensor (TES) microcalorimeter arrays for use in astronomical x-ray spectroscopy. Two distinct types of array schemes are currently pursued: 5×5 single pixel TES array where each pixel is a TES microcalorimeter, and Position-Sensing TES (PoST) array. In the latter, a row of 7 or 15 thermally-linked absorber pixels is read out by two TES at its ends. Both schemes employ superconducting Mo/Au bilayers as the TES. The TES are placed on silicon nitride membranes for thermal isolation from the structural frame. The silicon nitride membranes are prepared by a Deep Reactive Ion Etch (DRIE) process into a silicon wafer. In order to achieve the concept of closely packed arrays without decreasing its structural and functional integrity, we have already developed the technology to fabricate arrays of cantilevered pixel-sized absorbers and slit membranes in silicon nitride films. Furthermore, we have started to investigate ultra-low resistance through-wafer micro-vias to bring the electrical contact out to the back of a wafer. .

  7. Black GE based on crystalline/amorphous core/shell nanoneedle arrays

    DOEpatents

    Javey, Ali; Chueh, Yu-Lun; Fan, Zhiyong

    2014-03-04

    Direct growth of black Ge on low-temperature substrates, including plastics and rubber is reported. The material is based on highly dense, crystalline/amorphous core/shell Ge nanoneedle arrays with ultrasharp tips (.about.4 nm) enabled by the Ni catalyzed vapor-solid-solid growth process. Ge nanoneedle arrays exhibit remarkable optical properties. Specifically, minimal optical reflectance (<1%) is observed, even for high angles of incidence (.about.75.degree.) and for relatively short nanoneedle lengths (.about.1 .mu.m). Furthermore, the material exhibits high optical absorption efficiency with an effective band gap of .about.1 eV. The reported black Ge can have important practical implications for efficient photovoltaic and photodetector applications on nonconventional substrates.

  8. A 32-channel lattice transmission line array for parallel transmit and receive MRI at 7 tesla.

    PubMed

    Adriany, Gregor; Auerbach, Edward J; Snyder, Carl J; Gözübüyük, Ark; Moeller, Steen; Ritter, Johannes; Van de Moortele, Pierre-François; Vaughan, Tommy; Uğurbil, Kâmil

    2010-06-01

    Transmit and receive RF coil arrays have proven to be particularly beneficial for ultra-high-field MR. Transmit coil arrays enable such techniques as B(1) (+) shimming to substantially improve transmit B(1) homogeneity compared to conventional volume coil designs, and receive coil arrays offer enhanced parallel imaging performance and SNR. Concentric coil arrangements hold promise for developing transceiver arrays incorporating large numbers of coil elements. At magnetic field strengths of 7 tesla and higher where the Larmor frequencies of interest can exceed 300 MHz, the coil array design must also overcome the problem of the coil conductor length approaching the RF wavelength. In this study, a novel concentric arrangement of resonance elements built from capacitively-shortened half-wavelength transmission lines is presented. This approach was utilized to construct an array with whole-brain coverage using 16 transceiver elements and 16 receive-only elements, resulting in a coil with a total of 16 transmit and 32 receive channels. (c) 2010 Wiley-Liss, Inc.

  9. Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments

    NASA Technical Reports Server (NTRS)

    Boca, Andreea (Principal Investigator); Stella, Paul; Kerestes, Christopher; Sharps, Paul

    2017-01-01

    This is the Base Period final report DRAFT for the JPL task 'Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments', under Task Plan 77-16518 TA # 21, for NASA's Extreme Environments Solar Power (EESP) project. This report covers the Base period of performance, 7/18/2016 through 5/2/2017.The goal of this project is to develop an ultra-high efficiency lightweight scalable solar array technology for low irradiance, low temperature and high-radiation (LILT/Rad) environments. The benefit this technology will bring to flight systems is a greater than 20 reduction in solar array surface area, and a six-fold reduction in solar array mass and volume. The EESP project objectives are summarized in the 'NRA Goal' column of Table 1. Throughout this report, low irradiance low temperature (LILT) refers to 5AU -125 C test conditions; beginning of life (BOL) refers to the cell state prior to radiation exposure; and end of life (EOL) refers to the test article condition after exposure to a radiation dose of 4e15 1MeV e(-)/cm(exp 2).

  10. Ultra-High Aggregate Bandwidth Two-Dimensional Multiple-Wavelength Diode Laser Arrays

    DTIC Science & Technology

    1993-12-09

    during the growth of the cavity spacer region using the fact that the molecular beam epitaxy growth of GaAs is highly sensitive to the substrate... molecular beam epitaxy (MBE) crystal growth, the GaAs growth rate is highly sensitive to the substrate temperature above 650"C (2], a GaAs/AIGaAs... epitaxial growth technique to make reproducible and repeatable multi-wavelength VCSEL arrays. Our approach to fabricate the spatially graded layer

  11. Generation of ultra-fast cumulative water jets by sub-microsecond underwater electrical explosion of conical wire arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafer, D.; Gurovich, V. Tz.; Gleizer, S.

    The results of experiments with underwater electrical explosion of modified conical arrays of copper and aluminum wires are presented. A pulsed generator producing a 550 kA-amplitude current with a 400 ns rise time was used in the explosion of the arrays. The array explosion generates water flows converging at the axis of the cone. This flow generates a fast-moving water jet with a velocity exceeding 1.8 × 10{sup 5 }cm/s, which was observed being ejected from the surface of the water covering the array. The positions of the water jet were measured by multiple-exposure fast framing imaging. In experiments, the apex angle of the array,more » the thickness of the water layer above the arrays, or the material of the wires was altered, which changed the resulting velocities and shapes of the emitted jets. A model that considers the converging stationary flow of a slightly compressible fluid is suggested. The velocities and shapes of the jets obtained by this model agree well with the experimentally measured jet velocities.« less

  12. A spatially resolved pyrometer for measuring the blackbody temperature of a warm dense plasma

    DOE PAGES

    Coleman, Joshua Eugene

    2016-12-30

    A pyrometer has been developed to spatially resolve the blackbody temperature of a radiatively cooling warm dense plasma. The pyrometer is composed of a lens coupled fiber array, Czerny-Turner visible spectrometer, and an intensified gated CCD for the detector. The radiatively cooling warm dense plasma is generated by a ~100-ns-long intense relativistic electron bunch with an energy of 19.1 MeV and a current of 0.2 kA interacting with 100-μm-thick low-Z foils. The continuum spectrum is measured over 250 nm with a low groove density grating. These plasmas emit visible light or blackbody radiation on relatively long time scales (~0.1 tomore » 100 μs). Finally, we presented the diagnostic layout, calibration, and proof-of-principle measurement of a radiatively cooling aluminum plasma, which includes a spatially resolved temperature gradient and the ability to temporally resolve it also.« less

  13. SMUVS: Spitzer Matching survey of the UltraVISTA ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Caputi, Karina; Ashby, Matthew; Fazio, Giovanni; Huang, Jiasheng; Dunlop, James; Franx, Marijn; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Muzzin, Adam; Ilbert, Olivier; Somerville, Rachel; Wechsler, Risa; Behroozi, Peter; Lu, Yu

    2014-12-01

    We request 2026.5 hours to homogenize the matching ultra-deep IRAC data of the UltraVISTA ultra-deep stripes, producing a final area of ~0.6 square degrees with the deepest near- and mid-IR coverage existing in any such large area of the sky (H, Ks, [3.6], [4.5] ~ 25.3-26.1 AB mag; 5 sigma). The UltraVISTA ultra-deep stripes are contained within the larger COSMOS field, which has a rich collection of multi-wavelength, ancillary data, making it ideal to study different aspects of galaxy evolution with high statistical significance and excellent redshift accuracy. The UltraVISTA ultra-deep stripes are the region of the COSMOS field where these studies can be pushed to the highest redshifts, but securely identifying high-z galaxies, and determining their stellar masses, will only be possible if ultra-deep mid-IR data are available. Our IRAC observations will allow us to: 1) extend the galaxy stellar mass function at redshifts z=3 to z=5 to the intermediate mass regime (M~5x10^9-10^10 Msun), which is critical to constrain galaxy formation models; 2) gain a factor of six in the area where it is possible to effectively search for z>=6 galaxies and study their properties; 3) measure, for the first time, the large-scale structure traced by an unbiased galaxy sample at z=5 to z=7, and make the link to their host dark matter haloes. This cannot be done in any other field of the sky, as the UltraVISTA ultra-deep stripes form a quasi-contiguous, regular-shape field, which has a unique combination of large area and photometric depth. 4) provide a unique resource for the selection of secure z>5 targets for JWST and ALMA follow up. Our observations will have an enormous legacy value which amply justifies this new observing-time investment in the COSMOS field. Spitzer cannot miss this unique opportunity to open up a large 0.6 square-degree window to the early Universe.

  14. SKA aperture array verification system: electromagnetic modeling and beam pattern measurements using a micro UAV

    NASA Astrophysics Data System (ADS)

    de Lera Acedo, E.; Bolli, P.; Paonessa, F.; Virone, G.; Colin-Beltran, E.; Razavi-Ghods, N.; Aicardi, I.; Lingua, A.; Maschio, P.; Monari, J.; Naldi, G.; Piras, M.; Pupillo, G.

    2018-03-01

    In this paper we present the electromagnetic modeling and beam pattern measurements of a 16-elements ultra wideband sparse random test array for the low frequency instrument of the Square Kilometer Array telescope. We discuss the importance of a small array test platform for the development of technologies and techniques towards the final telescope, highlighting the most relevant aspects of its design. We also describe the electromagnetic simulations and modeling work as well as the embedded-element and array pattern measurements using an Unmanned Aerial Vehicle system. The latter are helpful both for the validation of the models and the design as well as for the future instrumental calibration of the telescope thanks to the stable, accurate and strong radio frequency signal transmitted by the UAV. At this stage of the design, these measurements have shown a general agreement between experimental results and numerical data and have revealed the localized effect of un-calibrated cable lengths in the inner side-lobes of the array pattern.

  15. Size and space controlled hexagonal arrays of superparamagnetic iron oxide nanodots: magnetic studies and application

    PubMed Central

    Ghoshal, Tandra; Maity, Tuhin; Senthamaraikannan, Ramsankar; Shaw, Matthew T.; Carolan, Patrick; Holmes, Justin D.; Roy, Saibal; Morris, Michael A.

    2013-01-01

    Highly dense hexagonally arranged iron oxide nanodots array were fabricated using PS-b-PEO self-assembled patterns. The copolymer molecular weight, composition and choice of annealing solvent/s allows dimensional and structural control of the nanopatterns at large scale. A mechanism is proposed to create scaffolds through degradation and/or modification of cylindrical domains. A methodology based on selective metal ion inclusion and subsequent processing was used to create iron oxide nanodots array. The nanodots have uniform size and shape and their placement mimics the original self-assembled nanopatterns. For the first time these precisely defined and size selective systems of ordered nanodots allow careful investigation of magnetic properties in dimensions from 50 nm to 10 nm, which delineate the nanodots are superparamagnetic, well-isolated and size monodispersed. This diameter/spacing controlled iron oxide nanodots systems were demonstrated as a resistant mask over silicon to fabricate densely packed, identical ordered, high aspect ratio silicon nanopillars and nanowire features. PMID:24072037

  16. Systematic chemical profiling of Citrus grandis 'Tomentosa' by ultra-fast liquid chromatography/diode-array detector/quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Li, Pan-lin; Liu, Meng-hua; Hu, Jie-hui; Su, Wei-wei

    2014-03-01

    Citrus grandis 'Tomentosa', as the original plant of the traditional Chinese medicine "Huajuhong", has been used as antitussive and expectorant in clinic for thousands of years. The fruit epicarp and whole fruit of this plant were both literarily recorded and commonly used. In the present study, an ultra-fast liquid chromatography coupled with diode-array detection and quadrupole/time-of-flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) based chemical profiling method was developed for rapid holistic quality evaluation of C. grandis 'Tomentosa', which laid basis for chemical comparison of two medicinal parts. As a result, forty-eight constituents, mainly belonging to flavonoids and coumarins, were unambiguously identified by comparison with reference standards and/or tentatively characterized by elucidating UV spectra, quasi-molecular ions and fragment ions referring to information available in literature. Both of the epicarp and whole fruit samples were rich in flavonoids and coumarins, but major flavonoids contents in whole fruit were significantly higher than in epicarp (P<0.5). The proposed method could be useful in quality control and standardization of C. grandis 'Tomentosa' raw materials and its products. Results obtained in this study will provide a basis for quality assessment and further study in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Ultra-thin MoS2 coated Ag@Si nanosphere arrays as efficient and stable photocathode for solar-driven hydrogen production.

    PubMed

    Zhou, Qingwei; Su, Shaoqiang; Hu, Die; Lin, Lin; Yan, Zhibo; Gao, Xingsen; Zhang, Zhang; Liu, Junming

    2018-01-02

    Solar-driven photoelectrochemical (PEC) water splitting has recently attracted much attention. Silicon (Si) is an ideal light absorber for solar energy conversion. However, the poor stability and inefficient surface catalysis of Si photocathode for hydrogen evolution reaction (HER) have been remained as the key challenges. Alternatively, MoS2 has been reported to exhibit the excellent catalysis performance if sufficient active sites for the HER are available. Here, ultra-thin MoS2 nanoflakes are directly synthesized to coat on the arrays of Ag-core Si-shell nanospheres (Ag@Si NSs) using the chemical vapor deposition (CVD). Due to the high surface area ratio and large curvature of these NSs, the as-grown MoS2 nanoflakes can accommodate more active sites. Meanwhile, the high-quality coating of MoS2 nanoflakes on the Ag@Si NSs protects the photocathode from damage during the PEC reaction. A high efficiency with a photocurrent of 33.3 mA cm-2 at a voltage of -0.4 V vs. the reversible hydrogen electrode is obtained. The as-prepared nanostructure as hydrogen photocathode is evidenced to have high stability over 12 hour PEC performance. This work opens opportunities for composite photocathode with high activity and stability using cheap and stable co-catalysts. © 2017 IOP Publishing Ltd.

  18. Sensitivity of new detection method for ultra-low frequency gravitational waves with pulsar spin-down rate statistics

    NASA Astrophysics Data System (ADS)

    Yonemaru, Naoyuki; Kumamoto, Hiroki; Takahashi, Keitaro; Kuroyanagi, Sachiko

    2018-04-01

    A new detection method for ultra-low frequency gravitational waves (GWs) with a frequency much lower than the observational range of pulsar timing arrays (PTAs) was suggested in Yonemaru et al. (2016). In the PTA analysis, ultra-low frequency GWs (≲ 10-10 Hz) which evolve just linearly during the observation time span are absorbed by the pulsar spin-down rates since both have the same effect on the pulse arrival time. Therefore, such GWs cannot be detected by the conventional method of PTAs. However, the bias on the observed spin-down rates depends on relative direction of a pulsar and GW source and shows a quadrupole pattern in the sky. Thus, if we divide the pulsars according to the position in the sky and see the difference in the statistics of the spin-down rates, ultra-low frequency GWs from a single source can be detected. In this paper, we evaluate the potential of this method by Monte-Carlo simulations and estimate the sensitivity, considering only the "Earth term" while the "pulsar term" acts like random noise for GW frequencies 10-13 - 10-10 Hz. We find that with 3,000 milli-second pulsars, which are expected to be discovered by a future survey with the Square Kilometre Array, GWs with the derivative of amplitude of about 3 × 10^{-19} {s}^{-1} can in principle be detected. Implications for possible supermassive binary black holes in Sgr* and M87 are also given.

  19. A dense, intersecting array of normal faults on the outer shelf off Southern Costa Rica, associated with subducting Quepos ridge

    NASA Astrophysics Data System (ADS)

    Silver, E. A.; Kluesner, J. W.; Gibson, J. C.; Bangs, N. L.; McIntosh, K. D.; von Huene, R.; Orange, D.; Ranero, C. R.

    2012-12-01

    Use of narrow, fixed swath multibeam data with high sounding densities has allowed order of magnitude improvement in image resolution with EM122 multibeam and backscatter data, as part of a 3D seismic study west of the Osa Peninsula. On the outer shelf, along the projection of the subducting Quepos Ridge, we mapped a dense array of faults cutting an arcuate, well-layered set of outcropping beds in the backscatter imagery (mosaicked at 2 m), with roughly N-S and E-W trends. The N-S trends dominate, and show inconsistent offsets, implying that the faults are normal and not strike-slip. The faults also show normal displacement in the 3D seismic data, consistent with the surface interpretation. The outcropping beds (of late Pleistocene age, based on Expedition 334 drilling), may have been truncated during the late Pleistocene low sea-level stand. The outermost shelf (edged by arcuate bathymetric contours) does not show these folded beds, as it was below wave base and buried by a thin sediment layer. However, narrow lines of small pockmarks and mounds follow the fault trends exactly, indicating that fluid flow through the faults is expressed at the surface, including a gas plume that extends to the sea-surface. The almost unprecedented increase in resolution of the EM122 data allows us to infer that the N-S, E-W grid of faults overlying the NE-trending Quepos Ridge projection (and NE directed subduction) formed by extensional arching above the ridge, not by collisional slip lines at a rigid indenter (as proposed earlier based on sandbox models). The extensional fault pattern also facilitates fluid and gas flow through the sedimentary section.

  20. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar).

    PubMed

    Houston, Ross D; Taggart, John B; Cézard, Timothé; Bekaert, Michaël; Lowe, Natalie R; Downing, Alison; Talbot, Richard; Bishop, Stephen C; Archibald, Alan L; Bron, James E; Penman, David J; Davassi, Alessandro; Brew, Fiona; Tinch, Alan E; Gharbi, Karim; Hamilton, Alastair

    2014-02-06

    Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture

  1. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar)

    PubMed Central

    2014-01-01

    Background Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. Results SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. Conclusions This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in

  2. Geometrical Optics of Dense Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, amore » critical result for controlled focusing. __________________________________________________« less

  3. Assessing the detection capability of a dense infrasound network in the southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Le Pichon, Alexis; Kim, Kwangsu; Shin, In-Cheol

    2017-08-01

    The Korea Infrasound Network (KIN) is a dense seismoacoustic array network consisting of eight small-aperture arrays with an average interarray spacing of ∼100 km. The processing of the KIN historical recordings over 10 yr in the 0.05-5 Hz frequency band shows that the dominant sources of signals are microbaroms and human activities. The number of detections correlates well with the seasonal and daily variability of the stratospheric wind dynamics. The quantification of the spatiotemporal variability of the KIN detection performance is simulated using a frequency-dependent semi-empirical propagation modelling technique. The average detection thresholds predicted for the region of interest by using both the KIN arrays and the International Monitoring System (IMS) infrasound station network at a given frequency of 1.6 Hz are estimated to be 5.6 and 10.0 Pa for two- and three-station coverage, respectively, which was about three times lower than the thresholds predicted by using only the IMS stations. The network performance is significantly enhanced from May to August, with detection thresholds being one order of magnitude lower than the rest of the year due to prevailing steady stratospheric winds. To validate the simulations, the amplitudes of ground-truth repeated surface mining explosions at an open-pit limestone mine were measured over a 19-month period. Focusing on the spatiotemporal variability of the stratospheric winds which control to first order where infrasound signals are expected to be detected, the predicted detectable signal amplitude at the mine and the detection capability at one KIN array located at a distance of 175 km are found to be in good agreement with the observations from the measurement campaign. The detection threshold in summer is ∼2 Pa and increases up to ∼300 Pa in winter. Compared with the low and stable thresholds in summer, the high temporal variability of the KIN performance is well predicted throughout the year. Simulations

  4. High power radiators of ultra-short electromagnetic quasi-unipolar pulses

    NASA Astrophysics Data System (ADS)

    Fedorov, V. M.; Ostashev, V. E.; Tarakanov, V. P.; Ul'yanov, A. V.

    2017-05-01

    Results of creation, operation, and diagnostics of the high power radiators for ultra-short length electromagnetic pulses (USEMPs) with a quasi-unipolar profile, which have been developed in our laboratory, are presented. The radiating module contains: the ultra-wideband (UWB) antenna array, the exciting high voltage pulse semiconductor generator (a pulser), the power source and the control unit. The principles of antenna array with a high efficiency aperture about 0.9 were developed using joint four TEM-horns with shielding electrodes in every TEM-horn. Sizes of the antenna apertures were (16-60) cm. The pulsers produced by “FID Technology” company had the following parameters: 50 Ohm connector impedance, unipolar pulses voltages (10-100) kV, the rise-time (0.04-0.15) ns, and the width (0.2-1) ns. The modules radiate the USEMPs of (0.1-10) GHz spectrum, their repetition rate is (1-100) kHz, and the effective potential is E*R = (20-400) kV, producing the peak E-field into the far-zone of R-distance. Parameters of the USEMP waves were measured by a calibrated sensor with the following characteristics: the sensitivity 0.32V/(kV/m), the rise-time 0.03 ns, the duration up to 7 ns. The measurements were in agreement with the simulation results, which were obtained using the 3-D code “KARAT”. The USEMP waves with amplitudes (1-10) kV/m and the pulse repetition rate (0.5-100) kHz were successfully used to examine various electronic devices for an electromagnetic immunity.

  5. Ultra-High-Speed DNA Fragment Separations Using Microfabricated Capillary Array Electrophoresis Chips

    NASA Astrophysics Data System (ADS)

    Woolley, Adam T.; Mathies, Richard A.

    1994-11-01

    Capillary electrophoresis arrays have been fabricated on planar glass substrates by photolithographic masking and chemical etching techniques. The photolithographically defined channel patterns were etched in a glass substrate, and then capillaries were formed by thermally bonding the etched substrate to a second glass slide. High-resolution electrophoretic separations of φX174 Hae III DNA restriction fragments have been performed with these chips using a hydroxyethyl cellulose sieving matrix in the channels. DNA fragments were fluorescently labeled with dye in the running buffer and detected with a laser-excited, confocal fluorescence system. The effects of variations in the electric field, procedures for injection, and sizes of separation and injection channels (ranging from 30 to 120 μm) have been explored. By use of channels with an effective length of only 3.5 cm, separations of φX174 Hae III DNA fragments from ≈70 to 1000 bp are complete in only 120 sec. We have also demonstrated high-speed sizing of PCR-amplified HLA-DQα alleles. This work establishes methods for high-speed, high-throughput DNA separations on capillary array electrophoresis chips.

  6. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1992-01-01

    The LDEF Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of four in 48 pressure vessels. The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 1800 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Post flight work to date and the current status of the experiment are reviewed.

