Sample records for ultra faint dwarf

  1. Chemical Abundance Measurements of Ultra-Faint Dwarf Galaxies Discovered by the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Nagasawa, Daniel; Marshall, Jennifer L.; Simon, Joshua D.; Hansen, Terese; Li, Ting; Bernstein, Rebecca; Balbinot, Eduardo; Drlica-Wagner, Alex; Pace, Andrew; Strigari, Louis; Pellegrino, Craig; DePoy, Darren L.; Suntzeff, Nicholas; Bechtol, Keith; Dark Energy Suvey

    2018-01-01

    We present chemical abundance analysis results derived from high-resolution spectroscopy of ultra-faint dwarfs discovered by the Dark Energy Survey. Ultra-faint dwarf galaxies preserve a fossil record of the chemical abundance patterns imprinted by the first stars in the Universe. High-resolution spectroscopic observations of member stars in several recently discovered Milky Way satellites reveal a range of abundance patterns among ultra-faint dwarfs suggesting that star formation processes in the early Universe were quite diverse. The chemical content provides a glimpse not only of the varied nucleosynthetic processes and chemical history of the dwarfs themselves, but also the environment in which they were formed. We present the chemical abundance analysis of these objects and discuss possible explanations for the observed abundance patterns.

  2. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    NASA Astrophysics Data System (ADS)

    Wheeler, Coral; Oñorbe, Jose; Bullock, James S.; Boylan-Kolchin, Michael; Elbert, Oliver D.; Garrison-Kimmel, Shea; Hopkins, Philip F.; Kereš, Dušan

    2015-10-01

    We present Feedback in Realistic Environment (FIRE)/GIZMO hydrodynamic zoom-in simulations of isolated dark matter haloes, two each at the mass of classical dwarf galaxies (Mvir ≃ 1010 M⊙) and ultra-faint galaxies (Mvir ≃ 109 M⊙), and with two feedback implementations. The resulting central galaxies lie on an extrapolated abundance matching relation from M⋆ ≃ 106 to 104 M⊙ without a break. Every host is filled with subhaloes, many of which form stars. Each of our dwarfs with M⋆ ≃ 106 M⊙ has 1-2 well-resolved satellites with M⋆ = 3-200 × 103 M⊙. Even our isolated ultra-faint galaxies have star-forming subhaloes. If this is representative, dwarf galaxies throughout the Universe should commonly host tiny satellite galaxies of their own. We combine our results with the Exploring the Local Volume in Simulations (ELVIS) simulations to show that targeting ˜ 50 kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ˜35 per cent compared to random pointings, and specifically identify the region around the Phoenix dwarf galaxy as a good potential target. The well-resolved ultra-faint galaxies in our simulations (M⋆ ≃ 3-30 × 103 M⊙) form within Mpeak ≃ 0.5-3 × 109 M⊙ haloes. Each has a uniformly ancient stellar population ( > 10 Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo ≃ 5 × 109 M⊙ is a probable dividing line between haloes hosting reionization `fossils' and those hosting dwarfs that can continue to form stars in isolation after reionization.

  3. CONSTRAINTS ON MACHO DARK MATTER FROM COMPACT STELLAR SYSTEMS IN ULTRA-FAINT DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Timothy D.

    2016-06-20

    I show that a recently discovered star cluster near the center of the ultra-faint dwarf galaxy Eridanus II provides strong constraints on massive compact halo objects (MACHOs) of ≳5 M {sub ⊙} as the main component of dark matter. MACHO dark matter will dynamically heat the cluster, driving it to larger sizes and higher velocity dispersions until it dissolves into its host galaxy. The stars in compact ultra-faint dwarf galaxies themselves will be subject to the same dynamical heating; the survival of at least 10 such galaxies places independent limits on MACHO dark matter of masses ≳10 M {sub ⊙}.more » Both Eri II’s cluster and the compact ultra-faint dwarfs are characterized by stellar masses of just a few thousand M {sub ⊙} and half-light radii of 13 pc (for the cluster) and ∼30 pc (for the ultra-faint dwarfs). These systems close the ∼20–100 M {sub ⊙} window of allowed MACHO dark matter and combine with existing constraints from microlensing, wide binaries, and disk kinematics to rule out dark matter composed entirely of MACHOs from ∼10{sup −7} M {sub ⊙} up to arbitrarily high masses.« less

  4. Chemical enrichment in Ultra-Faint Dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Romano, Donatella

    2016-08-01

    Our view of the Milky Way's satellite population has radically changed after the discovery, ten years ago, of the first Ultra-Faint Dwarf galaxies (UFDs). These extremely faint, dark-matter dominated, scarcely evolved stellar systems are found in ever-increasing number in our cosmic neighbourhood and constitute a gold-mine for studies of early star formation conditions and early chemical enrichment pathways. Here we show what can be learned from the measurements of chemical abundances in UFD stars read through the lens of chemical evolution studies, point out the limitations of the classic approach, and discuss the way to go to improve the models.

  5. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    NASA Astrophysics Data System (ADS)

    Wheeler, Coral Rose

    2016-06-01

    The high dark matter content and the shallow potential wells of low mass galaxies (10^3 Msun < Mstar < 10^9.5 Msun) make them excellent testbeds for differing theories of galaxy formation. Additionally, the recent up-tick in the number and detail of Local Group dwarf galaxy observations provides a rich dataset for comparison to simulations that attempt to answer important questions in near field cosmology: why are there so few observed dwarfs compared to the number predicted by simulations? What shuts down star formation in ultra-faint galaxies? Why do dwarfs have inverted age gradients and what does it take to convert a dwarf irregular (dIrrs) into a dwarf spheroidal (dSph) galaxy?We to attempt to answer these questions by running ultra-high resolution cosmological FIRE simulations of isolated dwarf galaxies. We predict that many ultra-faint dwarfs should exist as satellites of more massive isolated Local Group dwarfs. The ultra-faints (Mstar < 10^4 Msun) formed in these simulations have uniformly ancient stellar populations (> 10 Gyr), having had their star formation shut down by reionization. Additionally, we show that the kinematics and ellipticities of isolated simulated dwarf centrals are consistent with observed dSphs satellites without the need for harassment from a massive host. We further show that most (but not all) observed *isolated* dIrrs in the Local Volume also have dispersion-supported stellar populations, contradicting the previous view that these objects are rotating. Finally, we investigate the stellar age gradients in dwarfs — showing that early mergers and strong feedback can create an inverted gradient, with the older stars occupying larger galactocentric radii.These results offer an interesting direction in testing models that attempt to solve dark matter problems via explosive feedback episodes. Can the same models that create large cores in simulated dwarfs preserve the mild stellar rotation that is seen in a minority of isolated d

  6. The Origin of Ultra-Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Sand, David

    2017-08-01

    We request 24 orbits of HST/ACS to obtain imaging in F606W and F814W of apparent tidal features in two ultra-faint dwarf galaxies: Hercules and Leo V. This will enable us to test whether the stars in ultra- faint galaxies-as a population-have been affected by Galactic tides. Most of the new dwarfs show signs of tidal interaction in ground-based photometry, several have measured ellipticities greater than 0.5, and kinematics of a subset show velocity gradients. These ubiquitous hints for tidal effects among distant dwarfs is particularly surprising and suggestive. If most ultra-faint dwarfs are disturbed by tides, then recent tests of galaxy formation in the near field have unstable foundations.HST resolution provides an opportunity to assess whether tidal features (accompanied by tentative kinematic gradients) seen in ground-based observations of Hercules and Leo V are genuine or are instead clumps of compact background galaxies masquerading as stellar debris. In Hercules, a further test is possible: searching for a distance gradient along the stretched body of the galaxy. Parallel pointings will sample similar dwarf-centric radii away from the tidal features, assuring an unambiguous result. Whether we confirm or rule out the presence of stellar loss in these objects, the consequences are important-the origin of the ultra-faint dwarfs tells us the lower limit to both galaxy formation and the number of dark matter subhalos inhabiting the Milky Way.This program is only possible with HST: its exquisite resolution can separate compact galaxies from main sequence dwarf stars at faint magnitudes, which even the best multi-band ground-based schemes struggle with.

  7. The Low-Mass Stellar Initial Mass Function: Ultra-Faint Dwarf Galaxies Revisited

    NASA Astrophysics Data System (ADS)

    Platais, Imants

    2017-08-01

    The stellar Initial Mass Function plays a critical role in the evolution of the baryonic content of the Universe. The form of the low-mass IMF - stars of mass less than the solar mass - determines the fraction of baryons locked up for a Hubble time, and thus indicates how gas and metals are cycled through galaxies. Inferences from resolved stellar populations, where the low-mass luminosity function and associated IMF can be derived from direct star counts, generally favor an invariant and universal IMF. However, a recent study of ultra-faint dwarf galaxies Hercules and Leo IV indicates a bottom-lite IMF, over a narrow range of stellar mass (only 0.55-0.75 M_sun), correlated with the internal velocity dispersion and/or metallicity. We propose to obtain ultra-deep imaging for a significantly closer ultra-faint dwarf, Bootes I, which will allow us to construct the luminosity function down to M_v=+10 (equivalent to 0.35 solar mass). We will also re-analyze the HST archival observations for the Hercules and Leo IV dwarfs using the same updated techniques as for Bootes I. The combined datasets should provide a reliable answer to the question of how variable is the low-mass stellar IMF.

  8. Local Group ultra-faint dwarf galaxies in the reionization era

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Boylan-Kolchin, Michael

    2017-07-01

    Motivated by the stellar fossil record of Local Group (LG) dwarf galaxies, we show that the star-forming ancestors of the faintest ultra-faint dwarf galaxies (UFDs; MV ˜ -2 or M⋆ ˜ 102 at z = 0) had ultraviolet (UV) luminosities of MUV ˜ -3 to -6 during reionization (z ˜ 6-10). The existence of such faint galaxies has substantial implications for early epochs of galaxy formation and reionization. If the faint-end slopes of the UV luminosity functions (UVLFs) during reionization are steep (α ≲ -2) to MUV ˜ -3, then (I) the ancestors of UFDs produced >50 per cent of UV flux from galaxies; (II) galaxies can maintain reionization with escape fractions that are more than two times lower than currently adopted values; (III) direct Hubble Space Telescope and James Webb Space Telescope observations may detect only ˜10-50 per cent of the UV light from galaxies; and (IV) the cosmic star formation history increases by ≳ 4-6 at z ≳ 6. Significant flux from UFDs, and resultant tensions with LG dwarf galaxy counts, is reduced if the high-redshift UVLF turns over. Independent of the UVLF shape, the existence of a large population of UFDs requires a non-zero luminosity function to MUV ˜ -3 during reionization.

  9. Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Vasiliev, Eugene; Li, Yuexing; Jing, Yipeng

    2018-05-01

    The ground-breaking detections of gravitational waves from black hole mergers by LIGO have rekindled interest in primordial black holes (PBHs) and the possibility of dark matter being composed of PBHs. It has been suggested that PBHs of tens of solar masses could serve as dark matter candidates. Recent analytical studies demonstrated that compact ultra-faint dwarf galaxies can serve as a sensitive test for the PBH dark matter hypothesis, since stars in such a halo-dominated system would be heated by the more massive PBHs, their present-day distribution can provide strong constraints on PBH mass. In this study, we further explore this scenario with more detailed calculations, using a combination of dynamical simulations and Bayesian inference methods. The joint evolution of stars and PBH dark matter is followed with a Fokker-Planck code PHASEFLOW. We run a large suite of such simulations for different dark matter parameters, then use a Markov chain Monte Carlo approach to constrain the PBH properties with observations of ultra-faint galaxies. We find that two-body relaxation between the stars and PBH drives up the stellar core size, and increases the central stellar velocity dispersion. Using the observed half-light radius and velocity dispersion of stars in the compact ultra-faint dwarf galaxies as joint constraints, we infer that these dwarfs may have a cored dark matter halo with the central density in the range of 1-2 M⊙pc - 3, and that the PBHs may have a mass range of 2-14 M⊙ if they constitute all or a substantial fraction of the dark matter.

  10. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    NASA Astrophysics Data System (ADS)

    Wheeler, Coral Rose

    We study dwarf satellite galaxy quenching using observations from the Geha et al. (2012) NSA/SDSS catalog together with CDM cosmological simulations to facilitate selection and interpretation. We show that fewer than 30% of dwarfs (M* ˜ 108.5-9.5 Msun ) identified as satellites within massive host halos (M host ˜ 1012.5-14 Msun) are quenched. We conclude that whatever the action triggering environmental quenching of dwarf satellites, the process must be highly inefficient. We investigate a series of simple, one-parameter quenching models in order to understand what is required to explain the low quenched fraction and conclude that either the quenching timescale is very long (> 9.5 Gyr, a "slow starvation" scenario) or that the environmental trigger is not well matched to accretion within the virial volume. We further present FIRE/Gizmo hydrodynamic zoom-in simulations of isolated dark matter halos, two each at the mass of classical dwarf galaxies (Mvir ˜ 1010 Msun) and ultra-faint galaxies (Mvir ˜ 10 9 Msun). The resulting central galaxies lie on an extrapolated abundance matching relation from M* ˜ 106 to 104 Msun without a break. Our dwarfs with M* ˜ 106 Msun each have 1-2 well-resolved satellites with M* = 3 - 200 x 103 Msun. Even our isolated ultra-faint galaxies have star-forming subhalos. We combine our results with the ELVIS simulations to show that targeting the ˜ 50 kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ˜35% compared to random pointings. The well-resolved ultra-faint galaxies in our simulations (M * ˜ 3 - 30 x 103 Msun) form within Mpeak ˜ 0.5 - 3 x 109 Msun halos. Each has a uniformly ancient stellar population (> 10 Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo ˜ 5 x 109 Msun is a probable dividing line between halos hosting reionization "fossils" and those hosting dwarfs

  11. On the Nature of Ultra-faint Dwarf Galaxy Candidates. II. The Case of Cetus II

    NASA Astrophysics Data System (ADS)

    Conn, Blair C.; Jerjen, Helmut; Kim, Dongwon; Schirmer, Mischa

    2018-04-01

    We obtained deep Gemini GMOS-S g, r photometry of the ultra-faint dwarf galaxy candidate Cetus II with the aim of providing stronger constraints on its size, luminosity, and stellar population. Cetus II is an important object in the size–luminosity plane, as it occupies the transition zone between dwarf galaxies and star clusters. All known objects smaller than Cetus II (r h ∼ 20 pc) are reported to be star clusters, while most larger objects are likely dwarf galaxies. We found a prominent excess of main-sequence stars in the color–magnitude diagram of Cetus II, best described by a single stellar population with an age of 11.2 Gyr, metallicity of [Fe/H] = ‑1.28 dex, an [α/Fe] = 0.0 dex at a heliocentric distance of 26.3 ± 1.2 kpc. As well as being spatially located within the Sagittarius dwarf tidal stream, these properties are well matched to the Sagittarius galaxy’s Population B stars. Interestingly, like our recent findings on the ultra-faint dwarf galaxy candidate Tucana V, the stellar field in the direction of Cetus II shows no evidence of a concentrated overdensity despite tracing the main sequence for over six magnitudes. These results strongly support the picture that Cetus II is not an ultra-faint stellar system in the Milky Way halo, but made up of stars from the Sagittarius tidal stream.

  12. ARE THE ULTRA-FAINT DWARF GALAXIES JUST CUSPS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotov, Adi; Hogg, David W.; Willman, Beth, E-mail: az481@nyu.edu

    2011-01-20

    We develop a technique to investigate the possibility that some of the recently discovered ultra-faint dwarf satellites of the Milky Way might be cusp caustics rather than gravitationally self-bound systems. Such cusps can form when a stream of stars folds, creating a region where the projected two-dimensional surface density is enhanced. In this work, we construct a Poisson maximum likelihood test to compare the cusp and exponential models of any substructure on an equal footing. We apply the test to the Hercules dwarf (d {approx} 113 kpc, M{sub V} {approx} -6.2, e {approx} 0.67). The flattened exponential model is stronglymore » favored over the cusp model in the case of Hercules, ruling out at high confidence that Hercules is a cusp catastrophe. This test can be applied to any of the Milky Way dwarfs, and more generally to the entire stellar halo population, to search for the cusp catastrophes that might be expected in an accreted stellar halo.« less

  13. Confirmation of Faint Dwarf Galaxies in the M81 Group

    NASA Astrophysics Data System (ADS)

    Chiboucas, Kristin; Jacobs, Bradley A.; Tully, R. Brent; Karachentsev, Igor D.

    2013-11-01

    We have followed up on the results of a 65 deg2 CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M_{r^{\\prime }} = -10, we find a galaxy luminosity function slope of -1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size Re ~ 100 pc and total magnitude estimates M_{r^{\\prime }} = -6.8 and MI ~ -9.1.

  14. THE PRIMEVAL POPULATIONS OF THE ULTRA-FAINT DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.

    We present new constraints on the star formation histories of the ultra-faint dwarf (UFD) galaxies, using deep photometry obtained with the Hubble Space Telescope (HST). A galaxy class recently discovered in the Sloan Digital Sky Survey, the UFDs appear to be an extension of the classical dwarf spheroidals to low luminosities, offering a new front in efforts to understand the missing satellite problem. They are the least luminous, most dark-matter-dominated, and least chemically evolved galaxies known. Our HST survey of six UFDs seeks to determine if these galaxies are true fossils from the early universe. We present here the preliminarymore » analysis of three UFD galaxies: Hercules, Leo IV, and Ursa Major I. Classical dwarf spheroidals of the Local Group exhibit extended star formation histories, but these three Milky Way satellites are at least as old as the ancient globular cluster M92, with no evidence for intermediate-age populations. Their ages also appear to be synchronized to within {approx}1 Gyr of each other, as might be expected if their star formation was truncated by a global event, such as reionization.« less

  15. Variable Stars in the Field of the Hydra II Ultra-Faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, Anna Katherina; Olsen, Knut A.; Blum, Robert D.; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas; Besla, Gurtina; Gallart, Carme; Van Der Marel, Roeland P.; Majewski, Steven R.; Munoz, Ricardo; Kaleida, Catherine C.; Saha, Abhijit; Conn, Blair; Jin, Shoko

    2016-06-01

    We searched for variable stars in Hydra II, one of the recently discovered ultra-faint dwarf satellites of the Milky Way, using gri time-series obtained with the Dark Energy Camera (DECam) at Cerro Tololo Inter-American Observatory, Chile. We discovered one RR Lyrae star in the galaxy which was used to derive a distance of 154±8 kpc to this system and to re-calculate its absolute magnitude and half-light radius.A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  16. Variable Stars in the Field of the Hydra II Ultra-faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, A. Katherina; Olsen, Knut; Blum, Robert; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas F.; Besla, Gurtina; Gallart, Carme; van der Marel, Roeland P.; Majewski, Steven R.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Saha, Abhijit; Conn, Blair C.; Jin, Shoko

    2016-05-01

    We report the discovery of one RR Lyrae star in the ultra-faint satellite galaxy Hydra II based on time series photometry in the g, r and I bands obtained with the Dark Energy Camera at Cerro Tololo Inter-American Observatory, Chile. The association of the RR Lyrae star discovered here with Hydra II is clear because is located at 42\\prime\\prime from the center of the dwarf, well within its half-light radius of 102\\prime\\prime . The RR Lyrae star has a mean magnitude of I=21.30+/- 0.04 which is too faint to be a field halo star. This magnitude translates to a heliocentric distance of 151 ± 8 kpc for Hydra II; this value is ˜ 13% larger than the estimate from the discovery paper based on the average magnitude of several blue horizontal branch star candidates. The new distance implies a slightly larger half-light radius of {76}-10+12 pc and a brighter absolute magnitude of {M}V=-5.1+/- 0.3, which keeps this object within the realm of the dwarf galaxies. A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  17. STELLAR ARCHEOLOGY IN THE GALACTIC HALO WITH ULTRA-FAINT DWARFS. VII. HERCULES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musella, Ilaria; Ripepi, Vincenzo; Marconi, Marcella, E-mail: ilaria@na.astro.it, E-mail: ripepi@na.astro.it, E-mail: marcella@na.astro.it

    2012-09-10

    We present the first time-series study of the ultra-faint dwarf galaxy Hercules. Using a variety of telescope/instrument facilities we secured about 50 V and 80 B epochs. These data allowed us to detect and characterize 10 pulsating variable stars in Hercules. Our final sample includes six fundamental-mode (ab-type) and three first-overtone (c-type) RR Lyrae stars, and one Anomalous Cepheid. The average period of the ab-type RR Lyrae stars, (P{sub ab}) = 0.68 days ({sigma} = 0.03 days), places Hercules in the Oosterhoff II group, as found for almost the totality of the ultra-faint dwarf galaxies investigated so far for variability.more » The RR Lyrae stars were used to obtain independent estimates of the metallicity, reddening, and distance to Hercules, for which we find [Fe/H] = -2.30 {+-} 0.15 dex, E(B - V) = 0.09 {+-} 0.02 mag, and (m - M){sub 0} = 20.6 {+-} 0.1 mag, in good agreement with the literature values. We have obtained a V, B - V color-magnitude diagram (CMD) of Hercules that reaches V {approx} 25 mag and extends beyond the galaxy's half-light radius over a total area of 40' Multiplication-Sign 36'. The CMD and the RR Lyrae stars indicate the presence of a population as old and metal-poor as (at least) the Galactic globular cluster M68.« less

  18. Teaching the Thrill of Discovery: Student Exploration of Ultra-Faint Dwarf Galaxies with the NOAO Data Lab

    NASA Astrophysics Data System (ADS)

    Olsen, Knut; Walker, Constance E.; Smith, Blake; NOAO Data Lab Team

    2018-01-01

    We describe an activity aimed at teaching students how ultra-faint Milky Way dwarf galaxies are typically discovered: through filtering of optical photometric catalogs and cross-examination with deep images. The activity, which was developed as part of the Teen Astronomy Café program (https://teensciencecafe.org/cafes/az-teen-astronomy-cafe-tucson/), uses the NOAO Data Lab (http://datalab.noao.edu) and other professional-grade tools to lead high school students through exploration of the object catalog and images from the Survey of the Magellanic Stellar History (SMASH). The students are taught how to use images and color-magnitude diagrams to analyze and interpret stellar populations of increasing complexity, including those of star clusters and the Magellanic Clouds, and culminating with the discovery of the Hydra II ultra-faint dwarf galaxy. The tools and datasets presented allow the students to explore and discover other known stellar systems, as well as unknown candidate star clusters and dwarf galaxies. The ultimate goal of the activity is to give students insight into the methods of modern astronomical research and to allow them to participate in the thrill of discovery.

  19. The Chemical Evolution of the Bootes I Ultra-faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Frebel, Anna; Norris, John E.; Gilmore, Gerard; Wyse, Rosemary F. G.

    2016-08-01

    We present chemical abundance measurements of two metal-poor red giant stars in the ultra-faint dwarf galaxy Boötes I, based on Magellan/MIKE high-resolution spectra. For Boo-980, with {{[Fe/H]}}=-3.1, we present the first elemental abundance measurements, while Boo-127, with {{[Fe/H]}}=-2.0, shows abundances in good agreement with previous measurements. Light and iron-peak element abundance ratios in the two Boötes I stars, as well as those of most other Boötes I members, collected from the literature, closely resemble those of regular metal-poor halo stars. Neutron-capture element abundances Sr and Ba are systematically lower than the main halo trend and also show a significant abundance spread. Overall, this is similar to what has been found for other ultra-faint dwarf galaxies. We apply corrections to the carbon abundances (commensurate with stellar evolutionary status) of the entire sample and find 21% of stars to be carbon-enhanced metal-poor (CEMP) stars, compared to 13% without using the carbon correction. We reassess the metallicity distribution functions for the CEMP stars and non-CEMP stars, and confirm earlier claims that CEMP stars might belong to a different, earlier population. Applying a set of abundance criteria to test to what extent Boötes I could be a surviving first galaxy suggests that it is one of the earliest assembled systems that perhaps received gas from accretion from other clouds in the system, or from swallowing a first galaxy or building block type object. This resulted in the two stellar populations observable today. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  20. CHEMICAL DIVERSITY IN THE ULTRA-FAINT DWARF GALAXY TUCANA II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana

    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = −3.2 to −2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < −1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = −2.6) and shows [Na, α , Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < −3 are mildly carbon-enhanced ([C/Fe] ∼more » 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = −3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe.« less

  1. A common origin for globular clusters and ultra-faint dwarfs in simulations of the first galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricotti, Massimo; Parry, Owen H.; Gnedin, Nickolay Y.

    In this study, the first in a series on galaxy formation before reionization, we focus on understanding what determines the size and morphology of stellar objects in the first low-mass galaxies, using parsec-scale cosmological simulations performed with an adaptive mesh hydrodynamics code. Although the dense gas in which stars are formed tends to have a disk structure, stars are found in spheroids with little rotation. Halos with masses betweenmore » $${10}^{6}\\,{M}_{\\odot }$$ and $$5\\times {10}^{8}\\,{M}_{\\odot }$$ form stars stochastically, with stellar masses in the range $${10}^{4}\\,{M}_{\\odot }$$ to $$2\\times {10}^{6}\\,{M}_{\\odot }$$. We observe, nearly independent of stellar mass, a large range of half-light radii for the stars, from a few parsecs to a few hundred parsecs and surface brightnesses and mass-to-light ratios ranging from those typical of globular clusters to ultra-faint dwarfs. In our simulations, stars form in dense stellar clusters with high gas-to-star conversion efficiencies and rather uniform metallicities. A fraction of these clusters remain bound after the gas is removed by feedback, but others are destroyed, and their stars, which typically have velocity dispersions of 20–40 km s –1, expand until they become bound by the dark matter halo. We thus speculate that the stars in ultra-faint dwarf galaxies may show kinematic and chemical signatures consistent with their origin in a few distinct stellar clusters. On the other hand, some globular clusters may form at the center of primordial dwarf galaxies and may contain dark matter, perhaps detectable in the outer parts.« less

  2. A common origin for globular clusters and ultra-faint dwarfs in simulations of the first galaxies

    DOE PAGES

    Ricotti, Massimo; Parry, Owen H.; Gnedin, Nickolay Y.

    2016-11-09

    In this study, the first in a series on galaxy formation before reionization, we focus on understanding what determines the size and morphology of stellar objects in the first low-mass galaxies, using parsec-scale cosmological simulations performed with an adaptive mesh hydrodynamics code. Although the dense gas in which stars are formed tends to have a disk structure, stars are found in spheroids with little rotation. Halos with masses betweenmore » $${10}^{6}\\,{M}_{\\odot }$$ and $$5\\times {10}^{8}\\,{M}_{\\odot }$$ form stars stochastically, with stellar masses in the range $${10}^{4}\\,{M}_{\\odot }$$ to $$2\\times {10}^{6}\\,{M}_{\\odot }$$. We observe, nearly independent of stellar mass, a large range of half-light radii for the stars, from a few parsecs to a few hundred parsecs and surface brightnesses and mass-to-light ratios ranging from those typical of globular clusters to ultra-faint dwarfs. In our simulations, stars form in dense stellar clusters with high gas-to-star conversion efficiencies and rather uniform metallicities. A fraction of these clusters remain bound after the gas is removed by feedback, but others are destroyed, and their stars, which typically have velocity dispersions of 20–40 km s –1, expand until they become bound by the dark matter halo. We thus speculate that the stars in ultra-faint dwarf galaxies may show kinematic and chemical signatures consistent with their origin in a few distinct stellar clusters. On the other hand, some globular clusters may form at the center of primordial dwarf galaxies and may contain dark matter, perhaps detectable in the outer parts.« less

  3. Foreground effect on the J-factor estimation of ultra-faint dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Ichikawa, Koji; Horigome, Shun-ichi; Ishigaki, Miho N.; Matsumoto, Shigeki; Ibe, Masahiro; Sugai, Hajime; Hayashi, Kohei

    2018-05-01

    Dwarf spheroidal galaxies (dSphs) are promising targets for the gamma-ray dark matter (DM) search. In particular, DM annihilation signal is expected to be strong in some of the recently discovered nearby ultra-faint dSphs, which potentially give stringent constraints on the O(1) TeV WIMP DM. However, various non-negligible systematic uncertainties complicate the estimation of the astrophysical factors relevant for the DM search in these objects. Among them, the effects of foreground stars particularly attract attention because the contamination is unavoidable even for the future kinematical survey. In this article, we assess the effects of the foreground contamination on the astrophysical J-factor estimation by generating mock samples of stars in the four ultra-faint dSphs and using a model of future spectrographs. We investigate various data cuts to optimize the quality of the data and apply a likelihood analysis which takes member and foreground stellar distributions into account. We show that the foreground star contaminations in the signal region (the region of interest) and their statistical uncertainty can be estimated by interpolating the foreground star distribution in the control region where the foreground stars dominate the member stars. Such regions can be secured at future spectroscopic observations utilizing a multiple object spectrograph with a large field of view; e.g. the Prime Focus Spectrograph mounted on Subaru Telescope. The above estimation has several advantages: The data-driven estimation of the contamination makes the analysis of the astrophysical factor stable against the complicated foreground distribution. Besides, foreground contamination effect is considered in the likelihood analysis.

  4. STAR FORMATION IN ULTRA-FAINT DWARFS: CONTINUOUS OR SINGLE-AGE BURSTS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, David; Bland-Hawthorn, Joss; Sutherland, Ralph, E-mail: d.webster@physics.usyd.edu.au

    2015-01-30

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce themore » chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass (M{sub vir}∼10{sup 7} M{sub ⊙}), rather than being stripped remnants of much larger systems.« less

  5. Extremely faint, diffuse satellite systems in the M31 halo: exceptional star clusters or tiny dwarf galaxies?

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal

    2013-10-01

    Recent years have seen the discovery of a variety of low surface brightness, diffuse stellar systems in the Local Group. Of particular prominence are the ultra-faint dwarf satellites of the Milky Way and the extended globular clusters seen in M31, M33, and NGC 6822. As part of the major Pan-Andromeda Archaeological Survey {PAndAS} we have discovered several very faint and diffuse stellar satellites in the M31 halo. In Cycle 19 we obtained ACS/WFC imaging for one of these, PAndAS-48, which has revealed it to be a puzzling and unusual object. On the size-luminosity plane it falls between the extended clusters and ultra-faint dwarfs; however, its characteristics do not allow us to unambiguously class it as either type of system. If PAndAS-48 is an extended cluster then it is the most elliptical, isolated, metal-poor, and lowest-luminosity example yet uncovered. Conversely, while its properties are generally consistent with those observed for the faint dwarf satellites of the Milky Way, it would be a factor 2-3 smaller in spatial extent than its Galactic counterparts at comparable luminosity. Here we propose deep resolved imaging of the remaining five similar objects in our sample, with the aim of probing this hitherto poorly-explored region of parameter space in greater detail. If we are able to confirm any of these objects as faint dwarfs, they will provide the first insight into the behaviour of this class of object in a galaxy other than the Milky Way.

  6. Horologium II: A Second Ultra-faint Milky Way Satellite in the Horologium Constellation

    NASA Astrophysics Data System (ADS)

    Kim, Dongwon; Jerjen, Helmut

    2015-08-01

    We report the discovery of a new ultra-faint Milky Way satellite candidate, Horologium II (Hor II), detected in the Dark Energy Survey Y1A1 public data. Hor II features a half-light radius of {r}{{h}}=47+/- 10 pc and a total luminosity of {M}V=-{2.6}-0.3+0.2 that place it in the realm of ultra-faint dwarf galaxies on the size-luminosity plane. The stellar population of the new satellite is consistent with an old (˜13.5 Gyr) and metal-poor ([Fe/H] ˜ -2.1) isochrone at a distance modulus of (m-M)=19.46+/- 0.20, or a heliocentric distance of 78 ± 8 kpc, in the color-magnitude diagram. Hor II has a distance similar to the Sculptor dwarf spheroidal galaxy (˜82 kpc) and the recently reported ultra-faint satellites Eridanus III (87 ± 8 kpc) and Horologium I (79 ± 8 kpc). All four satellites are well aligned on the sky, which suggests a possible common origin. As Sculptor is moving on a retrograde orbit within the Vast Polar Structure when compared to the other classical MW satellite galaxies including the Magellanic Clouds, this hypothesis can be tested once proper motion measurements become available.

  7. On the Nature of Ultra-faint Dwarf Galaxy Candidates. I. DES1, Eridanus III, and Tucana V

    NASA Astrophysics Data System (ADS)

    Conn, Blair C.; Jerjen, Helmut; Kim, Dongwon; Schirmer, Mischa

    2018-01-01

    We use deep Gemini/GMOS-S g, r photometry to study the three ultra-faint dwarf galaxy candidates DES1, Eridanus III (Eri III), and Tucana V (Tuc V). Their total luminosities, M V (DES1) = ‑1.42 ± 0.50 and M V (Eri III) = ‑2.07 ± 0.50, and mean metallicities, [{Fe}/{{H}}]=-{2.38}-0.19+0.21 and [{Fe}/{{H}}]=-{2.40}-0.12+0.19, are consistent with them being ultra-faint dwarf galaxies, as they fall just outside the 1σ confidence band of the luminosity–metallicity relation for Milky Way satellite galaxies. However, their positions in the size–luminosity relation suggest that they are star clusters. Interestingly, DES1 and Eri III are at relatively large Galactocentric distances, with DES1 located at {D}{GC}=74+/- 4 {kpc} and Eri III at {D}{GC}=91+/- 4 {kpc}. In projection, both objects are in the tail of gaseous filaments trailing the Magellanic Clouds and have similar 3D separations from the Small Magellanic Cloud (SMC): {{Δ }}{D}{SMC,{DES}1}=31.7 kpc and {{Δ }}{D}{SMC,{Eri}{III}}=41.0 kpc, respectively. It is plausible that these stellar systems are metal-poor SMC satellites. Tuc V represents an interesting phenomenon in its own right. Our deep photometry at the nominal position of Tuc V reveals a low-level excess of stars at various locations across the GMOS field without a well-defined center. An SMC Northern Overdensity–like isochrone would be an adequate match to the Tuc V color–magnitude diagram, and the proximity to the SMC (12.°1 {{Δ }}{D}{SMC,{Tuc}{{V}}}=13 kpc) suggests that Tuc V is either a chance grouping of stars related to the SMC halo or a star cluster in an advanced stage of dissolution.

  8. Stellar kinematics and metallicities in the ultra-faint dwarf galaxy Reticulum II

    DOE PAGES

    Simon, J. D.

    2015-07-23

    With this study, we present Magellan/M2FS, Very Large Telescope/GIRAFFE, and Gemini South/GMOS spectroscopy of the newly discovered Milky Way satellite Reticulum II. Based on the spectra of 25 Ret II member stars selected from Dark Energy Survey imaging, we measure a mean heliocentric velocity ofmore » $$62.8\\pm 0.5\\;\\mathrm{km}\\;{\\rm{s}}^{-1}$$ and a velocity dispersion of $$3.3\\pm 0.7\\;\\mathrm{km}\\;{\\rm{s}}^{-1}$$. The mass-to-light ratio of Ret II within its half-light radius is $$470\\pm 210\\ {M}_{\\odot }/{L}_{\\odot }$$, demonstrating that it is a strongly dark matter-dominated system. Despite its spatial proximity to the Magellanic Clouds, the radial velocity of Ret II differs from that of the LMC and SMC by 199 and 83 $$\\mathrm{km}\\ {{\\rm{s}}}^{-1}$$, respectively, suggesting that it is not gravitationally bound to the Magellanic system. The likely member stars of Ret II span 1.3 dex in metallicity, with a dispersion of 0.28 ± 0.09 dex, and we identify several extremely metal-poor stars with $${\\rm{[Fe/H]}}\\lt -3$$. In combination with its luminosity, size, and ellipticity, these results confirm that Ret II is an ultra-faint dwarf galaxy. With a mean metallicity of $${\\rm{[Fe/H]}}=-2.65\\pm 0.07$$, Ret II matches Segue 1 as the most metal-poor galaxy known. Although Ret II is the third-closest dwarf galaxy to the Milky Way, the line-of-sight integral of the dark matter density squared is $${\\mathrm{log}}_{10}(J)=18.8\\pm 0.6\\;\\;\\mathrm{GeV}{\\;}^{2}\\;{\\mathrm{cm}}^{-5}\\;$$ within 0fdg2, indicating that the predicted gamma-ray flux from dark matter annihilation in Ret II is lower than that of several other dwarf galaxies.« less

  9. CEMP Stars in the Halo and Their Origin in Ultra-Faint Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Beers, Timothy C.

    2018-06-01

    The very metal-poor (VMP; [Fe/H] < –2.0) and extremely metal-poor (EMP; [Fe/H] < –3.0) stars provide a direct view of Galactic chemical and dynamical evolution; detailed spectroscopic studies of these objects are the best way to identify and distinguish between various scenarios for the enrichment of early star-forming gas clouds soon after the Big Bang. It has been recognized that a large fraction of VMP (15-20%) and EMP stars (30-40%) possess significant over-abundances of carbon relative to iron, [C/Fe] > +0.7. This fraction rises to at least 80% for stars with [Fe/H] < –4.0. Recent studies show that the majority of CEMP stars with [Fe/H] < –3.0 belong to the CEMP-no sub-class, characterized by the lack of strong enhancements in the neutron-capture elements (e.g., [Ba/Fe] < 0.0). The CEMP-no abundance signature is commonly observed among stars ultra-faint dwarf spheroidal galaxies such as SEGUE-1. In addition, kinematic studies of CEMP-no stars strongly suggest an association with the outer-halo population of the Galaxy, which was likely formed from the accretion of low-mass mini-halos. These observations, and other lines of evidence, indicate that the CEMP-no stars of the Milky Way were born in low-mass dwarf galaxies, and later subsumed into the halo.

  10. The quenching of the ultra-faint dwarf galaxies in the reionization era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.

    2014-12-01

    We present new constraints on the star formation histories of six ultra-faint dwarf galaxies: Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I. Our analysis employs a combination of high-precision photometry obtained with the Advanced Camera for Surveys on the Hubble Space Telescope, medium-resolution spectroscopy obtained with the DEep Imaging Multi-Object Spectrograph on the W. M. Keck Observatory, and updated Victoria-Regina isochrones tailored to the abundance patterns appropriate for these galaxies. The data for five of these Milky Way satellites are best fit by a star formation history where at least 75% of the starsmore » formed by z ∼ 10 (13.3 Gyr ago). All of the galaxies are consistent with 80% of the stars forming by z ∼ 6 (12.8 Gyr ago) and 100% of the stars forming by z ∼ 3 (11.6 Gyr ago). The similarly ancient populations of these galaxies support the hypothesis that star formation in the smallest dark-matter sub-halos was suppressed by a global outside influence, such as the reionization of the universe.« less

  11. Eight ultra-faint galaxy candidates discovered in year two of the Dark Energy Survey

    DOE PAGES

    Drlica-Wagner, A.

    2015-11-04

    Here, we report the discovery of eight new ultra-faint dwarf galaxy candidates in the second year of optical imaging data from the Dark Energy Survey (DES). Six of these candidates are detected at high confidence, while two lower-confidence candidates are identified in regions of non-uniform survey coverage. The new stellar systems are found by three independent automated search techniques and are identified as overdensities of stars, consistent with the isochrone and luminosity function of an old and metal-poor simple stellar population. The new systems are faint (M V > –4.7more » $$\\mathrm{mag}$$) and span a range of physical sizes (17 $$\\mathrm{pc}$$ < r 1/2 < 181 $$\\mathrm{pc}$$) and heliocentric distances (25 kpc < D ⊙ < 214 kpc). All of the new systems have central surface brightnesses consistent with known ultra-faint dwarf galaxies (μ ≳ 27.5 $$\\mathrm{mag}$$ $$\\mathrm{arcsec}$$ –2). Roughly half of the DES candidates are more distant, less luminous, and/or have lower surface brightnesses than previously known Milky Way satellite galaxies. Most of the candidates are found in the southern part of the DES footprint close to the Magellanic Clouds. We find that the DES data alone exclude (p < 10 –3) a spatially isotropic distribution of Milky Way satellites and that the observed distribution can be well, though not uniquely, described by an association between several of the DES satellites and the Magellanic system. Our model predicts that the full sky may hold ~100 ultra-faint galaxies with physical properties comparable to the DES satellites and that 20%–30% of these would be spatially associated with the Magellanic Clouds.« less

  12. Eight ultra-faint galaxy candidates discovered in year two of the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drlica-Wagner, A.

    Here, we report the discovery of eight new ultra-faint dwarf galaxy candidates in the second year of optical imaging data from the Dark Energy Survey (DES). Six of these candidates are detected at high confidence, while two lower-confidence candidates are identified in regions of non-uniform survey coverage. The new stellar systems are found by three independent automated search techniques and are identified as overdensities of stars, consistent with the isochrone and luminosity function of an old and metal-poor simple stellar population. The new systems are faint (M V > –4.7more » $$\\mathrm{mag}$$) and span a range of physical sizes (17 $$\\mathrm{pc}$$ < r 1/2 < 181 $$\\mathrm{pc}$$) and heliocentric distances (25 kpc < D ⊙ < 214 kpc). All of the new systems have central surface brightnesses consistent with known ultra-faint dwarf galaxies (μ ≳ 27.5 $$\\mathrm{mag}$$ $$\\mathrm{arcsec}$$ –2). Roughly half of the DES candidates are more distant, less luminous, and/or have lower surface brightnesses than previously known Milky Way satellite galaxies. Most of the candidates are found in the southern part of the DES footprint close to the Magellanic Clouds. We find that the DES data alone exclude (p < 10 –3) a spatially isotropic distribution of Milky Way satellites and that the observed distribution can be well, though not uniquely, described by an association between several of the DES satellites and the Magellanic system. Our model predicts that the full sky may hold ~100 ultra-faint galaxies with physical properties comparable to the DES satellites and that 20%–30% of these would be spatially associated with the Magellanic Clouds.« less

  13. Serendipitous discovery of a faint dwarf galaxy near a Local Volume dwarf

    NASA Astrophysics Data System (ADS)

    Makarova, L. N.; Makarov, D. I.; Antipova, A. V.; Karachentsev, I. D.; Tully, R. B.

    2018-03-01

    A faint dwarf irregular galaxy has been discovered in the HST/ACS field of LV J1157+5638. The galaxy is resolved into individual stars, including the brightest magnitude of the red giant branch. The dwarf is very likely a physical satellite of LV J1157+5638. The distance modulus of LV J1157+5638 using the tip of the red giant branch (TRGB) distance indicator is 29.82 ± 0.09 mag (D = 9.22 ± 0.38 Mpc). The TRGB distance modulus of LV J1157+5638 sat is 29.76 ± 0.11 mag (D = 8.95 ± 0.42 Mpc). The distances to the two galaxies are consistent within the uncertainties. The projected separation between them is only 3.9 kpc. LV J1157+5638 has a total absolute V magnitude of -13.26 ± 0.10 and linear Holmberg diameter of 1.36 kpc, whereas its faint satellite LV J1157+5638 sat has MV = -9.38 ± 0.13 mag and Holmberg diameter of 0.37 kpc. Such a faint dwarf was discovered for the first time beyond the nearest 4 Mpc from us. The presence of main-sequence stars in both galaxies unambiguously indicates the classification of the objects as dwarf irregulars with recent or ongoing star formation events in both galaxies.

  14. Ultra faint dwarf galaxies: an arena for testing dark matter versus modified gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Weikang; Ishak, Mustapha, E-mail: wxl123830@utdallas.edu, E-mail: mishak@utdallas.edu

    2016-10-01

    The scenario consistent with a wealth of observations for the missing mass problem is that of weakly interacting dark matter particles. However, arguments or proposals for a Newtonian or relativistic modified gravity scenario continue to be made. A distinguishing characteristic between the two scenarios is that dark matter particles can produce a gravitational effect, in principle, without the need of baryons while this is not the case for the modified gravity scenario where such an effect must be correlated with the amount of baryonic matter. We consider here ultra-faint dwarf (UFD) galaxies as a promising arena to test the twomore » scenarios based on the above assertion. We compare the correlation of the luminosity with the velocity dispersion between samples of UFD and non-UFD galaxies, finding a significant loss of correlation for UFD galaxies. For example, we find for 28 non-UFD galaxies a strong correlation coefficient of −0.688 which drops to −0.077 for the 23 UFD galaxies. Incoming and future data will determine whether the observed stochasticity for UFD galaxies is physical or due to systematics in the data. Such a loss of correlation (if it is to persist) is possible and consistent with the dark matter scenario for UFD galaxies but would constitute a new challenge for the modified gravity scenario.« less

  15. Probing dark matter with star clusters: a dark matter core in the ultra-faint dwarf Eridanus II

    NASA Astrophysics Data System (ADS)

    Contenta, Filippo; Balbinot, Eduardo; Petts, James A.; Read, Justin I.; Gieles, Mark; Collins, Michelle L. M.; Peñarrubia, Jorge; Delorme, Maxime; Gualandris, Alessia

    2018-05-01

    We present a new technique to probe the central dark matter (DM) density profile of galaxies that harnesses both the survival and observed properties of star clusters. As a first application, we apply our method to the `ultra-faint' dwarf Eridanus II (Eri II) that has a lone star cluster ˜45 pc from its centre. Using a grid of collisional N-body simulations, incorporating the effects of stellar evolution, external tides and dynamical friction, we show that a DM core for Eri II naturally reproduces the size and the projected position of its star cluster. By contrast, a dense cusped galaxy requires the cluster to lie implausibly far from the centre of Eri II (>1 kpc), with a high inclination orbit that must be observed at a particular orbital phase. Our results, therefore, favour a DM core. This implies that either a cold DM cusp was `heated up' at the centre of Eri II by bursty star formation or we are seeing an evidence for physics beyond cold DM.

  16. THE DETECTION OF ULTRA-FAINT LOW SURFACE BRIGHTNESS DWARF GALAXIES IN THE VIRGO CLUSTER: A PROBE OF DARK MATTER AND BARYONIC PHYSICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giallongo, E.; Menci, N.; Grazian, A.

    2015-11-01

    We have discovered 11 ultra-faint (r ≲ 22.1) low surface brightness (LSB, central surface brightness 23 ≲ μ{sub r} ≲ 26) dwarf galaxy candidates in one deep Virgo field of just 576 arcmin{sup 2} obtained by the Large Binocular Camera at the Large Binocular Telescope. Their association with the Virgo cluster is supported by their distinct position in the central surface brightness—total magnitude plane with respect to the background galaxies of similar total magnitude. They have typical absolute magnitudes and scale sizes, if at the distance of Virgo, in the range −13 ≲ M{sub r} ≲ −9 and 250 ≲more » r{sub s} ≲ 850 pc, respectively. Their colors are consistent with a gradually declining star formation history with a specific star formation rate of the order of 10{sup −11} yr{sup −1}, i.e., 10 times lower than that of main sequence star-forming galaxies. They are older than the cluster formation age and appear to be regular in morphology. They represent the faintest extremes of the population of low luminosity LSB dwarfs that has recently been detected in wider surveys of the Virgo cluster. Thanks to the depth of our observations, we are able to extend the Virgo luminosity function down to M{sub r} ∼ −9.3 (corresponding to total masses M ∼ 10{sup 7} M{sub ⊙}), finding an average faint-end slope α ≃ −1.4. This relatively steep slope puts interesting constraints on the nature of the dark matter and, in particular, on warm dark matter (WDM) often invoked to solve the overprediction of the dwarf number density by the standard cold dark matter scenario. We derive a lower limit on the WDM particle mass >1.5 keV.« less

  17. A chemical confirmation of the faint Boötes II dwarf spheroidal galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Andreas; Rich, R. Michael, E-mail: akoch@lsw.uni-heidelberg.de

    2014-10-10

    We present a chemical abundance study of the brightest confirmed member star of the ultra-faint dwarf galaxy Boötes II from Keck/HIRES high-resolution spectroscopy at moderate signal-to-noise ratios. At [Fe/H] = –2.93 ± 0.03(stat.) ± 0.17(sys.), this star chemically resembles metal-poor halo field stars and the signatures of other faint dwarf spheroidal galaxies at the same metallicities in that it shows enhanced [α/Fe] ratios, Solar Fe-peak element abundances, and low upper limits on the neutron-capture element Ba. Moreover, this star shows no chemical peculiarities in any of the eight elements we were able to measure. This implies that the chemical outliersmore » found in other systems remain outliers pertaining to the unusual enrichment histories of the respective environments, while Boo II appears to have experienced an enrichment history typical of its very low mass. We also re-calibrated previous measurements of the galaxy's metallicity from the calcium triplet (CaT) and find a much lower value than reported before. The resulting broad metallicity spread, in excess of one dex, the very metal-poor mean, and the chemical abundance patterns of the present star imply that Boötes II is a low-mass, old, metal-poor dwarf galaxy and not an overdensity associated with the Sagittarius Stream as has been previously suggested based on its sky position and kinematics. The low, mean CaT metallicity of –2.7 dex falls right on the luminosity-metallicity relation delineated over four orders of magnitude from the more luminous to the faintest galaxies. Thus Boötes II's chemical enrichment appears representative of the galaxy's original mass, while tidal stripping and other mass loss mechanisms were probably not significant as for other low-mass satellites.« less

  18. Hunting Faint Dwarf Galaxies in the Field Using Integrated Light Surveys

    NASA Astrophysics Data System (ADS)

    Danieli, Shany; van Dokkum, Pieter; Conroy, Charlie

    2018-03-01

    We discuss the approach of searching the lowest mass dwarf galaxies, ≲ {10}6 {M}ȯ , in the general field, using integrated light surveys. By exploring the limiting surface brightness-spatial resolution (μ eff,lim‑θ) parameter space, we suggest that faint field dwarfs in the Local Volume, between 3 and 10 Mpc, are expected to be detected very effectively and in large numbers using integrated light photometric surveys, complementary to the classical star counts method. We use a sample of dwarf galaxies in the Local Group to construct relations between their photometric and structural parameters, M *–μ eff,V and M *–R eff. We use these relations, along with assumed functional forms for the halo mass function and the stellar mass–halo mass (SMHM) relation, to calculate the lowest detectable stellar masses in the Local Volume and the expected number of galaxies as a function of the limiting surface brightness and spatial resolution. The number of detected galaxies depends mostly on the limiting surface brightness for distances >3 Mpc, while spatial resolution starts to play a role for galaxies at distances >8 Mpc. Surveys with μ eff,lim ∼ 30 mag arcsec‑2 should be able to detect galaxies with stellar masses down to ∼104 M ⊙ in the Local Volume. Depending on the form of the SMHM relation, the expected number of dwarf galaxies with distances between 3 and 10 Mpc is 0.04–0.35 per square degree, assuming a limiting surface brightness of ∼29–30 mag arcsec‑2 and a spatial resolution <4″. We plan to search for a population of low-mass dwarf galaxies in the field by performing a blank wide field photometric survey with the Dragonfly Telephoto Array, an imaging system optimized for the detection of extended ultra low surface brightness structures.

  19. Antlia B: A Faint Dwarf Galaxy Member of the NGC 3109 Association

    NASA Astrophysics Data System (ADS)

    Sand, D. J.; Spekkens, K.; Crnojević, D.; Hargis, J. R.; Willman, B.; Strader, J.; Grillmair, C. J.

    2015-10-01

    We report the discovery of Antlia B, a faint dwarf galaxy at a projected distance of ˜72 kpc from NGC 3109 ({M}V ˜ -15 {mag}), the primary galaxy of the NGC 3109 dwarf association at the edge of the Local Group. The tip of the red giant branch distance to Antlia B is D = 1.29 ± 0.10 Mpc, which is consistent with the distance to NGC 3109. A qualitative analysis indicates the new dwarf's stellar population has both an old, metal-poor red giant branch (≳ 10 {{Gyr}}, [Fe/H] ˜ -2), and a younger blue population with an age of ˜200-400 Myr, analogous to the original Antlia dwarf, another likely satellite of NGC 3109. Antlia B has H i gas at a velocity of {v}{helio,{{H}} {{I}}} = 376 km s-1, confirming the association with NGC 3109 (vhelio = 403 km s-1). The H i gas mass (MH i = 2.8 ± 0.2 × 105 {M}⊙ ), stellar luminosity (MV = -9.7 ± 0.6 mag) and half light radius (rh = 273 ± 29 pc) are all consistent with the properties of dwarf irregular and dwarf spheroidal galaxies in the Local Volume, and is most similar to the Leo P dwarf galaxy. The discovery of Antlia B is the initial result from a Dark Energy Camera survey for halo substructure and faint dwarf companions to NGC 3109 with the goal of comparing observed substructure with expectations from the Λ+Cold Dark Matter model in the sub-Milky Way regime.

  20. Faint blue galaxies revisited

    NASA Astrophysics Data System (ADS)

    Ferguson, Henry C.

    If dwarf-elliptical galaxies formed their stars very rapdily (on timescales of less than 1 Gyr), they may in principle be detectable out to high redshift. Prior to the discovery of cosmic acceleration, it appeared that rapid and late formation dwarf elliptical galaxies might be required to explain the number counts of faint galaxies. A plausible hypothesis emerged: that photoionization by the UV background prevents gas cooling in low-mass halos until z ≲ 1.5. The discovery of cosmic acceleration eased the tension between predicted galaxy number counts and galaxy-evolution models. Nevertheless, there is some evidence for relatively late star formation in nearby dE's, and the photoionization delay mechanism still appears to have some merit. It is thus of interest to look back in time to see if we can find starbursting dwarf galaxies at moderate redshift. We review the connection between faint-blue galaxies and bursting-dwarf galaxies and discuss some attempts to identify progenitors to dE galaxies in the Hubble Ultra Deep Field (HUDF) observations. We find roughly 85 galaxies in the HUDF with redshifts 0.6 that appear to have formed most of their stars at z. Of these, 70% have half-light radii less than 1.5 kpc. These are thus "smoking gun" candidates for dwarf galaxies that are either collapsing for the first time at moderate redshifts or have otherwise been unable to form stars for more than 1/3 of a Hubble time.

  1. Distinguishing CDM dwarfs from SIDM dwarfs in baryonic simulations

    NASA Astrophysics Data System (ADS)

    Strickland, Emily; Fitts, Alex B.; Boylan-Kolchin, Michael

    2017-06-01

    Dwarf galaxies in the nearby Universe are the most dark-matter-dominated systems known. They are therefore natural probes of the nature of dark matter, which remains unknown. Our collaboration has performed several high-resolution cosmological zoom-in simulations of isolated dwarf galaxies. We simulate each galaxy in standard cold dark matter (ΛCDM) as well as self-interacting dark matter (SIDM, with a cross section of σ/m ~ 1 cm2/g), both with and without baryons, in order to identify distinguishing characteristics between the two. The simulations are run using GIZMO, a meshless-finite-mass hydrodynamical code, and are part of the Feedback in Realistic Environments (FIRE) project. By analyzing both the global properties and inner structure of the dwarfs in varying dark matter prescriptions, we provide a side-by-side comparison of isolated, dark-matter-dominated galaxies at the mass scale where differences in the two models of dark matter are thought to be the most obvious. We find that the edge of classical dwarfs and ultra-faint dwarfs (at stellar masses of ~105 solar masses) provides the clearest window for distinguishing between the two theories. At these low masses, our SIDM galaxies have a cored inner density profile, while their CDM counterparts have “cuspy” centers. The SIDM versions of each galaxy also have measurably lower stellar velocity dispersions than their CDM counterparts. Future observations of ultra faint dwarfs with JWST and 30-m telescopes will be able to discern whether such alternate theories of dark matter are viable.

  2. DISCOVERY OF AN ULTRA-FAINT DWARF GALAXY IN THE INTRACLUSTER FIELD OF THE VIRGO CENTER: A FOSSIL OF THE FIRST GALAXIES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, In Sung; Lee, Myung Gyoon, E-mail: isjang@astro.snu.ac.kr, E-mail: mglee@astro.snu.ac.kr

    2014-11-01

    Ultra-faint dwarf galaxies (UFDs) are newcomers among galaxies, and are the faintest galaxies in the observed universe. To date, they have only been found around the Milky Way Galaxy and M31 in the Local Group. We present the discovery of a UFD in the intracluster field in the core of the Virgo cluster (Virgo UFD1), which is far from any massive galaxies. The color-magnitude diagram of the resolved stars in this galaxy shows a narrow red giant branch, similar to those of metal-poor globular clusters in the Milky Way. We estimate its distance by comparing the red giant branch withmore » isochrones, and we obtain a value 16.4 ± 0.4 Mpc. This shows that it is indeed a member of the Virgo cluster. From the color of the red giants we estimate its mean metallicity to be very low, [Fe/H] =–2.4 ± 0.4. Its absolute V-band magnitude and effective radius are derived to be M{sub V} = –6.5 ± 0.2 and r {sub eff} = 81 ± 7 pc, much fainter and smaller than the classical dwarf spheroidal galaxies. Its central surface brightness is estimated to be as low as μ {sub V,} {sub 0} = 26.37 ± 0.05 mag arcsec{sup –2}. Its properties are similar to those of the Local Group analogs. No evidence of tidal features are found in this galaxy. Considering its narrow red giant branch with no asymptotic giant branch stars, low metallicity, and location, it may be a fossil remnant of the first galaxies.« less

  3. DISCOVERY OF A NEW FAINT DWARF GALAXY ASSOCIATED WITH NGC 253

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sand, D. J.; Crnojević, D.; Strader, J.

    2014-09-20

    We report the discovery of a new faint dwarf galaxy, which we dub Scl-MM-Dw1, at a projected distance of ∼65 kpc from the spiral galaxy NGC 253. The discovery results from the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS), a program with the Magellan/Megacam imager to study faint substructure in resolved stellar light around massive galaxies outside of the Local Group. We measure a tip of the red giant branch distance to Scl-MM-Dw1 of D = 3.9 ± 0.5 Mpc, consistent with that of NGC 253, making their association likely. The new dwarf's stellar population is complex, with an old, metal-poor red giant branch (≳10 Gyr, [Fe/H] ∼ –2), andmore » an asymptotic giant branch with an age of ∼500 Myr. Scl-MM-Dw1 has a half-light radius of r{sub h} = 340 ± 50 pc and an absolute magnitude of M{sub V}  = –10.3 ± 0.6 mag, comparable to the Milky Way's satellites at the same luminosity. Once complete, our imaging survey of NGC 253 and other nearby massive galaxies will provide a census of faint substructure in halos beyond the Local Group, both to put our own environment into context and to confront models of hierarchical structure formation.« less

  4. a Faint and Lonely Brown Dwarf in the Solar Vicinity

    NASA Astrophysics Data System (ADS)

    1997-04-01

    Discovery of KELU-1 Promises New Insights into Strange Objects Brown Dwarfs are star-like objects which are too small to become real stars, yet too large to be real planets. Their mass is too small to ignite those nuclear processes which are responsible for the large energies and high temperatures of stars, but it is much larger than that of the planets we know in our solar system. Until now, very few Brown Dwarfs have been securely identified as such. Two are members of double-star systems, and a few more are located deep within the Pleiades star cluster. Now, however, Maria Teresa Ruiz of the Astronomy Department at Universidad de Chile (Santiago de Chile), using telescopes at the ESO La Silla observatory, has just discovered one that is all alone and apparently quite near to us. Contrary to the others which are influenced by other objects in their immediate surroundings, this new Brown Dwarf is unaffected and will thus be a perfect object for further investigations that may finally allow us to better understand these very interesting celestial bodies. It has been suggested that Brown Dwarfs may constitute a substantial part of the unseen dark matter in our Galaxy. This discovery may therefore also have important implications for this highly relevant research area. Searching for nearby faint stars The story of this discovery goes back to 1987 when Maria Teresa Ruiz decided to embark upon a long-term search (known as the Calan-ESO proper-motion survey ) for another type of unusual object, the so-called White Dwarfs , i.e. highly evolved, small and rather faint stars. Although they have masses similar to that of the Sun, such stars are no larger than the Earth and are therefore extremely compact. They are particularly interesting, because they most probably represent the future end point of evolution of our Sun, some billions of years from now. For this project, the Chilean astronomer obtained large-field photographic exposures with the 1-m ESO Schmidt telescope at

  5. Faint blue counts from formation of dwarf galaxies at z approximately equals 1

    NASA Technical Reports Server (NTRS)

    Babul, Arif; Rees, Martin J.

    1993-01-01

    The nature of faint blue objects (FBO's) has been a source of much speculation since their detection in deep CCD images of the sky. Their high surface density argues against them being progenitors of present-day bright galaxies and since they are only weakly clustered on small scales, they cannot be entities that merged together to form present-day galaxies. Babul & Rees (1992) have suggested that the observed faint blue counts may be due to dwarf elliptical galaxies undergoing their initial starburst at z is approximately equal to 1. In generic hierarchical clustering scenarios, however, dwarf galaxy halos (M is approximately 10(exp 9) solar mass) are expected to form at an earlier epoch; for example, typical 10(exp 9) solar mass halos will virialize at z is approximately equal to 2.3 if the power-spectrum for the density fluctuations is that of the standard b = 2 cold dark matter (CDM) model. Under 'ordinary conditions' the gas would rapidly cool, collect in the cores, and undergo star-formation. Conditions at high redshifts are far from 'ordinary'. The intense UV background will prevent the gas in the dwarf halos from cooling, the halos being released from their suspended state only when the UV flux has diminished sufficiently.

  6. An r-process enhanced star in the dwarf galaxy Tucana III

    DOE PAGES

    Hansen, T. T.; Simon, J. D.; Marshall, J. L.; ...

    2017-03-20

    Chemically peculiar stars in dwarf galaxies provide a window for exploring the birth environment of stars with varying chemical enrichment. We present a chemical abundance analysis of the brightest star in the newly discovered ultra-faint dwarf galaxy candidate Tucana III. Because it is particularly bright for a star in an ultra-faint Milky Way (MW) satellite, we are able to measure the abundance of 28 elements, including 13 neutron-capture species. This star, DES J235532.66–593114.9 (DES J235532), shows a mild enhancement in neutron-capture elements associated with the r-process and can be classified as an r-I star. DES J235532 is the first r-Imore » star to be discovered in an ultra-faint satellite, and Tuc III is the second extremely low-luminosity system found to contain r-process enriched material, after Reticulum II. Comparison of the abundance pattern of DES J235532 with r-I and r-II stars found in other dwarf galaxies and in the MW halo suggests a common astrophysical origin for the neutron-capture elements seen in all r-process enhanced stars. Furthermore, we explore both internal and external scenarios for the r-process enrichment of Tuc III and show that with abundance patterns for additional stars, it should be possible to distinguish between them.« less

  7. An r-process enhanced star in the dwarf galaxy Tucana III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, T. T.; Simon, J. D.; Marshall, J. L.

    Chemically peculiar stars in dwarf galaxies provide a window for exploring the birth environment of stars with varying chemical enrichment. We present a chemical abundance analysis of the brightest star in the newly discovered ultra-faint dwarf galaxy candidate Tucana III. Because it is particularly bright for a star in an ultra-faint Milky Way (MW) satellite, we are able to measure the abundance of 28 elements, including 13 neutron-capture species. This star, DES J235532.66–593114.9 (DES J235532), shows a mild enhancement in neutron-capture elements associated with the r-process and can be classified as an r-I star. DES J235532 is the first r-Imore » star to be discovered in an ultra-faint satellite, and Tuc III is the second extremely low-luminosity system found to contain r-process enriched material, after Reticulum II. Comparison of the abundance pattern of DES J235532 with r-I and r-II stars found in other dwarf galaxies and in the MW halo suggests a common astrophysical origin for the neutron-capture elements seen in all r-process enhanced stars. Furthermore, we explore both internal and external scenarios for the r-process enrichment of Tuc III and show that with abundance patterns for additional stars, it should be possible to distinguish between them.« less

  8. The Carnegie-Chicago Hubble Program: Discovery of the Most Distant Ultra-faint Dwarf Galaxy in the Local Universe

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung; Beaton, Rachael; Seibert, Mark; Bono, Giuseppe; Madore, Barry

    2017-02-01

    Ultra-faint dwarf galaxies (UFDs) are the faintest known galaxies, and due to their incredibly low surface brightness, it is difficult to find them beyond the Local Group. We report a serendipitous discovery of a UFD, Fornax UFD1, in the outskirts of NGC 1316, a giant galaxy in the Fornax cluster. The new galaxy is located at a projected radius of 55 kpc in the south-east of NGC 1316. This UFD is found as a small group of resolved stars in the Hubble Space Telescope images of a halo field of NGC 1316, obtained as part of the Carnegie-Chicago Hubble Program. Resolved stars in this galaxy are consistent with being mostly metal-poor red giant branch (RGB) stars. Applying the tip of the RGB method to the mean magnitude of the two brightest RGB stars, we estimate the distance to this galaxy, 19.0 ± 1.3 Mpc. Fornax UFD1 is probably a member of the Fornax cluster. The color-magnitude diagram of these stars is matched by a 12 Gyr isochrone with low metallicity ([Fe/H] ≈ -2.4). Total magnitude and effective radius of Fornax UFD1 are MV ≈ -7.6 ± 0.2 mag and reff = 146 ± 9 pc, which are similar to those of Virgo UFD1 that was discovered recently in the intracluster field of Virgo by Jang & Lee. Fornax UFD1 is the most distant known UFD that is confirmed by resolved stars. This indicates that UFDs are ubiquitous and that more UFDs remain to be discovered in the Fornax cluster. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #10505 and #13691.

  9. The contribution of dissolving star clusters to the population of ultra faint objects in the outer halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Contenta, Filippo; Gieles, Mark; Balbinot, Eduardo; Collins, Michelle L. M.

    2017-04-01

    In the last decade, several ultra faint objects (UFOs, MV ≳ -3.5) have been discovered in the outer halo of the Milky Way. For some of these objects, it is not clear whether they are star clusters or (ultra faint) dwarf galaxies. In this work, we quantify the contribution of star clusters to the population of UFOs. We extrapolated the mass and Galactocentric radius distribution of the globular clusters using a population model, finding that the Milky Way contains about 3.3^{+7.3}_{-1.6} star clusters with MV ≳ -3.5 and Galactocentric radius ≥20 kpc. To understand whether dissolving clusters can appear as UFOs, we run a suite of direct N-body models, varying the orbit, the Galactic potential, the binary fraction and the black hole (BH) natal kick velocities. In the analyses, we consider observational biases such as luminosity limit, field stars and line-of-sight projection. We find that star clusters contribute to both the compact and the extended population of UFOs: clusters without BHs appear compact with radii ˜5 pc, while clusters that retain their BHs after formation have radii ≳ 20 pc. The properties of the extended clusters are remarkably similar to those of dwarf galaxies: high-inferred mass-to-light ratios due to binaries, binary properties mildly affected by dynamical evolution, no observable mass segregation and flattened stellar mass function. We conclude that the slope of the stellar mass function as a function of Galactocentric radius and the presence/absence of cold streams can discriminate between dark matter-free and dark matter-dominated UFOs.

  10. Serendipitous Discovery of RR Lyrae Stars in the Leo V Ultra-faint Galaxy

    NASA Astrophysics Data System (ADS)

    Medina, Gustavo E.; Muñoz, Ricardo R.; Vivas, A. Katherina; Förster, Francisco; Carlin, Jeffrey L.; Martinez, Jorge; Galbany, Lluis; González-Gaitán, Santiago; Hamuy, Mario; de Jaeger, Thomas; Maureira, Juan Carlos; San Martín, Jaime

    2017-08-01

    During the analysis of RR Lyrae stars (RRLs) discovered in the High Cadence Transient Survey (HiTS) taken with the Dark Energy Camera at the 4 m telescope at Cerro Tololo Inter-American Observatory, we found a group of three very distant, fundamental mode pulsator RR Lyrae (type ab). The location of these stars agrees with them belonging to the Leo V ultra-faint satellite galaxy, for which no variable stars have been reported to date. The heliocentric distance derived for Leo V based on these stars is 173 ± 5 kpc. The pulsational properties (amplitudes and periods) of these stars locate them within the locus of the Oosterhoff II group, similar to most other ultra-faint galaxies with known RRLs. This serendipitous discovery shows that distant RRLs may be used to search for unknown faint stellar systems in the outskirts of the Milky Way.

  11. THE STELLAR INITIAL MASS FUNCTION OF ULTRA-FAINT DWARF GALAXIES: EVIDENCE FOR IMF VARIATIONS WITH GALACTIC ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geha, Marla; Brown, Thomas M.; Tumlinson, Jason

    2013-07-01

    We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M{sub V} = -6.2, -5.5), metal-poor (([Fe/H]) = -2.4, -2.5) systems that have old stellar populations (>11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52-0.77 M{sub Sun }, the IMFmore » is best fit by a power-law slope of {alpha}= 1.2{sub -0.5}{sup +0.4} for Hercules and {alpha} = 1.3 {+-} 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter ({alpha} = 2.35) IMF at the 5.8{sigma} level, and a Kroupa ({alpha} = 2.3 above 0.5 M{sub Sun }) IMF slope at 5.4{sigma} level. We simultaneously fit for the binary fraction, f{sub binary}, finding f{sub binary}= 0.47{sup +0.16}{sub -0.14} for Hercules, and 0.47{sup +0.37}{sub -0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5-0.8 M{sub Sun }, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.« less

  12. Evidence of a Non-universal Stellar Initial Mass Function. Insights from HST Optical Imaging of Six Ultra-faint Dwarf Milky Way Satellites

    NASA Astrophysics Data System (ADS)

    Gennaro, Mario; Tchernyshyov, Kirill; Brown, Thomas M.; Geha, Marla; Avila, Roberto J.; Guhathakurta, Puragra; Kalirai, Jason S.; Kirby, Evan N.; Renzini, Alvio; Simon, Joshua D.; Tumlinson, Jason; Vargas, Luis C.

    2018-03-01

    Using deep observations obtained with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST), we demonstrate that the sub-solar stellar initial mass function (IMF) of six ultra-faint dwarf Milky Way satellites (UFDs) is more bottom light than the IMF of the Milky Way disk. Our data have a lower-mass limit of ∼0.45 M ⊙, while the upper limit is ∼0.8 M ⊙, set by the turnoff mass of these old, metal-poor systems. If formulated as a single power law, we obtain a shallower IMF slope than the Salpeter value of ‑2.3, ranging from ‑1.01 for Leo IV to ‑1.87 for Boötes I. The significance of these deviations depends on the galaxy and is typically 95% or more. When modeled as a log-normal, the IMF fit results in a higher peak mass than in the Milky Way disk, but a Milky Way disk value for the characteristic system mass (∼0.22 M ⊙) is excluded at only 68% significance, and only for some UFDs in the sample. We find that the IMF slope correlates well with the galaxy mean metallicity, and to a lesser degree, with the velocity dispersion and the total mass. The strength of the observed correlations is limited by shot noise in the number of observed stars, but future space-based missions like the James Webb Space Telescope (JWST) and the Wide-Field Infrared Survey Telescope ( WFIRST) will enhance both the number of dwarf Milky Way satellites that can be studied in such detail and the observation depth for individual galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-12549.