  7. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  8. Ultra-accelerated natural sunlight exposure testing facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2003-08-12

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  9. Versatile, high-sensitivity faraday cup array for ion implanters

    DOEpatents

    Musket, Ronald G.; Patterson, Robert G.

    2003-01-01

    An improved Faraday cup array for determining the dose of ions delivered to a substrate during ion implantation and for monitoring the uniformity of the dose delivered to the substrate. The improved Faraday cup array incorporates a variable size ion beam aperture by changing only an insertable plate that defines the aperture without changing the position of the Faraday cups which are positioned for the operation of the largest ion beam aperture. The design enables the dose sensitivity range, typically 10.sup.11 -10.sup.18 ions/cm.sup.2 to be extended to below 10.sup.6 ions/cm.sup.2. The insertable plate/aperture arrangement is structurally simple and enables scaling to aperture areas between <1 cm.sup.2 and >750 cm.sup.2, and enables ultra-high vacuum (UHV) applications by incorporation of UHV-compatible materials.

  10. Application of Seismic Array Processing to Tsunami Early Warning

    NASA Astrophysics Data System (ADS)

    An, C.; Meng, L.

    2015-12-01

    Tsunami wave predictions of the current tsunami warning systems rely on accurate earthquake source inversions of wave height data. They are of limited effectiveness for the near-field areas since the tsunami waves arrive before data are collected. Recent seismic and tsunami disasters have revealed the need for early warning to protect near-source coastal populations. In this work we developed the basis for a tsunami warning system based on rapid earthquake source characterisation through regional seismic array back-projections. We explored rapid earthquake source imaging using onshore dense seismic arrays located at regional distances on the order of 1000 km, which provides faster source images than conventional teleseismic back-projections. We implement this method in a simulated real-time environment, and analysed the 2011 Tohoku earthquake rupture with two clusters of Hi-net stations in Kyushu and Northern Hokkaido, and the 2014 Iquique event with the Earthscope USArray Transportable Array. The results yield reasonable estimates of rupture area, which is approximated by an ellipse and leads to the construction of simple slip models based on empirical scaling of the rupture area, seismic moment and average slip. The slip model is then used as the input of the tsunami simulation package COMCOT to predict the tsunami waves. In the example of the Tohoku event, the earthquake source model can be acquired within 6 minutes from the start of rupture and the simulation of tsunami waves takes less than 2 min, which could facilitate a timely tsunami warning. The predicted arrival time and wave amplitude reasonably fit observations. Based on this method, we propose to develop an automatic warning mechanism that provides rapid near-field warning for areas of high tsunami risk. The initial focus will be Japan, Pacific Northwest and Alaska, where dense seismic networks with the capability of real-time data telemetry and open data accessibility, such as the Japanese HiNet (>800

  11. SWARM: A 32 GHz Correlator and VLBI Beamformer for the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Primiani, Rurik A.; Young, Kenneth H.; Young, André; Patel, Nimesh; Wilson, Robert W.; Vertatschitsch, Laura; Chitwood, Billie B.; Srinivasan, Ranjani; MacMahon, David; Weintroub, Jonathan

    2016-03-01

    A 32GHz bandwidth VLBI capable correlator and phased array has been designed and deployeda at the Smithsonian Astrophysical Observatory’s Submillimeter Array (SMA). The SMA Wideband Astronomical ROACH2 Machine (SWARM) integrates two instruments: a correlator with 140kHz spectral resolution across its full 32GHz band, used for connected interferometric observations, and a phased array summer used when the SMA participates as a station in the Event Horizon Telescope (EHT) very long baseline interferometry (VLBI) array. For each SWARM quadrant, Reconfigurable Open Architecture Computing Hardware (ROACH2) units shared under open-source from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) are equipped with a pair of ultra-fast analog-to-digital converters (ADCs), a field programmable gate array (FPGA) processor, and eight 10 Gigabit Ethernet (GbE) ports. A VLBI data recorder interface designated the SWARM digital back end, or SDBE, is implemented with a ninth ROACH2 per quadrant, feeding four Mark6 VLBI recorders with an aggregate recording rate of 64 Gbps. This paper describes the design and implementation of SWARM, as well as its deployment at SMA with reference to verification and science data.

  12. Ultra Small Aperture Terminal for Ka-Band SATCOM

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto; Reinhart, Richard; Lee, Richard; Simons, Rainee

    1997-01-01

    An ultra small aperture terminal (USAT) at Ka-band frequency has been developed by Lewis Research Center (LeRC) for data rates up to 1.5 Mbps in the transmit mode and 40 Mbps in receive mode. The terminal consists of a 35 cm diameter offset-fed parabolic antenna which is attached to a solid state power amplifier and low noise amplifier. A single down converter is used to convert the Ka-band frequency to 70 MHz intermediate frequency (IF). A variable rate (9.6 Kbps to 10 Mbps) commercial modem with a standard RS-449/RS-232 interface is used to provide point-to-point digital services. The terminal has been demonstrated numerous times using the Advanced Communications Technology Satellite (ACTS) and the 4.5 in Link Evaluation Terminal (LET) in Cleveland. A conceptual design for an advanced terminal has also been developed. This advanced USAT utilizes Microwave Monolithic Integrated Circuit (MMIC) and flat plate array technologies. This terminal will be self contained in a single package which will include a 1 watt solid state amplifier (SSPA), low noise amplifier (LNA) and a modem card located behind the aperture of the array. The advanced USAT will be light weight, transportable, low cost and easy to point to the satellite. This paper will introduce designs for the reflector based and array based USAT's.

  13. Ambient Vehicular Noise recorded on a 2D Distributed Fiber Optic Sensing Array :Applications to Permafrost Thaw Detection and Imaging

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Lindsey, N.; Wagner, A. M.; Dou, S.; Martin, E. R.; Ekblaw, I.; Ulrich, C.; James, S. R.; Freifeld, B. M.; Daley, T. M.

    2016-12-01

    Distributed Acoustic Sensing (DAS) is a recently developed technique that allows the spatially dense ( 1m) continuous recording of seismic signals on long strands of commercial fiber optic cables. The availability of continuous recording on dense arrays offers unique possibilities for long-term timelapse monitoring of environmental processes in arctic environments. In the absence of a repeatable semi-permanent seismic source, the use of ambient surface wave noise from infrastructure use (e.g. moving vehicles) for seismic imaging allows tomographic monitoring of evolving subsurface systems. Challenges in such scenarios include (1) the processing requirements for dense (1000+ channel) arrays recording weeks to months of seismic data, (2) appropriate methods to retrieve empirical noise correlation functions (NCFs) in environments with non-optimal array geometries and both coherent as well as incoherent noise, and (3) semi-automated approaches to invert timelapse NCFs for near-surface soil properties.We present an exploratory study of data from a sparse 2D DAS array acquisition on 4000 linear meters of trenched fiber deployed in 10 crossing profiles. The dataset, collected during July and August of 2016, covers a zone of permafrost undergoing a controlled thaw induced by an array of resistive heaters. The site, located near a heavily used road, has a high level of infrastructure noise but exhibits distance-dependent variation in both noise amplitude and spectrum. We apply seismic interferometry to retrieve the empirical NCF across array subsections, and use collocated geophone and broadband sensors to measure the NCF against the true impulse response function of the medium. We demonstrate that the combination of vehicle tracking and data windowing allows improved reconstruction of stable NCFs appropriate for dispersion analysis and inversion. We also show both spatial and temporal patterns of background noise at the site using 2D beamforming and spectral analysis. Our

  14. Separating light absorption layer from channel in ZnO vertical nanorod arrays based photodetectors for high-performance image sensors

    NASA Astrophysics Data System (ADS)

    Ma, Yang; Wu, Congjun; Xu, Zhihao; Wang, Fei; Wang, Min

    2018-05-01

    Photoconductor arrays with both high responsivity and large ON/OFF ratios are of great importance for the application of image sensors. Herein, a ZnO vertical nanorod array based photoconductor with a light absorption layer separated from the device channel has been designed, in which the photo-generated carriers along the axial ZnO nanorods drive to the external electrodes through nanorod-nanorod junctions in the dense layer at the bottom. This design allows us to enhance the photocurrent with unchanged dark current by increasing the ratio between the ZnO nanorod length and the thickness of the dense layer to achieve both high responsivity and large ON/OFF ratios. As a result, the as-fabricated devices possess a high responsivity of 1.3 × 105 A/W, a high ON/OFF ratio of 790, a high detectivity of 1.3 × 1013 Jones, and a low detectable light intensity of 1 μW/cm2. More importantly, the developed approach enables the integration of ZnO vertical nanorod array based photodetectors as image sensors with uniform device-to-device performance.

  15. Simulation of the Acoustic Pulse Expected from the Interaction of Ultra-High Energy Neutrinos and Seawater

    DTIC Science & Technology

    2006-03-01

    the diameter. This equation is given by Sulak et. al. [1979] as: Eq 3 2 2 sin 8 o p EK cP C r d x ≅ x ’ Where sinLx π θ λ ⎛ ⎞= ⎜ ⎟ ⎝ ⎠ , L is...and others, "Sensitivity of an Underwater Acoustic Array to Ultra-High Energy Neutrinos", Astroparticle Physics, n.17, 2002. Sulak , L., Armstrong

  16. The Next-Generation Very Large Array: Technical Overview

    NASA Astrophysics Data System (ADS)

    McKinnon, Mark; Selina, Rob

    2018-01-01

    As part of its mandate as a national observatory, the NRAO is looking toward the long range future of radio astronomy and fostering the long term growth of the US astronomical community. NRAO has sponsored a series of science and technical community meetings to consider the science mission and design of a next-generation Very Large Array (ngVLA), building on the legacies of the Atacama Large Millimeter/submillimeter Array (ALMA) and the Very Large Array (VLA).The basic ngVLA design emerging from these discussions is an interferometric array with approximately ten times the sensitivity and ten times higher spatial resolution than the VLA and ALMA radio telescopes, optimized for operation in the wavelength range 0.3cm to 3cm. The ngVLA would open a new window on the Universe through ultra-sensitive imaging of thermal line and continuum emission down to milli-arcsecond resolution, as well as unprecedented broadband continuum polarimetric imaging of non-thermal processes. The specifications and concepts for major ngVLA system elements are rapidly converging.We will provide an overview of the current system design of the ngVLA. The concepts for major system elements such as the antenna, receiving electronics, and central signal processing will be presented. We will also describe the major development activities that are presently underway to advance the design.

  17. Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya

    2017-10-01

    We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.

  18. High performance architecture design for large scale fibre-optic sensor arrays using distributed EDFAs and hybrid TDM/DWDM

    NASA Astrophysics Data System (ADS)

    Liao, Yi; Austin, Ed; Nash, Philip J.; Kingsley, Stuart A.; Richardson, David J.

    2013-09-01

    A distributed amplified dense wavelength division multiplexing (DWDM) array architecture is presented for interferometric fibre-optic sensor array systems. This architecture employs a distributed erbium-doped fibre amplifier (EDFA) scheme to decrease the array insertion loss, and employs time division multiplexing (TDM) at each wavelength to increase the number of sensors that can be supported. The first experimental demonstration of this system is reported including results which show the potential for multiplexing and interrogating up to 4096 sensors using a single telemetry fibre pair with good system performance. The number can be increased to 8192 by using dual pump sources.

  19. Waveguide modes in sparse III-V nanowire arrays for ultra-broadband tunable perfect absorbers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fountaine, Katherine T.; Cheng, Wen-Hui; Bukowsky, Colton R.; Atwater, Harry A.

    2016-09-01

    Design of perfect absorbers and emitters has been a primary focus of the metamaterials community owing to their potential to enhance device efficiency and sensitivity in energy harvesting and sensing applications, specifically photovoltaics, thermal emission control, bolometers and photodetectors, to name a few. While reports of perfect absorbers/emitters for a specific frequency, wavevector, and polarization are ubiquitous, a broadband and polarization- and angle-insensitive perfect absorber remains a particular challenge. In this work, we report on directed optical design and fabrication of sparse III-V nanowire arrays as broadband, polarization- and angle-insensitive perfect absorbers and emitters. Specifically, we target response in the UV-Vis-NIR and NIR-SWIR-MWIR via two material systems, InP (Eg=1.34 eV) and InSb (Eg=0.17 eV), respectively. Herein, we present results on InP and InSb nanowire array broadband absorbers, supported by experiment, simulation and analytic theory. Electromagnetic simulations indicate that, with directed optical design, tapered nanowire arrays and multi-radii nanowire arrays with 5% fill fraction can achieve greater than 95% broadband absorption (λInP=400-900nm, λInSb=1.5-5.5µm), due to efficient excitation and interband transition-mediated attenuation of the HE11 waveguide mode. Experimentally-fabricated InP nanowire arrays embedded in PDMS achieved broadband, polarization- and angle-insensitive 90-95% absorption, limited primarily by reflection off the PDMS interface. Addition of a thin, planar VO2 layer above a sparse InSb nanowire array enables active thermal tunability in the infrared, effecting a 50% modulation, from 87% (insulating VO2) to 43% (metallic VO2) average absorption. These concepts and results along with photovoltaic and other optical and optoelectronic device applications will be discussed.

  20. Realization of an Ultra-thin Metasurface to Facilitate Wide Bandwidth, Wide Angle Beam Scanning.

    PubMed

    Bah, Alpha O; Qin, Pei-Yuan; Ziolkowski, Richard W; Cheng, Qiang; Guo, Y Jay

    2018-03-19

    A wide bandwidth, ultra-thin, metasurface is reported that facilitates wide angle beam scanning. Each unit cell of the metasurface contains a multi-resonant, strongly-coupled unequal arm Jerusalem cross element. This element consists of two bent-arm, orthogonal, capacitively loaded strips. The wide bandwidth of the metasurface is achieved by taking advantage of the strong coupling within and between its multi-resonant elements. A prototype of the proposed metasurface has been fabricated and measured. The design concept has been validated by the measured results. The proposed metasurface is able to alleviate the well-known problem of impedance mismatch caused by mutual coupling when the main beam of an array is scanned. In order to validate the wideband and wide scanning ability of the proposed metasurface, it is integrated with a wideband antenna array as a wide angle impedance matching element. The metasurface-array combination facilitates wide angle scanning over a 6:1 impedance bandwidth without the need for bulky dielectrics or multi-layered structures.

  1. Semantic Labelling of Ultra Dense Mls Point Clouds in Urban Road Corridors Based on Fusing Crf with Shape Priors

    NASA Astrophysics Data System (ADS)

    Yao, W.; Polewski, P.; Krzystek, P.

    2017-09-01

    In this paper, a labelling method for the semantic analysis of ultra-high point density MLS data (up to 4000 points/m2) in urban road corridors is developed based on combining a conditional random field (CRF) for the context-based classification of 3D point clouds with shape priors. The CRF uses a Random Forest (RF) for generating the unary potentials of nodes and a variant of the contrastsensitive Potts model for the pair-wise potentials of node edges. The foundations of the classification are various geometric features derived by means of co-variance matrices and local accumulation map of spatial coordinates based on local neighbourhoods. Meanwhile, in order to cope with the ultra-high point density, a plane-based region growing method combined with a rule-based classifier is applied to first fix semantic labels for man-made objects. Once such kind of points that usually account for majority of entire data amount are pre-labeled; the CRF classifier can be solved by optimizing the discriminative probability for nodes within a subgraph structure excluded from pre-labeled nodes. The process can be viewed as an evidence fusion step inferring a degree of belief for point labelling from different sources. The MLS data used for this study were acquired by vehicle-borne Z+F phase-based laser scanner measurement, which permits the generation of a point cloud with an ultra-high sampling rate and accuracy. The test sites are parts of Munich City which is assumed to consist of seven object classes including impervious surfaces, tree, building roof/facade, low vegetation, vehicle and pole. The competitive classification performance can be explained by the diverse factors: e.g. the above ground height highlights the vertical dimension of houses, trees even cars, but also attributed to decision-level fusion of graph-based contextual classification approach with shape priors. The use of context-based classification methods mainly contributed to smoothing of labelling by removing

  2. Tailoring uniform gold nanoparticle arrays and nanoporous films for next-generation optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Farid, Sidra; Kuljic, Rade; Poduri, Shripriya; Dutta, Mitra; Darling, Seth B.

    2018-06-01

    High-density arrays of gold nanodots and nanoholes on indium tin oxide (ITO)-coated glass surfaces are fabricated using a nanoporous template fabricated by the self-assembly of diblock copolymers of poly (styrene-block-methyl methacrylate) (PS-b-PMMA) structures. By balancing the interfacial interactions between the polymer blocks and the substrate using random copolymer, cylindrical block copolymer microdomains oriented perpendicular to the plane of the substrate have been obtained. Nanoporous PS films are created by selectively etching PMMA cylinders, a straightforward route to form highly ordered nanoscale porous films. Deposition of gold on the template followed by lift off and sonication leaves a highly dense array of gold nanodots. These materials can serve as templates for the vapor-liquid-solid (VLS) growth of semiconductor nanorod arrays for next generation hybrid optoelectronic applications.

  3. A flexible nanobrush pad for the chemical mechanical planarization of Cu/ultra-low-к materials

    NASA Astrophysics Data System (ADS)

    Han, Guiquan; Liu, Yuhong; Lu, Xinchun; Luo, Jianbin

    2012-10-01

    A new idea of polishing pad called flexible nanobrush pad (FNP) has been proposed for the low down pressure chemical mechanical planarization (CMP) process of Cu/ultra-low-к materials. The FNP was designed with a surface layer of flexible brush-like nanofibers which can `actively' carry nanoscale abrasives in slurry independent of the down pressure. Better planarization performances including high material removal rate, good planarization, good polishing uniformity, and low defectivity are expected in the CMP process under the low down pressure with such kind of pad. The FNP can be made by template-assisted replication or template-based synthesis methods, which will be driven by the development of the preparation technologies for ordered nanostructure arrays. The present work would potentially provide a new solution for the Cu/ultra-low-к CMP process.

  4. Low-cost silver capped polystyrene nanotube arrays as super-hydrophobic substrates for SERS applications.

    PubMed

    Lovera, Pierre; Creedon, Niamh; Alatawi, Hanan; Mitchell, Micki; Burke, Micheal; Quinn, Aidan J; O'Riordan, Alan

    2014-05-02

    In this paper, we describe the fabrication, simulation and characterization of dense arrays of freestanding silver capped polystyrene nanotubes, and demonstrate their suitability for surface enhanced Raman scattering (SERS) applications. Substrates are fabricated in a rapid, low-cost and scalable way by melt wetting of polystyrene (PS) in an anodized alumina (AAO) template, followed by silver evaporation. Scanning electron microscopy reveals that substrates are composed of a dense array of freestanding polystyrene nanotubes topped by silver nanocaps. SERS characterization of the substrates, employing a monolayer of 4-aminothiophenol (4-ABT) as a model molecule, exhibits an enhancement factor of ∼1.6 × 10(6), in agreement with 3D finite difference time domain simulations. Contact angle measurements of the substrates revealed super-hydrophobic properties, allowing pre-concentration of target analyte into a small volume. These super-hydrophobic properties of the samples are taken advantage of for sensitive detection of the organic pollutant crystal violet, with detection down to ∼400 ppt in a 2 μl aliquot demonstrated.

  5. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing.

    PubMed

    Monteiro, Carlos Augusto; Cannon, Geoffrey; Moubarac, Jean-Claude; Levy, Renata Bertazzi; Louzada, Maria Laura C; Jaime, Patrícia Constante

    2018-01-01

    Given evident multiple threats to food systems and supplies, food security, human health and welfare, the living and physical world and the biosphere, the years 2016-2025 are now designated by the UN as the Decade of Nutrition, in support of the UN Sustainable Development Goals. For these initiatives to succeed, it is necessary to know which foods contribute to health and well-being, and which are unhealthy. The present commentary outlines the NOVA system of food classification based on the nature, extent and purpose of food processing. Evidence that NOVA effectively addresses the quality of diets and their impact on all forms of malnutrition, and also the sustainability of food systems, has now accumulated in a number of countries, as shown here. A singular feature of NOVA is its identification of ultra-processed food and drink products. These are not modified foods, but formulations mostly of cheap industrial sources of dietary energy and nutrients plus additives, using a series of processes (hence 'ultra-processed'). All together, they are energy-dense, high in unhealthy types of fat, refined starches, free sugars and salt, and poor sources of protein, dietary fibre and micronutrients. Ultra-processed products are made to be hyper-palatable and attractive, with long shelf-life, and able to be consumed anywhere, any time. Their formulation, presentation and marketing often promote overconsumption. Studies based on NOVA show that ultra-processed products now dominate the food supplies of various high-income countries and are increasingly pervasive in lower-middle- and upper-middle-income countries. The evidence so far shows that displacement of minimally processed foods and freshly prepared dishes and meals by ultra-processed products is associated with unhealthy dietary nutrient profiles and several diet-related non-communicable diseases. Ultra-processed products are also troublesome from social, cultural, economic, political and environmental points of view. We

  6. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  7. Mechanical designs and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.

    2016-07-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  8. UHF Microstrip Antenna Array for Synthetic- Aperture Radar

    NASA Technical Reports Server (NTRS)

    Thomas, Robert F.; Huang, John

    2003-01-01

    An ultra-high-frequency microstrippatch antenna has been built for use in airborne synthetic-aperture radar (SAR). The antenna design satisfies requirements specific to the GeoSAR program, which is dedicated to the development of a terrain-mapping SAR system that can provide information on geology, seismicity, vegetation, and other terrain-related topics. One of the requirements is for ultra-wide-band performance: the antenna must be capable of operating with dual linear polarization in the frequency range of 350 plus or minus 80 MHz, with a peak gain of 10 dB at the middle frequency of 350 MHz and a gain of at least 8 dB at the upper and lower ends (270 and 430 MHz) of the band. Another requirement is compactness: the antenna must fit in the wingtip pod of a Gulfstream II airplane. The antenna includes a linear array of microstrip-patch radiating elements supported over square cavities. Each patch is square (except for small corner cuts) and has a small square hole at its center.

  9. Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second.

    PubMed

    Huber, R; Adler, D C; Srinivasan, V J; Fujimoto, J G

    2007-07-15

    A Fourier domain mode-locked (FDML) laser at 1050 nm for ultra-high-speed optical coherence tomography (OCT) imaging of the human retina is demonstrated. Achievable performance, physical limitations, design rules, and scaling principles for FDML operation and component choice in this wavelength range are discussed. The fiber-based FDML laser operates at a sweep rate of 236 kHz over a 63 nm tuning range, with 7 mW average output power. Ultra-high-speed retinal imaging is demonstrated at 236,000 axial scans per second. This represents a speed improvement of approximately10x over typical high-speed OCT systems, paving the way for densely sampled volumetric data sets and new imaging protocols.

  10. IRIS Arrays: Observing Wavefields at Multiple Scales and Frequencies

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Frassetto, A.

    2014-12-01

    The Incorporated Research Institutions for Seismology (IRIS) provides instruments for creating and operating seismic arrays at a wide range of scales. As an example, for over thirty years the IRIS PASSCAL program has provided instruments to individual Principal Investigators to deploy arrays of all shapes and sizes on every continent. These arrays have ranged from just a few sensors to hundreds or even thousands of sensors, covering areas with dimensions of meters to thousands of kilometers. IRIS also operates arrays directly, such as the USArray Transportable Array (TA) as part of the EarthScope program. Since 2004, the TA has rolled across North America, at any given time spanning a swath of approximately 800 km by 2,500 km, and thus far sampling 2% of the Earth's surface. This achievement includes all of the lower-48 U.S., southernmost Canada, and now parts of Alaska. IRIS has also facilitated specialized arrays in polar environments and on the seafloor. In all cases, the data from these arrays are freely available to the scientific community. As the community of scientists who use IRIS facilities and data look to the future they have identified a clear need for new array capabilities. In particular, as part of its Wavefields Initiative, IRIS is exploring new technologies that can enable large, dense array deployments to record unaliased wavefields at a wide range of frequencies. Large-scale arrays might utilize multiple sensor technologies to best achieve observing objectives and optimize equipment and logistical costs. Improvements in packaging and power systems can provide equipment with reduced size, weight, and power that will reduce logistical constraints for large experiments, and can make a critical difference for deployments in harsh environments or other situations where rapid deployment is required. We will review the range of existing IRIS array capabilities with an overview of previous and current deployments and examples of data and results. We

  11. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder

    NASA Astrophysics Data System (ADS)

    August, Isaac; Oiknine, Yaniv; Abuleil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian

    2016-03-01

    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.

  12. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder.

    PubMed

    August, Isaac; Oiknine, Yaniv; AbuLeil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian

    2016-03-23

    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.

  13. Lightweight Innovative Solar Array (LISA): Providing Higher Power to Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Fabisinski, Leo; Russell,Tiffany; Smith, Leigh

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including cubesats, which are currently extremely power limited. The Lightweight Innovative Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultra-flexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume. The LISA array comprises a launch-stowed, orbit-deployed structure on which lightweight photovoltaic devices and, potentially, transceiver elements are embedded. The system will provide a 2.5 to 5 fold increase in specific power generation (Watts/kilogram) coupled with a >2x enhancement of stowed volume (Watts/cubic-meter) and a decrease in cost (dollars/Watt) when compared to state-of-the-art solar arrays.

  14. Two-temperature equilibration in warm dense hydrogen measured with x-ray scattering from the LCLS

    NASA Astrophysics Data System (ADS)

    Fletcher, Luke; High Energy Density Sciences Collaboration

    2017-10-01

    Understanding the properties of warm dense hydrogen plasmas is critical for modeling stellar and planetary interiors, as well as for inertial confinement fusion (ICF) experiments. Of central importance are the electron-ion collision and equilibration times that determine the microscopic properties in a high energy density state. Spectrally and angularly resolved x-ray scattering measurements from fs-laser heated hydrogen have resolved the picosecond evolution and energy relaxation from a two-temperature plasma towards thermodynamic equilibrium in the warm dense matter regime. The interaction of rapidly heated cryogenic hydrogen irradiated by a 400 nm, 5x1017 W/cm2 , 70 fs-laser is visualized with ultra-bright 5.5 kev x-ray pulses from the Linac Coherent Light (LCLS) source in 1 Hz repetition rate pump-probe setting. We demonstrate that the energy relaxation is faster than many classical binary collision theories that use ad hoc cutoff parameters used in the Landau-Spitzer determination of the Coulomb logarithm. This work was supported by the DOE Office of Science, Fusion Energy Science under contract No. SF00515 and supported under FWP 100182 and DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, contract DE-AC02-76SF00515.

  15. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    PubMed Central

    Nishiyama, Yusuke; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems. PMID:25856081

  16. Characterising the Dense Molecular Gas in Exceptional Local Galaxies

    NASA Astrophysics Data System (ADS)

    Tunnard, Richard C. A.

    2016-08-01

    The interferometric facilities now coming online (the Atacama Large Millimetre Array (ALMA) and the NOrthern Extended Millimeter Array (NOEMA)) and those planned for the coming decade (the Next Generation Very Large Array (ngVLA) and the Square Kilometre Array (SKA)) in the radio to sub-millimetre regimes are opening a window to the molecular gas in high-redshift galaxies. However, our understanding of similar galaxies in the local universe is still far from complete and the data analysis techniques and tools needed to interpret the observations in consistent and comparable ways are yet to be developed. I first describe the Monte Carlo Markov Chain (MCMC) script developed to empower a public radiative transfer code. I characterise both the public code and MCMC script, including an exploration of the effect of observing molecular lines at high redshift where the Cosmic Microwave Background (CMB) can provide a significant background, as well as the effect this can have on well-known local correlations. I present two studies of ultraluminous infrared galaxies (ULIRGs) in the local universe making use of literature and collaborator data. In the first of these, NGC6240, I use the wealth of available data and the geometry of the source to develop a multi-phase, multi-species model, finding evidence for a complex medium of hot diffuse and cold dense gas in pressure equilibrium. Next, I study the prototypical ULIRG Arp 220; an extraordinary galaxy rendered especially interesting by the controversy over the power source of the western of the two merger nuclei and its immense luminosity and dust obscuration. Using traditional grid based methods I explore the molecular gas conditions within the nuclei and find evidence for chemical differentiation between the two nuclei, potentially related to the obscured power source. Finally, I investigate the potential evolution of proto-clusters over cosmic time with sub-millimetre observations of 14 radio galaxies, unexpectedly finding

  17. Silicon nanowire arrays as thermoelectric material for a power microgenerator

    NASA Astrophysics Data System (ADS)

    Dávila, D.; Tarancón, A.; Fernández-Regúlez, M.; Calaza, C.; Salleras, M.; San Paulo, A.; Fonseca, L.

    2011-10-01

    A novel design of a silicon-based thermoelectric power microgenerator is presented in this work. Arrays of silicon nanowires, working as thermoelectric material, have been integrated in planar uni-leg thermocouple microstructures to convert waste heat into electrical energy. Homogeneous, uniformly dense, well-oriented and size-controlled arrays of silicon nanowires have been grown by chemical vapor deposition using the vapor-liquid-solid mechanism. Compatibility issues between the nanowire growth method and microfabrication techniques, such as electrical contact patterning, are discussed. Electrical measurements of the nanowire array electrical conductivity and the Seebeck voltage induced by a controlled thermal gradient or under harvesting operation mode have been carried out to demonstrate the feasibility of the microdevice. A resistance of 240 Ω at room temperature was measured for an array of silicon nanowires 10 µm -long, generating a Seebeck voltage of 80 mV under an imposed thermal gradient of 450 °C, whereas only 4.5 mV were generated under a harvesting operation mode. From the results presented, a Seebeck coefficient of about 150-190 µV K-1 was estimated, which corresponds to typical values for bulk silicon.

  18. DLP NIRscan Nano: an ultra-mobile DLP-based near-infrared Bluetooth spectrometer

    NASA Astrophysics Data System (ADS)

    Gelabert, Pedro; Pruett, Eric; Perrella, Gavin; Subramanian, Sreeram; Lakshminarayanan, Aravind

    2016-02-01

    The DLP NIRscan Nano is an ultra-portable spectrometer evaluation module utilizing DLP technology to meet lower cost, smaller size, and higher performance than traditional architectures. The replacement of a linear array detector with DLP digital micromirror device (DMD) in conjunction with a single point detector adds the functionality of programmable spectral filters and sampling techniques that were not previously available on NIR spectrometers. This paper presents the hardware, software, and optical systems of the DLP NIRscan Nano and its design considerations on the implementation of a DLP-based spectrometer.

  19. Polarization-independent absorption enhancement in a graphene square array with a cascaded grating structure.

    PubMed

    Wu, Jun

    2018-03-01

    The polarization-independent enhanced absorption effect of graphene in the near-infrared range is investigated. This is achieved by placing a graphene square array on top of a dielectric square array backed by a two-dimensional multilayer grating. Total optical absorption in graphene can be attributed to critical coupling, which is achieved through the combined effect of guided-mode resonance with the dielectric square array and the photonic band gap with the two-dimensional multilayer grating. To reveal the physical origin of such a phenomenon, the electromagnetic field distributions for both polarizations are illustrated. The designed graphene absorber exhibits near-unity polarization-independent absorption at resonance with an ultra-narrow spectrum. Moreover, the polarization-independent absorption can be tuned simply by changing the geometric parameters. The results may have promising potential for the design of graphene-based optoelectronic devices.

  20. Quantum dense key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.

    2004-03-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  1. Dense Breasts

    MedlinePlus

    ... fatty tissue. On a mammogram, fatty tissue appears dark (radio-lucent) and the glandular and connective tissues ... white on mammography) and non-dense fatty tissue (dark on mammography) using a visual scale and assign ...

  2. An eight-channel T/R head coil for parallel transmit MRI at 3T using ultra-low output impedance amplifiers

    NASA Astrophysics Data System (ADS)

    Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston

    2014-09-01

    Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight-rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system.

  3. Creation of ultra-high energy density matter using nanostructured targets

    NASA Astrophysics Data System (ADS)

    Tommasini, Riccardo; Park, J.; London, R.; Chen, H.; Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V.; Capeluto, M.; Keiss, D.; Townsend, A.; Rocca, J. J.; Kaymak, V.; Pukhov, A.; Hill, M.

    2015-11-01

    Recent experiments have demonstrated that trapping of 60 femtosecond laser pulses of relativistic intensity deep within ordered nanowire arrays can create a new ultra-hot plasma regime. Here we report on the experiments at the Titan laser at the Lawrence Livermore National Laboratory that aim to scale these results by two orders of magnitude in laser energy. Preliminary analysis of the Titan results show that sub-picosecond laser irradiation of vertically aligned nanostructures of Au, Ag and Ni produces an increase of a factor greater than 1.6 in the suprathermal electron temperatures and an increase by a factor of 3 in the conversion efficiency into continuum x-rays, both with respect to flat targets of the same composition. Kα radiation from nanowire array targets also shows an increase between 3x and 5x over flat targets. The nanowire array targets reflected a 5x smaller fraction of the laser energy, indicating significantly larger absorption of the laser pulse. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, by the Office of Fusion Energy Sciences, U.S Department of Energy, and by the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079.

  4. Ultra heavy cosmic ray experiment (A0178)

    NASA Technical Reports Server (NTRS)

    Thompson, A.; Osullivan, D.; Bosch, J.; Keegan, R.; Wenzel, K. P.; Jansen, F.; Domingo, C.

    1992-01-01

    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels using 16 peripheral LDEF trays. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m sr, giving a total exposure factor of 170 sq m sr y at an orbital inclination of 28.4 degs. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide cosmic rays. Results are presented including a sample of ultra heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of + or - 0.8e for uranium and + or - 0.6e for the platinum-lead group. Astrophysical implications of the UHCRE charge spectrum are discussed.

  5. Ferromagnetic resonance in low interacting permalloy nanowire arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raposo, V.; Zazo, M.; Flores, A. G.

    2016-04-14

    Dipolar interactions on magnetic nanowire arrays have been investigated by various techniques. One of the most powerful techniques is the ferromagnetic resonance spectroscopy, because the resonance field depends directly on the anisotropy field strength and its frequency dependence. In order to evaluate the influence of magnetostatic dipolar interactions among ferromagnetic nanowire arrays, several densely packed hexagonal arrays of NiFe nanowires have been prepared by electrochemical deposition filling self-ordered nanopores of alumina membranes with different pore sizes but keeping the same interpore distance. Nanowires’ diameter was changed from 90 to 160 nm, while the lattice parameter was fixed to 300 nm, which wasmore » achieved by carefully reducing the pore diameter by means of Atomic Layer Deposition of conformal Al{sub 2}O{sub 3} layers on the nanoporous alumina templates. Field and frequency dependence of ferromagnetic resonance have been studied in order to obtain the dispersion diagram which gives information about anisotropy, damping factor, and gyromagnetic ratio. The relationship between resonance frequency and magnetic field can be explained by the roles played by the shape anisotropy and dipolar interactions among the ferromagnetic nanowires.« less

  6. Fabrication of cell container arrays with overlaid surface topographies.

    PubMed

    Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; de Boer, Jan; Stamatialis, Dimitrios

    2012-02-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.

  7. Inkjet Printed Surface Enhanced Raman Spectroscopy Array on Cellulose Paper

    PubMed Central

    Yu, Wei W.; White, Ian M.

    2011-01-01

    A novel, ultra low-cost surface enhanced Raman spectroscopy (SERS) substrate has been developed by modifying the surface chemistry of cellulose paper and patterning nanoparticle arrays, all with a consumer inkjet printer. Micro/nanofabrication of SERS substrates for on-chip chemical and biomolecular analysis has been under intense investigation. However, the high cost of producing these substrates and the limited shelf life severely limit their use, especially for routine laboratory analysis and for point-of-sample analysis in the field. Paper-based microfluidic biosensing systems have shown great potential as low-cost disposable analysis tools. In this work, this concept is extended to SERS-based detection. Using an inexpensive consumer inkjet printer, cellulose paper substrates are modified to be hydrophobic in the sensing regions. Synthesized silver nanoparticles are printed onto this hydrophobic paper substrate with microscale precision to form sensing arrays. The hydrophobic surface prevents the aqueous sample from spreading throughout the paper and thus concentrates the analyte within the sensing region. A SERS fingerprint signal for Rhodamine 6G dye was observed for samples with as low as 10 femtomoles of analyte in a total sample volume of 1 μL. This extraordinarily simple technique can be used to construct SERS microarrays immediately before sample analysis, enabling ultra low-cost chemical and biomolecular detection in the lab as well as in the field at the point of sample collection. PMID:21058689

  8. Generation of ultra-wideband achromatic Airy plasmons on a graphene surface.

    PubMed

    Guan, Chunying; Yuan, Tingting; Chu, Rang; Shen, Yize; Zhu, Zheng; Shi, Jinhui; Li, Ping; Yuan, Libo; Brambilla, Gilberto

    2017-02-01

    Tunable ultra-wideband achromatic plasmonic Airy beams are demonstrated on graphene surfaces. Surface plasmonic polaritons are excited using diffractive gratings. The phase and amplitude of plasmonic waves on the graphene surface are determined by the relative position between the grating arrays and the duty ratio of the grating unit cell, respectively. The transverse acceleration and nondiffraction properties of plasmonic waves are observed. The achromatic Airy plasmons with identical acceleration trajectory at different excited frequencies can be achieved by tuning dynamically the Fermi energy of graphene without reoptimizing the grating structures. The proposed devices may find applications in photonics integrations and surface optical manipulation.

  9. Ultra High Definition Video from the International Space Station (Reel 1)

    NASA Image and Video Library

    2015-06-15

    The view of life in space is getting a major boost with the introduction of 4K Ultra High-Definition (UHD) video, providing an unprecedented look at what it's like to live and work aboard the International Space Station. This important new capability will allow researchers to acquire high resolution - high frame rate video to provide new insight into the vast array of experiments taking place every day. It will also bestow the most breathtaking views of planet Earth and space station activities ever acquired for consumption by those still dreaming of making the trip to outer space.

  10. Dense module enumeration in biological networks

    NASA Astrophysics Data System (ADS)

    Tsuda, Koji; Georgii, Elisabeth

    2009-12-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  11. Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2008-04-30

    Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in anmore » ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.« less

  12. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou

    We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores andmore » the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.« less

  13. High-density CMOS Microelectrode Array System for Impedance Spectroscopy and Imaging of Biological Cells.

    PubMed

    Vijay, Viswam; Raziyeh, Bounik; Amir, Shadmani; Jelena, Dragas; Alicia, Boos Julia; Axel, Birchler; Jan, Müller; Yihui, Chen; Andreas, Hierlemann

    2017-01-26

    A monolithic measurement platform was implemented to enable label-free in-vitro electrical impedance spectroscopy measurements of cells on multi-functional CMOS microelectrode array. The array includes 59,760 platinum microelectrodes, densely packed within a 4.5 mm × 2.5 mm sensing region at a pitch of 13.5 μm. The 32 on-chip lock-in amplifiers can be used to measure the impedance of any arbitrarily chosen electrodes on the array by applying a sinusoidal voltage, generated by an on-chip waveform generator with a frequency range from 1 Hz to 1 MHz, and measuring the respective current. Proof-of-concept measurements of impedance sensing and imaging are shown in this paper. Correlations between cell detection through optical microscopy and electrochemical impedance scanning were established.

  14. Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures.

    PubMed

    Gao, Li; Zhang, Yihui; Zhang, Hui; Doshay, Sage; Xie, Xu; Luo, Hongying; Shah, Deesha; Shi, Yan; Xu, Siyi; Fang, Hui; Fan, Jonathan A; Nordlander, Peter; Huang, Yonggang; Rogers, John A

    2015-06-23

    Large-scale, dense arrays of plasmonic nanodisks on low-modulus, high-elongation elastomeric substrates represent a class of tunable optical systems, with reversible ability to shift key optical resonances over a range of nearly 600 nm at near-infrared wavelengths. At the most extreme levels of mechanical deformation (strains >100%), nonlinear buckling processes transform initially planar arrays into three-dimensional configurations, in which the nanodisks rotate out of the plane to form linear arrays with "wavy" geometries. Analytical, finite-element, and finite-difference time-domain models capture not only the physics of these buckling processes, including all of the observed modes, but also the quantitative effects of these deformations on the plasmonic responses. The results have relevance to mechanically tunable optical systems, particularly to soft optical sensors that integrate on or in the human body.

  15. Metabolic profiling of nuciferine in rat urine, plasma, bile and feces after oral administration using ultra-high performance liquid chromatography-diode array detection-quadrupole time-of-flight mass spectrometry.

    PubMed

    Wu, Xiao-Lei; Wu, Ming-Jiang; Chen, Xin-Ze; Ma, Hao-Ling; Ding, Li-Qin; Qiu, Feng; Pan, Qin; Zhang, De-Qin

    2017-06-05

    Nuciferine, a major alkaloid found in Nelumbinis Folium, exhibits a broad spectrum of bioactivities, such as antiobesity, anti-diabetes and anti-inflammatory. However, many research regarding nuciferine focused on the extraction, isolation and biological activity, the metabolism is not comprehensively explained in vivo. Thence, the present of this paper is to establish a simple method for speculating metabolites of nuciferine. A total of 15 metabolites were detected and tentatively identified through ultra high performance liquid chromatography-diode array detection-quadrupole time-of-flight mass spectrometry (UHPLC-DAD-QTOF-MS), including 7 new metabolites. Among them, we also discovered a previously unmentioned metabolically active site at the C 1 -OCH 3 position. These metabolites suggested that demethylation, oxidation, glucuronidation and sulfation were major metabolic pathways. This study provided significant experiment basis for its safety estimate and valuable information about the metabolism of nuciferine, which will be advantageous for new drug development. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability.

    PubMed

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U

    2015-03-06

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

  17. An Ultra-Low Power CMOS Image Sensor with On-Chip Energy Harvesting and Power Management Capability

    PubMed Central

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U.

    2015-01-01

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle. PMID:25756863

  18. Coronal plasma development in wire-array z-pinches made of twisted-pairs

    NASA Astrophysics Data System (ADS)

    Hoyt, C. L.; Greenly, J. B.; Gourdain, P. A.; Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.

    2009-11-01

    We have investigated coronal and core plasma development in wire array z-pinches in which single fine wires are replaced by twisted-pairs (``cable'') on the 1 MA, 100 ns rise time COBRA pulsed power generator. X-ray radiography, employed to investigate dense wire core expansion, showed periodic axial nonuniformity and evidence for shock waves developing where the individual wire plasmas collide. Laser shadowgraphy images indicated that the axial instability properties of the coronal plasma are substantially modified from ordinary wire arrays. Cable mass per unit length, material and the twist wavelength were varied in order to study their effects upon the instability wavelength. Implosion uniformity and bright-spot formation, as well as magnetic topology evolution, have also been investigated using self-emission imaging, x-ray diagnostics and small B-dot probes, respectively. Results from the cable-array z-pinches will be compared with results from ordinary wire-array z-pinches. This research was supported by the SSAA program of the National Nuclear Security Administration under DOE Cooperative agreement DE-FC03-02NA00057.

  19. A flexible nanobrush pad for the chemical mechanical planarization of Cu/ultra-low-к materials

    PubMed Central

    2012-01-01

    A new idea of polishing pad called flexible nanobrush pad (FNP) has been proposed for the low down pressure chemical mechanical planarization (CMP) process of Cu/ultra-low-к materials. The FNP was designed with a surface layer of flexible brush-like nanofibers which can ‘actively’ carry nanoscale abrasives in slurry independent of the down pressure. Better planarization performances including high material removal rate, good planarization, good polishing uniformity, and low defectivity are expected in the CMP process under the low down pressure with such kind of pad. The FNP can be made by template-assisted replication or template-based synthesis methods, which will be driven by the development of the preparation technologies for ordered nanostructure arrays. The present work would potentially provide a new solution for the Cu/ultra-low-к CMP process. PMID:23110959

  20. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.

    PubMed

    Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E

    2015-09-02

    The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries.

  1. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    PubMed

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  2. A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo

    We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.

  3. Dense deconvolution net: Multi path fusion and dense deconvolution for high resolution skin lesion segmentation.

    PubMed

    He, Xinzi; Yu, Zhen; Wang, Tianfu; Lei, Baiying; Shi, Yiyan

    2018-01-01

    Dermoscopy imaging has been a routine examination approach for skin lesion diagnosis. Accurate segmentation is the first step for automatic dermoscopy image assessment. The main challenges for skin lesion segmentation are numerous variations in viewpoint and scale of skin lesion region. To handle these challenges, we propose a novel skin lesion segmentation network via a very deep dense deconvolution network based on dermoscopic images. Specifically, the deep dense layer and generic multi-path Deep RefineNet are combined to improve the segmentation performance. The deep representation of all available layers is aggregated to form the global feature maps using skip connection. Also, the dense deconvolution layer is leveraged to capture diverse appearance features via the contextual information. Finally, we apply the dense deconvolution layer to smooth segmentation maps and obtain final high-resolution output. Our proposed method shows the superiority over the state-of-the-art approaches based on the public available 2016 and 2017 skin lesion challenge dataset and achieves the accuracy of 96.0% and 93.9%, which obtained a 6.0% and 1.2% increase over the traditional method, respectively. By utilizing Dense Deconvolution Net, the average time for processing one testing images with our proposed framework was 0.253 s.