  13. Sub-percent Photometry: Faint DA White Dwarf Spectrophotometric Standards for Astrophysical Observatories

    NASA Astrophysics Data System (ADS)

    Narayan, Gautham; Axelrod, Tim; Calamida, Annalisa; Saha, Abhijit; Matheson, Thomas; Olszewski, Edward; Holberg, Jay; Holberg, Jay; Bohlin, Ralph; Stubbs, Christopher W.; Rest, Armin; Deustua, Susana; Sabbi, Elena; MacKenty, John W.; Points, Sean D.; Hubeny, Ivan

    2018-01-01

    We have established a network of faint (16.5 < V < 19) hot DA white dwarfs as spectrophotometric standards for present and future wide-field observatories. Our standards are accessible from both hemispheres and suitable for ground and space-based covering the UV to the near IR. The network is tied directly to the most precise astrophysical reference presently available - the CALSPEC standards - through a multi-cycle program imaging using the Wide-Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We have developed two independent analyses to forward model all the observed photometry and ground-based spectroscopy and infer a spectral energy distribution for each source using a non-local-thermodynamic-equilibrium (NLTE) DA white dwarf atmosphere extincted by interstellar dust. The models are in excellent agreement with each other, and agree with the observations to better than 0.01 mag in all passbands, and better than 0.005 mag in the optical. The high-precision of these faint sources, tied directly to the most accurate flux standards presently available, make our network of standards ideally suited for any experiments that have very stringent requirements on absolute flux calibration, such as studies of dark energy using the Large Synoptic Survey Telescope (LSST) and the Wide-Field Infrared Survey Telescope (WFIRST).

  14. The Stellar Populations of Ultra-Compact Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Karick, Arna; Gregg, M. D.

    2006-12-01

    We have discovered an intracluster population of ultra-luminous compact stellar systems in the Fornax cluster. Originally coined "ultra-compact dwarf galaxies" (UCDs), these objects were thought to be remnant nuclei of tidally stripped dE,Ns. Subsequent searches in Fornax (2dF+VLT) have revealed many fainter UCDs; making them the most numerous galaxy type in the cluster and fueling controversy over their origin. UCDs may be the bright tail of the globular cluster (GCs) population associated with NGC1399. Alternatively they may be real intracluster GCs, resulting from hierarchical cluster formation and merging in intracluster space. Determining the stellar populations of these enigmatic objects is challenging. UCDs are unresolved from the ground but our HST/STIS+ACS imaging reveals faint halos around the brightest UCDs. Here we present deep u'g'r'i'z' images of the cluster core using the CTIO 4m Mosaic. Combined with GALEX/UV imaging and using SSP isochrones, UCDs appear to be old, red and unlike cluster dEs. In contrast, our recent IMACS and Keck/LRIS+ESI spectroscopy shows that UCDs are unlike GCs and have intermediate stellar populations with significant variations in their Mg and Hβ line strength indices. This work is supported by National Science Foundation Grant No. 0407445 and was done at the Institute of Geophysics and Planetary Physics, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  15. An Ultra-faint Galaxy Candidate Discovered in Early Data from the Magellanic Satellites Survey

    NASA Astrophysics Data System (ADS)

    Drlica-Wagner, A.; Bechtol, K.; Allam, S.; Tucker, D. L.; Gruendl, R. A.; Johnson, M. D.; Walker, A. R.; James, D. J.; Nidever, D. L.; Olsen, K. A. G.; Wechsler, R. H.; Cioni, M. R. L.; Conn, B. C.; Kuehn, K.; Li, T. S.; Mao, Y.-Y.; Martin, N. F.; Neilsen, E.; Noel, N. E. D.; Pieres, A.; Simon, J. D.; Stringfellow, G. S.; van der Marel, R. P.; Yanny, B.

    2016-12-01

    We report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644-5953 (Pictor II or Pic II) is a low surface brightness (μ ={28.5}-1+1 {mag} {arcsec}{}-2 within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of {45}-4+5 {kpc}. The physical size ({r}1/2={46}-11+15 {pc} ) and low luminosity ({M}V=-{3.2}-0.5+0.4 {mag} ) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644-5953 (Pic II) is located {11.3}-0.9+3.1 {kpc} from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644-5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.

  16. An ultra-faint galaxy candidate discovered in early data from the Magellanic Satellites Survey

    DOE PAGES

    Drlica-Wagner, A.; Bechtol, Keith; Allam, S.; ...

    2016-11-30

    Here, we report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644–5953 (Pictor II or Pic II) is a low surface brightness (more » $$\\mu ={28.5}_{-1}^{+1}\\,\\mathrm{mag}\\,\\,\\mathrm{arcsec}{}^{-2}$$ within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of $${45}_{-4}^{+5}\\,\\mathrm{kpc}$$. The physical size ($${r}_{1/2}={46}_{-11}^{+15}\\,\\mathrm{pc}\\,$$) and low luminosity ($${M}_{V}=-{3.2}_{-0.5}^{+0.4}\\,\\mathrm{mag}\\,$$) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644–5953 (Pic II) is located $${11.3}_{-0.9}^{+3.1}\\,\\mathrm{kpc}\\,$$ from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644–5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.« less

  17. An ultra-faint galaxy candidate discovered in early data from the Magellanic Satellites Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drlica-Wagner, A.; Bechtol, Keith; Allam, S.

    Here, we report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644–5953 (Pictor II or Pic II) is a low surface brightness (more » $$\\mu ={28.5}_{-1}^{+1}\\,\\mathrm{mag}\\,\\,\\mathrm{arcsec}{}^{-2}$$ within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of $${45}_{-4}^{+5}\\,\\mathrm{kpc}$$. The physical size ($${r}_{1/2}={46}_{-11}^{+15}\\,\\mathrm{pc}\\,$$) and low luminosity ($${M}_{V}=-{3.2}_{-0.5}^{+0.4}\\,\\mathrm{mag}\\,$$) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644–5953 (Pic II) is located $${11.3}_{-0.9}^{+3.1}\\,\\mathrm{kpc}\\,$$ from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644–5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.« less

  18. Exploding Satellites—The Tidal Debris of the Ultra-faint Dwarf Galaxy Hercules

    NASA Astrophysics Data System (ADS)

    Küpper, Andreas H. W.; Johnston, Kathryn V.; Mieske, Steffen; Collins, Michelle L. M.; Tollerud, Erik J.

    2017-01-01

    The ultra-faint satellite galaxy Hercules has a strongly elongated and irregular morphology with detections of tidal features up to 1.3 deg (3 kpc) from its center. This suggests that Hercules may be dissolving under the Milky Way’s gravitational influence, and hence could be a tidal stream in formation rather than a bound, dark-matter-dominated satellite. Using Bayesian inference in combination with N-body simulations, we show that Hercules has to be on a very eccentric orbit (ɛ ≈ 0.95) within the Milky Way in this scenario. On such an orbit, Hercules “explodes” as a consequence of the last tidal shock at pericenter 0.5 Gyr ago. It is currently decelerating toward the apocenter of its orbit with a velocity of V = 157 km s-1—of which 99% is directed radially outwards. Due to differential orbital plane precession caused by the non-spherical nature of the Galactic potential, its debris fans out nearly perpendicular to its orbit. This explains why Hercules has an elongated shape without showing a distance gradient along its main body: it is in fact a stream that is significantly broader than it is long. In other words, it is moving perpendicular to its apparent major axis. In this scenario, there is a spike in the radial velocity profile created by the dominant debris component that formed through the last pericenter passage. This is similar to kinematic substructure that is observed in the real Hercules. Modeling a satellite on such a highly eccentric orbit is strongly dependent on the form of the Galactic potential. We therefore propose that detailed kinematic investigation of Hercules and other exploding satellite candidates can yield strong constraints on the potential of the Milky Way.

  19. A Hero’s Dark Horse: Discovery of an Ultra-faint Milky Way Satellite in Pegasus

    NASA Astrophysics Data System (ADS)

    Kim, Dongwon; Jerjen, Helmut; Mackey, Dougal; Da Costa, Gary S.; Milone, Antonino P.

    2015-05-01

    We report the discovery of an ultra-faint Milky Way satellite galaxy in the constellation of Pegasus. The concentration of stars was detected by applying our overdensity detection algorithm to the SDSS-DR 10 and confirmed with deeper photometry from the Dark Energy Camera at the 4 m Blanco telescope. Fitting model isochrones indicates that this object, Pegasus III, features an old and metal-poor stellar population ([Fe/H] ˜ -2.1) at a heliocentric distance of 205 ± 20 kpc. The new stellar system has an estimated half-light radius of {{r}h}=78-24+30 pc and a total luminosity of {{M}V}˜ -4.1+/- 0.5 that places it into the domain of dwarf galaxies on the size-luminosity plane. Pegasus III is spatially close to the MW satellite Pisces II. It is possible that the two might be physically associated, similar to the Leo IV and Leo V pair. Pegasus III is also well aligned with the Vast Polar Structure, which suggests a possible physical association.

  20. Ultra-compact High Velocity Clouds as Minihalos and Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Faerman, Yakov; Sternberg, Amiel; McKee, Christopher F.

    2013-11-01

    We present dark matter minihalo models for the Ultra-Compact, High-Velocity H I Clouds (UCHVCs) recently discovered in the 21 cm ALFALFA survey. We assume gravitational confinement of 104 K H I gas by flat-cored dark-matter subhalos within the Local Group. We show that for flat cores, typical (median) tidally stripped cosmological subhalos at redshift z = 0 have dark-matter masses of ~107 M ⊙ within the central 300 pc (independent of total halo mass), consistent with the "Strigari mass scale" observed in low-luminosity dwarf galaxies. Flat-cored subhalos also resolve the mass discrepancy between simulated and observed satellites around the Milky Way. For the UCHVCs, we calculate the photoionization-limited hydrostatic gas profiles for any distance-dependent total observed H I mass and predict the associated (projected) H I half-mass radii, assuming the clouds are embedded in distant (d >~ 300 kpc) and unstripped subhalos. For a typical UCHVC (0.9 Jy km s-1), we predict physical H I half-mass radii of 0.18 to 0.35 kpc (or angular sizes of 0.'6 to 2.'1) for distances ranging from 300 kpc to 2 Mpc. As a consistency check, we model the gas-rich dwarf galaxy Leo T, for which there is a well-resolved H I column density profile and a known distance (420 kpc). For Leo T, we find that a subhalo with M 300 = 8 (± 0.2) × 106 M ⊙ best fits the observed H I profile. We derive an upper limit of P HIM <~ 150 cm-3 K for the pressure of any enveloping hot intergalactic medium gas at the distance of Leo T. Our analysis suggests that some of the UCHVCs may in fact constitute a population of 21 cm-selected but optically faint dwarf galaxies in the Local Group.

  1. The Hunt for Missing Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    Theories of galaxy formation and evolution predict that there should be significantly more dwarf galaxies than have been observed. Are our theories wrong? Or are dwarf galaxies just difficult to detect? Recent results from a survey of a galaxy cluster 62 million light-years away suggest there may be lots of undiscovered dwarf galaxies hiding throughout the universe!Hiding in FaintnessThe missing dwarf problem has had hints of a resolution with the recent discovery of Ultra-Diffuse Galaxies (UDGs) in the Coma and Virgo galaxy clusters. UDGs have low masses and large radii, resulting in a very low surface brightness that makes them extremely difficult to detect. If many dwarfs are UDGs, this could well explain why weve been missing them!But the Coma and Virgo galaxy clusters are similar in that theyre both very massive. Are there UDGs in other galaxy clusters as well? To answer this question, an international team of scientists is running the Next Generation Fornax Survey (NGFS), a survey searching for faint dwarf galaxies in the central 30 square degrees of the Fornax galaxy cluster.The NGFS uses near-UV and optical observations from the Dark Energy Camera mounted on the 4m Blanco Telescope in Chile. The survey is still underway, but in a recent publication led by Roberto P. Muoz (Institute of Astrophysics at the Pontifical Catholic University of Chile), the team has released an overview of the first results from only the central 3 square degrees of the NGFS field.Surprising DetectionGalaxy radii vs. their absolute i-band magnitudes, for the dwarfs found in NGFS as well as other stellar systems in the nearby universe. The NGFS dwarfs are similar to the ultra-diffuse dwarfs found in the Virgo and Coma clusters, but are several orders of magnitude fainter. [Muoz et al. 2015]In just this small central field, the team has found an astounding 284 low-surface-brightness dwarf galaxy candidates 158 of them previously undetected. At the bright end of this sample are dwarf

  2. Four faint T dwarfs from the UKIRT Infrared Deep Sky Survey (UKIDSS) Southern Stripe

    NASA Astrophysics Data System (ADS)

    Chiu, Kuenley; Liu, Michael C.; Jiang, Linhua; Allers, Katelyn N.; Stark, Daniel P.; Bunker, Andrew; Fan, Xiaohui; Glazebrook, Karl; Dupuy, Trent J.

    2008-03-01

    We present the optical and near-infrared photometry and spectroscopy of four faint T dwarfs newly discovered from the UKIDSS first data release. The sample, drawn from an imaged area of ~136 deg2 to a depth of Y = 19.9 (5σ, Vega), is located in the Sloan Digital Sky Survey (SDSS) Southern Equatorial Stripe, a region of significant future deep imaging potential. We detail the selection and followup of these objects, three of which are spectroscopically confirmed brown dwarfs ranging from type T2.5 to T7.5, and one is photometrically identified as early T. Their magnitudes range from Y = 19.01 to 19.88 with derived distances from 34 to 98 pc, making these among the coldest and faintest brown dwarfs known. The T7.5 dwarf appears to be single based on 0.05-arcsec images from Keck laser guide star adaptive optics. The sample brings the total number of T dwarfs found or confirmed by UKIDSS data in this region to nine, and we discuss the projected numbers of dwarfs in the future survey data. We estimate that ~240 early and late T dwarfs are discoverable in the UKIDSS Large Area Survey (LAS) data, falling significantly short of published model projections and suggesting that initial mass functions and/or birth rates may be at the low end of possible models. Thus, deeper optical data have good potential to exploit the UKIDSS survey depth more fully, but may still find the potential Y dwarf sample to be extremely rare.

  3. BEASTS OF THE SOUTHERN WILD: DISCOVERY OF NINE ULTRA FAINT SATELLITES IN THE VICINITY OF THE MAGELLANIC CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koposov, Sergey E.; Belokurov, Vasily; Torrealba, Gabriel

    2015-06-01

    We have used the publicly released Dark Energy Survey (DES) data to hunt for new satellites of the Milky Way (MW) in the southern hemisphere. Our search yielded a large number of promising candidates. In this paper, we announce the discovery of nine new unambiguous ultra-faint objects, whose authenticity can be established with the DES data alone. Based on the morphological properties, three of the new satellites are dwarf galaxies, one of which is located at the very outskirts of the MW, at a distance of 380 kpc. The remaining six objects have sizes and luminosities comparable to the Seguemore » 1 satellite and cannot be classified straightforwardly without follow-up spectroscopic observations. The satellites we have discovered cluster around the LMC and the SMC. We show that such spatial distribution is unlikely under the assumption of isotropy, and, therefore, conclude that at least some of the new satellites must have been associated with the Magellanic Clouds in the past.« less

  4. A supermassive black hole in an ultra-compact dwarf galaxy.

    PubMed

    Seth, Anil C; van den Bosch, Remco; Mieske, Steffen; Baumgardt, Holger; den Brok, Mark; Strader, Jay; Neumayer, Nadine; Chilingarian, Igor; Hilker, Michael; McDermid, Richard; Spitler, Lee; Brodie, Jean; Frank, Matthias J; Walsh, Jonelle L

    2014-09-18

    Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.

  5. TOWARD A NETWORK OF FAINT DA WHITE DWARFS AS HIGH-PRECISION SPECTROPHOTOMETRIC STANDARDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, G.; Matheson, T.; Saha, A.

    We present the initial results from a program aimed at establishing a network of hot DA white dwarfs to serve as spectrophotometric standards for present and future wide-field surveys. These stars span the equatorial zone and are faint enough to be conveniently observed throughout the year with large-aperture telescopes. The spectra of these white dwarfs are analyzed in order to generate a non-local-thermodynamic-equilibrium model atmosphere normalized to Hubble Space Telescope colors, including adjustments for wavelength-dependent interstellar extinction. Once established, this standard star network will serve ground-based observatories in both hemispheres as well as space-based instrumentation from the UV to themore » near IR. We demonstrate the effectiveness of this concept and show how two different approaches to the problem using somewhat different assumptions produce equivalent results. We discuss the lessons learned and the resulting corrective actions applied to our program.« less

  6. Feedback by Massive Black Holes in Gas-rich Dwarf Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silk, Joseph; AIM-Paris-Saclay, CEA/DSM/IRFU, CNRS, Univ Paris 7, F-91191, Gif-sur-Yvette; Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218

    Could there be intermediate-mass black holes in essentially all old dwarf galaxies? I argue that current observations of active galactic nuclei in dwarfs allow such a radical hypothesis that provides early feedback during the epoch of galaxy formation and potentially provides a unifying explanation for many, if not all, of the dwarf galaxy anomalies, such as the abundance, core-cusp, “too-big-to-fail,” ultra-faint, and baryon-fraction issues. I describe the supporting arguments, which are largely circumstantial, and discuss a number of tests. There is no strong motivation for modifying the nature of cold dark matter in order to explain any of the dwarfmore » galaxy “problems.”.« less

  7. Ghostly Halos in Dwarf Galaxies: a probe of star formation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kang, Hoyoung; Ricotti, Massimo

    2016-01-01

    We carry out numerical simulations to characterize the size, stellar mass, and stellar mass surface density of extended stellar halos in dwarf galaxies as a function of dark matter halo mass. We expect that for galaxies smaller than a critical value, these ghostly halos will not exist because the smaller galactic subunits that build it up, do not form any stars. The detection of ghostly halos around isolated dwarf galaxies is a sensitive test of the efficiency of star formation in the first galaxies and of whether ultra-faint dwarf satellites of the Milky Way are fossils of the first galaxies.

  8. Ultra-cool dwarfs viewed equator-on: surveying the best host stars for biosignature detection in transiting exoplanets

    NASA Astrophysics Data System (ADS)

    Miles-Paez, Paulo; Metchev, Stanimir; Burgasser, Adam; Apai, Daniel; Palle, Enric; Zapatero Osorio, Maria Rosa; Artigau, Etienne; Mace, Greg; Tannock, Megan; Triaud, Amaury

    2018-05-01

    There are about 150 known planets around M dwarfs, but only one system around an ultra-cool (>M7) dwarf: Trappist-1. Ultra-cool dwarfs are arguably the most promising hosts for atmospheric and biosignature detection in transiting planets because of the enhanced feature contrast in transit and eclipse spectroscopy. We propose a Spitzer survey to continuously monitor 15 of the brightest ultra-cool dwarfs over 3 days. To maximize the probability of detecting transiting planets, we have selected only targets seen close to equator-on. Spin-orbit alignment expectations dictate that the planetary systems around these ultra-cool dwarfs should also be oriented nearly edge-on. Any planet detections from this survey will immediately become top priority targets for JWST transit spectroscopy. No other telescope, present or within the foreseeable future, will be able to conduct a similarly sensitive and dedicated survey for characterizeable Earth analogs.

  9. Understanding r-process nucleosynthesis with dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Ji, Alexander P.

    2018-06-01

    The Milky Way's faintest dwarf galaxy satellites each sample short, independent bursts of star formation from the first 1-2 Gyr of the universe. Their simple formation history makes them ideal systems to understand how rare events like neutron star mergers contribute to early enrichment of r-process elements. I will focus on the ultra-faint galaxy Reticulum II, which experienced a single prolific r-process event that left ~80% of its stars extremely enriched in r-process elements. I will present abundances of ~40 elements derived from the highest signal-to-noise high-resolution spectrum ever taken for an ultra-faint dwarf galaxy star. Precise measurements of elements from all three r-process peaks reaffirm the universal nature of the r-process abundance pattern from Ba to Ir. The first r-process peak is significantly lower than solar but matches other r-process enhanced stars. This constrains the neutron-richness of r-process ejecta in neutron star mergers. The radioactive element thorium is detected with a somewhat low abundance. Naive application of currently predicted initial production ratios could imply an age >20 Gyr, but more likely indicates that the initial production ratios require revision. The abundance of lighter elements up to Zn are consistent with extremely metal-poor Milky Way halo stars. These elements may eventually provide a way to test for other hypothesized r-process sites, but only after a more detailed understanding of the chemical evolution in this galaxy. Reticulum II provides a clean view of early r-process enrichment that can be used to understand the increasing number of r-process measurements in other dwarf galaxies.

  10. New Ultra-Compact Dwarf Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    How do ultra-compact dwarf galaxies (UCDs) galaxies that are especially small and dense form and evolve? Scientists have recently examined distant galaxy clusters, searching for more UCDs to help us answer this question.Origins of DwarfsIn recent years we have discovered a growing sample of small, very dense galaxies. Galaxies that are tens to hundreds of light-years across, with masses between a million and a billion solar masses, fall into category of ultra-compact dwarfs (UCDs).An example of an unresolved compact object from the authors survey that is likely an ultra-compact dwarf galaxy. [Adapted from Zhang Bell 2017]How do these dense and compact galaxies form? Two possibilities are commonly suggested:An initially larger galaxy was tidally stripped during interactions with other galaxies in a cluster, leaving behind only its small, dense core as a UCD.UCDs formed as compact galaxies at very early cosmic times. The ones living in a massive dark matter halo may have been able to remain compact over time, evolving into the objectswe see today.To better understand which of these formation scenarios applies to which galaxies, we need a larger sample size! Our census of UCDs is fairly limited and because theyare small and dim, most of the ones weve discovered are in the nearby universe. To build a good sample, we need to find UCDs at higher redshifts as well.A New SampleIn a recent study, two scientists from University of Michigan have demonstrated how we might find more UCDs. Yuanyuan Zhang (also affiliated with Fermilab) and Eric Bell used the Cluster Lensing and Supernova Survey with Hubble (CLASH) to search 17 galaxy clusters at intermediate redshifts of 0.2 z 0.6, looking for unresolved objects that might be UCDs.The mass and size distributions of the UCD candidates reported in this study, in the context of previously known nuclear star clusters, globular clusters (GCs), UCDs, compact elliptical galaxies (cEs), and dwarf galaxies. [Zhang Bell 2017]Zhang and

  11. DISCOVERY OF A CLOSE PAIR OF FAINT DWARF GALAXIES IN THE HALO OF CENTAURUS A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crnojević, D.; Sand, D. J.; Caldwell, N.

    2014-11-10

    As part of the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS), we report the discovery of a pair of faint dwarf galaxies (CenA-MM-Dw1 and CenA-MM-Dw2) at a projected distance of ∼90 kpc from the nearby elliptical galaxy NGC 5128 (CenA). We measure a tip of the red giant branch distance to each dwarf, finding D = 3.63 ± 0.41 Mpc for CenA-MM-Dw1 and D = 3.60 ± 0.41 Mpc for CenA-MM-Dw2, both of which are consistent with the distance to NGC 5128. A qualitative analysis of the color-magnitude diagrams indicates stellar populations consisting of an old, metal-poor red giant branch (≳12 Gyr, [Fe/H] ∼ –1.7 to –1.9). In addition, CenA-MM-Dw1more » seems to host an intermediate-age population as indicated by its candidate asymptotic giant branch stars. The derived luminosities (M{sub V} = –10.9 ± 0.3 for CenA-MM-Dw1 and –8.4 ± 0.6 for CenA-MM-Dw2) and half-light radii (r{sub h} = 1.4 ± 0.04 kpc for CenA-MM-Dw1 and 0.36 ± 0.08 kpc for CenA-MM-Dw2) are consistent with those of Local Group dwarfs. CenA-MM-Dw1's low central surface brightness (μ {sub V,} {sub 0} = 27.3 ± 0.1 mag arcsec{sup –2}) places it among the faintest and most extended M31 satellites. Most intriguingly, CenA-MM-Dw1 and CenA-MM-Dw2 have a projected separation of only 3 arcmin (∼3 kpc): we are possibly observing the first, faint satellite of a satellite in an external group of galaxies.« less

  12. GHOSTS I: A new faint very isolated dwarf galaxy at D = 12 ± 2 Mpc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.

    2014-01-10

    We report the discovery of a new faint dwarf galaxy, GHOSTS I, using HST/ACS data from one of our GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disk, and Star clusters) fields. Its detected individual stars populate an approximately 1 mag range of its luminosity function (LF). Using synthetic color-magnitude diagrams (CMDs) to compare with the galaxy's CMD, we find that the colors and magnitudes of GHOSTS I's individual stars are most consistent with being young helium-burning and asymptotic giant branch stars at a distance of ∼12 ± 2 Mpc. Morphologically, GHOSTS I appears to be actively forming stars, so wemore » tentatively classify it as a dwarf irregular (dIrr) galaxy, although future Hubble Space Telescope (HST) observations deep enough to resolve a larger magnitude range in its LF are required to make a more secure classification. GHOSTS I's absolute magnitude is M{sub V}∼−9.85{sub −0.33}{sup +0.40}, making it one of the least luminous dIrr galaxies known, and its metallicity is lower than [Fe/H] = –1.5 dex. The half-light radius of GHOSTS I is 226 ± 38 pc and its ellipticity is 0.47 ± 0.07, similar to Milky Way and M31 dwarf satellites at comparable luminosity. There are no luminous massive galaxies or galaxy clusters within ∼4 Mpc from GHOSTS I that could be considered as its host, making it a very isolated dwarf galaxy in the local universe.« less

  13. Looking for Galaxies in All the Right Places: A Search for Stellar Populations in ALFALFA’s Ultra-compact High Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2018-01-01

    Nearby gas-rich dwarf galaxies are excellent laboratories for investigating the baryonic feedback processes that govern star formation and galaxy evolution in galaxies at the extreme end of the mass function. Detecting and studying such objects may help resolve the well-known tension between cosmological model predictions for low-mass dark matter halos and observations. The ALFALFA neutral hydrogen (Hi) survey has detected a sample of isolated ultra-compact high-velocity Hi clouds (UCHVCs) with kinematic properties that make them likely members of the Local Volume, but that have no optical counterparts in existing optical surveys. This UCHVC sample possesses Hi properties (at 1 Mpc, Hi masses of ~105-106 M⊙, Hi diameters of ~2-3 kpc, and dynamical masses of ~107-108 M⊙) similar to other known ultra-faint dwarf galaxies like Leo T. Following the discovery of Leo P, an extremely metal-poor, gas-rich star-forming dwarf galaxy associated with an ALFALFA UCHVC, we have initiated a campaign to obtain deep optical imaging of 56 UCHVCs using the wide field-of-view, high-resolution ODI camera on the WIYN 3.5-m telescope. Here we present a brief overview of our campaign to search for resolved stellar populations associated with the UCHVCs in our optical images, and initial results from our survey.After creating a stellar catalog from the pipeline-reduced and stacked ODI g- and i-band images, we apply a color-magnitude filter tuned for old, metal-poor stellar populations to select red giant branch stars at distances between 250 kpc and 2 Mpc. The spatial distribution of the stars selected by the filter is then smoothed, and overdensities in the fields are identified. Of the 22 targets analyzed to date, seven have associated stellar populations detected at a high confidence (92% to 99.9% significance). The detected objects have a range of distances (from 350 kpc to 1.6 Mpc) and have optical properties similar to those of ultra-faint dwarf galaxies. These objects have

  14. Distinguishing cold dark matter dwarfs from self-interacting dark matter dwarfs in baryonic simulations

    NASA Astrophysics Data System (ADS)

    Strickland, Emily; Fitts, Alex; Boylan-Kolchin, Michael

    2018-01-01

    Our collaboration has simulated several high-resolution (mbaryon = 500Mo, mdm = 2500Mo) cosmological zoom-in simulations of isolated dwarf galaxies. We simulate each galaxy in standard cold dark matter (ΛCDM) as well as a self-interacting dark matter (SIDM) (with a cross section of σ/m ~ 1 cm2/g), both with and without baryons, to identify distinguishing characteristics between the two. The simulations are run using GIZMO, a meshless-finite-mass (MFM) hydrodynamical code, and are part of the Feedback in Realistic Environments (FIRE) project. By analyzing both the global properties and inner structure of the dwarfs in varying dark matter prescriptions, we provide a side-by-side comparison of isolated, dark matter dominated galaxies at the mass scale where differences in the two models of dark matter are thought to be the most obvious. We find that the edge of classical dwarfs and ultra-faint dwarfs (UFDs) (at ~105 Mo) provides the clearest window for distinguishing between the two theories. Here our SIDM galaxies continue to display a cored inner profile unlike their CDM counterparts. The SIDM versions of each galaxy also have measurably lower stellar velocity dispersions than their CDM counterparts.

  15. A dwarf galaxy near the sight line to PKS 0454+0356 - A fading 'faint blue galaxy'?

    NASA Technical Reports Server (NTRS)

    Steidel, Charles C.; Dickinson, Mark; Bowen, David V.

    1993-01-01

    We report the discovery of a dwarf galaxy (MB = -17.2 for H0 = 50 km/s per Mpc) at z = 0.072 which is only 4 arcsec (3.7/h(100) kpc) in projection from the line of sight to the bright quasar PKS 0454+0356 (z(em) = 1.345). The dwarf has very blue optical and optical/IR colors and exhibits line emission indicative of ongoing or recent star formation. However, there is no detection of Ca II 3934 A, 3969 A absorption at z(abs) = 0.072 to equivalent width limits (3 sigma) of about 40 mA, which would suggest an H I column density along the line of sight of less than 5 x 10 exp 19/sq cm, if the Ca II/H I ratio is similar to sight lines in the Galaxy. Based on the absence of Ca II absorption and the unusually weak line emission given the very blue color of the dwarf, we speculate that it may be close to exhausting its supply of gas. As its star formation rate declines, the galaxy's blue magnitude should fade substantially, eventually reaching a quiescent state in accord with its K luminosity of about 0.005 L*. Future observations of the sight line to PKS 0454+0356 using HST in search of Mg II resonance lines, or a search for 21 cm absorption against the quasar radio continuum, could place even more stringent limits on the extent of the gas associated with an intrinsically faint, star-forming dwarf.

  16. Extended Schmidt law holds for faint dwarf irregular galaxies

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Sambit; Chengalur, Jayaram N.; Shi, Yong

    2017-12-01

    Context. The extended Schmidt law (ESL) is a variant of the Schmidt which relates the surface densities of gas and star formation, with the surface density of stellar mass added as an extra parameter. Although ESL has been shown to be valid for a wide range of galaxy properties, its validity in low-metallicity galaxies has not been comprehensively tested. This is important because metallicity affects the crucial atomic-to-molecular transition step in the process of conversion of gas to stars. Aims: We empirically investigate for the first time whether low metallicity faint dwarf irregular galaxies (dIrrs) from the local universe follow the ESL. Here we consider the "global" law where surface densities are averaged over the galactic discs. dIrrs are unique not only because they are at the lowest end of mass and star formation scales for galaxies, but also because they are metal-poor compared to the general population of galaxies. Methods: Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) which is the largest survey of atomic hydrogen in such galaxies. The gas surface densities are determined using their atomic hydrogen content. The star formation rates are calculated using GALEX far ultraviolet fluxes after correcting for dust extinction, whereas the stellar surface densities are calculated using Spitzer 3.6 μm fluxes. The surface densities are calculated over the stellar discs defined by the 3.6 μm images. Results: We find dIrrs indeed follow the ESL. The mean deviation of the FIGGS galaxies from the relation is 0.01 dex, with a scatter around the relation of less than half that seen in the original relation. In comparison, we also show that the FIGGS galaxies are much more deviant when compared to the "canonical" Kennicutt-Schmidt relation. Conclusions: Our results help strengthen the universality of the ESL, especially for galaxies with low metallicities. We suggest that models of star formation in which feedback from previous generations

  17. Faint Dwarf Galaxies in Hickson Compact Group 90

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Y.; Taylor, M. A.; Puzia, T. H.; Muñoz, R. P.

    2017-07-01

    We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with VLT/VIMOS. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies, which share properties with dwarf galaxies found throughout the Local Volume and in nearby galaxy clusters such as Fornax. Among them, we find a pair of candidates with ˜2 kpc projected separation and a nucleated dwarf candidate, with nucleus size of reff≅46-63 pc.

  18. A faint type of supernova from a white dwarf with a helium-rich companion.

    PubMed

    Perets, H B; Gal-Yam, A; Mazzali, P A; Arnett, D; Kagan, D; Filippenko, A V; Li, W; Arcavi, I; Cenko, S B; Fox, D B; Leonard, D C; Moon, D-S; Sand, D J; Soderberg, A M; Anderson, J P; James, P A; Foley, R J; Ganeshalingam, M; Ofek, E O; Bildsten, L; Nelemans, G; Shen, K J; Weinberg, N N; Metzger, B D; Piro, A L; Quataert, E; Kiewe, M; Poznanski, D

    2010-05-20

    Supernovae are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as type Ib/c and type II supernovae, and are associated with young stellar populations. In contrast, the thermonuclear detonation of a carbon-oxygen white dwarf, whose mass approaches the Chandrasekhar limit, is thought to produce type Ia supernovae. Such supernovae are observed in both young and old stellar environments. Here we report a faint type Ib supernova, SN 2005E, in the halo of the nearby isolated galaxy, NGC 1032. The 'old' environment near the supernova location, and the very low derived ejected mass ( approximately 0.3 solar masses), argue strongly against a core-collapse origin. Spectroscopic observations and analysis reveal high ejecta velocities, dominated by helium-burning products, probably excluding this as a subluminous or a regular type Ia supernova. We conclude that it arises from a low-mass, old progenitor, likely to have been a helium-accreting white dwarf in a binary. The ejecta contain more calcium than observed in other types of supernovae and probably large amounts of radioactive (44)Ti.

  19. Faint dwarf galaxies in Hickson Compact Group 90*

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Yasna; Taylor, Matthew A.; Puzia, Thomas H.; Muñoz, Roberto P.; Eigenthaler, Paul; Georgiev, Iskren Y.; Goudfrooij, Paul; Hilker, Michael; Lançon, Ariane; Mamon, Gary; Mieske, Steffen; Miller, Bryan W.; Peng, Eric W.; Sánchez-Janssen, Rubén

    2016-12-01

    We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with Very Large Telescope/Visible Multi-Object Spectrograph. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies. We measure spheroid half-light radii in the range 0.7 ≲ reff/kpc ≲ 1.5 with luminosities of -11.65 ≲ MU ≲ -9.42 and -12.79 ≲ MI ≲ -10.58 mag, corresponding to a colour range of (U - I)0 ≃ 1.1-2.2 mag and surface brightness levels of μU ≃ 28.1 mag arcsec-2 and μI ≃ 27.4 mag arcsec-2. Their colours and luminosities are consistent with a diverse set of stellar population properties. Assuming solar and 0.02 Z⊙ metallicities we obtain stellar masses in the range M*|Z⊙ ≃ 105.7 - 6.3 M⊙ and M_{*}|_{0.02 Z_{⊙} ≃ 10^{6.3-8} M_{⊙}. Three dwarfs are older than 1 Gyr, while the other two significantly bluer dwarfs are younger than ˜2 Gyr at any mass/metallicity combination. Altogether, the new LSB dwarf galaxy candidates share properties with dwarf galaxies found throughout the Local Volume and in nearby galaxy clusters such as Fornax. We find a pair of candidates with ˜2 kpc projected separation, which may represent one of the closest dwarf galaxy pairs found. We also find a nucleated dwarf candidate, with a nucleus size of reff ≃ 46-63 pc and magnitude MU, 0 = -7.42 mag and (U - I)0 = 1.51 mag, which is consistent with a nuclear stellar disc with a stellar mass in the range 104.9 - 6.5 M⊙.

  20. The Origins of the Ultra Compact Dwarfs in the halos of the central cluster galaxies in Fornax and Virgo

    NASA Astrophysics Data System (ADS)

    Voggel, Karina Theresia

    2015-08-01

    Ultra-Compact Dwarf Galaxies (UCDs) have filled the size gap (10-100pc) in the scaling relations of early-type stellar systems. Before their discovery, no objects were known in the parameter space between globular clusters (GCs) and dwarf galaxies. The nature of UCDs is widely debated. Two formation channels have been suggested: either UCDs are surviving nuclei of tidally stripped dwarf galaxies, or they constitute the high mass end of the GC population. In this work we establish new strategies to constrain the formation channel of UCDs, looking for the observational signatures of stripped nuclei.Before falling into a galaxy cluster dwarf galaxies initially host their own GC system. Through tidal interaction the GCs outside of the shrinking tidal radius are lost and disperse in the general GC population of the cluster, whereas GCs inside the tidal radius remain bound to the dwarf galaxy. Therefore, we expect to find some GCs close to the stripped nuclei that have not been removed yet, but dragged towards the nucleus via dynamical friction.We tested this prediction in the halo of NGC 1399, the central Fornax cluster galaxy, where we find a local overabundance of GCs on scales of 0.5 to 1 kpc around UCDs. A similar analysis of GC overdensities around UCDs in the halo of M87, the central Virgo cluster galaxy, is ongoing. Such a clustering signal of GCs around UCDs could be a hint that these UCDs formed as nuclei, and what we see is the remnant GC population of the ancestor galaxy.We also have studied the detailed structural composition of ~100 UCDs in the halo of NGC 1399 by analyzing their surface brightness profiles. We present new evidence for faint asymmetric structures and tidal tails around several UCDs, possible tracers for the assembly history of the central cluster galaxy. With new numbers on the abundance of tidal features and close GC companions within large UCD samples, the contribution of each formation channel to the GC/UCD populations in galaxy halos

  1. Analyzing the Formation of Ultra-compact Dwarfs through Stellar Populations

    NASA Astrophysics Data System (ADS)

    Seshadri, Anish; Wang, Carolyn; Romanowsky, Aaron J.; Martin-navarro, Ignacio

    2017-01-01

    Since their discovery in 1999, ultra-compact dwarfs (UCDs) have been the subjects of intense study. Their small size, yet tremendous mass, brings into question their place among celestial objects. Are they galaxies or globular clusters? The answer to this question could come from analyzing how they formed. Thus, the goal of this project is to test one of the theories for the formation of UCDs, the theory of tidal stripping.This project approaches the issue by looking at dwarf galaxies currently in the process of stripping to understand formation history. Over twenty such dwarf galaxies were identified and their stellar populations analyzed. Using modeling techniques on spectroscopic and photometric data, the age, metallicity, and color of each object was identified. By objectively categorizing each object into a stage of evolution in the process of tidal stripping, a virtual timeline was built for the formation of UCDs. Data for each object were plotted vs. stage of formation, with pristine dwarfs and UCDs signifying the endpoints. Trends in the data revealed a natural progression over all stages of evolution, showing that tidally stripped dwarfs likely represent an intermediate stage in the formation of UCDs.This research was supported by NSF Grant AST-1515084. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.

  2. THE AROMATIC FEATURES IN VERY FAINT DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Ronin; Hogg, David W.; Moustakas, John

    2011-04-01

    We present optical and mid-infrared photometry of a statistically complete sample of 29 dwarf galaxies (M{sub r} > - 15 mag) selected from the Sloan Digital Sky Survey (SDSS) spectroscopic sample and observed in the mid-infrared with Spitzer IRAC. This sample contains nearby (redshift {approx}<0.005) galaxies 3 mag fainter than previously studied samples. We compare our sample with other star-forming galaxies that have been observed with both IRAC and SDSS. We examine the relationship of the infrared color, [3.6]-[7.8], sensitive to polycyclic aromatic hydrocarbon (PAH) abundance and also hot dust and stellar continuum, with star formation rates (SFRs), oxygen abundances,more » and radiation hardness, all estimated by optical emission lines. Consistent with studies of more luminous dwarfs, we find that these dwarf galaxies show much redder [3.6]-[7.8] color than luminous galaxies with similar specific SFRs. Unlike luminous galaxies, we find that these dwarf galaxies show no significant dependence at all of the [3.6]-[7.8] color on SFR, oxygen abundance, or radiation hardness, despite the fact that the sample spans a significant range in all of these quantities. When the dwarfs in our sample are compared with more luminous dwarfs, we find that the [3.6]-[7.8] color, potentially tracing the PAH emission, depends on oxygen abundance and radiation hardness. However, these two parameters are correlated with one another as well; we break this degeneracy by looking at the PAH-oxygen abundance relation at a fixed radiation hardness and the PAH-hardness relation at a fixed oxygen abundance. This test shows that the [3.6]-[7.8] color in dwarf galaxies appears to depend more directly on oxygen abundance based on the data currently available.« less

  3. Ultra-high energy cosmic rays from white dwarf pulsars and the Hillas criterion

    NASA Astrophysics Data System (ADS)

    Lobato, Ronaldo V.; Coelho, Jaziel G.; Malheiro, M.

    2017-06-01

    The origins of ultra-high-energy cosmic rays (E ≳ 1019 eV) are a mystery and still under debate in astroparticle physics. In recent years some efforts were made to understand their nature. In this contribution we consider the possibility of Some Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) beeing white dwarf pulsars, and show that these sources can achieve large electromagnetic potentials on their surface that accelerate particle almost at the speed of light, with energies E ~ 1020-21 eV. The sources SGRs/AXPs considered as highly magnetized white dwarfs are well described in the Hillas diagram, lying close to the AR Sorpii and AE Aquarii which are understood as white dwarf pulsars.

  4. A systematic search for dwarf counterparts to ultra compact high velocity clouds

    NASA Astrophysics Data System (ADS)

    Bennet, Paul; Sand, David J.; Crnojevic, Denija; Strader, Jay

    2015-01-01

    Observations of the Universe on scales smaller than typical, massive galaxies challenge the standard Lambda Cold Dark Matter paradigm for structure formation. It is thus imperative to discover and characterize the faintest dwarf galaxy systems, not just within the Local Group, but in relatively isolated environments as well in order to properly connect them with models of structure formation. Here we report on a systematic search of public ultraviolet and optical archives for dwarf galaxy counterparts to so-called Ultra Compact High Velocity Clouds (UCHVCs), which are compact, isolated HI sources recently found in the Galactic Arecibo L-band Feed Array-HI (GALFA-HI) and Arecibo Legacy Fast ALFA (ALFALFA-HI) surveys. Our search has uncovered at least three strong dwarf galaxy candidates, and we present their inferred star formation rate and structural properties here.

  5. Helium ignition in rotating magnetized CO white dwarfs leading to fast and faint rather than classical Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Neunteufel, P.; Yoon, S.-C.; Langer, N.

    2017-06-01

    Context. Based mostly on stellar models that do not include rotation, CO white dwarfs that accrete helium at rates of about 10-8M⊙/ yr have been put forward as candidate progenitors for a number of transient astrophysical phenomena, including Type Ia supernovae and the peculiar and fainter Type Iax supernovae. Aims: Here we study the impact of accretion-induced spin-up including the subsequent magnetic field generation, angular momentum transport, and viscous heating on the white dwarf evolution up to the point of helium ignition. Methods: We resolve the structure of the helium accreting white dwarf models with a one-dimensional Langrangian hydrodynamic code, modified to include rotational and magnetic effects, in 315 model sequences adopting different mass-transfer rates (10-8-10-7M⊙/ yr), and initial white dwarf masses (0.54-1.10 M⊙) and luminosities (0.01-1 L⊙). Results: We find magnetic angular momentum transport, which leads to quasi-solid-body rotation, profoundly impacts the evolution of the white dwarf models, and the helium ignition conditions. Our rotating lower mass (0.54 and 0.82 M⊙) models accrete up to 50% more mass up to ignition than the non-rotating case, while it is the opposite for our more massive models. Furthermore, we find that rotation leads to helium ignition densities that are up to ten times smaller, except for the lowest adopted initial white dwarf mass. Ignition densities on the order of 106 g/cm3 are only found for the lowest accretion rates and for large amounts of accreted helium (≳0.4M⊙). However, correspondingly massive donor stars would transfer mass at much higher rates. We therefore expect explosive He-shell burning to mostly occur as deflagrations and at Ṁ > 2 × 10-8M⊙/ yr, regardless of white dwarf mass. Conclusions: Our results imply that helium accretion onto CO white dwarfs at the considered rates is unlikely to lead to the explosion of the CO core or to classical Type Ia supernovae, but may instead

  6. COMPLETE ELEMENT ABUNDANCES OF NINE STARS IN THE r -PROCESS GALAXY RETICULUM II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Alexander P.; Frebel, Anna; Chiti, Anirudh

    We present chemical abundances derived from high-resolution Magellan /Magellan Inamori Kyocera Echelle spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II (Ret II). These stars span the full metallicity range of Ret II (−3.5 < [Fe/H] < −2). Seven of the nine stars have extremely high levels of r -process material ([Eu/Fe] ∼ 1.7), in contrast to the extremely low neutron-capture element abundances found in every other ultra-faint dwarf galaxy studied to date. The other two stars are the most metal-poor stars in the system ([Fe/H] < −3), and they have neutron-capture elementmore » abundance limits similar to those in other ultra-faint dwarf galaxies. We confirm that the relative abundances of Sr, Y, and Zr in these stars are similar to those found in r -process halo stars, but they are ∼0.5 dex lower than the solar r -process pattern. If the universal r -process pattern extends to those elements, the stars in Ret II display the least contaminated known r -process pattern. The abundances of lighter elements up to the iron peak are otherwise similar to abundances of stars in the halo and in other ultra-faint dwarf galaxies. However, the scatter in abundance ratios is large enough to suggest that inhomogeneous metal mixing is required to explain the chemical evolution of this galaxy. The presence of low amounts of neutron-capture elements in other ultra-faint dwarf galaxies may imply the existence of additional r -process sites besides the source of r -process elements in Ret II. Galaxies like Ret II may be the original birth sites of r -process enhanced stars now found in the halo.« less

  7. Modeling Neutron stars as r-process sources in Ultra Faint Dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Safarzadeh, Mohammadtaher; Scannapieco, Evan

    2018-06-01

    To explain the high observed abundances of r-process elements in local ultrafaint dwarf (UFD) galaxies, we perform cosmological zoom simulations that include r-process production from neutron star mergers (NSMs). We model star formation stochastically and simulate two different haloes with total masses ≈108 M⊙ at z = 6. We find that the final distribution of [Eu/H] versus [Fe/H] is relatively insensitive to the energy by which the r-process material is ejected into the interstellar medium, but strongly sensitive to the environment in which the NSM event occurs. In one halo, the NSM event takes place at the centre of the stellar distribution, leading to high levels of r-process enrichment such as seen in a local UFD, Reticulum II (Ret II). In a second halo, the NSM event takes place outside of the densest part of the galaxy, leading to a more extended r-process distribution. The subsequent star formation occurs in an interstellar medium with shallow levels of r-process enrichment that results in stars with low levels of [Eu/H] compared to Ret II stars even when the maximum possible r-process mass is assumed to be ejected. This suggests that the natal kicks of neutron stars may also play an important role in determining the r-process abundances in UFD galaxies, a topic that warrants further theoretical investigation.

  8. A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Martin, N. F.; Ibata, R. A.; Chapman, S. C.; Irwin, M.; Lewis, G. F.

    2007-09-01

    We present the results of a spectroscopic survey of the recently discovered faint Milky Way satellites Boötes, Ursa Major I, Ursa Major II and Willman 1 (Wil1). Using the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, we have obtained samples that contain from ~15 to ~85 probable members of these satellites for which we derive radial velocities precise to a few kms-1 down to i ~ 21-22. About half of these stars are observed with a high enough signal-to-noise ratio to estimate their metallicity to within +/-0.2 dex. The characteristics of all the observed stars are made available, along with those of the Canes Venatici I dwarf galaxy that have been analysed in a companion paper. From this data set, we show that Ursa Major II is the only object that does not show a clear radial velocity peak. However, the measured systemic radial velocity (vr = 115 +/- 5kms-1) is in good agreement with simulations in which this object is the progenitor of the recently discovered Orphan Stream. The three other satellites show velocity dispersions that make them highly dark matter dominated systems (under the usual assumptions of symmetry and virial equilibrium). In particular, we show that despite its small size and faintness, the Wil1 object is not a globular cluster given its metallicity scatter over -2.0 <~ [Fe/H] <~ -1.0 and is therefore almost certainly a dwarf galaxy or dwarf galaxy remnant. We measure a radial velocity dispersion of only 4.3+2.3-1.3kms-1 around a systemic velocity of -12.3 +/- 2.3kms-1 which implies a mass-to-light ratio of ~700 and a total mass of ~5 × 105Msolar for this satellite, making it the least massive satellite galaxy known to date. Such a low mass could mean that the 107Msolar limit that had until now never been crossed for Milky Way and Andromeda satellite galaxies may only be an observational limit and that fainter, less massive systems exist within the Local Group. However, more modelling and an extended search for

  9. Kinematic, Photometric, and Spectroscopic Properties of Faint White Dwarf Stars Discovered in the HALO7D Survey of the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Harris, Madison; Cunningham, Emily; Guhathakurta, Puragra; Cheshire, Ishani; Gupta, Nandita

    2018-01-01

    White dwarf (WD) stars represent the final phase in the life of solar-mass stars. The extreme low luminosity of WDs means that most detailed measurements of such stars are limited to samples in the immediate neighborhood of the Sun in the thin disk of the Milky Way galaxy. We present spectra, line-of-sight (LOS) velocities, and proper motions (PMs) of a sample of faint (m_V ~ 19.0–24.5) white dwarfs (WDs) from the HALO7D survey. HALO7D is a Keck II/DEIMOS spectroscopic survey of unprecedented depth (8–24 hour integrations) in the CANDELS fields of main sequence turnoff stars in the Milky Way's outer halo. Faint WD stars are rare but useful by-products of this survey. We identify the sample of WDs based on their characteristic broad spectral Balmer absorption features, and present a Bayesian method for measuring their LOS velocities. Using their broadband colors, LOS velocities and PMs measured with the Hubble Space Telescope, we identify candidate halo members among the WDs based on the predicted velocity distributions from the Besançon numerical model of stellar populations in the Milky Way galaxy. The WDs found in the HALO7D survey will yield new insights on the old stellar population associated with the Milky Way's thick disk and halo. Funding for this research was provided by the National Science Foundation and NASA/STScI. NG and IC's participation in this research was under the auspices of the Science Internship Program at the University of California Santa Cruz.

  10. Formation of ultra-compact dwarf galaxies from supergiant molecular clouds

    NASA Astrophysics Data System (ADS)

    Goodman, Morgan; Bekki, Kenji

    2018-05-01

    The origin of ultra-compact dwarf galaxies (UCDs) is not yet clear. One possible formation path of UCDs is the threshing of a nucleated elliptical dwarf galaxy (dE, N), however, it remains unclear how such massive nuclear stellar systems were formed in dwarf galaxies. To better establish the early history of UCDs, we investigate the formation of UCD progenitor clusters from super giant molecular clouds (SGMCs), using hydrodynamical simulations. In this study we focus on SGMCs with masses 107 - 108 M_{\\odot } that can form massive star clusters that display physical properties similar to UCDs. We find that the clusters have extended star formation histories with two phases, producing multiple distinct stellar populations, and that the star formation rate is dependent on the feedback effects of SNe and AGB stars. The later generations of stars formed in these clusters are more compact, leading to a clearly nested structure, and these stars will be more He-rich than those of the first generation, leading to a slight colour gradient. The simulated clusters demonstrate scaling relations between Reff and M and σv and M consistent with those observed in UCDs and strongly consistent with those of the original SGMC. We discuss whether SGMCs such as these can be formed through merging of self-gravitating molecular clouds in galaxies at high-z.

  11. [The inheritance of an ultra-dwarf plant mutant from upland cotton].

    PubMed

    Chen, Xu-Sheng; DI, Jia-Chun; Xu, Nai-Yin; Xiao, Song-Hua; Liu, Jian-Guang

    2007-04-01

    The inheritance of an ultra-dwarf plant mutant from upland cotton (Gossypium hirsutum L.) was studied, which showed that the mutant was controlled by single recessive quality gene. This gene was denominated as du tentatively. No similar mutant has been found in upland cotton. The mutation could not normally flower and produce bolls under natural conditions, and its mature height was only 10.5 cm. When treated with exogenous GA3, it could normally flower and boll, and plant height could reach 57.8 cm finally.

  12. Resolving the faint end of the satellite luminosity function for the nearest elliptical Centaurus A

    NASA Astrophysics Data System (ADS)

    Crnojevic, Denija

    2014-10-01

    We request HST/ACS imaging to follow up 15 new faint candidate dwarfs around the nearest elliptical Centaurus A (3.8 Mpc). The dwarfs were found via a systematic ground-based (Magellan/Megacam) survey out to ~150 kpc, designed to directly confront the "missing satellites" problem in a wholly new environment. Current Cold Dark Matter models for structure formation fail to reproduce the shallow slope of the satellite luminosity function in spiral-dominated groups for which dwarfs fainter than M_V<-14 have been surveyed (the Local Group and the nearby, interacting M81 group). Clusters of galaxies show a better agreement with cosmological predictions, suggesting an environmental dependence of the (poorly-understood) physical processes acting on the evolution of low mass galaxies (e.g., reionization). However, the luminosity function completeness for these rich environments quickly drops due to the faintness of the satellites and to the difficult cluster membership determination. We target a yet unexplored "intermediate" environment, a nearby group dominated by an elliptical galaxy, ideal due to its proximity: accurate (10%) distance determinations for its members can be derived from resolved stellar populations. The proposed observations of the candidate dwarfs will confirm their nature, group membership, and constrain their luminosities, metallicities, and star formation histories. We will obtain the first complete census of dwarf satellites of an elliptical down to an unprecedented M_V<-9. Our results will crucially constrain cosmological predictions for the faint end of the satellite luminosity function to achieve a more complete picture of the galaxy formation process.

  13. The Evolution of Dwarf Galaxy Satellites with Different Dark Matter Density Profiles in the ErisMod Simulations. I. The Early Infalls

    NASA Astrophysics Data System (ADS)

    Tomozeiu, Mihai; Mayer, Lucio; Quinn, Thomas

    2016-02-01

    We present the first simulations of tidal stirring of dwarf galaxies in the Local Group carried out in a fully cosmological context. We use the ErisDARK cosmological simulation of a Milky Way (MW)-sized galaxy to identify some of the most massive subhalos (Mvir > 108 M⊙) that fall into the main host before z = 2. Subhalos are replaced before infall with extremely high-resolution models of dwarf galaxies comprising a faint stellar disk embedded in a dark matter halo. The set of models contains cuspy halos as well as halos with “cored” profiles (with the cusp coefficient γ = 0.6) consistent with recent results of hydrodynamical simulations of dwarf galaxy formation. The simulations are then run to z = 0 with as many as 54 million particles and resolutions as small as ∼4 pc using the new parallel N-body code ChaNGa. The stellar components of all satellites are significantly affected by tidal stirring, losing stellar mass, and undergoing a morphological transformation toward a pressure supported spheroidal system. However, while some remnants with cuspy halos maintain significant rotational flattening and disk-like features, all the shallow halo models achieve vrot/σ⋆ < 0.5 and round shapes typical of dSph satellites of the MW and M31. Mass loss is also enhanced in the latter, and remnants can reach luminosities and velocity dispersions as low as those of ultra-faint dwarfs.

  14. A search for HI in some peculiar faint dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Begum, Ayesha; Chengalur, Jayaram N.

    2005-09-01

    We present a deep Giant Metrewave Radio Telescope (GMRT) search for HI 21-cm emission from three dwarf galaxies, viz. POX 186, SC 24 and KKR 25. Based, in part, on previous single-dish HI observations, these galaxies have been classified as a blue compact dwarf (BCD), a dwarf irregular and a transition galaxy, respectively. However, in conflict with previous single-dish detections, we do not detect HI in SC 24 or KKR 25. We suggest that the previous single-dish measurements were probably confused with the local Galactic emission. In the case of POX 186, we confirm the previous non-detection of HI but with substantially improved limits on its HI mass. Our derived upper limits on the HI mass of SC 24 and KKR 25 are similar to the typical HI mass limit for dwarf spheroidal (dSph) galaxies, whereas in the case of POX 186, we find that its gas content is somewhat smaller than is typical of BCD galaxies.

  15. Isolated and companion young brown dwarfs in the taurus and chamaeleon molecular clouds

    PubMed

    Tamura; Itoh; Oasa; Nakajima

    1998-11-06

    Infrared imaging observations have detected a dozen faint young stellar objects (YSOs) in the Taurus and Chamaeleon molecular clouds whose near-infrared colors are similar to those of classical T Tauri stars (TTS). They are around four magnitudes fainter than low-luminosity YSOs in Taurus detected in earlier surveys and as much as eight magnitudes fainter than typical TTS. The extreme faintness of the objects and their lower luminosity relative to previously identified brown dwarfs in the Pleiades indicate that these faint YSOs are very young brown dwarfs on the order of 1 million years old.

  16. WHERE ARE THE FOSSILS OF THE FIRST GALAXIES? I. LOCAL VOLUME MAPS AND PROPERTIES OF THE UNDETECTED DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovill, Mia S.; Ricotti, Massimo, E-mail: msbovill@astro.umd.edu, E-mail: ricotti@astro.umd.edu

    We present a new method for generating initial conditions for {Lambda}CDM N-body simulations which provides the dynamical range necessary to follow the evolution and distribution of the fossils of the first galaxies on Local Volume, 5-10 Mpc, scales. The initial distribution of particles represents the position, velocity, and mass distribution of the dark and luminous halos extracted from pre-reionization simulations. We confirm previous results that ultra-faint dwarfs have properties compatible with being well-preserved fossils of the first galaxies. However, because the brightest pre-reionization dwarfs form preferentially in biased regions, they most likely merge into non-fossil halos with circular velocities >20-30more » km s{sup -1}. Hence, we find that the maximum luminosity of true fossils in the Milky Way is L{sub V} < 10{sup 6} L{sub sun}, casting doubts on the interpretation that some classical dSphs are true fossils. In addition, we argue that most ultra-faints at small galactocentric distance, R < 50 kpc, had their stellar properties modified by tides, while a large population of fossils is still undetected due to their extremely low surface brightness log ({Sigma}{sub V}) < -1.4. We estimate that the region outside R{sub 50} ({approx}400 kpc) up to 1 Mpc from the Milky Way contains about a hundred true fossils of the first galaxies with V-band luminosity 10{sup 3}-10{sup 5} L{sub sun} and half-light radii, r{sub hl} {approx} 100-1000 pc.« less

  17. Unveiling the extreme nature of the hyper faint galaxy Virgo I

    NASA Astrophysics Data System (ADS)

    Crnojevic, Denija

    2017-08-01

    We request HST/ACS imaging to obtain a deep color-magnitude diagram of the newly discovered candidate Milky Way satellite Virgo I. With an estimated absolute magnitude of only M_V -0.8 and a Galactocentric radius of 90 kpc, Virgo I is one of the faintest and most distant dwarfs ever observed, and could be identified as a prototype ''hyper'' faint galaxy. The detailed characterization of the smallest inhabited dark matter subhalos is crucial to guide hierarchical galaxy formation models, and in particular to constrain reionization, the nature of the dark matter particle, etc. With the advent of deep wide-field, ground-based surveys, the potential of uncovering these lowest-mass galaxies is quickly turning into reality, as demonstrated by the discovery in the past two years of tens of new Local Group members in the ultra-faint regime (M_V>-8). Virgo I represents a new record in galaxy physical properties, and urges us to be prepared for the likely emergence of an entirely new class of such objects in the era of future wide-field surveys (e.g., LSST). Only high resolution HST observations can enable us to confirm the nature of Virgo I, providing significantly more accurate estimates for its distance and structural properties, when compared to the discovery Subaru/HyperSuprimeCam imaging. Our proposed dataset will constitute a fundamental step in the upcoming hunt for galaxies with similarly extreme properties.

  18. The Properties of Faint Field Galaxies

    NASA Astrophysics Data System (ADS)

    Driver, Simon. P.

    1994-12-01

    One of the current drawbacks of Charge Coupled Devices (CCDs) is their restrictive fields of view. The Hitchhiker CCD camera overcomes this limitation by operating in parallel with existing instrumentation and is able to cover a large area as well as large volumes. Hitchhiker is mounted on the 4.2m William Herschel Telescope and has been operating for two years. The first use of the Hitchhiker data set has been to study the general properties of faint galaxies. The observed trend of how the differential numbers of galaxies vary with magnitude agrees extremely well with those of other groups and covers, for the first time, all four major optical bandpasses. This multi-band capability has also allowed the study of how the colors of galaxies change with magnitude and how the correlation of galaxies on the sky varies between the optical bandpasses. A dwarf dominated model has been developed to explain these observations and challenges our knowledge of the space-density of dwarf galaxies. The model demonstrates that a simple upward turn in the luminosity distribution of galaxies, similar to that observed in clusters, would remain undetected by the field surveys yet can explain many of the observations without recourse to non-passive galaxy evolution. The conclusion is that the field luminosity distribution is not constrained at faint absolute magnitudes. A combination of a high density of dwarf galaxies and mild evolution could explain all the observations. Continuing work with HST and the Medium Deep Survey Team now reveals the morphological mix of galaxies down to mI ~ 24.0. The results confirm that ellipticals and early-type spirals are well fitted by standard no-evolution models whilst the late-type spirals can only be fitted by strong evolution and/or a significant turn-up in the local field LF.

  19. Establishing a Network of faint DA white dwarfs as Spectrophotometric Standards

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Narayan, Gautham; Holberg, Jay; Matheson, Thomas; Olszewski, Edward; Stubbs, Christopher; Bohlin, Ralph; Sabbi, Elena; Deustua, Susana; Rest, Armin; Axelrod, Tim; MacKenty, John W.; Camarota, Larry; Gilliland, Ron

    2015-08-01

    Systematic uncertainties in photometric calibration are the dominant source of error in current type Ia supernova dark energy studies, as well as other forefront cosmology efforts, e.g. photo-redshift determinations for weak lensing mass tomography. Current and next-generation ground-based all-sky surveys require a network of calibration stars with 1) known SEDs (to properly and unambiguously take into account filter differences), and 2) that are on a common photometric zeropoint scale across the sky to sub-percent accuracy. We are using a combination of HST panchromatic photometry and ground based spectroscopy to establish such an essential network of faint primary photometric standards, exploiting the well-understood spectral energy distributions of DA white dwarf stars that are free from the complications of observing through the Earth's time-variable atmosphere. The Balmer features in the spectra are used to deduce the two parameters (temperature and log(g)) from which we model the spectral energy distribution (SED) from these stars which have pure hydrogen atmospheres. By comparing against panchromatic broadband HST photometry, and allowing for an achromatic zero-point adjustment and mild scaling of the interstellar reddening, we find that model prediction and observation agree to a few milli-mag. By combining the zero-point and reddening adjustments with the modeled SED, for each star we obtain the incident SED above the terrestrial atmosphere, thus establishing these objects as spectrophotometric standards. We are pursuing 23 objects between 16 and 19 mag spread over the sky uniformly around the equator and northern mid-latitudes, with plans to extend this to southern latitudes. This precision photometric heritage from HST will benefit essentially all existing and upcoming survey projects, and in prticular, directly addresses one of the current barriers to understanding the nature of dark energy.

  20. Colliding Neutron Stars as the Source of Heavy Elements

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Where do the heavy elements the chemical elements beyond iron in our universe come from? One of the primary candidate sources is the merger of two neutron stars, but recent observations have cast doubt on this model. Can neutron-star mergers really be responsible?Elements from Collisions?Periodic table showing the origin of each chemical element. Those produced by the r-process are shaded orange and attributed to supernovae in this image; though supernovae are one proposed source of r-process elements, an alternative source is the merger of two neutron stars. [Cmglee]When a binary-neutron-star system inspirals and the two neutron stars smash into each other, a shower of neutrons are released. These neutrons are thought to bombard the surrounding atoms, rapidly producing heavy elements in what is known as r-process nucleosynthesis.So could these mergers be responsible for producing the majority of the universes heavy r-process elements? Proponents of this model argue that its supported by observations. The overall amount of heavy r-process material in the Milky Way, for instance, is consistent with the expected ejection amounts from mergers, based both on predicted merger rates for neutron stars in the galaxy, and on the observed rates of soft gamma-ray bursts (which are thought to accompany double-neutron-star mergers).Challenges from Ultra-Faint DwarfsRecently, however, r-process elements have been observed in ultra-faint dwarf satellite galaxies. This discovery raises two major challenges to the merger model for heavy-element production:When neutron stars are born during a core-collapse supernova, mass is ejected, providing the stars with asymmetric natal kicks. During the second collapse in a double-neutron-star binary, wouldnt the kick exceed the low escape velocity of an ultra-faint dwarf, ejecting the binary before it could merge and enrich the galaxy?Ultra-faint dwarfs have very old stellar populations and the observation of r-process elements in these stars

  1. Fainting

    MedlinePlus

    ... pressure. Why Do People Faint? Fainting is pretty common in teens. The good news is that most of the time it's not a sign of something serious. When someone faints, it's usually because ... ventilated setting are common causes of fainting in teens. People can also ...

  2. Dwarfs in Coma Cluster

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This false-color mosaic of the central region of the Coma cluster combines infrared and visible-light images to reveal thousands of faint objects (green). Follow-up observations showed that many of these objects, which appear here as faint green smudges, are dwarf galaxies belonging to the cluster. Two large elliptical galaxies, NGC 4889 and NGC 4874, dominate the cluster's center. The mosaic combines visible-light data from the Sloan Digital Sky Survey (color coded blue) with long- and short-wavelength infrared views (red and green, respectively) from NASA's Spitzer Space Telescope.

  3. Selecting ultra-faint dwarf candidate progenitors in cosmological N-body simulations at high redshifts

    NASA Astrophysics Data System (ADS)

    Safarzadeh, Mohammadtaher; Ji, Alexander P.; Dooley, Gregory A.; Frebel, Anna; Scannapieco, Evan; Gómez, Facundo A.; O'Shea, Brian W.

    2018-06-01

    The smallest satellites of the Milky Way ceased forming stars during the epoch of reionization and thus provide archaeological access to galaxy formation at z > 6. Numerical studies of these ultrafaint dwarf galaxies (UFDs) require expensive cosmological simulations with high mass resolution that are carried out down to z = 0. However, if we are able to statistically identify UFD host progenitors at high redshifts with relatively high probabilities, we can avoid this high computational cost. To find such candidates, we analyse the merger trees of Milky Way type haloes from the high-resolution Caterpillar suite of dark matter only simulations. Satellite UFD hosts at z = 0 are identified based on four different abundance matching (AM) techniques. All the haloes at high redshifts are traced forward in time in order to compute the probability of surviving as satellite UFDs today. Our results show that selecting potential UFD progenitors based solely on their mass at z = 12 (8) results in a 10 per cent (20 per cent) chance of obtaining a surviving UFD at z = 0 in three of the AM techniques we adopted. We find that the progenitors of surviving satellite UFDs have lower virial ratios (η), and are preferentially located at large distances from the main MW progenitor, while they show no correlation with concentration parameter. Haloes with favorable locations and virial ratios are ≈3 times more likely to survive as satellite UFD candidates at z = 0.

  4. No Assembly Required: Mergers are Mostly Irrelevant for the Growth of Low-mass Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Fitts, Alex; Boylan-Kolchin, Michael; Bullock, James S.; Weisz, Daniel R.; El-Badry, Kareem; Wheeler, Coral; Faucher-Giguère, Claude-André; Quataert, Eliot; Hopkins, Philip F.; Kereš, Dušan; Wetzel, Andrew; Hayward, Christopher C.

    2018-06-01

    We investigate the merger histories of isolated dwarf galaxies based on a suite of 15 high-resolution cosmological zoom-in simulations, all with masses of Mhalo ≈ 1010 M⊙ (and M⋆ ˜ 105 - 107 M⊙) at z = 0, from the Feedback in Realistic Environments (FIRE) project. The stellar populations of these dwarf galaxies at z = 0 are formed essentially entirely "in situ": over 90% of the stellar mass is formed in the main progenitor in all but two cases, and all 15 of the galaxies have >70% of their stellar mass formed in situ. Virtually all galaxy mergers occur prior to z ˜ 3, meaning that accreted stellar populations are ancient. On average, our simulated dwarfs undergo 5 galaxy mergers in their lifetimes, with typical pre-merger galaxy mass ratios that are less than 1:10. This merger frequency is generally comparable to what has been found in dissipationless simulations when coupled with abundance matching. Two of the simulated dwarfs have a luminous satellite companion at z = 0. These ultra-faint dwarfs lie at or below current detectability thresholds but are intriguing targets for next-generation facilities. The small contribution of accreted stars make it extremely difficult to discern the effects of mergers in the vast majority of dwarfs either photometrically or using resolved-star color-magnitude diagrams (CMDs). The important implication for near-field cosmology is that star formation histories of comparably massive galaxies derived from resolved CMDs should trace the build-up of stellar mass in one main system across cosmic time as opposed to reflecting the contributions of many individual star formation histories of merged dwarfs.

  5. A PECULIAR FAINT SATELLITE IN THE REMOTE OUTER HALO OF M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, A. D.; Dotter, A.; Huxor, A. P.

    2013-06-20

    We present Hubble Space Telescope imaging of a newly discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age {approx}> 10 Gyr and [Fe/H] {approx}< -2.3. Our inferred distance modulus (m - M){sub 0} = 24.57 {+-} 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a three-dimensional galactocentric radius of 149{sup +19}{sub -8} kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow,more » and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius r{sub h}=26{sup +4}{sub -3} pc, integrated luminosity M{sub V} = -4.8 {+-} 0.5, and ellipticity {epsilon}=0.30{sup +0.08}{sub -0.15}. On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies and the recently discovered faint dwarf satellites of the Milky Way; however, its characteristics do not allow us to unambiguously classify it as either type of system. If PAndAS-48 is a globular cluster then it is among the most elliptical, isolated, and metal-poor of any seen in the Local Group, extended or otherwise. Conversely, while its properties are generally consistent with those observed for the faint Milky Way dwarfs, it would be a factor of {approx}2-3 smaller in spatial extent than any known counterpart of comparable luminosity.« less

  6. WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorentino, Giuliana; Bono, Giuseppe; Monelli, Matteo

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittariusmore » are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.« less

  7. Indications of M-Dwarf Deficits in the Halo and Thick Disk of the Galaxy

    NASA Technical Reports Server (NTRS)

    Konishi, Mihoko; Shibai, Hiroshi; Sumi, Takahiro; Fukagawa, Misato; Matsuo, Taro; Samland, Matthias S.; Yamamoto, Kodai; Sudo, Jun; Itoh, Yoichi; Arimoto, Nubuo; hide

    2014-01-01

    We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M-dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20 +/- 13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52 +/- 13%) or the scale height must be decreased (approximately 600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs. Our results imply that the M-dwarf population in regions distant from the Galactic plane is significantly smaller than previously thought. We then discussed the implications this has on the suitability of the model predictions for the prediction of non-companion faint stars in direct imaging extrasolar planet surveys by using the best-fit number densities.

  8. Indications of M-Dwarf Deficits in the Halo and Thick Disk of the Galaxy

    NASA Technical Reports Server (NTRS)

    Konishi, Mihoko; Shibai, Hiroshi; Sumi, Takahiro; Fukagawa, Misato; Matsuo, Taro; Samland, Matthias S.; Yamamoto, Kodai; Sudo, Jun; Itoh, Yoichi; Arimoto, Nobuo; hide

    2014-01-01

    We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M-dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20+/-13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52+/-13%) or the scale height must be decreased ( approx. 600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs. Our results imply that the M-dwarf population in regions distant from the Galactic plane is significantly smaller than previously thought. We then discussed the implications this has on the suitability of the model predictions for the prediction of non-companion faint stars in direct imaging extrasolar planet surveys by using the best-fit number densities.

  9. A Peculiar Faint Satellite in the Remote Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Martin, N. F.; Ferguson, A. M. N.; Dotter, A.; McConnachie, A. W.; Ibata, R. A.; Irwin, M. J.; Lewis, G. F.; Sakari, C. M.; Tanvir, N. R.; Venn, K. A.

    2013-06-01

    We present Hubble Space Telescope imaging of a newly discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age >~ 10 Gyr and [Fe/H] lsim -2.3. Our inferred distance modulus (m - M)0 = 24.57 ± 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a three-dimensional galactocentric radius of 149^{+19}_{-8} kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow, and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius r_h=26^{+4}_{-3} pc, integrated luminosity MV = -4.8 ± 0.5, and ellipticity \\epsilon =0.30^{+0.08}_{-0.15}. On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies and the recently discovered faint dwarf satellites of the Milky Way; however, its characteristics do not allow us to unambiguously classify it as either type of system. If PAndAS-48 is a globular cluster then it is among the most elliptical, isolated, and metal-poor of any seen in the Local Group, extended or otherwise. Conversely, while its properties are generally consistent with those observed for the faint Milky Way dwarfs, it would be a factor of ~2-3 smaller in spatial extent than any known counterpart of comparable luminosity. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO 12515.

  10. The Least Luminous Galaxies in the Universe

    NASA Astrophysics Data System (ADS)

    Willman, Beth

    2011-05-01

    In the past six years, more than two dozen dwarf galaxies have been discovered around the Milky Way and M31. Many of these discoveries are 100 times less luminous than any galaxy previously known, and a million times less luminous than the Milky Way itself. These discoveries have made astronomers question the very meaning of the word "galaxy", and hint that such ultra-faint dwarf galaxies may be the most numerous type of galaxy in the universe. This talk will highlight i. how we can see galaxies that are effectively invisible in images of the sky, ii. the brewing controversy over the definition of the term "galaxy", and iii. what ultra-faint galaxies can reveal about the distribution of dark matter in our Universe.

  11. First confirmed ultra-compact dwarf galaxy in the NGC 5044 group

    NASA Astrophysics Data System (ADS)

    Faifer, Favio R.; Escudero, Carlos G.; Scalia, María C.; Smith Castelli, Analía V.; Norris, Mark; De Rossi, María E.; Forte, Juan C.; Cellone, Sergio A.

    2017-03-01

    Context. Ultra-compact dwarfs (UCDs) are stellar systems displaying colours and metallicities between those of globular clusters (GCs) and early-type dwarf galaxies, as well as sizes of Reff ≲ 100 pc and luminosities in the range -13.5 dwarf galaxies. Aims: NGC 5044 is the central massive elliptical galaxy of the NGC 5044 group. Its GC/UCD system is completely unexplored. Methods: In Gemini+GMOS deep images of several fields around NGC 5044 and in spectroscopic multi-object data of one of these fields, we detected an unresolved source with g' 20.6 mag, compatible with being an UCD. Its radial velocity was obtained with FXCOR and the penalized pixel-fitting (pPXF) code. To study its stellar population content, we measured the Lick/IDS indices and compared them with predictions of single stellar population models, and we used the full spectral fitting technique. Results: The spectroscopic analysis of the UCD revealed a radial velocity that agrees with the velocity of the elliptical galaxy NGC 5044. From the Lick/IDS indices, we have obtained a luminosity-weighted age and metallicity of 11.7+ 1.4-1.2 Gyr and [Z/H] = -0.79 ± 0.04 dex, respectively, as well as [α/ Fe] = 0.30 ± 0.06. From the full spectral fitting technique, we measured a lower age (8.52 Gyr) and a similar total metallicity ([Z/H] = -0.86 dex). Conclusions: Our results indicate that NGC 5044-UCD1 is most likely an extreme GC (MV -12.5 mag) belonging to the GC system of the elliptical galaxy NGC 5044.

  12. The very faint X-ray binary IGR J17062-6143: a truncated disc, no pulsations, and a possible outflow

    NASA Astrophysics Data System (ADS)

    van den Eijnden, J.; Degenaar, N.; Pinto, C.; Patruno, A.; Wette, K.; Messenger, C.; Hernández Santisteban, J. V.; Wijnands, R.; Miller, J. M.; Altamirano, D.; Paerels, F.; Chakrabarty, D.; Fabian, A. C.

    2018-04-01

    We present a comprehensive X-ray study of the neutron star low-mass X-ray binary IGR J17062-6143, which has been accreting at low luminosities since its discovery in 2006. Analysing NuSTAR, XMM-Newton, and Swift observations, we investigate the very faint nature of this source through three approaches: modelling the relativistic reflection spectrum to constrain the accretion geometry, performing high-resolution X-ray spectroscopy to search for an outflow, and searching for the recently reported millisecond X-ray pulsations. We find a strongly truncated accretion disc at 77^{+22}_{-18} gravitational radii (˜164 km) assuming a high inclination, although a low inclination and a disc extending to the neutron star cannot be excluded. The high-resolution spectroscopy reveals evidence for oxygen-rich circumbinary material, possibly resulting from a blueshifted, collisionally ionized outflow. Finally, we do not detect any pulsations. We discuss these results in the broader context of possible explanations for the persistent faint nature of weakly accreting neutron stars. The results are consistent with both an ultra-compact binary orbit and a magnetically truncated accretion flow, although both cannot be unambiguously inferred. We also discuss the nature of the donor star and conclude that it is likely a CO or O-Ne-Mg white dwarf, consistent with recent multiwavelength modelling.

  13. STELLAR ARCHAEOLOGY IN THE GALACTIC HALO WITH THE ULTRA-FAINT DWARFS. VI. URSA MAJOR II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Ora, M.; Ripepi, Vincenzo; Marconi, Marcella

    2012-06-10

    We present a B, V color-magnitude diagram (CMD) of the Milky Way dwarf satellite Ursa Major II (UMa II), spanning the magnitude range from V {approx} 15 to V {approx} 23.5 mag and extending over an 18 Multiplication-Sign 18 arcmin{sup 2} area centered on the Galaxy. Our photometry goes down to about 2 mag below the Galaxy's main-sequence turnoff that we detected at V {approx} 21.5 mag. We have discovered a bona fide RR Lyrae variable star in UMa II, which we use to estimate a conservative dereddened distance modulus for the galaxy of (m - M){sub 0} = 17.70more » {+-} 0.04 {+-} 0.12 mag, where the first error accounts for the uncertainties of the calibrated photometry, and the second reflects our lack of information on the metallicity of the star. The corresponding distance to UMa II is 34.7{sup +0.6}{sub -0.7}({sup +2.0}{sub -1.9}) kpc. Our photometry shows evidence of a spread in the Galaxy's subgiant branch, compatible with a spread in metal abundance in the range between Z = 0.0001 and Z = 0.001. Based on our estimate of the distance, a comparison of the fiducial lines of the Galactic globular clusters M68 and M5 ([Fe/H] = -2.27 {+-} 0.04 dex and -1.33 {+-} 0.02 dex, respectively), with the position on the CMD of spectroscopically confirmed Galaxy members, may suggest the existence of stellar populations of different metal abundance/age in the central region of UMa II.« less

  14. The T dwarf population in the UKIDSS LAS .

    NASA Astrophysics Data System (ADS)

    Cardoso, C. V.; Burningham, B.; Smith, L.; Smart, R.; Pinfield, D.; Magazzù, A.; Ghinassi, F.; Lattanzi, M.

    We present the most recent results from the UKIDSS Large Area Survey (LAS) census and follow up of new T brown dwarfs in the local field. The new brown dwarf candidates are identified using optical and infrared survey photometry (UKIDSS and SDSS) and followed up with narrow band methane photometry (TNG) and spectroscopy (Gemini and Subaru) to confirm their brown dwarf nature. Employing this procedure we have discovered several dozens of new T brown dwarfs in the field. Using methane differential photometry as a proxy for spectral type for T brown dwarfs has proved to be a very efficient technique. This method can be useful in the future to reliably identify brown dwarfs in deep surveys that produce large samples of faint targets where spectroscopy is not feasible for all candidates. With this statistical robust sample of the mid and late T brown dwarf field population we were also able to address the discrepancies between the observed field space density and the expected values given the most accepted forms of the IMF of young clusters.

  15. Dwarf galaxies: a lab to investigate the neutron capture elements production

    NASA Astrophysics Data System (ADS)

    Cescutti, Gabriele

    2018-06-01

    In this contribution, I focus on the neutron capture elements observed in the spectra of old halo and ultra faint galaxies stars. Adopting a stochastic chemical evolution model and the Galactic halo as a benchmark, I present new constraints on the rate and time scales of r-process events, based on the discovery of the r-process rich stars in the ultra faint galaxy Reticulum 2. I also show that an s-process activated by rotation in massive stars can play an important role in the production of heavy elements.

  16. Dwarf Hosts of Low-z Supernovae

    NASA Astrophysics Data System (ADS)

    Pyotr Kolobow, Craig; Perlman, Eric S.; Strolger, Louis

    2018-01-01

    Hostless supernovae (SNe), or SNe in dwarf galaxies, may serve as excellent beacons for probing the spatial density of dwarf galaxies (M < 10^8M⊙), which themselves are scarcely detected beyond only a few Mpc. Depending on the assumed model for the stellar-mass to halo mass relation for these galaxies, LSST might see 1000s of SNe (of all types) from dwarf galaxies alone. Conversely, one can take the measured rates of these SNe and test the model predictions for the density of dwarf galaxies in the local universe. Current “all-sky” surveys, like PanSTARRS and ASAS-SN, are now finding hostless SNe at a number sufficient to measure their rate. What missing is the appropriate weighting of their host luminosities. Here we seek to continue a successful program to recover the luminosities of these hostless SNe, to z = 0.15, to use their rate to constrain the faint-end slope of the low-z galaxy luminosity function.

  17. Collecting Brown Dwarfs in the Night Sky

    NASA Image and Video Library

    2010-11-09

    The green dot in the middle of this image might look like an emerald amidst glittering diamonds, but is a dim star belonging to a class called brown dwarfs; it is the first ultra-cool brown dwarf discovered by NASA Wide-field Infrared Survey Explorer.

  18. Mapping the Tidal Destruction of the Hercules Dwarf: A Wide-field DECam Imaging Search for RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Garling, Christopher; Willman, Beth; Sand, David J.; Hargis, Jonathan; Crnojević, Denija; Bechtol, Keith; Carlin, Jeffrey L.; Strader, Jay; Zou, Hu; Zhou, Xu; Nie, Jundan; Zhang, Tianmeng; Zhou, Zhimin; Peng, Xiyan

    2018-01-01

    We investigate the hypothesized tidal disruption of the Hercules ultra-faint dwarf galaxy (UFD). Previous tidal disruption studies of the Hercules UFD have been hindered by the high degree of foreground contamination in the direction of the dwarf. We bypass this issue by using RR Lyrae stars, which are standard candles with a very low field-volume density at the distance of Hercules. We use wide-field imaging from the Dark Energy Camera on CTIO to identify candidate RR Lyrae stars, supplemented with observations taken in coordination with the Beijing–Arizona Sky Survey on the Bok Telescope. Combining color, magnitude, and light-curve information, we identify three new RR Lyrae stars associated with Hercules. All three of these new RR Lyrae stars lie outside its published tidal radius. When considered with the nine RR Lyrae stars already known within the tidal radius, these results suggest that a substantial fraction of Hercules’ stellar content has been stripped. With this degree of tidal disruption, Hercules is an interesting case between a visibly disrupted dwarf (such as the Sagittarius dwarf spheroidal galaxy) and one in dynamic equilibrium. The degree of disruption also shows that we must be more careful with the ways we determine object membership when estimating dwarf masses in the future. One of the three discovered RR Lyrae stars sits along the minor axis of Hercules, but over two tidal radii away. This type of debris is consistent with recent models that suggest Hercules’ orbit is aligned with its minor axis.

  19. Fainting

    MedlinePlus

    ... in older people. Some causes of fainting include Heat or dehydration Emotional distress Standing up too quickly Certain medicines Drop in blood sugar Heart problems When someone faints, make sure that the ...

  20. Galaxy populations in the Antlia cluster - III. Properties of faint early-type galaxies

    NASA Astrophysics Data System (ADS)

    Smith Castelli, Analía. V.; Cellone, Sergio A.; Faifer, Favio R.; Bassino, Lilia P.; Richtler, Tom; Romero, Gisela A.; Calderón, Juan Pablo; Caso, Juan Pablo

    2012-01-01

    We present a new analysis of the early-type galaxy population in the central region of the Antlia cluster, focusing on the faint systems such as dwarf ellipticals (dEs) and dwarf spheroidals (dSphs). The colour-magnitude relation (CMR) and the relation between luminosity and mean effective surface brightness for galaxies in the central region of Antlia have been previously studied in Paper I of the present series. Now we confirm 22 early-type galaxies as Antlia members, using Gemini-GMOS and Magellan-MIKE spectra. Among them, 15 are dEs from the FS90 Antlia Group catalogue, two belong to the rare type of compact ellipticals (cEs) and five are new faint dwarfs that had never been catalogued before. In addition, we present 16 newly identified low-surface-brightness galaxy candidates, almost half of them displaying morphologies consistent with being Antlia's counterparts of Local Group dSphs, which extend the faint luminosity limit of our study down to MB=-10.1(BT= 22.6) mag. With these new data, we built an improved CMR in the Washington photometric system, i.e. integrated T1 magnitudes versus (C-T1) colours, which extends ˜4 mag faintwards the limit of spectroscopically confirmed Antlia members. When only confirmed early-type members are considered, this relation extends over 10 mag in luminosity with no apparent change in slope or increase in colour dispersion towards its faint end. The intrinsic colour scatter of the relation is compared with those reported for other clusters of galaxies; we argue that it is likely that the large scatter of the CMR, usually reported at faint magnitudes, is mostly due to photometric errors along with an improper membership/morphological classification. The distinct behaviour of the luminosity versus mean effective surface brightness relation at the bright and faint ends is analysed, while it is confirmed that dE galaxies on the same relation present a very similar effective radius, regardless of their colour. The projected spatial

  1. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    DOE PAGES

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    In this paper, we study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M vir ~ 10 12.1 M ⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M star ~ 10 8–10 10M ⊙. Halos with more quiescent accretion histories tendmore » to have lower mass progenitors (10 8–10 9 M ⊙), and lower overall accreted stellar masses. Ultra-faint mass (M star < 10 5 M ⊙) dwarfs contribute a negligible amount (<<1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (~2%–5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 10 5 < M star/M ⊙ < 10 8 provide a substantial amount of the very metal-poor stellar material (~40%–80%), and even relatively metal-rich dwarfs with M star > 10 8 M ⊙ can contribute a considerable fraction (~20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. In conclusion, we suggest that the MW could be a "transient fossil"; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

  2. ULTRA-COMPACT DWARFS IN THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiboucas, Kristin; Tully, R. Brent; Marzke, R. O.

    2011-08-20

    We have undertaken a spectroscopic search for ultra-compact dwarf galaxies (UCDs) in the dense core of the dynamically evolved, massive Coma cluster as part of the Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) Coma Cluster Treasury Survey. UCD candidates were initially chosen based on color, magnitude, degree of resolution within the ACS images, and the known properties of Fornax and Virgo UCDs. Follow-up spectroscopy with Keck/Low-Resolution Imaging Spectrometer confirmed 27 candidates as members of the Coma cluster, a success rate >60% for targeted objects brighter than M{sub R} = -12. Another 14 candidates may also prove to be Coma members,more » but low signal-to-noise spectra prevent definitive conclusions. An investigation of the properties and distribution of the Coma UCDs finds these objects to be very similar to UCDs discovered in other environments. The Coma UCDs tend to be clustered around giant galaxies in the cluster core and have colors/metallicity that correlate with the host galaxy. With properties and a distribution similar to that of the Coma cluster globular cluster population, we find strong support for a star cluster origin for the majority of the Coma UCDs. However, a few UCDs appear to have stellar population or structural properties which differentiate them from the old star cluster populations found in the Coma cluster, perhaps indicating that UCDs may form through multiple formation channels.« less

  3. Infrared spectrum of an extremely cool white-dwarf star

    PubMed

    Hodgkin; Oppenheimer; Hambly; Jameson; Smartt; Steele

    2000-01-06

    White dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested to make up much of the 'dark matter' in the halo of the Milky Way. But extremely cool white dwarfs have proved difficult to detect, owing to both their faintness and their anticipated similarity in colour to other classes of dwarf stars. Recent improved models indicate that white dwarfs are much more blue than previously supposed, suggesting that the earlier searches may have been looking for the wrong kinds of objects. Here we report an infrared spectrum of an extremely cool white dwarf that is consistent with the new models. We determine the star's temperature to be 3,500 +/- 200 K, making it the coolest known white dwarf. The kinematics of this star indicate that it is in the halo of the Milky Way, and the density of such objects implied by the serendipitous discovery of this star is consistent with white dwarfs dominating the dark matter in the halo.

  4. Quantifying the abundance of faint, low-redshift satellite galaxies in the COSMOS survey

    NASA Astrophysics Data System (ADS)

    Xi, ChengYu; Taylor, James E.; Massey, Richard J.; Rhodes, Jason; Koekemoer, Anton; Salvato, Mara

    2018-06-01

    Faint dwarf satellite galaxies are important as tracers of small-scale structure, but remain poorly characterized outside the Local Group, due to the difficulty of identifying them consistently at larger distances. We review a recently proposed method for estimating the average satellite population around a given sample of nearby bright galaxies, using a combination of size and magnitude cuts (to select low-redshift dwarf galaxies preferentially) and clustering measurements (to estimate the fraction of true satellites in the cut sample). We test this method using the high-precision photometric redshift catalog of the COSMOS survey, exploring the effect of specific cuts on the clustering signal. The most effective of the size-magnitude cuts considered recover the clustering signal around low-redshift primaries (z < 0.15) with about two-thirds of the signal and 80% of the signal-to-noise ratio obtainable using the full COSMOS photometric redshifts. These cuts are also fairly efficient, with more than one third of the selected objects being clustered satellites. We conclude that structural selection represents a useful tool in characterizing dwarf populations to fainter magnitudes and/or over larger areas than are feasible with spectroscopic surveys. In reviewing the low-redshift content of the COSMOS field, we also note the existence of several dozen objects that appear resolved or partially resolved in the HST imaging, and are confirmed to be local (at distances of ˜250 Mpc or less) by their photometric or spectroscopic redshifts. This underlines the potential for future space-based surveys to reveal local populations of intrinsically faint galaxies through imaging alone.

  5. Fainting

    MedlinePlus

    ... fainted one time and you are otherwise in good health. Fainting is common and usually not serious. However, if you have serious health problems, you probably should see your doctor. This is ... your overall, good health. It helps maintain your temperature, remove waste ...

  6. A coronagraphic search for brown dwarfs around nearby stars

    NASA Technical Reports Server (NTRS)

    Nakajima, T.; Durrance, S. T.; Golimowski, D. A.; Kulkarni, S. R.

    1994-01-01

    Brown dwarf companions have been searched for around stars within 10 pc of the Sun using the Johns-Hopkins University Adaptive Optics Coronagraph (AOC), a stellar coronagraph with an image stabilizer. The AOC covers the field around the target star with a minimum search radius of 1 sec .5 and a field of view of 1 arcmin sq. We have reached an unprecedented dynamic range of Delta m = 13 in our search for faint companions at I band. Comparison of our survey with other brown dwarf searches shows that the AOC technique is unique in its dynamic range while at the same time just as sensitive to brown dwarfs as the recent brown dwarf surveys. The present survey covered 24 target stars selected from the Gliese catalog. A total of 94 stars were detected in 16 fields. The low-latitude fields are completely dominated by background star contamination. Kolmogorov-Smirnov tests were carried out for a sample restricted to high latitudes and a sample with small angular separations. The high-latitude sample (b greater than or equal to 44 deg) appears to show spatial concentration toward target stars. The small separation sample (Delta Theta less than 20 sec) shows weaker dependence on Galactic coordinates than field stars. These statistical tests suggest that both the high-latitude sample and the small separation sample can include a substantial fraction of true companions. However, the nature of these putative companions is mysterious. They are too faint to be white dwarfs and too blue for brown dwarfs. Ignoring the signif icance of the statistical tests, we can reconcile most of the detections with distant main-sequence stars or white dwarfs except for a candidate next to GL 475. Given the small size of our sample, we conclude that considerably more targets need to be surveyed before a firm conclusion on the possibility of a new class of companions can be made.

  7. AVOCADO: A Virtual Observatory Census to Address Dwarfs Origins

    NASA Astrophysics Data System (ADS)

    Sánchez-Janssen, Rubén; Sánchez-Janssen

    2011-12-01

    Dwarf galaxies are by far the most abundant of all galaxy types, yet their properties are still poorly understood-especially due to the observational challenge that their intrinsic faintness represents. AVOCADO aims at establishing firm conclusions on their formation and evolution by constructing a homogeneous, multiwavelength dataset for a statistically significant sample of several thousand nearby dwarfs (-18 < Mi < -14). Using public data and Virtual Observatory tools, we have built GALEX+SDSS+2MASS spectral energy distributions that are fitted by a library of single stellar population models. Star formation rates, stellar masses, ages and metallicities are further complemented with structural parameters that can be used to classify them morphologically. This unique dataset, coupled with a detailed characterization of each dwarf's environment, allows for a fully comprehensive investigation of their origins and to track the (potential) evolutionary paths between the different dwarf types.

  8. Implications for the Origin of Early-type Dwarf Galaxies: A Detailed Look at the Isolated Rotating Early-type Dwarf Galaxy LEDA 2108986 (CG 611), Ramifications for the Fundamental Plane’s {S}_{K}^{2} Kinematic Scaling, and the Spin-Ellipticity Diagram

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.; Janz, Joachim; Penny, Samantha J.; Chilingarian, Igor V.; Ciambur, Bogdan C.; Forbes, Duncan A.; Davies, Roger L.

    2017-05-01

    Selected from a sample of nine, isolated, dwarf early-type galaxies (ETGs) with the same range of kinematic properties as dwarf ETGs in clusters, we use LEDA 2108986 (CG 611) to address the nature versus nurture debate regarding the formation of dwarf ETGs. The presence of faint disk structures and rotation within some cluster dwarf ETGs has often been heralded as evidence that they were once late-type spiral or dwarf irregular galaxies prior to experiencing a cluster-induced transformation into an ETG. However, CG 611 also contains significant stellar rotation (≈20 km s-1) over its inner half-light radius ({R}{{e},{maj}}=0.71 kpc), and its stellar structure and kinematics resemble those of cluster ETGs. In addition to hosting a faint young nuclear spiral within a possible intermediate-scale stellar disk, CG 611 has accreted an intermediate-scale, counter-rotating gas disk. It is therefore apparent that dwarf ETGs can be built by accretion events, as opposed to disk-stripping scenarios. We go on to discuss how both dwarf and ordinary ETGs with intermediate-scale disks, whether under (de)construction or not, are not fully represented by the kinematic scaling {S}0.5=\\sqrt{0.5 {V}{rot}2+{σ }2}, and we also introduce a modified spin-ellipticity diagram λ (R)-ɛ (R) with the potential to track galaxies with such disks.

  9. An observer's guide to the (Local Group) dwarf galaxies: predictions for their own dwarf satellite populations

    NASA Astrophysics Data System (ADS)

    Dooley, Gregory A.; Peter, Annika H. G.; Yang, Tianyi; Willman, Beth; Griffen, Brendan F.; Frebel, Anna

    2017-11-01

    A recent surge in the discovery of new ultrafaint dwarf satellites of the Milky Way has inspired the idea of searching for faint satellites, 103 M⊙ dwarf galaxies by applying several abundance-matching models and a reionization model to the dark-matter only Caterpillar simulation suite. For three of the four abundance-matching models used, we find a >99 per cent chance that at least one satellite with stellar mass M* > 105 M⊙ exists around the combined five Local Group field dwarf galaxies with the largest stellar mass. When considering satellites with M* > 104 M⊙, we predict a combined 5-25 satellites for the five largest field dwarfs, and 10-50 for the whole Local Group field dwarf population. Because of the relatively small number of predicted dwarfs, and their extended spatial distribution, a large fraction each Local Group dwarf's virial volume will need to be surveyed to guarantee discoveries. We compute the predicted number of satellites in a given field of view of specific Local Group galaxies, as a function of minimum satellite luminosity, and explicitly obtain such values for the Solitary Local dwarfs survey. Uncertainties in abundance-matching and reionization models are large, implying that comprehensive searches could lead to refinements of both models.

  10. The MESSIER surveyor: unveiling the ultra-low surface brightness universe

    NASA Astrophysics Data System (ADS)

    Valls-Gabaud, David; MESSIER Collaboration

    2017-03-01

    The MESSIER surveyor is a small mission designed at exploring the very low surface brightness universe. The satellite will drift-scan the entire sky in 6 filters covering the 200-1000 nm range, reaching unprecedented surface brightness levels of 34 and 37 mag arcsec-2 in the optical and UV, respectively. These levels are required to achieve the two main science goals of the mission: to critically test the ΛCDM paradigm of structure formation through (1) the detection and characterisation of ultra-faint dwarf galaxies, which are predicted to be extremely abundant around normal galaxies, but which remain elusive; and (2) tracing the cosmic web, which feeds dark matter and baryons into galactic haloes, and which may contain the reservoir of missing baryons at low redshifts. A large number of science cases, ranging from stellar mass loss episodes to intracluster light through fluctuations in the cosmological UV-optical background radiation are free by-products of the full-sky maps produced.

  11. Stellar Abundances for Galactic Archaeology Database. IV. Compilation of stars in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Suda, Takuma; Hidaka, Jun; Aoki, Wako; Katsuta, Yutaka; Yamada, Shimako; Fujimoto, Masayuki Y.; Ohtani, Yukari; Masuyama, Miyu; Noda, Kazuhiro; Wada, Kentaro

    2017-10-01

    We have constructed a database of stars in Local Group galaxies using the extended version of the SAGA (Stellar Abundances for Galactic Archaeology) database that contains stars in 24 dwarf spheroidal galaxies and ultra-faint dwarfs. The new version of the database includes more than 4500 stars in the Milky Way, by removing the previous metallicity criterion of [Fe/H] ≤ -2.5, and more than 6000 stars in the Local Group galaxies. We examined the validity of using a combined data set for elemental abundances. We also checked the consistency between the derived distances to individual stars and those to galaxies as given in the literature. Using the updated database, the characteristics of stars in dwarf galaxies are discussed. Our statistical analyses of α-element abundances show that the change of the slope of the [α/Fe] relative to [Fe/H] (so-called "knee") occurs at [Fe/H] = -1.0 ± 0.1 for the Milky Way. The knee positions for selected galaxies are derived by applying the same method. The star formation history of individual galaxies is explored using the slope of the cumulative metallicity distribution function. Radial gradients along the four directions are inspected in six galaxies where we find no direction-dependence of metallicity gradients along the major and minor axes. The compilation of all the available data shows a lack of CEMP-s population in dwarf galaxies, while there may be some CEMP-no stars at [Fe/H] ≲ -3 even in the very small sample. The inspection of the relationship between Eu and Ba abundances confirms an anomalously Ba-rich population in Fornax, which indicates a pre-enrichment of interstellar gas with r-process elements. We do not find any evidence of anti-correlations in O-Na and Mg-Al abundances, which characterizes the abundance trends in the Galactic globular clusters.

  12. An Intermediate-Mass Black Hole in the Dwarf Galaxy Pox 52

    NASA Astrophysics Data System (ADS)

    Barth, Aaron

    Do dwarf elliptical and dwarf spiral galaxies contain central black holes with masses below 106 solar masses? Beyond the Local Group dynamical searches for black holes in this mass range are very difficult but the detection of accretion-powered nuclear activity could be used to infer the presence of a black hole. The nearby dwarf spiral galaxy NGC 4395 hosts a faint Seyfert 1 nucleus with a likely black hole mass in the range 104-105 solar masses and for more than a decade it has been the only known example of a Seyfert 1 nucleus in a dwarf galaxy. I will present new Keck spectra of the dwarf galaxy POX 52 which demonstrate that it has a Seyfert 1 spectrum nearly identical to that of NGC 4395. Its velocity dispersion is 37 km/s suggesting a possible black hole mass of order 105 solar masses. I will discuss the prospects for systematic searches for nuclear activity in dwarf galaxies and the implications for black hole demographics.

  13. White dwarf stars exceeding the Chandrasekhar mass limit

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2018-01-01

    The effect of nonlinear ultra-relativistic electron dispersion on the mass-radius relation of high-mass white dwarfs is studied. The dispersion is described by a permeability tensor in the Dirac equation, generated by the ionized high-density stellar matter, which constitutes the neutralizing background of the nearly degenerate electron plasma. The electron dispersion results in a stable mass-radius relation for high-mass white dwarfs, in contrast to a mass limit in the case of vacuum permeabilities. In the ultra-relativistic regime, the dispersion relation is a power law whose amplitude and scaling exponent is inferred from mass and radius estimates of two high-mass white dwarfs, Sirius B and LHS 4033. Evidence for the existence of super-Chandrasekhar mass white dwarfs is provided by several Type Ia supernovae (e.g., SN 2013cv, SN 2003fg, SN 2007if and SN 2009dc), whose mass ejecta exceed the Chandrasekhar limit by up to a factor of two. The dispersive mass-radius relation is used to estimate the radii, central densities, Fermi temperatures, bulk and compression moduli and sound velocities of their white dwarf progenitors.

  14. NIFTE: The Near Infrared Faint-Object Telescope Experiment

    NASA Technical Reports Server (NTRS)

    Bock, James J.; Lange, Andrew E.; Matsumoto, T.; Eisenhardt, Peter B.; Hacking, Perry B.; Schember, Helene R.

    1994-01-01

    The high sensitivity of large format InSb arrays can be used to obtain deep images of the sky at 3-5 micrometers. In this spectral range cool or highly redshifted objects (e.g. brown dwarfs and protogalaxies) which are not visible at shorter wavelengths may be observed. Sensitivity at these wavelengths in ground-based observations is severly limited by the thermal flux from the telescope and from the earth's atmosphere. The Near Infrared Faint-Object Telescope Experiment (NIFTE), a 50 cm cooled rocket-borne telescope combined with large format, high performance InSb arrays, can reach a limiting flux less than 1 micro-Jy(1-sigma) over a large field-of-view in a single flight. In comparison, the Infrared Space Observatory (ISO) will require days of observation to reach a sensitivity more than one order of magnitude worse over a similar area of the sky. The deep 3-5 micrometer images obtained by the rocket-borne telescope will assist in determining the nature of faint red objects detected by ground-based telescopes at 2 micrometers, and by ISO at wavelengths longer than 5 micrometers.

  15. A Spectroscopic Survey of Lensed Dwarf Galaxies at 1

    NASA Astrophysics Data System (ADS)

    Alavi, Anahita; Siana, Brian; gburek, Timothy; Richard, Johan; Teplitz, Harry; Rafelski, Marc; Stark, Daniel P.; Anahita Alavi

    2018-01-01

    High-redshift dwarf galaxies (M<109 M⊙) are one of the primary targets of the James Web Space Telescope. Recent studies have suggested that these galaxies are different than their bright counterparts, as they follow a divergent evolutionary history of star formation. In our previous study, utilizing the magnification from massive clusters of galaxies (Hubble Frontier Fields), we found a large sample of dwarf star-forming galaxies at the peak epoch of star formation (1faint galaxies using the Multi-Object Near-IR Spectrograph (MOSFIRE) at the Keck observatory. In this talk, I will present their nebular dust attenuation measurements using the ratio of Balmer lines (i.e., Balmer decrement) and compare with their stellar dust attenuation (i.e., from UV spectral slopes). I will also show that these faint galaxies follow a steep dust extinction curve (i.e., SMC like).

  16. Constraining the Nature of Dark Matter with the Star-formation History of the Faintest Local Group Dwarf Galaxy Satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chau, Alice; Mayer, Lucio; Governato, Fabio

    Λ warm dark matter (ΛWDM), realized by collisionless particles of 1–3 keV, has been proposed as an alternative scenario to Λ-Cold-Dark Matter (ΛCDM) for the dwarf galaxy scale discrepancies. We present an approach to test the viability of such WDM models using star-formation histories (SFHs) of the dwarf spheroidal galaxies (dSphs) in the Local Group. We compare their high-time-resolution SFHs with the collapse redshift of their dark halos in CDM and WDM. Collapse redshift is inferred after determining the subhalo infall mass. This is based on the dwarf current mass inferred from stellar kinematics, combined with cosmological simulation results onmore » subhalo evolution. WDM subhalos close to the filtering mass scale, forming significantly later than CDM, are the most difficult to reconcile with early truncation of star formation ( z ≥ 3). The ultra-faint dwarfs (UFDs) provide the most stringent constraints. Using six UFDs and eight classical dSphs, we show that a 1 keV particle is strongly disfavored, consistently with other reported methods. Excluding other models is only hinted for a few UFDs. Other UFDs for which the lack of robust constraints on halo mass prevents us from carrying out our analysis rigorously, show a very early onset of star formation that will strengthen the constraints delivered by our method in the future. We discuss the various caveats, notably the low number of dwarfs with accurately determined SFHs and the uncertainties when determining the subhalo infall mass, most notably the baryonic physics. Our preliminary analysis may serve as a pathfinder for future investigations that will combine accurate SFHs for local dwarfs with direct analysis of WDM simulations with baryons.« less

  17. HUBBLE PINPOINTS WHITE DWARFS IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope uncovered the oldest burned-out stars in our Milky Way Galaxy. Located in the globular cluster M4, these small, dying stars - called white dwarfs - are giving astronomers a fresh reading on one of the biggest questions in astronomy: How old is the universe? The ancient white dwarfs in M4 are about 12 to 13 billion years old. After accounting for the time it took the cluster to form after the big bang, astronomers found that the age of the white dwarfs agrees with previous estimates for the universe's age. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's 0.9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles pinpoint the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within arm's reach of the universe's age. M4 is 7,000 light-years away in the constellation Scorpius. Hubble's Wide Field and Planetary Camera 2 made the observations from January through April 2001. These optical observations were combined to

  18. Polluted White Dwarf (Artist's Concept)

    NASA Image and Video Library

    2017-11-01

    This artist's concept shows an exoplanet and debris disk orbiting a polluted white dwarf. White dwarfs are dim, dense remnants of stars similar to the Sun that have exhausted their nuclear fuel and blown off their outer layers. By "pollution," astronomers mean heavy elements invading the photospheres -- the outer atmospheres -- of these stars. The leading explanation is that exoplanets could push small rocky bodies toward the star, whose powerful gravity would pulverize them into dust. That dust, containing heavy elements from the torn-apart body, would then fall on the star. NASA's Spitzer Space Telescope has been instrumental in expanding the field of polluted white dwarfs orbited by hot, dusty disks. Since launch in 2004, Spitzer has confirmed about 40 of these special stars. Another space telescope, NASA's Wide-field Infrared Survey Explorer (WISE), also detected a handful, bringing the total up to about four dozen known today. Because these objects are so faint, infrared light is crucial to identifying them. https://photojournal.jpl.nasa.gov/catalog/PIA22084

  19. White Dwarfs in the SDSS Photometric Footprint

    NASA Astrophysics Data System (ADS)

    Gentile Fusillo, N. P.; Girven, J.; Gänsicke, B.

    2013-01-01

    Attempts to create a homogeneous catalogue of white dwarfs have always been faced with the challenge posed by the intrinsic faintness of these objects. In recent years, thanks to large area surveys like the Sloan Digital Sky Survey (SDSS), the size of the known white dwarf population has increased dramatically, but, in order to carry out a statical study on the population of white dwarfs, it is necessary to have a reliable and well-defined selection method. We present a method which uses cuts in colour-colour space to select from DR7 16785 bright (g ≤ 19) photometric DA white dwarf candidates (Girven et al. 2011). The selection is 62% efficient in returning DA white dwarfs and produces a DA sample which is 95% complete for Teff > 8000 K. This sample contains 4636 spectroscopically confirmed DA white dwarfs; i.e. a ˜70% increase compared to Eisenstein et al.'s sample. As a first application of the SDSS DR7 DA candidates sample we cross correlated it with Data Release 8 of UKIDSS Large Area Survey with the aim of identifying white dwarfs which exhibit an infrared excess consistent with the presence of low mass stellar companions or dusty debris discs. Our current work aims to extend the photometric selection to all types of white dwarfs, using reduced proper motion as a further constrain. We expect to find a total of ˜20 000 photometric white dwarf candidates with g ≤ 19 in the footprint of SDSS DR8.

  20. Discovery of a New Photometric Sub-class of Faint and Fast Classical Novae

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Cenko, S. B.; Kulkarni, S. R.; Ofek, E. O.; Quimby, R.; Rau, A.

    2011-07-01

    We present photometric and spectroscopic follow-up of a sample of extragalactic novae discovered by the Palomar 60 inch telescope during a search for "Fast Transients In Nearest Galaxies" (P60-FasTING). Designed as a fast cadence (1 day) and deep (g < 21 mag) survey, P60-FasTING was particularly sensitive to short-lived and faint optical transients. The P60-FasTING nova sample includes 10 novae in M 31, 6 in M 81, 3 in M 82, 1 in NGC 2403, and 1 in NGC 891. This significantly expands the known sample of extragalactic novae beyond the Local Group, including the first discoveries in a starburst environment. Surprisingly, our photometry shows that this sample is quite inconsistent with the canonical maximum-magnitude-rate-of-decline (MMRD) relation for classical novae. Furthermore, the spectra of the P60-FasTING sample are indistinguishable from classical novae. We suggest that we have uncovered a sub-class of faint and fast classical novae in a new phase space in luminosity-timescale of optical transients. Thus, novae span two orders of magnitude in both luminosity and time. Perhaps the MMRD, which is characterized only by the white dwarf mass, was an oversimplification. Nova physics appears to be characterized by a relatively rich four-dimensional parameter space in white dwarf mass, temperature, composition, and accretion rate.

  1. FIGGS 2: An HI survey of extremely faint irregular galaxies

    NASA Astrophysics Data System (ADS)

    Patra, N. N.; Chengalur, J. N.; Karachentsev, I. D.; Sharina, M. E.

    2016-10-01

    We present observations and first results from the FIGGS2 survey. FIGGS2 is an extension of the earlier Faint Irregular Galaxies GMRT survey (FIGGS) towards faint luminosity end. The sample consists of 20 galaxies, 15 of which were detected in HI 21 cm line using the Giant Meterwave Radio Telescope (GMRT). The median blue band magnitude of our sample is approximately -11.m 6, which is more than one magnitude fainter than earlier FIGGS survey. From our GMRT observations we found that, for many of our sample galaxies, the HI disks are offset from their optical disks. The HI diameters of the FIGGS2 galaxies show a tight correlation with their HI mass. The slope of the correlation is 2.08 ± 0.20 similar to what is found for FIGGS galaxies. We also found that for almost all galaxies, the HI disks are larger than the optical disks which is a common trend for dwarf or spiral galaxies. The mean value of the ratio of HI to optical diameter is about 1.54.

  2. Galaxias enanas: las voces de la mayoría

    NASA Astrophysics Data System (ADS)

    Cellone, S. A.

    More than twenty years after photographic surveys of nearby clusters of galaxies revealed that low-luminosity, or ``dwarf'', galaxies (M_B ≳ -18 mag) are the numerically dominant population, research on these objects has been boosted by new instrumental and theoretical developments. Among several breakthroughs that have re-shaped our knowledge abut dwarf galaxies, we should point out: the detection of underlying spiral structure, disks/bars in dwarf ``elliptical'' galaxies; the possible evolutionary relation between (some?) dwarf ellipticals and spiral galaxies; the discoveries of ultra-compact and ultra-faint dwarfs; the universality of the color-luminosity relation extending along ˜ 10 mag. A brief review on these subjects is presented, with emphasis on early-type dwarfs and their possible evolutionary relations with other galaxy types. I will particularly address the controversy about which are the objects that extend the E sequence down to the lowest luminosities (if such objects really exist). FULL TEXT IN SPANISH

  3. Project 1640 observations of the white dwarf HD 114174 B

    NASA Astrophysics Data System (ADS)

    Bacchus, E.; Parry, I. R.; Oppenheimer, R.; Aguilar, J.; Beichman, C.; Brenner, D.; Burruss, R.; Cady, E.; Luszcz-Cook, S.; Crepp, J.; Dekany, R.; Gianninas, A.; Hillenbrand, L.; Kilic, M.; King, D.; Lockhart, T. G.; Matthews, C. T.; Nilsson, R.; Pueyo, L.; Rice, E. L.; Roberts, L. C.; Sivaramakrishnan, A.; Soummer, R.; Vasisht, G.; Veicht, A.; Zhai, C.; Zimmerman, N. T.

    2017-08-01

    We present the first near infrared spectrum of the faint white dwarf companion HD 114174 B, obtained with Project 1640. Our spectrum, covering the Y, J and H bands, combined with previous TaRgetting bENchmark-objects with Doppler Spectroscopy (TRENDS) photometry measurements, allows us to place further constraints on this companion. We suggest two possible scenarios; either this object is an old, low-mass, cool H atmosphere white dwarf with Teff ˜ 3800 K or a high-mass white dwarf with Teff > 6000 K, potentially with an associated cool (Teff ˜ 700 K) brown dwarf or debris disc resulting in an infrared excess in the L΄ band. We also provide an additional astrometry point for 2014 June 12 and use the modelled companion mass combined with the radial velocity and direct imaging data to place constraints on the orbital parameters for this companion.

  4. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: BOÖTES II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.

    2016-01-20

    We present high-resolution Magellan/MIKE spectra of the four brightest confirmed red giant stars in the ultra-faint dwarf galaxy Boötes II (Boo II). These stars all inhabit the metal-poor tail of the Boo II metallicity distribution function. The chemical abundance pattern of all detectable elements in these stars is consistent with that of the Galactic halo. However, all four stars have undetectable amounts of neutron-capture elements Sr and Ba, with upper limits comparable to the lowest ever detected in the halo or in other dwarf galaxies. One star exhibits significant radial velocity variations over time, suggesting it to be in a binary system. Itsmore » variable velocity has likely increased past determinations of the Boo II velocity dispersion. Our four stars span a limited metallicity range, but their enhanced α-abundances and low neutron-capture abundances are consistent with the interpretation that Boo II has been enriched by very few generations of stars. The chemical abundance pattern in Boo II confirms the emerging trend that the faintest dwarf galaxies have neutron-capture abundances distinct from the halo, suggesting the dominant source of neutron-capture elements in halo stars may be different than in ultra-faint dwarfs.« less

  5. THE KEPLER LIGHT CURVE OF THE UNIQUE DA WHITE DWARF BOKS 53856

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holberg, J. B.; Howell, Steve B., E-mail: holberg@argus.lpl.arizona.edu, E-mail: howell@noao.edu

    2011-08-15

    The faint (g = 16.9) hot white dwarf BOKS 53856 was observed by the Kepler Mission in short cadence mode during mid-2009. Analysis of these observations reveals a highly stable modulation with a period of 6.1375 hr and a 2.46% half-amplitude. The folded light curve has an unusual shape that is difficult to explain in terms of a binary system containing an unseen companion more luminous than an L0 brown dwarf. Optical spectra of BOKS 53856 show a T{sub eff} = 34,000 K, log g = 8.0 DA white dwarf. There are few, if any, known white dwarfs in thismore » temperature range exhibiting photometric variations similar to those we describe. A magnetic spin-modulated white dwarf model can in principle explain the light curve, an interpretation supported by spectral observations of the H{alpha} line showing evidence of Zeeman splitting.« less

  6. A spectroscopic search for faint secondaries in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Vande Putte, D.; Smith, Robert Connon; Hawkins, N. A.; Martin, J. S.

    2003-06-01

    The secondary in cataclysmic variables (CVs) is usually detected by cross-correlation of the CV spectrum with that of a K or M dwarf template, to produce a radial velocity curve. Although this method has demonstrated its power, it has its limits in the case of noisy spectra, such as are found when the secondary is faint. A method of coadding spectra, called skew mapping, has been proposed in the past. Gradually, examples of its application are being published; none the less, so far no journal article has described the technique in detail. To answer this need, this paper explores in detail the capabilities of skew mapping when determining the amplitude of the radial velocity for faint secondaries. It demonstrates the power of the method over techniques that are more conventional, when the signal-to-noise ratio is poor. The paper suggests an approach to assessing the quality of results. This leads in the case of the investigated objects to a first tier of results, where we find K2= 127 +/- 23 km s-1 for SY Cnc, K2= 144 +/- 18 km s-1 for RW Sex and K2= 262 +/- 14 km s-1 for UX UMa. These we believe to be the first direct determinations of K2 for these objects. Furthermore, we also obtain K2= 263 +/- 30 km s-1 for RW Tri, close to a skew mapping result obtained elsewhere. In the first three cases, we use these results to derive the mass of the white dwarf companion. A second tier of results includes UU Aqr, EX Hya and LX Ser, for which we propose more tentative values of K2. Clear failures of the method are also discussed (EF Eri, VV Pup and SW Sex).

  7. Evidence for dwarf stars at D of about 100 kiloparsecs near the Sextans dwarf spheroidal galaxy

    NASA Technical Reports Server (NTRS)

    Gould, Andrew; Guhathakurta, Puragra; Richstone, Douglas; Flynn, Chris

    1992-01-01

    A method is presented for detecting individual, metal-poor, dwarf stars at distances less than about 150 kpc - a method specifically designed to filter out stars from among the much more numerous faint background field galaxies on the basis of broad-band colors. This technique is applied to two fields at high Galactic latitude, for which there are deep CCD data in four bands ranging from 3600 to 9000 A. The field in Sextans probably contains more than about five dwarf stars with BJ not greater than 25.5. These are consistent with being at a common distance about 100 kpc and lie about 1.7 deg from the newly discovered dwarf galaxy in Sextans whose distance is about 85 +/- 10 kpc. The stars lie near the major axis of the galaxy and are near or beyond the tidal radius. The second field, toward the south Galactic pole, may contain up to about five extra-Galactic stars, but these show no evidence for being at a common distance. Possible applications of this type technique are discussed, and it is shown that even very low surface brightness star clusters or dwarf galaxies may be detected at distances less than about 1 Mpc.

  8. A Search for a Surviving White Dwarf Companion in SN 1006

    NASA Astrophysics Data System (ADS)

    Kerzendorf, W. E.; Strampelli, G.; Shen, K. J.; Schwab, J.; Pakmor, R.; Do, T.; Buchner, J.; Rest, A.

    2018-05-01

    Multiple channels have been proposed to produce Type Ia supernovae, with many scenarios suggesting that the exploding white dwarf accretes from a binary companion pre-explosion. In almost all cases, theory suggests that this companion will survive. However, no such companion has been unambiguously identified in ancient supernova remnants - possibly falsifying the accretion scenario. Existing surveys, however, have only looked for stars as faint as ≈0.1L⊙ and thus might have missed a surviving white dwarf companion. In this work, we present very deep DECAM imaging (u, g, r, z) of the Type Ia supernova remnant SN 1006 specifically to search for a potential surviving white dwarf companion. We find no object that is consistent with a relatively young cooling white dwarf within the inner half of the SN 1006 remnant. We find that if there is a companion white dwarf, it must be redder than the standard white dwarf cooling track, or it must have formed long ago and cooled undisturbed for >108 yr. We conclude that our findings are consistent with the complete destruction of the secondary (such as in a merger) or an anomalously red or very dim surviving companion white dwarf.

  9. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: LEO IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Joshua D.; McWilliam, Andrew; Thompson, Ian B.

    2010-06-10

    We present high-resolution Magellan/MIKE spectroscopy of the brightest star in the ultra-faint dwarf galaxy Leo IV. We measure an iron abundance of [Fe/H] = -3.2, adding to the rapidly growing sample of extremely metal-poor (EMP) stars being identified in Milky Way satellite galaxies. The star is enhanced in the {alpha} elements Mg, Ca, and Ti by {approx}0.3 dex, very similar to the typical Milky Way halo abundance pattern. All of the light and iron-peak elements follow the trends established by EMP halo stars, but the neutron-capture elements Ba and Sr are significantly underabundant. These results are quite similar to thosemore » found for stars in the ultra-faint dwarfs Ursa Major II, Coma Berenices, Booetes I, and Hercules, suggesting that the chemical evolution of the lowest-luminosity galaxies may be universal. The abundance pattern we observe is consistent with predictions for nucleosynthesis from a Population III supernova explosion. The extremely low metallicity of this star also supports the idea that a significant fraction ({approx}>10%) of the stars in the faintest dwarfs have metallicities below [Fe/H] = -3.0.« less

  10. ANDROMEDA XXVIII: A DWARF GALAXY MORE THAN 350 kpc FROM ANDROMEDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Colin T.; Bell, Eric F.; Martin, Nicolas F.

    We report the discovery of a new dwarf galaxy, Andromeda XXVIII, using data from the recently released Sloan Digital Sky Survey Data Release 8. The galaxy is a likely satellite of Andromeda, and, at a separation of 365{sup +17}{sub -1} kpc, would be one of the most distant of Andromeda's satellites. Its heliocentric distance is 650{sup +150}{sub -80} kpc, and analysis of its structure and luminosity shows that it has an absolute magnitude of M{sub V} = -8.5{sup +0.4}{sub -1.0} and half-light radius of r{sub h} = 210{sup +60}{sub -50} pc, similar to many other faint Local Group dwarfs. Withmore » presently available imaging we are unable to determine whether there is ongoing or recent star formation, which prevents us from classifying it as a dwarf spheroidal or a dwarf irregular.« less

  11. Retainment of r-process material in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Dvorkin, Irina; Silk, Joe

    2018-04-01

    The synthesis of r-process elements is known to involve extremely energetic explosions. At the same time, recent observations find significant r-process enrichment even in extremely small ultra-faint dwarf (UFD) galaxies. This raises the question of retainment of those elements within their hosts. We estimate the retainment fraction and find that it is large ˜0.9, unless the r-process event is very energetic (≳ 1052erg) and / or the host has lost a large fraction of its gas prior to the event. We estimate the r-process mass per event and rate as implied by abundances in UFDs, taking into account imperfect retainment and different models of UFD evolution. The results are consistent with previous estimates (Beniamini et al. 2016b) and with the constraints from the recently detected macronova accompanying a neutron star merger (GW170817). We also estimate the distribution of abundances predicted by these models. We find that ˜0.07 of UFDs should have r-process enrichment. The results are consistent with both the mean values and the fluctuations of [Eu/Fe] in galactic metal poor stars, supporting the possibility that UFDs are the main 'building blocks' of the galactic halo population.

  12. WHERE ARE THE FOSSILS OF THE FIRST GALAXIES? II. TRUE FOSSILS, GHOST HALOS, AND THE MISSING BRIGHT SATELLITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovill, Mia S.; Ricotti, Massimo, E-mail: msbovill@astro.umd.edu

    We use a new set of cold dark matter simulations of the local universe to investigate the distribution of fossils of primordial dwarf galaxies within and around the Milky Way. Throughout, we build upon previous results showing agreement between the observed stellar properties of a subset of the ultra-faint dwarfs and our simulated fossils. Here, we show that fossils of the first galaxies have galactocentric distributions and cumulative luminosity functions consistent with observations. In our model, we predict {approx}300 luminous satellites orbiting the Milky Way, 50%-70% of which are well-preserved fossils. Within the Milky Way virial radius, the majority ofmore » these fossils have luminosities L{sub V} < 10{sup 6} L{sub sun}. Despite our multidimensional agreement with observations at low masses and luminosities, the primordial model produces an overabundance of bright dwarf satellites (L{sub V} > 10{sup 4} L{sub sun}) with respect to observations where observations are nearly complete. The 'bright satellite problem' is most evident in the outer parts of the Milky Way. We estimate that, although relatively bright, the primordial stellar populations are very diffuse, producing a population with surface brightnesses below surveys' detection limits, and are easily stripped by tidal forces. Although we cannot yet present unmistakable evidence for the existence of the fossils of first galaxies in the Local Group, the results of our studies suggest observational strategies that may demonstrate their existence: (1) the detection of 'ghost halos' of primordial stars around isolated dwarfs would prove that stars formed in minihalos (M < 10{sup 8} M{sub sun}) before reionization and strongly suggest that at least a fraction of the ultra-faint dwarfs are fossils of the first galaxies; and (2) the existence of a yet unknown population of {approx}150 Milky Way ultra-faints with half-light radii r{sub hl} {approx} 100-1000 pc and luminosities L{sub V} < 10{sup 4} L{sub sun

  13. Dwarf galaxies in the coma cluster: Star formation properties and evolution

    NASA Astrophysics Data System (ADS)

    Hammer, Derek M.

    The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely

  14. Weighing Ultra-Cool Stars

    NASA Astrophysics Data System (ADS)

    2004-05-01

    Large Ground-Based Telescopes and Hubble Team-Up to Perform First Direct Brown Dwarf Mass Measurement [1] Summary Using ESO's Very Large Telescope at Paranal and a suite of ground- and space-based telescopes in a four-year long study, an international team of astronomers has measured for the first time the mass of an ultra-cool star and its companion brown dwarf. The two stars form a binary system and orbit each other in about 10 years. The team obtained high-resolution near-infrared images; on the ground, they defeated the blurring effect of the terrestrial atmosphere by means of adaptive optics techniques. By precisely determining the orbit projected on the sky, the astronomers were able to measure the total mass of the stars. Additional data and comparison with stellar models then yield the mass of each of the components. The heavier of the two stars has a mass around 8.5% of the mass of the Sun and its brown dwarf companion is even lighter, only 6% of the solar mass. Both objects are relatively young with an age of about 500-1,000 million years. These observations represent a decisive step towards the still missing calibration of stellar evolution models for very-low mass stars. PR Photo 19a/04: Orbit of the ultra-cool stars in 2MASSW J0746425+2000321. PR Photo 19b/04: Animated Gif of the orbital motion. Telephone number star Even though astronomers have found several hundreds of very low mass stars and brown dwarfs, the fundamental properties of these extreme objects, such as masses and surface temperatures, are still not well known. Within the cosmic zoo, these ultra-cool stars represent a class of "intermediate" objects between giant planets - like Jupiter - and "normal" stars less massive than our Sun, and to understand them well is therefore crucial to the field of stellar astrophysics. The problem with these ultra-cool stars is that contrary to normal stars that burn hydrogen in their central core, no unique relation exists between the luminosity of the

  15. Probing LSST's Ability to Detect Planets Around White Dwarfs

    NASA Astrophysics Data System (ADS)

    Cortes, Jorge; Kipping, David

    2018-01-01

    Over the last four years more than 2,000 planets outside our solar system have been discovered, motivating us to search for and characterize potentially habitable worlds. Most planets orbit Sun-like stars, but more exotic stars can also host planets. Debris disks and disintegrating planetary bodies have been detected around white dwarf stars, the inert, Earth-sized cores of once-thriving stars like our Sun. These detections are clues that planets may exist around white dwarfs. Due to the faintness of white dwarfs and the potential rarity of planets around them, a vast survey is required to have a chance at detecting these planetary systems. The Large Synoptic Survey Telescope (LSST), scheduled to commence operations in 2023, will image the entire southern sky every few nights for 10 years, providing our first real opportunity to detect planets around white dwarfs. We characterized LSST’s ability to detect planets around white dwarfs through simulations that incorporate realistic models for LSST’s observing strategy and the white dwarf distribution within the Milky Way galaxy. This was done through the use of LSST's Operations Simulator (OpSim) and Catalog Simulator (CatSim). Our preliminary results indicate that, if all white dwarfs were to possess a planet, LSST would yield a detection for every 100 observed white dwarfs. In the future, a larger set of ongoing simulations will help us quantify the number of planets LSST could potentially find.

  16. Deadly Dark Matter Cusps versus Faint and Extended Star Clusters: Eridanus II and Andromeda XXV

    NASA Astrophysics Data System (ADS)

    Amorisco, Nicola C.

    2017-07-01

    The recent detection of two faint and extended star clusters in the central regions of two Local Group dwarf galaxies, Eridanus II and Andromeda XXV, raises the question of whether clusters with such low densities can survive the tidal field of cold dark matter halos with central density cusps. Using both analytic arguments and a suite of collisionless N-body simulations, I show that these clusters are extremely fragile and quickly disrupted in the presence of central cusps ρ ˜ {r}-α with α ≳ 0.2. Furthermore, the scenario in which the clusters were originally more massive and sank to the center of the halo requires extreme fine tuning and does not naturally reproduce the observed systems. In turn, these clusters are long lived in cored halos, whose central regions are safe shelters for α ≲ 0.2. The only viable scenario for hosts that have preserved their primordial cusp to the present time is that the clusters formed at rest at the bottom of the potential, which is easily tested by measurement of the clusters proper velocity within the host. This offers means to readily probe the central density profile of two dwarf galaxies as faint as {L}V˜ 5× {10}5 {L}⊙ and {L}V˜ 6× {10}4 {L}⊙ , in which stellar feedback is unlikely to be effective.

  17. Tidal stripping and the structure of dwarf galaxies in the Local Group

    NASA Astrophysics Data System (ADS)

    Fattahi, Azadeh; Navarro, Julio F.; Frenk, Carlos S.; Oman, Kyle A.; Sawala, Till; Schaller, Matthieu

    2018-05-01

    The shallow faint-end slope of the galaxy mass function is usually reproduced in Λ cold dark matter (ΛCDM) galaxy formation models by assuming that the fraction of baryons that turn into stars drops steeply with decreasing halo mass and essentially vanishes in haloes with maximum circular velocities Vmax < 20-30 km s-1. Dark-matter-dominated dwarfs should therefore have characteristic velocities of about that value, unless they are small enough to probe only the rising part of the halo circular velocity curve (i.e. half-mass radii, r1/2 ≪ 1 kpc). Many dwarfs have properties in disagreement with this prediction: they are large enough to probe their halo Vmax but their characteristic velocities are well below 20 km s-1. These `cold faint giants' (an extreme example is the recently discovered Crater 2 Milky Way satellite) can only be reconciled with our ΛCDM models if they are the remnants of once massive objects heavily affected by tidal stripping. We examine this possibility using the APOSTLE cosmological hydrodynamical simulations of the Local Group. Assuming that low-velocity-dispersion satellites have been affected by stripping, we infer their progenitor masses, radii, and velocity dispersions, and find them in remarkable agreement with those of isolated dwarfs. Tidal stripping also explains the large scatter in the mass discrepancy-acceleration relation in the dwarf galaxy regime: tides remove preferentially dark matter from satellite galaxies, lowering their accelerations below the amin ˜ 10-11 m s-2 minimum expected for isolated dwarfs. In many cases, the resulting velocity dispersions are inconsistent with the predictions from Modified Newtonian Dynamics, a result that poses a possibly insurmountable challenge to that scenario.

  18. THE SUBARU HIGH-z QUASAR SURVEY: DISCOVERY OF FAINT z ∼ 6 QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashikawa, Nobunari; Furusawa, Hisanori; Niino, Yuu

    2015-01-01

    We present the discovery of one or two extremely faint z ∼ 6 quasars in 6.5 deg{sup 2} utilizing a unique capability of the wide-field imaging of the Subaru/Suprime-Cam. The quasar selection was made in (i'-z{sub B} ) and (z{sub B} -z{sub R} ) colors, where z{sub B} and z{sub R} are bandpasses with central wavelengths of 8842 Å and 9841 Å, respectively. The color selection can effectively isolate quasars at z ∼ 6 from M/L/T dwarfs without the J-band photometry down to z{sub R} < 24.0, which is 3.5 mag deeper than the Sloan Digital Sky Survey (SDSS). Wemore » have selected 17 promising quasar candidates. The follow-up spectroscopy for seven targets identified one apparent quasar at z = 6.156 with M {sub 1450} = –23.10. We also identified one possible quasar at z = 6.041 with a faint continuum of M {sub 1450} = –22.58 and a narrow Lyα emission with HWHM =427 km s{sup –1}, which cannot be distinguished from Lyman α emitters. We derive the quasar luminosity function at z ∼ 6 by combining our faint quasar sample with the bright quasar samples by SDSS and CFHQS. Including our data points invokes a higher number density in the faintest bin of the quasar luminosity function than the previous estimate employed. This suggests a steeper faint-end slope than lower z, though it is yet uncertain based on a small number of spectroscopically identified faint quasars, and several quasar candidates still remain to be diagnosed. The steepening of the quasar luminosity function at the faint end does increase the expected emission rate of the ionizing photon; however, it only changes by a factor of approximately two to six. This was found to still be insufficient for the required photon budget of reionization at z ∼ 6.« less

  19. White Dwarf Stars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope has uncovered the oldest burned-out stars in our Milky Way Galaxy, giving astronomers a fresh reading on the age of the universe.

    Located in the globular cluster M4, these small, burned-out stars -- called white dwarfs -- are about 12 to 13 billion years old. By adding the one billion years it took the cluster to form after the Big Bang, astronomers found that the age of the white dwarfs agrees with previous estimates that the universe is 13 to 14 billion years old.

    The images, including some taken by Hubble's Wide Field and Planetary Camera 2, are available online at

    http://oposite.stsci.edu/pubinfo/pr/2002/10/ or

    http://www.jpl.nasa.gov/images/wfpc .

    The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's .9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope.

    The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles indicate the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars.

    Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the

  20. Chemical Abundances of New Member Stars in the Tucana II Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Chiti, Anirudh; Frebel, Anna; Ji, Alexander P.; Jerjen, Helmut; Kim, Dongwon; Norris, John E.

    2018-04-01

    We present chemical abundance measurements for seven stars with metallicities ranging from Fe/H] = ‑3.3 to [Fe/H] = ‑2.4 in the Tucana II ultra-faint dwarf galaxy (UFD), based on high-resolution spectra obtained with the MIKE spectrograph on the 6.5 m Magellan-Clay Telescope. For three stars, we present detailed chemical abundances for the first time. Of those, two stars are newly discovered members of Tucana II and were selected as probable members from deep narrowband photometry of the Tucana II UFD taken with the SkyMapper telescope. This result demonstrates the potential for photometrically identifying members of dwarf galaxy systems based on chemical composition. One new star was selected from the membership catalog of Walker et al. The other four stars in our sample have been reanalyzed, following additional observations. Overall, six stars have chemical abundances that are characteristic of the UFD stellar population. The seventh star shows chemical abundances that are discrepant from the other Tucana II members and an atypical, higher strontium abundance than what is expected for typical UFD stars. While unlikely, its strontium abundance raises the possibility that it may be a foreground metal-poor halo star with the same systemic velocity as Tucana II. If we were to exclude this star, Tucana II would satisfy the criteria to be a surviving first galaxy. Otherwise, this star implies that Tucana II has likely experienced somewhat extended chemical evolution. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  1. The Origin of Dwarf Ellipticals in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Boissier, S.; Cortese, L.; Gavazzi, G.

    2008-02-01

    We study the evolution of dwarf (LH < 109.6 LH⊙) star-forming and quiescent galaxies in the Virgo Cluster by comparing their UV to radio centimetric properties to the predictions of multizone chemospectrophotometric models of galaxy evolution especially tuned to take into account the perturbations induced by the interaction with the cluster intergalactic medium. Our models simulate one or multiple ram pressure stripping events and galaxy starvation. Models predict that all star-forming dwarf galaxies entering the cluster for the first time loose most, if not all, of their atomic gas content, quenching on short timescales (<=150 Myr) their activity of star formation. These dwarf galaxies soon become red and quiescent, gas metal-rich objects with spectrophotometric and structural properties similar to those of dwarf ellipticals. Young, low-luminosity, high surface brightness star-forming galaxies such as late-type spirals and BCDs are probably the progenitors of relatively massive dwarf ellipticals, while it is likely that low surface brightness Magellanic irregulars evolve into very low surface brightness quiescent objects hardly detectable in ground-based imaging surveys. The small number of dwarf galaxies with physical properties intermediate between those of star-forming and quiescent systems is consistent with a rapid (<1 Gyr) transitional phase between the two dwarf galaxy populations. These results, combined with statistical considerations, are consistent with the idea that most of the dwarf ellipticals dominating the faint end of the Virgo luminosity function were initially star-forming systems, accreted by the cluster and stripped of their gas by one or subsequent ram pressure stripping events.

  2. WISE Brown Dwarf Binaries: The Discovery of a T5+T5 and a T8.5+T9 System

    NASA Astrophysics Data System (ADS)

    Gelino, Christopher R.; Kirkpatrick, J. Davy; Cushing, Michael C.; Eisenhardt, Peter R.; Griffith, Roger L.; Mainzer, Amanda K.; Marsh, Kenneth A.; Skrutskie, Michael F.; Wright, Edward L.

    2011-08-01

    The multiplicity properties of brown dwarfs are critical empirical constraints for formation theories, while multiples themselves provide unique opportunities to test evolutionary and atmospheric models and examine empirical trends. Studies using high-resolution imaging cannot only uncover faint companions, but they can also be used to determine dynamical masses through long-term monitoring of binary systems. We have begun a search for the coolest brown dwarfs using preliminary processing of data from the Wide-field Infrared Survey Explorer and have confirmed many of the candidates as late-type T dwarfs. In order to search for companions to these objects, we are conducting observations using the Laser Guide Star Adaptive Optics system on Keck II. Here we present the first results of that search, including a T5 binary with nearly equal mass components and a faint companion to a T8.5 dwarf with an estimated spectral type of T9. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  3. Adaptive optics for high-contrast imaging of faint substellar companions

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.

    Direct imaging of faint objects around bright stars is challenging because the primary star's diffracted light can overwhelm low-mass companions. Nevertheless, advances in adaptive optics (AO) and high-contrast imaging have revealed the first pictures of extrasolar planets. In this dissertation I employ today's high-contrast AO techniques to image brown dwarfs around stars in the nearby Hyades cluster. Furthermore, I prepare for the next generation of high-contrast AO instrumentation, by qualifying MEMS deformable mirrors for wavefront control in the Gemini Planet Imager. In Part I, I present discovery of 3 new brown dwarfs and 36 low-mass stellar companions to 85 stars in the Hyades, imaged with AO at Keck and Lick Observatories. The "locally-optimized combination of images" (LOCI) image-diversity technique filters out the primary star to reveal faint companions. This survey is complete to the hydrogen-burning limit at separations beyond 20 AU. In the complete sample, multiplicity increases as primary star mass decreases. Additionally, the brown dwarfs are at wide >150 AU separations. Finding this preference for low binding-energy systems is an unexpected result, as the Hyades is 625 Myr old and dynamically relaxed. Future work will continue to explore this trend to understand the dynamical and star formation history of the Hyades. The brown dwarfs are near interesting transition regimes for low-mass objects; therefore, characterizing their atmospheres with spectrophotometry will serve as an important benchmark for our understanding of these cool objects. In Part II, I demonstrate micro-electro-mechanical systems (MEMS) deformable mirrors for high-order wavefront control in the Gemini Planet Imager (GPI). MEMS micromirrors have thousands of degrees of freedom and represent a significant cost efficiency over conventional glass deformable mirrors, making them ideal for high-contrast AO. In Chapter 7, I present experimental evidence that MEMS actuators function well

  4. A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes.

    PubMed

    García-Berro, Enrique; Torres, Santiago; Althaus, Leandro G; Renedo, Isabel; Lorén-Aguilar, Pablo; Córsico, Alejandro H; Rohrmann, René D; Salaris, Maurizio; Isern, Jordi

    2010-05-13

    NGC 6791 is a well studied open cluster that it is so close to us that can be imaged down to very faint luminosities. The main-sequence turn-off age ( approximately 8 Gyr) and the age derived from the termination of the white dwarf cooling sequence ( approximately 6 Gyr) are very different. One possible explanation is that as white dwarfs cool, one of the ashes of helium burning, (22)Ne, sinks in the deep interior of these stars. At lower temperatures, white dwarfs are expected to crystallize and phase separation of the main constituents of the core of a typical white dwarf ((12)C and (16)O) is expected to occur. This sequence of events is expected to introduce long delays in the cooling times, but has not hitherto been proven. Here we report that, as theoretically anticipated, physical separation processes occur in the cores of white dwarfs, resolving the age discrepancy for NGC 6791.

  5. Cool Companions of White Dwarfs from 2MASS

    NASA Astrophysics Data System (ADS)

    Hoard, D. W.; Wachter, S.; Sturch, L. K.; Widhalm, A. M.; Weiler, K. P.; Wellhouse, J. W.; Gibiansky, M.

    2006-12-01

    Detecting low mass stellar companions to white dwarfs (WDs) offers many advantages compared to main sequence primaries. In the latter case, faint low mass companions are often hidden in the glare of the more luminous main sequence primary, and radial velocity variations are small and, therefore, difficult to detect. Since WDs are less luminous than main sequence stars, the brightness contrast compared to a potential faint companion is significantly reduced. Most importantly, the markedly different spectral energy distributions of the WDs and their low mass companions makes the detection and separation of the two components relatively straightforward even with simple broad-band multi-color photometry. We have shown in Wachter et al. (2003) that the 2MASS near-IR color-color diagram can easily and efficiently identify candidates for unresolved WD + red dwarf binaries. Our follow-up observations (e.g., Farihi et al. 2006) have shown that a large fraction of these candidates are confirmed as previously unknown binary stars. Here, we present results from our full survey of the 2235 WDs from the McCook & Sion (1999) Catalog using the 2MASS All-Sky Data Release. We have identified an additional large sample of candidate WD + red dwarf binaries, as well as a number of systems that may contain extremely low mass stellar or substellar companions. Support for this work was provided by the National Aeronautics and Space Administration (NASA) under an Astrophysics Data Program grant issued through the Office of Space Science. This research made use of the NASA/Infrared Processing and Analysis Center (IPAC) Infrared Science Archive, which is operated by the Jet Propulsion Laboratory/California Institute of Technology (CIT), under contract with NASA, and data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and IPAC/CIT, funded by NASA and the National Science Foundation.

  6. The Star, the Dwarf and the Planet

    NASA Astrophysics Data System (ADS)

    2006-10-01

    Astronomers have detected a new faint companion to the star HD 3651, already known to host a planet. This companion, a brown dwarf, is the faintest known companion of an exoplanet host star imaged directly and one of the faintest T dwarfs detected in the Solar neighbourhood so far. The detection yields important information on the conditions under which planets form. "Such a system is an interesting example that might prove that planets and brown dwarfs can form around the same star", said Markus Mugrauer, lead author of the paper presenting the discovery. ESO PR Photo 39a/06 ESO PR Photo 39a/06 The Companion to HD 3651 HD 3651 is a star slightly less massive than the Sun, located 36 light-years away in the constellation Pisces (the "Fish"). For several years, it has been known to harbour a planet less massive than Saturn, sitting closer to its parent star than Mercury is from the Sun: the planet accomplishes a full orbit in 62 days. Mugrauer and his colleagues first spotted the faint companion in 2003 on images from the 3.8-m United Kingdom Infrared Telescope (UKIRT) in Hawaii. Observations in 2004 and 2006 using ESO's 3.6 m New Technology Telescope (NTT) at La Silla provided the crucial confirmation that the speck of light is not a spurious background star, but indeed a true companion. The newly found companion, HD 3651B, is 16 times further away from HD 3651 than Neptune is from the Sun. HD 3651B is the dimmest directly imaged companion of an exoplanet host star. Furthermore, as it is not detected on the photographic plates of the Palomar All Sky Survey, the companion must be even fainter in the visible spectral range than in the infrared, meaning it is a very cool low-mass sub-stellar object. Comparing its characteristics with theoretical models, the astronomers infer that the object has a mass between 20 and 60 Jupiter masses, and a temperature between 500 and 600 degrees Celsius. It is thus ten times colder and 300 000 less luminous than the Sun. These

  7. A possible formation scenario for dwarf spheroidal galaxies - III. Adding star formation histories to the fiducial model

    NASA Astrophysics Data System (ADS)

    Alarcón Jara, A. G.; Fellhauer, M.; Matus Carrillo, D. R.; Assmann, P.; Urrutia Zapata, F.; Hazeldine, J.; Aravena, C. A.