  4. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.

    PubMed

    Danilov, Artem; Tselikov, Gleb; Wu, Fan; Kravets, Vasyl G; Ozerov, Igor; Bedu, Frederic; Grigorenko, Alexander N; Kabashin, Andrei V

    2018-05-01

    When excited over a periodic metamaterial lattice of gold nanoparticles (~ 100nm), localized plasmon resonances (LPR) can be coupled by a diffraction wave propagating along the array plane, which leads to a drastic narrowing of plasmon resonance lineshapes (down to a few nm full-width-at-half-maximum) and the generation of singularities of phase of reflected light. These phenomena look very promising for the improvement of performance of plasmonic biosensors, but conditions of implementation of such diffractively coupled plasmonic resonances, also referred to as plasmonic surface lattice resonances (PSLR), are not always compatible with biosensing arrangement implying the placement of the nanoparticles between a glass substrate and a sample medium (air, water). Here, we consider conditions of excitation and properties of PSLR over arrays of glass substrate-supported single and double Au nanoparticles (~ 100-200nm), arranged in a periodic metamaterial lattice, in direct and Attenuated Total Reflection (ATR) geometries, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. First, we identify medium (PSLR air , PSLR wat for air and water, respectively) and substrate (PSLR sub ) modes corresponding to the coupling of individual plasmon oscillations at medium- and substrate-related diffraction cut-off edges. We show that spectral sensitivity of medium modes to RI variations is determined by the lattice periodicity in both direct and ATR geometries (~ 320nm per RIU change in our case), while substrate mode demonstrates much lower sensitivity. We also show that phase sensitivity of PSLR can exceed 10 5 degrees of phase shift per RIU change and thus outperform the relevant parameter for all other plasmonic sensor counterparts. We finally demonstrate the applicability of surface lattice resonances in plasmonic metamaterial arrays to biosensing using standard streptavidin-biotin affinity model. Combining advantages of

  5. Ultra-broadband Tunable Resonant Light Trapping in a Two-dimensional Randomly Microstructured Plasmonic-photonic Absorber

    PubMed Central

    Liu, Zhengqi; Liu, Long; Lu, Haiyang; Zhan, Peng; Du, Wei; Wan, Mingjie; Wang, Zhenlin

    2017-01-01

    Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large incident angle range. Without any effort to strictly control the spatial arrangement of the resonant elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high reproducibility and scalability and represents a viable strategy for efficient energy technologies. PMID:28256599

  6. Use of Microtremor Array Recordings for Mapping Subsurface Soil Structure, Singapore

    NASA Astrophysics Data System (ADS)

    Walling, M.

    2012-12-01

    Microtremor array recordings are carried out in Singapore, for different geology, to study the influence of each site in modeling the subsurface structure. The Spatial Autocorrelation (SPAC) method is utilized for the computation of the soil profiles. The array configuration of the recording consists of 7 seismometers, recording the vertical component of the ground motion, and the recording at each site is carried out for 30 minutes. The results from the analysis show that the soil structure modeled for the young alluvial of Kallang Formation (KF), in terms of shear wave velocity (Vs), gives a good correlation with borehole information, while for the older geological formation of Jurong Formation (JF) (sedimentary rock sequence) and Old Alluvial (OA) (dense alluvium formation), the correlation is not very clear due to the lack of impedance contrast. The older formation of Bukit Timah Granite (BTG) show contrasting results within the formation, with the northern BTG suggesting a low Vs upper layer of about 20m - 30m while the southern BTG reveals a dense formation. The discrepancy in the variation within BTG is confirmed from borehole data that reveals the northern BTG to have undergone intense weathering while the southern BTG have not undergone noticeable weathering. Few sites with bad recording quality could not resolve the soil structure. Microtremor array recording is good for mapping sites with soft soil formation and weathered rock formation but can be limited in the absence of subsurface velocity contrast and bad quality of microtremor records.; The correlation between the Vs30 estimated from SPAC method and borehole data for the four major geological formations of Singapore. The encircled sites are the sites with recording error.

  7. ULTIMA: Array of ground-based magnetometer arrays for monitoring magnetospheric and ionospheric perturbations on a global scale

    NASA Astrophysics Data System (ADS)

    Yumoto, K.; Chi, P. J.; Angelopoulos, V.; Connors, M. G.; Engebretson, M. J.; Fraser, B. J.; Mann, I. R.; Milling, D. K.; Moldwin, M. B.; Russell, C. T.; Stolle, C.; Tanskanen, E.; Vallante, M.; Yizengaw, E.; Zesta, E.

    2012-12-01

    ULTIMA (Ultra Large Terrestrial International Magnetic Array) is an international consortium that aims at promoting collaborative research on the magnetosphere, ionosphere, and upper atmosphere through the use of ground-based magnetic field observatories. ULTIMA is joined by individual magnetometer arrays in different countries/regions, and the current regular-member arrays are Australian, AUTUMN, CARISMA, DTU Space, Falcon, IGPP-LANL, IMAGE, MACCS, MAGDAS, McMAC, MEASURE, THEMIS, and SAMBA. The Chair of ULTIMA has been K. Yumoto (MAGDAS), and its Secretary has been P. Chi (McMAC, Falcon). In this paper we perform case studies in which we estimate the global patterns of (1) near-Earth currents and (2) magnetic pulsations; these phenomena are observed over wide areas on the ground, thus suitable for the aims of ULTIMA. We analyze these two phenomena during (a) quiet period and (b) magnetic storm period. We compare the differences between these two periods by drawing the global maps of the ionospheric equivalent currents (which include the effects of all the near-Earth currents) and pulsation amplitudes. For ionospheric Sq currents at low latitudes during quiet periods, MAGDAS data covering an entire solar cycle has yielded a detailed statistical model, and we can use it as a reference for the aforementioned comparison. We also estimate the azimuthal wave numbers of pulsations and compare the amplitude distribution of pulsations with the distribution of highly energetic (in MeV range) particles simultaneously observed at geosynchronous satellites.

  8. Metalenses based on the non-parallel double-slit arrays

    NASA Astrophysics Data System (ADS)

    Shao, Hongyan; Chen, Chen; Wang, Jicheng; Pan, Liang; Sang, Tian

    2017-09-01

    Metalenses based on surface plasmon polaritons have played an indispensable role in ultra-thin devices designing. The amplitude, phase and polarization of electromagnetic waves all can be controlled easily by modifying the metasurface structures. Here we propose and investigate a new type of structure with Babinet-inverted nano-antennas which can provide a series of unit-cells with phase-shifts covering 2π and ensure almost same transmittance simultaneously. As a result, the wavefront can be manipulated by arraying the units in course. Metalenses with the linear asymmetrical double slit unit-cell arrays are designed and the simulative results exhibit their perfect focusing characteristics, including single-focus lenses and multi-focus lenses. The small focus size and high numerical aperture make them stand out from the traditional counterparts in application of precision sensing devices. We expect our designs will provide new insights in the practical applications for metasurfaces in data storages, optical information processing and optical holography.

  9. The AlpArray Seismic Network: current status and next steps

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Molinari, Irene; Clinton, John; Kissling, Edi

    2016-04-01

    The AlpArray initiative (http://www.alparray.ethz.ch) is a large-scale European collaboration to study the entire Alpine orogen at high resolution and in 3D with a large variety of geoscientific methods. The core element of the initiative is an extensive and dense broadband seismological network, the AlpArray Seismic Network (AASN), which complements the permanent seismological stations to ensure homogeneous coverage of the greater Alpine area. The some 260 temporary stations of the AlpArray Seismic Network are operated as a joint effort by a number of institutions from Austria, Bosnia-Herzegovina, Croatia, Czech Republic, France, Germany, Hungary, Italy, Slovakia and Switzerland. The first stations were installed in Spring 2015 and the full AASN is planned to be operational by early Summer 2016. In this poster we present the actual status of the deployment, the effort undertaken by the contributing groups, station performance, typical noise levels, best practices in installation as well as in data management, often encountered challenges, and planned next steps including the deployment of ocean bottom seismometers in the Ligurian Sea.

  10. Ultra-short pulse laser micro patterning with highest throughput by utilization of a novel multi-beam processing head

    NASA Astrophysics Data System (ADS)

    Homburg, Oliver; Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan

    2017-02-01

    In the last decade much improvement has been achieved for ultra-short pulse lasers with high repetition rates. This laser technology has vastly matured so that it entered a manifold of industrial applications recently compared to mainly scientific use in the past. Compared to ns-pulse ablation ultra-short pulses in the ps- or even fs regime lead to still colder ablation and further reduced heat-affected zones. This is crucial for micro patterning when structure sizes are getting smaller and requirements are getting stronger at the same time. An additional advantage of ultra-fast processing is its applicability to a large variety of materials, e.g. metals and several high bandgap materials like glass and ceramics. One challenge for ultra-fast micro machining is throughput. The operational capacity of these processes can be maximized by increasing the scan rate or the number of beams - parallel processing. This contribution focuses on process parallelism of ultra-short pulsed lasers with high repetition rate and individually addressable acousto-optical beam modulation. The core of the multi-beam generation is a smooth diffractive beam splitter component with high uniform spots and negligible loss, and a prismatic array compressor to match beam size and pitch. The optical design and the practical realization of an 8 beam processing head in combination with a high average power single mode ultra-short pulsed laser source are presented as well as the currently on-going and promising laboratory research and micro machining results. Finally, an outlook of scaling the processing head to several tens of beams is given.

  11. Ultra-Dense Optical Mass Storage

    DTIC Science & Technology

    1991-02-11

    Technologies develops equipment for telephone company central offices which allows users within a local area to have personal mailboxes for voicemail and FAX...externally applied stress field can alter the energy level of a molecule by slightly dis- torting the local environment surrounding the photochemical...permit us to raise the temperature even further during part of the channel creation process. It is probably reasonable to assume that local heating

  12. GIGAS: A set of microwave sensor arrays to detect molecular bremsstrahlung radiation from extensive air shower

    NASA Astrophysics Data System (ADS)

    Gaïor, R.; Al Samarai, I.; Berat, C.; Blanco Otano, M.; David, J.; Deligny, O.; Lebbolo, H.; Lecoz, S.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Mariş, I. C.; Montanet, F.; Repain, P.; Salamida, F.; Settimo, M.; Stassi, P.; Stutz, A.

    2018-04-01

    We present the GIGAS (Gigahertz Identification of Giant Air Shower) microwave radio sensor arrays of the EASIER project (Extensive Air Shower Identification with Electron Radiometers), deployed at the site of the Pierre Auger cosmic ray observatory. The aim of these novel arrays is to probe the intensity of the molecular bremsstrahlung radiation expected from the development of the extensive air showers produced by the interaction of ultra high energy cosmic rays in the atmosphere. In the designed setup, the sensors are embedded within the surface detector array of the Pierre Auger observatory allowing us to use the particle signals at ground level to trigger the radio system. A series of seven, then 61 sensors have been deployed in the C-band, followed by a new series of 14 higher sensitivity ones in the C-band and the L-band. The design, the operation, the calibration and the sensitivity to extensive air showers of these arrays are described in this paper.

  13. An ordered array of hierarchical spheres for surface-enhanced Raman scattering detection of traces of pesticide

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoye; Zheng, Peng; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Han, Fangming; Huang, Zhulin; Li, Zhongbo; Wang, Zhaoming; Wu, Nianqiang

    2016-09-01

    An ordered array of hierarchically-structured core-nanosphere@space-layer@shell-nanoparticles has been fabricated for surface-enhanced Raman scattering (SERS) detection. To fabricate this hierarchically-structured chip, a long-range ordered array of Au/Ag-nanospheres is first patterned in the nano-bowls on the planar surface of ordered nanoporous anodic titanium oxide template. A ultra-thin alumina middle space-layer is then conformally coated on the Au/Ag-nanospheres, and Ag-nanoparticles are finally deposited on the surface of the alumina space-layer to form an ordered array of Au/Ag-nanosphere@Al2O3-layer@Ag-nanoparticles. Finite-difference time-domain simulation shows that SERS hot spots are created between the neighboring Ag-nanoparticles. The ordered array of hierarchical nanostructures is used as the SERS-substrate for a trial detection of methyl parathion (a pesticide) in water and a limit of detection of 1 nM is reached, indicating its promising potential in rapid monitoring of organic pollutants in aquatic environment.

  14. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1991-01-01

    The Long Duration Exposure Facility (LDEF) Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of 4 pressure vessels (3 experiment tray). The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 2000 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Postflight work to date and the current status of the experiment are reviewed. Provisional results from analysis of preflight and postflight calibrations are presented.

  15. Constructing Dense Graphs with Unique Hamiltonian Cycles

    ERIC Educational Resources Information Center

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  16. Ultra-fast microwave-assisted hydrothermal synthesis of long vertically aligned ZnO nanowires for dye-sensitized solar cell application.

    PubMed

    Mahpeykar, S M; Koohsorkhi, J; Ghafoori-Fard, H

    2012-04-27

    Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200 nm min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.

  17. Ultra-compact air-mode photonic crystal nanobeam cavity integrated with bandstop filter for refractive index sensing.

    PubMed

    Sun, Fujun; Fu, Zhongyuan; Wang, Chunhong; Ding, Zhaoxiang; Wang, Chao; Tian, Huiping

    2017-05-20

    We propose and investigate an ultra-compact air-mode photonic crystal nanobeam cavity (PCNC) with an ultra-high quality factor-to-mode volume ratio (Q/V) by quadratically tapering the lattice space of the rectangular holes from the center to both ends while other parameters remain unchanged. By using the three-dimensional finite-difference time-domain method, an optimized geometry yields a Q of 7.2×10 6 and a V∼1.095(λ/n Si ) 3 in simulations, resulting in an ultra-high Q/V ratio of about 6.5×10 6 (λ/n Si ) -3 . When the number of holes on either side is 8, the cavity possesses a high sensitivity of 252 nm/RIU (refractive index unit), a high calculated Q-factor of 1.27×10 5 , and an ultra-small effective V of ∼0.758(λ/n Si ) 3 at the fundamental resonant wavelength of 1521.74 nm. Particularly, the footprint is only about 8×0.7  μm 2 . However, inevitably our proposed PCNC has several higher-order resonant modes in the transmission spectrum, which makes the PCNC difficult to be used for multiplexed sensing. Thus, a well-designed bandstop filter with weak sidelobes and broad bandwidth based on a photonic crystal nanobeam waveguide is created to connect with the PCNC to filter out the high-order modes. Therefore, the integrated structure presented in this work is promising for building ultra-compact lab-on-chip sensor arrays with high density and parallel-multiplexing capability.

  18. Compliance of Ultra-Orthodox and secular pedestrians with traffic lights in Ultra-Orthodox and secular locations.

    PubMed

    Rosenbloom, Tova; Shahar, Amit; Perlman, Amotz

    2008-11-01

    Following a previous study that revealed the disobedience of Ultra-Orthodox citizens, as compared to secular citizens, of traffic lights at crosswalks, the present study examined the road habits of 995 Ultra-Orthodox and secular pedestrians in neighboring Ultra-Orthodox and secular cities. Using an observation grid designed specially for this study, the pedestrians were observed at two crosswalks--one in an Ultra-Orthodox city and one in a secular city--as far as similar traffic parameters, using a logistic regression. The tendency to cross on a red light was assessed as a function of estimated age, gender, religiosity, location (religious/secular), the duration of the red light, the number of vehicles crossing and the number of pedestrians waiting at the curb. Ultra-Orthodox pedestrians committed more violations than secular pedestrians did, and there were more road violations in the Ultra-Orthodox location than there were in the secular location. Fewer traffic violations were committed by "local" pedestrians (Ultra-Orthodox pedestrians in the Ultra-Orthodox location and secular pedestrians in the secular location) than by "foreigners" (Ultra-Orthodox pedestrians in the secular location and secular pedestrians in the Ultra-Orthodox location). The odds of crossing on a red light decreased as a function of both the number of people waiting at the curb and the number of vehicles. Consistent with previous research, males crossed on red much more than females did, regardless of religiosity and location. Our discussion focuses on theoretical and practical explanations of the findings.

  19. HYDJET++ for ultra-relativistic HIC’s: A hot cocktail of hydrodynamics, resonances and jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravina, L. V.; Johansson, B. H. Brusheim; Crkovska, J.

    An ultra-relativistic heavy-ion collision at LHC energies is a mixture of soft and hard processes. For comparison with data we employ the HYDJET++ model, which combines the description of soft processes with the treatment of hard partons propagating hot and dense nuclear medium. Importance of the interplay of ideal hydrodynamics, final state interactions and jets for the description of harmonics of the anisotropic flow is discussed. Jets are found to be the main source of violation of the number-of-constituent-quark (NCQ) scaling at LHC energies. Many features of higher flow harmonics and dihadron angular correlations, including ridge, can be described bymore » the interference of elliptic and triangular flows.« less

  20. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo.

    PubMed

    Viventi, Jonathan; Kim, Dae-Hyeong; Vigeland, Leif; Frechette, Eric S; Blanco, Justin A; Kim, Yun-Soung; Avrin, Andrew E; Tiruvadi, Vineet R; Hwang, Suk-Won; Vanleer, Ann C; Wulsin, Drausin F; Davis, Kathryn; Gelber, Casey E; Palmer, Larry; Van der Spiegel, Jan; Wu, Jian; Xiao, Jianliang; Huang, Yonggang; Contreras, Diego; Rogers, John A; Litt, Brian

    2011-11-13

    Arrays of electrodes for recording and stimulating the brain are used throughout clinical medicine and basic neuroscience research, yet are unable to sample large areas of the brain while maintaining high spatial resolution because of the need to individually wire each passive sensor at the electrode-tissue interface. To overcome this constraint, we developed new devices that integrate ultrathin and flexible silicon nanomembrane transistors into the electrode array, enabling new dense arrays of thousands of amplified and multiplexed sensors that are connected using fewer wires. We used this system to record spatial properties of cat brain activity in vivo, including sleep spindles, single-trial visual evoked responses and electrographic seizures. We found that seizures may manifest as recurrent spiral waves that propagate in the neocortex. The developments reported here herald a new generation of diagnostic and therapeutic brain-machine interface devices.

  1. Fabrication of ultra thin anodic aluminium oxide membranes by low anodization voltages

    NASA Astrophysics Data System (ADS)

    Pastore, I.; Poplausks, R.; Apsite, I.; Pastare, I.; Lombardi, F.; Erts, D.

    2011-06-01

    Formation of ultrathin anodised aluminium oxide (AAO) membranes with high aspect ratio by Al anodization in sulphuric and oxalic acids at low potentials was investigated. Low anodization potentials ensure slow electrochemical reaction speeds and formation of AAO membranes with pore diameter and thickness below 20 nm and 70 nm respectively. Minimum time necessary for formation of continuous AAO membranes was determined. AAO membrane pore surface was covered with polymer Paraloid B72TM to transport it to the selected substrate. The fabricated ultra thin AAO membranes could be used to fabricate nanodot arrays on different surfaces.

  2. Fingerprint analysis of Hibiscus mutabilis L. leaves based on ultra performance liquid chromatography with photodiode array detector combined with similarity analysis and hierarchical clustering analysis methods

    PubMed Central

    Liang, Xianrui; Ma, Meiling; Su, Weike

    2013-01-01

    Background: A method for chemical fingerprint analysis of Hibiscus mutabilis L. leaves was developed based on ultra performance liquid chromatography with photodiode array detector (UPLC-PAD) combined with similarity analysis (SA) and hierarchical clustering analysis (HCA). Materials and Methods: 10 batches of Hibiscus mutabilis L. leaves samples were collected from different regions of China. UPLC-PAD was employed to collect chemical fingerprints of Hibiscus mutabilis L. leaves. Results: The relative standard deviations (RSDs) of the relative retention times (RRT) and relative peak areas (RPA) of 10 characteristic peaks (one of them was identified as rutin) in precision, repeatability and stability test were less than 3%, and the method of fingerprint analysis was validated to be suitable for the Hibiscus mutabilis L. leaves. Conclusions: The chromatographic fingerprints showed abundant diversity of chemical constituents qualitatively in the 10 batches of Hibiscus mutabilis L. leaves samples from different locations by similarity analysis on basis of calculating the correlation coefficients between each two fingerprints. Moreover, the HCA method clustered the samples into four classes, and the HCA dendrogram showed the close or distant relations among the 10 samples, which was consistent to the SA result to some extent. PMID:23930008

  3. Two- to three-dimensional crossover in a dense electron liquid in silicon

    NASA Astrophysics Data System (ADS)

    Matmon, Guy; Ginossar, Eran; Villis, Byron J.; Kölker, Alex; Lim, Tingbin; Solanki, Hari; Schofield, Steven R.; Curson, Neil J.; Li, Juerong; Murdin, Ben N.; Fisher, Andrew J.; Aeppli, Gabriel

    2018-04-01

    Doping of silicon via phosphine exposures alternating with molecular beam epitaxy overgrowth is a path to Si:P substrates for conventional microelectronics and quantum information technologies. The technique also provides a well-controlled material for systematic studies of two-dimensional lattices with a half-filled band. We show here that for a dense (ns=2.8 ×1014 cm-2) disordered two-dimensional array of P atoms, the full field magnitude and angle-dependent magnetotransport is remarkably well described by classic weak localization theory with no corrections due to interaction. The two- to three-dimensional crossover seen upon warming can also be interpreted using scaling concepts developed for anistropic three-dimensional materials, which work remarkably except when the applied fields are nearly parallel to the conducting planes.