    2018-02-01

    Dwarf spheroidal galaxies are regarded as the basic building blocks in the formation of larger galaxies and are the most dark matter dominated systems in the Universe, known so far. There are several models that attempt to explain their formation and evolution, but they have problems modelling the formation of isolated dwarf spheroidal galaxies. Here, we will explain a possible formation scenario in which star clusters form inside the dark matter halo of a dwarf spheroidal galaxy. These star clusters suffer from low star formation efficiency and dissolve while orbiting inside the dark matter halo. Thereby, they build the faint luminous components that we observe in dwarf spheroidal galaxies. In this paper, we study this model by adding different star formation histories to the simulations and compare the results with our previous work and observational data to show that we can explain the formation of dwarf spheroidal galaxies.

  8. The Next Generation Fornax Survey (NGFS). II. The Central Dwarf Galaxy Population

    NASA Astrophysics Data System (ADS)

    Eigenthaler, Paul; Puzia, Thomas H.; Taylor, Matthew A.; Ordenes-Briceño, Yasna; Muñoz, Roberto P.; Ribbeck, Karen X.; Alamo-Martínez, Karla A.; Zhang, Hongxin; Ángel, Simón; Capaccioli, Massimo; Côté, Patrick; Ferrarese, Laura; Galaz, Gaspar; Grebel, Eva K.; Hempel, Maren; Hilker, Michael; Lançon, Ariane; Mieske, Steffen; Miller, Bryan; Paolillo, Maurizio; Powalka, Mathieu; Richtler, Tom; Roediger, Joel; Rong, Yu; Sánchez-Janssen, Ruben; Spengler, Chelsea

    2018-03-01

    We present a photometric study of the dwarf galaxy population in the core region (≲r vir/4) of the Fornax galaxy cluster based on deep u‧g‧i‧ photometry from the Next Generation Fornax Cluster Survey. All imaging data were obtained with the Dark Energy Camera mounted on the 4 m Blanco telescope at the Cerro Tololo Interamerican Observatory. We identify 258 dwarf galaxy candidates with luminosities ‑17 ≲ M g‧ ≲ ‑8 mag, corresponding to typical stellar masses of 9.5≳ {log}{{ \\mathcal M }}\\star /{M}ȯ ≳ 5.5, reaching ∼3 mag deeper in point-source luminosity and ∼4 mag deeper in surface brightness sensitivity compared to the classic Fornax Cluster Catalog. Morphological analysis shows that the dwarf galaxy surface-brightness profiles are well represented by single-component Sérsic models with average Sérsic indices of < n{> }u\\prime ,g\\prime ,i\\prime =(0.78{--}0.83)+/- 0.02 and average effective radii of < {r}e{> }u\\prime ,g\\prime ,i\\prime =(0.67{--}0.70)+/- 0.02 {kpc}. Color–magnitude relations indicate a flattening of the galaxy red sequence at faint galaxy luminosities, similar to the one recently discovered in the Virgo cluster. A comparison with population synthesis models and the galaxy mass–metallicity relation reveals that the average faint dwarf galaxy is likely older than ∼5 Gyr. We study galaxy scaling relations between stellar mass, effective radius, and stellar mass surface density over a stellar mass range covering six orders of magnitude. We find that over the sampled stellar mass range several distinct mechanisms of galaxy mass assembly can be identified: (1) dwarf galaxies assemble mass inside the half-mass radius up to {log}{{ \\mathcal M }}\\star ≈ 8.0, (2) isometric mass assembly occurs in the range 8.0 ≲ {log}{{ \\mathcal M }}\\star /{M}ȯ ≲ 10.5, and (3) massive galaxies assemble stellar mass predominantly in their halos at {log}{{ \\mathcal M }}\\star ≈ 10.5 and above.

  9. The white dwarf luminosity function - A possible probe of the galactic halo

    NASA Technical Reports Server (NTRS)

    Tamanaha, Christopher M.; Silk, Joseph; Wood, M. A.; Winget, D. E.

    1990-01-01

    The dynamically inferred dark halo mass density, amounting to above 0.01 solar masses/cu pc at the sun's Galactocentric radius, can be composed of faint white dwarfs provided that the halo formed in a sufficiently early burst of star formation. The model is constrained by the observed disk white dwarf luminosity function which falls off below log (L/solar L) = -4.4, due to the onset of star formation in the disk. By using a narrow range for the initial mass function and an exponentially decaying halo star formation rate with an e-folding time equal to the free-fall time, all the halo dark matter is allowed to be in cool white dwarfs which lie beyond the falloff in the disk luminosity function. Although it is unlikely that all the dark matter is in these dim white dwarfs, a definite signature in the low-luminosity end of the white dwarf luminosity function is predicted even if they comprise only 1 percent of the dark matter. Current CCD surveys should answer the question of the existence of this population within the next few years.

  10. A far-ultraviolet flare on a Pleiades G dwarf

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Stauffer, J. R.; Simon, Theodore; Stern, R. A.; Antiochos, S. K.; Basri, G. S.; Bookbinder, J. A.; Brown, A.; Doschek, G. A.; Linsky, J. L.

    1994-01-01

    The Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) recorded a remarkable transient brightening in the C IV lambda lambda 1548,50 emissions of the rapidly rotating Pleiades G dwarf H II 314. On the one hand the 'flare' might be a rare event luckily observed; on the other hand it might be a bellwether of the coronal heating in very young solar-mass stars. If the latter, flaring provides a natural spin-down mechanism through associated sporadic magnetospheric mass loss.

  11. An Unusual Transient in the Extremely Metal-Poor Galaxy SDSS J094332.35+332657.6 (Leoncino Dwarf)

    NASA Astrophysics Data System (ADS)

    Filho, Mercedes E.; Sánchez Almeida, J.

    2018-05-01

    We have serendipitously discovered that Leoncino Dwarf, an ultra-faint, low-metallicity record-holder dwarf galaxy, may have hosted a transient source, and possibly exhibited a change in morphology, a shift in the center of brightness, and peak variability of the main (host) source in images taken approximately 40 yr apart; it is highly likely that these phenomena are related. Scenarios involving a Solar System object, a stellar cluster, dust enshrouding, and accretion variability have been considered, and discarded, as the origin of the transient. Although a combination of time-varying strong and weak lensing effects, induced by an intermediate mass black hole (104 - 5 × 105 M⊙) moving within the Milky Way halo (0.1 - 4 kpc), can conceivably explain all of the observed variable galaxy properties, it is statistically highly unlikely according to current theoretical predictions, and, therefore, also discarded. A cataclysmic event such as a supernova/hypernova could have occurred, as long as the event was observed towards the later/late-stage descent of the light curve, but this scenario fails to explain the absence of a post-explosion source and/or host HII region in recent optical images. An episode related to the giant eruption of a luminous blue variable star, a stellar merger or a nova, observed at, or near, peak magnitude may explain the transient source and possibly the change in morphology/center of brightness, but can not justify the main source peak variability, unless stellar variability is evoked.

  12. New Metallicty Calibration for Dwarfs for the RGU-Photometry

    NASA Astrophysics Data System (ADS)

    Karaali, Salih; Bilir, Selçuk

    2002-10-01

    We adopted the procedure of Carney to obtain a metallicity calibration for dwarfs for the RGU photometry. For this purpose we selected 76 dwarfs of different metallicities from Carney, and Strobel et al., and evaluated their δ(U-G) ultra-violet excess relative to Hyades by transforming their UBV magnitudes to RGU via metallicity dependent equations of Ak-Güngör. The δ0.6/ΔM normalized factors of Sandage transform Δ(U-G) excess at any G-R to δ=δ1.08, i.e.: the ultra-violet excess at G-R = 1.08 mag, corresponding to B-V = 0.60 mag in the UBV-system. Finally, the (δ, [Fe/H]) couples were fitted by the equation [Fe/H] = 0.11-2.22δ-7.95δ2. This calibration covers the metallicity interval (-2.20, +0.20) dex.

  13. Feige 7 - A hot, rotating magnetic white dwarf

    NASA Technical Reports Server (NTRS)

    Liebert, J.; Angel, J. R. P.; Stockman, H. S.; Spinrad, H.; Beaver, E. A.

    1977-01-01

    Results are reported for image-tube-scanner and digicon observations of Feige 7, a faint blue star identified as a probable white dwarf. It is found that this star is a magnetic white dwarf showing a very rich spectrum with Zeeman subcomponents of both hydrogen and neutral helium as well as periodic spectrum and circular-polarization variations. A polarization period of 2.2 hr is computed, and a surface magnetic-field strength of about 18 MG is determined by matching features of the absorption spectrum to Zeeman components. It is suggested that the only reasonable explanation for the periodic variations in circular polarization is an oblique rotator with the spin axis approximately in the plane of the sky and tilted by about 24 deg to the magnetic axis. An effective temperature in the range from 20,000 to 25,000 K is estimated, an absolute magnitude of about 10.5 is derived, and the atmosphere is shown to be helium-dominated. The evolution of Feige 7 is discussed in terms of possible magnetic-field effects on atmospheric composition, rotation velocity (5.5 km/s for a radius of 7000 km), and the origin of white-dwarf magnetic fields.

  14. THE NEXT GENERATION VIRGO CLUSTER SURVEY. VI. THE KINEMATICS OF ULTRA-COMPACT DWARFS AND GLOBULAR CLUSTERS IN M87

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong-Xin; Peng, Eric W.; Li, Biao

    2015-03-20

    The origin of ultra-compact dwarfs (UCDs; r{sub h} ≳ 10 pc)—objects larger and more massive than typical globular clusters (GCs), but more compact than typical dwarf galaxies—has been hotly debated in the 15 years since their discovery. Even whether UCDs should be considered galactic in origin, or simply the most extreme star clusters, is not yet settled. We present the dynamical properties of 97 spectroscopically confirmed UCDs and 911 GCs associated with the central cD galaxy of the Virgo cluster, M87. Our UCDs, of which 89% have M {sub *} ≳ 2× 10{sup 6} M {sub ☉} and 92% are as blue asmore » the classic blue GCs, nearly triple the confirmed sample of Virgo UCDs, providing by far the best opportunity for studying global dynamics of a UCD system. We found that (1) UCDs have a surface number density profile that is shallower than that of blue GCs in the inner ∼70 kpc and as steep as that of red GCs at larger radii; (2) UCDs exhibit a significantly stronger rotation than GCs, and blue GCs seem to have a velocity field that is more consistent with that of the surrounding dwarf ellipticals than with that of UCDs; (3) UCDs have an orbital anisotropy profile that is tangentially biased at radii ≲40 kpc and radially biased farther out, whereas blue GCs become more tangentially biased at larger radii beyond ∼40 kpc; (4) GCs with M {sub *} ≳ 2 × 10{sup 6} M {sub ☉} have rotational properties indistinguishable from the less massive ones, suggesting that it is the size, instead of mass, that differentiates UCDs from GCs as kinematically distinct populations. We conclude that most UCDs in M87 are not consistent with being merely the most luminous and extended examples of otherwise normal GCs. The radially biased orbital structure of UCDs at large radii is in general agreement with the 'tidally threshed dwarf galaxy' scenario.« less

  15. The Next Generation Virgo Cluster Survey. VI. The Kinematics of Ultra-compact Dwarfs and Globular Clusters in M87

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Xin; Peng, Eric W.; Côté, Patrick; Liu, Chengze; Ferrarese, Laura; Cuillandre, Jean-Charles; Caldwell, Nelson; Gwyn, Stephen D. J.; Jordán, Andrés; Lançon, Ariane; Li, Biao; Muñoz, Roberto P.; Puzia, Thomas H.; Bekki, Kenji; Blakeslee, John P.; Boselli, Alessandro; Drinkwater, Michael J.; Duc, Pierre-Alain; Durrell, Patrick; Emsellem, Eric; Firth, Peter; Sánchez-Janssen, Rubén

    2015-03-01

    The origin of ultra-compact dwarfs (UCDs; rh >~ 10 pc)—objects larger and more massive than typical globular clusters (GCs), but more compact than typical dwarf galaxies—has been hotly debated in the 15 years since their discovery. Even whether UCDs should be considered galactic in origin, or simply the most extreme star clusters, is not yet settled. We present the dynamical properties of 97 spectroscopically confirmed UCDs and 911 GCs associated with the central cD galaxy of the Virgo cluster, M87. Our UCDs, of which 89% have M sstarf gsim 2× 106 M ⊙ and 92% are as blue as the classic blue GCs, nearly triple the confirmed sample of Virgo UCDs, providing by far the best opportunity for studying global dynamics of a UCD system. We found that (1) UCDs have a surface number density profile that is shallower than that of blue GCs in the inner ~70 kpc and as steep as that of red GCs at larger radii; (2) UCDs exhibit a significantly stronger rotation than GCs, and blue GCs seem to have a velocity field that is more consistent with that of the surrounding dwarf ellipticals than with that of UCDs; (3) UCDs have an orbital anisotropy profile that is tangentially biased at radii lsim40 kpc and radially biased farther out, whereas blue GCs become more tangentially biased at larger radii beyond ~40 kpc (4) GCs with M sstarf gsim 2 × 106 M ⊙ have rotational properties indistinguishable from the less massive ones, suggesting that it is the size, instead of mass, that differentiates UCDs from GCs as kinematically distinct populations. We conclude that most UCDs in M87 are not consistent with being merely the most luminous and extended examples of otherwise normal GCs. The radially biased orbital structure of UCDs at large radii is in general agreement with the "tidally threshed dwarf galaxy" scenario.

  16. Serendipitous discovery of a dwarf Nova in the Kepler field near the G dwarf KIC 5438845

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Alexander; Ayres, Thomas R.; Neff, James E.

    2015-02-01

    The Kepler satellite provides a unique window into stellar temporal variability by observing a wide variety of stars with multi-year, near-continuous, high precision, optical photometric time series. While most Kepler targets are faint stars with poorly known physical properties, many unexpected discoveries should result from a long photometric survey of such a large area of sky. During our Kepler Guest Observer programs that monitored late-type stars for starspot and flaring variability, we discovered a previously unknown dwarf nova that lies within a few arcseconds of the mid-G dwarf star KIC 5438845. This dwarf nova underwent nine outbursts over a 4more » year time span. The two largest outbursts lasted ∼17–18 days and show strong modulations with a 110.8 minute period and a declining amplitude during the outburst decay phase. These properties are characteristic of an SU UMa-type cataclysmic variable. By analogy with other dwarf nova light curves, we associate the 110.8 minute (1.847 hr) period with the superhump period, close to but slightly longer than the orbital period of the binary. No precursor outbursts are seen before the super-outbursts and the overall super-outburst morphology corresponds to Osaki and Meyer “Case B” outbursts, which are initiated when the outer edge of the disk reaches the tidal truncation radius. “Case B” outbursts are rare within the Kepler light curves of dwarf novae. The dwarf nova is undergoing relatively slow mass transfer, as evidenced by the long intervals between outbursts, but the mass transfer rate appears to be steady, because the smaller “normal” outbursts show a strong correlation between the integrated outburst energy and the elapsed time since the previous outburst. At super-outburst maximum the system was at V ∼ 18, but in quiescence it is fainter than V ∼ 22, which will make any detailed quiescent follow-up of this system difficult.« less

  17. Detection of an Optical Counterpart to the ALFALFA Ultra-compact High-velocity Cloud AGC 249525

    NASA Astrophysics Data System (ADS)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth A. K.; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2017-03-01

    We report on the detection at >98% confidence of an optical counterpart to AGC 249525, an ultra-compact high-velocity cloud (UCHVC) discovered by the Arecibo Legacy Fast ALFA survey blind neutral hydrogen survey. UCHVCs are compact, isolated H I clouds with properties consistent with their being nearby low-mass galaxies, but without identified counterparts in extant optical surveys. Analysis of the resolved stellar sources in deep g- and I-band imaging from the WIYN pODI camera reveals a clustering of possible red giant branch stars associated with AGC 249525 at a distance of 1.64 ± 0.45 Mpc. Matching our optical detection with the H I synthesis map of AGC 249525 from Adams et al. shows that the stellar overdensity is exactly coincident with the highest-density H I contour from that study. Combining our optical photometry and the H I properties of this object yields an absolute magnitude of -7.1≤slant {M}V≤slant -4.5, a stellar mass between 2.2+/- 0.6× {10}4 {M}⊙ and 3.6+/- 1.0× {10}5 {M}⊙ , and an H I to stellar mass ratio between 9 and 144. This object has stellar properties within the observed range of gas-poor ultra-faint dwarfs in the Local Group, but is gas-dominated.

  18. HOW THE FIRST STARS SHAPED THE FAINTEST GAS-DOMINATED DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbeke, R.; Vandenbroucke, B.; Rijcke, S. De, E-mail: robbert.verbeke@UGent.be

    2015-12-20

    Low-mass dwarf galaxies are very sensitive test-beds for theories of cosmic structure formation since their weak gravitational fields allow the effects of the relevant physical processes to clearly stand out. Up to now, no unified account has existed of the sometimes seemingly conflicting properties of the faintest isolated dwarfs in and around the Local Group, such as Leo T and the recently discovered Leo P and Pisces A systems. Using new numerical simulations, we show that this serious challenge to our understanding of galaxy formation can be effectively resolved by taking into account the regulating influence of the ultraviolet radiation of themore » first population of stars on a dwarf’s star formation rate while otherwise staying within the standard cosmological paradigm for structure formation. These simulations produce faint, gas-dominated, star-forming dwarf galaxies that lie on the baryonic Tully–Fisher relation and that successfully reproduce a broad range of chemical, kinematical, and structural observables of real late-type dwarf galaxies. Furthermore, we stress the importance of obtaining properties of simulated galaxies in a manner as close as possible to the typically employed observational techniques.« less

  19. Stellar properties of dwarf galaxies and their connections with the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Revaz, Yves; Pascale Jablonka

    2018-06-01

    In this talk, relying on recent chemo-dynamical simulations, I will describe the stellar properties and in particular the abundances ratios of dwarf galaxies emerging from a LCDM framework. Faint systems quenched by the UV-background as well as luminous ones exhibiting an extended star formation history nicely reproduce observations, without necessary requiring a strong interaction with the Milky Way. However, dwarf galaxies with complex star formation histories like Carina and Fornax are much more difficult to reproduce. Those systems are often believed to result from an interaction with the Milky Way. I will show that when such interaction is taken into account in our high resolution simulations through ram pressure stripping, a much more complex reality appears.

  20. Searches for new Milky Way satellites from the first two years of data of the Subaru/Hyper Suprime-Cam survey: Discovery of Cetus III

    NASA Astrophysics Data System (ADS)

    Homma, Daisuke; Chiba, Masashi; Okamoto, Sakurako; Komiyama, Yutaka; Tanaka, Masayuki; Tanaka, Mikito; Ishigaki, Miho N.; Hayashi, Kohei; Arimoto, Nobuo; Garmilla, José A.; Lupton, Robert H.; Strauss, Michael A.; Miyazaki, Satoshi; Wang, Shiang-Yu; Murayama, Hitoshi

    2018-01-01

    We present the results from a search for new Milky Way (MW) satellites from the first two years of data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) ˜300 deg2 and report the discovery of a highly compelling ultra-faint dwarf galaxy candidate in Cetus. This is the second ultra-faint dwarf we have discovered after Virgo I reported in our previous paper. This satellite, Cetus III, has been identified as a statistically significant (10.7 σ) spatial overdensity of star-like objects, which are selected from a relevant isochrone filter designed for a metal-poor and old stellar population. This stellar system is located at a heliocentric distance of 251^{+24}_{-11}kpc with a most likely absolute magnitude of MV = -2.4 ± 0.6 mag estimated from a Monte Carlo analysis. Cetus III is extended with a half-light radius of r_h = 90^{+42}_{-17}pc, suggesting that this is a faint dwarf satellite in the MW located beyond the detection limit of the Sloan Digital Sky Survey. Further spectroscopic studies are needed to assess the nature of this stellar system. We also revisit and update the parameters for Virgo I, finding M_V = -0.33^{+0.75}_{-0.87}mag and r_h = 47^{+19}_{-13}pc. Using simulations of Λ-dominated cold dark matter models, we predict that we should find one or two new MW satellites from ˜300 deg2 HSC-SSP data, in rough agreement with the discovery rate so far. The further survey and completion of HSC-SSP over ˜1400 deg2 will provide robust insights into the missing satellites problem.

  1. Young, metal-enriched cores in early-type dwarf galaxies in the Virgo cluster based on colour gradients

    NASA Astrophysics Data System (ADS)

    Urich, Linda; Lisker, Thorsten; Janz, Joachim; van de Ven, Glenn; Leaman, Ryan; Boselli, Alessandro; Paudel, Sanjaya; Sybilska, Agnieszka; Peletier, Reynier F.; den Brok, Mark; Hensler, Gerhard; Toloba, Elisa; Falcón-Barroso, Jesús; Niemi, Sami-Matias

    2017-10-01

    Early-type dwarf galaxies are not simply featureless, old objects, but were found to be much more diverse, hosting substructures and a variety of stellar population properties. To explore the stellar content of faint early-type galaxies, and to investigate in particular those with recent central star formation, we study colours and colour gradients within one effective radius in optical (g - r) and near-infrared (I - H) bands for 120 Virgo cluster early-type galaxies with - 19 mag faint early-type galaxies. The metallicity gradients of these blue-cored early-type dwarf galaxies are, however, in the range of most normal faint early-type galaxies, which we find to have non-zero gradients with higher central metallicity. The blue central regions are consistent with star formation activity within the last few 100 Myr. We discuss whether these galaxies could be explained by environmental quenching of star formation in the outer galaxy regions while the inner star formation activity continued.

  2. Globular Clusters for Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    The origin of ultra-diffuse galaxies (UDGs) has posed a long-standing mystery for astronomers. New observations of several of these faint giants with the Hubble Space Telescope are now lending support to one theory.Faint-Galaxy MysteryHubble images of Dragonfly 44 (top) and DFX1 (bottom). The right panels show the data with greater contrast and extended objects masked. [van Dokkum et al. 2017]UDGs large, extremely faint spheroidal objects were first discovered in the Virgo galaxy cluster roughly three decades ago. Modern telescope capabilities have resulted in many more discoveries of similar faint galaxies in recent years, suggesting that they are a much more common phenomenon than we originally thought.Despite the many observations, UDGs still pose a number of unanswered questions. Chief among them: what are UDGs? Why are these objects the size of normal galaxies, yet so dim? There are two primary models that explain UDGs:UDGs were originally small galaxies, hence their low luminosity. Tidal interactions then puffed them up to the large size we observe today.UDGs are effectively failed galaxies. They formed the same way as normal galaxies of their large size, but something truncated their star formation early, preventing them from gaining the brightness that we would expect for galaxies of their size.Now a team of scientists led by Pieter van Dokkum (Yale University) has made some intriguing observations with Hubble that lend weight to one of these models.Globulars observed in 16 Coma-cluster UDGs by Hubble. The top right panel shows the galaxy identifications. The top left panel shows the derived number of globular clusters in each galaxy. [van Dokkum et al. 2017]Globulars GaloreVan Dokkum and collaborators imaged two UDGs with Hubble: Dragonfly 44 and DFX1, both located in the Coma galaxy cluster. These faint galaxies are both smooth and elongated, with no obvious irregular features, spiral arms, star-forming regions, or other indications of tidal interactions

  3. The Gas in Virgo’s “Red and Dead” Dwarf Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Hallenbeck, Gregory L.; Koopmann, Rebecca A.

    2017-01-01

    As star-forming dwarf irregulars and faint spirals fall onto a cluster, their gas content is easily and quickly removed by ram-pressure stripping or other cluster forces. Residual signs of star formation cease within 100 Myr, and only after approximately 1 Gyr do their optical features transition to elliptical.Despite this, ALFALFA has uncovered a population of three “red and dead” dwarf ellipticals in the Virgo Cluster which still have detectable reservoirs of HI. These dwarf ellipticals are extremely gas-rich—as gas-rich as the cluster’s star-forming dwarf irregulars (Hallenbeck et al. 2012). Where does this gas come from? We consider two possibilities. First, that the gas is recently acquired, and has not yet had time to form stars. Second, that the gas is primordial, and has been disrupted from being able to form stars during the current epoch.We present deep optical (using CFHT and KPNO) and HI (Arecibo and VLA) observations of this sample to demonstrate that this gas is primordial. These observations show that all three galaxies have exponentially decreasing profiles characteristic of dwarf ellipticals and that their rotation velocities are extremely low. However, like more massive elliptical galaxies with HI, these dwarf galaxies show irregular optical morphology. For one target, VCC 190, we additionally observe an HI tail consistent with a recent interaction with the massive spiral galaxy NGC 4224.

  4. KECK/LRIS SPECTROSCOPIC CONFIRMATION OF COMA CLUSTER DWARF GALAXY MEMBERSHIP ASSIGNMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiboucas, Kristin; Tully, R. Brent; Marzke, Ronald O.

    2010-11-01

    Keck/LRIS multi-object spectroscopy has been carried out on 140 of some of the lowest and highest surface brightness faint (19 < R < 22) dwarf galaxy candidates in the core region of the Coma Cluster. These spectra are used to measure redshifts and establish membership for these faint dwarf populations. The primary goal of the low surface brightness sample is to test our ability to use morphological and surface brightness criteria to distinguish between Coma Cluster members and background galaxies using high resolution Hubble Space Telescope/Advanced Camera for Surveys images. Candidates were rated as expected members, uncertain, or expected background.more » From 93 spectra, 51 dwarf galaxy members and 20 background galaxies are identified. Our morphological membership estimation success rate is {approx}100% for objects expected to be members and better than {approx}90% for galaxies expected to be in the background. We confirm that low surface brightness is a very good indicator of cluster membership. High surface brightness galaxies are almost always background with confusion arising only from the cases of the rare compact elliptical (cE) galaxies. The more problematic cases occur at intermediate surface brightness. Many of these galaxies are given uncertain membership ratings, and these were found to be members about half of the time. Including color information will improve membership determination but will fail for some of the same objects that are already misidentified when using only surface brightness and morphology criteria. cE galaxies with B-V colors {approx}0.2 mag redward of the red sequence in particular require spectroscopic follow up. In a sample of 47 high surface brightness, ultracompact dwarf candidates, 19 objects have redshifts which place them in the Coma Cluster, while another 6 have questionable redshift measurements but may also prove to be members. Redshift measurements are presented and the use of indirect means for establishing cluster

  5. Dwarf Galaxies in the Coma Cluster. II. Photometry and Analysis

    NASA Astrophysics Data System (ADS)

    Secker, J.; Harris, W. E.; Plummer, J. D.

    1997-12-01

    We use the data set derived in our previous paper (Secker & Harris 1997) to study the dwarf galaxy population in the central =~ 700 arcmin(2) of the Coma cluster, the majority of which are early-type dwarf elliptical (dE) galaxies. Analysis of the statistically-decontaminated dE galaxy sequence in the color-magnitude diagram reveals that the mean dE color at R = 18.0 mag is (B-R) =~ 1.4 mag, but that a highly significant trend of color with magnitude exists (Delta (B-R)/Delta R = -0.056+/-0.002 mag) in the sense that fainter dEs are bluer and thus presumably more metal-poor. The mean color of the faintest dEs in our sample is (B-R) =~ 1.15 mag, consistent with a color measurement of the diffuse intracluster light in the Coma core. This intracluster light could then have originated from the tidal disruption of faint dEs in the cluster core. The total galaxy luminosity function (LF) is well modeled as the sum of a log-normal distribution for the giant galaxies, and a Schechter function for the dE galaxies with a faint-end slope alpha = -1.41+/-0.05. This value of alpha is consistent with those measured for the Virgo and Fornax clusters. The spatial distribution of the faint dE galaxies (19.0 < R <= 22.5 mag) is well fit by a standard King model with a central surface density of Sigma_0 = 1.17 dEs arcmin(-2) and a core radius R_c = 22.15 arcmin ( =~ 0.46h(-1) Mpc). This core is significantly larger than the R_c = 13.71 arcmin ( =~ 0.29h(-1) Mpc) found for the cluster giants and the brighter dEs (R <= 19.0 mag), again consistent with the idea that faint dEs in the dense core have been disrupted. Finally, we find that most dEs belong to the general Coma cluster potential rather than as satellites of individual giant galaxies: An analysis of the number counts around 10 cluster giants reveals that they each have on average 4+/- 1 dE companions within a projected radius of 13.9h(-1) kpc. (SECTION: Galaxies)

  6. What the Local Group can tell us about the first stars and first galaxies

    NASA Astrophysics Data System (ADS)

    Jablonka, Pascale

    2018-06-01

    I will present a series of new observational results on the most pristine stellar population in some of the Local Group dwarf spheroidal galaxies, with particular focus on the level of homogeneity of their abundance ratios. I will draw comparisons with the Milky Way halo and discuss the very specific question of the neutron capture elements. Our understanding of the formation of dwarf galaxies strongly rely on our ability to model them. I will present the status of our recent high resolution chemo-dynamical simulations, describe our latest results on galaxy build-up processes, and discuss the challenges that modeling has to face, in particular in the mass range of the ultra-faint dwarfs.

  7. A New Milky Way Satellite Discovered in the Subaru/Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Homma, Daisuke; Chiba, Masashi; Okamoto, Sakurako; Komiyama, Yutaka; Tanaka, Masayuki; Tanaka, Mikito; Ishigaki, Miho N.; Akiyama, Masayuki; Arimoto, Nobuo; Garmilla, José A.; Lupton, Robert H.; Strauss, Michael A.; Furusawa, Hisanori; Miyazaki, Satoshi; Murayama, Hitoshi; Nishizawa, Atsushi J.; Takada, Masahiro; Usuda, Tomonori; Wang, Shiang-Yu

    2016-11-01

    We report the discovery of a new ultra-faint dwarf satellite companion of the Milky Way (MW) based on the early survey data from the Hyper Suprime-Cam Subaru Strategic Program. This new satellite, Virgo I, which is located in the constellation of Virgo, has been identified as a statistically significant (5.5σ) spatial overdensity of star-like objects with a well-defined main sequence and red giant branch in the color-magnitude diagram. The significance of this overdensity increases to 10.8σ when the relevant isochrone filter is adopted for the search. Based on the distribution of the stars around the likely main-sequence turnoff at r ˜ 24 mag, the distance to Virgo I is estimated as 87 kpc, and its most likely absolute magnitude calculated from a Monte Carlo analysis is M V = -0.8 ± 0.9 mag. This stellar system has an extended spatial distribution with a half-light radius of {38}-11+12 pc, which clearly distinguishes it from a globular cluster with comparable luminosity. Thus, Virgo I is one of the faintest dwarf satellites known and is located beyond the reach of the Sloan Digital Sky Survey. This demonstrates the power of this survey program to identify very faint dwarf satellites. This discovery of Virgo I is based only on about 100 square degrees of data, thus a large number of faint dwarf satellites are likely to exist in the outer halo of the MW.

  8. A class of compact dwarf galaxies from disruptive processes in galaxy clusters.

    PubMed

    Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S

    2003-05-29

    Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.

  9. The UV Spectrum of the Ultracool Dwarf LSR J1835+3259 Observed with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Fischer, Christian; Wennmacher, Alexandre; Feldman, Paul; Roth, Lorenz; Strobel, D.; Reiners, Ansgar

    2018-01-01

    An interesting question about ultracool dwarfs is whether their emission is purely internally driven or partially powered by external processes similar to auroral emission known from planetary bodies of the solar system. Here we present Hubble Space Telescope observations of the energy fluxes of the M8.5 ultracool dwarf LSR J1835+3259 throughout the UV. The dwarf’s UV emission is generally weaker compared to younger-type M-dwarfs. We detect the Mg II doublet at 2800 A and constrain an average flux throughout the Near-UV. In the Far-UV without Lyman alpha, the ultracool dwarf is extremely faint with an energy output of at least a factor of 1000 smaller than expected from auroral emission physically similar to that on Jupiter. We also detect the red wing of the Lyman alpha emission. Our overall finding is that the observed UV spectrum of LSR J1835+3259 resembles the spectrum of M-dwarf stars much closer than the spectrum expected from Jupiter-like auroral processes.

  10. The UV Spectrum of the Ultracool Dwarf LSR J1835+3259 Observed with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Fischer, Christian; Wennmacher, Alexandre; Feldman, Paul D.; Roth, Lorenz; Strobel, Darrell F.; Reiners, Ansgar

    2018-05-01

    An interesting question about ultracool dwarfs recently raised in the literature is whether their emission is purely internally driven or partially powered by external processes similar to planetary aurora known from the solar system. In this work, we present Hubble Space Telescope observations of the energy fluxes of the M8.5 ultracool dwarf LSR J1835+3259 throughout the ultraviolet (UV). The obtained spectra reveal that the object is generally UV-fainter compared with other earlier-type dwarfs. We detect the Mg II doublet at 2800 Å and constrain an average flux throughout the near-UV. In the far-UV without Lyα, the ultracool dwarf is extremely faint with an energy output at least a factor of 250 smaller as expected from auroral emission physically similar to that on Jupiter. We also detect the red wing of the Lyα emission. Our overall finding is that the observed UV spectrum of LSR J1835+3259 resembles the spectrum of mid/late-type M-dwarf stars relatively well, but it is distinct from a spectrum expected from Jupiter-like auroral processes.

  11. Studies of the Coldest Brown Dwarfs With The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Roellig, Thomas L.; Greene, Thomas P.; Beichman, Charles; Meyer, Michael; Rieke, Marcia

    2016-07-01

    The coolest T and Y-class Brown Dwarf objects are very faint and are therefore very poorly understood, since they are barely detectable with the current astronomical instrumentation. The upcoming James Webb Space Telescope now in development for a launch in the Fall of 2018 will have vastly increased sensitivity in the near and mid-infrared compared to any current facilities and will not be affected by telluric absorption over its entire wavelength range of operations. As a result it will be an ideal tool to obtain information about the composition and temperature-pressure structure in these objects' atmospheres. This presentation outlines the JWST guaranteed time observing plans for these studies. These plans comprise both spectro-photometric and spectroscopic observations of a selection of late T and Y-dwarf targets.

  12. Discovery of a Dwarf Poststarburst Galaxy near a High Column Density Local Lyα Absorber

    NASA Astrophysics Data System (ADS)

    Stocke, John T.; Keeney, Brian A.; McLin, Kevin M.; Rosenberg, Jessica L.; Weymann, R. J.; Giroux, Mark L.

    2004-07-01

    We report the discovery of a dwarf (MB=-13.9) poststarburst galaxy coincident in recession velocity (within uncertainties) with the highest column density absorber (NHI=1015.85 cm-2 at cz=1586 km s- 1) in the 3C 273 sight line. This galaxy is by far the closest galaxy to this absorber, projected just 71h-170 kpc on the sky from the sight line. The mean properties of the stellar populations in this galaxy are consistent with a massive starburst ~3.5 Gyr ago, whose attendant supernovae, we argue, could have driven sufficient gas from this galaxy to explain the nearby absorber. Beyond its proximity on the sky and in recession velocity, the further evidence in favor of this conclusion includes both a match in the metallicities of absorber and galaxy and the fact that the absorber has an overabundance of Si/C, suggesting recent Type II supernova enrichment. Thus, this galaxy and its ejecta are in the expected intermediate stage in the fading dwarf evolutionary sequence envisioned by Babul & Rees to explain the abundance of faint blue galaxies at intermediate redshifts. While this one instance of a QSO metal-line absorber and a nearby dwarf galaxy is not proof of a trend, a similar dwarf galaxy would be too faint to be observed by galaxy surveys around more distant metal-line absorbers. Thus, we cannot exclude the possibility that dwarf galaxies are primarily responsible for weak (NHI=1014-1017 cm-2) metal-line absorption systems in general. If a large fraction of the dwarf galaxies expected to exist at high redshift had a similar history (i.e., they had a massive starburst that removed all or most of their gas), these galaxies could account for at least several hundred high-z metal-line absorbers along the line of sight to a high-z QSO. The volume-filling factor for this gas, however, would be less than 1%. ID="FN1"> 1Based on observations made with the Apache Point 3.5 m telescope, operated by the Astronomical Research Consortium, and the 2.6 m du Pont telescope of the

  13. A Sample of Fast Moving M Dwarfs in the Milky Way

    NASA Astrophysics Data System (ADS)

    Favia, Andrej; West, Andrew A.

    2014-06-01

    In the past decade, several high-mass stars have been discovered to have high enough velocities to escape the Milky Way (dubbed hypervelocity stars), yet until recently, stars with similar velocities were not observed for Solar- and lower-mass stars. There has been an observational paucity of hypervelocity M dwarfs, which account for ~70% of the stars in the Milky Way. While some of the shortage of low-mass, high-velocity stars may be due to the specific mechanisms accelerating these stars, it is also possible that the M dwarfs have been overlooked due to their faint luminosities. We present results from a study that uses the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) M Dwarf Spectroscopic Catalog (70,841 M dwarfs) to identify and characterize several hundred M dwarfs with velocities greater than 400 km/s relative to the Galactic center. Our study marks the first step in demonstrating that there is a significant sample of low-mass, high-velocity stars. We examined the 3D kinematics of M dwarfs in the SDSS DR7 catalog with velocities > 400 km/s relative to the Galactic center. Stars with poor photometry or a SNR (near H-alpha) < 3 were excluded, as well as stars that were flagged in the original data set as being possible M dwarf-white dwarf binaries. We confirmed the radial velocities reported by West et al. (2011) by manually examining the remaining stars, specifically the locations of the sodium absorption lines (two at 5891/5897 Å, and two at 8185/8197 Å). We present the final catalog of high velocity candidates and a preliminary analysis of their spectroscopically derived properties, including 3D kinematics, magnetic activity and metallicity distributions.

  14. Cool White Dwarfs Found in the UKIRT Infrared Deep Sky Survey

    NASA Astrophysics Data System (ADS)

    Leggett, S. K.; Lodieu, N.; Tremblay, P.-E.; Bergeron, P.; Nitta, A.

    2011-07-01

    We present the results of a search for cool white dwarfs in the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The UKIDSS LAS photometry was paired with the Sloan Digital Sky Survey to identify cool hydrogen-rich white dwarf candidates by their neutral optical colors and blue near-infrared colors, as well as faint reduced proper motion magnitudes. Optical spectroscopy was obtained at Gemini Observatory and showed the majority of the candidates to be newly identified cool degenerates, with a small number of G- to K-type (sub)dwarf contaminants. Our initial search of 280 deg2 of sky resulted in seven new white dwarfs with effective temperature T eff ≈ 6000 K. The current follow-up of 1400 deg2 of sky has produced 13 new white dwarfs. Model fits to the photometry show that seven of the newly identified white dwarfs have 4120 K <=T eff <= 4480 K, and cooling ages between 7.3 Gyr and 8.7 Gyr; they have 40 km s-1 <= v tan <= 85 km s-1 and are likely to be thick disk 10-11 Gyr-old objects. The other half of the sample has 4610 K <=T eff <= 5260 K, cooling ages between 4.3 Gyr and 6.9 Gyr, and 60 km s-1 <= v tan <= 100 km s-1. These are either thin disk remnants with unusually high velocities, or lower-mass remnants of thick disk or halo late-F or G stars.

  15. Dwarf Galaxies and the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Benítez-Llambay, Alejandro; Navarro, Julio F.; Abadi, Mario G.; Gottlöber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Steinmetz, Matthias

    2013-02-01

    We use a cosmological simulation of the formation of the Local Group of Galaxies to identify a mechanism that enables the removal of baryons from low-mass halos without appealing to feedback or reionization. As the Local Group forms, matter bound to it develops a network of filaments and pancakes. This moving web of gas and dark matter drifts and sweeps a large volume, overtaking many halos in the process. The dark matter content of these halos is unaffected but their gas can be efficiently removed by ram pressure. The loss of gas is especially pronounced in low-mass halos due to their lower binding energy and has a dramatic effect on the star formation history of affected systems. This "cosmic web stripping" may help to explain the scarcity of dwarf galaxies compared with the numerous low-mass halos expected in ΛCDM and the large diversity of star formation histories and morphologies characteristic of faint galaxies. Although our results are based on a single high-resolution simulation, it is likely that the hydrodynamical interaction of dwarf galaxies with the cosmic web is a crucial ingredient so far missing from galaxy formation models.

  16. DWARF GALAXIES AND THE COSMIC WEB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benitez-Llambay, Alejandro; Abadi, Mario G.; Navarro, Julio F.

    2013-02-01

    We use a cosmological simulation of the formation of the Local Group of Galaxies to identify a mechanism that enables the removal of baryons from low-mass halos without appealing to feedback or reionization. As the Local Group forms, matter bound to it develops a network of filaments and pancakes. This moving web of gas and dark matter drifts and sweeps a large volume, overtaking many halos in the process. The dark matter content of these halos is unaffected but their gas can be efficiently removed by ram pressure. The loss of gas is especially pronounced in low-mass halos due tomore » their lower binding energy and has a dramatic effect on the star formation history of affected systems. This 'cosmic web stripping' may help to explain the scarcity of dwarf galaxies compared with the numerous low-mass halos expected in {Lambda}CDM and the large diversity of star formation histories and morphologies characteristic of faint galaxies. Although our results are based on a single high-resolution simulation, it is likely that the hydrodynamical interaction of dwarf galaxies with the cosmic web is a crucial ingredient so far missing from galaxy formation models.« less

  17. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses <10(sup 7.7) solar mass and Hi line widths <80 kilometers per second. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M*) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  18. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shan; Haynes, Martha P.; Giovanelli, Riccardo

    2012-06-15

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses <10{sup 7.7} M{sub Sun} and H I line widths <80 km s{sup -1}. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M{sub *}) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; onlymore » 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M{sub *} obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M{sub *} {approx}< 10{sup 8} M{sub Sun} is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M{sub *} than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.« less

  19. The RSA survey of dwarf galaxies, 1: Optical photometry

    NASA Technical Reports Server (NTRS)

    Vader, J. Patricia; Chaboyer, Brian

    1994-01-01

    merger candidates. Merger events may lead to anisotropic velocity distributions in systems of any luminosity, including dwarfs. The RSA sample of dwarf galaxies is more likely to contain mergers because, in contrast to earlier dwarf galaxy surveys that have focused on clusters and rich groups of galaxies, the RSA dwarfs are typically located in low density environments. The occurrence of mergers among dwarf galaxies is of interest in connection with the rapid evolution of faint blue galaxy counts at redshift z less than 1 which suggests that dwarf galaxies were about five times more numerous in the recent past. Finally, our sample contains several examples of late-type dwarfs and 'transition' types that are potential precursors of nucleated early-type dwarfs. All the above processes--mass loss, mergers, astration--are likely to have contributed to the formation of the current population of diffuse early-type dwarfs. A few new redshifts of dwarf galaxies are reported in this paper.

  20. The origin of ultra-compact binaries

    NASA Technical Reports Server (NTRS)

    Hachisu, Izumi; Miyaji, Shigeki; Saio, Hideyuki

    1987-01-01

    The origin of ultra-compact binaries composed of a neutron star and a low-mass (about 0.06 solar mass) white dwarf is considered. Taking account of the systemic losses of mass and angular momentum, it was found that a serious difficulty exists in the scenarios which involve tidal captures of a normal star (a main sequence star or a red giant) by a neutron star. This difficulty can be avoided if a red giant star is captured by a massive white dwarf (M is approx. greater than 1.2 solar masses), which becomes a neutron star through the accretion induced collapse.

  1. Two dwarf galaxies in Orion with low radial velocities.

    NASA Astrophysics Data System (ADS)

    Karachentsev, I.; Musella, I.

    1996-11-01

    Two relatively faint (B=15.7 and B=18.4mag, respectively), low velocity (+276 and +322km/s) galaxies were imaged with a CCD in the B, V, I bands. By means of the brightest stars we estimated their distances to be 6.4 and 5.5(+/-2)Mpc, assuming a galactic extinction of 2.7 and 2.9mag, respectively. We note that these isolated irregular dwarfs are located to a high Supergalactic latitude, -63deg, and their low radial velocities may be the result of a retarded expansion along the polar axis of the Local cloud of galaxies.

  2. A normal abundance of faint satellites in the fossil group NGC 6482

    NASA Astrophysics Data System (ADS)

    Lieder, S.; Mieske, S.; Sánchez-Janssen, R.; Hilker, M.; Lisker, T.; Tanaka, M.

    2013-11-01

    A fossil group is considered the end product in a galaxy group's evolution. It is a massive central galaxy that dominates the luminosity budget of the group, and is the outcome of efficient merging between intermediate-luminosity members. Little is known, however, about the faint satellite systems of fossil groups. Here we present a Subaru/Suprime-Cam wide-field, deep imaging study in the B - and R -bands of the nearest fossil group NGC 6482 (Mtot ~ 4 × 1012M⊙), covering the virial radius out to 310 kpc. We performed detailed completeness estimations and selected group member candidates by a combination of automated object detection and visual inspection. A fiducial sample of 48 member candidates down to MR ~ -10.5 mag is detected, making this study the deepest of a fossil group to now. We investigate the photometric scaling relations, the color-magnitude relation, and the luminosity function of our galaxy sample. We find evidence of recent and ongoing merger events among bright group galaxies. The color-magnitude relation is comparable to that of nearby galaxy clusters, and it exhibits significant scatter at the faintest luminosities. The completeness-corrected luminosity function is dominated by early-type dwarfs and is characterized by a faint end slope α = -1.32 ± 0.05. We conclude that the NGC 6482 fossil group shows photometric properties consistent with those of regular galaxy clusters and groups, including a normal abundance of faint satellites. Appendix A is available in electronic form at http://www.aanda.orgThe reduced data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A76

  3. Get Ready for Gaia: Cool White Dwarfs in Common Proper Motion with Tycho Stars

    NASA Astrophysics Data System (ADS)

    Hambly, N.; Rowell, N.; Lam, M.

    2017-03-01

    We discuss the Gaia Data Release 1 (September 2016) and preliminary work on maximising the benefit for cool white dwarf (WD) science in advance of the full parallax catalogue which will appear around one year later in DR2. The Tycho catalogue is used in conjunction with the all-sky ground based astrometric/ photometric SuperCOSMOS Sky Survey in order to identify candidate faint common proper motion objects to the Tycho stars. Gaia DR1 is supplemented by the Tycho-Gaia Astrometric Solution catalogue containing some 2 million parallaxes with Hipparcos-like precision for Tycho stars. While hotter, brighter WDs are present in Tycho, cooler examples are much rarer (if present at all) and CPM offers one method to infer precision distances for a statistically useful sample of these very faint WDs.

  4. NTT Observations Indicate that Brown Dwarfs Form Like Stars

    NASA Astrophysics Data System (ADS)

    2001-06-01

    Dusty Disks Detected around Very Young Substellar Objects in the Orion Nebula Summary An international team of astronomers [2] is announcing today the discovery of dusty disks surrounding numerous very faint objects that are believed to be recently formed Brown Dwarfs in the Orion Nebula [3]. This finding is based on detailed observations with SOFI, a specialised infrared-sensitive instrument at the ESO 3.5-m New Technology Telescope at the La Silla Observatory. It is of special interest because it sheds light on the origin and nature of substellar objects, known as "Brown Dwarfs" . In particular, these results suggest that Brown Dwarfs share a common origin with stars and that Brown Dwarfs are more similar in nature to stars than to planets and, like stars, have the potential to form with accompanying systems of planets. Moreover, the presence of dusty protoplanetary disks around the faintest objects in the Orion Nebula cluster confirms both the membership of these faint stars in the cluster and their nature as bona-fide substellar objects, making this the largest population of Brown Dwarf objects yet known . These important results are being reported today to the American Astronomical Society Meeting in Pasadena (California, USA). PR Photo 22a/01 : Infrared picture of the Orion Nebula (NTT + SOFI). PR Photo 22b/01 : "Finding Chart" for Very Young Brown Dwarfs in the Orion Nebula. PR Photo 22c/01 : Animated GIF presentation of PR Photos 22a+b/01. Faint substellar objects in the Milky Way Over the past 5 years, several groups of astronomers have identified a type of very faint, substellar objects within our Milky Way galaxy. These gaseous objects have very low masses and will never shine like normal stars because they cannot achieve central temperatures high enough for sustained thermal nuclear reactions to occur in their cores. Such objects weigh less than about 7% of our Sun and have been variously called "Brown Dwarfs" , "Failed Stars" or "Super Planets

  5. Fainting (Syncope)

    MedlinePlus

    ... Attack Heart Valve Problems Join our e-newsletter! Aging & Health A to Z Fainting (Syncope) Basic Facts & ... November 2016 Posted: March 2012 © 2018 Health in Aging. All rights reserved. Feedback • Site Map • Privacy Policy • ...

  6. How Faint Can You Go?

    NASA Astrophysics Data System (ADS)

    Henden, Arne

    2017-06-01

    For many scientific projects, knowledge of the faint limit of your exposure can be extremely important. In addition, it can be just plain fun to know how faint your equipment can go under varying circumstances. This paper describes the concept and gives some guidance as to how to increase the scientific value of your reports.

  7. Using photometrically selected metal-poor stars to study dwarf galaxies and the Galactic stellar halo

    NASA Astrophysics Data System (ADS)

    Youakim, Kris; Starkenburg, Else; Martin, Nicolas; Pristine Team

    2018-06-01

    The Pristine survey is a narrow-band photometric survey designed to efficiently search for extremely metal-poor (EMP) stars. In the first three years of the survey, it has demonstrated great efficiency at finding EMP stars, and also great promise for increasing the current, small sample of the most metal-poor stars. The present sky coverage is ~2500 square degrees in the Northern Galactic Halo, including several individual fields targeting dwarf galaxies. By efficiently identifying member stars in the outskirts of known faint dwarf galaxies, the dynamical histories and chemical abundance patterns of these systems can be understood in greater detail. Additionally, with reliable photometric metallicities over a large sky coverage it is possible to perform a large scale clustering analysis in the Milky Way halo, and investigate the characteristic scale of substructure at different metallicities. This can reveal important details about the process of building up the halo through dwarf galaxy accretion, and offer insight into the connection between dwarf galaxies and the Milky Way halo. In this talk I will outline our results on the search for the most pristine stars, with a focus on how we are using this information to advance our understanding of dwarf galaxies and their contribution to the formation of the Galactic stellar halo.

  8. TWO LOCAL VOLUME DWARF GALAXIES DISCOVERED IN 21 cm EMISSION: PISCES A AND B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tollerud, Erik J.; Geha, Marla C.; Grcevich, Jana

    2015-01-01

    We report the discovery of two dwarf galaxies, Pisces A and B, from a blind 21 cm H I search. These were the only two galaxies found via optical imaging and spectroscopy of 22 H I clouds identified in the GALFA-H I survey as dwarf galaxy candidates. They have properties consistent with being in the Local Volume (<10 Mpc), and one has resolved stellar populations such that it may be on the outer edge of the Local Group (∼1 Mpc from M31). While the distance uncertainty makes interpretation ambiguous, these may be among the faintest star-forming galaxies known. Additionally, rough estimatesmore » comparing these galaxies to ΛCDM dark matter simulations suggest consistency in number density, implying that the dark matter halos likely to host these galaxies are primarily H I-rich. The galaxies may thus be indicative of a large population of dwarfs at the limit of detectability that are comparable to the faint satellites of the Local Group. Because they are outside the influence of a large dark matter halo to alter their evolution, these galaxies can provide critical anchors to dwarf galaxy formation models.« less

  9. Faint submillimeter galaxies revealed by multifield deep ALMA observations: number counts, spatial clustering, and a dark submillimeter line emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Yoshiaki; Ouchi, Masami; Momose, Rieko

    2014-11-01

    We present the statistics of faint submillimeter/millimeter galaxies (SMGs) and serendipitous detections of a submillimeter/millimeter line emitter (SLE) with no multi-wavelength continuum counterpart revealed by the deep ALMA observations. We identify faint SMGs with flux densities of 0.1-1.0 mJy in the deep Band-6 and Band-7 maps of 10 independent fields that reduce cosmic variance effects. The differential number counts at 1.2 mm are found to increase with decreasing flux density down to 0.1 mJy. Our number counts indicate that the faint (0.1-1.0 mJy, or SFR{sub IR} ∼ 30-300 M {sub ☉} yr{sup –1}) SMGs contribute nearly a half of themore » extragalactic background light (EBL), while the remaining half of the EBL is mostly contributed by very faint sources with flux densities of <0.1 mJy (SFR{sub IR} ≲ 30 M {sub ☉} yr{sup –1}). We conduct counts-in-cells analysis with multifield ALMA data for the faint SMGs, and obtain a coarse estimate of galaxy bias, b {sub g} < 4. The galaxy bias suggests that the dark halo masses of the faint SMGs are ≲ 7 × 10{sup 12} M {sub ☉}, which is smaller than those of bright (>1 mJy) SMGs, but consistent with abundant high-z star-forming populations, such as sBzKs, LBGs, and LAEs. Finally, we report the serendipitous detection of SLE-1, which has no continuum counterparts in our 1.2 mm-band or multi-wavelength images, including ultra deep HST/WFC3 and Spitzer data. The SLE has a significant line at 249.9 GHz with a signal-to-noise ratio of 7.1. If the SLE is not a spurious source made by the unknown systematic noise of ALMA, the strong upper limits of our multi-wavelength data suggest that the SLE would be a faint galaxy at z ≳ 6.« less

  10. Searching for brown dwarfs from submotions of binaries with speckle observations

    NASA Astrophysics Data System (ADS)

    Fu, Hsieh-Hai

    1994-01-01

    The search for brown dwarfs in binary systems is of great scientific interest and is a quest that pushes observing accuracy to its limit. The study of brown dwarfs is related to the search for dark matter, the initial mass function for stars of all masses, and theories of stellar formation. On the other hand, searching for brown dwarfs is a challenge because of their faintness and very low mass. Although many techniques have been used to detect brown dwarfs, a direct measurement of mass is the only criterion for distinguishing a brown dwarf from a star, and binary observation is still the best way for determining the accurate masses of celestial objects through Kepler's third law. Since 1976, CHARA has accumulated thousands of binary star speckle observations with high precision that can be used to find masses of possible unseen companions in binary systems through astrometrically measured submotions. A modified discrete Fourier transform was used to detect periodicity in data sets having uneven temporal distributions. This dissertation, an extension of work initiated by Dr. Ali Al-Shukri in 1991, uses the CHARA speckle measurements to evaluate their limiting accuracy and then to search for unseen companions from submotions of binary orbital motions. The successful detection of the previously known 1.83-year period sub-motion of the astrometric system ADS 8119 Aa demonstrates that this analysis can be used to find other systems in future investigations, even though no convincing evidence was found for the existence of a brown dwarf. Four possible companions were found to the binaries ADS 8197, ADS 9392, ADS 9494, and ADS 14073 with periods of 3.3, 2.6, 0.3, and 3.78 years and minimum masses in the ranges of 0.015-0.019, 0.11-0.65, 0.04-0.19, and 0.14-0.16 solar masses, respectively. The overall null result for detecting brown dwarfs may be partially explained as a real lack of massive brown dwarfs as members of multiple systems.

  11. Ring Structure and Warp of NGC 5907: Interaction with Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Shang, Zhaohui; Zheng, Zhongyuan; Brinks, Elias; Chen, Jiansheng; Burstein, David; Su, Hongjun; Byun, Yong-ik; Deng, Licai; Deng, Zugan; Fan, Xiaohui; Jiang, Zhaoji; Li, Yong; Lin, Weipeng; Ma, Feng; Sun, Wei-hsin; Wills, Beverley; Windhorst, Rogier A.; Wu, Hong; Xia, Xiaoyang; Xu, Wen; Xue, Suijian; Yan, Haojing; Zhou, Xu; Zhu, Jin; Zou, Zhenlong

    1998-09-01

    The edge-on, nearby spiral galaxy NGC 5907 has long been used as the prototype of a ``noninteracting'' warped galaxy. We report here the discovery of two interactions with companion dwarf galaxies that substantially change this picture. First, a faint ring structure is discovered around this galaxy that is likely due to the tidal disruption of a companion dwarf spheroidal galaxy. The ring is elliptical in shape with the center of NGC 5907 close to one of the ring's foci. This suggests that the ring material is in orbit around NGC 5907. No gaseous component to the ring has been detected either with deep Hα images or in Very Large Array H I 21 cm line maps. The visible material in the ring has an integrated luminosity <=108 Lsolar, and its brightest part has a color R-I~0.9. All of these properties are consistent with the ring being a tidally disrupted dwarf spheroidal galaxy. Second, we find that NGC 5907 has a dwarf companion galaxy, PGC 54419, which is projected to be only 36.9 kpc from the center of NGC 5907, close in radial velocity (ΔV=45 km s-1) to the giant spiral galaxy. This dwarf is seen at the tip of the H I warp and in the direction of the warp. Hence, NGC 5907 can no longer be considered noninteracting but is obviously interacting with its dwarf companions much as the Milky Way interacts with its dwarf galaxies. These results, coupled with the finding by others that dwarf galaxies tend to be found around giant galaxies, suggest that tidal interaction with companions, even if containing a mere 1% of the mass of the parent galaxy, might be sufficient to excite the warps found in the disks of many large spiral galaxies. Partially based on observations taken with the Very Large Array of the National Radio Astronomy Observatory is a facility of the National Science Foundation operated by a cooperative agreement with Associated Universities, Inc.

  12. OGLE-2013-BLG-0132Lb and OGLE-2013-BLG-1721Lb: Two Saturn-mass Planets Discovered around M-dwarfs

    NASA Astrophysics Data System (ADS)

    Mróz, Przemek; Udalski, A.; Bond, I. A.; Skowron, J.; Sumi, T.; Han, C.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Ulaczyk, K.; OGLE Collaboration; Abe, F.; Asakura, Y.; Barry, R. K.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Rattenbury, N. J.; Saito, To.; Sharan, A.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yamada, T.; Yonehara, A.; The MOA Collaboration

    2017-11-01

    We present the discovery of two planetary systems consisting of a Saturn-mass planet orbiting an M-dwarf, which were detected in faint microlensing events OGLE-2013-BLG-0132 and OGLE-2013-BLG-1721. The planetary anomalies were covered with high cadence by Optical Gravitational Lensing Experiment (OGLE) and Microlensing Observations in Astrophysics (MOA) photometric surveys. The light curve modeling indicates that the planet-to-host mass ratios are (5.15+/- 0.28)× {10}-4 and (13.18+/- 0.72)× {10}-4, respectively. Both events were too short and too faint to measure a reliable parallax signal and hence the lens mass. We therefore used a Bayesian analysis to estimate the masses of both planets: {0.29}-0.13+0.16 {M}{Jup} (OGLE-2013-BLG-0132Lb) and {0.64}-0.31+0.35 {M}{Jup} (OGLE-2013-BLG-1721Lb). Thanks to a high relative proper motion, OGLE-2013-BLG-0132 is a promising candidate for the high-resolution imaging follow-up. Both planets belong to an increasing sample of sub-Jupiter-mass planets orbiting M-dwarfs beyond the snow line.

  13. Searching for Faint Companions to Nearby Stars with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Schroeder, Daniel J.; Golimowski, David A.

    1996-01-01

    A search for faint companions (FC's) to selected stars within 5 pc of the Sun using the Hubble Space Telescope's Planetary Camera (PC) has been initiated. To assess the PC's ability to detect FCs, we have constructed both model and laboratory-simulated images and compared them to actual PC images. We find that the PC's point-spread function (PSF) is 3-4 times brighter over the angular range 2-5 sec than the PSF expected for a perfect optical system. Azimuthal variations of the PC's PSF are 10-20 times larger than expected for a perfect PSF. These variations suggest that light is scattered nonuniformly from the surface of the detector. Because the anomalies in the PC's PSF cannot be precisely simulated, subtracting a reference PSF from the PC image is problematic. We have developed a computer algorithm that identifies local brightness anomalies within the PSF as potential FCs. We find that this search algorithm will successfully locate FCs anywhere within the circumstellar field provided that the average pixel signal from the FC is at least 10 sigma above the local background. This detection limit suggests that a comprehensive search for extrasolar Jovian planets with the PC is impractical. However, the PC is useful for detecting other types of substellar objects. With a stellar signal of 10(exp 9) e(-), for example, we may detect brown dwarfs as faint as M(sub I) = 16.7 separated by 1 sec from alpha Cen A.

  14. Seeing Baby Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version

    The unique ultraviolet vision of NASA's Galaxy Evolution Explorer reveals, for the first time, dwarf galaxies forming out of nothing more than pristine gas likely leftover from the early universe. Dwarf galaxies are relatively small collections of stars that often orbit around larger galaxies like our Milky Way.

    The forming dwarf galaxies shine in the far ultraviolet spectrum, rendered as blue in the call-out on the right hand side of this image. Near ultraviolet light, also obtained by the Galaxy Evolution Explorer, is displayed in green, and visible light from the blue part of the spectrum here is represented by red. The clumps (in circles) are distinctively blue, indicating they are primarily detected in far ultraviolet light.

    The faint blue overlay traces the outline of the Leo Ring, a huge cloud of hydrogen and helium that orbits around two massive galaxies in the constellation Leo (left panel). The cloud is thought likely to be a primordial object, an ancient remnant of material that has remained relatively unchanged since the very earliest days of the universe. Identified about 25 years ago by radio waves, the ring cannot be seen in visible light.

    Only a portion of the Leo Ring has been imaged in the ultraviolet, but this section contains the telltale ultraviolet signature of recent massive star formation within this ring of pristine gas. Astronomers have previously only seen dwarf galaxies form out of gas that has already been cycled through a galaxy and enriched with metals elements heavier than helium produced as stars evolve.

    The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md. The

  15. HI-bearing Ultra Diffuse Galaxies in the ALFALFA Survey

    NASA Astrophysics Data System (ADS)

    Leisman, Lukas; Janowiecki, Steven; Jones, Michael G.; ALFALFA Almost Darks Team

    2018-01-01

    The Arecibo Legacy Fast ALFA (Arecibo L-band Feed Array) extragalactic HI survey, with over 30,000 high significance extragalactic sources, is well positioned to locate gas-bearing, low surface brightness sources missed by optical detection algorithms. We investigate the nature of a population of HI-bearing sources in ALFALFA with properties similar to "ultra-diffuse" galaxies (UDGs): galaxies with stellar masses of dwarf galaxies, but radii of L* galaxies. These "HI-bearing ultra-diffuse" sources (HUDS) constitute a small, but pertinent, fraction of the dwarf-mass galaxies in ALFALFA. They are bluer and have more irregular morphologies than the optically-selected UDGs found in clusters, and they appear to be gas-rich for their stellar mass, indicating low star formation efficiency. To illuminate potential explanations for the extreme properties of these sources we explore their environments and estimate their halo properties. We conclude that environmental mechanism are unlikely the cause of HUDS' properties, as they exist in environments equivalent to that of the other ALFALFA sources of similar HI-masses, however, we do find some suggestion that these HUDS may reside in high spin parameter halos, a potential explanation for their "ultra-diffuse" nature.

  16. Deep CCD Photometry of the Rich Galaxy Cluster Abel 1656 Characteristics of the Dwarf Elliptical Galaxy Population in the Cluster Core

    NASA Astrophysics Data System (ADS)

    Secker, Jeffrey Alan

    1995-01-01

    We have developed a statistically rigorous and automated method to implement the detection, photometry and classification of faint objects on digital images. We use these methods to analyze deep R- and B-band CCD images of the central ~ 700 arcmin ^2 of the Coma cluster core, and an associated control field. We have detected and measured total R magnitudes and (B-R) colors for a sample of 3741 objects on the galaxy cluster fields, and 1164 objects on a remote control field, complete to a limiting magnitude of R = 22.5 mag. The typical uncertainties are +/- 0.06 and +/-0.12 mag in total magnitude and color respectively. The dwarf elliptical (dE) galaxies are confined to a well-defined sequence in the color range given by 0.7<= (B-R)<= 1.9 mag: within this interval there are 2535 dE candidates on our fields in the cluster core, and 694 objects on the control field. With an image scale of 0.53 arcsec/pixel and seeing near 1.2 arcsec, a large fraction of the dE galaxy candidates are resolved. We find a significant metallicity gradient in the radial distribution of the dwarf elliptical galaxies, which goes as Z~ R^{-0.32 } outwards from the cluster center at NGC 4874. As well, there is a strong color-luminosity correlation, in the sense that more luminous dE galaxies are redder in the mean. These effects give rise to a radial variation in the cluster luminosity function. The spatial distribution of the faint dE galaxies is well fit by a standard King model with a central surface density of Sigma _0 = 1.44 dEs arcmin^{ -2}, a core radius R_{ rm c} = 18.7 arcmin (~eq 0.44 Mpc), and a tidal radius of 1.44 deg ( ~eq 2.05 Mpc). This core is significantly larger than R_{rm c} = 12.3 arcmin (~eq 0.29 Mpc) found for the bright cluster galaxies. The composite luminosity function for Coma galaxies is modeled as the sum of a log -normal distribution for the giant galaxies and a Schechter function for the dwarf elliptical galaxies, with a faint -end slope of alpha = -1

  17. Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group

    NASA Astrophysics Data System (ADS)

    Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael

    2018-06-01

    We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising <˜{5} per cent of the stellar mass at the relevant redshifts; (2) due to their respective surface brightnesses, it is more likely that faint, compact sources in the Hubble Frontier Fields (HFFs) are GCs hosted by faint galaxies, than faint galaxies themselves. This may significantly complicate the construction of a galaxy UV luminosity function at z > 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.

  18. MUCHFUSS - Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS

    NASA Astrophysics Data System (ADS)

    Geier, S.; Schaffenroth, V.; Hirsch, H.; Tillich, A.; Heber, U.; Maxted, P. F. L.; Østensen, R. H.; Barlow, B. N.; O'Toole, S. J.; Kupfer, T.; Marsh, T.; Gänsicke, B.; Napiwotzki, R.; Cordes, O.; Müller, S.; Classen, L.; Ziegerer, E.; Drechsel, H.

    2012-06-01

    The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars with massive compact companions (white dwarfs with masses M>1.0 M⊙, neutron stars or black holes). The existence of such systems is predicted by binary evolution calculations and some candidate systems have been found. We identified ≃1100 hot subdwarf stars from the Sloan Digital Sky Survey (SDSS). Stars with high velocities have been reobserved and individual SDSS spectra have been analysed. About 70 radial velocity variable subdwarfs have been selected as good candidates for follow-up time resolved spectroscopy to derive orbital parameters and photometric follow-up to search for features like eclipses in the light curves. Up to now we found nine close binary sdBs with short orbital periods ranging from ≃0.07 d to 1.5 d. Two of them are eclipsing binaries with companions that are most likely of substellar nature.

  19. The Fornax Deep Survey with VST. III. Low surface brightness dwarfs and ultra diffuse galaxies in the center of the Fornax cluster

    NASA Astrophysics Data System (ADS)

    Venhola, Aku; Peletier, Reynier; Laurikainen, Eija; Salo, Heikki; Lisker, Thorsten; Iodice, Enrichetta; Capaccioli, Massimo; Kleijn, Gijs Verdoes; Valentijn, Edwin; Mieske, Steffen; Hilker, Michael; Wittmann, Carolin; van de Ven, Glenn; Grado, Aniello; Spavone, Marilena; Cantiello, Michele; Napolitano, Nicola; Paolillo, Maurizio; Falcón-Barroso, Jesús

    2017-12-01

    Context. Studies of low surface brightness (LSB) galaxies in nearby clusters have revealed a sub-population of extremely diffuse galaxies with central surface brightness of μ0,g' > 24 mag arcsec-2, total luminosity Mg' fainter than -16 mag and effective radius between 1.5 kpc ultra diffuse galaxies (UDGs) is still unclear, although several theories have been suggested. As the UDGs overlap with the dwarf-sized galaxies in their luminosities, it is important to compare their properties in the same environment. If a continuum is found between the properties of UDGs and the rest of the LSB population, it would be consistent with the idea that they have a common origin. Aims: Our aim is to exploit the deep g', r' and i'-band images of the Fornax Deep Survey (FDS), in order to identify LSB galaxies in an area of 4 deg2 in the center of the Fornax cluster. The identified galaxies are divided into UDGs and dwarf-sized LSB galaxies, and their properties are compared. Methods: We identified visually all extended structures having r'-band central surface brightness of μ0,r' > 23 mag arcsec-2. We classified the objects based on their appearance into galaxies and tidal structures, and perform 2D Sérsic model fitting with GALFIT to measure the properties of those classified as galaxies. We analyzed their radial distribution and orientations with respect of the cluster center, and with respect to the other galaxies in our sample. We also studied their colors and compare the LSB galaxies in Fornax with those in other environments. Results: Our final sample complete in the parameter space of the previously known UDGs, consists of 205 galaxies of which 196 are LSB dwarfs (with Re < 1.5 kpc) and nine are UDGs (Re > 1.5 kpc). We show that the UDGs have (1) g'-r' colors similar to those of LSB dwarfs of the same luminosity; (2) the largest UDGs (Re > 3 kpc) in our sample appear different from the other LSB galaxies, in that they are significantly

  20. Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu; Lin, Chien-Cheng

    2017-02-01

    Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the extensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R˜ 4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42M_⊙ and 0.29-0.67R_⊙, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.

  1. Cool Dwarfs 1o-7

    NASA Astrophysics Data System (ADS)

    Ambruster, Carol W.

    Most of the cool dwarfs in the interesting age range 10^7-10^8 yr are too faint for IUE, yet such stars are critically important from the viewpoint of stellar evolution. Among stars of this age are the Pleiades K dwarfs, some of which appear to be on the main sequence, and some of which are still arriving there. Up until last year, only 2 stars in this age range had been observed by IUE, both recently: HD 36705 (AB Dor) and HD 17433. Three more stars were identified by the present investigators and observed with IUE during the past (11th) year: HD 129333, a single, nearby solar-type GOV star; HD 82558, a rapidly rotating, single, K2V star; and Ross 137B, the M dwarf common proper motion companion to AB Dor. We have since identified 5 more stars between 10^7 and 10^8 years old that are bright enough to be observed by IUE. They are physically associated, but distant, companions to main sequence O and B stars, identified in the survey of Lindroos (1986). Their ages are thus determined by the short main sequence lifetimes of the hot primaries. Rotational velocities are not yet known for our 5 proposed targets; we will be obtaining these and other data in the coming year. We therefore request time for basic IUE observations of these stars, an LWP-lo, LWP-hi and SWP-lo, for each star. This will ensure that crucial basic fluxes are in the IUE archives, should the satellite die in the coming year. Furthermore these data are immediately useful in filling the gap in the exhaustive study by Simon, Herbig and Boesgaard (1985) of the evolution of TR and chromospheric activity with age. More in-depth coverage will be proposed next year.

  2. Exploring Substellar Evolution with the Coldest Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.

    2017-01-01

    The coldest brown dwarfs are our best analogs to extrasolar gas-giant planets, representing the lowest mass products of star formation. Our view of such objects has been transformed over the last few years as new observations have revealed that the solar neighborhood is populated by much colder objects than previously recognized. At the center of efforts to discover and characterize these coldest substellar objects have been observations from NASA missions (WISE, Spitzer, HST) and the Keck Telescopes. I will review the tremendous progress made in this field over just the last few years thanks to major community efforts to overcome observational challenges in obtaining spectroscopy, photometry, and astrometry of these infrared-faint, optically invisible objects. Spectra from HST and Keck were key in establishing the much anticipated "Y" spectral type, extending the classic stellar classification scheme to atmospheres as cool as 300-400 K. Parallaxes and photometry from Spitzer and Keck have provided absolute fluxes, enabling robust temperature determinations and critical tests of model atmopheres. High-resolution imaging with Keck laser guide star adaptive optics (LGS AO) has been the most prolific resource for revealing tight companions among the coldest brown dwarfs. In fact, with continued orbit monitoring with Keck LGS AO and HST, these binary systems will ultimately provide dynamical masses that will allow the strongest tests of models and reveal if the coldest brown dwarfs are indeed "planetary mass" (less than about 13 Jupiter masses) as is currently thought.

  3. Dwarf elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Ferguson, Henry C.; Binggeli, Bruno

    1994-01-01

    Dwarf elliptical (dE) galaxies, with blue absolute magnitudes typically fainter than M(sub B) = -16, are the most numerous type of galaxy in the nearby universe. Tremendous advances have been made over the past several years in delineating the properties of both Local Group satellite dE's and the large dE populations of nearby clusters. We review some of these advances, with particular attention to how well currently availiable data can constrain (a) models for the formation of dE's, (b) the physical and evolutionary connections between different types of galaxies that overlap in the same portion of the mass-spectrum of galaxies, (c) the contribution of dE's to the galaxy luminosity functions in clusters and the field, (d) the star-forming histories of dE's and their possible contribution to faint galaxy counts, and (e) the clustering properties of dE's. In addressing these issues, we highlight the extent to which selection effects temper these constraints, and outline areas where new data would be particularly valuable.

  4. Fifteen DO, PG 1159 and related white dwarf stars in the SDSS, including two DO stars with ultra-high excitation ion lines

    NASA Astrophysics Data System (ADS)

    Krzesiński, J.; Nitta, A.; Kleinman, S. J.; Harris, H. C.; Liebert, J.; Schmidt, G.; Lamb, D. Q.; Brinkmann, J.

    2004-04-01

    We report on observations of 15 spectroscopically-identified DO stars from the Sloan Digital Sky Survey (SDSS) database, 13 of which are new discoveries. There are four PG 1159 type stars, two DO stars showing ultra-high excitation ion features (CVI, NVII, OVII, OVIII, NeIX, NeX) likely formed in stellar winds, 6 normal DO stars, one DBO and DBAO star, and one DAO star, which may also be magnetic. Since roughly 60 DO stars were known up to now, this new finding substantially increases the number of known DO white dwarf stars and we expect to at least double the current number of known DO stars by the end of the SDSS. We present each spectrum and provide catalog information (magnitudes, proper motion, coordinates) for each star.

  5. New ultra metal-poor stars from SDSS: follow-up GTC medium-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Aguado, D. S.; Allende Prieto, C.; González Hernández, J. I.; Rebolo, R.; Caffau, E.

    2017-07-01

    Context. The first generation of stars formed in the Galaxy left behind the chemical signatures of their nucleosynthesis in the interstellar medium, visible today in the atmospheres of low-mass stars that formed afterwards. Sampling the chemistry of those low-mass provides insight into the first stars. Aims: We aim to increase the samples of stars with extremely low metal abundances, identifying ultra metal-poor stars from spectra with modest spectral resolution and signal-to-noise ratio (S/N). Achieving this goal involves deriving reliable metallicities and carbon abundances from such spectra. Methods: We carry out follow-up observations of faint, V > 19, metal-poor candidates selected from SDSS spectroscopy and observed with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at GTC. The SDSS and follow-up OSIRIS spectra were analyzed using the FERRE code to derive effective temperatures, surface gravities, metallicities and carbon abundances. In addition, a well-known extremely metal-poor star has been included in our sample to calibrate the analysis methodology. Results: We observed and analyzed five metal-poor candidates from modest-quality SDSS spectra. All stars in our sample have been confirmed as extremely metal-poor stars, in the [Fe/H] < -3.3 regime. We report the recognition of J173403+644632, a carbon-enhanced ultra metal-poor dwarf star with [Fe/H] = -4.3 and [C/Fe] = + 3.1. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Programme ID GTC2E-16A and ID GTC65-16B.

  6. How Faint Can You Go? (Abstract)

    NASA Astrophysics Data System (ADS)

    Henden, A.

    2017-12-01

    (Abstract only) For many scientific projects, knowledge of the faint limit of your exposure can be extremely important. In addition, it can be just plain fun to know how faint your equipment can go under varying circumstances. This paper describes the concept and gives some guidance as to how to increase the scientific value of your reports.

  7. A Spectroscopic Search for White Dwarf Companions to 101 Nearby M Dwarfs

    NASA Astrophysics Data System (ADS)

    Bar, Ira; Vreeswijk, Paul; Gal-Yam, Avishay; Ofek, Eran O.; Nelemans, Gijs

    2017-11-01

    Recent studies of the stellar population in the solar neighborhood (<20 pc) suggest that there are undetected white dwarfs (WDs) in multiple systems with main-sequence companions. Detecting these hidden stars and obtaining a more complete census of nearby WDs is important for our understanding of stellar and galactic evolution, as well as the study of explosive phenomena. In an attempt to uncover these hidden WDs, we present intermediate resolution spectroscopy over the wavelength range of 3000-25000 Å of 101 nearby M dwarfs (dMs), observed with the Very Large Telescope X-Shooter spectrograph. For each star we search for a hot component superimposed on the dM spectrum. X-Shooter has excellent blue sensitivity and thus can reveal a faint hot WD despite the brightness of its red companion. Visual examination shows no clear evidence of a WD in any of the spectra. We place upper limits on the effective temperatures of WDs that may still be hiding by fitting dM templates to the spectra and modeling the WD spectra. On average our survey is sensitive to WDs hotter than about 5300 K. This suggests that the frequency of WD companions of {T}{eff}≳ 5300 {{K}} with separation of the order of ≲50 au among the local dM population is <3% at the 95% confidence level. The reduced spectra are made available via the WISeREP3 repository. Based on observations collected in service mode using the Very Large Telescope (VLT) under program IDs 095_D-0949(A) and 096_D-0963(A).

  8. The ultracool-field dwarf luminosity-function and space density from the Canada-France Brown Dwarf Survey

    NASA Astrophysics Data System (ADS)

    Reylé, C.; Delorme, P.; Willott, C. J.; Albert, L.; Delfosse, X.; Forveille, T.; Artigau, E.; Malo, L.; Hill, G. J.; Doyon, R.

    2010-11-01

    Context. Thanks to recent and ongoing large scale surveys, hundreds of brown dwarfs have been discovered in the last decade. The Canada-France Brown Dwarf Survey is a wide-field survey for cool brown dwarfs conducted with the MegaCam camera on the Canada-France-Hawaii Telescope. Aims: Our objectives are to find ultracool brown dwarfs and to constrain the field brown-dwarf luminosity function and the mass function from a large and homogeneous sample of L and T dwarfs. Methods: We identify candidates in CFHT/MegaCam i' and z' images and follow them up with pointed near infrared (NIR) imaging on several telescopes. Halfway through our survey we found ~50 T dwarfs and ~170 L or ultra cool M dwarfs drawn from a larger sample of 1400 candidates with typical ultracool dwarfs i'-z' colours, found in 780 square degrees. Results: We have currently completed the NIR follow-up on a large part of the survey for all candidates from mid-L dwarfs down to the latest T dwarfs known with utracool dwarfs' colours. This allows us to draw on a complete and well defined sample of 102 ultracool dwarfs to investigate the luminosity function and space density of field dwarfs. Conclusions: We found the density of late L5 to T0 dwarfs to be 2.0+0.8-0.7 × 10-3 objects pc-3, the density of T0.5 to T5.5 dwarfs to be 1.4+0.3-0.2 × 10-3 objects pc-3, and the density of T6 to T8 dwarfs to be 5.3+3.1-2.2 × 10-3 objects pc-3. We found that these results agree better with a flat substellar mass function. Three latest dwarfs at the boundary between T and Y dwarfs give the high density 8.3+9.0-5.1 × 10-3 objects pc-3. Although the uncertainties are very large this suggests that many brown dwarfs should be found in this late spectral type range, as expected from the cooling of brown dwarfs, whatever their mass, down to very low temperature. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by

  9. Detection of Double White Dwarf Binaries with Gaia, LSST and eLISA

    NASA Astrophysics Data System (ADS)

    Korol, V.; Rossi, E. M.; Groot, P. J.

    2017-03-01

    According to simulations around 108 double degenerate white dwarf binaries are expected to be present in the Milky Way. Due to their intrinsic faintness, the detection of these systems is a challenge, and the total number of detected sources so far amounts only to a few tens. This will change in the next two decades with the advent of Gaia, the LSST and eLISA. We present an estimation of how many compact DWDs with orbital periods less than a few hours we will be able to detect 1) through electromagnetic radiation with Gaia and LSST and 2) through gravitational wave radiation with eLISA. We find that the sample of simultaneous electromagnetic and gravitational waves detections is expected to be substantial, and will provide us a powerful tool for probing the white dwarf astrophysics and the structure of the Milky Way, letting us into the era of multi-messenger astronomy for these sources.

  10. Searching for Dwarf H Alpha Emission-line Galaxies within Voids III: First Spectra

    NASA Astrophysics Data System (ADS)

    Moody, J. Ward; Draper, Christian; McNeil, Stephen; Joner, Michael D.

    2017-02-01

    The presence or absence of dwarf galaxies with {M}r\\prime > -14 in low-density voids is determined by the nature of dark matter halos. To better understand what this nature is, we are conducting an imaging survey through redshifted Hα filters to look for emission-line dwarf galaxies in the centers of two nearby galaxy voids called FN2 and FN8. Either finding such dwarfs or establishing that they are not present is a significant result. As an important step in establishing the robustness of the search technique, we have observed six candidates from the survey of FN8 with the Gillett Gemini telescope and GMOS spectrometer. All of these candidates had emission, although none was Hα. The emission in two objects was the [O III]λ4959, 5007 doublet plus Hβ, and the emission in the remaining four was the [O II]λ3727 doublet, all from objects beyond the void. While no objects were within the void, these spectra show that the survey is capable of finding emission-line dwarfs in the void centers that are as faint as {M}r\\prime ˜ -12.4, should they be present. These spectra also show that redshifts estimated from our filtered images are accurate to several hundred km s-1 if the line is identified correctly, encouraging further work in finding ways to conduct redshift surveys through imaging alone.

  11. The Smallest Galaxies in the Universe: Investigating the Origins of Ultra-faint Galaxies

    NASA Astrophysics Data System (ADS)

    Qi, Yuewen; Graus, Andrew; Bullock, James

    2018-01-01

    One outstanding question in cosmology is, what are the smallest galaxies that can form? The answer to this question can tell us much about galaxy formation, and even of the properties of dark matter itself. A candidate for the smallest galaxies that can form are the ultrafaint galaxies. The star formation of ultrafaints appears to have been shut off during the epoch of reionization, when radiation from the first stars ionized all the free hydrogen in the universe. This would imply ultrafaints should exist everywhere in the universe. However, we can only observe ultrafaints as satellites of the Milky Way, due to their low brightness. This will change with the next generation of telescopes such as the Large Synoptic Survey Telescope (LSST). The focus of this work is to predict the number of ultrafaints that should be seen with future surveys. To that end, we use the ELVIS suite, which contains 14 dark matter only simulations of Local Group like systems containing a Milky Way and Andromeda-like galaxy and the substructure out to around 1 Mpc of the barycenter. We mock observe the simulations in order to mimic current surveys such as the Sloan Digital Sky Survey (SDSS), and the Dark Energy Survey (DES), and use the population of galaxies found by those surveys to project the population of dwarf galaxies out beyond the virial radius of either galaxy. This number will depend sensitively on the formation mechanism of ultrafaint dwarfs, and comparisons of future surveys to this work could help rule out certain formation scenarios.

  12. Metal abundances in hot white dwarfs with signatures of a superionized wind

    NASA Astrophysics Data System (ADS)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2018-01-01

    About a dozen hot white dwarfs with effective temperatures Teff = 65 000-120 000 K exhibit unusual absorption features in their optical spectra. These objects were tentatively identified as Rydberg lines of ultra-high excited metals in ionization stages v-x, indicating line formation in a dense environment with temperatures near 106 K. Since some features show blueward extensions, it was argued that they stem from a superionized wind. A unique assignment of the lines to particular elements is not possible, although they probably stem from C, N, O, and Ne. To further investigate this phenomenon, we analyzed the ultraviolet spectra available from only three stars of this group; that is, two helium-rich white dwarfs, HE 0504-2408 and HS 0713+3958 with spectral type DO, and a hydrogen-rich white dwarf, HS 2115+1148 with spectral type DAO. We identified light metals (C, N, O, Si, P, and S) with generally subsolar abundances and heavy elements from the iron group (Cr, Mn, Fe, Co, Ni) with solar or oversolar abundance. The abundance patterns are not unusual for hot WDs and can be interpreted as the result of gravitational settling and radiative levitation of elements. As to the origin of the ultra-high ionized metals lines, we discuss the possible presence of a multicomponent radiatively driven wind that is frictionally heated.

  13. Impact of NLTE on research of early chemical enrichment of the dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Mashonkina, Lyudmila

    2015-08-01

    The individual stars observed in the dwarf galaxies orbiting the Milky Way are presumably red giants. Their chemical abundances are commonly determined under the classical LTE assumption, despite its validity is questionable for atmospheres of giant, in particular, metal-poor stars. Exactly metal-poor objects are important for understanding the early chemical enrichment processes of the host galaxy and the onset of star formation. We selected a sample of the -4 < [Fe/H] < -2 stars in the dwarf spheroidal (dSph) galaxies Sculptor, Sextans, and Fornax and the ultra-faint galaxies Bootes I and Segue I, with the high-resolution observational data available, and revised abundances of up to 12 chemical species based on the non-local thermodynamic equilibrium (NLTE) line formation. Stellar parameters taken from the literature were checked through the NLTE analysis of lines of iron observed in the two ionisation stages, Fe I and Fe II. For the Scl, Sex, and Fnx stars, with effective temperatures and surface gravities derived from the photometry and known distance (Jablonka et al. 2015; Tafelmeyer et al. 2010), the Fe I/Fe II ionisation equilibrium was found to be fulfilled, when applying a scaling factor of SH = 0.5 to the Drawinian rates of Fe+H collisions. Pronounced NLTE effects were calculated for lines of Na I and Al I resulting in up to 0.5 dex lower [Na/Fe] ratios and up to 0.65 dex higher [Al/Fe] ratios compared with the corresponding LTE values. For the six Scl stars, the scatter of data on Mg/Na is much smaller in NLTE, with the mean [Mg/Na] = 0.61 +- 0.11, than LTE, where [Mg/Na] = 0.42 +- 0.21. We computed a grid of the NLTE abundance corrections for an extensive list of the Ca I, Ti I-Ti II, and Fe I lines in the MARCS models of cool giants, 4000 K <= Teff <= 4750 K, 0.5 <= log g <= 2.5, -4 <= [M/H] <= 0.

  14. A Survey of Stellar Populations in Ultra-Diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron; Laine, Seppo; Pandya, Viraj; Brodie, Jean; Glaccum, Bill; van Dokkum, Pieter; Alabi, Busola; Cohen, Yotam; Danieli, Shany; Abraham, Bob; Martinez-Delgado, David; Greco, Johnny; Greene, Jenny

    2018-05-01

    Ultra-diffuse galaxies (UDGs) are a recently identified, mysterious class of galaxies with luminosities like dwarfs, but sizes like giants. Quiescent UDGs are found in all environments from cluster to isolated, and intensive study has revealed three very distinctive sub-types: low surface brightness dwarfs, 'failed galaxies', and low-dark-matter UDGs. Following up on our recent, successful Spitzer pilot work to characterize the stellar populations (ages and metallicities) of UDGs, we propose a survey of 25 UDGs with a range of optical properties and environments, in order to understand the formation histories of different the different UDG sub-types.

  15. Variability of faint ROSAT field sources

    NASA Astrophysics Data System (ADS)

    Nicholson, K. L.; Mittaz, J. P. D.; Mason, K. O.

    1997-03-01

    We describe a technique to search for variability in faint X-ray sources, based on Poisson statistics. This is applied to data in the field of the detached white dwarf binary RE J1629+781 which has been observed repeatedly with the ROSAT Position Sensitive Proportional Counter (PSPC) over a period of 2.5yr as part of the calibration programme of the co-aligned extreme ultraviolet (EUV) sensitive Wide Field Camera. The field contains eight other identified sources comprising four active galactic nuclei (AGN), a LINER, a probable cluster of galaxies and two stars. Variability is detected in three of the AGN, which all have redshifts between 0.35 and 0.38. The amplitude of variability ranges between one and three times the mean count rate, but is only detected on time-scales of less than 3-5 months. No variability is found in the fourth AGN which is at a redshift of 1.1, nor in the LINER galaxy, Arp 185. The X-ray emission from Arp 185 is relatively bright, and the upper limit to flux variations is 27 per cent of the mean flux. This result is consistent with a non-AGN origin for the X-ray emission from this galaxy. Variability is detected from one of the identified stars in the field, of spectral type dM5.5e. No variations were seen in the flux of the other star (spectral type G) or from the probable cluster of galaxies.

  16. The White Dwarf Mass and the Accretion Rate of Recurrent Novae: An X-ray Perspective

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Sokoloski, Jennifer L.; Nelson, Thomas; Luna, Gerardo J. M.

    2011-01-01

    We present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RN candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.

  17. Characterizing Dw1335-29, a Recently Discovered Dwarf Satellite of M83

    NASA Astrophysics Data System (ADS)

    Carrillo, Andreia Jessica; Bell, Eric F.; Bailin, Jeremy; Monachesi, Antonela

    2016-01-01

    Simulations of galaxy formation in a cosmological context predict that galaxies should be surrounded by hundreds of relatively massive dark matter subhalos, each of which was expected to host a dwarf satellite galaxy. Large numbers of luminous dwarf galaxies do not exist around the Milky Way or M31 - this has been termed the missing satellite problem. There are a number of possible physical drivers of this discrepancy, some of which might predict significant differences from galaxy to galaxy. Accordingly, there are a number of efforts whose goal is to solidify and augment the census of dwarf satellites of external galaxies, outside the Local Group. Recently, Mueller, Jergen & Bingelli (2015; arXiv.1509.04931) presented 16 dwarf galaxy candidates in the vicinity of M83 using the Dark Energy CAMera (DECAM). With a field from the HST/GHOSTS survey that partly covers dw1335-29 (Radburn-Smith et al. 2011; ApJS, 195, 18) in conjunction with complementary ground-based images from VIMOS that cover the whole dwarf, we confirm that one of the candidates dw1335-29 is a dwarf satellite of M83, at a projected distance from M83 of 26 kpc and a with distance modulus of m-M = 28.5-0.1+0.3, placing it in the M83 group. From our VIMOS imaging that covers the entire dwarf, we estimate an absolute magnitude of MV = -9.8-0.1+0.3, show that it is elongated with an ellipticity of 0.35+/-0.15, and has a half light radius of 500+/-50pc. Dw1335-29 has both a somewhat irregular shape and has superimposed young stars in the resolved stellar population maps, leading us to classify this galaxy as a faint dwarf irregular or transition dwarf. This is especially curious, as with a projected distance of only 26kpc from M83, our prior expectation from study of the Local Group (following e.g., Grebel et al. 2003; AJ, 125, 1926, Slater & Bell 2013; ApJ, 772, 15) would be that dw1335-29 would lack recent star formation. Further study of M83's dwarf population will reveal if star formation in its dwarfs

  18. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    DOE PAGES

    Booth, N.; Robinson, A. P. L.; Hakel, P.; ...

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, themore » inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.« less

  19. New White Dwarf-Brown Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Casewell, S. L.; Geier, S.; Lodieu, N.

    2017-03-01

    We present follow-up spectroscopy to 12 candidate white dwarf-brown dwarf binaries. We have confirmed that 8 objects do indeed have a white dwarf primary (7 DA, 1 DB) and two are hot subdwarfs. We have determined the Teff and log g for the white dwarfs and subdwarfs, and when combining these values with a model spectrum and the photometry, we have 3 probable white dwarf-substellar binaries with spectral types between M6 and L6.

  20. A spectroscopic binary in the Hercules dwarf spheroidal galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Andreas; Hansen, Terese; Feltzing, Sofia

    2014-01-01

    We present the radial velocity curve of a single-lined spectroscopic binary in the faint Hercules dwarf spheroidal (dSph) galaxy, based on 34 individual spectra covering more than 2 yr of observations. This is the first time that orbital elements could be derived for a binary in a dSph. The system consists of a metal-poor red giant and a low-mass companion, possibly a white dwarf, with a 135 day period in a moderately eccentric (e = 0.18) orbit. Its period and eccentricity are fully consistent with metal-poor binaries in the Galactic halo, while the projected semimajor axis is small, at a{submore » p} sin i = 38 R {sub ☉}. In fact, a very close orbit could inhibit the production of heavier elements through s-process nucleosynthesis, leading to the very low abundances of neutron-capture elements that are found in this star. We discuss the further implications for the chemical enrichment history of the Hercules dSph, but find no compelling binary scenario that could reasonably explain the full, peculiar abundance pattern of the Hercules dSph galaxy.« less

  1. PHYSICAL PROPERTIES OF THE CURRENT CENSUS OF NORTHERN WHITE DWARFS WITHIN 40 pc OF THE SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limoges, M.-M.; Bergeron, P.; Lépine, S., E-mail: limoges@astro.umontreal.ca, E-mail: bergeron@astro.umontreal.ca, E-mail: slepine@chara.gsu.edu

    We present a detailed description of the physical properties of our current census of white dwarfs within 40 pc of the Sun, based on an exhaustive spectroscopic survey of northern hemisphere candidates from the SUPERBLINK proper motion database. Our method for selecting white dwarf candidates is based on a combination of theoretical color–magnitude relations and reduced proper motion diagrams. We reported in an earlier publication the discovery of nearly 200 new white dwarfs, and we present here the discovery of an additional 133 new white dwarfs, among which we identify 96 DA, 3 DB, 24 DC, 3 DQ, and 7more » DZ stars. We further identify 178 white dwarfs that lie within 40 pc of the Sun, representing a 40% increase of the current census, which now includes 492 objects. We estimate the completeness of our survey at between 66% and 78%, allowing for uncertainties in the distance estimates. We also perform a homogeneous model atmosphere analysis of this 40 pc sample and find a large fraction of massive white dwarfs, indicating that we are successfully recovering the more massive, and less luminous objects often missed in other surveys. We also show that the 40 pc sample is dominated by cool and old white dwarfs, which populate the faint end of the luminosity function, although trigonometric parallaxes will be needed to shape this part of the luminosity function more accurately. Finally, we identify 4 probable members of the 20 pc sample, 4 suspected double degenerate binaries, and we also report the discovery of two new ZZ Ceti pulsators.« less

  2. Discovery of Distant RR Lyrae Stars in the Milky Way Using DECam

    NASA Astrophysics Data System (ADS)

    Medina, Gustavo E.; Muñoz, Ricardo R.; Vivas, A. Katherina; Carlin, Jeffrey L.; Förster, Francisco; Martínez, Jorge; Galbany, Lluís; González-Gaitán, Santiago; Hamuy, Mario; de Jaeger, Thomas; Maureira, Juan Carlos; San Martín, Jaime

    2018-03-01

    We report the discovery of distant RR Lyrae stars, including the most distant known in the Milky Way, using data taken in the g-band with the Dark Energy Camera as part of the High cadence Transient Survey (HiTS; 2014 campaign). We detect a total of 173 RR Lyrae stars over a ∼120 deg2 area, including both known RR Lyrae and new detections. The heliocentric distances d H of the full sample range from 9 to >200 kpc, with 18 of them beyond 90 kpc. We identify three sub-groups of RR Lyrae as members of known systems: the Sextans dwarf spheroidal galaxy, for which we report 46 new discoveries, and the ultra-faint dwarf galaxies Leo IV and Leo V. Following an MCMC methodology, we fit spherical and ellipsoidal profiles of the form ρ(R) ∼ R n to the radial density distribution of RR Lyrae in the Galactic halo. The best fit corresponds to the spherical case, for which we obtain a simple power-law index of n=-{4.17}-0.20+0.18, consistent with recent studies made with samples covering shorter distances. The pulsational properties of the outermost RR Lyrae in the sample (d H > 90 kpc) differ from the ones in the halo population at closer distances. The distribution of the stars in a period-amplitude diagram suggest they belong to Oosterhoff-intermediate or Oosterhoff II groups, similar to what is found in the ultra-faint dwarf satellites around the Milky Way. The new distant stars discovered represent an important addition to the few existing tracers of the Milky Way potential in the outer halo.

  3. New Y and T Dwarfs from WISE Identified by Methane Imaging

    NASA Astrophysics Data System (ADS)

    Tinney, C. G.; Kirkpatrick, J. Davy; Faherty, Jacqueline K.; Mace, Gregory N.; Cushing, Mike; Gelino, Christopher R.; Burgasser, Adam J.; Sheppard, Scott S.; Wright, Edward L.

    2018-06-01

    We identify new Y- and T-type brown dwarfs from the WISE All Sky data release using images obtained in filters that divide the traditional near-infrared H and J bands into two halves—specifically {CH}}4{{s}} and CH4l in the H and J2, and J3 in the J. This proves to be very effective at identifying cool brown dwarfs via the detection of their methane absorption, as well as providing preliminary classification using methane colors and WISE -to-near-infrared colors. New and updated calibrations between T/Y spectral types and {CH}}4{{s}}–CH4l J3–W2, and {CH}}4{{s}}–W2 colors are derived, producing classification estimates good to a few spectral sub-types. We present photometry for a large sample of T and Y dwarfs in these filters, together with spectroscopy for 23 new ultra-cool dwarfs—2 Y dwarfs and 21 T dwarfs. We identify a further 8 new cool brown dwarfs, which we have high confidence are T dwarfs based on their methane photometry. We find that, for objects observed on a 4 m class telescope at J-band magnitudes of ∼20 or brighter, {CH}}4{{s}}–CH4l is the more powerful color for detecting objects and then estimating spectral types. Due to the lower sky background in the J-band, the J3 and J2 bands are more useful for identifying fainter cool dwarfs at J ≳ 22. The J3–J2 color is poor at estimating spectral types. But fortunately, once J3–J2 confirms that an object is a cool dwarf, the J3–W2 color is very effective at estimating approximate spectral types.

  4. The galaxy UV luminosity function at z ≃ 2-4; new results on faint-end slope and the evolution of luminosity density

    NASA Astrophysics Data System (ADS)

    Parsa, Shaghayegh; Dunlop, James S.; McLure, Ross J.; Mortlock, Alice

    2016-03-01

    We present a new, robust measurement of the evolving rest-frame ultraviolet (UV) galaxy luminosity function (LF) over the key redshift range from z ≃ 2 to z ≃ 4. Our results are based on the high dynamic range provided by combining the Hubble Ultra Deep Field (HUDF), CANDELS/GOODS-South, and UltraVISTA/COSMOS surveys. We utilize the unparalleled multifrequency photometry available in this survey `wedding cake' to compile complete galaxy samples at z ≃ 2, 3, 4 via photometric redshifts (calibrated against the latest spectroscopy) rather than colour-colour selection, and to determine accurate rest-frame UV absolute magnitudes (M1500) from spectral energy distribution (SED) fitting. Our new determinations of the UV LF extend from M1500 ≃ -22 (AB mag) down to M1500 = -14.5, -15.5 and -16 at z ≃ 2, 3 and 4, respectively (thus, reaching ≃ 3-4 mag fainter than previous blank-field studies at z ≃ 2,3). At z ≃ 2, 3, we find a much shallower faint-end slope (α = -1.32 ± 0.03) than reported in some previous studies (α ≃ -1.7), and demonstrate that this new measurement is robust. By z ≃ 4, the faint-end slope has steepened slightly, to α = -1.43 ± 0.04, and we show that these measurements are consistent with the overall evolutionary trend from z = 0 to 8. Finally, we find that while characteristic number density (φ*) drops from z ≃ 2 to z ≃ 4, characteristic luminosity (M*) brightens by ≃ 1 mag. This, combined with the new flatter faint-end slopes, has the consequence that UV luminosity density (and hence unobscured star formation density) peaks at z ≃ 2.5-3, when the Universe was ≃ 2.5 Gyr old.

  5. Reconstructing the Accretion History of the Galactic Halo Using Stellar Chemical Abundance Ratio Distributions

    NASA Astrophysics Data System (ADS)

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2016-08-01

    In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from eleven ``MW-like'' halos to generate satellite template sets of 2D CARDs of accreted dwarf satellites which are comprised of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ~ 103-4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those eleven halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the satellite template set (STS) used and the sample size. For certain STS used we typically can identify the relative mass contributions of all accreted satellites to within a factor of 2. We also find that this method is particularly sensitive to older accretion events involving low-luminous dwarfs e.g. ultra-faint dwarfs - precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early Universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ~ 6-9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us (given the development of new CARD-generating dwarf models) to recover the luminosity function of infalling dwarf galaxies - and the detailed accretion history of the halo - across cosmic time.

  6. Reconstructing the Accretion History of the Galactic Halo Using Stellar Chemical Abundance Ratio Distributions

    NASA Astrophysics Data System (ADS)

    Lee, Duane Morris; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2015-08-01

    In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from eleven ``MW-like'' halos to generate satellite template sets of 2D CARDs of accreted dwarf satellites which are comprised of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ~103-4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those eleven halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the satellite template set (STS) used and the sample size. For certain STS used we typically can identify the relative mass contributions of all accreted satellites to within a factor of 2. We also find that this method is particularly sensitive to older accretion events involving low-luminous dwarfs e.g. ultra-faint dwarfs --- precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early Universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ~6-9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us (given the development of new CARD-generating dwarf models) to recover the luminosity function of infalling dwarf galaxies --- and the detailed accretion history of the halo --- across cosmic time.

  7. M32 analogs? A population of massive ultra-compact dwarf and compact elliptical galaxies in intermediate-redshift clusters

    DOE PAGES

    Zhang, Yuanyuan; Bell, Eric F.

    2017-01-13

    Here, we report the discovery of relatively massive, M32-like ultra compact dwarf (UCD) and compact elliptical (CE) galaxy candidates inmore » $$0.2\\lt z\\lt 0.6$$ massive galaxy clusters imaged by the Cluster Lensing And Supernova survey with Hubble (CLASH) survey. Examining the nearly unresolved objects in the survey, we identify a sample of compact objects concentrated around the cluster central galaxies with colors similar to cluster red sequence galaxies. Their colors and magnitudes suggest stellar masses around $${10}^{9}{M}_{\\odot }$$. More than half of these galaxies have half-light radii smaller than 200 pc, falling into the category of massive UCDs and CEs, with properties similar to M32. The properties are consistent with a tidal stripping origin, but we cannot rule out the possibility that they are early-formed compact objects trapped in massive dark matter halos. The 17 CLASH clusters studied in this work on average contain 2.7 of these objects in their central 0.3 Mpc and 0.6 in their central 50 kpc. Our study demonstrates the possibility of statistically characterizing UCDs/CEs with a large set of uniform imaging survey data.« less

  8. M32 analogs? A population of massive ultra-compact dwarf and compact elliptical galaxies in intermediate-redshift clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan; Bell, Eric F.

    Here, we report the discovery of relatively massive, M32-like ultra compact dwarf (UCD) and compact elliptical (CE) galaxy candidates inmore » $$0.2\\lt z\\lt 0.6$$ massive galaxy clusters imaged by the Cluster Lensing And Supernova survey with Hubble (CLASH) survey. Examining the nearly unresolved objects in the survey, we identify a sample of compact objects concentrated around the cluster central galaxies with colors similar to cluster red sequence galaxies. Their colors and magnitudes suggest stellar masses around $${10}^{9}{M}_{\\odot }$$. More than half of these galaxies have half-light radii smaller than 200 pc, falling into the category of massive UCDs and CEs, with properties similar to M32. The properties are consistent with a tidal stripping origin, but we cannot rule out the possibility that they are early-formed compact objects trapped in massive dark matter halos. The 17 CLASH clusters studied in this work on average contain 2.7 of these objects in their central 0.3 Mpc and 0.6 in their central 50 kpc. Our study demonstrates the possibility of statistically characterizing UCDs/CEs with a large set of uniform imaging survey data.« less

  9. Infrared observations of white dwarfs and the implications for the accretion of dusty planetary material

    NASA Astrophysics Data System (ADS)

    Bonsor, Amy; Farihi, Jay; Wyatt, Mark C.; van Lieshout, Rik

    2017-06-01

    Infrared excesses around metal-polluted white dwarfs have been associated with the accretion of dusty planetary material. This work analyses the available infrared data for an unbiased sample of white dwarfs and demonstrates that no more than 3.3 per cent can have a wide, flat, opaque dust disc, extending to the Roche radius, with a temperature at the disc inner edge of Tin = 1400 K, the standard model for the observed excesses. This is in stark contrast to the incidence of pollution of about 30 per cent. We present four potential reasons for the absence of an infrared excess in polluted white dwarfs, depending on their stellar properties and inferred accretion rates: (I) their dust discs are opaque, but narrow, thus evading detection if more than 85 per cent of polluted white dwarfs have dust discs narrower than δr < 0.04r, (II) their dust discs have been fully consumed, which only works for the oldest white dwarfs with sinking time-scales longer than hundreds of years, (III) their dust is optically thin, which can supply low accretion rates of <107 gs-1 if dominated by (Poynting-Robertson) PR-drag, and higher accretion rates, if inwards transport of material is enhanced, e.g. due to the presence of gas, (IV) their accretion is supplied by a pure gas disc, which could result from the sublimation of optically thin dust for T* > 20 000 K. Future observations sensitive to faint infrared excesses or the presence of gas can test the scenarios presented here, thereby better constraining the nature of the material fuelling accretion in polluted white dwarfs.

  10. Upper Limits on the Presence of Central Massive Black Holes in Two Ultra-compact Dwarf Galaxies in Centaurus A

    NASA Astrophysics Data System (ADS)

    Voggel, Karina T.; Seth, Anil C.; Neumayer, Nadine; Mieske, Steffen; Chilingarian, Igor; Ahn, Christopher; Baumgardt, Holger; Hilker, Michael; Nguyen, Dieu D.; Romanowsky, Aaron J.; Walsh, Jonelle L.; den Brok, Mark; Strader, Jay

    2018-05-01

    The recent discovery of massive black holes (BHs) in the centers of high-mass ultra-compact dwarf galaxies (UCDs) suggests that at least some are the stripped nuclear star clusters of dwarf galaxies. We present the first study that investigates whether such massive BHs, and therefore stripped nuclei, also exist in low-mass (M < 107 M ⊙) UCDs. We constrain the BH masses of two UCDs located in Centaurus A (UCD 320 and UCD 330) using Jeans modeling of the resolved stellar kinematics from adaptive optics data obtained with the SINFONI integral field spectrograph at the Very Large Telescope (VLT/SINFONI). No massive BHs are found in either UCD. We find a 3σ upper limit on the central BH mass in UCD 330 of M • < 1.0 × 105 M ⊙, which corresponds to 1.7% of the total mass. This excludes a high-mass fraction BH and would only allow low-mass BHs similar to those claimed to be detected in Local Group globular clusters. For UCD 320, poorer data quality results in a less constraining 3σ upper limit of M • < 1 × 106 M ⊙, which is equal to 37.7% of the total mass. The dynamical mass-to-light ratios of UCD 320 and UCD 330 are not inflated compared to predictions from stellar population models. The non-detection of BHs in these low-mass UCDs is consistent with the idea that elevated dynamical mass-to-light ratios do indicate the presence of a substantial BH. Although no massive BHs are detected, these systems could still be stripped nuclei. The strong rotation (v/σ of 0.3–0.4) in both UCDs and the two-component light profile in UCD 330 support the idea that these UCDs may be stripped nuclei of low-mass galaxies whose BH occupation fraction is not yet known.

  11. Weather on Other Worlds. IV. Hα Emission and Photometric Variability Are Not Correlated in L0–T8 Dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles-Páez, Paulo A.; Metchev, Stanimir A.; Heinze, Aren

    Recent photometric studies have revealed that surface spots that produce flux variations are present on virtually all L and T dwarfs. Their likely magnetic or dusty nature has been a much-debated problem, the resolution to which has been hindered by paucity of diagnostic multi-wavelength observations. To test for a correlation between magnetic activity and photometric variability, we searched for H α emission among eight L3–T2 ultra-cool dwarfs with extensive previous photometric monitoring, some of which are known to be variable at 3.6 μ m or 4.5 μ m. We detected H α only in the non-variable T2 dwarf 2MASS J12545393−0122474.more » The remaining seven objects do not show H α emission, even though six of them are known to vary photometrically. Combining our results with those for 86 other L and T dwarfs from the literature show that the detection rate of H α emission is very high (94%) for spectral types between L0 and L3.5 and much smaller (20%) for spectral types ≥L4, while the detection rate of photometric variability is approximately constant (30%–55%) from L0 to T8 dwarfs. We conclude that chromospheric activity, as evidenced by H α emission, and large-amplitude photometric variability are not correlated. Consequently, dust clouds are the dominant driver of the observed variability of ultra-cool dwarfs at spectral types, at least as early as L0.« less

  12. An Investigation into the Periodic Optical Variability of Radio Detected Ultracool Dwarfs using the GUFI Photometer

    NASA Astrophysics Data System (ADS)

    Boyle, Richard P.; Harding, L. K.; Hallinan, G.; Butler, R. F.; Golden, A.

    2011-05-01

    In the past ten years or so, radio observations of ultracool dwarfs have yielded the detection of both quiescent and time-variable radio emission in the late-M and L dwarf regime. Four of these dwarfs have been found to produce periodic pulses, determined to be associated with the dwarf's rotation. More recently, two of these radio pulsing dwarfs have been shown to be periodically variable in broadband optical photometry, where the detected periods match the periods of the radio pulses. For one of these dwarfs in particular, it has been established that the mechanism which is driving the optical and radio periodic variability are possibly linked, being a consequence of a magnetically-driven auroral process. We therefore undertook a campaign to investigate the ubiquity of optical periodicity for known radio detected ultracool dwarfs, via multi-color photometric monitoring. To facilitate this research, the GUFI instrument (Galway Ultra Fast Imager) was commissioned on the 1.8m VATT observatory, on Mt. Graham, Arizona. We present the recently published results from this observation campaign, where we have confirmed periodic variability for five of these dwarfs, three of which have been detected for the first time by GUFI. These data provide an insight into the cause of this optical emission, its connection to the radio processes, and most importantly determine whether optical periodic signals are present only in radio pulsing dwarfs.

  13. Faint Ring, Bright Arc

    NASA Image and Video Library

    2010-01-12

    In this image taken by NASA Cassini spacecraft, the bright arc in Saturn faint G ring contains a little something special. Although it cant be seen here, the tiny moonlet Aegaeon orbits within the bright arc.

  14. On The Missing Dwarf Problem In Clusters And Around The Nearby Galaxy M33

    NASA Astrophysics Data System (ADS)

    Keenan, Olivia Charlotte

    2017-08-01

    This thesis explores possible solutions to the dwarf galaxy problem. This is a discrepancy between the number of dwarf galaxies we observe, and the number predicted from cosmological computer simulations. Simulations predict around ten times more dwarf galaxy satellites than are currently observed. I have investigated two possible solutions: dark galaxies and the low surface brightness universe. Dark galaxies are dark matter halos which contain gas, but few or no stars, hence are optically dark. As part of the Arecibo Galaxy Environment Survey I surveyed the neutral hydrogen gas around the nearby galaxy M33. I found 32 gas clouds, 11 of which are new detections. Amongst these there was one particularly interesting cloud. AGESM33-32 is ring shaped and larger than M33 itself, if at the same distance. It has a velocity width which is similar to the velocity dispersion of gas in a disk galaxy, as well as having a clear velocity gradient across it which may be due to rotation. The fact that it also currently has no observed associated stars means it is a dark galaxy candidate. Optically, dwarf galaxies may be out there, but too faint for us to detect. This means that with newer, deeper, images we may be able to unveil a large, low surface brightness, population of dwarf galaxies. However, the question remains as to how these can be distinguished from background galaxies. I have used Next Generation Virgo Survey (NGVS) data to carry out photometry on 852 Virgo galaxies in four bands. I also measured the photometric properties of galaxies on a background (non-cluster) NGVS frame. I discovered that a combination of colour, magnitude and surface brightness information could be used to identify cluster dwarf galaxies from background field galaxies. The most effective method is to use the surface brightness-magnitude relation.

  15. SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opitz, Daniela; Tinney, C. G.; Faherty, Jacqueline K.

    The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs alsomore » hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10{sup 42} erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs.« less

  16. The Next Generation Fornax Survey (NGFS). III. Revealing the Spatial Substructure of the Dwarf Galaxy Population Inside Half of Fornax's Virial Radius

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Yasna; Eigenthaler, Paul; Taylor, Matthew A.; Puzia, Thomas H.; Alamo-Martínez, Karla; Ribbeck, Karen X.; Muñoz, Roberto P.; Zhang, Hongxin; Grebel, Eva K.; Ángel, Simón; Côté, Patrick; Ferrarese, Laura; Hilker, Michael; Lançon, Ariane; Mieske, Steffen; Miller, Bryan W.; Rong, Yu; Sánchez-Janssen, Ruben

    2018-05-01

    We report the discovery of 271 previously undetected dwarf galaxies in the outer Fornax cluster regions at radii r vir/4 < r < r vir/2 using data from the Next Generation Fornax Survey (NGFS) with deep coadded u‧, g‧, and i‧ images obtained with Blanco/DECam at Cerro Tololo Interamerican Observatory. From the 271 dwarf candidates, we find 39 to be nucleated. Together with our previous study of the central Fornax region, the new dwarfs detected with NGFS data number 392, of which 56 are nucleated. The total Fornax dwarf galaxy population from NGFS and other catalogs rises, therefore, to a total of 643 with 181 being nucleated, yielding an overall nucleation fraction of 28%. The absolute i‧-band magnitudes for the outer NGFS dwarfs are in the range ‑18.80 ≤ M i‧ ≤ ‑8.78 with effective radii r eff,i‧ = 0.18–2.22 kpc and an average Sérsic index < n{> }i\\prime =0.81. Nonnucleated dwarfs are found to be fainter and smaller by {{Δ }}< {M}i\\prime > =2.25 mag and {{Δ }}< {r}eff,i\\prime }> =0.4 {kpc} than the nucleated dwarfs. We demonstrate a significant clustering of dwarf galaxies on scales ≲100 kpc, and projected surface number density profile estimates, Σ N (r), show a concentration of dwarfs in the Fornax core region within r ≲ 350 kpc. Σ N (r) has a flat distribution up to ∼350 kpc, beyond which it declines for the nonnucleated dwarfs. The nucleated dwarfs have a steeper Σ N (r) distribution, are more concentrated toward NGC 1399, and are decreasing rapidly outwards. This is the first time the transition from cluster to field environment has been established for the very faint dwarf galaxy population with robust sample statistics.

  17. Star Formation in Dwarf-Dwarf Mergers: Fueling Hierarchical Assembly

    NASA Astrophysics Data System (ADS)

    Stierwalt, Sabrina; Johnson, K. E.; Kallivayalil, N.; Patton, D. R.; Putman, M. E.; Besla, G.; Geha, M. C.

    2014-01-01

    We present early results from the first systematic study a sample of isolated interacting dwarf pairs and the mechanisms governing their star formation. Low mass dwarf galaxies are ubiquitous in the local universe, yet the efficiency of gas removal and the enhancement of star formation in dwarfs via pre-processing (i.e. dwarf-dwarf interactions occurring before the accretion by a massive host) are currently unconstrained. Studies of Local Group dwarfs credit stochastic internal processes for their complicated star formation histories, but a few intriguing examples suggest interactions among dwarfs may produce enhanced star formation. We combine archival UV imaging from GALEX with deep optical broad- and narrow-band (Halpha) imaging taken with the pre- One Degree Imager (pODI) on the WIYN 3.5-m telescope and with the 2.3-m Bok telescope at Steward Observatory to confirm the presence of stellar bridges and tidal tails and to determine whether dwarf-dwarf interactions alone can trigger significant levels of star formation. We investigate star formation rates and global galaxy colors as a function of dwarf pair separation (i.e. the dwarf merger sequence) and dwarf-dwarf mass ratio. This project is a precursor to an ongoing effort to obtain high spatial resolution HI imaging to assess the importance of sequential triggering caused by dwarf-dwarf interactions and the subsequent affect on the more massive hosts that later accrete the low mass systems.

  18. DENIS J081730.0-615520: AN OVERLOOKED MID-T DWARF IN THE SOLAR NEIGHBORHOOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artigau, Etienne; Lafreniere, David; Doyon, Rene

    2010-07-20

    Recent wide-field near-infrared surveys have uncovered a large number of cool brown dwarfs (BDs), extending the temperature sequence down to less than 500 K and constraining the faint end of the luminosity function (LF). One interesting implication of the derived LF is that the BD census in the immediate (<10 pc) solar neighborhood is still largely incomplete, and some bright (J < 16) BDs remain to be identified in existing surveys. These objects are especially interesting as they are the ones that can be studied in most detail, especially with techniques that require large fluxes (e.g., time-variability, polarimetry, and high-resolutionmore » spectroscopy) that cannot realistically be applied to objects uncovered by deep surveys. By cross-matching the DEep Near-Infrared Survey of the Southern sky (DENIS) and the Two Micron All Sky Survey point-source catalogs, we have identified an overlooked BD-DENIS J081730.0-615520-that is the brightest field mid-T dwarf in the sky (J = 13.6). We present astrometry and spectroscopy follow-up observations of this BD. Our data indicate a spectral type T6 and a distance-from parallax measurement-of 4.9 {+-} 0.3 pc, placing this mid-T dwarf among the three closest isolated BDs to the Sun.« less

  19. The PAndAS View of the Andromeda Satellite System. I. A Bayesian Search for Dwarf Galaxies Using Spatial and Color-Magnitude Information

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Ibata, Rodrigo A.; McConnachie, Alan W.; Mackey, A. Dougal; Ferguson, Annette M. N.; Irwin, Michael J.; Lewis, Geraint F.; Fardal, Mark A.

    2013-10-01

    We present a generic algorithm to search for dwarf galaxies in photometric catalogs and apply it to the Pan-Andromeda Archaeological Survey (PAndAS). The algorithm is developed in a Bayesian framework and, contrary to most dwarf galaxy search codes, makes use of both the spatial and color-magnitude information of sources in a probabilistic approach. Accounting for the significant contamination from the Milky Way foreground and from the structured stellar halo of the Andromeda galaxy, we recover all known dwarf galaxies in the PAndAS footprint with high significance, even for the least luminous ones. Some Andromeda globular clusters are also recovered and, in one case, discovered. We publish a list of the 143 most significant detections yielded by the algorithm. The combined properties of the 39 most significant isolated detections show hints that at least some of these trace genuine dwarf galaxies, too faint to be individually detected. Follow-up observations by the community are mandatory to establish which are real members of the Andromeda satellite system. The search technique presented here will be used in an upcoming contribution to determine the PAndAS completeness limits for dwarf galaxies. Although here tuned to the search of dwarf galaxies in the PAndAS data, the algorithm can easily be adapted to the search for any localized overdensity whose properties can be modeled reliably in the parameter space of any catalog.

  20. THE FIRST SPECTRUM OF THE COLDEST BROWN DWARF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skemer, Andrew J.; Morley, Caroline V.; Fortney, Jonathan J.

    2016-08-01

    The recently discovered brown dwarf WISE 0855 presents the first opportunity to directly study an object outside the solar system that is nearly as cold as our own gas giant planets. However, the traditional methodology for characterizing brown dwarfs—near-infrared spectroscopy—is not currently feasible, as WISE 0855 is too cold and faint. To characterize this frozen extrasolar world we obtained a 4.5–5.2 μ m spectrum, the same bandpass long used to study Jupiter’s deep thermal emission. Our spectrum reveals the presence of atmospheric water vapor and clouds, with an absorption profile that is strikingly similar to Jupiter’s. The spectrum quality ismore » high enough to allow for the investigation of dynamical and chemical processes that have long been studied in Jupiter’s atmosphere, but now on an extrasolar world.« less

  1. Faint Submillimeter Galaxies Behind Lensing Clusters

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Lauchlan Cowie, Lennox; Barger, Amy J.; Desai, Vandana; Murphy, Eric J.

    2017-01-01

    Faint submillimeter galaxies are the major contributors to the submillimeter extragalactic background light and hence the dominant star-forming population in the dusty universe. Determining how much these galaxies overlap the optically selected samples is critical to fully account for the cosmic star formation history. Observations of massive cluster fields are the best way to explore this faint submillimeter population, thanks to gravitational lensing effects. We have been undertaking a lensing cluster survey with the SCUBA-2 camera on the James Clerk Maxwell Telescope to map nine galaxy clusters, including the northern five clusters in the HST Frontier Fields program. We have also been using the Submillimeter Array and the Very Large Array to determine the accurate positions of our detected sources. Our observations have discovered high-redshift dusty galaxies with far-infrared luminosities similar to that of the Milky Way or luminous infrared galaxies. Some of these galaxies are still undetected in deep optical and near-infrared images. These results suggest that a substantial amount of star formation in even the faint submillimeter population may be hidden from rest-frame optical surveys.

  2. Panchromatic observations of dwarf starburst galaxies: Infant super star clusters and a low-luminosity AGN

    NASA Astrophysics Data System (ADS)

    Reines, Amy Ellen

    2011-01-01

    Globular star clusters and supermassive black holes are fundamental components of today's massive galaxies, with origins dating back to the very early universe. Both globular clusters and the seeds of supermassive black holes are believed to have formed in the progenitors of modern massive galaxies, although the details are poorly understood. Direct observations of these low-mass, distant, and hence faint systems are unobtainable with current capabilities. However, gas-rich dwarf starburst galaxies in the local universe, analogous in many ways to protogalaxies at high-redshift, can provide critical insight into the early stages of galaxy evolution including the formation of globular clusters and massive black holes. This thesis presents a panchromatic study of nearby dwarf starburst galaxies harboring nascent globular clusters still embedded in their birth material. Infant clusters are identified via their production of thermal radio emission at centimeter wavelengths, which comes from dense gas ionized by young massive stars. By combining radio observations with complementary data at ultraviolet, optical and infrared wavelengths, we obtain a comprehensive view of massive clusters emerging from their gaseous and dusty birth cocoons. This thesis also presents the first example of a nearby dwarf starburst galaxy hosting an actively accreting massive central black hole. The black hole in this dwarf galaxy is unusual in that it is not associated with a bulge, a nuclear star cluster, or any other well-defined nucleus, likely reflecting an early phase of black hole and galaxy evolution that has not been previously observed.

  3. Adaptive Optics Observations of Exoplanets, Brown Dwarfs, and Binary Stars

    NASA Astrophysics Data System (ADS)

    Hinkley, Sasha

    2012-04-01

    The current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are about to witness the birth of several new dedicated observing platforms specifically geared towards high contrast imaging of these objects. The Gemini Planet Imager, VLT-SPHERE, Subaru HiCIAO, and Project 1640 at the Palomar 5m telescope will return images of numerous exoplanets and brown dwarfs over hundreds of observing nights in the next five years. Along with diffraction-limited coronagraphs and high-order adaptive optics, these instruments also will return spectral and polarimetric information on any discovered targets, giving clues to their atmospheric compositions and characteristics. Such spectral characterization will be key to forming a detailed theory of comparative exoplanetary science which will be widely applicable to both exoplanets and brown dwarfs. Further, the prevalence of aperture masking interferometry in the field of high contrast imaging is also allowing observers to sense massive, young planets at solar system scales (~3-30 AU)- separations out of reach to conventional direct imaging techniques. Such observations can provide snapshots at the earliest phases of planet formation-information essential for constraining formation mechanisms as well as evolutionary models of planetary mass companions. As a demonstration of the power of this technique, I briefly review recent aperture masking observations of the HR 8799 system. Moreover, all of the aforementioned techniques are already extremely adept at detecting low-mass stellar companions to their target stars, and I present some recent highlights.

  4. Ultra-precise Masses and Magnitudes for the Gliese 268 M-dwarf Binary

    NASA Astrophysics Data System (ADS)

    Barry, R. K.; Demory, B. O.; Ségransan, D.; Forveille, T.; Danchi, W. C.; di Folco, E.; Queloz, D.; Torres, G.; Traub, W. A.; Delfosse, X.; Mayor, M.; Perrier, C.; Udry, S.

    2009-02-01

    Recent advances in astrometry using interferometry and precision radial velocity techniques combined allow for a significant improvement in the precision of masses of M-dwarf stars in visual systems. We report recent astrometric observations of Gliese 268, an M-dwarf binary with a 10.4 day orbital period, with the IOTA interferometer and radial velocity observations with the ELODIE instrument. Combining these measurements leads to preliminary masses of the constituent stars with uncertainties of 0.4%. The masses of the components are 0.22596+/-0.00084 Msolar for the primary and 0.19230+/-0.00071 Msolar for the secondary. The system parallax is determined by these observations to be 0.1560+/-.0030 arcsec (2.0% uncertainty) and is within Hipparcos error bars (0.1572+/-.0033). We tested these physical parameters, along with the near-infrared luminosities of the stars, against stellar evolution models for low-mass stars. Discrepancies between the measured and theoretical values point toward a low-level departure from the predictions. These results are among the most precise masses measured for visual binaries.

  5. Infrared Colors of Dwarf-Dwarf Galaxy Interactions

    NASA Astrophysics Data System (ADS)

    Liss, Sandra; Stierwalt, Sabrina; Johnson, Kelsey; Patton, Dave; Kallivayalil, Nitya

    2015-10-01

    We request Spitzer Warm Mission IRAC Channel 1 & 2 imaging for a sample of 60 isolated dwarf galaxy pairs as a key component of a larger, multi-wavelength effort to understand the role low-mass mergers play in galaxy evolution. A systematic study of dwarf-dwarf mergers has never been done, and we wish to characterize the impact such interactions have on fueling star formation in the nearby universe. The Spitzer imaging proposed here will allow us to determine the extent to which the 3.6 and 4.5 mum bands are dominated by stellar light and investigate a) the extent to which interacting pairs show IR excess and b) whether the excess is related to the pair separation. Second, we will use this IR photometry to constrain the processes contributing to the observed color excess and scatter in each system. We will take advantage of the wealth of observations available in the Spitzer Heritage Archive for 'normal' non-interacting dwarfs by comparing the stellar populations of those dwarfs with the likely interacting dwarfs in our sample. Ultimately, we can combine the Spitzer imaging proposed here with our current, ongoing efforts to obtain groundbased optical photometry to model the star formation histories of these dwarfs and to help constrain the timescales and impact dwarf-dwarf mergers have on fueling star formation. The sensitivity and resolution offered by Spitzer are necessary to determine the dust properties of these interacting systems, and how these properties vary as a function of pair separation, mass ratio, and gas fraction.

  6. The Ages of the Thin Disk, Thick Disk, and the Halo from Nearby White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Munn, Jeffrey A.; Harris, Hugh C.; von Hippel, Ted; Liebert, James W.; Williams, Kurtis A.; Jeffery, Elizabeth; DeGennaro, Steven

    2017-03-01

    We present a detailed analysis of the white dwarf luminosity functions derived from the local 40 pc sample and the deep proper motion catalog of Munn et al. Many previous studies have ignored the contribution of thick disk white dwarfs to the Galactic disk luminosity function, which results in an erroneous age measurement. We demonstrate that the ratio of thick/thin disk white dwarfs is roughly 20% in the local sample. Simultaneously fitting for both disk components, we derive ages of 6.8-7.0 Gyr for the thin disk and 8.7 ± 0.1 Gyr for the thick disk from the local 40 pc sample. Similarly, we derive ages of 7.4-8.2 Gyr for the thin disk and 9.5-9.9 Gyr for the thick disk from the deep proper motion catalog, which shows no evidence of a deviation from a constant star formation rate in the past 2.5 Gyr. We constrain the time difference between the onset of star formation in the thin disk and the thick disk to be {1.6}-0.4+0.3 Gyr. The faint end of the luminosity function for the halo white dwarfs is less constrained, resulting in an age estimate of {12.5}-3.4+1.4 Gyr for the Galactic inner halo. This is the first time that ages for all three major components of the Galaxy have been obtained from a sample of field white dwarfs that is large enough to contain significant numbers of disk and halo objects. The resultant ages agree reasonably well with the age estimates for the oldest open and globular clusters.

  7. A Brown Dwarf Joins the Jet-Set

    NASA Astrophysics Data System (ADS)

    2007-05-01

    astronomers had to rely on the power of the VLT because the observed emission is extremely faint and only UVES on the VLT could provide both the sensitivity and the spectral resolution they required. "Discoveries like these are purely reliant on excellent telescopes and instruments, such as the VLT," says Whelan. "Our result also highlights the incredible level of quality which is available today to astronomers: the first telescopes built by Galileo were used to observe the moons of Jupiter. Today, the largest ground-based telescopes can be used to observe a Jupiter size object at a distance of 200 light-years and find it has outflows!" Using the same technique and the same telescope, the team had previously discovered outflows in another young brown dwarf. The new discovery sets a record for the lowest mass object in which jets are seen [2]. Outflows are ubiquitous in the Universe, as they are observed rushing away from the active nuclei of galaxies - AGNs - but also emerging from young stars. The present observations show they even arise in still lower mass objects. The outflow mechanism is thus very robust over an enormous range of masses, from several tens of millions of solar mass (for AGNs) down to a few tens of Jupiter masses (for brown dwarfs). More Information These results were reported in a Letter to the Editor in the Astrophysical Journal (vol. 659, p. L45): "Discovery of a Bipolar Outflow from 2MASSW J1207334-393254 a 24 MJup Brown Dwarf", by E.T. Whelan et al. The team is composed of Emma Whelan and Tom Ray (Dublin Institute for Advanced Studies, Ireland), Ray Jayawardhana (University of Toronto, Canada), Francesca Bacciotti, Antonella Natta and Sofia Randich (Osservatorio Astrofisico di Arcetri, Italy), Leonardo Testi (ESO), and Subu Mohanty (Harvard-Smithsonian CfA, USA).

  8. The formation of ultra compact dwarf galaxies and massive globular clusters. Quasar-like objects to test for a variable stellar initial mass function

    NASA Astrophysics Data System (ADS)

    Jeřábková, T.; Kroupa, P.; Dabringhausen, J.; Hilker, M.; Bekki, K.

    2017-12-01

    The stellar initial mass function (IMF) has been described as being invariant, bottom-heavy, or top-heavy in extremely dense star-burst conditions. To provide usable observable diagnostics, we calculate redshift dependent spectral energy distributions of stellar populations in extreme star-burst clusters, which are likely to have been the precursors of present day massive globular clusters (GCs) and of ultra compact dwarf galaxies (UCDs). The retention fraction of stellar remnants is taken into account to assess the mass to light ratios of the ageing star-burst. Their redshift dependent photometric properties are calculated as predictions for James Webb Space Telescope (JWST) observations. While the present day GCs and UCDs are largely degenerate concerning bottom-heavy or top-heavy IMFs, a metallicity- and density-dependent top-heavy IMF implies the most massive UCDs, at ages < 100 Myr, to appear as objects with quasar-like luminosities with a 0.1-10% variability on a monthly timescale due to core collapse supernovae.

  9. A Rogues’ Gallery of Andromeda's Dwarf Galaxies. I. A Predominance of Red Horizontal Branches

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Weisz, Daniel R.; Albers, Saundra M.; Bernard, Edouard; Collins, Michelle L. M.; Dolphin, Andrew E.; Ferguson, Annette M. N.; Ibata, Rodrigo A.; Laevens, Benjamin; Lewis, Geraint F.; Mackey, A. Dougal; McConnachie, Alan; Rich, R. Michael; Skillman, Evan D.

    2017-11-01

    We present homogeneous, sub-horizontal branch photometry of 20 dwarf spheroidal satellite galaxies of M31 observed with the Hubble Space Telescope. Combining our new data for 16 systems with archival data in the same filters for another four, we show that Andromeda dwarf spheroidal galaxies favor strikingly red horizontal branches or red clumps down to ˜104.2 L ⊙ (M V ˜ -5.8). The age-sensitivity of horizontal branch stars implies that a large fraction of the M31 dwarf galaxies have extended star formation histories (SFHs), and appear inconsistent with early star formation episodes that were rapidly shutdown. Systems fainter than ˜105.5 L ⊙ show the widest range in the ratios and morphologies of red and blue horizontal branches, indicative of both complex SFHs and a diversity in quenching timescales and/or mechanisms, which is qualitatively different from what is currently known for faint Milky Way (MW) satellites of comparable luminosities. Our findings bolster similar conclusions from recent deeper data for a handful of M31 dwarf galaxies. We discuss several sources for diversity of our data such as varying halo masses, patchy reionization, mergers/accretion, and the environmental influence of M31 and the Milky Way on the early evolution of their satellite populations. A detailed comparison between the histories of M31 and MW satellites would shed signifiant insight into the processes that drive the evolution of low-mass galaxies. Such a study will require imaging that reaches the oldest main-sequence turnoffs for a significant number of M31 companions.

  10. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea, E-mail: alis@ucolick.org

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M {sub star} > 10{sup 6} M {sub ☉} that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with amore » lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.« less

  11. The radio spectral energy distribution of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α < -0.8; %), but we also find ultra-steep SEDs (α < -1.3; %). In particular, IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by

  12. A CATALOG OF ULTRA-COMPACT HIGH VELOCITY CLOUDS FROM THE ALFALFA SURVEY: LOCAL GROUP GALAXY CANDIDATES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P., E-mail: betsey@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu

    2013-05-01

    We present a catalog of 59 ultra-compact high velocity clouds (UCHVCs) extracted from the 40% complete ALFALFA HI-line survey. The ALFALFA UCHVCs have median flux densities of 1.34 Jy km s{sup -1}, median angular diameters of 10', and median velocity widths of 23 km s{sup -1}. We show that the full UCHVC population cannot easily be associated with known populations of high velocity clouds. Of the 59 clouds presented here, only 11 are also present in the compact cloud catalog extracted from the commensal GALFA-HI survey, demonstrating the utility of this separate dataset and analysis. Based on their sky distributionmore » and observed properties, we infer that the ALFALFA UCHVCs are consistent with the hypothesis that they may be very low mass galaxies within the Local Volume. In that case, most of their baryons would be in the form of gas, and because of their low stellar content, they remain unidentified by extant optical surveys. At distances of {approx}1 Mpc, the UCHVCs have neutral hydrogen (H I) masses of {approx}10{sup 5}-10{sup 6} M{sub Sun }, H I diameters of {approx}2-3 kpc, and indicative dynamical masses within the H I extent of {approx}10{sup 7}-10{sup 8} M{sub Sun }, similar to the Local Group ultra-faint dwarf Leo T. The recent ALFALFA discovery of the star-forming, metal-poor, low mass galaxy Leo P demonstrates that this hypothesis is true in at least one case. In the case of the individual UCHVCs presented here, confirmation of their extragalactic nature will require further work, such as the identification of an optical counterpart to constrain their distance.« less

  13. International Ultraviolet Explorer observations of the white dwarf nucleus of the very old, diffuse planetary nebula, IW-2

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Feibelman, Walter A.

    1993-01-01

    UV low-dispersion spectra of the central star of the faint planetary nebula, IW-2, were obtained with the IUE. The apparent large diameter of the very diffuse nebula, about half that of the moon, as seen on the Palomar Sky Survey plates by Ishida and Weinberger (1987), indicates this object to be potentially quite evolved, and nearby. The IUE spectra clearly reveal a hot stellar continuum extending over the entire wavelength range of the short-wavelength prime camera (1200-2000 A). This object with V = 17.7 +/- 0.4 is definitely one of the faintest stars ever successfully observed with the IUE. Comparisons of the IUE observed fluxes with those from white dwarf model atmospheres suggest extinction near E(B - V) = 0.45 for a white dwarf of T(eff) roughly 100,000 K. Constraints from estimates of the nebular emission measure and observed visual magnitude also argue for a white dwarf of T(eff) roughly 100,000 K at a distance of 300 to 350 pc. The nucleus of IW-2 is one of the most evolved stars to be identified with a planetary nebula.

  14. THE PAndAS VIEW OF THE ANDROMEDA SATELLITE SYSTEM. I. A BAYESIAN SEARCH FOR DWARF GALAXIES USING SPATIAL AND COLOR-MAGNITUDE INFORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Nicolas F.; Ibata, Rodrigo A.; McConnachie, Alan W.

    We present a generic algorithm to search for dwarf galaxies in photometric catalogs and apply it to the Pan-Andromeda Archaeological Survey (PAndAS). The algorithm is developed in a Bayesian framework and, contrary to most dwarf galaxy search codes, makes use of both the spatial and color-magnitude information of sources in a probabilistic approach. Accounting for the significant contamination from the Milky Way foreground and from the structured stellar halo of the Andromeda galaxy, we recover all known dwarf galaxies in the PAndAS footprint with high significance, even for the least luminous ones. Some Andromeda globular clusters are also recovered and,more » in one case, discovered. We publish a list of the 143 most significant detections yielded by the algorithm. The combined properties of the 39 most significant isolated detections show hints that at least some of these trace genuine dwarf galaxies, too faint to be individually detected. Follow-up observations by the community are mandatory to establish which are real members of the Andromeda satellite system. The search technique presented here will be used in an upcoming contribution to determine the PAndAS completeness limits for dwarf galaxies. Although here tuned to the search of dwarf galaxies in the PAndAS data, the algorithm can easily be adapted to the search for any localized overdensity whose properties can be modeled reliably in the parameter space of any catalog.« less

  15. A Keck/DEIMOS spectroscopic survey of the faint M31 satellites AndIX, AndXI, AndXII and AndXIII†

    NASA Astrophysics Data System (ADS)

    Collins, M. L. M.; Chapman, S. C.; Irwin, M. J.; Martin, N. F.; Ibata, R. A.; Zucker, D. B.; Blain, A.; Ferguson, A. M. N.; Lewis, G. F.; McConnachie, A. W.; Peñarrubia, J.

    2010-10-01

    We present the first spectroscopic analysis of the faint M31 satellite galaxies, AndXI and AndXIII, as well as a re-analysis of existing spectroscopic data for two further faint companions, AndIX (correcting for an error in earlier geometric modelling that caused a misclassification of member stars in previous work) and AndXII. By combining data obtained using the Deep Imaging Multi-Object Spectrograph (DEIMOS) mounted on the Keck II telescope with deep photometry from the Suprime-Cam instrument on Subaru, we have identified the most probable members for each of the satellites based on their radial velocities (precise to several down to i ~ 22), distance from the centre of the dwarf spheroidal galaxies (dSphs) and their photometric [Fe/H]. Using both the photometric and spectroscopic data, we have also calculated global properties for the dwarfs, such as systemic velocities, metallicities and half-light radii. We find each dwarf to be very metal poor ([Fe/H] ~ -2 both photometrically and spectroscopically, from their stacked spectrum), and as such, they continue to follow the luminosity-metallicity relationship established with brighter dwarfs. We are unable to resolve dispersion for AndXI due to small sample size and low signal-to-noise ratio, but we set a 1σ upper limit of σv < 4.5kms-1. For AndIX, AndXII and AndXIII we resolve velocity dispersions of σv = 4.5+3.6-3.4, 2.6+5.1-2.6 and 9.7+8.9-4.5kms-1, though we note that the dispersion for AndXIII is based on just three stars. We derive masses within the half-light radii for these galaxies of 6.2+5.3-5.1 × 106, 2.4+6.5-2.4 × 106 and 1.1+1.4-0.7 × 107Msolar, respectively. We discuss each satellite in the context of the Mateo relations for dSphs, and in reference to the universal halo profiles established for Milky Way dwarfs. Both AndIX and AndXII fall below the universal halo profiles of Walker et al., indicating that they are less massive than would be expected for objects of their half-light radius. When

  16. Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Hoag, Austin; Bradač, Maruša; Trenti, Michele; Treu, Tommaso; Schmidt, Kasper B.; Huang, Kuang-Han; Lemaux, Brian C.; He, Julie; Bernard, Stephanie R.; Abramson, Louis E.; Mason, Charlotte A.; Morishita, Takahiro; Pentericci, Laura; Schrabback, Tim

    2017-04-01

    Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch1,2. However, at the highest redshifts (z > 7.5 lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population3. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at z > 7.5. We detected the Lyman-α emission line at ˜10,504 Å in two separate observations with MOSFIRE4 on the Keck I Telescope and independently with the Hubble Space Telescope's slitless grism spectrograph, implying a source redshift of z = 7.640 ± 0.001. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 (z = 0.545), with an estimated intrinsic luminosity of MAB = -19.6 ± 0.2 mag and a stellar mass of M⊙=3.0-0.8+1.5×108 solar masses. Both are an order of magnitude lower than the four other Lyman-α emitters currently known at z > 7.5, making it probably the most distant representative source of reionization found to date.

  17. Herschel-PACS photometry of faint stars for sensitivity performance assessment and establishment of faint FIR primary photometric standards

    NASA Astrophysics Data System (ADS)

    Klaas, U.; Balog, Z.; Nielbock, M.; Müller, T. G.; Linz, H.; Kiss, Cs.

    2018-05-01

    Aims: Our aims are to determine flux densities and their photometric accuracy for a set of seventeen stars that range in flux from intermediately bright (≲2.5 Jy) to faint (≳5 mJy) in the far-infrared (FIR). We also aim to derive signal-to-noise dependence with flux and time, and compare the results with predictions from the Herschel exposure-time calculation tool. Methods: We obtain aperture photometry from Herschel-PACS high-pass-filtered scan maps and chop/nod observations of the faint stars. The issues of detection limits and sky confusion noise are addressed by comparison of the field-of-view at different wavelengths, by multi-aperture photometry, by special processing of the maps to preserve extended emission, and with the help of large-scale absolute sky brightness maps from AKARI. This photometry is compared with flux-density predictions based on photospheric models for these stars. We obtain a robust noise estimate by fitting the flux distribution per map pixel histogram for the area around the stars, scaling it for the applied aperture size and correcting for noise correlation. Results: For 15 stars we obtain reliable photometry in at least one PACS filter, and for 11 stars we achieve this in all three PACS filters (70, 100, 160 μm). Faintest fluxes, for which the photometry still has good quality, are about 10-20 mJy with scan map photometry. The photometry of seven stars is consistent with models or flux predictions for pure photospheric emission, making them good primary standard candidates. Two stars exhibit source-intrinsic far-infrared excess: β Gem (Pollux), being the host star of a confirmed Jupiter-size exoplanet, due to emission of an associated dust disk, and η Dra due to dust emission in a binary system with a K1 dwarf. The investigation of the 160 μm sky background and environment of four sources reveals significant sky confusion prohibiting the determination of an accurate stellar flux at this wavelength. As a good model

  18. First Results from the ISO-IRAS Faint Galaxy Survey

    NASA Technical Reports Server (NTRS)

    Wolstencroft, R. D.; Wehrle, A. E.; Levine, D. A.

    1997-01-01

    We present the first result from the ISO-IRAS Faint Galaxy Survey (IIFGS), a program designed to obtain ISO observations of the most distant and luminous galaxies in the IRAS Faint Source Survey by filling short gaps in the ISO observing schedule with pairs of 12um ISOCAM AND 90um ISOPHOT observation.