  4. Optimizing the beam pattern of a forward-viewing ring-annular ultrasound array for intravascular imaging.

    PubMed

    Wang, Yao; Stephens, Douglas N; O'Donnell, Matthew

    2002-12-01

    Intravascular ultrasound (IVUS) imaging systems using circumferential arrays mounted on cardiac catheter tips fire beams orthogonal to the principal axis of the catheter. The system produces high resolution cross-sectional images but must be guided by conventional angioscopy. A real-time forward-viewing array, integrated into the same catheter, could greatly reduce radiation exposure by decreasing angiographic guidance. Unfortunately, the mounting requirement of a catheter guide wire prohibits a full-disk imaging aperture. Given only an annulus of array elements, prior theoretical investigations have only considered a circular ring of point transceivers and focusing strategies using all elements in the highly dense array, both impractical assumptions. In this paper, we consider a practical array geometry and signal processing architecture for a forward-viewing IVUS system. Our specific design uses a total of 210 transceiver firings with synthetic reconstruction for a given 3-D image frame. Simulation results demonstrate this design can achieve side-lobes under -40 dB for on-axis situations and under -30 dB for steering to the edge of a 80 degrees cone.

  5. A common origin for globular clusters and ultra-faint dwarfs in simulations of the first galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricotti, Massimo; Parry, Owen H.; Gnedin, Nickolay Y.

    In this study, the first in a series on galaxy formation before reionization, we focus on understanding what determines the size and morphology of stellar objects in the first low-mass galaxies, using parsec-scale cosmological simulations performed with an adaptive mesh hydrodynamics code. Although the dense gas in which stars are formed tends to have a disk structure, stars are found in spheroids with little rotation. Halos with masses betweenmore » $${10}^{6}\\,{M}_{\\odot }$$ and $$5\\times {10}^{8}\\,{M}_{\\odot }$$ form stars stochastically, with stellar masses in the range $${10}^{4}\\,{M}_{\\odot }$$ to $$2\\times {10}^{6}\\,{M}_{\\odot }$$. We observe, nearly independent of stellar mass, a large range of half-light radii for the stars, from a few parsecs to a few hundred parsecs and surface brightnesses and mass-to-light ratios ranging from those typical of globular clusters to ultra-faint dwarfs. In our simulations, stars form in dense stellar clusters with high gas-to-star conversion efficiencies and rather uniform metallicities. A fraction of these clusters remain bound after the gas is removed by feedback, but others are destroyed, and their stars, which typically have velocity dispersions of 20–40 km s –1, expand until they become bound by the dark matter halo. We thus speculate that the stars in ultra-faint dwarf galaxies may show kinematic and chemical signatures consistent with their origin in a few distinct stellar clusters. On the other hand, some globular clusters may form at the center of primordial dwarf galaxies and may contain dark matter, perhaps detectable in the outer parts.« less

  6. A common origin for globular clusters and ultra-faint dwarfs in simulations of the first galaxies

    DOE PAGES

    Ricotti, Massimo; Parry, Owen H.; Gnedin, Nickolay Y.

    2016-11-09

    In this study, the first in a series on galaxy formation before reionization, we focus on understanding what determines the size and morphology of stellar objects in the first low-mass galaxies, using parsec-scale cosmological simulations performed with an adaptive mesh hydrodynamics code. Although the dense gas in which stars are formed tends to have a disk structure, stars are found in spheroids with little rotation. Halos with masses betweenmore » $${10}^{6}\\,{M}_{\\odot }$$ and $$5\\times {10}^{8}\\,{M}_{\\odot }$$ form stars stochastically, with stellar masses in the range $${10}^{4}\\,{M}_{\\odot }$$ to $$2\\times {10}^{6}\\,{M}_{\\odot }$$. We observe, nearly independent of stellar mass, a large range of half-light radii for the stars, from a few parsecs to a few hundred parsecs and surface brightnesses and mass-to-light ratios ranging from those typical of globular clusters to ultra-faint dwarfs. In our simulations, stars form in dense stellar clusters with high gas-to-star conversion efficiencies and rather uniform metallicities. A fraction of these clusters remain bound after the gas is removed by feedback, but others are destroyed, and their stars, which typically have velocity dispersions of 20–40 km s –1, expand until they become bound by the dark matter halo. We thus speculate that the stars in ultra-faint dwarf galaxies may show kinematic and chemical signatures consistent with their origin in a few distinct stellar clusters. On the other hand, some globular clusters may form at the center of primordial dwarf galaxies and may contain dark matter, perhaps detectable in the outer parts.« less

  7. METHOD OF PRODUCING DENSE CONSOLIDATED METALLIC REGULUS

    DOEpatents

    Magel, T.T.

    1959-08-11

    A methcd is presented for reducing dense metal compositions while simultaneously separating impurities from the reduced dense metal and casting the reduced parified dense metal, such as uranium, into well consolidated metal ingots. The reduction is accomplished by heating the dense metallic salt in the presence of a reducing agent, such as an alkali metal or alkaline earth metal in a bomb type reacting chamber, while applying centrifugal force on the reacting materials. Separation of the metal from the impurities is accomplished essentially by the incorporation of a constricted passageway at the vertex of a conical reacting chamber which is in direct communication with a collecting chamber. When a centrifugal force is applled to the molten metal and slag from the reduction in a direction collinear with the axis of the constricted passage, the dense molten metal is forced therethrough while the less dense slag is retained within the reaction chamber, resulting in a simultaneous separation of the reduced molten metal from the slag and a compacting of the reduced metal in a homogeneous mass.

  8. Development of an Ultra-Light Multipurpose Drill and Tooling for the Transportable Array in Alaska

    NASA Astrophysics Data System (ADS)

    Coyle, B. J.; Lundgren, M.; Busby, R. W.

    2014-12-01

    Over the next four years the EarthScope Transportable Array (TA) will install approximately 250 to 275 broadband seismic stations in Alaska and Western Canada. The station plans build on recent developments in posthole broadband seismometer design and call for sensors to be installed in boreholes 7 inches diameter, from 1 to 5 meters deep. These boreholes will be lined with PVC or steel casing, grouted in place. The proposed station locations are in a grid-like pattern with a nominal spacing of 85 km. Since most of these locations will only be accessible by helicopter, it was necessary to develop an ultra-light drilling system that could be transported to site in one sling load by a high performance light helicopter (i.e. AS350B2 or Bell 407) and still be able to drill the variety of ground conditions we expect to encounter. In the past year we have developed a working prototype, gasoline-hydraulic drill rig that can be configured to run auger, diamond core or DTH tools, and weighs <1,300 lbs, including tooling. We have successfully drilled over 30 boreholes with this drill, including 12 for TA installations in Alaska and 13 at the Piñon Flat Observatory for testing sensor performance and placement techniques. Our drilling solution comprises: - Hydraulic system using a variable flow pump with on-demand load sensing valves to reduce the engine size needed and to cut down on heat build-up; - Rotation head mounting system on the travelling block to enable quick change of drilling tools; - Low speed, high torque rotation head for the auger, and an anchoring system that enables us to apply up to 5,000 lbs downforce for augering in permafrost; - Custom DTH that can run on low air pressure and air flow, yet is still robust enough to drill a 7 inch hole 2.5 meters through solid rock; - One-trip casing advance drilling with the DTH, steel casing is loaded at the start of drilling and follows the drill bit down; - Grout-through bottom caps for sealing the borehole casing

  9. Computational study of hot electron generation and energy transport in intense laser produced hot dense matter

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini

    Present ultra high power lasers are capable of producing high energy density (HED) plasmas, in controlled way, with a density greater than solid density and at a high temperature of keV (1 keV ˜ 11,000,000° K). Matter in such extreme states is particularly interesting for (HED) physics such as laboratory studies of planetary and stellar astrophysics, laser fusion research, pulsed neutron source etc. To date however, the physics in HED plasma, especially, the energy transport, which is crucial to realize applications, has not been understood well. Intense laser produced plasmas are complex systems involving two widely distinct temperature distributions and are difficult to model by a single approach. Both kinetic and collisional process are equally important to understand an entire process of laser-solid interaction. By implementing atomic physics models, such as collision, ionization, and radiation damping, self consistently, in state-of-the-art particle-in-cell code (PICLS) has enabled to explore the physics involved in the HED plasmas. Laser absorption, hot electron transport, and isochoric heating physics in laser produced hot dense plasmas are studied with a help of PICLS simulations. In particular, a novel mode of electron acceleration, namely DC-ponderomotive acceleration, is identified in the super intense laser regime which plays an important role in the coupling of laser energy to a dense plasma. Geometric effects on hot electron transport and target heating processes are examined in the reduced mass target experiments. Further, pertinent to fast ignition, laser accelerated fast electron divergence and transport in the experiments using warm dense matter (low temperature plasma) is characterized and explained.

  10. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film

    NASA Astrophysics Data System (ADS)

    Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin

    2018-03-01

    A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.

  11. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film.

    PubMed

    Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin

    2018-03-14

    A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.

  12. Status of air-shower measurements with sparse radio arrays

    NASA Astrophysics Data System (ADS)

    Schröder, Frank G.

    2017-03-01

    This proceeding gives a summary of the current status and open questions of the radio technique for cosmic-ray air showers, assuming that the reader is already familiar with the principles. It includes recent results of selected experiments not present at this conference, e.g., LOPES and TREND. Current radio arrays like AERA or Tunka-Rex have demonstrated that areas of several km2 can be instrumented for reasonable costs with antenna spacings of the order of 200m. For the energy of the primary particle such sparse antenna arrays can already compete in absolute accuracy with other precise techniques, like the detection of air-fluorescence or air-Cherenkov light. With further improvements in the antenna calibration, the radio detection might become even more accurate. For the atmospheric depth of the shower maximum, Xmax, currently only the dense array LOFAR features a precision similar to the fluorescence technique, but analysis methods for the radio measurement of Xmax are still under development. Moreover, the combination of radio and muon measurements is expected to increase the accuracy of the mass composition, and this around-the-clock recording is not limited to clear nights as are the light-detection methods. Consequently, radio antennas will be a valuable add-on for any air shower array targeting the energy range above 100 PeV.

  13. Age-related changes in ultra-triathlon performances

    PubMed Central

    2012-01-01

    Background The age-related decline in performance has been investigated in swimmers, runners and triathletes. No study has investigated the age-related performance decline in ultra-triathletes. The purpose of this study was to analyse the age-related declines in swimming, cycling, running and overall race time for both Triple Iron ultra-triathlon (11.4-km swimming, 540-km cycling and 126.6-km running) and Deca Iron ultra-triathlon (38-km swimming, 1,800-km cycling and 420-km running). Methods The age and performances of 423 male Triple Iron ultra-triathletes and 119 male Deca Iron ultra-triathletes were analysed from 1992 to 2010 using regression analyses and ANOVA. Results The mean age of the finishers was significantly higher for Deca Iron ultra-triathletes (41.3 ± 3.1 years) compared to a Triple Iron ultra-triathletes (38.5 ± 3.3 years) (P < 0.05). For both ultra-distances, the fastest overall race times were achieved between the ages of 25 and 44 years. Deca Iron ultra-triathletes achieved the same level of performance in swimming and cycling between 25 and 54 years of age. Conclusions The magnitudes of age-related declines in performance in the three disciplines of ultra-triathlon differ slightly between Triple and Deca Iron ultra-triathlon. Although the ages of Triple Iron ultra-triathletes were on average younger compared to Deca Iron ultra-triathletes, the fastest race times were achieved between 25 and 44 years for both distances. Further studies should investigate the motivation and training of ultra-triathletes to gain better insights in ultra-triathlon performance. PMID:23849327

  14. Dynamic conductivity and plasmon profile of aluminum in the ultra-fast-matter regime

    NASA Astrophysics Data System (ADS)

    Dharma-wardana, M. W. C.

    2016-06-01

    We use an explicitly isochoric two-temperature theory to analyze recent x-ray laser scattering data for aluminum in the ultra-fast-matter (UFM) regime up to 6 eV. The observed surprisingly low conductivities are explained by including strong electron-ion scattering effects using the phase shifts calculated via the neutral-pseudo-atom model. The difference between the static conductivity for UFM-Al and equilibrium aluminum in the warm-dense matter state is clearly brought out by comparisons with available density-fucntional+molecular-dynamics simulations. Thus the applicability of the Mermin model to UFM is questioned. The static and dynamic conductivity, collision frequency, and the plasmon line shape, evaluated within the simplest Born approximation for UFM aluminum, are in good agreement with experiment.

  15. An eight-channel T/R head coil for parallel transmit MRI at 3T using ultra-low output impedance amplifiers

    PubMed Central

    Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston

    2014-01-01

    Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system. PMID:25072190

  16. Decarboxylation Study of Acidic Cannabinoids: A Novel Approach Using Ultra-High-Performance Supercritical Fluid Chromatography/Photodiode Array-Mass Spectrometry

    PubMed Central

    Wang, Mei; Wang, Yan-Hong; Avula, Bharathi; Radwan, Mohamed M.; Wanas, Amira S.; van Antwerp, John; Parcher, Jon F.; ElSohly, Mahmoud A.; Khan, Ikhlas A.

    2016-01-01

    Abstract Introduction: Decarboxylation is an important step for efficient production of the major active components in cannabis, for example, Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabigerol (CBG). These cannabinoids do not occur in significant concentrations in cannabis but can be formed by decarboxylation of their corresponding acids, the predominant cannabinoids in the plant. Study of the kinetics of decarboxylation is of importance for phytocannabinoid isolation and dosage formulation for medical use. Efficient analytical methods are essential for simultaneous detection of both neutral and acidic cannabinoids. Methods: C. sativa extracts were used for the studies. Decarboxylation conditions were examined at 80°C, 95°C, 110°C, 130°C, and 145°C for different times up to 60 min in a vacuum oven. An ultra-high performance supercritical fluid chromatography/photodiode array-mass spectrometry (UHPSFC/PDA-MS) method was used for the analysis of acidic and neutral cannabinoids before and after decarboxylation. Results: Decarboxylation at different temperatures displayed an exponential relationship between concentration and time indicating a first-order or pseudo-first-order reaction. The rate constants for Δ9-tetrahydrocannabinolic acid-A (THCA-A) were twice those of the cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA). Decarboxylation of THCA-A was forthright with no side reactions or by-products. Decarboxylation of CBDA and CBGA was not as straightforward due to the unexplained loss of reactants or products. Conclusion: The reported UHPSFC/PDA-MS method provided consistent and sensitive analysis of phytocannabinoids and their decarboxylation products and degradants. The rate of change of acidic cannabinoid concentrations over time allowed for determination of rate constants. Variations of rate constants with temperature yielded values for reaction energy. PMID:28861498

  17. Using a coherent hydrophone array for observing sperm whale range, classification, and shallow-water dive profiles.

    PubMed

    Tran, Duong D; Huang, Wei; Bohn, Alexander C; Wang, Delin; Gong, Zheng; Makris, Nicholas C; Ratilal, Purnima

    2014-06-01

    Sperm whales in the New England continental shelf and slope were passively localized, in both range and bearing, and classified using a single low-frequency (<2500 Hz), densely sampled, towed horizontal coherent hydrophone array system. Whale bearings were estimated using time-domain beamforming that provided high coherent array gain in sperm whale click signal-to-noise ratio. Whale ranges from the receiver array center were estimated using the moving array triangulation technique from a sequence of whale bearing measurements. Multiple concurrently vocalizing sperm whales, in the far-field of the horizontal receiver array, were distinguished and classified based on their horizontal spatial locations and the inter-pulse intervals of their vocalized click signals. The dive profile was estimated for a sperm whale in the shallow waters of the Gulf of Maine with 160 m water-column depth located close to the array's near-field where depth estimation was feasible by employing time difference of arrival of the direct and multiply reflected click signals received on the horizontal array. By accounting for transmission loss modeled using an ocean waveguide-acoustic propagation model, the sperm whale detection range was found to exceed 60 km in low to moderate sea state conditions after coherent array processing.

  18. Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices.

    PubMed

    Reznicek, Lukas; Klein, Thomas; Wieser, Wolfgang; Kernt, Marcus; Wolf, Armin; Haritoglou, Christos; Kampik, Anselm; Huber, Robert; Neubauer, Aljoscha S

    2014-06-01

    To investigate the image quality of wide-angle cross-sectional and reconstructed fundus images based on ultra-megahertz swept-source Fourier domain mode locking (FDML) OCT compared to current generation diagnostic devices. A 1,050 nm swept-source FDML OCT system was constructed running at 1.68 MHz A-scan rate covering approximately 70° field of view. Twelve normal eyes were imaged with the device applying an isotropically dense sampling protocol (1,900 × 1,900 A-scans) with a fill factor of 100 %. Obtained OCT scan image quality was compared with two commercial OCT systems (Heidelberg Spectralis and Stratus OCT) of the same 12 eyes. Reconstructed en-face fundus images from the same FDML-OCT data set were compared to color fundus, infrared and ultra-wide-field scanning laser images (SLO). Comparison of cross-sectional scans showed a high overall image quality of the 15× averaged FDML images at 1.68 MHz [overall quality grading score: 8.42 ± 0.52, range 0 (bad)-10 (excellent)] comparable to current spectral-domain OCTs (overall quality grading score: 8.83 ± 0.39, p = 0.731). On FDML OCT, a dense 3D data set was obtained covering also the central and mid-peripheral retina. The reconstructed FDML OCT en-face fundus images had high image quality comparable to scanning laser ophthalmoscope (SLO) as judged from retinal structures such as vessels and optic disc. Overall grading score was 8.36 ± 0.51 for FDML OCT vs 8.27 ± 0.65 for SLO (p = 0.717). Ultra-wide-field megahertz 3D FDML OCT at 1.68 MHz is feasible, and provides cross-sectional image quality comparable to current spectral-domain OCT devices. In addition, reconstructed en-face visualization of fundus images result in a wide-field view with high image quality as compared to currently available fundus imaging devices. The improvement of >30× in imaging speed over commercial spectral-domain OCT technology enables high-density scan protocols leading to a data set for high

  19. Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array.

    PubMed

    Xu, He-Xiu; Wang, Guang-Ming; Qi, Mei-Qing; Zeng, Hui-Yong

    2012-09-24

    We report initially the design, fabrication and measurement of using waveguided electric metamaterials (MTM) in the design of closely-spaced microtrip antenna arrays with mutual coupling reduction. The complementary spiral ring resonators (CSRs) which exhibit single negative resonant permittivity around 3.5GHz are used as the basic electric MTM element. For verification, two CSRs with two and three concentric rings are considered, respectively. By properly arranging these well engineered waveguided MTMs between two H-plane coupled patch antennas, both numerical and measured results indicate that more than 8.4 dB mutual coupling reduction is obtained. The mechanism has been studied from a physical insight. The electric MTM element is electrically small, enabling the resultant antenna array to exhibit a small separation (λo/8 at the operating wavelength) and thus a high directivity. The proposed strategy opens an avenue to new types of antenna with super performances and can be generalized for other electric resonators.

  20. Observations of potential ultra high energy gamma-ray sources above 10(15) eV

    NASA Technical Reports Server (NTRS)

    Lambert, A.; Lloyd-Evans, J.; Perrett, J. C.; Watson, A. A.; West, A. A.

    1985-01-01

    The Haverah Park 50 m water-Cerenkov array has been used to examine a number of periodic sources for ultra high energy gamma-ray emission above 10 to the 15th power eV. The data, recorded between 1 Jan. 1979 and 31 Dec. 1984, feature a modest angular resolution of approx 3 deg with millisecond arrival time resolution post 1982. The sources investigated include the Crab pulsar, Her X-1, Au0115 + 63 and Geminga. All objects have been detected by workers in the TeV region, with varying degrees of confidence.

  1. What predicts performance in ultra-triathlon races? – a comparison between Ironman distance triathlon and ultra-triathlon

    PubMed Central

    Knechtle, Beat; Zingg, Matthias Alexander; Rosemann, Thomas; Stiefel, Michael; Rüst, Christoph Alexander

    2015-01-01

    Objective This narrative review summarizes recent intentions to find potential predictor variables for ultra-triathlon race performance (ie, triathlon races longer than the Ironman distance covering 3.8 km swimming, 180 km cycling, and 42.195 km running). Results from studies on ultra-triathletes were compared to results on studies on Ironman triathletes. Methods A literature search was performed in PubMed using the terms “ultra”, “triathlon”, and “performance” for the aspects of “ultra-triathlon”, and “Ironman”, “triathlon”, and “performance” for the aspects of “Ironman triathlon”. All resulting papers were searched for related citations. Results for ultra-triathlons were compared to results for Ironman-distance triathlons to find potential differences. Results Athletes competing in Ironman and ultra-triathlon differed in anthropometric and training characteristics, where both Ironmen and ultra-triathletes profited from low body fat, but ultra-triathletes relied more on training volume, whereas speed during training was related to Ironman race time. The most important predictive variables for a fast race time in an ultra-triathlon from Double Iron (ie, 7.6 km swimming, 360 km cycling, and 84.4 km running) and longer were male sex, low body fat, age of 35–40 years, extensive previous experience, a fast time in cycling and running but not in swimming, and origins in Central Europe. Conclusion Any athlete intending to compete in an ultra-triathlon should be aware that low body fat and high training volumes are highly predictive for overall race time. Little is known about the physiological characteristics of these athletes and about female ultra-triathletes. Future studies need to investigate anthropometric and training characteristics of female ultra-triathletes and what motivates women to compete in these races. Future studies need to correlate physiological characteristics such as maximum oxygen uptake (VO2max) with ultra

  2. Ultra-Lightweight Hybrid Thin-Film Solar Cells: A Survey of Enabling Technologies for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; McNatt, Jeremiah S.; Bailey, Sheila G.; Dickman, John E.; Raffaelle, Ryne P.; Landi, Brian J.; Anctil, Annick; DiLeo, Roberta; Jin, Michael H.-C.; Lee, Chung-Young; hide

    2007-01-01

    The development of hybrid inorganic/organic thin-film solar cells on flexible, lightweight, space-qualified, durable substrates provides an attractive solution for fabricating solar arrays with high mass specific power (W/kg). Next generation thin-film technologies may well involve a revolutionary change in materials to organic-based devices. The high-volume, low-cost fabrication potential of organic cells will allow for square miles of solar cell production at one-tenth the cost of conventional inorganic materials. Plastic solar cells take a minimum of storage space and can be inflated or unrolled for deployment. We will explore a cross-section of in-house and sponsored research efforts that aim to provide new hybrid technologies that include both inorganic and polymer materials as active and substrate materials. Research at University of Texas at Arlington focuses on the fabrication and use of poly(isothianaphthene-3,6-diyl) in solar cells. We describe efforts at Norfolk State University to design, synthesize and characterize block copolymers. A collaborative team between EIC Laboratories, Inc. and the University of Florida is investigating multijunction polymer solar cells to more effectively utilize solar radiation. The National Aeronautics and Space Administration (NASA)/Ohio Aerospace Institute (OAI) group has undertaken a thermal analysis of potential metallized substrates as well as production of nanoparticles of CuInS2 and CuInSe2 in good yield at moderate temperatures via decomposition of single-source precursors. Finally, preliminary work at the Rochester Institute of Technology (R.I.T.) to assess the impact on performance of solar cells of temperature and carbon nanotubes is reported. Technologies that must be developed to enable ultra-lightweight solar arrays include: monolithic interconnects, lightweight array structures, and new ultra-light support and deployment mechanisms. For NASA applications, any solar cell or array technology must not only meet

  3. Physiology and Pathophysiology in Ultra-Marathon Running

    PubMed Central

    Knechtle, Beat; Nikolaidis, Pantelis T.

    2018-01-01

    In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time) is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat) and training (e.g., high volume and running speed during training) characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10–20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35–45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold) or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In longer ultra

  4. Physiology and Pathophysiology in Ultra-Marathon Running.

    PubMed

    Knechtle, Beat; Nikolaidis, Pantelis T

    2018-01-01

    In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time) is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat) and training (e.g., high volume and running speed during training) characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10-20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35-45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold) or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In longer ultra

  5. Functional metasurfaces based on metallic and dielectric subwavelength slits and stripes array

    NASA Astrophysics Data System (ADS)

    Guo, Yinghui; Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Gao, Ping; Wang, Yanqin; Luo, Xiangang

    2018-04-01

    Starting with the early works of extraordinary optical transmission and extraordinary Young’s interference, researchers have been fascinated by the unusual optical properties displayed by metallic holes/slits and subsequently found similar abnormities in dielectric counterparts. Benefiting from the shrinking wavelength of surface plasmon polaritons excited in metallic slits and high refractive index of dielectric stripes, one can realize local phase modulation and approach desired dispersion by engineering the geometries of a slits and stripes array. In this review, we review recent developments in functional metasurfaces composed of various metallic and dielectric subwavelength slits and stripes arrays, with special emphasis on achromatic, ultra-broadband, quasi-continuous, multifunctional and reconfigurable metasurfaces. Particular attention is paid to provide insight into the design strategies for these devices. Finally, we give an outlook of the development in this fascinating area.

  6. Analysis of ultra-triathlon performances

    PubMed Central

    Lepers, Romuald; Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas

    2011-01-01

    Despite increased interest in ultra-endurance events, little research has examined ultra-triathlon performance. The aims of this study were: (i) to compare swimming, cycling, running, and overall performances in three ultra-distance triathlons, double Ironman distance triathlon (2IMT) (7.6 km swimming, 360 km cycling, and 84.4 km running), triple Ironman distance triathlon (3IMT) (11.4 km, 540 km, and 126.6 km), and deca Ironman distance triathlon (10IMT) (38 km, 1800 km, and 420 km) and (ii) to examine the relationships between the 2IMT, 3IMT, and 10IMT performances to create predicted equations of the 10IMT performances. Race results from 1985 through 2009 were examined to identify triathletes who performed the three considered ultra-distances. In total, 73 triathletes (68 men and 5 women) were identified. The contribution of swimming to overall ultra-triathlon performance was lower than for cycling and running. Running performance was more important to overall performance for 2IMT and 3IMT compared with 10IMT The 2IMT and 3IMT performances were significantly correlated with 10IMT performances for swimming and cycling, but not for running. 10IMT total time performance might be predicted by the following equation: 10IMT race time (minutes) = 5885 + 3.69 × 3IMT race time (minutes). This analysis of human performance during ultra-distance triathlons represents a unique data set in the field of ultra-endurance events. Additional studies are required to determine the physiological and psychological factors associated with ultra-triathlon performance. PMID:24198579

  7. Argus: A W-band 16-pixel focal plane array for the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Devaraj, Kiruthika; Church, Sarah; Cleary, Kieran; Frayer, David; Gawande, Rohit; Goldsmith, Paul; Gundersen, Joshua; Harris, Andrew; Kangaslahti, Pekka; Readhead, Tony; Reeves, Rodrigo; Samoska, Lorene; Sieth, Matt; Voll, Patricia

    2015-05-01

    We are building Argus, a 16-pixel square-packed focal plane array that will cover the 75-115.3 GHz frequency range on the Robert C. Byrd Green Bank Telescope (GBT). The primary research area for Argus is the study of star formation within our Galaxy and nearby galaxies. Argus will map key molecules that trace star formation, including carbon monoxide (CO) and hydrogen cyanide (HCN). An additional key science area is astrochemistry, which will be addressed by observing complex molecules in the interstellar medium, and the study of formation of solar systems, which will be addressed by identifying dense pre-stellar cores and by observing comets in our solar system. Argus has a highly scalable architecture and will be a technology path finder for larger arrays. The array is modular in construction, which will allow easy replacement of malfunctioning and poorly performing components.

  8. On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy.

    PubMed

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-09-07

    We demonstrate that silver nanorod (AgNR) array substrates can be used for on-chip separation and detection of chemical mixtures by combining ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The UTLC-SERS plate consists of an AgNR array fabricated by oblique angle deposition. The capability of the AgNR substrates to separate the different compounds in a mixture was explored using a mixture of four dyes and a mixture of melamine and Rhodamine 6G at varied concentrations with different mobile phase solvents. After UTLC separation, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the potential for separating the test dyes with plate heights as low as 9.6 μm. The limits of detection are between 10(-5)-10(-6) M. Furthermore, we show that the coupling of UTLC with SERS improves the SERS detection specificity, as small amounts of target analytes can be separated from the interfering background components.

  9. Micro-dressing of a carbon nanotube array with MoS2 gauze

    NASA Astrophysics Data System (ADS)

    Lim, Sharon Xiaodai; Woo, Kah Whye; Ng, Junju; Lu, Junpeng; Kwang, Siu Yi; Zhang, Zheng; Tok, Eng Soon; Sow, Chorng-Haur

    2015-10-01

    Few-layer MoS2 film has been successfully assembled over an array of CNTs. Using different focused laser beams with different wavelengths, site selective patterning of either the MoS2 film or the supporting CNT array is achieved. This paves the way for applications and investigations into the fundamental properties of the hybrid MoS2/CNT material with a controlled architecture. Through Raman mapping, straining and electron doping of the MoS2 film as a result of interaction with the supporting CNT array are detected. The role of the MoS2 film was further emphasized with a lower work function being detected from Ultra-violet Photoelectron Spectrsocopy (UPS) measurements of the hybrid material, compared to the CNT array. The effect of the changes in the work function was illustrated through the optoelectronic behavior of the hybrid material. At 0 V, 3.49 nA of current is measured upon illuminating the sample with a broad laser beam emitting laser light with a wavelength of 532 nm. With a strong response to external irradiation of different wavelengths, and changes to the power of the excitation source, the hybrid material has shown potential for applications in optoelectronic devices.

  10. Dynamical theory of dense groups of galaxies

    NASA Technical Reports Server (NTRS)

    Mamon, Gary A.

    1990-01-01

    It is well known that galaxies associate in groups and clusters. Perhaps 40% of all galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups appear to be so loose that the galaxy interactions within them ought to be insignificant, the apparently densest groups, known as compact groups appear so dense when seen in projection onto the plane of the sky that their members often overlap. These groups thus appear as dense as the cores of rich clusters. The most popular catalog of compact groups, compiled by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison with the cores of rich clusters, Hickson's compact groups (HCGs) appear to be the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide in principle a clean laboratory for studying the competition of very strong gravitational interactions. The $64,000 question here is then: Are compact groups really bound systems as dense as they appear? If dense groups indeed exist, then one expects that each of the dynamical processes leading to the interaction of their member galaxies should be greatly enhanced. This leads us to the questions: How stable are dense groups? How do they form? And the related question, fascinating to any theorist: What dynamical processes predominate in dense groups of galaxies? If HCGs are not bound dense systems, but instead 1D change alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D transient cores (Rose 1979) within larger looser systems of galaxies, then the relevant question is: How frequent are chance configurations within loose groups? Here, the author answers these last four questions after comparing in some detail the methods used and the results obtained in the different studies of dense groups.

  11. Ultra-high field MRI for primate imaging using the travelling-wave concept.

    PubMed

    Mallow, Johannes; Herrmann, Tim; Kim, Kyoung-Nam; Stadler, Joerg; Mylius, Judith; Brosch, Michael; Bernarding, Johannes

    2013-08-01

    Ultra-high field (UHF) neuroimaging is usually conducted with volume transmit (Tx) and phased array receive (Rx) coils, both tightly enclosing the object. The travelling-wave (TW) concept allows a remote excitation offering more flexible experimental setups. To investigate the feasibility of primate MRI in horizontal UHF MRI, we first compared the distribution of the electromagnetic fields in an oil phantom and then verified the concept with an in vivo experiment. In the phantom experiments an in-house circularly polarized hybrid birdcage coil and a self-developed patch antenna were used for Tx and an eight-element phased array antenna for Rx. B1+ fields were calculated and measured for both approaches. For in vivo experiments the Rx part was replaced with an optimized three-element phased array head coil. The SAR was calculated using field simulation. In the phantom the field distribution was homogenous in a central volume of interest of about 10 cm diameter. The TW concept showed a slightly better homogeneity. Examination of a female crab-eating macaque led to homogeneous high-contrast images with a good delineation of anatomical details. The TW concept opens up a new approach for MRI of medium-sized animals in horizontal UHF scanners.

  12. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Fuerstenau, Stephen D. (Inventor); Yee, Karl Y. (Inventor); Chutjian, Ara (Inventor); Orient, Otto J. (Inventor); Rice, John T. (Inventor)

    2002-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  13. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Rice, John T. (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  14. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y. (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Rice, John T. (Inventor); Chutjian, Ara (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  15. Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Yan; Guo, Zhongyi; Li, Rongzhen; Zhang, Jingran; Zhang, Anjun; Qu, Shiliang

    2015-04-01

    The ultra-thin optical vortex phase plate (VPP) has been designed and investigated based on the metasurface of the metal rectangular split-ring resonators (MRSRRs) array. The circularly polarized incident light can convert into corresponding cross-polarization transmission light, and the phase and the amplitude of cross-polarization transmission light can be simultaneously governed by modulating two arms of the MRSRR. The MRSRR has been arranged in a special order for forming an ultra-thin optical VPP that can covert a plane wave into a vortex beam with a variety of the topological charges, and the transformation between spin angular momentum (SAM) and orbital angular momentum (OAM) has been discussed in detail. The multi-spectral characteristics of the VPP have also been investigated, and the operating bandwidth of the designed VPP is 190 nm (in the range of 710-900 nm), which enable a potential implication for integrated optics and vortex optics.

  16. Average-atom model for two-temperature states and ionic transport properties of aluminum in the warm dense matter regime

    NASA Astrophysics Data System (ADS)

    Hou, Yong; Fu, Yongsheng; Bredow, Richard; Kang, Dongdong; Redmer, Ronald; Yuan, Jianmin

    2017-03-01

    The average-atom model combined with the hyper-netted chain approximation is an efficient tool for electronic and ionic structure calculations for warm dense matter. Here we generalize this method in order to describe non-equilibrium states with different electron and ion temperature as produced in laser-matter interactions on ultra-short time scales. In particular, the electron-ion and ion-ion correlation effects are considered when calculating the electron structure. We derive an effective ion-ion pair-potential using the electron densities in the framework of temperature-depended density functional theory. Using this ion-ion potential we perform molecular dynamics simulations in order to determine the ionic transport properties such as the ionic diffusion coefficient and the shear viscosity through the ionic velocity autocorrelation functions.

  17. SAR Reduction in 7T C-Spine Imaging Using a “Dark Modes” Transmit Array Strategy

    PubMed Central

    Eryaman, Yigitcan; Guerin, Bastien; Keil, Boris; Mareyam, Azma; Herraiz, Joaquin L.; Kosior, Robert K.; Martin, Adrian; Torrado-Carvajal, Angel; Malpica, Norberto; Hernandez-Tamames, Juan A.; Schiavi, Emanuele; Adalsteinsson, Elfar; Wald, Lawrence L.

    2016-01-01

    Purpose Local specific absorption rate (SAR) limits many applications of parallel transmit (pTx) in ultra high-field imaging. In this Note, we introduce the use of an array element, which is intentionally inefficient at generating spin excitation (a “dark mode”) to attempt a partial cancellation of the electric field from those elements that do generate excitation. We show that adding dipole elements oriented orthogonal to their conventional orientation to a linear array of conventional loop elements can lower the local SAR hotspot in a C-spine array at 7 T. Methods We model electromagnetic fields in a head/torso model to calculate SAR and excitation B1+ patterns generated by conventional loop arrays and loop arrays with added electric dipole elements. We utilize the dark modes that are generated by the intentional and inefficient orientation of dipole elements in order to reduce peak 10g local SAR while maintaining excitation fidelity. Results For B1+ shimming in the spine, the addition of dipole elements did not significantly alter the B1+ spatial pattern but reduced local SAR by 36%. Conclusion The dipole elements provide a sufficiently complimentary B1+ and electric field pattern to the loop array that can be exploited by the radiofrequency shimming algorithm to reduce local SAR. PMID:24753012

  18. The Dense Molecular Gas and Nuclear Activity in the ULIRG IRAS 13120-5453

    NASA Astrophysics Data System (ADS)

    Privon, G. C.; Aalto, S.; Falstad, N.; Muller, S.; González-Alfonso, E.; Sliwa, K.; Treister, E.; Costagliola, F.; Armus, L.; Evans, A. S.; Garcia-Burillo, S.; Izumi, T.; Sakamoto, K.; van der Werf, P.; Chu, J. K.

    2017-02-01

    We present new Atacama Large Millimeter/submillimeter Array Band 7 (˜340 GHz) observations of the dense gas tracers HCN, HCO+, and CS in the local, single-nucleus, ultraluminous infrared galaxy IRAS 13120-5453. We find centrally enhanced HCN (4-3) emission, relative to HCO+ (4-3), but do not find evidence for radiative pumping of HCN. Considering the size of the starburst (0.5 kpc) and the estimated supernovae rate of ˜1.2 yr-1, the high HCN/HCO+ ratio can be explained by an enhanced HCN abundance as a result of mechanical heating by the supernovae, though the active galactic nucleus and winds may also contribute additional mechanical heating. The starburst size implies a high ΣIR of 4.7 × 1012 L ⊙ kpc-2, slightly below predictions of radiation-pressure limited starbursts. The HCN line profile has low-level wings, which we tentatively interpret as evidence for outflowing dense molecular gas. However, the dense molecular outflow seen in the HCN line wings is unlikely to escape the Galaxy and is destined to return to the nucleus and fuel future star formation. We also present modeling of Herschel observations of the H2O lines and find a nuclear dust temperature of ˜40 K. IRAS 13120-5453 has a lower dust temperature and ΣIR than is inferred for the systems termed “compact obscured nuclei (CONs)” (such as Arp 220 and Mrk 231). If IRAS 13120-5453 has undergone a CON phase, we are likely witnessing it at a time when the feedback has already inflated the nuclear ISM and diluted star formation in the starburst/active galactic nucleus core.

  19. InP-based compact transversal filter for monolithically integrated light source array.

    PubMed

    Ueda, Yuta; Fujisawa, Takeshi; Takahata, Kiyoto; Kohtoku, Masaki; Ishii, Hiroyuki

    2014-04-07

    We developed an InP-based 4x1 transversal filter (TF) with multi-mode interference couplers (MMIs) as a compact wavelength multiplexer (MUX) 1700 μm x 400 μm in size. Furthermore, we converted the MMI-based TF to a reflection type to obtain an ultra-compact MUX of only 900 μm x 50 μm. These MUXs are made with a simple fabrication process and show a satisfactory wavelength filtering operation as MUXs of monolithically integrated light source arrays, for example, for 100G bit Ethernet.

  20. Development of a RadFET Linear Array for Intracavitary in vivo Dosimetry During External Beam Radiotherapy and Brachytherapy

    NASA Astrophysics Data System (ADS)

    Price, R. A.; Benson, C.; Joyce, M. J.; Rodgers, K.

    2004-08-01

    We present the details of a new linear array dosimeter consisting of a chain of semiconductors mounted on an ultra-thin (50 /spl mu/m thick) flexible substrate and housed in an intracavitary catheter. The semiconductors, manufactured by NMRC Cork, have not been packaging and incorporate a passivation layer that allows them to be mounted on the substrate using flip-chip-bonding. This paper reports, for the first time, the construction of a multiple (ten) detector array suited to in vivo dosimetry in the rectum, esophagus and vagina during external beam radiotherapy, as well as being adaptable to in vivo dosimetry during brachytherapy and diagnostic radiology.

  1. Multifrequency Ultra-High Resolution Miniature Scanning Microscope Using Microchannel And Solid-State Sensor Technologies And Method For Scanning Samples

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2006-01-01

    A miniature, ultra-high resolution, and color scanning microscope using microchannel and solid-state technology that does not require focus adjustment. One embodiment includes a source of collimated radiant energy for illuminating a sample, a plurality of narrow angle filters comprising a microchannel structure to permit the passage of only unscattered radiant energy through the microchannels with some portion of the radiant energy entering the microchannels from the sample, a solid-state sensor array attached to the microchannel structure, the microchannels being aligned with an element of the solid-state sensor array, that portion of the radiant energy entering the microchannels parallel to the microchannel walls travels to the sensor element generating an electrical signal from which an image is reconstructed by an external device, and a moving element for movement of the microchannel structure relative to the sample. Discloses a method for scanning samples whereby the sensor array elements trace parallel paths that are arbitrarily close to the parallel paths traced by other elements of the array.

  2. Telescope Array UHECR composition measurement via stereoscopic fluorescence observation

    NASA Astrophysics Data System (ADS)

    Stroman, Thomas; Bergman, Douglas; Telescope Array Collaboration

    2016-03-01

    When entering Earth's atmosphere at ultra-high energies, cosmic rays (UHECRs) produce extensive air showers whose longitudinal development is influenced by the incident primary particle's mass. Each longitudinal shower profile reaches its maximum particle count at an atmospheric slant depth Xmax, and the distributions of observed Xmax values can be compared to those predicted by detailed simulations of the air-shower physics and the detector; accurately simulated compositions that most closely resemble that found in nature will produce the best agreement between predicted and observed Xmax distributions. This is the basis of composition measurement at the Telescope Array experiment, the largest and most sensitive UHECR detector in the northern hemisphere. At the perimeter of a large surface-detector array are three fluorescence telescope stations, whose overlapping apertures enable high-precision reconstruction of Xmax from stereoscopic observation of air-shower longitudinal profiles. We present the distribution of Xmax observed during eight years of operation, and from comparisons with several simulated combinations of composition and high-energy hadronic physics, we show that a low primary mass is favored at E >10 18 . 2 eV.

  3. Genome-Wide Mapping of Copy Number Variation in Humans: Comparative Analysis of High Resolution Array Platforms

    PubMed Central

    Haraksingh, Rajini R.; Abyzov, Alexej; Gerstein, Mark; Urban, Alexander E.; Snyder, Michael

    2011-01-01

    Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications. PMID:22140474

  4. INPIStron switched pulsed power for dense plasma pinches

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    The inverse plasma switch INPIStron was employed for 10kJ/40kV capacitor bank discharge system to produce focused dense plasmas in hypocycloidal-pinch (HCP) devices. A single unit and an array of multiple HCP's were coupled as the load of the pulsed power circuit. The geometry and switching plasma dynamics were found advantageous and convenient for commutating the large current pulse from the low impedance transmission line to the low impedance plasma load. The pulse power system with a single unit HCP, the system A, was used for production of high temperature plasma focus and its diagnostics. The radially running down plasma dynamics, revealed in image converter photographs, could be simulated by a simple snow-plow model with a correction for plasma resistivity. The system B with an array of 8-HCP units which forms a long coaxial discharge chamber was used for pumping a Ti-sapphire laser. The intense UV emission from the plasma was frequency shifted with dye-solution jacket to match the absorption band of the Ti crystal laser near 500 nm. An untuned laser pulse energy of 0.6 J/pulse was obtained for 6.4 kJ/40 kV discharge, or near 103 times of the explosion limit of conventional flash lamps. For both systems the advantages of the INPIStron were well demonstrated: a single unit is sufficient for a large current (greater than 50 kA) without increasing the system impedance, highly reliable and long life operation and implied scalability for the high power ranges above I(sub peak) = 1 MA and V(sub hold) = 100 kV.

  5. Ultra-low output impedance RF power amplifier for parallel excitation.

    PubMed

    Chu, Xu; Yang, Xing; Liu, Yunfeng; Sabate, Juan; Zhu, Yudong

    2009-04-01

    Inductive coupling between coil elements of a transmit array is one of the key challenges faced by parallel RF transmission. An ultra-low output impedance RF power amplifier (PA) concept was introduced to address this challenge. In an example implementation, an output-matching network was designed to transform the drain-source impedance of the metallic oxide semiconductor field effect transistor (MOSFET) into a very low value for suppressing interelement coupling effect, and meanwhile, to match the input impedance of the coil to the optimum load of the MOSFET for maximizing the available output power. Two prototype amplifiers with 500-W output rating were developed accordingly, and were further evaluated with a transmit array in phantom experiments. Compared to the conventional 50-Omega sources, the new approach exhibited considerable effectiveness suppressing the effects of interelement coupling. The experiments further indicated that the isolation performance was comparable to that achieved by optimized overlap decoupling. The new approach, benefiting from a distinctive current-source characteristic, also exhibited a superior robustness against load variation. Feasibility of the new approach in high-field MR was demonstrated on a 3T clinical scanner.

  6. Ultra-high resolution crystal structure of recombinant caprine β-lactoglobulin.

    PubMed

    Crowther, Jennifer M; Lassé, Moritz; Suzuki, Hironori; Kessans, Sarah A; Loo, Trevor S; Norris, Gillian E; Hodgkinson, Alison J; Jameson, Geoffrey B; Dobson, Renwick C J

    2014-11-03

    β-Lactoglobulin (βlg) is the most abundant whey protein in the milks of ruminant animals. While bovine βlg has been subjected to a vast array of studies, little is known about the caprine ortholog. We present an ultra-high resolution crystal structure of caprine βlg complemented by analytical ultracentrifugation and small-angle X-ray scattering data. In both solution and crystalline states caprine βlg is dimeric (K(D)<5 μM); however, our data suggest a flexible quaternary arrangement of subunits within the dimer. These structural findings will provide insight into relationships among structural, processing, nutritional and immunological characteristics that distinguish cow's and goat's milk. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Plasmonic Biosensor Based on Vertical Arrays of Gold Nanoantennas.