  19. The MUSE Hubble Ultra Deep Field Survey. VI. The faint-end of the Lyα luminosity function at 2.91 < z < 6.64 and implications for reionisation

    NASA Astrophysics Data System (ADS)

    Drake, A. B.; Garel, T.; Wisotzki, L.; Leclercq, F.; Hashimoto, T.; Richard, J.; Bacon, R.; Blaizot, J.; Caruana, J.; Conseil, S.; Contini, T.; Guiderdoni, B.; Herenz, E. C.; Inami, H.; Lewis, J.; Mahler, G.; Marino, R. A.; Pello, R.; Schaye, J.; Verhamme, A.; Ventou, E.; Weilbacher, P. M.

    2017-11-01

    We present the deepest study to date of the Lyα luminosity function in a blank field using blind integral field spectroscopy from MUSE. We constructed a sample of 604 Lyα emitters (LAEs) across the redshift range 2.91 < z < 6.64 using automatic detection software in the Hubble Ultra Deep Field. The deep data cubes allowed us to calculate accurate total Lyα fluxes capturing low surface-brightness extended Lyα emission now known to be a generic property of high-redshift star-forming galaxies. We simulated realistic extended LAEs to fully characterise the selection function of our samples, and performed flux-recovery experiments to test and correct for bias in our determination of total Lyα fluxes. We find that an accurate completeness correction accounting for extended emission reveals a very steep faint-end slope of the luminosity function, α, down to luminosities of log10L erg s-1< 41.5, applying both the 1 /Vmax and maximum likelihood estimators. Splitting the sample into three broad redshift bins, we see the faint-end slope increasing from -2.03-0.07+ 1.42 at z ≈ 3.44 to -2.86-∞+0.76 at z ≈ 5.48, however no strong evolution is seen between the 68% confidence regions in L∗-α parameter space. Using the Lyα line flux as a proxy for star formation activity, and integrating the observed luminosity functions, we find that LAEs' contribution to the cosmic star formation rate density rises with redshift until it is comparable to that from continuum-selected samples by z ≈ 6. This implies that LAEs may contribute more to the star-formation activity of the early Universe than previously thought, as any additional intergalactic medium (IGM) correction would act to further boost the Lyα luminosities. Finally, assuming fiducial values for the escape of Lyα and LyC radiation, and the clumpiness of the IGM, we integrated the maximum likelihood luminosity function at 5.00

  20. A Virtual Observatory Census to Address Dwarfs Origins (AVOCADO). I. Science goals, sample selection, and analysis tools

    NASA Astrophysics Data System (ADS)

    Sánchez-Janssen, R.; Amorín, R.; García-Vargas, M.; Gomes, J. M.; Huertas-Company, M.; Jiménez-Esteban, F.; Mollá, M.; Papaderos, P.; Pérez-Montero, E.; Rodrigo, C.; Sánchez Almeida, J.; Solano, E.

    2013-06-01

    Context. Even though they are by far the most abundant of all galaxy types, the detailed properties of dwarf galaxies are still only poorly characterised - especially because of the observational challenge that their intrinsic faintness and weak clustering properties represent. Aims: AVOCADO aims at establishing firm conclusions on the formation and evolution of dwarf galaxies by constructing and analysing a homogeneous, multiwavelength dataset for a statistically significant sample of approximately 6500 nearby dwarfs (Mi - 5 log h100 > - 18 mag). The sample is selected to lie within the 20 < D < 60 h100-1 Mpc volume covered by the SDSS-DR7 footprint, and is thus volume-limited for Mi - 5 log h100 < -16 mag dwarfs - but includes ≈1500 fainter systems. We will investigate the roles of mass and environment in determining the current properties of the different dwarf morphological types - including their structure, their star formation activity, their chemical enrichment history, and a breakdown of their stellar, dust, and gas content. Methods: We present the sample selection criteria and describe the suite of analysis tools, some of them developed in the framework of the Virtual Observatory. We use optical spectra and UV-to-NIR imaging of the dwarf sample to derive star formation rates, stellar masses, ages, and metallicities - which are supplemented with structural parameters that are used to classify them morphologically. This unique dataset, coupled with a detailed characterisation of each dwarf's environment, allows for a fully comprehensive investigation of their origins and enables us to track the (potential) evolutionary paths between the different dwarf types. Results: We characterise the local environment of all dwarfs in our sample, paying special attention to trends with current star formation activity. We find that virtually all quiescent dwarfs are located in the vicinity (projected distances ≲ 1.5 h100-1 Mpc) of ≳ L∗ companions, consistent with

  1. The formation of Dwarf Spheroidal galaxies by the dissolving star cluster model.

    NASA Astrophysics Data System (ADS)

    Alarcon, Alex; Theory and Star Formation Group

    2018-01-01

    Dwarf spheroidal (dSph) galaxies are regarded as key object in the formation of larger galaxies and are believed to be the most dark matter dominated systems known. There are several model that attempt to explain their formation, but they have problems to model the formation of isolated dSph. Here we will explain a possible formation scenario in which star clusters form in the dark matter halo of a dSph. these cluster suffer from low star formation efficiency and dissolve while orbiting inside the halo. Thereby they build the faint luminous components that we observe in dSph galaxies. Here we will show the main results of this simulations and how they would be corroborated using observational data.

  2. THREE NEW ECLIPSING WHITE-DWARF-M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Nicholas M.; Kraus, Adam L.; Street, Rachel

    2012-10-01

    We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decomposemore » low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at

  3. POX 4 and Tol 35: Two Peculiar Wolf-Rayet Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Méndez, David I.; Esteban, César

    1999-12-01

    We present results of narrowband (Hα and adjacent continuum) and broadband (U, B, and V) optical CCD imaging together with high-resolution Hα spectroscopy of the blue compact Wolf-Rayet dwarf galaxies POX 4 and Tol 35. POX 4 has a fainter, irregular, and diffuse companion located 20.5" (4.7 kpc) along the minor axis of the galaxy, which is visible also in the Hα emission. The difference in recession velocity between the galaxy and the companion is about 130 km s-1. The observational results lead us to propose that POX 4 could be interpreted as a low-mass ring galaxy, produced by a head-on intrusion of the fainter companion. Regarding the other object, a spectrum taken along the major axis of Tol 35 shows the coexistence of systems of motion with a velocity difference of about 50 km s-1. Moreover, the deep continuum-subtracted Hα image of the galaxy shows very faint features that resemble the beginning of crossed tidal tails or gaseous filaments powered by the mechanical action of the young stellar population. In this sense, Tol 35 could be interpreted either as an object in an intermediate-stage merging process between two gas-rich dwarf galaxies or as an object suffering the effect of a galactic wind.

  4. The Star-forming Main Sequence of Dwarf Low Surface Brightness Galaxies

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.; Schombert, James M.; Lelli, Federico

    2017-12-01

    We explore the star-forming properties of late-type, low surface brightness (LSB) galaxies. The star-forming main sequence ({SFR}-{M}* ) of LSB dwarfs has a steep slope, indistinguishable from unity (1.04 ± 0.06). They form a distinct sequence from more massive spirals, which exhibit a shallower slope. The break occurs around {M}* ≈ {10}10 {M}⊙ , and can also be seen in the gas mass—stellar mass plane. The global Kennicutt-Schmidt law ({SFR}-{M}g) has a slope of 1.47 ± 0.11 without the break seen in the main sequence. There is an ample supply of gas in LSB galaxies, which have gas depletion times well in excess of a Hubble time, and often tens of Hubble times. Only ˜ 3 % of this cold gas needs be in the form of molecular gas to sustain the observed star formation. In analogy with the faint, long-lived stars of the lower stellar main sequence, it may be appropriate to consider the main sequence of star-forming galaxies to be defined by thriving dwarfs (with {M}* < {10}10 {M}⊙ ), while massive spirals (with {M}* > {10}10 {M}⊙ ) are weary giants that constitute more of a turn-off population.

  5. A possible brown dwarf companion to Gliese 569

    NASA Technical Reports Server (NTRS)

    Forrest, W. J.; Shure, Mark; Skrutskie, M. F.

    1988-01-01

    A faint cool companion to Gliese 569, discovered during an IR imaging survey of nearby stars, may be the lowest-mass stellar object yet found. The companion is somewhat cooler in its 1.65-3.75-micron energy distribution than the coolest known main-sequence stars, indicating a low mass. Despite its lower temperature, it is more luminous than similar extremely low-mass stars, suggesting that it is either a young low-mass star evolving toward the main sequence or a cooling substellar brown dwarf. The primary star has emission lines and a low space velocity and exhibits flaring, all of which imply youth for this system. Observations of Gliese 569 and its companion over a period of 2 yr confirm the common proper motion expected of a true binary. The 5-arcsec apparent separation (50 AU) implies an orbital period of roughly 500 yr, which will permit an eventual direct determination of the mass of the companion.

  6. Reconstructing the Accretion History of the Galactic Stellar Halo from Chemical Abundance Ratio Distributions

    NASA Astrophysics Data System (ADS)

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2015-03-01

    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ˜103-4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ˜6-9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time.

  7. Naming Disney's Dwarfs.

    ERIC Educational Resources Information Center

    Sidwell, Robert T.

    1980-01-01

    Discusses Disney's version of the folkloric dwarfs in his production of "Snow White" and weighs the Disney rendition of the dwarf figure against the corpus of traits and behaviors pertaining to dwarfs in traditional folklore. Concludes that Disney's dwarfs are "anthropologically true." (HOD)

  8. POX 186: the ultracompact blue compact dwarf galaxy reveals its nature

    NASA Astrophysics Data System (ADS)

    Doublier, V.; Kunth, D.; Courbin, F.; Magain, P.

    2000-01-01

    High resolution, ground based R and I band observations of the ultra compact dwarf galaxy POX 186 are presented. The data, obtained with the ESO New Technology Telescope (NTT), are analyzed using a new deconvolution algorithm which allows one to resolve the innermost regions of this stellar-like object into three Super-Star Clusters (SSC). Upper limits to both masses (M ~ 105 Msun) and physical sizes (<=60pc) of the SSCs are set. In addition, and maybe most importantly, extended light emission underlying the compact star-forming region is clearly detected in both bands. The R-I color rules out nebular Hα contamination and is consistent with an old stellar population. This casts doubt on the hypothesis that Blue Compact Dwarf Galaxies (BCDG) are young galaxies. based on observations carried out at NTT in La Silla, operated by the European Southern Observatory, during Director's Discretionary Time.

  9. Early chemical enrichment of the Galactic dwarf satellites from a homogeneous and NLTE abundance analysis

    NASA Astrophysics Data System (ADS)

    Mashonkina, Lyudmila; Jablonka, Pascale; Sitnova, Tatyana; Pakhomov, Yuri; North, Pierre

    2018-06-01

    We review recent abundance results for very metal-poor (VMP, -4 ≤ [Fe/H] ≤ -2) stars in seven dwarf spheroidal galaxies (dSphs) and in the Milky Way (MW) halo comparison sample that were obtained based on high-resolution spectroscopic datasets, homogeneous and accurate atmospheric parameters, and the non-local thermodynamic equilibrium (NLTE) line formation for 10 chemical species. A remarkable gain of using such an approach is the reduction, compared to a simple compilation of the literature data, of the spread in abundance ratios at given metallicity within each galaxy and from one to the other. We show that all massive galaxies in our sample, that is, the MW halo and the classical dSphs Sculptor, Ursa Minor, Sextans, and Fornax, reveal a similar plateau at [α/Fe] \\simeq 0.3 for each of the α-process elements: Mg, Ca, and Ti. We put on a firm ground the evidence for a decline in α/Fe with increasing metallicity in the Boötes I ultra-faint dwarf galaxy (UFD), that is most probably due to the ejecta of type Ia supernovae. In our classical dSphs, we observe the dichotomy in the [Sr/Ba] versus [Ba/H] diagram, similarly to the MW halo, calling for two different nucleosynthesis channels for Sr at the earliest evolution stages of these galaxies. Our three UFDs, that is Boötes I, UMa II, and Leo IV, are depleted in Sr and Ba relative to Fe and Mg, with very similar ratios of [Sr/Mg] ≈ -1.3 and [Ba/Mg] ≈ -1 on the entire range of their Mg abundances. The subsolar Sr/Ba ratios of Boötes I and UMa II indicate a common r-process origin of their neutron-capture elements. For Na/Fe, Na/Mg, and Al/Mg, the MW halo and all dSphs reveal indistinguishable trends with metallicity, suggesting that the processes of Na and Al synthesis are identical in all systems, independent of their mass. Sculptor remains the classical dSph, in which the evidence for inhomogeneous mixing in the early evolution stage, at [Fe/H] < -2, is the strongest.

  10. A Proper-Motion Corrected, Cross-Matched Catalog Of M Dwarfs In SDSS And FIRST

    NASA Astrophysics Data System (ADS)

    Arai, Erin; West, A. A.; Thyagarajan, N.; Agüeros, M.; Helfand, D.

    2011-05-01

    We present a preliminary analysis of M dwarfs identified in both the Sloan Digital Sky Survey (SDSS) and the Very Large Array's (VLA) Faint Images of the Radio Sky at Twenty-centimeters survey (FIRST). The presence of magnetic fields is often associated with indirect magnetic activity measurements, such as H-alpha or X-ray emission. Radio emission, in contrast, is directly proportional to the magnetic field strength in addition to being another measure of activity. We search for stellar radio emission by cross-matching the SDSS DR7 M dwarf sample with the FIRST catalog. The SDSS data allow us to examine the spectra of our objects and correlate the magnetic activity (H-alpha) with the magnetic field strength (radio emission). Accurate positions and proper motions are important for obtaining a complete list of overlapping targets. Positions in FIRST and SDSS need to be proper motion corrected in order to ensure unique target matches since nearby M dwarfs can have significant proper motions (up to 1'' per year). Some previous studies have neglected the significance of proper motions in identifying overlapping targets between SDSS and FIRST; we correct for some of these previous oversights. In addition the FIRST data were taken in multiple epochs; individual images need to be proper motion corrected before the images can be co-added. Our cross-match catalog puts important constraints on models of magnetic field generation in low-mass stars in addition to the true habitability of attending planets.

  11. The CARMENES search for exoplanets around M dwarfs. High-resolution optical and near-infrared spectroscopy of 324 survey stars

    NASA Astrophysics Data System (ADS)

    Reiners, A.; Zechmeister, M.; Caballero, J. A.; Ribas, I.; Morales, J. C.; Jeffers, S. V.; Schöfer, P.; Tal-Or, L.; Quirrenbach, A.; Amado, P. J.; Kaminski, A.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona, R.; Anglada-Escudé, G.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Barrado, D.; Bauer, F. F.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdinas˜, Z. M.; Bergond, G.; Blümcke, M.; Brinkmöller, M.; del Burgo, C.; Cano, J.; Cárdenas Vázquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Díez-Alonso, E.; Dreizler, S.; Feiz, C.; Fernández, M.; Ferro, I. M.; Fuhrmeister, B.; Galadí-Enríquez, D.; Garcia-Piquer, A.; García Vargas, M. L.; Gesa, L.; Galera, V. Gómez; González Hernández, J. I.; González-Peinado, R.; Grözinger, U.; Grohnert, S.; Guàrdia, J.; Guenther, E. W.; Guijarro, A.; Guindos, E. de; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Henning, Th.; Hermelo, I.; Hernández Arabí, R.; Hernández Castaño, L.; Hernández Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E. N.; Juan, E. de; Kim, M.; Klein, R.; Klüter, J.; Klutsch, A.; Kürster, M.; Lafarga, M.; Lamert, A.; Lampón, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Launhardt, R.; López del Fresno, M.; López-González, J.; López-Puertas, M.; López Salas, J. F.; López-Santiago, J.; Luque, R.; Magán Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil, E.; Marín Molina, J. A.; Maroto Fernández, D.; Martín, E. L.; Martín-Ruiz, S.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Moreno-Raya, M. E.; Moya, A.; Mundt, R.; Nagel, E.; Naranjo, V.; Nortmann, L.; Nowak, G.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Pascual, J.; Passegger, V. M.; Pavlov, A.; Pedraz, S.; Pérez-Calpena, A.; Medialdea, D. Pérez; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhart, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez Trinidad, A.; Rohloff, R.-R.; Rosich, A.; Sadegi, S.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sánchez-López, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schmitt, J. H. M. M.; Schiller, J.; Schweitzer, A.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Stürmer, J.; Suárez, J. C.; Tabernero, H. M.; Tala, M.; Trifonov, T.; Tulloch, S. M.; Ulbrich, R. G.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.

    2018-04-01

    The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520-1710 nm at a resolution of at least R >80 000, and we measure its RV, Hα emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700-900 nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1 m s-1 in very low mass M dwarfs at longer wavelengths likely requires the use of a 10 m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4 m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3-4 m s-1.

  12. Proper motion of the Draco dwarf galaxy from Subaru Suprime-Cam data

    NASA Astrophysics Data System (ADS)

    Casetti-Dinescu, Dana I.; Girard, Terrence M.

    2016-09-01

    We have measured the absolute proper motion of the Draco dwarf spheroidal galaxy using Subaru Suprime-Cam images taken at three epochs, with time baselines of 4.4 and 7 yr. The magnitude limit of the proper-motion study is I = 25, thus allowing for thousands of background galaxies and Draco stars to be used to perform extensive astrometric tests and to derive the correction to an inertial reference frame. The derived proper motion is (μα, μδ) = (-0.284 ± 0.047, -0.289 ± 0.041) mas yr-1. This motion implies an orbit that takes Draco to a pericentre of ˜20 kpc; a somewhat disruptive orbit suggesting that tides might account for the rising velocity-dispersion profile of Draco seen in line-of-sight velocity studies. The orbit is only marginally consistent with Draco's membership to the vast polar structure of Galactic satellites, in contrast to a recent Hubble Space Telescope proper-motion measurement that finds alignment very likely. Our study is a test case to demonstrate that deep imaging with mosaic cameras of appropriate resolution can be used for high-accuracy, ground-based proper-motion measurement. As a useful by-product of the study, we also identify two faint brown-dwarf candidates in the foreground field.

  13. ARE ULTRA-LONG GAMMA-RAY BURSTS CAUSED BY BLUE SUPERGIANT COLLAPSARS, NEWBORN MAGNETARS, OR WHITE DWARF TIDAL DISRUPTION EVENTS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ioka, Kunihito; Hotokezaka, Kenta; Piran, Tsvi, E-mail: kunihito.ioka@yukawa.kyoto-u.ac.jp

    Ultra-long gamma-ray bursts (ulGRBs) are a new population of GRBs with extreme durations of ∼10{sup 4} s. Leading candidates for their origin are blue supergiant collapsars, magnetars, and white dwarf tidal disruption events (WD-TDEs) caused by massive black holes (BHs). Recent observations of supernova-like (SN-like) bumps associated with ulGRBs challenged both the WD-TDE and the blue supergiant models because of the detection of SNe and the absence of hydrogen lines, respectively. We propose that WD-TDEs can accommodate the observed SN-like bumps if the fallback WD matter releases energy into the unbound WD ejecta. The observed ejecta energy, luminosity, and velocitymore » are explained by the gravitational energy, Eddington luminosity, and escape velocity of the formed accretion disk, respectively. We also show that the observed X-rays can ionize the ejecta, eliminating lines. The SN-like light curves (SN 2011kl) for the ulGRB 111209A are consistent with all three models, although a magnetar model is unnatural because the spin-down time required to power the SN-like bump is a hundred times longer than the GRB. Our results imply that TDEs are a possible energy source for SN-like events in general and for ulGRBs in particular.« less

  14. Direct imaging and new technologies to search for substellar companions around MGs cool dwarfs

    NASA Astrophysics Data System (ADS)

    Gálvez-Ortiz, M. C.; Clarke, J. R. A.; Pinfield, D. J.; Folkes, S. L.; Jenkins, J. S.; García Pérez, A. E.; Burningham, B.; Day-Jones, A. C.; Jones, H. R. A.

    2011-07-01

    We describe here our project based in a search for sub-stellar companions (brown dwarfs and exo-planets) around young ultra-cool dwarfs (UCDs) and characterise their properties. We will use current and future technology (high contrast imaging, high-precision Doppler determinations) from the ground and space (VLT, ELT and JWST), to find companions to young objects. Members of young moving groups (MGs) have clear advantages in this field. We compiled a catalogue of young UCD objects and studied their membership to five known young moving groups: Local Association (Pleiades moving group, 20-150 Myr), Ursa Mayor group (Sirius supercluster, 300 Myr), Hyades supercluster (600 Myr), IC 2391 supercluster (35 Myr) and Castor moving group (200 Myr). To assess them as members we used different kinematic and spectroscopic criteria.

  15. The StEllar Counterparts of COmpact high velocity clouds (SECCO) survey. II. Sensitivity of the survey and the atlas of synthetic dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Beccari, G.; Bellazzini, M.; Battaglia, G.; Ibata, R.; Martin, N.; Testa, V.; Cignoni, M.; Correnti, M.

    2016-06-01

    The searching for StEllar Counterparts of COmpact high velocity clouds (SECCO) survey is devoted to the search for stellar counterparts within ultra compact high velocity clouds that are candidate low-mass, low-luminosity galaxies. We present the results of a set of simulations aimed at the quantitative estimate of the sensitivity of the survey as a function of the total luminosity, size, and distance of the stellar systems we are looking for. For all of our synthetic galaxies we assumed an exponential surface brightness profile and an old and metal-poor population. The synthetic galaxies are simulated both on the images and on the photometric catalogues, taking all the observational effects into account. In the fields where the available observational material is of top quality (≃36% of the SECCO fields), we detect synthetic galaxies as ≥5σ over-densities of resolved stars down to μV,h ≃ 30.0 mag/arcsec2, for D ≤ 1.5 Mpc, and down to μV,h ≃ 29.5 mag/arcsec2, for D ≤ 2.5 Mpc. In the field with the worst observational material of the whole survey, we detect synthetic galaxies with μV,h ≤ 28.8 mag/arcsec2 out to D ≤ 1.0 Mpc, and those with μV,h ≤ 27.5 mag/arcsec2 out to D ≤ 2.5 Mpc. Dwarf galaxies with MV = -10.0, with sizes in the range spanned by known dwarfs, are detected by visual inspection of the images up to D = 5 Mpc independent of the image quality. In the best quality images, dwarfs are partially resolved into stars up to D = 3.0 Mpc and completely unresolved at D = 5 Mpc. As an independent test of the sensitivity of our images to low surface brightness galaxies, we report on the detection of several dwarf spheroidal galaxies probably located in the Virgo cluster with MV ≲ -8.0 and μV,h ≲ 26.8 mag/arcsec2. The nature of the previously discovered SECCO 1 stellar system, also likely located in the Virgo cluster, is rediscussed in comparison with these dwarfs. While specific for the SECCO survey, our study may also provide general

  16. Astrophysics of brown dwarfs; Proceedings of the Workshop, George Mason University, Fairfax, VA, Oct. 14, 15, 1985

    NASA Technical Reports Server (NTRS)

    Kafatos, Minas C. (Editor); Harrington, Robert S. (Editor); Maran, Stephen P. (Editor)

    1986-01-01

    Various reports on theoretical and observational studies of brown dwarfs (BDs) are presented. The topics considered include: astrometric detection of BDs, search for substellar companions to nearby stars using IR imaging, constraints on BD mass function from optical and IR searches, properties of stellar objects near the main sequence mass limit, search for low-mass stellar companions with the HF precision velocity technique, dynamical search for substellar objects, search for BDs in the IRAS data base, deep CCD survey for low mass stars in the disk and halo, the Berkeley search for a faint solar companion, the luminosity function for late M stars, astronomic search for IR dwarfs, and the role of the Space Telescope in the detection of BDs. Also addressed are: theoretical significance of BDs, evolution of super-Jupiters, compositional indicators in IR spectra of BDs, evolution of BDs and the evolutionary status of VB8B, the position of BDs on universal diagrams, theoretical determination of the minimum protostellar mass, Population II BDs and dark halos.

  17. K-KIDS: K Dwarfs and Their Companions. First Results from Radial Velocity Survey with CHIRON Spectrograph

    NASA Astrophysics Data System (ADS)

    Paredes, Leonardo; Henry, Todd; Nusdeo, Daniel; Winters, J.; Dincer, Tolga

    2018-01-01

    We present the K-KIDS project, an effort to survey a large sample of K dwarfs and their companions, the KIDS. We are observing a carefully vetted equatorial sample (DEC = -30 to +30) of more than 1000 K dwarfs within 50 pc to make a comprehensive assessment of stellar, substellar and planetary companions with separations of 0.1 to 10,000 AU.The initial sample of 1048 stars has been compiled using astrometric data from Hipparcos and photometric data from Tycho-2 and 2MASS. Four different imaging and spectroscopic surveys are underway. Here we present the strategy and initial results for our high-precision radial velocity survey for the closest companions using the CHIRON spectrograph on the CTIO/SMARTS 1.5m telescope. Individual measurements with CHIRON at R = 80,000 using ThAr wavelength calibration, indicate that for K dwarf radial velocity standards with V = 5.8, 7.0 and 8.0 yield precisions over 6 weeks of observing of 7.4 m/s, 9.8 m/s and 5.7 m/s. In the first two months, a core sample of 42 K dwarfs, including carefully selected calibration systems as well as previously unobserved stars, was observed every few nights to detect the radial velocity signals of close companions. In our calibration stellar systems, we have confirmed the suitability of CHIRON for our studies, by having found periodic radial velocity perturbations consistent with hot Jupiter and stellar companions previously detected. This set forms the foundation of our one-year survey of 100 K dwarfs with magnitudes as faint as V = 11.5, for which we should detect companions with masses as low as Jupiter.In light of the promising performance and efficiency of the CHIRON spectrograph for a long-term radial velocity survey, we have expanded our initial sample using Gaia Data Release 1 to 1824 K dwarfs within 50 pc. Ultimately, the combination of all four surveys will provide an unprecedented portrait of K dwarfs and their kids.This effort has been supported by the NSF through grant AST-1517413, and

  18. An unsuccessful search for brown dwarf companions to white dwarf stars

    NASA Technical Reports Server (NTRS)

    Shipman, Harry L.

    1986-01-01

    The results of a survey to detect excess infrared emission from white dwarf stars which would be attributable to a low mass companion are reviewed. Neither a simple comparison of spectroscopically identified white dwarf stars with the IRAS Point Source Catalog nor the coadding of IRAS survey data resulted in a detection of a brown dwarf. The seven nearest stars where the most stringent limits to the presence of a brown dwarf were obtained are listed, and an effort to detect brown dwarfs in the solar neighborhood is discussed.

  19. Extreme Faint Flux Imaging with an EMCCD

    NASA Astrophysics Data System (ADS)

    Daigle, Olivier; Carignan, Claude; Gach, Jean-Luc; Guillaume, Christian; Lessard, Simon; Fortin, Charles-Anthony; Blais-Ouellette, Sébastien

    2009-08-01

    An EMCCD camera, designed from the ground up for extreme faint flux imaging, is presented. CCCP, the CCD Controller for Counting Photons, has been integrated with a CCD97 EMCCD from e2v technologies into a scientific camera at the Laboratoire d’Astrophysique Expérimentale (LAE), Université de Montréal. This new camera achieves subelectron readout noise and very low clock-induced charge (CIC) levels, which are mandatory for extreme faint flux imaging. It has been characterized in laboratory and used on the Observatoire du Mont Mégantic 1.6 m telescope. The performance of the camera is discussed and experimental data with the first scientific data are presented.

  20. WISE J061213.85-303612.5: a new T-dwarf binary candidate

    NASA Astrophysics Data System (ADS)

    Huélamo, N.; Ivanov, V. D.; Kurtev, R.; Girard, J. H.; Borissova, J.; Mawet, D.; Mužić, K.; Cáceres, C.; Melo, C. H. F.; Sterzik, M. F.; Minniti, D.

    2015-06-01

    Context. T and Y dwarfs are among the coolest and least luminous objects detected, and they can help to understand the properties of giant planets. Up to now, there are more than 350 T dwarfs that have been identified thanks to large imaging surveys in the infrared, and their multiplicity properties can shed light on the formation process. Aims: The aim of this work is to look for companions around a sample of seven ultracoool objects. Most of them have been discovered by the WISE observatory and have not been studied before for multiplicity. Methods: We observed a sample six T dwarfs and one L9 dwarf with the Laser Guide Star (LGS) and NAOS-CONICA, the adaptive optics (AO) facility, and the near infrared camera at the ESO Very Large Telescope. We observed all the objects in one or more near-IR filters (JHKs). Results: From the seven observed objects, we have identified a subarcsecond binary system, WISE J0612-3036, composed of two similar components with spectral types of T6. We measure a separation of ρ = 350 ± 5 mas and a position angle of PA = 235 ± 1°. Using the mean absolute magnitudes of T6 dwarfs in the 2MASS JHKs bands, we estimate a distance of d = 31 ± 6 pc and derive a projected separation of ρ ~ 11 ± 2 au. Another target, WISE J2255-3118, shows a very faint object at 1.̋3 in the Ks image. The object is marginally detected in H, and we derive a near infrared color of H - Ks> 0.1 mag. HST/WFC3 public archival data reveals that the companion candidate is an extended source. Together with the derived color, this suggests that the source is most probably a background galaxy. The five other sources are apparently single, with 3-σ sensitivity limits between H = 19-21 for companions at separations ≥0.̋5. Conclusions: WISE 0612-3036 is probably a new T-dwarf binary composed of two T6 dwarfs. As in the case of other late T-dwarf binaries, it shows a mass ratio close to 1, although its projected separation, ~11 au, is larger than the average (~5 au

  1. Ultra high-definition video: convergence toward 100Gbps and beyond for digital A/V connectivity with fiber optics

    NASA Astrophysics Data System (ADS)

    Parekh, Devang; Nguyen, Nguyen X.

    2018-02-01

    The recent advent of Ultra-high-definition television (also known as Ultra HD television, Ultra HD, UHDTV, UHD and Super Hi-Vision) has accelerated a demand for a Fiber-in-the-Premises video communication (VCOM) solution that converges toward 100Gbps and Beyond. Hybrid Active-Optical-Cables (AOC) is a holistic connectivity platform well suited for this "The Last Yard" connectivity; as it combines both copper and fiber optics to deliver a high data-rate and power transmission needed. While technically feasible yet challenging to manufacture, hybrid-AOC could be a holygrail fiber-optics solution that dwarfs the volume of both telecom and datacom connection in the foreseeable future.

  2. Dwarf novae

    NASA Technical Reports Server (NTRS)

    Ladous, Constanze

    1993-01-01

    Dwarf novae are defined on grounds of their semi-regular brightness variations of some two to five magnitudes on time scales of typically 10 to 100 days. Historically several different classification schemes have been used. Today, dwarf novae are divided into three sub-classes: the U Geminorum stars, the SU Ursae Majoris stars, and the Z Camelopardalis stars. Outbursts of dwarf novae occur at semi-periodic intervals of time, typically every 10 to 100 days; amplitudes range from typically 2 to 5 mag. Within certain limits values are characteristic for each object. Relations between the outburst amplitude, or the total energy released during outburst, and the recurrence time have been found, as well as relations between the orbital period and the outburst decay time, the absolute magnitude during outburst maximum, and the widths of long and short outbursts, respectively. Some dwarf novae are known to have suspended their normal outburst activity altogether for a while. They later resumed it without having undergone any observable changes. The optical colors of dwarf novae all are quite similar during outburst, considerably bluer than during the quiescent state. During the outburst cycle, characteristic loops in the two color diagram are performed. At a time resolution on the order of minutes, strictly periodic photometric changes due to orbital motion become visible in the light curves of dwarf novae. These are characteristic for each system. Remarkably little is known about orbital variations during the course of an outburst. On time-scales of minutes and seconds, further more or less periodic types of variability are seen in dwarf novae. Appreciable flux is emitted by dwarf novae at all wavelengths from the X-rays to the longest IR wavelengths, and in some cases even in the radio. Most dwarf novae exhibit strong emission line spectra in the optical and UV during quiescence, although some have only very weak emissions in the optical and/or weak absorptions at UV

  3. A wide-field survey for high-redshift quasars

    NASA Astrophysics Data System (ADS)

    Kakazu, Yuko K. M.

    2008-02-01

    The present thesis reports the results from the Hawaii Quasar and T dwarf survey (HQT survey), which is a wide-field optical imaging survey conducted with Subaru/Suprime-Cam. The HQT survey was designed to search for low- luminosity quasars ( M 1450 < -22.5) at high-redshift ( z > 5.7) as well as T dwarfs, both of which are selected by their very red optical I -- z ' colors. We developed a new color selection technique using a narrowband NB 816 filter in order to break a well-known color degeneracy between quasars and foreground M and L dwarfs. The follow-up Keck/DEIMOS spectroscopy and near-IR imaging with various instruments on Mauna Kea have demonstrated the effectiveness of our technique, and have successfully revealed six faint T dwarfs ( J < 20). These dwarfs are among the most distant spectroscopically known (60 - 170 pc) and they provide an indirect support for the high binary fraction at L/ T transition. The non-detection of z > 5.7 quasars in our survey is consistent with the present picture of the cosmic reionization in which quasars are negligible contributor to the cosmic reionization. With our survey area coverage (9.3 deg 2 ) and depths ( Z AB < 23.3), we were able to set strong constraints on the faint-end slope of the quasar luminosity function. Majority of our candidate quasars turned out to be strong emission line galaxies at z < 1, whose large equivalent widths and low metal contents suggest they are very young systems which have just undergone starbursts within a few Myrs. In order to systematically search for these Ultra-Strong Emission Line galaxies (USELs), we used narrowband selected samples from Hu's ultra-deep multiwavelength data. The followup Keck/DEIMOS spectra have revealed their high star formation density (5-10% of UV measurements at z = 0-1), which is a significant contribution at a epoch when cosmic star formation is in its peak. Many of the USELs show [OIII]l4363 auroral lines and about a dozen satisfy the criteria for e

  4. EoR Foregrounds: the Faint Extragalactic Radio Sky

    NASA Astrophysics Data System (ADS)

    Prandoni, Isabella

    2018-05-01

    A wealth of new data from upgraded and new radio interferometers are rapidly improving and transforming our understanding of the faint extra-galactic radio sky. Indeed the mounting statistics at sub-mJy and μJy flux levels is finally allowing us to get stringent observational constraints on the faint radio population and on the modeling of its various components. In this paper I will provide a brief overview of the latest results in areas that are potentially important for an accurate treatment of extra-galactic foregrounds in experiments designed to probe the Epoch of Reionization.

  5. VARIABLE AND POLARIZED RADIO EMISSION FROM THE T6 BROWN DWARF WISEP J112254.73+255021.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P. K. G.; Berger, E.; Gizis, J. E., E-mail: pwilliams@cfa.harvard.edu

    2017-01-10

    Route and Wolszczan recently detected five radio bursts from the T6 dwarf WISEP J112254.73+255021.5 and used the timing of these events to propose that this object rotates with an ultra-short period of ∼17.3 minutes. We conducted follow-up observations with the Very Large Array and Gemini-North but found no evidence for this periodicity. We do, however, observe variable, highly circularly polarized radio emission. Assuming that the radio emission of this T dwarf is periodically variable on ∼hour timescales, like other radio-active ultracool dwarfs, we infer a likely period of 116 minutes. However, our observation lasted only 162 minutes and so more data are needed to test thismore » hypothesis. The handedness of the circular polarization switches twice and there is no evidence for any unpolarized emission component, the first time such a phenomenology has been observed in radio studies of very low-mass stars and brown dwarfs. We suggest that the object’s magnetic dipole axis may be highly misaligned relative to its rotation axis.« less

  6. White Dwarfs

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Wesemael, F.; Murdin, P.

    2000-11-01

    White dwarf stars, also known as degenerate dwarfs, represent the endpoint of the evolution of stars with initial masses ranging from about 0.08 to about 8 solar masses. This large range encompasses the vast majority of stars formed in our Galaxy and thus white dwarf stars represent the most common endpoint of STELLAR EVOLUTION. It is believed that over 95% of the stars of our Galaxy will eventu...

  7. Discovery of an Ultra-diffuse Galaxy in the Pisces--Perseus Supercluster

    NASA Astrophysics Data System (ADS)

    Martínez-Delgado, David; Läsker, Ronald; Sharina, Margarita; Toloba, Elisa; Fliri, Jürgen; Beaton, Rachael; Valls-Gabaud, David; Karachentsev, Igor D.; Chonis, Taylor S.; Grebel, Eva K.; Forbes, Duncan A.; Romanowsky, Aaron J.; Gallego-Laborda, J.; Teuwen, Karel; Gómez-Flechoso, M. A.; Wang, Jie; Guhathakurta, Puragra; Kaisin, Serafim; Ho, Nhung

    2016-04-01

    We report the discovery of DGSAT I, an ultra-diffuse, quenched galaxy located 10.°4 in projection from the Andromeda galaxy (M31). This low-surface brightness galaxy (μV = 24.8 mag arcsec-2), found with a small amateur telescope, appears unresolved in sub-arcsecond archival Subaru/Suprime-Cam images, and hence has been missed by optical surveys relying on resolved star counts, in spite of its relatively large effective radius (Re(V) = 12″) and proximity (15‧) to the well-known dwarf spheroidal galaxy And II. Its red color (V - I = 1.0), shallow Sérsic index (nV = 0.68), and the absence of detectable Hα emission are typical properties of dwarf spheroidal galaxies and suggest that it is mainly composed of old stars. Initially interpreted as an interesting case of an isolated dwarf spheroidal galaxy in the local universe, our radial velocity measurement obtained with the BTA 6 m telescope (Vh = 5450 ± 40 km s-1) shows that this system is an M31-background galaxy associated with the filament of the Pisces-Perseus supercluster. At the distance of this cluster (˜78 Mpc), DGSAT I would have an Re ˜ 4.7 kpc and MV ˜ -16.3. Its properties resemble those of the ultra-diffuse galaxies (UDGs) recently discovered in the Coma cluster. DGSAT I is the first case of these rare UDGs found in this galaxy cluster. Unlike the UDGs associated with the Coma and Virgo clusters, DGSAT I is found in a much lower density environment, which provides a fresh constraint on the formation mechanisms for this intriguing class of galaxy.

  8. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Lumninous Infrared Galaxy Candidates

    NASA Technical Reports Server (NTRS)

    Griffith, Roger L.; Kirkpatrick, J. Davy; Eisenhardt, Peter R. M.; Gelino, Christopher R.; Cushing, Michael C.; Benford, Dominic; Blain, Andrew; Bridge, Carrie R.; Cohen, Martin; Cutri, Roc M.; hide

    2012-01-01

    We present Spitzer 3.6 and 4.5 micrometer photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 m to approximately 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (greater than 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of 7.33 x 10(exp 5) objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 m photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog.

  9. Follow-up spectroscopic observations of HD 107148 B: A new white dwarf companion of an exoplanet host star

    NASA Astrophysics Data System (ADS)

    Mugrauer, M.; Dinçel, B.

    2016-06-01

    We report on our follow-up spectroscopy of HD 1071478 B, a recently detected faint co-moving companion of the exoplanet host star HD 107148 A. The companion is separated from its primary star by about 35 arcsec (or 1790 AU of projected separation) and its optical and near infrared photometry is consistent with a white dwarf, located at the distance of HD 107148 A. In order to confirm the white dwarf nature of the co-moving companion, we obtained follow-up spectroscopic observations of HD 107148 B with CAFOS at the CAHA 2.2 m telescope. According to our CAFOS spectroscopy HD 107148 B is a DA white dwarf with an effective temperature in the range between 5900 and 6400 K. The properties of HD 107148 B can further be constrained with the derived effective temperature and the known visual and infrared photometry of the companion, using evolutionary models of DA white dwarfs. We obtain for HD 107148 B a mass of 0.56±0.05 M_⊙, a luminosity of (2.0±0.2)×10-4 L_⊙, log g [cm s-2])=7.95±0.09, and a cooling age of 2100±270 Myr. With its white dwarf companion the exoplanet host star HD 107148 A forms an evolved stellar system, which hosts at least one exoplanet. So far, only few of these evolved systems are known, which represent only about 5 % of all known exoplanet host multiple stellar systems. HD 107148 B is the second confirmed white dwarf companion of an exoplanet host star with a projected separation to its primary star of more than 1000 AU. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  10. DEEP NEAR-IR OBSERVATIONS OF THE GLOBULAR CLUSTER M4: HUNTING FOR BROWN DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieball, A.; Bedin, L. R.; Knigge, C.

    2016-01-20

    We present an analysis of deep Hubble Space Telescope (HST)/Wide Field Camera 3 near-IR (NIR) imaging data of the globular cluster (GC) M4. The best-photometry NIR color–magnitude diagram (CMD) clearly shows the main sequence extending toward the expected end of the hydrogen-burning limit and going beyond this point toward fainter sources. The white dwarf (WD) sequence can be identified. As such, this is the deepest NIR CMD of a GC to date. Archival HST optical data were used for proper-motion cleaning of the CMD and for distinguishing the WDs from brown dwarf (BD) candidates. Detection limits in the NIR aremore » around F110W ≈ 26.5 mag and F160W ≈ 27 mag, and in the optical around F775W ≈ 28 mag. Comparing our observed CMDs with theoretical models, we conclude that we have reached beyond the H-burning limit in our NIR CMD and are probably just above or around this limit in our optical–NIR CMDs. Thus, any faint NIR sources that have no optical counterpart are potential BD candidates, since the optical data are not deep enough to detect them. We visually inspected the positions of NIR sources that are fainter than the H-burning limit in F110W and for which the optical photometry did not return a counterpart. We found in total five sources for which we did not get an optical measurement. For four of these five sources, a faint optical counterpart could be visually identified, and an upper optical magnitude was estimated. Based on these upper optical magnitude limits, we conclude that one source is likely a WD, one source could be either a WD or BD candidate, and the remaining two sources agree with being BD candidates. No optical counterpart could be detected for just one source, which makes this source a good BD candidate. We conclude that we found in total four good BD candidates.« less

  11. Faint CO Line Wings in Four Star-forming (Ultra)luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Leroy, Adam K.; Walter, Fabian; Decarli, Roberto; Bolatto, Alberto; Zschaechner, Laura; Weiss, Axel

    2015-09-01

    We report the results of a search for large velocity width, low-intensity line wings—a commonly used signature of molecular outflows—in four low redshift (ultra)luminous infrared galaxies that appear to be dominated by star formation. The targets were drawn from a sample of fourteen targets presented in Chung et al., who showed the stacked CO spectrum of the sample to exhibit 1000 km s-1-wide line wings. We obtained sensitive, wide bandwidth imaging of our targets using the IRAM Plateau de Bure Interferometer. We detect each target at very high significance but do not find the claimed line wings in these four targets. Instead, we constrain the flux in the line wings to be only a few percent. Casting our results as mass outflow rates following Cicone et al. we show them to be consistent with a picture in which very high mass loading factors preferentially occur in systems with high active galactic nucleus contributions to their bolometric luminosity. We identify one of our targets, IRAS 05083 (VII Zw 31), as a candidate molecular outflow.

  12. A Tale of Two Faint Bursts: GRB 050223 and GRB 050911

    NASA Astrophysics Data System (ADS)

    Page, K. L.; Barthelmy, S. D.; Beardmore, A. P.; Burrows, D. N.; Campana, S.; Chincharini, G.; Cummings, J. R.; Cusumano, G.; Gehrels, N.; Giommi, P.; Goad, M. R.; Godet, O.; Graham, J.; Kaneko, Y.; Kennea, J. A.; Mangano, V.; Markwardt, C. B.; O'Brien, P. T.; Osborne, J. P.; Reichart, D. E.; Rol, E.; Sakamoto, T.; Tagliaferri, G.; Tanvir, N. R.; Wells, A. A.; Zhang, B.

    2006-05-01

    GRBs 050223 and 050911 were discovered by the Swift Burst Alert Telescope (BAT) on 23rd February and 11th September 2005 respectively. The observation of GRB 050223 showed a faint, fading X-ray source, which was identified as the afterglow; GRB 050911, however, was not detected, making any X-ray afterglow extremely faint. The faintness of the afterglow of GRB 050223 could be explained by a large opening or viewing angle, or by the burst being at high redshift. The non-detection of GRB 050911 may indicate the burst occurred in a low-density environment, or, alternatively, was due to a compact object merger, in spite of the apparent long duration of the burst.

  13. The PAndAS View of the Andromeda Satellite System. II. Detailed Properties of 23 M31 Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Ibata, Rodrigo A.; Lewis, Geraint F.; McConnachie, Alan; Babul, Arif; Bate, Nicholas F.; Bernard, Edouard; Chapman, Scott C.; Collins, Michelle M. L.; Conn, Anthony R.; Crnojević, Denija; Fardal, Mark A.; Ferguson, Annette M. N.; Irwin, Michael; Mackey, A. Dougal; McMonigal, Brendan; Navarro, Julio F.; Rich, R. Michael

    2016-12-01

    We present a comprehensive analysis of the structural properties and luminosities of the 23 dwarf spheroidal galaxies that fall within the footprint of the Pan-Andromeda Archaeological Survey (PAndAS). These dwarf galaxies represent the large majority of Andromeda’s known satellite dwarf galaxies and cover a wide range in luminosity (-11.6≲ {M}V≲ -5.8 or {10}4.2≲ L≲ {10}6.5 {L}⊙ ) and surface brightness (25.1≲ {μ }0≲ 29.3 mag arcsec-2). We confirm most previous measurements, but we find And XIX to be significantly larger than before ({r}h={3065}-935+1065 {pc}, {M}V=-{10.1}-0.4+0.8) and cannot derive parameters for And XXVII as it is likely not a bound stellar system. We also significantly revise downward the luminosities of And XV and And XVI, which are now {M}V˜ -7.5 or L˜ {10}5 {L}⊙ . Finally, we provide the first detailed analysis of Cas II/And XXX, a fairly faint system ({M}V=-{8.0}-0.3+0.4) of typical size ({r}h=270+/- 50 {pc}), located in close proximity to the two bright elliptical dwarf galaxies NGC 147 and NGC 185. Combined with the set of homogeneous distances published in an earlier contribution, our analysis dutifully tracks all relevant sources of uncertainty in the determination of the properties of the dwarf galaxies from the PAndAS photometric catalog. We further publish the posterior probability distribution functions of all the parameters we fit for in the form of MCMC chains available online; these inputs should be used in any analysis that aims to remain truthful to the data and properly account for covariance between parameters.

  14. Deep UV Luminosity Functions at the Infall Region of the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Hammer, D. M.; Hornschemeier, A. E.; Salim, S.; Smith, R.; Jenkins, L.; Mobasher, B.; Miller, N.; Ferguson, H.

    2011-01-01

    We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M(sub uv) = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes (alpha approximately equal to -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechter model provides a slightly better parametrization of the UV LFs resulting in a faint-end slope of alpha approximately equal to -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than alpha = -1 (a turnover) for the LFs constructed separately for passive and star forming galaxies. The UV LFs for star forming galaxies show a turnover at M(sub UV) approximately equal to -14 owing to a deficit of dwarf star forming galaxies in Coma with stellar masses below M(sub *) = 10(sup 8) solar mass. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.

  15. RECONSTRUCTING THE ACCRETION HISTORY OF THE GALACTIC STELLAR HALO FROM CHEMICAL ABUNDANCE RATIO DISTRIBUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva

    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfsmore » from various mass regimes and epochs of accretion. Next, we randomly drew samples of ∼10{sup 3–4} mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ∼6–9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time.« less

  16. The Origin of Dwarf Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa

    2012-10-01

    Abridge. We have conducted a spectrophotometric study of dwarf early-type galaxies (dEs) in the Virgo cluster and in regions of lower density. We have found that these galaxies show many properties in common with late-type galaxies but not with more massive early-types (E/S0). The properties of the dEs in Virgo show gradients within the cluster. dEs in the outer parts of the Virgo cluster are kinematically supported by rotation, while those in the center are supported by the random motions of their stars (i.e. pressure supported). The rotationally supported dEs have disky isophotes and faint underlying spiral/irregular substructures, they also show younger ages than those pressure supported, which have boxy isophotes and are smooth and regular, without any substructure. We compare the position of these dEs with massive early-type galaxies in the Faber-Jackson and Fundamental Plane relations, and we find that, although there is no difference between the position of rotationally and pressure supported dEs, both deviate from the relations of massive early-type galaxies in the direction of dwarf spheroidal systems (dSphs). We have used their offset with respect to the Fundamental Plane of E/S0 galaxies to estimate their dark matter fraction. All the properties studied in this work agree with a ram pressure stripping scenario, where late-type galaxies infall into the cluster, their interaction with the intergalactic medium blows away their gas and, as a result, they are quenched in a small amount of time. However, those dEs in the center of the cluster seem to have been fully transformed leaving no trace of their possible spiral origin, thus, if that is the case, they must have experienced a more violent mechanism in combination with ram pressure stripping.

  17. White Dwarf/M Dwarf Binaries as Single Degenerate Progenitors of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig

    2012-10-01

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, MV >~ 8.4 on the SN Ia in SNR 0509-67.5 and MV >~ 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a "magnetic bottle" connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the "nova limit" and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  18. Hunting For Wild Brown Dwarf Companions To White Dwarfs In UKIDSS And SDSS

    NASA Astrophysics Data System (ADS)

    Day-Jones, Avril; Pinfield, D. J.; Jones, H. R. A.; Napiwotzki, R.; Burningham, B.; Jenkins, J. S.; UKIDSS Cool Dwarf Science Working Group

    2008-03-01

    We present findings from our search of the latest releases of SDSS and UKIDSS LAS for very widely separated white dwarf - ultracool dwarf binaries. Ultracool dwarfs found in such binary systems could be used as benchmark objects, whose properties, such as age and distance can be inferred indirectly from the white dwarf primary (with no need to refer to atmospheric models) and can provide a test bed for theoretical models, they can therefore be used observationally pin down how physical properties affect ultracool dwarf spectra.

  19. DISCOVERY OF AN ULTRA-DIFFUSE GALAXY IN THE PISCES-PERSEUS SUPERCLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Delgado, David; Grebel, Eva K.; Läsker, Ronald

    We report the discovery of DGSAT I, an ultra-diffuse, quenched galaxy located 10.°4 in projection from the Andromeda galaxy (M31). This low-surface brightness galaxy (μ{sub V} = 24.8 mag arcsec{sup −2}), found with a small amateur telescope, appears unresolved in sub-arcsecond archival Subaru/Suprime-Cam images, and hence has been missed by optical surveys relying on resolved star counts, in spite of its relatively large effective radius (R{sub e}(V) = 12″) and proximity (15′) to the well-known dwarf spheroidal galaxy And II. Its red color (V − I = 1.0), shallow Sérsic index (n{sub V} = 0.68), and the absence of detectable Hα emission aremore » typical properties of dwarf spheroidal galaxies and suggest that it is mainly composed of old stars. Initially interpreted as an interesting case of an isolated dwarf spheroidal galaxy in the local universe, our radial velocity measurement obtained with the BTA 6 m telescope (V{sub h} = 5450 ± 40 km s{sup −1}) shows that this system is an M31-background galaxy associated with the filament of the Pisces-Perseus supercluster. At the distance of this cluster (∼78 Mpc), DGSAT I would have an R{sub e} ∼ 4.7 kpc and M{sub V} ∼ −16.3. Its properties resemble those of the ultra-diffuse galaxies (UDGs) recently discovered in the Coma cluster. DGSAT I is the first case of these rare UDGs found in this galaxy cluster. Unlike the UDGs associated with the Coma and Virgo clusters, DGSAT I is found in a much lower density environment, which provides a fresh constraint on the formation mechanisms for this intriguing class of galaxy.« less

  20. Hubble Space Telescope observations of the dwarf Nova Z Chamaeleontis through two eruption cycles

    NASA Technical Reports Server (NTRS)

    Robinson, E. L.; Wood, Janet H.; Bless, R. C.; Clemens, J. C.; Dolan, J. F.; Elliot, J. L.; Nelson, M. J.; Percival, J. W.; Taylor, M. J.; Van Citters, G. W.

    1995-01-01

    , spherical white dwarf by a dark secondary star. The center of the accretion disk was, therfore, optically thin at ultraviolet wavelenghts and the boundary layer was too faint to be visible.

  1. A Search for Periodic Optical Variability in Radio Detected Ultracool Dwarfs: A Consequence of a Magnetically-Driven Auroral Process?

    NASA Astrophysics Data System (ADS)

    Harding, L. K.; Hallinan, G.; Boyle, R. P.; Butler, R. F.; Sheehan, B.; Golden, A.

    2011-12-01

    A number of ultracool dwarfs have been unexpectedly detected as radio sources in the last decade, four of which have been found to be producing periodic pulses. More recently, two of these pulsing dwarfs have also been found to be periodically variable in broadband optical photometry. The detected periods match the periods of the radio pulses which have previously been associated with the rotation period of the dwarf. For one of these objects, it has also been established that the optical and radio periodic variability are possibly linked, being a consequence of magnetically-driven auroral processes. In order to investigate the ubiquity of the periodic optical variability in radio detected sources, the GUFI instrument (Galway Ultra Fast Imager) was commissioned on the 1.8m Vatican Advanced Technology Telescope, on Mt. Graham, Arizona, and has been obtaining data for the past eighteen months. More than two hundred hours of multi-epoch photometric monitoring observations of radio detected ultracool dwarfs have been completed. We present initial results confirming optical periodic variability for four of this sample, three of which have been newly confirmed using GUFI.

  2. Cold Brown Dwarfs with WISE: Y Dwarfs and the Field Mass Function

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. Davy

    2012-01-01

    Why study Brown Dwarf stars? They re the lowest mass byproducts of star formation.. They provide time capsules across the age of the Galaxy.. They show what low-T(sub eff) atmospheres look like.. They may be some of our closest neighbors in space..WISE is a 40cm Earth-orbiting telescope. There are 211 stars and only 33 brown dwarfs in this volume.. This means that stars outnumber brown dwarfs by a factor of 6:1 currently.. The number of brown dwarfs will continue to increase if:: (a) more nearby Y dwarf candidates are confirmed, or (b) our distances to known Y s are overestimated, or (c) there are colder BDs invisible to WISE..

  3. Ships Passing in the Night: Spectroscopic Analysis of Two Ultra-faint Satellites in the Constellation Carina

    NASA Astrophysics Data System (ADS)

    Li, T. S.; Simon, J. D.; Pace, A. B.; Torrealba, G.; Kuehn, K.; Drlica-Wagner, A.; Bechtol, K.; Vivas, A. K.; van der Marel, R. P.; Wood, M.; Yanny, B.; Belokurov, V.; Jethwa, P.; Zucker, D. B.; Lewis, G.; Kron, R.; Nidever, D. L.; Sánchez-Conde, M. A.; Ji, A. P.; Conn, B. C.; James, D. J.; Martin, N. F.; Martinez-Delgado, D.; Noël, N. E. D.; MagLiteS Collaboration

    2018-04-01

    We present Magellan/IMACS, Anglo-Australian Telescope/AAOmega+2dF, and Very Large Telescope/GIRAFFE+FLAMES spectroscopy of the Carina II (Car II) and Carina III (Car III) dwarf galaxy candidates, recently discovered in the Magellanic Satellites Survey (MagLiteS). We identify 18 member stars in Car II, including two binaries with variable radial velocities and two RR Lyrae stars. The other 14 members have a mean heliocentric velocity {v}hel}=477.2+/- 1.2 {km} {{{s}}}-1 and a velocity dispersion of {σ }v={3.4}-0.8+1.2 {km} {{{s}}}-1. Assuming Car II is in dynamical equilibrium, we derive a total mass within the half-light radius of {1.0}-0.4+0.8× {10}6 {M}ȯ , indicating a mass-to-light ratio of {369}-161+309 {M}ȯ /{L}ȯ . From equivalent width measurements of the calcium triplet lines of nine red giant branch (RGB) stars, we derive a mean metallicity of {{[Fe/H]}}=-2.44+/- 0.09 with dispersion {σ }{{[Fe/H]}}={0.22}-0.07+0.10. Considering both the kinematic and chemical properties, we conclude that Car II is a dark-matter-dominated dwarf galaxy. For Car III, we identify four member stars, from which we calculate a systemic velocity of {v}hel}={284.6}-3.1+3.4 {km} {{{s}}}-1. The brightest RGB member of Car III has a metallicity of {{[Fe/H]}} =-1.97+/- 0.12. Due to the small size of the Car III spectroscopic sample, we cannot conclusively determine its nature. Although these two systems have the smallest known physical separation ({{Δ }}d∼ 10 {kpc}) among Local Group satellites, the large difference in their systemic velocities, ∼ 200 {km} {{{s}}}-1, indicates that they are unlikely to be a bound pair. One or both systems are likely associated with the Large Magellanic Cloud (LMC), and may remain LMC satellites today. No statistically significant excess of γ-ray emission is found at the locations of Car II and Car III in eight years of Fermi-LAT data.

  4. The Ursa Major cluster of galaxies - III. Optical observations of dwarf galaxies and the luminosity function down to MR=-11

    NASA Astrophysics Data System (ADS)

    Trentham, Neil; Tully, R. Brent; Verheijen, Marc A. W.

    2001-07-01

    Results are presented of a deep optical survey of the Ursa Major cluster, a spiral-rich cluster of galaxies at a distance of 18.6Mpc which contains about 30 per cent of the light but only 5 per cent of the mass of the nearby Virgo cluster. Fields around known cluster members and a pattern of blind fields along the major and minor axes of the cluster were studied with mosaic CCD cameras on the Canada-France-Hawaii Telescope. The dynamical crossing time for the Ursa Major cluster is only slightly less than a Hubble time. Most galaxies in the local Universe exist in similar moderate-density environments. The Ursa Major cluster is therefore a good place to study the statistical properties of dwarf galaxies, since this structure is at an evolutionary stage representative of typical environments, yet has enough galaxies that reasonable counting statistics can be accumulated. The main observational results of our survey are as follows. (i) The galaxy luminosity function is flat, with a logarithmic slope α=-1.1 for -17faint-end slope is quite different from what was seen in the Virgo cluster, where α=-2.26+/-0.14. (ii) Dwarf galaxies are as frequently found to be blue dwarf irregulars as red dwarf spheroidals in the blind cluster fields. The density of red dwarfs is significantly higher in the fields around luminous members than in the blind fields. The most important result is the failure to detect many dwarfs. If the steep luminosity function claimed for the Virgo cluster were valid for Ursa Major, then in our blind fields we should have found ~103 galaxies with -17dwarfs compared with the expectations of hierarchical clustering theory. It is speculated that the critical difference between the

  5. The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. II. Survey description, results, and performances

    NASA Astrophysics Data System (ADS)

    Chauvin, G.; Vigan, A.; Bonnefoy, M.; Desidera, S.; Bonavita, M.; Mesa, D.; Boccaletti, A.; Buenzli, E.; Carson, J.; Delorme, P.; Hagelberg, J.; Montagnier, G.; Mordasini, C.; Quanz, S. P.; Segransan, D.; Thalmann, C.; Beuzit, J.-L.; Biller, B.; Covino, E.; Feldt, M.; Girard, J.; Gratton, R.; Henning, T.; Kasper, M.; Lagrange, A.-M.; Messina, S.; Meyer, M.; Mouillet, D.; Moutou, C.; Reggiani, M.; Schlieder, J. E.; Zurlo, A.

    2015-01-01

    Context. Young, nearby stars are ideal targets for direct imaging searches for giant planets and brown dwarf companions. After the first-imaged planet discoveries, vast efforts have been devoted to the statistical analysis of the occurence and orbital distributions of giant planets and brown dwarf companions at wide (≥5-6 AU) orbits. Aims: In anticipation of the VLT/SPHERE planet-imager, guaranteed-time programs, we have conducted a preparatory survey of 86 stars between 2009 and 2013 to identify new faint comoving companions to ultimately analyze the occurence of giant planets and brown dwarf companions at wide (10-2000 AU) orbits around young, solar-type stars. Methods: We used NaCo at VLT to explore the occurrence rate of giant planets and brown dwarfs between typically 0.1 and 8''. Diffraction-limited observations in H-band combined with angular differential imaging enabled us to reach primary star-companion brightness ratios as small as 10-6 at 1.5''. Repeated observations at several epochs enabled us to discriminate comoving companions from background objects. Results: During our survey, twelve systems were resolved as new binaries, including the discovery of a new white dwarf companion to the star HD 8049. Around 34 stars, at least one companion candidate was detected in the observed field of view. More than 400 faint sources were detected; 90% of them were in four crowded fields. With the exception of HD 8049 B, we did not identify any new comoving companions. The survey also led to spatially resolved images of the thin debris disk around HD 61005 that have been published earlier. Finally, considering the survey detection limits, we derive a preliminary upper limit on the frequency of giant planets for the semi-major axes of [10, 2000] AU: typically less than 15% between 100 and 500 AU and less than 10% between 50 and 500 AU for exoplanets that are more massive than 5 MJup and 10 MJup respectively, if we consider a uniform input distribution and a

  6. Faintest Methane Brown Dwarf Discovered with the NTT and VLT

    NASA Astrophysics Data System (ADS)

    1999-08-01

    A team of European astronomers [1] has found a cold and extremely faint object in interstellar space, high above the galactic plane. It is a Methane Brown Dwarf of which only a few are known. This is by far the most distant one identified to date. Brown Dwarfs are star-like objects which are heavier than planets but not massive enough to trigger the nuclear burning of hydrogen and other elements which powers normal stars. They are, nevertheless, heated during their formation by gravitational contraction but then continuously cool as this energy is radiated away. The so-called Methane Brown Dwarfs are the coolest members of the class detected so far, with temperatures around 700 °C, i.e. around 1000 degrees cooler than the coldest stars. The new object, provisionally known as NTTDF J1205-0744 , was found during a deep survey of a small sky region in the constellation Virgo (The Virgin), just south of the celestial equator. The chances of identifying a rare object like this in such a restricted area are very small and the astronomers readily admit that they must have been very lucky. This is the story of an (unexpected) astronomical discovery that may prove to be very important for galactic studies. It also demonstrates the power of modern observational techniques. The NTT Deep Field A long series of exposures of a small sky field in Virgo were made in 1997 and 1998 with the ESO 3.58-m New Technology Telescope (NTT) at La Silla. They were carried out with the aim of measuring and demonstrating the limiting performance of two astronomical instruments at this telescope, the SUperb-Seeing Imager (SUSI) in the visible part of the spectrum (0.35 - 1.00 µm), and the multi-mode Son of ISAAC (SOFI) in the near-infrared region (1.0 - 2.5 µm). The observed sky area measures only 2.3 x 2.3 arcmin 2 and is referred to as the NTT Deep Field. It has been studied in great detail, in particular to identify very distant galaxies for spectroscopic follow-up observations with the

  7. The faint galaxy contribution to the diffuse extragalactic background light

    NASA Technical Reports Server (NTRS)

    Cole, Shaun; Treyer, Marie-Agnes; Silk, Joseph

    1992-01-01

    Models of the faint galaxy contribution to the diffuse extragalactic background light are presented, which are consistent with current data on faint galaxy number counts and redshifts. The autocorrelation function of surface brightness fluctuations in the extragalactic diffuse light is predicted, and the way in which these predictions depend on the cosmological model and assumptions of biasing is determined. It is confirmed that the recent deep infrared number counts are most compatible with a high density universe (Omega-0 is approximately equal to 1) and that the steep blue counts then require an extra population of rapidly evolving blue galaxies. The faintest presently detectable galaxies produce an interesting contribution to the extragalactic diffuse light, and still fainter galaxies may also produce a significant contribution. These faint galaxies still only produce a small fraction of the total optical diffuse background light, but on scales of a few arcminutes to a few degrees, they produce a substantial fraction of the fluctuations in the diffuse light.

  8. The Evolution of the Faint End of the UV Luminosity Function during the Peak Epoch of Star Formation (1 < z < 3)

    NASA Astrophysics Data System (ADS)

    Alavi, Anahita; Siana, Brian; Richard, Johan; Rafelski, Marc; Jauzac, Mathilde; Limousin, Marceau; Freeman, William R.; Scarlata, Claudia; Robertson, Brant; Stark, Daniel P.; Teplitz, Harry I.; Desai, Vandana

    2016-11-01

    We present a robust measurement of the rest-frame UV luminosity function (LF) and its evolution during the peak epoch of cosmic star formation at 1\\lt z\\lt 3. We use our deep near-ultraviolet imaging from WFC3/UVIS on the Hubble Space Telescope and existing Advanced Camera for Surveys (ACS)/WFC and WFC3/IR imaging of three lensing galaxy clusters, Abell 2744 and MACS J0717 from the Hubble Frontier Field survey and Abell 1689. Combining deep UV imaging and high magnification from strong gravitational lensing, we use photometric redshifts to identify 780 ultra-faint galaxies with {M}{UV}\\lt -12.5 AB mag at 1\\lt z\\lt 3. From these samples, we identified five new, faint, multiply imaged systems in A1689. We run a Monte Carlo simulation to estimate the completeness correction and effective volume for each cluster using the latest published lensing models. We compute the rest-frame UV LF and find the best-fit faint-end slopes of α =-1.56+/- 0.04, α =-1.72+/- 0.04, and α =-1.94+/- 0.06 at 1.0\\lt z\\lt 1.6, 1.6\\lt z\\lt 2.2, and 2.2\\lt z\\lt 3.0, respectively. Our results demonstrate that the UV LF becomes steeper from z˜ 1.3 to z˜ 2.6 with no sign of a turnover down to {M}{UV}=-14 AB mag. We further derive the UV LFs using the Lyman break “dropout” selection and confirm the robustness of our conclusions against different selection methodologies. Because the sample sizes are so large and extend to such faint luminosities, the statistical uncertainties are quite small, and systematic uncertainties (due to the assumed size distribution, for example) likely dominate. If we restrict our analysis to galaxies and volumes above \\gt 50 % completeness in order to minimize these systematics, we still find that the faint-end slope is steep and getting steeper with redshift, though with slightly shallower (less negative) values (α =-1.55+/- 0.06, -1.69 ± 0.07, and -1.79 ± 0.08 for z˜ 1.3, 1.9, and 2.6, respectively). Finally, we conclude that the faint star

  9. The Stellar Populations of Two Ultra-diffuse Galaxies from Optical and Near-infrared Photometry

    NASA Astrophysics Data System (ADS)

    Pandya, Viraj; Romanowsky, Aaron J.; Laine, Seppo; Brodie, Jean P.; Johnson, Benjamin D.; Glaccum, William; Villaume, Alexa; Cuillandre, Jean-Charles; Gwyn, Stephen; Krick, Jessica; Lasker, Ronald; Martín-Navarro, Ignacio; Martinez-Delgado, David; van Dokkum, Pieter

    2018-05-01

    We present observational constraints on the stellar populations of two ultra-diffuse galaxies (UDGs) using optical through near-infrared (NIR) spectral energy distribution (SED) fitting. Our analysis is enabled by new Spitzer-IRAC 3.6 and 4.5 μm imaging, archival optical imaging, and the prospector fully Bayesian SED fitting framework. Our sample contains one field UDG (DGSAT I), one Virgo cluster UDG (VCC 1287), and one Virgo cluster dwarf elliptical for comparison (VCC 1122). We find that the optical–NIR colors of the three galaxies are significantly different from each other. We infer that VCC 1287 has an old (≳7.7 Gyr) and surprisingly metal-poor ([Z/Z ⊙] ≲ ‑1.0) stellar population, even after marginalizing over uncertainties on diffuse interstellar dust. In contrast, the field UDG DGSAT I shows evidence of being younger than the Virgo UDG, with an extended star formation history and an age posterior extending down to ∼3 Gyr. The stellar metallicity of DGSAT I is sub-solar but higher than that of the Virgo UDG, with [Z/{Z}ȯ ]=-{0.63}-0.62+0.35; in the case of exactly zero diffuse interstellar dust, DGSAT I may even have solar metallicity. With VCC 1287 and several Coma UDGs, a general picture is emerging where cluster UDGs may be “failed” galaxies, but the field UDG DGSAT I seems more consistent with a stellar feedback-induced expansion scenario. In the future, our approach can be applied to a large and diverse sample of UDGs down to faint surface brightness limits, with the goal of constraining their stellar ages, stellar metallicities, and circumstellar and diffuse interstellar dust content.

  10. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV–optical–IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use H α chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of amore » white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population.« less

  11. An L Band Spectrum of the Coldest Brown Dwarf

    NASA Astrophysics Data System (ADS)

    Morley, Caroline V.; Skemer, Andrew J.; Allers, Katelyn N.; Marley, Mark. S.; Faherty, Jacqueline K.; Visscher, Channon; Beiler, Samuel A.; Miles, Brittany E.; Lupu, Roxana; Freedman, Richard S.; Fortney, Jonathan J.; Geballe, Thomas R.; Bjoraker, Gordon L.

    2018-05-01

    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. presented a spectrum of WISE 0855 from 4.5–5.1 μm (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in the L band, from 3.4–4.14 μm. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. The James Webb Space Telescope will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.

  12. The population of faint Jupiter family comets near the Earth

    NASA Astrophysics Data System (ADS)

    Fernández, Julio A.; Morbidelli, Alessandro

    2006-11-01

    We study the population of faint Jupiter family comets (JFCs) that approach the Earth (perihelion distances q<1.3 AU) by applying a debiasing technique to the observed sample. We found for the debiased cumulative luminosity function (CLF) of absolute total magnitudes H a bimodal distribution in which brighter comets ( H≲9) follow a linear relation with a steep slope α=0.65±0.14, while fainter comets follow a much shallower slope α=0.25±0.06 down to H˜18. The slope can be pushed up to α=0.35±0.09 if a second break in the H distribution to a much shallower slope is introduced at H˜16. We estimate a population of about 10 3 faint JFCs with q<1.3 AU and 10faint near-Earth JFCs may be explained either as: (i) the source population (the scattered disk) has an equally very shallow distribution in the considered size range, or (ii) the distribution is flattened by the disintegration of small objects before that they have a chance of being observed. The fact that the slope of the magnitude distribution of the faint active JFCs is very similar to that found for a sample of dormant JFCs candidates suggests that for a surviving (i.e., not disintegrated) object, the probability of becoming dormant versus keeping some activity is roughly size independent.

  13. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Banibrata; Rao, A.R., E-mail: bm@physics.iisc.ernet.in, E-mail: arrao@tifr.res.in

    We explore the possibility that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are powered by highly magnetized white dwarfs (B-WDs). We take a sample of SGRs and AXPs and provide the possible parameter space in mass, radius, and surface magnetic field based on their observed properties (period and its derivative) and the assumption that these sources obey the mass-radius relation derived for the B-WDs. The radius and magnetic field of B-WDs are adequate to explain energies in SGRs/AXPs as the rotationally powered energy. In addition, B-WDs also adequately explain the perplexing radio transient GCRT J1745-3009 as a whitemore » dwarf pulsar. Note that the radius and magnetic fields of B-WDs are neither extreme (unlike of highly magnetized neutron stars) nor ordinary (unlike of magnetized white dwarfs, yet following the Chandrasekhar's mass-radius relation (C-WDs)). In order to explain SGRs/AXPs, while the highly magnetized neutron stars require an extra, observationally not well established yet, source of energy, the C-WDs predict large ultra-violet luminosity which is observationally constrained from a strict upper limit. Finally, we provide a set of basic differences between the magnetar and B-WD hypotheses for SGRs/AXPs.« less

  14. The mass spectrum of the white dwarfs in cataclysmic binaries - Supplementary computations

    NASA Astrophysics Data System (ADS)

    Ritter, H.; Ozkan, M. T.

    1986-10-01

    Numerical computations supplementing those of Ritter and Burkert (1986) for the study of observational selection in favor of massive white dwarfs among cataclysmic binaries (CBs) are presented. In particular the contribution of CBs beyond the period minimum and the influence of the inclination and of limb-darkening of the accretion disk are investigated. It is found that: (1) the main conclusions of Ritter and Burkert remain unchanged; (2) neither the inclusion of CBs containing a black-dwarf secondary nor the variation of the inclination or limb-darkening change the selection significantly; (3) in a magnitude-limited sample, about 22 percent of the ultra-short-period CBs contain a degenerate secondary; (4) the mean inclination of the accretion disk in a magnitude-limited sample is always close to 60 deg; (5) the fraction of eclipsing systems is of order 10-15 percent at m(v) = 10.0; (6) the mean inclination and the fraction of eclipsing systems increases with the limiting magnitude; and (7) the intrinsic space density of CBs is n(CB) approximately .0001-.0002/cu pc.

  15. Implications of Stellar Feedback for Dynamical Modeling of the Milky Way and Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Wetzel, Andrew

    2018-04-01

    I will present recent results on dynamical modeling of stellar populations from the FIRE cosmological zoom-in baryonic simulations of Milky Way-like and dwarf galaxies. First, I will discuss the dynamical formation of the Milky Way, including the origin of thin+thick stellar disk morphology. I also will discuss the curious origin of metal-rich stars on halo-like orbits near the Sun, as recently measured by Gaia, with new insights from FIRE simulations on stellar radial migration/heating. Next, I will discuss role of stellar feedback in generating non-equilibrium fluctuations of the gravitational potential in low-mass 'dwarf' galaxies, which can explain the origin of cores in their dark-matter density profiles. In particular, we predict significant observable effects on stellar dynamics, including radial migration, size fluctuations, and population gradients, which can provide observational tests of feedback-driven core formation. Finally, this scenario can explain the formation of newly discovered 'ultra-diffuse' galaxies.

  16. Discovery of Nearest Known Brown Dwarf

    NASA Astrophysics Data System (ADS)

    2003-01-01

    years apart in the 1990s, it had moved almost 10 arcseconds on the sky, giving a proper motion of 4.7 arcsec/year. It was also very faint at optical wavelengths, the reason why it had never been spotted before. However, when confirmed in data from the digital Two Micron All Sky Survey (2MASS), it was seen to be much brighter in the infrared, with the typical colour signature of a cool brown dwarf. At this point, the object was thought to be an isolated traveller. However, a search through available online catalogues quickly revealed that just 7 arcminutes away was a well-known star, Epsilon Indi. The two share exactly the same very large proper motion, and thus it was immediately clear the two must be related, forming a wide binary system separated by more than 1500 times the distance between the Sun and the Earth. Epsilon Indi is one of the 20 nearest stars to the Sun at just 11.8 light years [5]. It is a dwarf star (of spectral type K5) and with a surface temperature of about 4000 °C, somewhat cooler than the Sun. As such, it often appears in science fiction as the home of a habitable planetary system [6]. That all remains firmly in the realm of speculation, but nevertheless, we now know that it most certainly has a very interesting companion. This is a remarkable discovery: Epsilon Indi B is the nearest star-like source to the Sun found in 15 years, the highest proper motion source found in over 70 years, and with a total luminosity just 0.002% that of the Sun, one of the intrinsically faintest sources ever seen outside the Solar System! After Proxima and Alpha Centauri, the Epsilon Indi system is also just the second known wide binary system within 15 light years. However, unlike Proxima Centauri, Epsilon Indi B is no ordinary star. BROWN DWARFS: COOLING, COOLING, COOLING... ESO PR Photo 03b/03 ESO PR Photo 03b/03 [Preview - JPEG: 480 x 400 pix - 41k [Normal - JPEG: 960 x 800 pix - 120k] [Full-Res - JPEG: 2200 x 1834 pix - 304k] Caption: PR Photo 03b/03 shows the

  17. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    NASA Astrophysics Data System (ADS)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.; Lépine, Sébastien; Thorstensen, John R.

    2017-09-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV-optical-IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use Hα chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population. Based on observations obtained at the MDM Observatory operated by Dartmouth College, Columbia University, The Ohio State University, and the University of Michigan.

  18. A Very Cool Pair of Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    2011-03-01

    will look like CFBDSIR 1458+10B." Unravelling the secrets of this unique object involved exploiting the power of three different telescopes. CFBDSIR 1458+10 was first found to be a binary using the Laser Guide Star (LGS) Adaptive Optics system on the Keck II Telescope in Hawaii [3]. Liu and his colleagues then employed the Canada-France-Hawaii Telescope, also in Hawaii, to determine the distance to the brown dwarf duo using an infrared camera [4]. Finally the ESO VLT was used to study the object's infrared spectrum and measure its temperature. The hunt for cool objects is a very active astronomical hot topic. The Spitzer Space Telescope has recently identified two other very faint objects as other possible contenders for the coolest known brown dwarfs, although their temperatures have not been measured so precisely. Future observations will better determine how these objects compare to CFBDSIR 1458+10B. Liu and his colleagues are planning to observe CFBDSIR 1458+10B again to better determine its properties and to begin mapping the binary's orbit, which, after about a decade of monitoring, should allow astronomers to determine the binary's mass. Notes [1] CFBDSIR 1458+10 is the name of the binary system. The two components are known as CFBDSIR 1458+10A and CFBDSIR 1458+10B, with the latter the fainter and cooler of the two. They seem to be orbiting each other at a separation of about three times the distance between the Earth and the Sun in a period of about thirty years. [2] By comparison the temperature of the surface of the Sun is about 5500 degrees Celsius. [3] Adaptive optics cancels out much of Earth's atmospheric interference, improving the image sharpness by a factor of ten and enabling the very small separation binary to be resolved. [4] The astronomers measured the apparent motion of the brown dwarfs against the background of more distant stars caused by Earth's changing position in its orbit around the Sun. The effect, known as parallax, allowed them to

  19. X-ray Counterparts of Infrared Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Schartel, Norbert

    2011-10-01

    Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2

  20. Pushing the boundaries: probing the halo of the Milky Way beyond 100 kpc with RR Lyrae

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Medina, Gustavo; Munoz, Ricardo R.; Vivas, Anna Katherina; Willman, Beth

    2018-01-01

    Stars in the outermost halo of the Milky Way are vital tracers of the mass of our Galaxy. Furthermore, beyond ~100 kpc from the Galactic center, most (or perhaps all) of the stars are likely to be in faint dwarf galaxies or tidal debris from recently accreted dwarfs, making the outer reaches of the Galaxy important for understanding the Milky Way’s accretion history. However, confirmed stars are scarce at these distances because they are difficult to securely identify among the more numerous foreground stars. Pulsating variables such as RR Lyrae are ideal probes of the distant halo because they are readily identified in time-series data, are intrinsically bright and thus can be seen at large distances, and follow well-known period-luminosity relations that enable precise distance measurements. We present results from our program to find RR Lyrae using deep DECam time series data (from the HiTS supernova survey as well as our own observing program) covering ~300 square degrees. Our sample of distant RR Lyrae more than doubles the number of known Milky Way stars beyond distances of ~150 kpc. Among these, we find two distinct groups of two and three stars that are members of the Leo IV and Leo V ultra-faint dwarf galaxies, located at distances of ~145 kpc and ~175 kpc, respectively. We derive the stellar density as a function of Galactocentric radius, extending to more than 250 kpc from the Galactic center. This sample of RR Lyrae provides a set of important probes of the mass of the Milky Way and the accretion origin of the outer Galactic halo.

  1. 37 NEW T-TYPE BROWN DWARFS IN THE CANADA-FRANCE BROWN DWARFS SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Loic; Artigau, Etienne; Delorme, Philippe

    2011-06-15

    The Canada-France Brown Dwarfs Survey is an i'- and z'-band survey realized with MegaCam at the Canada-France-Hawaii Telescope that covers a surface area of 780 deg{sup 2}. Image analysis is now completed while J-band follow-up campaigns are {approx}90% done. The survey identified about 70 T dwarf candidates, of which 43 now have near-infrared spectra obtained with NIRI and GNIRS at Gemini and ISAAC at the Very Large Telescope. Six of these were previously published and we present here the 37 new discoveries, all T dwarfs. They range from T0 to T8.5 with four being of type T7 or later. Bothmore » newly identified T8 dwarfs are possibly high log (g) massive brown dwarfs of thin disk age. One T4.5 dwarf shows signs of sub-metallicity. We present proper motions and near-infrared photometry, and discuss about the most peculiar/interesting objects in some details.« less

  2. Prospecting in Ultracool Dwarfs: Measuring the Metallicities of Mid- and Late-M Dwarfs

    NASA Astrophysics Data System (ADS)

    Mann, Andrew W.; Deacon, Niall R.; Gaidos, Eric; Ansdell, Megan; Brewer, John M.; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.

    2014-06-01

    Metallicity is a fundamental parameter that contributes to the physical characteristics of a star. The low temperatures and complex molecules present in M dwarf atmospheres make it difficult to measure their metallicities using techniques that have been commonly used for Sun-like stars. Although there has been significant progress in developing empirical methods to measure M dwarf metallicities over the last few years, these techniques have been developed primarily for early- to mid-M dwarfs. We present a method to measure the metallicity of mid- to late-M dwarfs from moderate resolution (R ~ 2000) K-band (sime 2.2 μm) spectra. We calibrate our formula using 44 wide binaries containing an F, G, K, or early-M primary of known metallicity and a mid- to late-M dwarf companion. We show that similar features and techniques used for early-M dwarfs are still effective for late-M dwarfs. Our revised calibration is accurate to ~0.07 dex for M4.5-M9.5 dwarfs with -0.58 < [Fe/H] < +0.56 and shows no systematic trends with spectral type, metallicity, or the method used to determine the primary star metallicity. We show that our method gives consistent metallicities for the components of M+M wide binaries. We verify that our new formula works for unresolved binaries by combining spectra of single stars. Lastly, we show that our calibration gives consistent metallicities with the Mann et al. study for overlapping (M4-M5) stars, establishing that the two calibrations can be used in combination to determine metallicities across the entire M dwarf sequence.

  3. Significance of brown dwarfs

    NASA Technical Reports Server (NTRS)

    Black, D. C.

    1986-01-01

    The significance of brown dwarfs for resolving some major problems in astronomy is discussed. The importance of brown dwarfs for models of star formation by fragmentation of molecular clouds and for obtaining independent measurements of the ages of stars in binary systems is addressed. The relationship of brown dwarfs to planets is considered.

  4. Ships Passing in the Night: Spectroscopic Analysis of Two Ultra-faint Satellites in the Constellation Carina

    DOE PAGES

    Li, T. S.; Simon, J. D.; Pace, A. B.; ...

    2018-04-25

    Here, we present Magellan/IMACS, Anglo-Australian Telescope/AAOmega+2dF, and Very Large Telescope/GIRAFFE+FLAMES spectroscopy of the Carina II (Car II) and Carina III (Car III) dwarf galaxy candidates, recently discovered in the Magellanic Satellites Survey (MagLiteS). We identify 18 member stars in Car II, including two binaries with variable radial velocities and two RR Lyrae stars. The other 14 members have a mean heliocentric velocitymore » $${v}_{\\mathrm{hel}}=477.2\\pm 1.2$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$ and a velocity dispersion of $${\\sigma }_{v}={3.4}_{-0.8}^{+1.2}$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. Assuming Car II is in dynamical equilibrium, we derive a total mass within the half-light radius of $${1.0}_{-0.4}^{+0.8}\\times {10}^{6}$$ $${M}_{\\odot }$$, indicating a mass-to-light ratio of $${369}_{-161}^{+309}$$ $${M}_{\\odot }$$/$${L}_{\\odot }$$. From equivalent width measurements of the calcium triplet lines of nine red giant branch (RGB) stars, we derive a mean metallicity of $${\\rm{[Fe/H]}}=-2.44\\pm 0.09$$ with dispersion $${\\sigma }_{{\\rm{[Fe/H]}}}={0.22}_{-0.07}^{+0.10}$$. Considering both the kinematic and chemical properties, we conclude that Car II is a dark-matter-dominated dwarf galaxy. For Car III, we identify four member stars, from which we calculate a systemic velocity of $${v}_{\\mathrm{hel}}={284.6}_{-3.1}^{+3.4}$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. The brightest RGB member of Car III has a metallicity of $${\\rm{[Fe/H]}}\\,=-1.97\\pm 0.12$$. Due to the small size of the Car III spectroscopic sample, we cannot conclusively determine its nature. Although these two systems have the smallest known physical separation ($${\\rm{\\Delta }}d\\sim 10\\,\\mathrm{kpc}$$) among Local Group satellites, the large difference in their systemic velocities, $$\\sim 200\\,\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$, indicates that they are unlikely to be a bound pair. One or both systems are likely associated with the Large Magellanic Cloud

  5. Ships Passing in the Night: Spectroscopic Analysis of Two Ultra-faint Satellites in the Constellation Carina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T. S.; Simon, J. D.; Pace, A. B.

    Here, we present Magellan/IMACS, Anglo-Australian Telescope/AAOmega+2dF, and Very Large Telescope/GIRAFFE+FLAMES spectroscopy of the Carina II (Car II) and Carina III (Car III) dwarf galaxy candidates, recently discovered in the Magellanic Satellites Survey (MagLiteS). We identify 18 member stars in Car II, including two binaries with variable radial velocities and two RR Lyrae stars. The other 14 members have a mean heliocentric velocitymore » $${v}_{\\mathrm{hel}}=477.2\\pm 1.2$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$ and a velocity dispersion of $${\\sigma }_{v}={3.4}_{-0.8}^{+1.2}$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. Assuming Car II is in dynamical equilibrium, we derive a total mass within the half-light radius of $${1.0}_{-0.4}^{+0.8}\\times {10}^{6}$$ $${M}_{\\odot }$$, indicating a mass-to-light ratio of $${369}_{-161}^{+309}$$ $${M}_{\\odot }$$/$${L}_{\\odot }$$. From equivalent width measurements of the calcium triplet lines of nine red giant branch (RGB) stars, we derive a mean metallicity of $${\\rm{[Fe/H]}}=-2.44\\pm 0.09$$ with dispersion $${\\sigma }_{{\\rm{[Fe/H]}}}={0.22}_{-0.07}^{+0.10}$$. Considering both the kinematic and chemical properties, we conclude that Car II is a dark-matter-dominated dwarf galaxy. For Car III, we identify four member stars, from which we calculate a systemic velocity of $${v}_{\\mathrm{hel}}={284.6}_{-3.1}^{+3.4}$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. The brightest RGB member of Car III has a metallicity of $${\\rm{[Fe/H]}}\\,=-1.97\\pm 0.12$$. Due to the small size of the Car III spectroscopic sample, we cannot conclusively determine its nature. Although these two systems have the smallest known physical separation ($${\\rm{\\Delta }}d\\sim 10\\,\\mathrm{kpc}$$) among Local Group satellites, the large difference in their systemic velocities, $$\\sim 200\\,\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$, indicates that they are unlikely to be a bound pair. One or both systems are likely associated with the Large Magellanic Cloud

  6. Youngest Brown Dwarf Yet in a Multiple Stellar System

    NASA Astrophysics Data System (ADS)

    2000-07-01

    to sustain stable nuclear fusion of hydrogen. Once they have been formed, they enter into a very long phase of slow contraction. This process releases (potential) energy that is emitted in the form of electromagnetic radiation. Their brightness decreases with time, as they become smaller and smaller and their energy reservoir dwindles. A few dozen "free-floating", isolated Brown Dwarfs have been discovered so far in space. They include members of the well-known, comparatively young Pleiades cluster (120 million years old) and some much older ones (some thousands of million years) only a few light-years away. A typical example is Kelu-1 that was found at ESO in 1997, see PR 07/97. However, despite extensive searches and much invested effort, astronomers have so far only found three Brown Dwarfs that have been confirmed as companions to normal stars: Gl 229 B , G196-3 B , and Gl 570 D . The younger a Brown Dwarf is, the more luminous it is, and the nearer it is to us, the brighter it appears in the sky. Old Brown Dwarfs are intrinsically so faint that, with the currently available instruments, they can only be found if they are nearby. It is therefore no surprise that the known, nearby Brown Dwarfs are generally older than the more distant ones, e.g. those found in the Pleiades. A programme to find young Brown Dwarfs It is on this background, that the international astronomer team [1] is now searching for young Brown Dwarfs that are companions to young, nearby stars. However, young stars are quite rare in the solar neighbourhood. Only a few were known before the very successful ROSAT X-ray survey that discovered about 100 young and nearby stars, less than 100 million years old and within ~ 300 light-years distance. The new research programme attempts to find brown dwarf companions to these and other young and nearby stars. For this, state-of-the-art infrared imaging cameras are used at the 3.6-m New Technology Telescope (NTT) with the SOFI (and SHARP) instrument on La

  7. Brown Dwarf Comparison

    NASA Image and Video Library

    2009-11-17

    NASA Wide-field Infrared Survey Explorer will uncover many failed stars, or brown dwarfs, in infrared light. This diagram shows a brown dwarf in relation to Earth, Jupiter, a low-mass star and the sun.

  8. DEEP ULTRAVIOLET LUMINOSITY FUNCTIONS AT THE INFALL REGION OF THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammer, D. M.; Hornschemeier, A. E.; Jenkins, L.

    2012-02-01

    We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest ultraviolet (UV) luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M{sub UV} = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes ({alpha} Almost-Equal-To -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechtermore » model provides a slightly better parameterization of the UV LFs resulting in a faint-end slope of {alpha} Almost-Equal-To -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than {alpha} = -1 (a turnover) for the LFs constructed separately for passive and star-forming galaxies. The UV LFs for star-forming galaxies show a turnover at M{sub UV} Almost-Equal-To -14 owing to a deficit of dwarf star-forming galaxies in Coma with stellar masses below M{sub *} = 10{sup 8} M{sub Sun }. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star-forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star-forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star-forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.« less

  9. Benchmarking Brown Dwarf Models With a Non-irradiated Transiting Brown Dwarf in Praesepe

    NASA Astrophysics Data System (ADS)

    Beatty, Thomas; Marley, Mark; Line, Michael; Gizis, John

    2018-05-01

    We wish to use 9.4 hours of Spitzer time to observe two eclipses, one each at 3.6um and 4.5um, of the transiting brown dwarf AD 3116b. AD 3116b is a 54.2+/-4.3 MJ, 1.08+/-0.07 RJ object on a 1.98 day orbit about a 3200K M-dwarf. Uniquely, AD 3116 and its host star are both members of Praesepe, a 690+/-60 Myr old open cluster. AD 3116b is thus one of two transiting brown dwarfs for which we have a robust isochronal age that is not dependent upon brown dwarf evolutionary models, and the youngest brown dwarf for which this is the case. Importantly, the flux AD 3116b receives from its host star is only 0.7% of its predicted internal luminosity (Saumon & Marley 2008). This makes AD 3116b the first known transiting brown dwarf that simultaneously has a well-defined age, and that receives a negligible amount of external irradiation, and a unique laboratory to test radius and luminosity predictions from brown dwarf evolutionary models. Our goal is to measure the emission from the brown dwarf. AD 3116b should have large, 25 mmag, eclipse depths in the Spitzer bandpasses, and we expect to measure them with a precision of +/-0.50 mmag at 3.6um and +/-0.54 mmag at 4.5um. This will allow us to make measure AD 3116b?s internal effective temperature to +/-40K. We will also use the upcoming Gaia DR2 parallaxes to measure AD 3116b's absolute IRAC magnitudes and color, and hence determine the cloud properties of the atmosphere. As the only known brown dwarf with an independently measured mass, radius, and age, Spitzer measurements of AD 3116b's luminosity and clouds will provide a critical benchmark for brown dwarf observation and theory.

  10. The red and blue galaxy populations in the GOODS field: evidence for an excess of red dwarfs

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Giallongo, E.; Menci, N.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L.; Trevese, D.; Cristiani, S.; Nonino, M.; Vanzella, E.

    2008-01-01

    Aims: We study the evolution of the galaxy population up to z˜ 3 as a function of its colour properties. In particular, luminosity functions and luminosity densities were derived as a function of redshift for the blue/late and red/early populations. Methods: We use data from the GOODS-MUSIC catalogue, which have typical magnitude limits z850≤ 26 and K_s≤ 23.5 for most of the sample. About 8% of the galaxies have spectroscopic redshifts; the remaining have well calibrated photometric redshifts derived from the extremely wide multi-wavelength coverage in 14 bands (from the U band to the Spitzer 8~ μm band). We have derived a catalogue of galaxies complete in the rest-frame B-band, which has been divided into two subsamples according to their rest-frame U-V colour (or derived specific star formation rate) properties. Results: We confirm a bimodality in the U-V colour and specific star formation rate of the galaxy sample up to z˜ 3. This bimodality is used to compute the luminosity functions of the blue/late and red/early subsamples. The luminosity functions of the blue/late and total samples are well represented by steep Schechter functions evolving in luminosity with increasing redshifts. The volume density of the luminosity functions of the red/early populations decreases with increasing redshift. The shape of the red/early luminosity functions shows an excess of faint red dwarfs with respect to the extrapolation of a flat Schechter function and can be represented by the sum of two Schechter functions. Our model for galaxy formation in the hierarchical clustering scenario, which also includes external feedback due to a diffuse UV background, shows a general broad agreement with the luminosity functions of both populations, the larger discrepancies being present at the faint end for the red population. Hints on the nature of the red dwarf population are given on the basis of their stellar mass and spatial distributions.

  11. STUDYING FAINT ULTRA-HARD X-RAY EMISSION FROM AGN IN GOALS LIRGS WITH SWIFT/BAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koss, Michael; Casey, Caitlin M.; Mushotzky, Richard

    2013-03-10

    We present the first analysis of the all-sky Swift Burst Alert Telescope (BAT) ultra-hard X-ray (14-195 keV) data for a targeted list of objects. We find that the BAT data can be studied at three-times-fainter limits than in previous blind detection catalogs based on prior knowledge of source positions and using smaller energy ranges for source detection. We determine the active galactic nucleus (AGN) fraction in 134 nearby (z < 0.05) luminous infrared galaxies (LIRGs) from the GOALS sample. We find that LIRGs have a higher detection frequency than galaxies matched in stellar mass and redshift at 14-195 keV andmore » 24-35 keV. In agreement with work at other wavelengths, the AGN detection fraction increases strongly at high IR luminosity with half of the high-luminosity LIRGs (50%, 6/12, log L{sub IR}/L{sub Sun} > 11.8) detected. The BAT AGN classification shows 97% (37/38) agreement with Chandra and XMM-Newton AGN classification using hardness ratios or detection of an iron K{alpha} line. This confirms our statistical analysis and supports the use of the Swift/BAT all-sky survey to study fainter populations of any category of sources in the ultra-hard X-ray band. BAT AGNs in LIRGs tend to show higher column densities with 40% {+-} 9% showing 14-195 keV/2-10 keV hardness flux ratios suggestive of high or Compton-thick column densities (log N{sub H} > 24 cm{sup -2}), compared to only 12% {+-} 5% of non-LIRG BAT AGNs. We also find that using specific energy ranges of the BAT detector can yield additional sources over total band detections with 24% (5/21) of detections in LIRGs at 24-35 keV not detected at 14-195 keV.« less

  12. Marvel-ous Dwarfs: Results from Four Heroically Large Simulated Volumes of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Munshi, Ferah; Brooks, Alyson; Weisz, Daniel; Bellovary, Jillian; Christensen, Charlotte

    2018-01-01

    We present results from high resolution, fully cosmological simulations of cosmic sheets that contain many dwarf galaxies. Together, they create the largest collection of simulated dwarf galaxies to date, with z=0 stellar masses comparable to the LMC or smaller. In total, we have simulated almost 100 luminous dwarf galaxies, forming a sample of simulated dwarfs which span a wide range of physical (stellar and halo mass) and evolutionary properties (merger history). We show how they can be calibrated against a wealth of observations of nearby galaxies including star formation histories, HI masses and kinematics, as well as stellar metallicities. We present preliminary results answering the following key questions: What is the slope of the stellar mass function at extremely low masses? Do halos with HI and no stars exist? What is the scatter in the stellar to halo mass relationship as a function of dwarf mass? What drives the scatter? With this large suite, we are beginning to statistically characterize dwarf galaxies and identify the types and numbers of outliers to expect.

  13. Searching Ultra-compact Pulsar Binaries with Abnormal Timing Behavior

    NASA Astrophysics Data System (ADS)

    Gong, B. P.; Li, Y. P.; Yuan, J. P.; Tian, J.; Zhang, Y. Y.; Li, D.; Jiang, B.; Li, X. D.; Wang, H. G.; Zou, Y. C.; Shao, L. J.

    2018-03-01

    Ultra-compact pulsar binaries are both ideal sources of gravitational radiation for gravitational wave detectors and laboratories for fundamental physics. However, the shortest orbital period of all radio pulsar binaries is currently 1.6 hr. The absence of pulsar binaries with a shorter orbital period is most likely due to technique limit. This paper points out that a tidal effect occurring on pulsar binaries with a short orbital period can perturb the orbital elements and result in a significant change in orbital modulation, which dramatically reduces the sensitivity of the acceleration searching that is widely used. Here a new search is proposed. The abnormal timing residual exhibited in a single pulse observation is simulated by a tidal effect occurring on an ultra-compact binary. The reproduction of the main features represented by the sharp peaks displayed in the abnormal timing behavior suggests that pulsars like PSR B0919+06 could be a candidate for an ultra-compact binary of an orbital period of ∼10 minutes and a companion star of a white dwarf star. The binary nature of such a candidate is further tested by (1) comparing the predicted long-term binary effect with decades of timing noise observed and (2) observing the optical counterpart of the expected companion star. Test (1) likely supports our model, while more observations are needed in test (2). Some interesting ultra-compact binaries could be found in the near future by applying such a new approach to other binary candidates.

  14. Cloud Atlas: Rotational Modulations in the L/T Transition Brown Dwarf Companion HN Peg B

    NASA Technical Reports Server (NTRS)

    Zhou, Yifan; Apai, Daniel; Metchev, Stanimir; Lew, Ben W. P.; Schneider, Glenn; Marley, Mark S.; Karalidi, Theodora; Manjavacas, Elena; Bedin, Luigi R.; Cowan, Nicolas B.; hide

    2018-01-01

    Time-resolved observations of brown dwarfs' rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes, and cloud morphology, which directly constrain condensate cloud and atmospheric circulation models. We report results from Hubble Space Telescope/Wide Field Camera 3 (WFC3) near-infrared G141 taken in six consecutive orbits observations of HNPeg B, an L/T transition brown dwarf companion to a G0V type star. The best-fit sine wave to the 1.1 to 1.7 micron broadband light curve has the amplitude of and period of hour. The modulation amplitude has no detectable wavelength dependence except in the 1.4 micron water absorption band, indicating that the characteristic condensate particle sizes are large (greater than 1 micron). We detect significantly (4.4 sigma) lower modulation amplitude in the 1.4 micron water absorption band, and find that HN Peg B's spectral modulation resembles those of early T type brown dwarfs. We also describe a new empirical interpolation method to remove spectral contamination from the bright host star. This method may be applied in other high-contrast time-resolved observations with WFC3.

  15. What triggers starbursts in dwarf galaxies?

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    While the processes regulating star formation and the interstellar medium in massive interacting galaxies have been studied extensively, the extent to which these processes occur in the shallower gravitational potential wells of lower mass dwarf galaxies is relatively unconstrained. While dwarf galaxies are known to undergo starbursts (Heckman et al. 1998; Johnson et al. 2000), the origins of these bursts remain unclear, and interactions and mergers with other dwarfs have not been ruled out (Lelli et al. 2012; Koleva et al. 2014). These gas-rich dwarf galaxies in the nearby universe are expected to offer glimpses of star formation modes at high redshift with their low metal content and large amounts of fuel for forming stars. Given that dwarf-dwarf mergers dominate the merger rate at any given redshift (i.e. De Lucia et al. 2006; Fakhouri et al. 2010), this lack of observational constraints leaves a significant mode of galaxy evolution in the universe mostly unexplored. While a few individual dwarf mergers/pairs have been observed (e.g., Henize 2-10: Reines et al. 2012; NGC4490: Clemens et al. 1998; NGC3448: Noreau & Kronberg 1986; IIZw40: Lequeux et al. 1980), a systematic study of the star formation histories of interacting dwarfs as a population has never been done. We propose to obtain and further process near- and far-ultraviolet (NUV/FUV), nearinfrared (NIR), and mid-infrared (MIR) imaging for a sample of 58 dwarf galaxy pairs (116 dwarfs) and 348 unpaired dwarfs (analogs matched in stellar mass, redshift, and local density enhancement) using the NASA archives for the Galaxy Evolution Explorer (GALEX; Martin et al. 2003), the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006), and the Wide-Field Infrared Survey Explorer (WISE; Wright et al. 2010) missions. We aim to characterize the impact interactions have on fueling star formation in the nearby universe for a complete sample of dwarf galaxy pairs caught in a variety of interaction stages from the Ti

  16. The U.S. survey for faint blue objects

    NASA Technical Reports Server (NTRS)

    Mitchell, K. J.; Howell, S. B.; Usher, P. D.

    1987-01-01

    A spectrophotometric study of the blue and UV-excess starlike objects in the U.S. survey (Usher, 1981) has been conducted. Observations were obtained with a resolution of about 20 A over the 3500-7000-A wavelength range. Considered within the sample are 42 DA white dwarfs, 4 DB/DO white dwarfs, 13 subdwarf B stars, 12 subdwarf O stars, and 13 horizontal branch stars. The sample is analyzed using numerical convolution photometry.

  17. Reconciling Dwarf Galaxies with ΛCDM Cosmology: Simulating a Realistic Population of Satellites around a Milky Way-mass Galaxy

    NASA Astrophysics Data System (ADS)

    Wetzel, Andrew R.; Hopkins, Philip F.; Kim, Ji-hoon; Faucher-Giguère, Claude-André; Kereš, Dušan; Quataert, Eliot

    2016-08-01

    Low-mass “dwarf” galaxies represent the most significant challenges to the cold dark matter (CDM) model of cosmological structure formation. Because these faint galaxies are (best) observed within the Local Group (LG) of the Milky Way (MW) and Andromeda (M31), understanding their formation in such an environment is critical. We present first results from the Latte Project: the Milky Way on Feedback in Realistic Environments (FIRE). This simulation models the formation of an MW-mass galaxy to z=0 within ΛCDM cosmology, including dark matter, gas, and stars at unprecedented resolution: baryon particle mass of 7070 {M}⊙ with gas kernel/softening that adapts down to 1 {pc} (with a median of 25{--}60 {pc} at z=0). Latte was simulated using the GIZMO code with a mesh-free method for accurate hydrodynamics and the FIRE-2 model for star formation and explicit feedback within a multi-phase interstellar medium. For the first time, Latte self-consistently resolves the spatial scales corresponding to half-light radii of dwarf galaxies that form around an MW-mass host down to {M}{star}≳ {10}5 {M}⊙ . Latte’s population of dwarf galaxies agrees with the LG across a broad range of properties: (1) distributions of stellar masses and stellar velocity dispersions (dynamical masses), including their joint relation; (2) the mass-metallicity relation; and (3) diverse range of star formation histories, including their mass dependence. Thus, Latte produces a realistic population of dwarf galaxies at {M}{star}≳ {10}5 {M}⊙ that does not suffer from the “missing satellites” or “too big to fail” problems of small-scale structure formation. We conclude that baryonic physics can reconcile observed dwarf galaxies with standard ΛCDM cosmology.

  18. Infrared Properties of Star Forming Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Vaduvescu, Ovidiu

    2005-11-01

    Dwarf galaxies are the most common galaxies in the Universe. They are systems believed to consist of matter in a near-primordial state, from which giant galaxies probably form. As such, they are important probes for studying matter in its near-primordial state. In an effort to study the main physical and chemical properties of dwarfs, the present thesis focuses upon the main physical properties of dwarfs. Two classes of star forming dwarf galaxies are considered: dwarf irregulars (dIs), and blue compact dwarfs (BCDs). A third class, dwarf ellipticals (dEs), is studied based on its structural properties and compared with dIs. Possible evolutionary connections are addressed between dIs and BCDs. To measure the luminosity, deep imaging in the near-infrared (NIR) is considered. Compared with the visible, the NIR domain gives a better gauge of the galaxy mass contained in the old stellar populations, minimising the starburst contribution and also the effects of extinction. Two observing samples of star-forming dwarf galaxies are considered. The first includes 34 dIs in the Local Volume closer than 5 Mpc. The second sample includes 16 BCDs in the Virgo Cluster. In six observing runs between 2001 and 2004, we acquired deep NIR images (J and K_s) using the 3.6m Canada-France-Hawaii-Telescope (CFHT) in Hawaii and the 2.1m telescope at the National Astronomical Observatory ''San Pedro Martir'' (OAN-SPM) in Mexico. Deep spectrocopy was acquired in 2003 on the 8.1m Gemini-North telescope in Hawaii. We completed the observed samples with spectroscopic data from the literature, and photometry from the 2MASS survey and GOLDMine database. From a statistical study at CFHT, we derived some strategies necessary to image optimally faint extended sources in the NIR. Due to the airglow variation in the atmosphere and the thermal contribution of the dome, telescope and the instrumentation, repeated observations of the sky must be alternated every 3-4 minutes with the science images, in

  19. The Population of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Gomez, Juan; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.

    2016-01-01

    The 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile has been used for spot surveys of the GEO orbital regime to study the population of optically faint GEO debris. The goal is to estimate the size of the population of GEO debris at sizes much smaller than can be studied with 1-meter class telescopes. Despite the small size of the field of view of the Magellan instrument (diameter 0.5-degree), a significant population of objects fainter than R = 19th magnitude have been found with angular rates consistent with circular orbits at GEO. We compare the size of this population with the numbers of GEO objects found at brighter magnitudes by smaller telescopes. The observed detections have a wide range in characteristics starting with those appearing as short uniform streaks. But there are a substantial number of detections with variations in brightness, flashers, during the 5-second exposure. The duration of each of these flashes can be extremely brief: sometimes less than half a second. This is characteristic of a rapidly tumbling object with a quite variable projected size times albedo. If the albedo is of the order of 0.2, then the largest projected size of these objects is around 10-cm. The data in this paper was collected over the last several years using Magellan's IMACS camera in f/2 mode. The analysis shows the brightness bins for the observed GEO population as well as the periodicity of the flashers. All objects presented are correlated with the catalog: the focus of the paper will be on the uncorrelated, optically faint, objects. The goal of this project is to better characterize the faint debris population in GEO that access to a 6.5-m optical telescope in a superb site can provide.

  20. Blue compact dwarfs - Extreme dwarf irregular galaxies

    NASA Technical Reports Server (NTRS)

    Thuan, Trinh X.

    1987-01-01

    Observational data on the most extreme members of the irregular dwarf (dI) galaxy class, the blue compact dwarfs (BCDs), are characterized, reviewing the results of recent investigations. The properties of the young stellar population, the ionized gas, the older star population, and the gas and dust of BCDs are contrasted with those of other dIs; BCD morphology is illustrated with sample images; and the value of BCDs (as nearby 'young' chemically unevolved galaxies) for studies of galaxy formation, galactic evolution, and starburst triggering mechanisms is indicated.

  1. Faint Debris Detection by Particle Based Track-Before-Detect Method

    NASA Astrophysics Data System (ADS)

    Uetsuhara, M.; Ikoma, N.

    2014-09-01

    This study proposes a particle method to detect faint debris, which is hardly seen in single frame, from an image sequence based on the concept of track-before-detect (TBD). The most widely used detection method is detect-before-track (DBT), which firstly detects signals of targets from single frame by distinguishing difference of intensity between foreground and background then associate the signals for each target between frames. DBT is capable of tracking bright targets but limited. DBT is necessary to consider presence of false signals and is difficult to recover from false association. On the other hand, TBD methods try to track targets without explicitly detecting the signals followed by evaluation of goodness of each track and obtaining detection results. TBD has an advantage over DBT in detecting weak signals around background level in single frame. However, conventional TBD methods for debris detection apply brute-force search over candidate tracks then manually select true one from the candidates. To reduce those significant drawbacks of brute-force search and not-fully automated process, this study proposes a faint debris detection algorithm by a particle based TBD method consisting of sequential update of target state and heuristic search of initial state. The state consists of position, velocity direction and magnitude, and size of debris over the image at a single frame. The sequential update process is implemented by a particle filter (PF). PF is an optimal filtering technique that requires initial distribution of target state as a prior knowledge. An evolutional algorithm (EA) is utilized to search the initial distribution. The EA iteratively applies propagation and likelihood evaluation of particles for the same image sequences and resulting set of particles is used as an initial distribution of PF. This paper describes the algorithm of the proposed faint debris detection method. The algorithm demonstrates performance on image sequences acquired

  2. The Faint End of the Quasar Luminosity Function at z ~ 4

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat; Bogosavljević, Milan; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Mahabal, Ashish

    2010-02-01

    The evolution of the quasar luminosity function (QLF) is one of the basic cosmological measures providing insight into structure formation and mass assembly in the universe. We have conducted a spectroscopic survey to find faint quasars (-26.0 < M 1450 < -22.0) at redshifts z = 3.8-5.2 in order to measure the faint end of the QLF at these early times. Using available optical imaging data from portions of the NOAO Deep Wide-Field Survey and the Deep Lens Survey, we have color-selected quasar candidates in a total area of 3.76 deg2. Thirty candidates have R <= 23 mag. We conducted spectroscopic follow-up for 28 of our candidates and found 23 QSOs, 21 of which are reported here for the first time, in the 3.74 < z < 5.06 redshift range. We estimate our survey completeness through detailed Monte Carlo simulations and derive the first measurement of the density of quasars in this magnitude and redshift interval. We find that the binned luminosity function (LF) is somewhat affected by the K-correction used to compute the rest-frame absolute magnitude at 1450 Å. Considering only our R <= 23 sample, the best-fit single power law (Φ vprop L β) gives a faint-end slope β = -1.6 ± 0.2. If we consider our larger, but highly incomplete sample going 1 mag fainter, we measure a steeper faint-end slope -2 < β < -2.5. In all cases, we consistently find faint-end slopes that are steeper than expected based on measurements at z ~ 3. We combine our sample with bright quasars from the Sloan Digital Sky Survey to derive parameters for a double-power-law LF. Our best fit finds a bright-end slope, α = -2.4 ± 0.2, and faint-end slope, β = -2.3 ± 0.2, without a well-constrained break luminosity. This is effectively a single power law, with β = -2.7 ± 0.1. We use these results to place limits on the amount of ultraviolet radiation produced by quasars and find that quasars are able to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the

  3. Ensemble Atmospheric Properties of Small Planets around M Dwarfs

    NASA Astrophysics Data System (ADS)

    Guo, Xueying; Ballard, Sarah; Dragomir, Diana

    2018-01-01

    With the growing number of planets discovered by the Kepler mission and ground-base surveys, people start to try to understand the atmospheric features of those uncovered new worlds. While it has been found that hot Jupiters exhibit diverse atmosphere composition with both clear and cloudy/hazy atmosphere possible, similar studies on ensembles of smaller planets (Earth analogs) have been held up due to the faintness of most of their host stars. In this work, a sample of 20 Earth analogs of similar periods around M dwarfs with existing Kepler transit information and Spitzer observations is composed, complemented with previously studies GJ1214b and GJ1132b, as well as the recently announced 7 small planets in the TRAPPIST-1 system. We evaluate their transit depths with uncertainties on the Spitzer 4.5 micron band using the “pixel-level decorrelation” method, and together with their well analyzed Kepler data and Hubble data, we put constraints on their atmosphere haze slopes and cloud levels. Aside from improving the understanding of ensemble properties of small planets, this study will also provide clues of potential targets for detailed atmospheric studies using the upcoming James Webb Telescope.

  4. The origin of dwarf early-type galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, E.

    2013-05-01

    We have conducted a spectrophotometric study of dwarf early-type galaxies (dEs) in the Virgo cluster and in regions of lower density. We have found that these galaxies show many properties in common with late-type galaxies but not with more massive early-types (E/S0). The properties of the dEs in Virgo show gradients within the cluster. dEs in the outer parts of the Virgo cluster are kinematically supported by rotation, while those in the center are supported by the random motions of their stars (i.e. pressure supported). The rotationally supported dEs have disky isophotes and faint underlying spiral/irregular substructures, they also show younger ages than those pressure supported, which have boxy isophotes and are smooth and regular, without any substructure. We compare the position of these dEs with massive early-type galaxies in the Faber-Jackson and Fundamental Plane relations, and we find that, although there is no difference between the position of rotationally and pressure supported dEs, both deviate from the relations of massive early-type galaxies in the direction of dwarf spheroidal systems (dSphs). We have used their offset with respect to the Fundamental Plane of E/S0 galaxies to estimate their dark matter fraction. All the properties studied in this work agree with a ram pressure stripping scenario, where late-type galaxies infall into the cluster, their interaction with the intergalactic medium blows away their gas and, as a result, they are quenched in a small amount of time. However, those dEs in the center of the cluster seem to have been fully transformed leaving no trace of their possible spiral origin, thus, if that is the case, they must have experienced a more violent mechanism in combination with ram pressure stripping, the open problem is that even galaxy harassment does not fully explain the observed properties for the pressure supported dEs in the center of the Virgo cluster.

  5. A strange dwarf scenario for the formation of the peculiar double white dwarf binary SDSS J125733.63+542850.5

    NASA Astrophysics Data System (ADS)

    Jiang, Long; Chen, Wen-Cong; Li, Xiang-Dong

    2018-05-01

    The Hubble Space Telescope observation of the double white dwarf (WD) binary SDSS J125733.63+542850.5 reveals that the massive WD has a surface gravity log g1 ˜ 8.7 (which implies a mass of M1 ˜ 1.06 M⊙) and an effective temperature T1 ˜ 13 000 K, while the effective temperature of the low-mass WD (M2 < 0.24 M⊙) is T2 ˜ 6400K. Therefore, the massive and the low-mass WDs have a cooling age τ1 ˜ 1 Gyr and τ2 ≥ 5 Gyr, respectively. This is in contradiction with traditional binary evolution theory. In this paper, we propose a strange dwarf (SD) scenario to explain the formation of this double WD binary. We assume that the massive WD is a SD originating from a phase transition (PT) in a ˜1.1 M⊙ WD, which has experienced accretion and spin-down processes. Its high effective temperature could arise from the heating process during the PT. Our simulations suggest that the progenitor of SDSS J125733.63+542850.5 can be a binary system consisting of a 0.65 M⊙ WD and a 1.5 M⊙ main-sequence star in a 1.492 d orbit. Especially, the secondary star (i.e. the progenitor of the low-mass WD) is likely to have an ultra-low metallicity of Z = 0.0001.

  6. Brown Dwarf Microlensing (Illustration)

    NASA Image and Video Library

    2016-11-10

    This illustration depicts a newly discovered brown dwarf, an object that weighs in somewhere between our solar system's most massive planet (Jupiter) and the least-massive-known star. This brown dwarf, dubbed OGLE-2015-BLG-1319, interests astronomers because it may fall in the "desert" of brown dwarfs. Scientists have found that, for stars roughly the mass of our sun, less than 1 percent have a brown dwarf orbiting within 3 AU (1 AU is the distance between Earth and the sun). This brown dwarf was discovered when it and its star passed between Earth and a much more distant star in our galaxy. This created a microlensing event, where the gravity of the system amplified the light of the background star over the course of several weeks. This microlensing was observed by ground-based telescopes looking for these uncommon events, and was the first to be seen by two space-based telescopes: NASA's Spitzer and Swift missions. http://photojournal.jpl.nasa.gov/catalog/PIA21076

  7. Dwarfs in ancient Egypt.

    PubMed

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities. Copyright (c) 2005 Wiley-Liss, Inc.

  8. Beyond the T Dwarfs: Theoretical Spectra, Colors, and Detectability of the Coolest Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Burrows, Adam; Sudarsky, David; Lunine, Jonathan I.

    2003-10-01

    We explore the spectral and atmospheric properties of brown dwarfs cooler than the latest known T dwarfs. Our focus is on the yet-to-be-discovered free-floating brown dwarfs in the Teff range from ~800 to ~130 K and with masses from 25 to 1 MJ. This study is in anticipation of the new characterization capabilities enabled by the launch of the Space Infrared Telescope Facility (SIRTF) and the eventual launch of the James Webb Space Telescope (JWST). In addition, it is in support of the continuing ground-based searches for the coolest substellar objects. We provide spectra from ~0.4 to 30 μm, highlight the evolution and mass dependence of the dominant H2O, CH4, and NH3 molecular bands, consider the formation and effects of water ice clouds, and compare our theoretical flux densities with the putative sensitivities of the instruments on board SIRTF and JWST. The latter can be used to determine the detection ranges from space of cool brown dwarfs. In the process, we determine the reversal point of the blueward trend in the near-infrared colors with decreasing Teff (a prominent feature of the hotter T dwarf family), the Teff's at which water and ammonia clouds appear, the strengths of gas-phase ammonia and methane bands, the masses and ages of the objects for which the neutral alkali metal lines (signatures of L and T dwarfs) are muted, and the increasing role as Teff decreases of the mid-infrared fluxes longward of 4 μm. These changes suggest physical reasons to expect the emergence of at least one new stellar class beyond the T dwarfs. Furthermore, studies in the mid-infrared could assume a new, perhaps transformational, importance in the understanding of the coolest brown dwarfs. Our spectral models populate, with cooler brown dwarfs having progressively more planet-like features, the theoretical gap between the known T dwarfs and the known giant planets. Such objects likely inhabit the Galaxy, but their numbers are as yet unknown.

  9. Optical linear polarization of 74 white dwarfs with the RoboPol polarimeter

    NASA Astrophysics Data System (ADS)

    Żejmo, Michał; Słowikowska, Aga; Krzeszowski, Krzysztof; Reig, Pablo; Blinov, Dmitry

    2017-01-01

    We present the first linear polarimetric survey of white dwarfs (WDs). Our sample consists of WDs of DA and DC spectral types in the SDSS r magnitude range from 13 to 17. We performed polarimetric observations using the RoboPol polarimeter attached to the 1.3-m telescope at Skinakas Observatory. We have 74 WDs in our sample, of which almost all are low-polarized WDs with a polarization degree (PD) lower than 1 per cent; only two have a PD higher than 1 per cent. There is evidence that on average isolated DC-type WDs have a higher PD (with a median PD of 0.78 per cent) than isolated DA-type WDs (with a median PD of 0.36 per cent). On the other hand, the median PD of isolated DA-type WDs is almost the same (I.e. 0.36 per cent) as the median PD of DA-type WDs in binary systems with red dwarfs (dM type; I.e. 0.33 per cent). This shows, as expected, that there is no contribution to the PD from the companion if the WD companion is a red dwarf, which is the most common situation for WD binary systems. We do not find differences in the PD between magnetic and non-magnetic WDs. Because 97 per cent of WDs in our sample have a PD lower than 1 per cent, they can be used as faint zero-polarized standard stars in the magnitude range from 13 to 17 of the SDSS r filter. They cover the Northern sky between 13h and 23h in right ascension and between -11° and 78° in declination. In addition, we found that for low extinction values (<0.04), the best model that describes the dependence of the PD on E(B - V) is given by the equation PDmax, ISM[per cent] = 0.65 E(B - V)0.12.

  10. Discovery of bright z ≃ 7 galaxies in the UltraVISTA survey

    NASA Astrophysics Data System (ADS)

    Bowler, R. A. A.; Dunlop, J. S.; McLure, R. J.; McCracken, H. J.; Milvang-Jensen, B.; Furusawa, H.; Fynbo, J. P. U.; Le Fèvre, O.; Holt, J.; Ideue, Y.; Ihara, Y.; Rogers, A. B.; Taniguchi, Y.

    2012-11-01

    We have exploited the new, deep, near-infrared UltraVISTA imaging of the Cosmological Evolution Survey (COSMOS) field, in tandem with deep optical and mid-infrared imaging, to conduct a new search for luminous galaxies at redshifts z ≃ 7. The year-one UltraVISTA data provide contiguous Y, J, H, Ks imaging over 1.5 deg2, reaching a 5σ detection limit of Y + J ≃ 25 (AB mag, 2-arcsec-diameter aperture). The central ≃1 deg2 of this imaging coincides with the final deep optical (u*, g, r, i) data provided by the Canada-France-Hawaii Telescope (CFHT) Legacy Survey and new deep Subaru/Suprime-Cam z'-band imaging obtained specifically to enable full exploitation of UltraVISTA. It also lies within the Hubble Space Telescope (HST) I814 band and Spitzer/Infrared Array Camera imaging obtained as part of the COSMOS survey. We have utilized this unique multiwavelength dataset to select galaxy candidates at redshifts z > 6.5 by searching first for Y + J-detected objects which are undetected in the CFHT and HST optical data. This sample was then refined using a photometric redshift fitting code, enabling the rejection of lower redshift galaxy contaminants and cool galactic M, L, T dwarf stars. The final result of this process is a small sample of (at most) 10 credible galaxy candidates at z > 6.5 (from over 200 000 galaxies detected in the year-one UltraVISTA data) which we present in this paper. The first four of these appear to be robust galaxies at z > 6.5, and fitting to their stacked spectral energy distribution yields zphot = 6.98 ± 0.05 with a stellar mass M* ≃ 5 × 109 M⊙ and rest-frame ultraviolet (UV) spectral slope β ≃ -2.0 ± 0.2 (where fλ ∝ λβ). The next three are also good candidates for z > 6.5 galaxies, but the possibility that they are dwarf stars cannot be completely excluded. Our final subset of three additional candidates is afflicted not only by potential dwarf star contamination, but also contains objects likely to lie at redshifts just

  11. Photosynthetic capacity and dry mass partitioning in dwarf and semi-dwarf wheat (Triticum aestivum L.)

    NASA Technical Reports Server (NTRS)

    Bishop, D. L.; Bugbee, B. G.

    1998-01-01

    Efficient use of space and high yields are critical for long-term food production aboard the International Space Station. The selection of a full dwarf wheat (less than 30 cm tall) with high photosynthetic and yield potential is a necessary prerequisite for growing wheat in the controlled, volume-limited environments available aboard long-term spaceflight missions. This study evaluated the photosynthetic capacity and carbon partitioning of a full-dwarf wheat cultivar, Super Dwarf, which is routinely used in spaceflight studies aboard U.S. space shuttle and NASA/Mir missions and made comparisons with other dwarf and semi-dwarf wheat cultivars utilized in other ground-based studies in plant space biology. Photosynthetic capacity of the flag leaf in two dwarf (Super Dwarf, BB-19), and three semi-dwarf (Veery-10, Yecora Rojo, IBWSN 199) wheat cultivars (Triticum aestivum L.) was assessed by measuring: net maximum photosynthetic rate, RuBP carboxylation efficiency, chlorophyll concentration and flag leaf area. Dry mass partitioning of carbohydrates to the leaves, sheaths, stems and ear was also assessed. Plants were grown under controlled environmental conditions in three replicate studies: slightly enriched CO2 (370 micromoles mol-1), high photosynthetic photon flux (1000 micromoles m-2 s-1; 58 mol m-2 d-1) for a 16 h photoperiod, 22/15 degrees C day/night temperatures, ample nutrients and water provided by one-half strength Hoagland's nutrient solution (Hoagland and Arnon, 1950). Photosynthetic capacity of the flag leaf was determined at anthesis using net CO2 exchange rate versus internal CO2 concentration curves measured under saturating light (2000 micromoles m-2 s-1) and CO2 (1000 micromoles mol-1). Dwarf wheat cultivars had greater photosynthetic capacities than the taller semi-dwarfs, they averaged 20% higher maximum net photosynthetic rates compared to the taller semi-dwarfs, but these higher rates occurred only at anthesis, had slightly greater carboxylation

  12. The correlation between malaria RDT (Paracheck pf.®) faint test bands and microscopy in the diagnosis of malaria in Malawi.

    PubMed

    Makuuchi, Ryoko; Jere, Sandy; Hasejima, Nobuchika; Chigeda, Thoms; Gausi, January

    2017-05-02

    Faint test bands of Paracheck Pf.® are interpreted as malaria positive according to world health organization (WHO) guideline. However if there are conspicuous number of faint test bands, a performance of Paracheck Pf.® could be influenced depending on whether interpreting faint test bands as malaria positive or negative. Finding out the frequency and accurate interpretation of faint test bands are important to prevent the overdiagnosis and drug resistance. A cross-sectional, descriptive study was conducted to find out the frequency of faint test bands and evaluate the performance of Paracheck Pf.® by sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of diagnosis of Paracheck Pf.® using microscopy as the gold standard. 388 suspected patients with malaria in Malawi were recruited in this study. Malaria rapid diagnostic tests (RDTs) and microscopy were used and patients' information which includes age, sex, body temperature and signs or symptoms of malaria were recorded. Among all patients involved in the study, 29.1% (113/388) were found malaria positive by RDT. Overall 5.4% (21/388) of all Paracheck Pf.® tests resulted in a "faint test band" and 85.7% (18/21) corresponded with malaria negative by microscopy. Faint test bands which corresponded with malaria positive by microscopy were lower parasite density and there are no patients who showed definitive symptom of malaria, such as fever. When Paracheck Pf.® "faint test bands" were classified as positive, accuracy of diagnosis was 76.5% (95% CI 72%-80.7%) as compared to 80.4% (95% CI 76.1%-84.2%) when Paracheck Pf.® "faint test bands" were classified as negative. This study shows that frequency of faint test bands is 5.4% in all malaria RDTs. The accuracy of diagnosis was improved when faint test bands were interpreted as malaria negative. However information and data obtained in this study may not be enough and more intensive research including a

  13. Faint Photoelectric Photometric Standard Star Sequences

    DTIC Science & Technology

    1988-07-15

    data awaiting additional study which will result in published research papers . The following list is a compilation of the publications which have...Astrophysical Journal, 323, 271, 1987. papers in preparation.... 1. "The Open Cluster van den Bergh Hagen-Harris No. 99", by A. U. Landolt, C. L...REPORT For a Grant for Basic Scientific Research (AFOSR Grant No. 82-0192) from The Air Force Office of Scientific Research entitled FAINT

  14. Binary Star Orbits. V. The Nearby White Dwarf/Red Dwarf Pair 40 Eri BC

    NASA Astrophysics Data System (ADS)

    Mason, Brian D.; Hartkopf, William I.; Miles, Korie N.

    2017-11-01

    A new relative orbit solution with new dynamical masses is determined for the nearby white dwarf-red dwarf pair 40 Eri BC. The period is 230.09 ± 0.68 years. It is predicted to close slowly over the next half-century, getting as close as 1.″32 in early 2066. We determine masses of 0.575 ± 0.018 {{ M }}⊙ for the white dwarf and 0.2041 ± 0.0064 {{ M }}⊙ for the red dwarf companion. The inconsistency of the masses determined by gravitational redshift and dynamical techniques, due to a premature orbit calculation, no longer exists.

  15. Exploring three faint source detections methods for aperture synthesis radio images

    NASA Astrophysics Data System (ADS)

    Peracaula, M.; Torrent, A.; Masias, M.; Lladó, X.; Freixenet, J.; Martí, J.; Sánchez-Sutil, J. R.; Muñoz-Arjonilla, A. J.; Paredes, J. M.

    2015-04-01

    Wide-field radio interferometric images often contain a large population of faint compact sources. Due to their low intensity/noise ratio, these objects can be easily missed by automated detection methods, which have been classically based on thresholding techniques after local noise estimation. The aim of this paper is to present and analyse the performance of several alternative or complementary techniques to thresholding. We compare three different algorithms to increase the detection rate of faint objects. The first technique consists of combining wavelet decomposition with local thresholding. The second technique is based on the structural behaviour of the neighbourhood of each pixel. Finally, the third algorithm uses local features extracted from a bank of filters and a boosting classifier to perform the detections. The methods' performances are evaluated using simulations and radio mosaics from the Giant Metrewave Radio Telescope and the Australia Telescope Compact Array. We show that the new methods perform better than well-known state of the art methods such as SEXTRACTOR, SAD and DUCHAMP at detecting faint sources of radio interferometric images.

  16. Brown dwarfs as close companions to white dwarfs

    NASA Technical Reports Server (NTRS)

    Stringfellow, Guy S.; Bodenheimer, Peter; Black, David C.

    1990-01-01

    The influence of the radiation flux emitted by a white dwarf primary on the evolution of a closely orbiting brown dwarf (BD) companion is investigated. Full stellar evolutionary calculations are presented for both isolated and thermal bath cases, including effects of large variations in the atmospheric grain opacities. High grain opacities significantly increase the radii of the BDs, but the thermal bath does not. The major influence of the thermal bath is to increase substantially the surface temperature and luminosity of the BD at a given age. These results are compared with the observational properties of the possible BD companion of the white dwarf G29-38. Inclusion of both physical effects, high grain opacities and thermal bath, increases the mass range (0.034-0.063 solar masses) of viable models significantly, yet the final determination of whether the object is indeed a BD requires improvements in the observations of the system's properties.

  17. Slowly Spinning Southern M Dwarfs

    NASA Astrophysics Data System (ADS)

    Newton, Elisabeth; Mondrik, Nicholas; Irwin, Jonathan; Charbonneau, David

    2018-01-01

    M dwarf stars are the most common type of star in the galaxy, but their ages are challenging to determine due to their trillion-year lifetimes on the main sequence. Consequently, the evolution of rotation and magnetism at field ages is difficult to investigate observationally. M dwarfs in the Solar Neighborhood provide a unique opportunity to make progress in this area due to the availability of parallaxes and the accessibility of spectroscopy. We have used new rotation period measurements and our compilation of H-alpha emission for nearby M dwarfs to explore two questions: 1) What is the longest rotation period an M dwarf can have? And 2) Do M dwarfs undergo an era of rapid angular momentum evolution? Here, we focus on the view from the Southern hemisphere, presenting approximately 200 new rotation periods for fully convective M dwarfs. Amongst the highest-quality datasets, we identify rotation periods in three-quarters of all stars; of these, half have rotation periods longer than 70 days. The longest rotation period we detect is 148 days, which is for a 0.15 solar-mass star. The lack of M dwarfs with intermediate rotation periods that we previously identified persists, supporting our hypothesis that M dwarfs rapidly spin down from 10-day to 100-day periods.ERN is supported by the National Science Foundation Astronomy & Astrophysics Postdoctoral Fellowship. We gratefully acknowledge support from the David and Lucille Packard Foundation, the National Science Foundation, and the John Templeton Foundation.

  18. A population of faint low surface brightness galaxies in the Perseus cluster core

    NASA Astrophysics Data System (ADS)

    Wittmann, Carolin; Lisker, Thorsten; Ambachew Tilahun, Liyualem; Grebel, Eva K.; Conselice, Christopher J.; Penny, Samantha; Janz, Joachim; Gallagher, John S.; Kotulla, Ralf; McCormac, James

    2017-09-01

    We present the detection of 89 low surface brightness (LSB), and thus low stellar density galaxy candidates in the Perseus cluster core, of the kind named 'ultra-diffuse galaxies', with mean effective V-band surface brightnesses 24.8-27.1 mag arcsec-2, total V-band magnitudes -11.8 to -15.5 mag, and half-light radii 0.7-4.1 kpc. The candidates have been identified in a deep mosaic covering 0.3 deg2, based on wide-field imaging data obtained with the William Herschel Telescope. We find that the LSB galaxy population is depleted in the cluster centre and only very few LSB candidates have half-light radii larger than 3 kpc. This appears consistent with an estimate of their tidal radius, which does not reach beyond the stellar extent even if we assume a high dark matter content (M/L = 100). In fact, three of our candidates seem to be associated with tidal streams, which points to their current disruption. Given that published data on faint LSB candidates in the Coma cluster - with its comparable central density to Perseus - show the same dearth of large objects in the core region, we conclude that these cannot survive the strong tides in the centres of massive clusters.

  19. Throwing Icebergs at White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    Where do the metals come from that pollute the atmospheres of many white dwarfs? Close-in asteroids may not be the only culprits! A new study shows that distant planet-size and icy objects could share some of the blame.Pollution ProblemsArtists impression of rocky debris lying close around a white dwarf star. [NASA/ESA/STScI/G. Bacon]When a low- to intermediate-mass star reaches the end of its life, its outer layers are blown off, leaving behind its compact core. The strong gravity of this white dwarf causes elements heavier than hydrogen and helium to rapidly sink to its center in a process known as sedimentation, leaving an atmosphere that should be free of metallic elements.Therefore its perhaps surprising that roughly 2550% of all white dwarfs are observed to have atmospheric pollution by heavy elements. The short timescales for sedimentation suggest that these elements were added to the white dwarf recently but how did they get there?Bringing Ice InwardIn the generally accepted theory, pre-existing rocky bodies or an orbiting asteroid belt survive the stars evolution, later accreting onto the final white dwarf. But this scenario doesnt explain a few observations that suggest white dwarfs might be accreting larger planetary-size bodies and bodies with ices and volatile materials.Dynamical evolution of a Neptune-like planet (a) and a Kuiper belt analog object (b) in wide binary star systems. Both have large eccentricity excitations during the white dwarf phase. [Stephan et al. 2017]How might you get large or icy objects which would begin on very wide orbits close enough to a white dwarf to become disrupted and accrete? Led by Alexander Stephan, a team of scientists at UCLA now suggest that the key is for the white dwarf to be in a binary system.Influence of a CompanionIn the authors model, the white-dwarf progenitor is orbited by both a distant stellar companion (a common occurrence) and a number of large potential polluters, which could have masses between that

  20. On the faint-end of the high-z galaxy luminosity function

    NASA Astrophysics Data System (ADS)

    Yue, Bin; Ferrara, Andrea; Xu, Yidong

    2016-12-01

    Recent measurements of the luminosity function (LF) of galaxies in the Epoch of Reionization (EoR, z ≳ 6) indicate a very steep increase of the number density of low-mass galaxies populating the LF faint-end. However, as star formation in low-mass haloes can be easily depressed or even quenched by ionizing radiation, a turnover is expected at some faint UV magnitudes. Using a physically motivated analytical model, we quantify reionization feedback effects on the LF faint-end shape. We find that if reionization feedback is neglected, the power-law Schechter parametrization characterizing the LF faint-end remains valid up to absolute UV magnitude ˜-9. If instead radiative feedback is strong enough that quenches star formation in haloes with circular velocity smaller than 50 km s-1, the LF starts to drop at absolute UV magnitude ˜-15, I.e. slightly below the detection limits of current (unlensed) surveys at z ˜ 5. The LFs may rise again at higher absolute UV magnitude, where, as a result of interplay between reionization process and galaxy formation, most of the galaxy light is from relic stars formed before the EoR. We suggest that the galaxy number counts data, particularly in lensed fields, can put strong constraints on reionization feedback. In models with stronger reionization feedback, stars in galaxies with absolute UV magnitude higher than ˜-13 and smaller than ˜-8 are typically older. Hence, the stellar age-UV magnitude relation can be used as an alternative feedback probe.

  1. The optical + infrared L dwarf spectral sequence of young planetary-mass objects in the Upper Scorpius association

    NASA Astrophysics Data System (ADS)

    Lodieu, N.; Zapatero Osorio, M. R.; Béjar, V. J. S.; Peña Ramírez, K.

    2018-01-01

    We present the results of photometric and spectroscopic follow-ups of the lowest mass member candidates in the nearest OB association, Upper Scorpius (∼5-10 Myr; 145 ± 17 pc), with the Gran Telescopio de Canarias (GTC) and European Southern Observatory (ESO) Very Large Telescope (VLT). We confirm the membership of the large majority (>80 per cent) of candidates originally selected photometrically and astrometrically based on their spectroscopic features, weak equivalent widths of gravity-sensitive doublets and radial velocities. Confirmed members follow a sequence over a wide magnitude range (J = 17.0-19.3 mag) in several colour-magnitude diagrams with optical, near- and mid-infrared photometry and have near-infrared spectral types in the L1-L7 interval with likely masses below 15 Jupiter masses. We find that optical spectral types tend to be earlier than near-infrared spectral types by a few subclasses for spectral types later than M9. We investigate the behaviour of spectral indices, defined in the literature as a function of spectral type and gravity, by comparison with values reported in the literature for young and old dwarfs. We also derive effective temperatures in the 1900-1600 K range from fits of synthetic model-atmosphere spectra to the observed photometry, but we caution that the procedure carries large uncertainties. We determine bolometric corrections for young L dwarfs with ages of ∼5-10 Myr (Upper Sco association) and find them to be similar in the J band but larger by 0.1-0.4 mag in the K band with respect to field L dwarfs. Finally, we discover two faint young L dwarfs, Visible and Infrared Survey Telescope for Astronomy (VISTA) J1607-2146 (L4.5) and VISTA J1611-2215 (L5), that have Hα emission and possible flux excesses at 4.5 μm, pointing to the presence of accretion from a disc on to the central objects of mass below ∼15MJup at an age of 5-10 Myr.

  2. Origins of ultra-diffuse galaxies in the Coma cluster - II. Constraints from their stellar populations

    NASA Astrophysics Data System (ADS)

    Ferré-Mateu, Anna; Alabi, Adebusola; Forbes, Duncan A.; Romanowsky, Aaron J.; Brodie, Jean; Pandya, Viraj; Martín-Navarro, Ignacio; Bellstedt, Sabine; Wasserman, Asher; Stone, Maria B.; Okabe, Nobuhiro

    2018-06-01

    In this second paper of the series we study, with new Keck/DEIMOS spectra, the stellar populations of seven spectroscopically confirmed ultra-diffuse galaxies (UDGs) in the Coma cluster. We find intermediate to old ages (˜ 7 Gyr), low metallicities ([Z/H]˜ - 0.7 dex) and mostly super-solar abundance patterns ([Mg/Fe] ˜ 0.13 dex). These properties are similar to those of low-luminosity (dwarf) galaxies inhabiting the same area in the cluster and are mostly consistent with being the continuity of the stellar mass scaling relations of more massive galaxies. These UDGs' star formation histories imply a relatively recent infall into the Coma cluster, consistent with the theoretical predictions for a dwarf-like origin. However, considering the scatter in the resulting properties and including other UDGs in Coma, together with the results from the velocity phase-space study of the Paper I in this series, a mixed-bag of origins is needed to explain the nature of all UDGs. Our results thus reinforce a scenario in which many UDGs are field dwarfs that become quenched through their later infall onto cluster environments, whereas some UDGs could be be genuine primordial galaxies that failed to develop due to an early quenching phase. The unknown proportion of dwarf-like to primordial-like UDGs leaves the enigma of the nature of UDGs still open.

  3. On the Formation of Ultra-Difuse Galaxies as Tidally-Stripped Systems

    NASA Astrophysics Data System (ADS)

    Carleton, Timothy; Cooper, Michael; Kaplinghat, Manoj; Errani, Raphael; Penarrubia, Jorge

    2018-01-01

    The recent identification of a large population of so-called 'Ultra-Diffuse' Galaxies (UDGs), with stellar masses ~108 M⊙, but half light radii over 1.5 kpc, has challenged our understanding of galaxy evolution. Motivated by the environmental dependence of UDG properties and abundance, I present a model for the formation of UDGs through tidal-stripping of dwarf galaxies in cored dark matter halos. To test this scenario, I utilize results from simulations of tidal stripping, which demonstrate that changes in the stellar profile of a tidally stripped galaxy can be written as a function of the amount of tidal stripping experienced by the halo (tidal tracks). These tracks, however, are different for cored and cuspy halos. Additional simulations show how the halo responds to tidal interactions given the halo orbit within a cluster.In particular, dwarf elliptical galaxies, born in 1010-10.5 M⊙ halos, expand significantly as a result of tidal stripping and produce UDGs. Applying these models to the population of halos in the Bolshoi simulation, I am able to follow the effects of tidal stripping on the dwarf galaxy population in clusters. Using tidal tracks for cuspy halos does not reproduce the observed properties of UDGs. However, using the tidal tracks for cored halos, I reproduce the distribution of sizes, stellar masses, and abundance of UDGs in clusters remarkably well.

  4. K2-137 b: an Earth-sized planet in a 4.3-h orbit around an M-dwarf

    NASA Astrophysics Data System (ADS)

    Smith, A. M. S.; Cabrera, J.; Csizmadia, Sz; Dai, F.; Gandolfi, D.; Hirano, T.; Winn, J. N.; Albrecht, S.; Alonso, R.; Antoniciello, G.; Barragán, O.; Deeg, H.; Eigmüller, Ph; Endl, M.; Erikson, A.; Fridlund, M.; Fukui, A.; Grziwa, S.; Guenther, E. W.; Hatzes, A. P.; Hidalgo, D.; Howard, A. W.; Isaacson, H.; Korth, J.; Kuzuhara, M.; Livingston, J.; Narita, N.; Nespral, D.; Nowak, G.; Palle, E.; Pätzold, M.; Persson, C. M.; Petigura, E.; Prieto-Arranz, J.; Rauer, H.; Ribas, I.; Van Eylen, V.

    2018-03-01

    We report the discovery in K2's Campaign 10 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 h, the second shortest orbital period of any known planet, just 4 min longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, adaptive optics imaging, radial velocity measurements, and light-curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 ± 0.09 R⊕, and which must have an iron mass fraction greater than 0.45, orbits a star of mass 0.463 ± 0.052 M⊙ and radius 0.442 ± 0.044 R⊙.

  5. The brown dwarf kinematics project

    NASA Astrophysics Data System (ADS)

    Faherty, Jackie K.

    2010-10-01

    Brown dwarfs are a recent addition to the plethora of objects studied in Astronomy. With theoretical masses between 13 and 75 MJupiter , they lack sustained stable Hydrogen burning so they never join the stellar main sequence. They have physical properties similar to both planets and low-mass stars so studies of their population inform on both. The distances and kinematics of brown dwarfs provide key statistical constraints on their ages, moving group membership, absolute brightnesses, evolutionary trends, and multiplicity. Yet, until my thesis, fundamental measurements of parallax and proper motion were made for only a relatively small fraction of the known population. To address this deficiency, I initiated the Brown Dwarf Kinematics (BDKP). Over the past four years I have re-imaged the majority of spectroscopically confirmed field brown dwarfs (or ultracool dwarfs---UCDs) and created the largest proper motion catalog for ultracool dwarfs to date. Using new astrometric information I examined population characteristics such as ages calculated from velocity dispersions and correlations between kinematics and colors. Using proper motions, I identified several new wide co-moving companions and investigated binding energy (and hence formation) limitations as well as the frequency of hierarchical companions. Concurrently over the past four years I have been conducting a parallax survey of 84 UCDs including those showing spectral signatures of youth, metal-poor brown dwarfs, and those within 20 pc of the Sun. Using absolute magnitude relations in J,H, and K, I identified overluminous binary candidates and investigated known flux-reversal binaries. Using current evolutionary models, I compared the MK vs J-K color magnitude diagram to model predictions and found that the low-surface gravity dwarfs are significantly red-ward and underluminous of predictions and a handful of late-type T dwarfs may require thicker clouds to account for their scatter.

  6. A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope

    NASA Technical Reports Server (NTRS)

    Davis, Jessica

    2012-01-01

    A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.

  7. Solidification of carbon-oxygen white dwarfs

    NASA Technical Reports Server (NTRS)

    Schatzman, E.