    PubMed

    Klinghammer, Stephanie; Uhlig, Tino; Patrovsky, Fabian; Böhm, Matthias; Schütt, Julian; Pütz, Nils; Baraban, Larysa; Eng, Lukas M; Cuniberti, Gianaurelio

    2018-06-25

    Implementing large arrays of gold nanowires as functional elements of a plasmonic biosensor is an important task for future medical diagnostic applications. Here we present a microfluidic-channel-integrated sensor for the label-free detection of biomolecules, relying on localized surface plasmon resonances. Large arrays (∼1 cm 2 ) of vertically aligned and densely packed gold nanorods to receive, locally confine, and amplify the external optical signal are used to allow for reliable biosensing. We accomplish this by monitoring the change of the optical nanostructure resonance in the presence of biomolecules within the tight focus area above the nanoantennas, combined with a surface treatment of the nanowires for a specific binding of the target molecules. As a first application, we detect the binding kinetics of two distinct DNA strands as well as the following hybridization of two complementary strands (cDNA) with different lengths (25 and 100 bp). Upon immobilization, a redshift of 1 nm was detected; further backfilling and hybridization led to a peak shift of additional 2 and 5 nm for 25 and 100 bp, respectively. We believe that this work gives deeper insight into the functional understanding and technical implementation of a large array of gold nanowires for future medical applications.

  8. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy

    NASA Astrophysics Data System (ADS)

    Hynynen, Kullervo; Jones, Ryan M.

    2016-09-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  9. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy.

    PubMed

    Hynynen, Kullervo; Jones, Ryan M

    2016-09-07

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  10. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy

    PubMed Central

    Hynynen, Kullervo; Jones, Ryan M.

    2016-01-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy. PMID:27494561

  11. The ALMA Phasing System: A Beamforming Capability for Ultra-high-resolution Science at (Sub)Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Crew, G. B.; Doeleman, S. S.; Lacasse, R.; Saez, A. F.; Alef, W.; Akiyama, K.; Amestica, R.; Anderson, J. M.; Barkats, D. A.; Baudry, A.; Broguière, D.; Escoffier, R.; Fish, V. L.; Greenberg, J.; Hecht, M. H.; Hiriart, R.; Hirota, A.; Honma, M.; Ho, P. T. P.; Impellizzeri, C. M. V.; Inoue, M.; Kohno, Y.; Lopez, B.; Martí-Vidal, I.; Messias, H.; Meyer-Zhao, Z.; Mora-Klein, M.; Nagar, N. M.; Nishioka, H.; Oyama, T.; Pankratius, V.; Perez, J.; Phillips, N.; Pradel, N.; Rottmann, H.; Roy, A. L.; Ruszczyk, C. A.; Shillue, B.; Suzuki, S.; Treacy, R.

    2018-01-01

    The Atacama Millimeter/submillimeter Array (ALMA) Phasing Project (APP) has developed and deployed the hardware and software necessary to coherently sum the signals of individual ALMA antennas and record the aggregate sum in Very Long Baseline Interferometry (VLBI) Data Exchange Format. These beamforming capabilities allow the ALMA array to collectively function as the equivalent of a single large aperture and participate in global VLBI arrays. The inclusion of phased ALMA in current VLBI networks operating at (sub)millimeter wavelengths provides an order of magnitude improvement in sensitivity, as well as enhancements in u–v coverage and north–south angular resolution. The availability of a phased ALMA enables a wide range of new ultra-high angular resolution science applications, including the resolution of supermassive black holes on event horizon scales and studies of the launch and collimation of astrophysical jets. It also provides a high-sensitivity aperture that may be used for investigations such as pulsar searches at high frequencies. This paper provides an overview of the ALMA Phasing System design, implementation, and performance characteristics.

  12. Consumers' conceptualization of ultra-processed foods.

    PubMed

    Ares, Gastón; Vidal, Leticia; Allegue, Gimena; Giménez, Ana; Bandeira, Elisa; Moratorio, Ximena; Molina, Verónika; Curutchet, María Rosa

    2016-10-01

    Consumption of ultra-processed foods has been associated with low diet quality, obesity and other non-communicable diseases. This situation makes it necessary to develop educational campaigns to discourage consumers from substituting meals based on unprocessed or minimally processed foods by ultra-processed foods. In this context, the aim of the present work was to investigate how consumers conceptualize the term ultra-processed foods and to evaluate if the foods they perceive as ultra-processed are in concordance with the products included in the NOVA classification system. An online study was carried out with 2381 participants. They were asked to explain what they understood by ultra-processed foods and to list foods that can be considered ultra-processed. Responses were analysed using inductive coding. The great majority of the participants was able to provide an explanation of what ultra-processed foods are, which was similar to the definition described in the literature. Most of the participants described ultra-processed foods as highly processed products that usually contain additives and other artificial ingredients, stressing that they have low nutritional quality and are unhealthful. The most relevant products for consumers' conceptualization of the term were in agreement with the NOVA classification system and included processed meats, soft drinks, snacks, burgers, powdered and packaged soups and noodles. However, some of the participants perceived processed foods, culinary ingredients and even some minimally processed foods as ultra-processed. This suggests that in order to accurately convey their message, educational campaigns aimed at discouraging consumers from consuming ultra-processed foods should include a clear definition of the term and describe some of their specific characteristics, such as the type of ingredients included in their formulation and their nutritional composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Continuous Beam Steering From a Segmented Liquid Crystal Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Titus, Charles M.; Pouch, John; Nguyen, Hung; Miranda, Felix; Bos, Philip J.

    2002-01-01

    Optical communications to and from deep space probes will require beams possessing divergence on the order of a microradian, and must be steered with sub-microradian precision. Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type, there are ultimately no restrictions on the angular resolution. Computer simulations are used to obtain that result, and to analyze the influence of beam truncation and substrate flatness on the performance of this type of device.

  14. Continuous Beam Steering From A Segmented Liquid Crystal Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Pouch, John; Nguyen, Hung; Miranda, Felix; Titus, Charles M.; Bos, Philip J.

    2002-01-01

    Optical communications to and from deep space probes will require beams possessing divergence on the order of a microradian, and must be steered with sub-microradian precision. Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type, there are ultimately no restrictions on the angular resolution. Computer simulations are used to obtain that result, and to analyze the influence of beam truncation and substrate flatness on the performance of this type of device.

  15. Coupling control based on Adiabatic elimination for densely integrated nano-photonics

    NASA Astrophysics Data System (ADS)

    Mrejen, Michael; Suchowski, Haim; Hatakeyama, Taiki; Wu, Chihhui; Feng, Liang; O'Brien, Kevin; Wang, Yuan; Zhang, Xiang

    2015-03-01

    The ever growing need for energy-efficient and fast communications is driving the development of highly integrated photonic circuits where controlling light at the nanoscale becomes the most critical aspect of information transfer. Here we develop a unique scheme of adiabatic elimination (AE) modulation to actively control the coupling among waveguides for densely integrated photonics. Analogous to atomic systems, AE is achieved by applying a decomposition on a three waveguide coupler, where the two outer waveguides serve as an effective two-mode system with an effective coupling of Veff = [(V*13 + V*23V*12/Δβ12) (V13-V23V12/Δβ23) ]1/2,and the middle waveguide is the equivalent to the intermediate level `dark state'. We experimentally demonstrate the first all optical AE modulation and its ability to control the coupling between the two waveguides by manipulating the mode index of the decoupled middle one. In addition, we show that the strong modes interactions allowed at the nano-scale offer a unique configuration of zero-coupling between all the waveguides, a phenomena that paves the way for ultra-high density photonic integrated circuits where small footprint is of crucial importance.

  16. An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis.

    PubMed

    Ganesan, Kumaravelu; Garrett, David J; Ahnood, Arman; Shivdasani, Mohit N; Tong, Wei; Turnley, Ann M; Fox, Kate; Meffin, Hamish; Prawer, Steven

    2014-01-01

    The interface between medical implants and the human nervous system is rapidly becoming more and more complex. This rise in complexity is driving the need for increasing numbers of densely packed electrical feedthrough to carry signals to and from implanted devices. This is particularly crucial in the field of neural prosthesis where high resolution stimulating or recording arrays near peripheral nerves or in the brain could dramatically improve the performance of these devices. Here we describe a flexible strategy for implementing high density, high count arrays of hermetic electrical feedthroughs by forming conducting nitrogen doped nanocrystalline diamond channels within an insulating polycrystalline diamond substrate. A unique feature of these arrays is that the feedthroughs can themselves be used as stimulating electrodes for neural tissue. Our particular application is such a feedthrough, designed as a component of a retinal implant to restore vision to the blind. The hermeticity of the feedthroughs means that the array can also form part of an implantable capsule which can interface directly with internal electronic chips. The hermeticity of the array is demonstrated by helium leak tests and electrical and electrochemical characterisation of the feedthroughs is described. The nitrogen doped nanocrystalline diamond forming the electrical feedthroughs is shown to be non-cyctotoxic. New fabrication strategies, such as the one described here, combined with the exceptional biostability of diamond can be exploited to generate a range of biomedical implants that last for the lifetime of the user without fear of degradation.

  17. Mining connected global and local dense subgraphs for bigdata

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Shen, Haiying

    2016-01-01

    The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.

  18. Deterministic quantum dense coding networks

    NASA Astrophysics Data System (ADS)

    Roy, Saptarshi; Chanda, Titas; Das, Tamoghna; Sen(De), Aditi; Sen, Ujjwal

    2018-07-01

    We consider the scenario of deterministic classical information transmission between multiple senders and a single receiver, when they a priori share a multipartite quantum state - an attempt towards building a deterministic dense coding network. Specifically, we prove that in the case of two or three senders and a single receiver, generalized Greenberger-Horne-Zeilinger (gGHZ) states are not beneficial for sending classical information deterministically beyond the classical limit, except when the shared state is the GHZ state itself. On the other hand, three- and four-qubit generalized W (gW) states with specific parameters as well as the four-qubit Dicke states can provide a quantum advantage of sending the information in deterministic dense coding. Interestingly however, numerical simulations in the three-qubit scenario reveal that the percentage of states from the GHZ-class that are deterministic dense codeable is higher than that of states from the W-class.

  19. A simple and transparent well-aligned ZnO nanowire array ultraviolet photodetector with high responsivity

    NASA Astrophysics Data System (ADS)

    Yin, Lei; Ding, Hesheng; Yuan, Zhaolin; Huang, Wendeng; Shuai, Chunjiang; Xiong, Zhaoxin; Deng, Jianping; Lv, Tengbo

    2018-06-01

    Well-aligned zinc oxide (ZnO) nanowire arrays were grown on an interdigital patterned fluorine tin oxide (FTO)-coated glass substrate by a facile chemical bath deposition at low temperature. Morphology, crystalline structure, and optical properties of the ZnO nanowire arrays were analyzed in detail. The results revealed that the ZnO nanowires had wurtzite structure, typically ∼40-60 nm in diameter, and ∼700-800 nm in length, a great number of highly uniform and dense nanowires grew vertically on the substrate to form the well-aligned ZnO nanowire arrays, which had very high optical transmission (>86%) in the visible light region. In addition, the performance of ZnO nanowire arrays ultraviolet (UV) photodetector was systematically examined. The photosensitivity (S), responsivity (R), response and decay time of the photodetector were 703 at +0.2 V, 113 A/W at +5 V, 23 s and 73 s respectively. Also, the photoresponse mechanism of the UV photodetector was illuminated in terms of the oxygen adsorption-photodesorption process.

  20. Method of achieving ultra-wideband true-time-delay beam steering for active electronically scanned arrays

    DOEpatents

    Loui, Hung; Brock, Billy C.

    2016-10-25

    The various embodiments presented herein relate to beam steering an array antenna by modifying intermediate frequency (IF) waveforms prior to conversion to RF signals. For each channel, a direct digital synthesis (DDS) component can be utilized to generate a waveform or modify amplitude, timing and phase of a waveform relative to another waveform, whereby the generation/modification can be performed prior to the IF input port of a mixer on each channel. A local oscillator (LO) signal can be utilized to commonly drive each of the mixers. After conversion at the RF output port of each of the mixers, each RF signal can be transmitted by a respective antenna element in the antenna array. Initiation of transmission of each RF signal can be performed simultaneously at each antenna. The process can be reversed during receive whereby timing, amplitude, and phase of the received can be modified digitally post ADC conversion.

  1. Ultra-high-throughput microarray generation and liquid dispensing using multiple disposable piezoelectric ejectors.

    PubMed

    Hsieh, Huangpin Ben; Fitch, John; White, Dave; Torres, Frank; Roy, Joy; Matusiak, Robert; Krivacic, Bob; Kowalski, Bob; Bruce, Richard; Elrod, Scott

    2004-03-01

    The authors have constructed an array of 12 piezoelectric ejectors for printing biological materials. A single-ejector footprint is 8 mm in diameter, standing 4 mm high with 2 reservoirs totaling 76 micro L. These ejectors have been tested by dispensing various fluids in several environmental conditions. Reliable drop ejection can be expected in both humidity-controlled and ambient environments over extended periods of time and in hot and cold room temperatures. In a prototype system, 12 ejectors are arranged in a rack, together with an X - Y stage, to allow printing any pattern desired. Printed arrays of features are created with a biological solution containing bovine serum albumin conjugated oligonucleotides, dye, and salty buffer. This ejector system is designed for the ultra-high-throughput generation of arrays on a variety of surfaces. These single or racked ejectors could be used as long-term storage vessels for materials such as small molecules, nucleic acids, proteins, or cell libraries, which would allow for efficient preprogrammed selection of individual clones and greatly reduce the chance of cross-contamination and loss due to transfer. A new generation of design ideas includes plastic injection molded ejectors that are inexpensive and disposable and handheld personal pipettes for liquid transfer in the nanoliter regime.

  2. Broadband implementation of coprime linear microphone arrays for direction of arrival estimation.

    PubMed

    Bush, Dane; Xiang, Ning

    2015-07-01

    Coprime arrays represent a form of sparse sensing which can achieve narrow beams using relatively few elements, exceeding the spatial Nyquist sampling limit. The purpose of this paper is to expand on and experimentally validate coprime array theory in an acoustic implementation. Two nested sparse uniform linear subarrays with coprime number of elements ( M and N) each produce grating lobes that overlap with one another completely in just one direction. When the subarray outputs are combined it is possible to retain the shared beam while mostly canceling the other superfluous grating lobes. In this way a small number of microphones ( N+M-1) creates a narrow beam at higher frequencies, comparable to a densely populated uniform linear array of MN microphones. In this work beampatterns are simulated for a range of single frequencies, as well as bands of frequencies. Narrowband experimental beampatterns are shown to correspond with simulated results even at frequencies other than the arrays design frequency. Narrowband side lobe locations are shown to correspond to the theoretical values. Side lobes in the directional pattern are mitigated by increasing bandwidth of analyzed signals. Direction of arrival estimation is also implemented for two simultaneous noise sources in a free field condition.

  3. Evidence of the Dampening Effect of Dense E-region Structures on E-F Coupling

    NASA Astrophysics Data System (ADS)

    Helmboldt, J.

    2012-12-01

    Results from a combination of instruments including ionosondes, GPS receivers, the Very Large Array (VLA), and the Long Wavelength Array (LWA) are used to demonstrate the role structure within the E-region plays in coupling between instabilities within the E and F regions at midlatitudes. VLA observations of cosmic sources at 74 MHz during summer nighttime in 2002 detected northwest-to-southeast aligned wavefronts, consistent with medium-scale traveling ionospheric disturbances (MSTIDs). These waves were only found when contemporaneous observations from nearby ionosondes detected echoes from sporadic-E layers. However, when the peak density of these layers was high (foEs> 3 MHz), there were no MSTIDs detected. Similar results are presented using the first station of the LWA, LWA1, to perform all-sky imaging of dense E-region structures (sporadic-E "clouds") via coherent scattering of distant analog TV broadcasts at 55 MHz. These observations were conducted during summer/autumn 2012 and include simultaneous GPS-based observations of F-region disturbances.Left: LWA1 all-sky image of ionospheric echoes of analog TV transmissions at 55.25 MHz. Right: Doppler speed maps for the brightest echoes.

  4. A new array for the study of ultra high energy gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Brooke, G.; Lambert, A.; Ogden, P. A.; Patel, M.; Ferrett, J. C.; Reid, R. J. O.; Watson, A. A.; West, A. A.

    1985-01-01

    The design and operation of a 32 x 1 10 to the 15th power sq m array of scintillation detectors for the detection of 10 to the 15th power eV cosmic rays is described with an expected angular resolution of 1 deg, thus improving the present signal/background ratio for gamma ray sources. Data are recorded on a hybrid CAMAC, an in-house system which uses a laser and Pockel-Cell arrangement to routinely calibrate the timing stability of the detectors.

  5. Sex Difference in Draft-Legal Ultra-Distance Events - A Comparison between Ultra-Swimming and Ultra-Cycling.

    PubMed

    Salihu, Lejla; Rüst, Christoph Alexander; Rosemann, Thomas; Knechtle, Beat

    2016-04-30

    Recent studies reported that the sex difference in performance in ultra-endurance sports such as swimming and cycling changed over the years. However, the aspect of drafting in draft-legal ultra-endurance races has not yet been investigated. This study investigates the sex difference in ultra-swimming and ultra-cycling draft-legal races where drafting - swimming or cycling behind other participants to save energy and have more power at the end of the race to overtake them, is allowed. The change in performance of the annual best and the annual three best in an ultra-endurance swimming race (16-km 'Faros Swim Marathon') over 38 years and in a 24-h ultra-cycling race ('World Cycling Race') over 13 years were compared and analysed with respect to sex difference. Furthermore, performances of the fastest female and male finishers ever were compared. In the swimming event, the sex difference of the annual best male and female decreased non-significantly (P = 0.262) from 5.3% (1976) to 1.0% (2013). The sex gap of speed in the annual three fastest swimmers decreased significantly (P = 0.043) from 5.9 ± 1.6% (1979) to 4.7 ± 3.1% (2013). In the cycling event, the difference in cycling speed between the annual best male and female decreased significantly (P = 0.026) from 33.31% (1999) to 10.89% (2011). The sex gap of speed in the annual three fastest decreased significantly (P = 0.001) from 32.9 ± 0.6% (1999) to 16.4 ± 5.9% (2011). The fastest male swimmer ever (swimming speed 5.3 km/h, race time: 03:01:55 h:min:s) was 1.5% faster than the fastest female swimmer (swimming speed 5.2 km/h, race time: 03:04:09 h:min:s). The three fastest male swimmers ever (mean 5.27 ± 0.13 km/h) were 4.4% faster than the three fastest female swimmers (mean 5.05 ± 0.20 km/h) (P < 0.05). In the cycling event, the best male ever (cycling speed 45.8 km/h) was 26.4% faster than the best female (cycling speed 36.1 km/h). The three fastest male cyclists ever (45.9 km/h) (mean 45.85 ± 0.05 km

  6. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame

    PubMed Central

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.

    2016-01-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20–60 nm and lengths of 4–6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications. PMID:27271194

  7. Concurrent determination of olanzapine, risperidone and 9-hydroxyrisperidone in human plasma by ultra performance liquid chromatography with diode array detection method: application to pharmacokinetic study.

    PubMed

    Siva Selva Kumar, M; Ramanathan, M

    2016-02-01

    A simple and sensitive ultra-performance liquid chromatography (UPLC) method has been developed and validated for simultaneous estimation of olanzapine (OLZ), risperidone (RIS) and 9-hydroxyrisperidone (9-OHRIS) in human plasma in vitro. The sample preparation was performed by simple liquid-liquid extraction technique. The analytes were chromatographed on a Waters Acquity H class UPLC system using isocratic mobile phase conditions at a flow rate of 0.3 mL/min and Acquity UPLC BEH shield RP18 column maintained at 40°C. Quantification was performed on a photodiode array detector set at 277 nm and clozapine was used as internal standard (IS). OLZ, RIS, 9-OHRIS and IS retention times were found to be 0.9, 1.4, .1.8 and 3.1 min, respectively, and the total run time was 4 min. The method was validated for selectivity, specificity, recovery, linearity, accuracy, precision and sample stability. The calibration curve was linear over the concentration range 1-100 ng/mL for OLZ, RIS and 9-OHRIS. Intra- and inter-day precisions for OLZ, RIS and 9-OHRIS were found to be good with the coefficient of variation <6.96%, and the accuracy ranging from 97.55 to 105.41%, in human plasma. The validated UPLC method was successfully applied to the pharmacokinetic study of RIS and 9-OHRIS in human plasma. Copyright © 2015 John Wiley & Sons, Ltd.

  8. High precision and high yield fabrication of dense nanoparticle arrays onto DNA origami at statistically independent binding sites

    NASA Astrophysics Data System (ADS)

    Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph T.; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.

    2014-10-01

    High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities.High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five

  9. Design and Construction of a Dense Plasma Focus Device

    DTIC Science & Technology

    1976-10-01

    This paper deals with the design of a dense plasma focus device as an engineering project. Essentially this approach can be summarized as follows...First, an introduction dealing with a general discussion of plasma devices focusing on the role of a dense plasma focus device as a useful tool in...future research; second, an explanation of the operation of the dense plasma focus ; third, a general design discussion of the dense plasma focus device

  10. Spontaneous Formation of Nanopillar Arrays in Ultrathin Viscous Films: Critical Role of Thermocapillary Stresses

    NASA Astrophysics Data System (ADS)

    Troian, Sandra; Dietzel, Mathias

    2010-03-01

    Nanoscale structures manifest exceedingly large surface to volume ratios and are therefore highly susceptible to control by surface stresses. Actuation techniques which can exploit this feature provide a key strategy for construction and self-organization of large area arrays. During the past decade, several groups have reported that molten polymer nanofilms subject to an ultra-large transverse thermal gradient undergo spontaneous formation of nanopillar arrays. The prevailing explanation is that coherent interfacial reflection of acoustic phonons causes periodic modulation of the radiation pressure leading to instability and pillar growth. We demonstrate instead that thermocapillary forces play a crucial if not dominant role in the formation process due to the strong modulation of surface tension with temperature. Any nanoscale viscous film is prone to such formations, not just polymeric films. Analysis of the governing interface equation reveals the mechanism controlling the growth, spacing and symmetry of these self-assembling arrays. We discuss how these findings are being used in our laboratory to construct nanoscale components for optical and photonic applications.

  11. UHE Cosmic Ray Observations Using the Cygnus Water - Array

    NASA Astrophysics Data System (ADS)

    Dion, Cynthia L.

    1995-01-01

    The CYGNUS water-Cerenkov array, consisting of five surface water-Cerenkov detectors, was built in the CYGNUS extensive air shower array at Los Alamos, New Mexico (latitude 36^circ N, longitude 107^circ W, altitude 2310 meters) to search for point sources of ultra-high energy particles (>1014 eV per particle) with the CYGNUS extensive air shower array. The water-Cerenkov detectors are used to improve the angular resolution of the extensive air shower array. This experiment searches for point sources of UHE gamma-radiation that may be of galactic or extra-galactic origin. The data set from December 1991 to January 1994 consists of data from both the water-Cerenkov array and the CYGNUS extensive air shower array. These data are combined, and the angular resolution of this combined data set is measured to be 0.34^circ+0.03 ^circ-0.04^circ. The measurement is made by observing the cosmic-ray shadowing of the Sun and the Moon. Using a subset of these data, three potential sources of UHE emission are studied: the Crab Pulsar, and the active galactic nuclei Markarian 421 and Markarian 501. A search is conducted for continuous emission from these three sources, and emission over shorter time scales. This experiment is particularly sensitive to emission over these shorter time scales. There is no evidence of UHE emission from these three sources over any time scales studied, and upper bounds to the flux of gamma radiation are determined. The flux upper limit for continuous emission from the Crab Pulsar is found to be 1.2times10^ {-13}/rm cm^2/s above 70 TeV. The flux upper limit for continuous emission from Markarian 421 is found to be 1.3times10^ {-13}/rm cm^2/s above 50 TeV. The flux upper limit for continuous emission from Markarian 501 is found to be 3.8times10^ {-13}/rm cm^2/s above 50 TeV.

  12. Simulating pad-electrodes with high-definition arrays in transcranial electric stimulation

    NASA Astrophysics Data System (ADS)

    Kempe, René; Huang, Yu; Parra, Lucas C.

    2014-04-01

    Objective. Research studies on transcranial electric stimulation, including direct current, often use a computational model to provide guidance on the placing of sponge-electrode pads. However, the expertise and computational resources needed for finite element modeling (FEM) make modeling impractical in a clinical setting. Our objective is to make the exploration of different electrode configurations accessible to practitioners. We provide an efficient tool to estimate current distributions for arbitrary pad configurations while obviating the need for complex simulation software. Approach. To efficiently estimate current distributions for arbitrary pad configurations we propose to simulate pads with an array of high-definition (HD) electrodes and use an efficient linear superposition to then quickly evaluate different electrode configurations. Main results. Numerical results on ten different pad configurations on a normal individual show that electric field intensity simulated with the sampled array deviates from the solutions with pads by only 5% and the locations of peak magnitude fields have a 94% overlap when using a dense array of 336 electrodes. Significance. Computationally intensive FEM modeling of the HD array needs to be performed only once, perhaps on a set of standard heads that can be made available to multiple users. The present results confirm that by using these models one can now quickly and accurately explore and select pad-electrode montages to match a particular clinical need.

  13. Coherent array of branched filamentary scales along the wing margin of a small moth

    NASA Astrophysics Data System (ADS)

    Yoshida, Akihiro; Tejima, Shin; Sakuma, Masayuki; Sakamaki, Yositaka; Kodama, Ryuji

    2017-04-01

    In butterflies and moths, the wing margins are fringed with specialized scales that are typically longer than common scales. In the hindwings of some small moths, the posterior margins are fringed with particularly long filamentary scales. Despite the small size of these moth wings, these scales are much longer than those of large moths and butterflies. In the current study, photography of the tethered flight of a small moth, Phthorimaea operculella, revealed a wide array composed of a large number of long filamentary scales. This array did not become disheveled in flight, maintaining a coherent sheet-like structure during wingbeat. Examination of the morphology of individual scales revealed that each filamentary scale consists of a proximal stalk and distal branches. Moreover, not only long scales but also shorter scales of various lengths were found to coexist in each small section of the wing margin. Scale branches were ubiquitously and densely distributed within the scale array to form a mesh-like architecture similar to a nonwoven fabric. We propose that possible mechanical interactions among branched filamentary scales, mediated by these branches, may contribute to maintaining a coherent sheet-like structure of the scale array during wingbeat.

  14. The detector calibration system for the CUORE cryogenic bolometer array

    DOE PAGES

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; ...

    2016-11-14

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO 2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires themore » placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. In conclusion, this paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.« less

  15. Implications of the causality principle for ultra chiral metamaterials

    PubMed Central

    Gorkunov, Maxim V.; Dmitrienko, Vladimir E.; Ezhov, Alexander A.; Artemov, Vladimir V.; Rogov, Oleg Y.

    2015-01-01

    Chiral metamaterials – artificial subwavelength structures with broken mirror symmetry – demonstrate outstanding degree of optical chirality that exhibits sophisticated spectral behavior and can eventually reach extreme values. Based on the fundamental causality principle we show how one can unambiguously relate the metamaterial circular dichroism and optical activity by the generalized Kramers-Kronig relations. Contrary to the conventional relations, the generalized ones provide a unique opportunity of extracting information on material-dependent zeroes of transmission coefficient in the upper half plane of complex frequency. We illustrate the merit of the formulated relations by applying them to the observed ultra chiral optical transmission spectra of subwavelength arrays of chiral holes in silver films. Apart from the possibility of precise verification of experimental data, the relations enable resolving complex eigenfrequencies of metamaterial intrinsic modes and resonances. PMID:25787007

  16. CMZoom: The Submillimeter Array Survey of our Galaxy’s Central Molecular Zone

    NASA Astrophysics Data System (ADS)

    Battersby, Cara; CMZoom Team

    2018-01-01

    The inner few hundred parsecs of the Milky Way, the Central Molecular Zone (CMZ), is our closest laboratory for understanding star formation in the extreme environments (hot, dense, turbulent gas) that once dominated the universe. We present an update on the first large-area survey to expose the sites of star formation across the CMZ at high-resolution in submillimeter wavelengths: the CMZoom survey with the Submillimeter Array (SMA). We identify the locations of dense cores and search for signatures of embedded star formation. CMZoom is a three-year survey, completed this year, and has mapped out the highest column density regions of the CMZ in dust continuum and a variety of spectral lines around 1.3 mm. CMZoom combines SMA compact and subcompact configurations with single-dish data from BGPS and the APEX telescope, achieving an angular resolution of about 4” (0.2 pc) and good image fidelity up to large spatial scales.

  17. Development of an ultra-compact mid-infrared attenuated total reflectance spectrophotometer

    NASA Astrophysics Data System (ADS)

    Kim, Dong Soo; Lee, Tae-Ro; Yoon, Gilwon

    2014-07-01

    Mid-infrared spectroscopy has been an important tool widely used for qualitative analysis in various fields. However, portable or personal use is size and cost prohibitive for either Fourier transform infrared or attenuated total reflectance (ATR) spectrophotometers. In this study, we developed an ultra-compact ATR spectrophotometer whose frequency band was 5.5-11.0 μm. We used miniature components, such as a light source fabricated by semiconductor technology, a linear variable filter, and a pyro-electric array detector. There were no moving parts. Optimal design based on two light sources, a zippered configuration of the array detector and ATR optics could produce absorption spectra that might be used for qualitative analysis. A microprocessor synchronized the pulsed light sources and detector, and all the signals were processed digitally. The size was 13.5×8.5×3.5 cm3 and the weight was 300 grams. Due to its low cost, our spectrophotometer can replace many online monitoring devices. Another application could be for a u-healthcare system installed in the bathroom or attached to a smartphone for monitoring substances in body fluids.

  18. Dense Seismic Recordings of Two Surface-Detonated Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Koper, K. D.; Hale, J. M.; Burlacu, R.; Goddard, K. J.; Trow, A.; Linville, L. M.; Stein, J. R.; Drobeck, D.; Leidig, M.

    2015-12-01

    In the summer of 2015 two controlled chemical explosions were carried out near Dugway, Utah. The 2 June 2015 explosion consisted of 30,000 lbs of ammonium nitrate fuel oil (ANFO) and the 22 July 2015 explosion consisted of 60,000 lbs of ANFO. The explosion centroids were 1-2 m above the Earth's surface and both created significant craters in the soft desert alluvium. To better understand the seismic source associated with surface explosions, we deployed an array of wireless, three-component, short-period (5 Hz corner frequency) seismometers for several days around each shot. For the first explosion, 46 receivers were deployed in a "lollipop" geometry that had a sparse ring at a radius of 1 km, and a dense stem with 100 m spacing for distances of 0.5-4.5 km. For the second explosion, 48 receivers were deployed similarly, but with a dense ring spaced in azimuthal increments of 10 degrees at a distance of 1 km, and a sparse stem (~500 m spacing) that extended to a distance of nearly 6 km. A rich variety of phases were recorded including direct P waves, refracted and reflected P waves, nearly monochromatic air-coupled Rayleigh waves, normally dispersed fundamental mode Rayleigh waves (Rg), primary airblast arrivals, some secondary airblast arrivals, and possibly tertiary airblast arrivals. There is also evidence of converted S waves on the radial components and possibly direct S energy on the radial and transverse components, although the transverse energy does not always possess a simple, coherent move-out with distance, implying that it might have a scattering origin. To aid in the phase identification, especially of the apparent SH and Love energy, we are currently performing tau-p, f-k, and particle motion analysis.

  19. Dense Axion Stars.

    PubMed

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-16

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4}  eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10^{-20}M_{⊙} to about M_{⊙}. If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  20. Efficient energy absorption of intense ps-laser pulse into nanowire target

    NASA Astrophysics Data System (ADS)

    Habara, H.; Honda, S.; Katayama, M.; Sakagami, H.; Nagai, K.; Tanaka, K. A.

    2016-06-01

    The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. These features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.

  1. Efficient energy absorption of intense ps-laser pulse into nanowire target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habara, H.; Honda, S.; Katayama, M.

    The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. Thesemore » features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.« less

  2. Polystyrene negative resist for high-resolution electron beam lithography

    PubMed Central

    2011-01-01

    We studied the exposure behavior of low molecular weight polystyrene as a negative tone electron beam lithography (EBL) resist, with the goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 20-nm period line array and a 15-nm period dot array, which are the densest patterns ever achieved using organic EBL resists. Such dense patterns can be achieved both at 20 and 5 keV beam energies using different developers. In addition to its ultra-high resolution capability, polystyrene is a simple and low-cost resist with easy process control and practically unlimited shelf life. It is also considerably more resistant to dry etching than PMMA. With a low sensitivity, it would find applications where negative resist is desired and throughput is not a major concern. PMID:21749679

  3. Dense Deposit Disease Mimicking a Renal Small Vessel Vasculitis

    PubMed Central

    Singh, Lavleen; Bhardwaj, Swati; Sinha, Aditi; Bagga, Arvind; Dinda, Amit

    2016-01-01

    Dense deposit disease is caused by fluid-phase dysregulation of the alternative complement pathway and frequently deviates from the classic membranoproliferative pattern of injury on light microscopy. Other patterns of injury described for dense deposit disease include mesangioproliferative, acute proliferative/exudative, and crescentic GN. Regardless of the histologic pattern, C3 glomerulopathy, which includes dense deposit disease and C3 GN, is defined by immunofluorescence intensity of C3c two or more orders of magnitude greater than any other immune reactant (on a 0–3 scale). Ultrastructural appearances distinguish dense deposit disease and C3 GN. Focal and segmental necrotizing glomerular lesions with crescents, mimicking a small vessel vasculitis such as ANCA-associated GN, are a very rare manifestation of dense deposit disease. We describe our experience with this unusual histologic presentation and distinct clinical course of dense deposit disease, discuss the pitfalls in diagnosis, examine differential diagnoses, and review the relevant literature. PMID:26361799

  4. Rapid laser fabrication of microlens array using colorless liquid photopolymer for AMOLED devices

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Ryul; Jeong, Han-Wook; Lee, Kong-Soo; Yi, Junsin; Yoo, Jae-Chern; Cho, Myung-Woo; Cho, Sung-Hak; Choi, Byoungdeog

    2011-01-01

    Microlens array (MLA) is microfabricated using Ultra Violet (UV) laser for display device applications. A colorless liquid photopolymer, Norland Optical Adhesive (NOA) 60, is spin-coated and pre-cured via UV light for completing the laser process. The laser energy controlled by a galvano scanner is radiated on the surface of the NOA 60. A rapid thermal volume expansion inside the material creates microlens array when the Gaussian laser energy is absorbed. The fabrication process conditions for various shapes and densities of MLA using a non-contact surface profiler are investigated. Furthermore, we analyze the optical and display characteristics for the Organic Light Emitting Diode (OLED) devices. Optimized condition furnishes the OLED with the enhancement of light emission by 15%. We show that UV laser technique, which is installed with NOA 60 MLA layer, is eligible for improving the performance of the next generation display devices.

  5. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feister, S., E-mail: feister.7@osu.edu; Orban, C.; Innovative Scientific Solutions, Inc., Dayton, Ohio 45459

    Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiersmore » synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre

  6. A Nested Phosphorus and Proton Coil Array for Brain Magnetic Resonance Imaging and Spectroscopy

    PubMed Central

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2015-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7 Tesla. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4 cm nominal isotropic resolution in 15 min (2.3 cm actual resolution), while additionally enabling 1 mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer’s and Parkinson’s diseases, as well as mental disorders such as schizophrenia. PMID:26375209

  7. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy.

    PubMed

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2016-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Ultra-Large Solar Sail

    NASA Technical Reports Server (NTRS)

    Burton, Rodney; Coverstone, Victoria

    2009-01-01

    UltraSail is a next-generation ultra-large (km2 class) sail system. Analysis of the launch, deployment, stabilization, and control of these sails shows that high-payload-mass fractions for interplanetary and deep-space missions are possible. UltraSail combines propulsion and control systems developed for formation-flying microsatellites with a solar sail architecture to achieve controllable sail areas approaching 1 km2. Electrically conductive CP-1 polyimide film results in sail subsystem area densities as low as 5 g/m2. UltraSail produces thrust levels many times those of ion thrusters used for comparable deep-space missions. The primary innovation involves the near-elimination of sail-supporting structures by attaching each blade tip to a formation- flying microsatellite, which deploys the sail and then articulates the sail to provide attitude control, including spin stabilization and precession of the spin axis. These microsatellite tips are controlled by microthrusters for sail-film deployment and mission operations. UltraSail also avoids the problems inherent in folded sail film, namely stressing, yielding, or perforating, by storing the film in a roll for launch and deployment. A 5-km long by 2 micrometer thick film roll on a mandrel with a 1 m circumference (32 cm diameter) has a stored thickness of 5 cm. A 5 m-long mandrel can store a film area of 25,000 m2, and a four-blade system has an area of 0.1 sq km.

  9. Ultra-compact high-performance MCT MWIR engine

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Oelmaier, R.; Rutzinger, S.; Schenk, H.; Wendler, J.

    2017-02-01

    Size, weight and power (SWaP) reduction is highly desired by applications such as sights for the dismounted soldier or small gimbals for UAVs. But why have high performance and small size of IR systems inevitably exclude each other? Namely, recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperature (HOT) FPAs combined with pitch size reduction opens the door for very compact MWIR-modules while keeping high electro-optical performance. Now, AIM has realized first prototypes of an ultra-compact high-performance MWIR engine in a total volume of only 18cl (60mm length x 60mm height x 50mm width). Impressive SWaP characteristics are completed by a total weight below 400g and a power consumption < 4W in basic imaging mode. The engine consists of a XGA-format (1024x768) MCT detector array with 10μm pitch and a low power consuming ROIC. It is cooled down to a typical operating temperature of 160K by the miniature linear cryocooler SX020. The dewar uses a short coldfinger and is designed to reduce the heat load as much as possible. The cooler drive electronics is implemented in the CCE layout in order to reduce the required space of the printed boards and to save power. Uncorrected 14bit video data is provided via Camera Link. Optionally, a small image processing board can be stacked on top of the CCE to gain access to basic functions such as BPR, 2- point NUC and dynamic reduction. This paper will present the design, functionalities and performance data of the ultra-compact MCT MWIR engine operated at HOT.

  10. 7 Tesla 22-channel wrap-around coil array for cervical spinal cord and brainstem imaging.

    PubMed

    Zhang, Bei; Seifert, Alan C; Kim, Joo-Won; Borrello, Joseph; Xu, Junqian

    2017-10-01

    Increased signal-to-noise ratio and blood oxygenation level-dependent sensitivity at 7 Tesla (T) have the potential to enable high-resolution imaging of the human cervical spinal cord and brainstem. We propose a new two-panel radiofrequency coil design for these regions to fully exploit the advantages of ultra-high field. A two-panel array, containing four transmit/receive and 18 receive-only elements fully encircling the head and neck, was constructed following simulations demonstrating the B1+ and specific absorption rate (SAR) benefits of two-panel over one-panel arrays. This array was compared with a previously reported posterior-only array and tested for safety using a phantom. Its anatomical, functional, and diffusion MRI performance was demonstrated in vivo. The two-panel array produced more uniform B1+ across the brainstem and cervical spinal cord without compromising SAR, and achieved 70% greater receive sensitivity than the posterior-only array. The two-panel design enabled acceleration of R = 2 × 2 in two dimensions or R = 3 in a single dimension. High quality in vivo anatomical, functional, and diffusion images of the human cervical spinal cord and brainstem were acquired. We have designed and constructed a wrap-around coil array with excellent performance for cervical spinal cord and brainstem MRI at 7T, which enables simultaneous human cervical spinal cord and brainstem functional MRI. Magn Reson Med 78:1623-1634, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. 77 FR 59182 - Ultra-Deepwater Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... DEPARTMENT OF ENERGY Ultra-Deepwater Advisory Committee AGENCY: Office of Fossil Energy... of the Ultra-Deepwater Advisory Committee is to provide advice on development and implementation of programs related to ultra-deepwater architecture and technology to the Secretary of Energy and provide...

  12. The AlpArray Seismic Network: status and operation

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Molinari, Irene; Clinton, John; Kissling, Edi

    2017-04-01

    The AlpArray initiative (http://www.alparray.ethz.ch) is a large-scale European collaboration to study the entire Alpine orogen at high resolution and in 3D with a large variety of geoscientific methods. The core element of the initiative is an extensive and dense broadband seismological network, the AlpArray Seismic Network (AASN). Over 300 temporary stations complement the permanent seismological stations to ensure homogeneous coverage of the greater Alpine area. The AASN has officially started operation in January 2016 and is now complete on land. It is operated in a joint effort by a number of institutions from Austria, Bosnia-Herzegovina, Croatia, Czech Republic, France, Germany, Hungary, Italy, Slovakia and Switzerland. In the Ligurian Sea, a 32-station OBS campaign is planned from June 2017 until March 2018. This will complete the coverage of the greater Alpine area at an unprecedented resolution. In this poster we present the actual status of the deployment, the effort undertaken by the contributing groups, station performance, best practices, data management as well as often encountered challenges, and provide a meeting and discussion point during the conference.

  13. Molecularly imprinted polymer based microtiter chemiluminescence array for determination of phenothiazines and benzodiazepines in pork.

    PubMed

    Xia, Wan Qiu; Huang, Jun; Wang, Geng Nan; Liu, Jing; Wang, Jian Ping

    2018-05-25

    In this study, a molecularly imprinted polymer based chemiluminescence array capable of simultaneous determining phenothiazines and benzodiazepines was first reported. Two polymers were coated in different wells of the conventional 96-well microtiter plate as the recognition reagents, and the added analytes competed with a horseradish peroxidase-labeled bi-hapten conjugate to bind the recognition reagents. The light signal was induced by using a highly effective luminol-H 2 O 2 -IMP system. The assay procedure consisted of only one sample-loading step prior to data acquisition. Then, the array was used to determine 4 phenothiazines and 5 benzodiazepines in pork simultaneously. The limits of detection for the 9 drugs were in a range of 0.001-0.01 ng/mL, and the recoveries from the fortified blank pork were in a range of 63.5%-94.1%. Furthermore, the array could be reused for 8 times. The detection results for some real pork samples were consistent with an ultra performance liquid chromatography method. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Guided neuronal growth on arrays of biofunctionalized GaAs/InGaAs semiconductor microtubes

    NASA Astrophysics Data System (ADS)

    Bausch, Cornelius S.; Koitmäe, Aune; Stava, Eric; Price, Amanda; Resto, Pedro J.; Huang, Yu; Sonnenberg, David; Stark, Yuliya; Heyn, Christian; Williams, Justin C.; Dent, Erik W.; Blick, Robert H.

    2013-10-01

    We demonstrate embedded growth of cortical mouse neurons in dense arrays of semiconductor microtubes. The microtubes, fabricated from a strained GaAs/InGaAs heterostructure, guide axon growth through them and potentially enable electrical and optical probing of propagating action potentials. The coaxial nature of the microtubes—similar to myelin—is expected to enhance the signal transduction along the axon. We present a technique of suppressing arsenic toxicity and prove the success of this technique by overgrowing neuronal mouse cells.

  15. 75 FR 48319 - Ultra-Deepwater Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... DEPARTMENT OF ENERGY Ultra-Deepwater Advisory Committee AGENCY: Department of Energy, Office of...: Purpose of the Committee: The purpose of the Ultra-Deepwater Advisory Committee is to provide advice on development and implementation of programs related to ultra-deepwater architecture and technology to the...

  16. 76 FR 77990 - Ultra-Deepwater Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... DEPARTMENT OF ENERGY Ultra-Deepwater Advisory Committee AGENCY: Office of Fossil Energy... Committee: The purpose of the Ultra-Deepwater Advisory Committee is to provide advice to the Secretary of Energy on development and implementation of programs related to ultra-deepwater natural gas and other...

  17. 76 FR 6775 - Ultra-Deepwater Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... DEPARTMENT OF ENERGY Ultra-Deepwater Advisory Committee AGENCY: Department of Energy, Office of... Committee: The purpose of the Ultra-Deepwater Advisory Committee is to provide advice on development and implementation of programs related to ultra-deepwater architecture and technology to the Secretary of Energy and...

  18. 75 FR 54860 - Ultra Deepwater Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... DEPARTMENT OF ENERGY Ultra Deepwater Advisory Committee AGENCY: Department of Energy, Office of... of an open meeting of the Ultra Deepwater Advisory Committee. The Committee was organized pursuant to.../advisorycommittees/UltraDeepwater.html . Issued in Washington, DC, on September 3, 2010. Carol A. Matthews, Committee...

  19. Coalescence preference in densely packed microbubbles

    DOE PAGES

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; ...

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  20. Coalescence preference in densely packed microbubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less