    1982-01-01

    The internal structure of white dwarfs is discussed. Highly correlated plasmas are reviewed. Implications for phase separation in the core of cooling white dwarfs are considered. The consequences for evolution of white dwarfs are addressed.

  8. NEW BROWN DWARF COMPANIONS TO YOUNG STARS IN SCORPIUS-CENTAURUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janson, Markus; Jayawardhana, Ray; Bonavita, Mariangela

    2012-10-10

    We present the discoveries of three faint companions to young stars in the Scorpius-Centaurus region, imaged with the NICI instrument on Gemini South. We have confirmed all three companions through common proper motion tests. Follow-up spectroscopy has confirmed two of them, HIP 65423 B and HIP 65517 B, to be brown dwarfs, while the third, HIP 72099 B, is more likely a very low mass star just above the hydrogen burning limit. The detection of wide companions in the mass range of {approx}40-100 M{sub jup} complements previous work in the same region, reporting detections of similarly wide companions with lowermore » masses, in the range of {approx}10-30 M{sub jup}. Such low masses near the deuterium burning limit have raised the question of whether those objects formed like planets or stars. The existence of intermediate objects as reported here could represent a bridge between lower-mass companions and stellar companions, but in any case demonstrate that mass alone may not provide a clear-cut distinction for the formation of low-mass companions to stars.« less

  9. EVIDENCE THAT GAMMA-RAY BURST 130702A EXPLODED IN A DWARF SATELLITE OF A MASSIVE GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Patrick L.; Filippenko, Alexei V.; Fox, Ori D.

    2013-09-20

    GRB 130702A is a nearby long-duration gamma-ray burst (LGRB) discovered by the Fermi satellite whose associated afterglow was detected by the Palomar Transient Factory. Subsequent photometric and spectroscopic monitoring has identified a coincident broad-lined Type Ic supernova (SN), and nebular emission detected near the explosion site is consistent with a redshift of z = 0.145. The SN-GRB exploded at an offset of {approx}7.''6 from the center of an inclined r = 18.1 mag red disk-dominated galaxy, and {approx}0.''6 from the center of a much fainter r = 23 mag object. We obtained Keck-II DEIMOS spectra of the two objects andmore » find a 2{sigma} upper limit on their line-of-sight velocity offset of {approx}<60 km s{sup -1}. If we calculate the inclination angle of the massive red galaxy from its axis ratio and assume that its light is dominated by a very thin disk, the explosion would have a {approx}60 kpc central offset, or {approx}9 times the galaxy's half-light radius. A significant bulge or a thicker disk would imply a higher inclination angle and greater central offset. The substantial offset suggests that the faint source is a separate dwarf galaxy. The star-formation rate of the dwarf galaxy is {approx}0.05 M{sub Sun} yr{sup -1}, and we place an upper limit on its oxygen abundance of 12 + log(O/H) < 8.16 dex. The identification of an LGRB in a dwarf satellite of a massive, metal-rich primary galaxy suggests that recent detections of LGRBs spatially coincident with metal-rich galaxies may be, in some cases, superpositions.« less

  10. A VLT Large Programme to Study Galaxies at z ~ 2: GMASS — the Galaxy Mass Assembly Ultra-deep Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Kurk, Jaron; Cimatti, Andrea; Daddi, Emanuele; Mignoli, Marco; Bolzonella, Micol; Pozzetti, Lucia; Cassata, Paolo; Halliday, Claire; Zamorani, Gianni; Berta, Stefano; Brusa, Marcella; Dickinson, Mark; Franceschini, Alberto; Rodighiero, Guilia; Rosati, Piero; Renzini, Alvio

    2009-03-01

    We report on the motivation, sample selection and first results of our VLT FORS2 Large Programme (173.A-0687), which has obtained the longest targeted spectra of distant galaxies obtained so far with the VLT. These long exposures, up to 77 hours for objects included in three masks, were required to detect spectral features of extremely faint galaxies, such as absorption lines of passive galaxies at z > 1.4, a population that had previously escaped attention due to its faintness in the optical wavelength regime, but which represents a critical phase in the evolution of massive galaxies. The ultra-deep spectroscopy allowed us to estimate the stellar metallicity of star-forming galaxies at z ~ 2, to trace colour bimodality up to z = 2 and to characterise a galaxy cluster progenitor at z = 1.6. The approximately 200 spectra produced by GMASS constitute a lasting legacy, populating the “redshift desert” in GOODS-S.

  11. Asteroseismology of White Dwarf Stars

    NASA Technical Reports Server (NTRS)

    Hansen, Carl J.

    1997-01-01

    The primary purpose of this investigation has been to study various aspects of multimode pulsations in variable white dwarfs. In particular, nonlinear interactions among pulsation modes in white dwarfs (and, to some extent, in other variable stars), analysis of recent observations where such interactions are important, and preliminary work on the effects of crystallization in cool white dwarfs are reported.

  12. The faint X-ray sources in and out of omega Centauri: X-ray observations and optical identifications

    NASA Technical Reports Server (NTRS)

    Cool, Adrienne M.; Grindlay, Jonathan E.; Bailyn, Charles D.; Callanan, Paul J.; Hertz, Paul

    1995-01-01

    We present the results of an observation of the globular cluster omega Cen (NGC 5139) with the Einstein high-resolution imager (HRI). Of the five low-luminosity X-ray sources toward omega Cen which were first identified with the Einstein imaging proportional counter (IPC) (Hertz and Grindlay 1983a, b), two are detected in the Einstein HRI observation: IPC sources A and D. These detections provide source positions accurate to 3 sec-4 sec; the positions are confirmed in a ROSAT HRI observation reported here. Using CCD photometry and spectroscopy, we have identified both sources as foreground dwarf M stars with emission lines (dMe). The chance projection of two Mde stars within approximately 13 min of the center of omega Cen is not extraordinary, given the space density of these stellar coronal X-ray sources. We discuss the possible nature of the three as yet unidentified IPC sources toward omega Cen, and consider the constraints that the Einstein observations place on the total population of X-ray sources in this cluster. The integrated luminosity from faint X-ray sources in omega Cen appears to be low relative to both the old open cluster M67 and the post-core-collapse globular, NGC 6397.

  13. [Fainting in Greco-Roman medicine, especially in the traumatology and surgery fields].

    PubMed

    Salazar, C F

    2001-01-01

    Occurrences of fainting are very common in medical as well as non-medical literature; in order to restrict the field to a manageable size, this article focuses mainly on surgery and traumatology. An examination of the various passages suggests that there was considerable ambiguity associated with the concept of fainting. On the one hand it was seen as a common occurrence, to be expected in the context of wounds or surgery, but on the other it was also regarded as a life-threatening force in its own right.

  14. White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.

    2014-10-01

    White dwarfs are the evolutionary endpoint for nearly 95% of all stars born in our Galaxy, the final stages of evolution of all low- and intermediate mass stars, i.e., main sequence stars with masses below (8.5± 1.5) M_{odot}, depending on metallicity of the progenitor, mass loss and core overshoot. Massive white dwarfs are intrinsically rare objects, tand produce a gap in the determination of the initial vs. final mass relation at the high mass end (e.g. Weidemann 2000 A&A, 363, 647; Kalirai et al. 2008, ApJ, 676, 594; Williams, Bolte & Koester 2009, ApJ, 693, 355). Main sequences stars with higher masses will explode as SNII (Smartt S. 2009 ARA&A, 47, 63), but the limit does depend on the metallicity of the progenitor. Massive white dwarfs are probably SNIa progenitors through accretion or merger. They are rare, being the final product of massive stars (less common) and have smaller radius (less luminous). Kepler et al. 2007 (MNRAS, 375, 1315), Kleinman et al. 2013 (ApJS, 204, 5) estimate only 1-2% white dwarfs have masses above 1 M_{odot}. The final stages of evolution after helium burning are a race between core growth and loss of the H-rich envelope in a stellar wind. When the burning shell is exposed, the star rapidly cools and burning ceases, leaving a white dwarf. As they cool down, the magnetic field freezes in, ranging from a few kilogauss to a gigagauss. Peculiar type Ia SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg suggest progenitors in the range 2.4-2.8 M_{odot}, and Das U. & Mukhopadhyay B. (2012, Phys. Rev. D, 86, 042001) estimate that the Chandrasekhar limit increases to 2.3-2.6 M_{odot} for extremely high magnetic field stars, but differential rotation induced by accretion could also increase it, according to Hachisu I. et al. 2012 (ApJ, 744, 69). García-Berro et al. 2012, ApJ, 749, 25, for example, proposes double degenerate mergers are the progenitors of high-field magnetic white dwarfs. We propose magnetic fields enhance the line broadening in

  15. Evolution models of helium white dwarf-main-sequence star merger remnants: the mass distribution of single low-mass white dwarfs

    NASA Astrophysics Data System (ADS)

    Zhang, Xianfei; Hall, Philip D.; Jeffery, C. Simon; Bi, Shaolan

    2018-02-01

    It is not known how single white dwarfs with masses less than 0.5Msolar -- low-mass white dwarfs -- are formed. One way in which such a white dwarf might be formed is after the merger of a helium-core white dwarf with a main-sequence star that produces a red giant branch star and fails to ignite helium. We use a stellar-evolution code to compute models of the remnants of these mergers and find a relation between the pre-merger masses and the final white dwarf mass. Combining our results with a model population, we predict that the mass distribution of single low-mass white dwarfs formed through this channel spans the range 0.37 to 0.5Msolar and peaks between 0.45 and 0.46Msolar. Helium white dwarf--main-sequence star mergers can also lead to the formation of single helium white dwarfs with masses up to 0.51Msolar. In our model the Galactic formation rate of single low-mass white dwarfs through this channel is about 8.7X10^-3yr^-1. Comparing our models with observations, we find that the majority of single low-mass white dwarfs (<0.5Msolar) are formed from helium white dwarf--main-sequence star mergers, at a rate which is about $2$ per cent of the total white dwarf formation rate.

  16. New spectroscopic tools and techniques for characterizing M dwarfs and discovering their planets in the near-infrared

    NASA Astrophysics Data System (ADS)

    Terrien, Ryan C.

    M dwarfs are the least massive and most common stars in the Galaxy. Due to their prevalence and long lifetimes, these diminutive stars play an outsize role in several fields of astronomical study. In particular, it is now known that they commonly host planetary systems, and may be the most common hosts of Earth-size, rocky planets in the habitable zone. A comprehensive understanding of M dwarfs is crucial for understanding the origins and conditions of their planetary systems, including their potential habitability. Such an understanding depends on methods for precisely and accurately measuring their properties. These tools have broader applicability as well, underlying the use of M dwarfs as fossils of Galactic evolution, and helping to constrain the structures and interiors of these stars. The measurement of the fundamental parameters of M dwarfs is encumbered by their spectral complexity. Unlike stars of spectral type F, G, or K that are similar to our G type Sun, whose spectra are dominated by continuum emission and atomic features, the cool atmospheres of M dwarfs are dominated by complex molecular absorption. Another challenge for studies of M dwarfs is that these stars are optically faint, emitting much of their radiation in the near-infrared (NIR). The availability and performance of NIR spectrographs have lagged behind those of optical spectrographs due to the challenges of producing low-noise, high-sensitivity NIR detector arrays, which have only recently become available. This thesis discusses two related lines of work that address these challenges, motivated by the development of the Habitable Zone Planet Finder (HPF), a NIR radial velocity (RV) spectrograph under development at Penn State that will search for and confirm planets around nearby M dwarfs. This work includes the development and application of new NIR spectroscopic techniques for characterizing M dwarfs, and the development and optimization of new NIR instrumentation for HPF. The first line

  17. Does faint galaxy clustering contradict gravitational instability?

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.

    1992-01-01

    It has been argued, based on the weakness of clustering of faint galaxies, that these objects cannot be the precursors of present galaxies in a simple Einstein-de Sitter model universe with clustering driven by gravitational instability. It is shown that the assumptions made about the growth of clustering were too restrictive. In such a universe, the growth of clustering can easily be fast enough to match the data.

  18. Distribution of Faint Atomic Gas in Hickson Compact Groups

    NASA Astrophysics Data System (ADS)

    Borthakur, Sanchayeeta; Yun, Min Su; Verdes-Montenegro, Lourdes; Heckman, Timothy M.; Zhu, Guangtun; Braatz, James A.

    2015-10-01

    We present 21 cm H i observations of four Hickson Compact Groups (HCGs) with evidence for a substantial intragroup medium using the Robert C. Byrd Green Bank Telescope (GBT). By mapping H i emission in a region of 25‧ × 25‧ (140-650 kpc) surrounding each HCG, these observations provide better estimates of H i masses. In particular, we detected 65% more H i than that detected in the Karl G. Jansky Very Large Array (VLA) imaging of HCG 92. We also identify whether the diffuse gas has the same spatial distribution as the high surface brightness (HSB) H i features detected in the VLA maps of these groups by comparing the H i strengths between the observed and modeled masses based on VLA maps. We found that the H i observed with the GBT has a similar spatial distribution to the HSB structures in HCG 31 and HCG 68. Conversely, the observed H i distributions in HCG 44 and HCG 92 were extended and showed significant offsets from the modeled masses. Most of the faint gas in HCG 44 lies to the northeast-southwest region and in HCG 92 lies in the northwest region of their respective groups. The spatial and dynamical similarities between the total (faint+HSB) and the HSB H i indicate that the faint gas is of tidal origin. We found that the gas will survive ionization by the cosmic UV background and the escaping ionizing photons from the star-forming regions and stay primarily neutral for at least 500 Myr.

  19. The luminosity function at the end of the main sequence: Results of a deep, large-area, CCD survey for cool dwarfs

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. Davy; Mcgraw, John T.; Hess, Thomas R.; Liebert, James; Mccarthy, Donald W., Jr.

    1994-01-01

    The luminosity function at the end of the main sequence is determined from V, R, and I data taken by the charge coupled devices (CCD)/Transit Instrument, a dedicated telescope surveying an 8.25 min wide strip of sky centered at delta = +28 deg, thus sampling Galactic latitudes of +90 deg down to -35 deg. A selection of 133 objects chosen via R - I and V - I colors has been observed spectroscopically at the 4.5 m Multiple Mirror Telescope to assess contributions by giants and subdwarfs and to verify that the reddest targets are objects of extremely late spectral class. Eighteen dwarfs of type M6 or later have been discovered, with the latest being of type M8.5. Data used for the determination of the luminosity function cover 27.3 sq. deg down to a completeness limit of R = 19.0. This luminosity function, computed at V, I, and bolometric magnitudes, shows an increase at the lowest luminosities, corresponding to spectral types later than M6- an effect suggested in earlier work by Reid & Gilmore and Legget & Hawkins. When the luminosity function is segregated into north Galactic and south Galactic portions, it is found that the upturn at faint magnitudes exists only in the southern sample. In fact, no dwarfs with M(sub I) is greater than or equal to 12.0 are found within the limiting volume of the 19.4 sq deg northern sample, in stark contrast to the smaller 7.9 sq deg area at southerly latitudes where seven such dwarfs are found. This fact, combined with the fact that the Sun is located approximately 10-40 pc north of the midplane, suggests that the latest dwarfs are part of a young population with a scale height much smaller than the 350 pc value generally adopted for other M dwarfs. These objects comprise a young population either because the lower metallicities prevelant at earlier epochs inhibited the formation of late M dwarfs or because the older counterparts of this population have cooled beyond current detection limits. The latter scenario would hold if these

  20. Cooling Models for Old White Dwarfs

    NASA Astrophysics Data System (ADS)

    Hansen, Brad M. S.

    1999-08-01

    We present new white dwarf cooling models that incorporate an accurate outer boundary condition based on new opacity and detailed radiative transfer calculations. We find that helium-atmosphere dwarfs cool considerably faster than has previously been claimed, while old hydrogen-atmosphere dwarfs will deviate significantly from blackbody appearance. We use our new models to derive age limits for the Galactic disk. We find that the Liebert, Dahn, & Monet luminosity function yields an age of only 6 Gyr if it is complete to stated limits. However, age estimates of individual dwarfs and the luminosity function of Oswalt et al. are both consistent with disk ages as large as ~11 Gyr. We have also used our models to place constraints on white dwarf dark matter in the Galactic halo. We find that previous attempts using inadequate cooling models were too severe and that direct detection limits allow a halo that is 11 Gyr old. If the halo is composed solely of helium-atmosphere dwarfs, the lower age limit is only 7.5 Gyr. We also demonstrate the importance of studying the cooling sequences of white dwarfs in globular clusters.

  1. [The study of M dwarf spectral classification].

    PubMed

    Yi, Zhen-Ping; Pan, Jing-Chang; Luo, A-Li

    2013-08-01

    As the most common stars in the galaxy, M dwarfs can be used to trace the structure and evolution of the Milky Way. Besides, investigating M dwarfs is important for searching for habitability of extrasolar planets orbiting M dwarfs. Spectral classification of M dwarfs is a fundamental work. The authors used DR7 M dwarf sample of SLOAN to extract important features from the range of 600-900 nm by random forest method. Compared to the features used in Hammer Code, the authors added three new indices. Our test showed that the improved Hammer with new indices is more accurate. Our method has been applied to classify M dwarf spectra of LAMOST.

  2. M dwarfs: Theoretical work

    NASA Technical Reports Server (NTRS)

    Mullan, Dermott J.

    1987-01-01

    Theoretical work on the atmospheres of M dwarfs has progressed along lines parallel to those followed in the study of other classes of stars. Such models have become increasingly sophisticated as improvements in opacities, in the equation of state, and in the treatment of convection were incorporated during the last 15 to 20 years. As a result, spectrophotometric data on M dwarfs can now be fitted rather well by current models. The various attempts at modeling M dwarf photospheres in purely thermal terms are summarized. Some extensions of these models to include the effects of microturbulence and magnetic inhomogeneities are presented.

  3. Using r-process enhanced galaxies to estimate the neutron star merger rate at high redshift

    NASA Astrophysics Data System (ADS)

    Roederer, Ian

    2018-01-01

    The rapid neutron-capture process, or r-process, is one of the fundamental ways that stars produce heavy elements. I describe a new approach that uses the existence of r-process enhanced galaxies, like the recently discovered ultra-faint dwarf galaxy Reticulum II, to derive a rate for neutron star mergers at high redshift. This method relies on three assertions. First, several lines of reasoning point to neutron star mergers as a rare yet prolific producer of r-process elements, and one merger event is capable of enriching most of the stars in a low-mass dwarf galaxy. Second, the Local Group is cosmologically representative of the halo mass function at the mass scales of low-luminosity dwarf galaxies, and the volume that their progenitors spanned at high redshifts can be estimated from simulations. Third, many of these dwarf galaxies are extremely old, and the metals found in their stars today date from the earliest times at high redshift. These galaxies occupy a quantifiable volume of the Universe, from which the frequency of r-process enhanced galaxies can be estimated. This frequency may be interpreted as lower limit to the neutron star merger rate at a redshift (z ~ 5-10) that is much higher than is accessible to gravitational wave observatories. I will present a proof of concept demonstration using medium-resolution multi-object spectroscopy from the Michigan/Magellan Fiber System (M2FS) to recover the known r-process galaxy Reticulum II, and I will discuss future plans to apply this method to other Local Group dwarf galaxies.

  4. CoRoT 101186644: A transiting low-mass dense M-dwarf on an eccentric 20.7-day period orbit around a late F-star. Discovered in the CoRoT lightcurves

    NASA Astrophysics Data System (ADS)

    Tal-Or, L.; Mazeh, T.; Alonso, R.; Bouchy, F.; Cabrera, J.; Deeg, H. J.; Deleuil, M.; Faigler, S.; Fridlund, M.; Hébrard, G.; Moutou, C.; Santerne, A.; Tingley, B.

    2013-05-01

    We present the study of the CoRoT transiting planet candidate 101186644, also named LRc01_E1_4780. Analysis of the CoRoT lightcurve and the HARPS spectroscopic follow-up observations of this faint (mV = 16) candidate revealed an eclipsing binary composed of a late F-type primary (Teff = 6090 ± 200 K) and a low-mass, dense late M-dwarf secondary on an eccentric (e = 0.4) orbit with a period of ~20.7 days. The M-dwarf has a mass of 0.096 ± 0.011 M⊙, and a radius of 0.104-0.006+0.026 R⊙, which possibly makes it the smallest and densest late M-dwarf reported so far. Unlike the claim that theoretical models predict radii that are 5-15% smaller than measured for low-mass stars, this one seems to have a radius that is consistent and might even be below the radius predicted by theoretical models. Based on observations made with the 1-m telescope at the Wise Observatory, Israel, the Swiss 1.2-m Leonhard Euler telescope at La Silla Observatory, Chile, the IAC-80 telescope at the Observatory del Teide, Canarias, Spain, and the 3.6-m telescope at La Silla Observatory (ESO), Chile (program 184.C-0639).

  5. RADIAL VELOCITY VARIABILITY OF FIELD BROWN DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prato, L.; Mace, G. N.; Rice, E. L.

    2015-07-20

    We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R ∼ 20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity (RV) precision of ∼2 km s{sup −1}, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties,more » and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1σ upper limit for very low mass binary frequency is 18%. Our targets included seven known, wide brown dwarf binary systems. No significant RV variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant fraction of the orbital period. Specialized techniques are required to reach the high precisions sensitive to motion in orbits of very low-mass systems. For eight objects, including six T dwarfs, we present the first published high-resolution spectra, many with high signal to noise, that will provide valuable comparison data for models of brown dwarf atmospheres.« less

  6. Hubble COS Spectroscopy of the Dwarf Nova CW Mon: The White Dwarf in Quiescence?

    PubMed

    Hause, Connor; Sion, Edward M; Godon, Patrick; Boris, T Gänsicke; Szkody, Paula; de Martino, Domitilla; Pala, Anna

    2017-08-01

    We present a synthetic spectral analysis of the HST COS spectrum of the U Geminorum-type dwarf nova CW Mon, taken during quiescence as part of our COS survey of accreting white dwarfs in Cataclysmic Variables. We use synthetic photosphere and optically thick accretion disk spectra to model the COS spectrum as well as archival IUE spectra obtained decades ago when the system was in an even deeper quiescent state. Assuming a reddening of E(B-V)=0.06, an inclination of 60° (CW Mon has eclipses of the accretion disk, and a white dwarf mass of 0.8 M ⊙ , our results indicate the presence of a 22-27,000 K white dwarf and a low mass accretion rate [Formula: see text], for a derived distance o ~200 to ~300 pc.

  7. The UDF05 Follow-up of the HUDF: I. The Faint-End Slope of the Lyman-Break Galaxy Population at zeta approx. 5

    NASA Technical Reports Server (NTRS)

    Oesch, P. A.; Stiavelli, M.; Carollo, C. M.; Bergeron, L. E.; Koekemoer, A.; Lucas, R. A.; Pavlovsky, C. M.; Trenti, M.; Lilly, S. J.; Beckwith, S. V. W.; hide

    2007-01-01

    We present the UDF05 project, a HST Large Program of deep ACS (F606W, F775W, F850LP, and NICMOS (Fll0W, Fl60W) imaging of three fields, two of which coincide with the NICP1-4 NICMOS parallel observations of the Hubble Ultra Deep Field (HUDF). In this first paper we use the ACS data for the NICP12 field, as well as the original HUDF ACS data, to measure the UV Luminosity Function (LF) of z approximately 5 Lyman Break Galaxies (LBGs) down to very faint levels. Specifically, based on a V - i, i - z selection criterion, we identify a sample of 101 and 133 candidate z approximately 5 galaxies down to z(sub 850) = 28.5 and 29.25 magnitudes in the NICP12 field and in the HUDF, respectively. Using an extensive set of Monte Carlo simulations we derive corrections for observational biases and selection effects, and construct the rest-frame 1400 Angstroms LBG LF over the range M(sub 1400) = [-22.2, -17.1], i.e. down to approximately 0.04 L(sub *) at z = 5. We show that: (i) Different assumptions for the SED distribution of the LBG population, dust properties and intergalactic absorption result in a 25% variation in the number density of LBGs at z = 5 (ii) Under consistent assumptions for dust properties and intergalactic absorption, the HUDF is about 30% under-dense in z = 5 LBGs relative to the NICP12 field, a variation which is well explained by cosmic variance; (iii) The faint-end slope of the LF is independent of the specific assumptions for the input physical parameters, and has a value of alpha approximately -1.6, similar to the faint-end slope of the LF that has been measured for LBGs at z = 3 and z = 6. Our study therefore supports no variation in the faint-end of the LBG LF over the whole redshift range z = 3 to z = 6. The comparison with theoretical predictions suggests that (a,) the majority of the stars in the z = 5 LBG population are produced with a Top-Heavy IMF in merger-driven starbursts, and that (b) possibly, either the fraction of stellar mass produced in

  8. GRMHD formulation of highly super-Chandrasekhar magnetized white dwarfs: stable configurations of non-spherical white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Upasana; Mukhopadhyay, Banibrata, E-mail: upasana@physics.iisc.ernet.in, E-mail: bm@physics.iisc.ernet.in

    The topic of magnetized super-Chandrasekhar white dwarfs is in the limelight, particularly in the last few years, since our proposal of their existence. By full-scale general relativistic magnetohydrodynamic (GRMHD) numerical analysis, we confirm in this work the existence of stable, highly magnetized, significantly super-Chandrasekhar white dwarfs with mass more than 3 solar mass. While a poloidal field geometry renders the white dwarfs oblate, a toroidal field makes them prolate retaining an overall quasi-spherical shape, as speculated in our earlier work. These white dwarfs are expected to serve as the progenitors of over-luminous type Ia supernovae.

  9. The formation of the Milky Way halo and its dwarf satellites; a NLTE-1D abundance analysis. II. Early chemical enrichment

    NASA Astrophysics Data System (ADS)

    Mashonkina, L.; Jablonka, P.; Sitnova, T.; Pakhomov, Yu.; North, P.

    2017-12-01

    We present the non-local thermodynamic equilibrium (NLTE) abundances of up to 10 chemical species in a sample of 59 very metal-poor (VMP, -4 ≤ [Fe/H] ≾-2) stars in seven dwarf spheroidal galaxies (dSphs) and in the Milky Way (MW) halo. Our results are based on high-resolution spectroscopic datasets and homogeneous and accurate atmospheric parameters determined in Paper I. We show that once the NLTE effects are properly taken into account, all massive galaxies in our sample, that is, the MW halo and the classical dSphs Sculptor, Ursa Minor, Sextans, and Fornax, reveal a similar plateau at [α/Fe] ≃ 0.3 for each of the α-process elements: Mg, Ca, and Ti. We put on a firm ground the evidence for a decline in α/Fe with increasing metallicity in the Boötes I ultra-faint dwarf galaxy (UFD), that is most probably due to the ejecta of type Ia supernovae. For Na/Fe, Na/Mg, and Al/Mg, the MW halo and all dSphs reveal indistinguishable trends with metallicity, suggesting that the processes of Na and Al synthesis are identical in all systems, independent of their mass. The dichotomy in the [Sr/Ba] versus [Ba/H] diagram is observed in the classical dSphs, similarly to the MW halo, calling for two different nucleosynthesis channels for Sr. We show that Sr in the massive galaxies is well correlated with Mg suggesting a strong link to massive stars and that its origin is essentially independent of Ba, for most of the [Ba/H] range. Our three UFDs, that is Boötes I, UMa II, and Leo IV, are depleted in Sr and Ba relative to Fe and Mg, with very similar ratios of [Sr/Mg] ≃-1.3 and [Ba/Mg] ≃-1 on the entire range of their Mg abundances. The subsolar Sr/Ba ratios of Boötes I and UMa II indicate a common r-process origin of their neutron-capture elements. Sculptor remains the classical dSph, in which the evidence for inhomogeneous mixing in the early evolution stage, at [Fe/H] <-2, is the strongest. Full Tables 3 and 4 are only available at the CDS via anonymous ftp to

  10. Habitability of planets around red dwarf stars.

    PubMed

    Heath, M J; Doyle, L R; Joshi, M M; Haberle, R M

    1999-08-01

    Recent models indicate that relatively moderate climates could exist on Earth-sized planets in synchronous rotation around red dwarf stars. Investigation of the global water cycle, availability of photosynthetically active radiation in red dwarf sunlight, and the biological implications of stellar flares, which can be frequent for red dwarfs, suggests that higher plant habitability of red dwarf planets may be possible.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    In this paper, we study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M vir ~ 10 12.1 M ⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M star ~ 10 8–10 10M ⊙. Halos with more quiescent accretion histories tendmore » to have lower mass progenitors (10 8–10 9 M ⊙), and lower overall accreted stellar masses. Ultra-faint mass (M star < 10 5 M ⊙) dwarfs contribute a negligible amount (<<1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (~2%–5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 10 5 < M star/M ⊙ < 10 8 provide a substantial amount of the very metal-poor stellar material (~40%–80%), and even relatively metal-rich dwarfs with M star > 10 8 M ⊙ can contribute a considerable fraction (~20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. In conclusion, we suggest that the MW could be a "transient fossil"; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

  12. Gaia Reveals Evidence for Merged White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Hambly, N. C.; Bergeron, P.; Genest-Beaulieu, C.; Rowell, N.

    2018-06-01

    We use Gaia Data Release 2 to identify 13,928 white dwarfs within 100 pc of the Sun. The exquisite astrometry from Gaia reveals for the first time a bifurcation in the observed white dwarf sequence in both Gaia and the Sloan Digital Sky Survey (SDSS) passbands. The latter is easily explained by a helium atmosphere white dwarf fraction of 36%. However, the bifurcation in the Gaia colour-magnitude diagram depends on both the atmospheric composition and the mass distribution. We simulate theoretical colour-magnitude diagrams for single and binary white dwarfs using a population synthesis approach and demonstrate that there is a significant contribution from relatively massive white dwarfs that likely formed through mergers. These include white dwarf remnants of main-sequence (blue stragglers) and post-main sequence mergers. The mass distribution of the SDSS subsample, including the spectroscopically confirmed white dwarfs, also shows this massive bump. This is the first direct detection of such a population in a volume-limited sample.

  13. The Metallicity of Void Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (Mr > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  14. Building Magnetic Fields in White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    White dwarfs, the compact remnants left over at the end of low- and medium-mass stars lifetimes, are often found to have magnetic fields with strengths ranging from thousands to billions of times that of Earth. But how do these fields form?MultiplePossibilitiesAround 1020% of white dwarfs have been observed to have measurable magnetic fields with a wide range of strengths. There are several theories as to how these fields might be generated:The fields are fossil.The original weak magnetic fields of the progenitor stars were amplified as the stars cores evolved into white dwarfs.The fields are caused by binary interactions.White dwarfs that formed in the merger of a binary pair might have had a magnetic field amplified as a result of a dynamo that was generated during the merger.The fields were produced by some other internal physical mechanism during the cooling of the white dwarf itself.In a recent publication, a team of authors led by Jordi Isern (Institute of Space Sciences, CSIC, and Institute for Space Studies of Catalonia, Spain) explored this third possibility.Dynamos from CrystallizationThe inner and outer boundaries of the convective mantle of carbon/oxygen white dwarfs of two different masses (top vs. bottom panel) as a function of luminosity. As the white dwarf cools (toward the right), the mantle grows thinner due to the crystallization and settling of material. [Isern et al. 2017]As white dwarfs have no nuclear fusion at their centers, they simply radiate heat and gradually cool over time. The structure of the white dwarf undergoes an interesting change as it cools, however: though the object begins as a fluid composed primarily of an ionized mixture of carbon and oxygen (and a few minor species like nickel and iron), it gradually crystallizes as its temperature drops.The crystallized phase of the white dwarf is oxygen-rich which is denser than the liquid, so the crystallized material sinks to the center of the dwarf as it solidifies. As a result, the

  15. Calibrating Detailed Chemical Analysis of M dwarfs

    NASA Astrophysics Data System (ADS)

    Veyette, Mark; Muirhead, Philip Steven; Mann, Andrew; Brewer, John; Allard, France; Homeier, Derek

    2018-01-01

    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications including studying the chemical evolution of the Galaxy, assessing membership in stellar kinematic groups, and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres has hindered similar analysis of M-dwarf stars. Large surveys of FGK abundances play an important role in developing methods to measure the compositions of M dwarfs by providing benchmark FGK stars that have widely-separated M dwarf companions. These systems allow us to empirically calibrate metallicity-sensitive features in M dwarf spectra. However, current methods to measure metallicity in M dwarfs from moderate-resolution spectra are limited to measuring overall metallicity and largely rely on astrophysical abundance correlations in stellar populations. In this talk, I will discuss how large, homogeneous catalogs of precise FGK abundances are crucial to advancing chemical analysis of M dwarfs beyond overall metallicity to direct measurements of individual elemental abundances. I will present a new method to analyze high-resolution, NIR spectra of M dwarfs that employs an empirical calibration of synthetic M dwarf spectra to infer effective temperature, Fe abundance, and Ti abundance. This work is a step toward detailed chemical analysis of M dwarfs at a similar precision achieved for FGK stars.

  16. Observations of Superwinds in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Marlowe, A. T.; Heckman, T. M.; Wyse, R.; Schommer, R.

    1993-12-01

    Dwarf galaxies are important in developing our understanding of the formation and evolution of galaxies, and of the structure in the universe. The concept of supernova-driven mass outflows is a vital ingredient in theories of the structure and evolution of dwarfs galaxies. We have begun a detailed multi-waveband search for outflows in starbursting dwarf galaxies, and have obtained Fabry-Perot images and Echelle spectra of 20 nearby actively-star-forming dwarf galaxies. In about half the sample, the Fabry-Perot Hα images show loops and filaments with sizes of one to a few kpc. The Echelle spectra taken through the loops and filaments show kinematics consistent with expanding bubble-like structures. We describe these data, and present seven dwarfs in our sample that have the strongest evidence of outflows.

  17. EVERY INTERACTING DOUBLE WHITE DWARF BINARY MAY MERGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Ken J.

    2015-05-20

    Interacting double white dwarf (WD) binaries can give rise to a wide variety of astrophysical outcomes ranging from faint thermonuclear and Type Ia supernovae to the formation of neutron stars and stably accreting AM Canum Venaticorum systems. One key factor affecting the final outcome is whether mass transfer remains dynamically stable or instead diverges, leading to the tidal disruption of the donor and the merger of the binary. It is typically thought that for low ratios of the donor mass to the accretor mass, mass transfer remains stable, especially if accretion occurs via a disk. In this Letter, we examinemore » low mass ratio double WD binaries and find that the initial phase of hydrogen-rich mass transfer leads to a classical nova-like outburst on the accretor. Dynamical friction within the expanding nova shell shrinks the orbit and causes the mass transfer rate to increase dramatically above the accretor's Eddington limit, possibly resulting in a binary merger. If the binary survives the first hydrogen-rich nova outbursts, dynamical friction within the subsequent helium-powered nova shells pushes the system even more strongly toward merger. While further calculations are necessary to confirm this outcome for the entire range of binaries previously thought to be dynamically stable, it appears likely that most, if not all, interacting double WD binaries will merge during the course of their evolution.« less

  18. The Unevenly Distributed Nearest Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Bihain, Gabriel; Scholz, Ralf-Dieter

    2016-08-01

    To address the questions of how many brown dwarfs there are in the Milky Way, how do these objects relate to star formation, and whether the brown dwarf formation rate was different in the past, the star-to-brown dwarf number ratio can be considered. While main sequence stars are well known components of the solar neighborhood, lower mass, substellar objects increasingly add to the census of the nearest objects. The sky projection of the known objects at <6.5 pc shows that stars present a uniform distribution and brown dwarfs a non-uniform distribution, with about four times more brown dwarfs behind than ahead of the Sun relative to the direction of rotation of the Galaxy. Assuming that substellar objects distribute uniformly, their observed configuration has a probability of 0.1 %. The helio- and geocentricity of the configuration suggests that it probably results from an observational bias, which if compensated for by future discoveries, would bring the star-to-brown dwarf ratio in agreement with the average ratio found in star forming regions.

  19. DISTRIBUTION OF FAINT ATOMIC GAS IN HICKSON COMPACT GROUPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borthakur, Sanchayeeta; Heckman, Timothy M.; Zhu, Guangtun

    2015-10-10

    We present 21 cm H i observations of four Hickson Compact Groups (HCGs) with evidence for a substantial intragroup medium using the Robert C. Byrd Green Bank Telescope (GBT). By mapping H i emission in a region of 25′ × 25′ (140–650 kpc) surrounding each HCG, these observations provide better estimates of H i masses. In particular, we detected 65% more H i than that detected in the Karl G. Jansky Very Large Array (VLA) imaging of HCG 92. We also identify whether the diffuse gas has the same spatial distribution as the high surface brightness (HSB) H i features detectedmore » in the VLA maps of these groups by comparing the H i strengths between the observed and modeled masses based on VLA maps. We found that the H i observed with the GBT has a similar spatial distribution to the HSB structures in HCG 31 and HCG 68. Conversely, the observed H i distributions in HCG 44 and HCG 92 were extended and showed significant offsets from the modeled masses. Most of the faint gas in HCG 44 lies to the northeast–southwest region and in HCG 92 lies in the northwest region of their respective groups. The spatial and dynamical similarities between the total (faint+HSB) and the HSB H i indicate that the faint gas is of tidal origin. We found that the gas will survive ionization by the cosmic UV background and the escaping ionizing photons from the star-forming regions and stay primarily neutral for at least 500 Myr.« less

  20. PREFACE: 16th European White Dwarfs Workshop

    NASA Astrophysics Data System (ADS)

    Garcia-Berro, Enrique; Hernanz, Margarita; Isern, Jordi; Torres, Santiago

    2009-07-01

    The 16th European Workshop on White Dwarfs was held in Barcelona, Spain, from 30 June to 4 July 2008 at the premises of the UPC. Almost 120 participants from Europe (France, Germany, United Kingdom, Italy, and several others), America (USA, Canada, Argentina, Brazil, and Chile), and other continents (Australia, South Africa, . . . ) attended the workshop. Among these participants were the most relevant specialists in the field. The topics covered by the conference were: White dwarf structure and evolution Progenitors and Planetary Nebulae White dwarfs in binaries: cataclysmic variables, double degenerates and other binaries White dwarfs, dust disks and planetary systems Atmospheres, chemical composition, magnetic fields Variable white dwarfs White dwarfs in stellar clusters and the halo White Dwarfs as SNIa progenitors The programme included 54 talks, and 45 posters. The oral presentations were distributed into the following sessions: Luminosity function, mass function and populations White dwarf structure and evolution White dwarf ages White dwarf catalogs and surveys Central stars of planetary nebulae Supernovae progenitors White dwarfs in novae and CVs Physical processes in white dwarfs and magnetic white dwarfs Disks, dust and planets around white dwarfs Pulsating white dwarfs Additionally we had a special open session about Spitzer and white dwarfs. The Proceedings of the 16th European Workshop on White Dwarfs are representative of the current state-of-the-art of the research field and include new and exciting results. We acknowledge the very positive attitude of the attendants to the workshop, which stimulated very fruitful discussions that took place in all the sessions and after the official schedule. Also, the meeting allowed new collaborations tp start that will undoubtedly result in significant advances in the research field. We also acknowledge the willingness of the participants to deliver their contributions before the final deadline. We sincerely

  1. Could Ultracool Dwarfs Have Sun-Like Activity?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    Solar-like stars exhibit magnetic cycles; our Sun, for instance, displays an 11-year period in its activity, manifesting as cyclic changes in radiation levels, the number of sunspots and flares, and ejection of solar material. Over the span of two activity cycles, the Suns magnetic field flips polarity and then returns to its original state.An artists illustration comparing the Sun to TRAPPIST-1, an ultracool dwarf star known to host several planets. [ESO]But what about the magnetic behavior of objects near the cooler end of the stellar main sequence do they exhibit similar activity cycles?Effects of a Convecting InteriorDwarf stars have made headlines in recent years due to their potential to harbor exoplanets. Because these cooler stars have lower flux levels compared to the Sun, their habitable zones lie much closer to the stars. The magnetic behavior of these stars is therefore important to understand: could ultracool dwarfs exhibit solar-like activity cycles that would affect planets with close orbits?The differences in internal structure between different mass stars. Ultracool dwarfs have fully convective interiors. [www.sun.org]Theres a major difference between ultracool dwarfs (stars of spectral type higher than M7 and brown dwarfs) and Sun-like stars: their internal structures. Sun-like stars have a convective envelope that surrounds a radiative core. The interiors of cool, low-mass objects, on the other hand, are fully convective.Based on theoretical studies of how magnetism is generated in stars, its thought that the fully convective interiors of ultracool dwarfs cant support large-scale magnetic field formation. This should prevent these stars from exhibiting activity cycles like the Sun. But recent radio observations of dwarf stars have led scientist Matthew Route (ITaP Research Computing, Purdue University) to question these models.A Reversing Field?During observations of the brown dwarf star J1047+21 in 20102011, radio flares were detected with

  2. A Search for Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Barker, Edwin S.; Cowardin, Heather; Abercromby, Kira J.; ilha, Jiri

    2011-01-01

    Existing optical surveys for debris at geosynchronous orbit (GEO) have been conducted with meter class telescopes, which have detection limits in the range of 18th-19th magnitude. We report on a new search for optically faint debris at GEO using the 6.5-m Magellan 1 telescope Walter Baade at Las Campanas Observatory in Chile. Our goal is to go as faint as possible and characterize the brightness distribution of debris fainter than R = 20th magnitude, corresponding to a size smaller than 10 cm assuming an albedo of 0.175. We wish to compare the inferred size distribution for GEO debris with that for LEO debris. We describe results obtained during 9.4 hours of observing time during 25-27 March 2011. We used the IMACS f/2 instrument, which has a mosaic of 8 CCDs, and a field of view of 30 arc-minutes in diameter. This is the widest field of view of any instrument on either Magellan telescope. All observations were obtained through a Sloan r filter. The limiting magnitude for 5 second exposures is estimated to be fainter than 22. With this small field of view and the limited observing time, our objective was to search for optically faint objects from the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris (SSN # 25001 and 33519) with the 6.5-m telescope, followed by a survey for objects on similar orbits but with a spread in mean anomaly. To detect bright objects over a wider field of view (1.6x1.6 degrees), we observed the same field centers at the same time through a similar filter with the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will describe our experiences using Magellan, a telescope never used previously for orbital debris research, and our initial results.

  3. The origin of ultra diffuse galaxies: stellar feedback and quenching

    NASA Astrophysics Data System (ADS)

    Chan, T. K.; Kereš, D.; Wetzel, A.; Hopkins, P. F.; Faucher-Giguère, C.-A.; El-Badry, K.; Garrison-Kimmel, S.; Boylan-Kolchin, M.

    2018-05-01

    We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies (UDGs). We show that outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching, naturally reproduce the observed population of red UDGs, without the need for high spin halos, or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius and absolute magnitude of the observed red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated dwarf galaxies with M* ˜ 108 M⊙, low metallicity and a broad range of ages; the more massive the UDGs, the older they are. The most massive red UDG in our sample (M* ˜ 3 × 108M⊙) requires quenching at z ˜ 3 when its halo reached Mh ˜ 1011 M⊙. Our simulated UDGs form with normal stellar-to-halo ratios and match the central enclosed masses and the velocity dispersions of the observed UDGs. Enclosed masses remain largely fixed across a broad range of quenching times because the central regions of their dark matter halos complete their growth early. If our simulated dwarfs are not quenched, they evolve into bluer low-surface brightness galaxies with M/L similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around M* ˜ 108 M⊙, both in the field and in clusters.

  4. The origin of ultra diffuse galaxies: stellar feedback and quenching

    NASA Astrophysics Data System (ADS)

    Chan, T. K.; Kereš, D.; Wetzel, A.; Hopkins, P. F.; Faucher-Giguère, C.-A.; El-Badry, K.; Garrison-Kimmel, S.; Boylan-Kolchin, M.

    2018-07-01

    We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies (UDGs). We show that outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching, naturally reproduce the observed population of red UDGs, without the need for high spin haloes, or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius, and absolute magnitude of the observed red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated dwarf galaxies with M* ˜ 108 M⊙, low metallicity, and a broad range of ages; the more massive the UDGs, the older they are. The most massive red UDG in our sample (M* ˜ 3 × 108 M⊙) requires quenching at z ˜ 3 when its halo reached Mh ˜ 1011 M⊙. Our simulated UDGs form with normal stellar-to-halo ratios and match the central enclosed masses and the velocity dispersions of the observed UDGs. Enclosed masses remain largely fixed across a broad range of quenching times because the central regions of their dark matter haloes complete their growth early. If our simulated dwarfs are not quenched, they evolve into bluer low surface brightness galaxies with M/L similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around M* ˜ 108 M⊙, both in the field and in clusters.

  5. Faints, fits, and fatalities from emotion in Shakespeare's characters: survey of the canon

    PubMed Central

    2006-01-01

    Objectives To determine how often Shakespeare's characters faint, fit, or die from extreme emotion; to assess Shakespeare's uniqueness in this regard; and to examine the plausibility of these dramatised events. Design Line by line search through modern editions of these late 16th and early 17th century works for accounts of characters fainting, fitting, or dying while under strong emotion and for no other apparent reason. Data sources All 39 canonical plays by Shakespeare and his three long narrative poems; 18 similar works by seven of Shakespeare's best known contemporaries. Results 10 deaths from strong emotion are recorded by Shakespeare (three occur on stage); all are due to grief, typically at the loss of a loved one. All but two of the deaths are in the playwright's late works. Some deaths are sudden. Another 29 emotion induced deaths are mentioned as possible, but the likelihood of some can be challenged. Transient loss of consciousness is staged or reported in 18 cases (sounding like epilepsy in two) and near fainting in a further 13. Extreme joy is sometimes depicted as a factor in these events. Emotional death and fainting also occur occasionally in works by Shakespeare's contemporaries. Conclusions These dramatic phenomena are part of the early modern belief system but are also plausible by modern understanding of physiology and disease. They teach us not to underestimate the power of the emotions to disturb bodily functions. PMID:17185734

  6. The contribution of faint AGNs to the ionizing background at z 4

    NASA Astrophysics Data System (ADS)

    Grazian, A.; Giallongo, E.; Boutsia, K.; Cristiani, S.; Vanzella, E.; Scarlata, C.; Santini, P.; Pentericci, L.; Merlin, E.; Menci, N.; Fontanot, F.; Fontana, A.; Fiore, F.; Civano, F.; Castellano, M.; Brusa, M.; Bonchi, A.; Carini, R.; Cusano, F.; Faccini, M.; Garilli, B.; Marchetti, A.; Rossi, A.; Speziali, R.

    2018-05-01

    Context. Finding the sources responsible for the hydrogen reionization is one of the most pressing issues in observational cosmology. Bright quasi-stellar objects (QSOs) are known to ionize their surrounding neighborhood, but they are too few to ensure the required HI ionizing background. A significant contribution by faint active galactic nuclei (AGNs), however, could solve the problem, as recently advocated on the basis of a relatively large space density of faint active nuclei at z > 4. Aims: This work is part of a long-term project aimed at measuring the Lyman Continuum escape fraction for a large sample of AGNs at z 4 down to an absolute magnitude of M1450 -23. We have carried out an exploratory spectroscopic program to measure the HI ionizing emission of 16 faint AGNs spanning a broad U - I color interval, with I 21-23, and 3.6 < z < 4.2. These AGNs are three magnitudes fainter than the typical SDSS QSOs (M1450 ≲-26) which are known to ionize their surrounding IGM at z ≳ 4. Methods: We acquired deep spectra of these faint AGNs with spectrographs available at the VLT, LBT, and Magellan telescopes, that is, FORS2, MODS1-2, and LDSS3, respectively. The emission in the Lyman Continuum region, close to 900 Å rest frame, has been detected with a signal to noise ratio of 10-120 for all 16 AGNs. The flux ratio between the 900 Å rest-frame region and 930 Å provides a robust estimate of the escape fraction of HI ionizing photons. Results: We have found that the Lyman Continuum escape fraction is between 44 and 100% for all the observed faint AGNs, with a mean value of 74% at 3.6 < z < 4.2 and - 25.1 ≲ M1450 ≲-23.3, in agreement with the value found in the literature for much brighter QSOs (M1450 ≲-26) at the same redshifts. The Lyman Continuum escape fraction of our faint AGNs does not show any dependence on the absolute luminosities or on the observed U - I colors of the objects. Assuming that the Lyman Continuum escape fraction remains close to 75% down

  7. The luminosities of the coldest brown dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinney, C. G.; Faherty, Jacqueline K.; Kirkpatrick, J. Davy

    2014-11-20

    In recent years, brown dwarfs have been extended to a new Y-dwarf class with effective temperatures colder than 500 K and masses in the range of 5-30 Jupiter masses. They fill a crucial gap in observable atmospheric properties between the much colder gas-giant planets of our own solar system (at around 130 K) and both hotter T-type brown dwarfs and the hotter planets that can be imaged orbiting young nearby stars (both with effective temperatures in the range of 1500-1000 K). Distance measurements for these objects deliver absolute magnitudes that make critical tests of our understanding of very cool atmospheres.more » Here we report new distances for nine Y dwarfs and seven very late T dwarfs. These reveal that Y dwarfs do indeed represent a continuation of the T-dwarf sequence to both fainter luminosities and cooler temperatures. They also show that the coolest objects display a large range in absolute magnitude for a given photometric color. The latest atmospheric models show good agreement with the majority of these Y-dwarf absolute magnitudes. This is also the case for WISE0855-0714, the coldest and closest brown dwarf to the Sun, which shows evidence for water ice clouds. However, there are also some outstanding exceptions, which suggest either binarity or the presence of condensate clouds. The former is readily testable with current adaptive optics facilities. The latter would mean that the range of cloudiness in Y dwarfs is substantial with most hosting almost no clouds—while others have dense clouds, making them prime targets for future variability observations to study cloud dynamics.« less

  8. Milky Way red dwarfs in the BoRG survey; galactic scale-height and the distribution of dwarf stars in WFC3 imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holwerda, B. W.; Bouwens, R.; Trenti, M.

    2014-06-10

    We present a tally of Milky Way late-type dwarf stars in 68 Wide Field Camera 3 (WFC3) pure-parallel fields (227 arcmin{sup 2}) from the Brightest of Reionizing Galaxies survey for high-redshift galaxies. Using spectroscopically identified M-dwarfs in two public surveys, the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey and the Early Release Science mosaics, we identify a morphological selection criterion using the half-light radius (r {sub 50}), a near-infrared J – H, G – J color region where M-dwarfs are found, and a V – J relation with M-dwarf subtype. We apply this morphological selection of stellar objects, color-color selectionmore » of M-dwarfs, and optical-near-infrared color subtyping to compile a catalog of 274 M-dwarfs belonging to the disk of the Milky Way with a limiting magnitude of m {sub F125W} < 24(AB). Based on the M-dwarf statistics, we conclude that (1) the previously identified north-south discrepancy in M-dwarf numbers persists in our sample; there are more M-dwarfs in the northern fields on average than in southern ones, (2) the Milky Way's single disk scale-height for M-dwarfs is 0.3-4 kpc, depending on subtype, (3) the scale-height depends on M-dwarf subtype with early types (M0-4) high scale-height (z {sub 0} = 3-4 kpc) and later types M5 and above in the thin disk (z {sub 0} = 0.3-0.5 kpc), (4) a second component is visible in the vertical distribution, with a different, much higher scale-height in the southern fields compared to the northern ones. We report the M-dwarf component of the Sagittarius stream in one of our fields with 11 confirmed M-dwarfs, seven of which are at the stream's distance. In addition to the M-dwarf catalog, we report the discovery of 1 T-dwarfs and 30 L-dwarfs from their near-infrared colors. The dwarf scale-height and the relative low incidence in our fields of L- and T-dwarfs in these fields makes it unlikely that these stars will be interlopers in great numbers in color-selected samples of

  9. M Dwarf Mysteries

    NASA Astrophysics Data System (ADS)

    Henry, Todd J.; Jao, Wei-Chun; Irwin, Jonathan; Dieterich, Sergio; Finch, Charlie T.; Riedel, Adric R.; Subasavage, John P.; Winters, Jennifer; RECONS Team

    2017-01-01

    During RECONS' 17-year (so far) astrometry/photometry program at the CTIO/SMARTS 0.9m, we have observed thousands of the ubiquitous red dwarfs in the solar neighborhood. During this reconnaissance, a few mysterious characters have emerged ...The Case of the Mercurial Stars: One M dwarf has been fading steadily for more than a decade, at last measure 6% fainter than when it was first observed. Another has grown brighter by 7% over 15 years. Are these brightness changes part of extremely long stellar cycles, or something else entirely?The Case of Identical Stellar Twins that Aren't: Two M dwarfs seem at first to be identical siblings traveling together through the Galaxy. They have virtually identical spectra at optical wavelengths and identical colors throughout the VRIJHK bands. Long-term astrometry indicates that they are, indeed, at the same distance via parallax measurements, and their proper motions match precisely. Yet, one of the twins is FOUR times brighter than the other. Followup work has revealed that the brighter component is a very close spectroscopic double, but no other stars are seen. So, the mystery may be half solved, but why do the close stars remain twice as bright as their widely-separated twin?The Case of the Great Kaboom!: After more than 1000 nights of observing on the reliable 0.9m telescope, with generally routine frames reading out upon the screen, one stellar system comprised of five red dwarfs flared in stunning fashion. Of the two distinct sources, the fainter one (an unresolved double) surpassed the brightness of the brighter one (an unresolved triple), increasing by more than three full magnitudes in the V filter. Which component actually flared? Is this magnificent outburst an unusual event, or in fact typical for this system and other M dwarfs?At the AAS meeting, we hope to probe the cognoscenti who study the Sun's smaller cousins to solve these intriguing M Dwarf Mysteries.This effort has been supported by the NSF through grants

  10. Dwarfs in the Deepest Fields at Noon: Studying Size and Shape of Low-mass Galaxies out to z 3 in Five HST Legacy Fields

    NASA Astrophysics Data System (ADS)

    Guo, Yicheng

    2017-08-01

    Galaxies with stellar mass 100x-1000x times smaller than our Milky Way (hereafter dwarf galaxies or DGs) are important for understanding galaxy formation and evolution by being the most sensitive probes of both the macro-physics of dark matter halos and the micro-physics of the different physical mechanisms that regulate star formation and shape galaxies. Currently, however, observations of distant DGs have been hampered by small samples and poor quality due to their faintness. We propose an archival study of the size, morphology, and structures of DGs out to z 3.0 by combining the archived data from five of the deepest regions that HST has ever observed: eXtreme Deep Field (XDF, updated from HUDF) and the Hubble Legacy Fields (HLFs). Our program would be the first to advance the morphology studies of DGs to the Cosmic Noon (z 2), and hence place unprecedented constraints on models of galaxy structure formation. Equally important is the data product of our program: multi-wavelength photometry and morphology catalogs for all detected galaxies in these fields. These catalogs would be a timely treasure for the public to prepare for the coming JWST era by providing detailed information of small, faint, but important objects in some deepest HST fields for JWST observations.

  11. THE SPECTRAL EVOLUTION OF CONVECTIVE MIXING WHITE DWARFS, THE NON-DA GAP, AND WHITE DWARF COSMOCHRONOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Eugene Y.; Hansen, Brad M. S., E-mail: eyc@mail.utexas.edu, E-mail: hansen@astro.ucla.edu

    The spectral distribution of field white dwarfs shows a feature called the 'non-DA gap'. As defined by Bergeron et al., this is a temperature range (5100-6100 K) where relatively few non-DA stars are found, even though such stars are abundant on either side of the gap. It is usually viewed as an indication that a significant fraction of white dwarfs switch their atmospheric compositions back and forth between hydrogen-rich and helium-rich as they cool. In this Letter, we present a Monte Carlo model of the Galactic disk white dwarf population, based on the spectral evolution model of Chen and Hansen.more » We find that the non-DA gap emerges naturally, even though our model only allows white dwarf atmospheres to evolve monotonically from hydrogen-rich to helium-rich through convective mixing. We conclude by discussing the effects of convective mixing on the white dwarf luminosity function and the use thereof for Cosmochronology.« less

  12. Hubble Space Telescope, Faint Object Camera

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  13. Larch Dwarf Mistletoe (FIDL)

    Treesearch

    Jerome S. Beatty; Gregory M. Filip; Robert L. Mathiason

    1997-01-01

    Larch dwarf mistletoe (Arceuthobium laricis (Piper) St. John) is a common and damaging parasite of western larch (Larix occidentalis Nutt.) in the Pacific Northwest and southern British Columbia. Larch dwarf mistletoe occurs commonly throughout the range of western larch in British Columbia, northern and central Idaho, western Montana and east of the Cascades in...

  14. 1. Dyea Dock looking south. Note faint evenly spaced circular ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Dyea Dock looking south. Note faint evenly spaced circular dark pieces of grass up through the middle of the picture indicating posts making up the pier. Photograph made from park service cherry picker. - Dyea Dock & Association (Ruins), Skagway, Skagway, AK

  15. The faint-end of galaxy luminosity functions at the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Yue, B.; Castellano, M.; Ferrara, A.; Fontana, A.; Merlin, E.; Amorín, R.; Grazian, A.; Mármol-Queralto, E.; Michałowski, M. J.; Mortlock, A.; Paris, D.; Parsa, S.; Pilo, S.; Santini, P.; Di Criscienzo, M.

    2018-05-01

    During the Epoch of Reionization (EoR), feedback effects reduce the efficiency of star formation process in small halos or even fully quench it. The galaxy luminosity function (LF) may then turn over at the faint-end. We analyze the number counts of z > 5 galaxies observed in the fields of four Frontier Fields (FFs) clusters and obtain constraints on the LF faint-end: for the turn-over magnitude at z ~ 6, MUVT >~-13.3 for the circular velocity threshold of quenching star formation process, vc* <~ 47 km s-1. We have not yet found significant evidence of the presence of feedback effects suppressing the star formation in small galaxies.

  16. Ultra-stripped supernovae: progenitors and fate

    NASA Astrophysics Data System (ADS)

    Tauris, Thomas M.; Langer, Norbert; Podsiadlowski, Philipp

    2015-08-01

    The explosion of ultra-stripped stars in close binaries can lead to ejecta masses <0.1 M⊙ and may explain some of the recent discoveries of weak and fast optical transients. In Tauris et al., it was demonstrated that helium star companions to neutron stars (NSs) may experience mass transfer and evolve into naked ˜1.5 M⊙ metal cores, barely above the Chandrasekhar mass limit. Here, we elaborate on this work and present a systematic investigation of the progenitor evolution leading to ultra-stripped supernovae (SNe). In particular, we examine the binary parameter space leading to electron-capture (EC SNe) and iron core-collapse SNe (Fe CCSNe), respectively, and determine the amount of helium ejected with applications to their observational classification as Type Ib or Type Ic. We mainly evolve systems where the SN progenitors are helium star donors of initial mass MHe = 2.5-3.5 M⊙ in tight binaries with orbital periods of Porb = 0.06-2.0 d, and hosting an accreting NS, but we also discuss the evolution of wider systems and of both more massive and lighter - as well as single - helium stars. In some cases, we are able to follow the evolution until the onset of silicon burning, just a few days prior to the SN explosion. We find that ultra-stripped SNe are possible for both EC SNe and Fe CCSNe. EC SNe only occur for MHe = 2.60-2.95 M⊙ depending on Porb. The general outcome, however, is an Fe CCSN above this mass interval and an ONeMg or CO white dwarf for smaller masses. For the exploding stars, the amount of helium ejected is correlated with Porb - the tightest systems even having donors being stripped down to envelopes of less than 0.01 M⊙. We estimate the rise time of ultra-stripped SNe to be in the range 12 h-8 d, and light-curve decay times between 1 and 50 d. A number of fitting formulae for our models are provided with applications to population synthesis. Ultra-stripped SNe may produce NSs in the mass range 1.10-1.80 M⊙ and are highly relevant for

  17. Hemlock Dwarf Mistletoe (FIDL)

    Treesearch

    Paul E. Hennon; Jerome S. Beatty; Diane Hildebrand

    2001-01-01

    Hemlock dwarf mistletoe, Arceuthobium tsugense (Rosendahl) G.N. Jones, causes a serious disease of western hemlock and several other tree species along the Pacific Coast of North America. This small, seed-bearing plant lives exclusively as a parasite on living trees. Throughout its range, hemlock dwarf mistletoe occurs in patch-like patterns in the forests. Some...

  18. Flaring Red Dwarf Star (Illustration)

    NASA Image and Video Library

    2017-06-06

    This illustration shows a red dwarf star orbited by a hypothetical exoplanet. Red dwarfs tend to be magnetically active, displaying gigantic arcing prominences and a wealth of dark sunspots. Red dwarfs also erupt with intense flares that could strip a nearby planet's atmosphere over time, or make the surface inhospitable to life as we know it. By mining data from the Galaxy Evolution Explorer (GALEX) spacecraft, a team of astronomers identified dozens of flares at a range of durations and strengths. The team measured events with less total energy than many previously detected flares from red dwarfs. This is important because, although individually less energetic and therefore less hostile to life, smaller flares might be much more frequent and add up over time to produce a cumulative effect on an orbiting planet. https://photojournal.jpl.nasa.gov/catalog/PIA21473

  19. Brown dwarfs in young stellar clusters

    NASA Technical Reports Server (NTRS)

    Stringfellow, Guy S.

    1991-01-01

    The present calculations of the early evolution of brown dwarfs and very low mass stars (LMSs) yield isochrones spanning 0.01-0.2 solar masses for ages in the 1 to 300 million year range. Since the brown dwarfs remain sharply segregated in T(eff) from LMSs for ages of less than 100 million years, it follows that for coeval populations of known age, a domain exists in the H-R diagram in which only brown dwarfs exist. These theoretical results are compared with recent observations of the Pleiades brown dwarf candidates, using two new sets of color-T(eff) transformations. Both sets yield consistent interpretations.

  20. Merging white dwarfs and thermonuclear supernovae.

    PubMed

    van Kerkwijk, M H

    2013-06-13

    Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and the suggestion that these supernovae instead result from mergers of carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar-mass remnants. I then turn to possible observational tests, in particular, those that test the absence or presence of electron captures during the burning.

  1. Calibration of HST wide field camera for quantitative analysis of faint galaxy images

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Griffiths, Richard E.; Casertano, Stefano; Neuschaefer, Lyman W.; Wyckoff, Eric W.

    1994-01-01

    We present the methods adopted to optimize the calibration of images obtained with the Hubble Space Telescope (HST) Wide Field Camera (WFC) (1991-1993). Our main goal is to improve quantitative measurement of faint images, with special emphasis on the faint (I approximately 20-24 mag) stars and galaxies observed as a part of the Medium-Deep Survey. Several modifications to the standard calibration procedures have been introduced, including improved bias and dark images, and a new supersky flatfield obtained by combining a large number of relatively object-free Medium-Deep Survey exposures of random fields. The supersky flat has a pixel-to-pixel rms error of about 2.0% in F555W and of 2.4% in F785LP; large-scale variations are smaller than 1% rms. Overall, our modifications improve the quality of faint images with respect to the standard calibration by about a factor of five in photometric accuracy and about 0.3 mag in sensitivity, corresponding to about a factor of two in observing time. The relevant calibration images have been made available to the scientific community.

  2. A radio-pulsing white dwarf binary star.

    PubMed

    Marsh, T R; Gänsicke, B T; Hümmerich, S; Hambsch, F-J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-09-15

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10 7 -year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.

  3. Search for faint nearby stars

    NASA Astrophysics Data System (ADS)

    Ruiz, M. T.; Maza, J.; Mendez, R.; Wischnjewsky, M.

    1988-09-01

    The possibility that the 'missing mass' in the solar neighborhood may be accounted for by the existence in sufficiently great numbers of such very low mass stars as brown dwarfs, as well as very old dead stars now observable as cold, low-luminosity degenerates, is presently addressed observationally with a search through ESO R Survey plates using a stereocomparator. Attention is given to ESO area 439, where four low-luminosity degenerates have been discovered by the present study.

  4. Lyman continuum escape fraction of faint galaxies at z 3.3 in the CANDELS/GOODS-North, EGS, and COSMOS fields with LBC

    NASA Astrophysics Data System (ADS)

    Grazian, A.; Giallongo, E.; Paris, D.; Boutsia, K.; Dickinson, M.; Santini, P.; Windhorst, R. A.; Jansen, R. A.; Cohen, S. H.; Ashcraft, T. A.; Scarlata, C.; Rutkowski, M. J.; Vanzella, E.; Cusano, F.; Cristiani, S.; Giavalisco, M.; Ferguson, H. C.; Koekemoer, A.; Grogin, N. A.; Castellano, M.; Fiore, F.; Fontana, A.; Marchi, F.; Pedichini, F.; Pentericci, L.; Amorín, R.; Barro, G.; Bonchi, A.; Bongiorno, A.; Faber, S. M.; Fumana, M.; Galametz, A.; Guaita, L.; Kocevski, D. D.; Merlin, E.; Nonino, M.; O'Connell, R. W.; Pilo, S.; Ryan, R. E.; Sani, E.; Speziali, R.; Testa, V.; Weiner, B.; Yan, H.

    2017-06-01

    Context. The reionization of the Universe is one of the most important topics of present-day astrophysical research. The most plausible candidates for the reionization process are star-forming galaxies, which according to the predictions of the majority of the theoretical and semi-analytical models should dominate the H I ionizing background at z ≳ 3. Aims: We measure the Lyman continuum escape fraction, which is one of the key parameters used to compute the contribution of star-forming galaxies to the UV background. It provides the ratio between the photons produced at λ ≤ 912 Å rest-frame and those that are able to reach the inter-galactic medium, I.e. that are not absorbed by the neutral hydrogen or by the dust of the galaxy's inter-stellar medium. Methods: We used ultra-deep U-band imaging (U = 30.2 mag at 1σ) from Large Binocular Camera at the Large Binocular Telescope (LBC/LBT) in the CANDELS/GOODS-North field and deep imaging in the COSMOS and EGS fields in order to estimate the Lyman continuum escape fraction of 69 star-forming galaxies with secure spectroscopic redshifts at 3.27 ≤ z ≤ 3.40 to faint magnitude limits (L = 0.2L∗, or equivalently M1500 - 19). The narrow redshift range implies that the LBC U-band filter exclusively samples the λ ≤ 912 Å rest-frame wavelengths. Results: We measured through stacks a stringent upper limit (<1.7% at 1σ) for the relative escape fraction of H I ionizing photons from bright galaxies (L>L∗), while for the faint population (L = 0.2L∗) the limit to the escape fraction is ≲ 10%. We computed the contribution of star-forming galaxies to the observed UV background at z 3 and find that it is not sufficient to keep the Universe ionized at these redshifts unless their escape fraction increases significantly (≥ 10%) at low luminosities (M1500 ≥ - 19). Conclusions: We compare our results on the Lyman continuum escape fraction of high-z galaxies with recent estimates in the literature, and discuss

  5. Response of dwarf mistletoe-infested ponderosa pine to thinning: 2. Dwarf mistletoe propagation.

    Treesearch

    Lewis F. Roth; James W. Barrett

    1985-01-01

    Propagation of dwarf mistletoe in ponderosa pine saplings is little influenced by thinning overly dense stands to 250 trees per acre. Numerous plants that appear soon after thinning develop from formerly latent plants in the suppressed under-story. Subsequently, dwarf mistletoe propagates nearly as fast as tree crowns enlarge but the rate differs widely among trees....

  6. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  7. The Extremely Metal-Poor Dwarf Galaxy AGC 198691

    NASA Astrophysics Data System (ADS)

    Hirschauer, Alec S.; Salzer, John Joseph; Cannon, John M.; Skillman, Evan D.; SHIELD II Team

    2016-01-01

    We present spectroscopic observations of the nearby dwarf irregular galaxy AGC 198691. This object is part of the Survey of HI in Extremely Low-Mass Dwarfs (SHIELD) sample, which consists of ultra-low HI mass galaxies discovered by the Arecibo Legacy Fast-Acting ALFA (ALFALFA) survey. SHIELD is a multi-configuration Expanded Very Large Array (EVLA) study of the neutral gas content and dynamics of galaxies with HI masses in the range of 106-107 M⊙. Our spectral data were obtained using the new high-throughput KPNO Ohio State Multi-Object Spectrograph (KOSMOS) on the Mayall 4-m telescope as part of a systematic study of the nebular abundances in the SHIELD galaxy sample. These observations enable measurement of the temperature sensitive [OIII]λ4363 line and hence the determination of a "direct" oxygen abundance for AGC 198691. We find this system to be an extremely metal-deficient (XMD) galaxy with an oxygen abundance comparable to such objects as I Zw 18, SBS 0335-052W, Leo P, and DDO 68 - the lowest metallicity star-forming systems known. It is worth noting that two of the five lowest-abundance galaxies currently recognized were discovered via the ALFALFA blind HI survey. These XMD galaxies are potential analogues to the first star-forming systems, which through hierarchical accretion processes built up the large galaxies we observe today in the local Universe. Detailed analysis of such XMD systems offers observational constraint to models of galactic evolution and star formation histories to allow a better understanding of the processes that govern the chemical evolution of low-mass galaxies.

  8. Automated Morphological Classification in Deep Hubble Space Telescope UBVI Fields: Rapidly and Passively Evolving Faint Galaxy Populations

    NASA Astrophysics Data System (ADS)

    Odewahn, Stephen C.; Windhorst, Rogier A.; Driver, Simon P.; Keel, William C.

    1996-11-01

    We analyze deep Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) images in U, B, V, I using artificial neural network (ANN) classifiers, which are based on galaxy surface brightness and light profile (but not on color nor on scale length, rhl). The ANN distinguishes quite well between E/S0, Sabc, and Sd/Irr+M galaxies (M for merging systems) for BJ <~ 27 mag. We discuss effects from the cosmological surface brightness (SB) dimming and from the redshifted UV morphology on the classifications, and we correct for the latter. We present classifications in UBVI from (a) four independent human classifiers; (b) ANNs trained on V606 and I814 images; and (c) an ANN trained on images in the rest-frame UBV according to the expected redshift distribution as a function of BJ. For each of the three methods, we find that the fraction of galaxy types does not depend significantly on wavelength, and that they produce consistent counts as a function of type. The median scale length at BJ ~= 27 mag is rhl ~= 0."25--0."3 (1--2 kpc at z ~ 1--2). Early- and late-type galaxies are fairly well separated in BVI color-magnitude diagrams for B <~ 27 mag, with E/S0 galaxies being the reddest and Sd/Irr+M galaxies generally blue. We present the B-band galaxy counts for five WFPC2 fields as a function of morphological type for BJ <~ 27 mag. E/S0 galaxies are only marginally above the no-evolution predictions, and Sabc galaxies are at most 0.5 dex above the nonevolving models for BJ >~ 24 mag. The faint blue galaxy counts in the B band are dominated by Sd/Irr+M galaxies and can be explained by a moderately steep local luminosity function (LF) undergoing strong luminosity evolution. We suggest that these faint late-type objects (24 mag <~ BJ <~ 28 mag) are a combination of low-luminosity lower redshift dwarf galaxies, plus compact star-forming galaxies and merging systems at z ~= 1--3, possibly the building blocks of the luminous early-type galaxies seen today.

  9. Hubble COS Spectroscopy of the Dwarf Nova CW Mon: The White Dwarf in Quiescence?1

    PubMed Central

    Hause, Connor; Sion, Edward M.; Godon, Patrick; Boris, T. Gänsicke; Szkody, Paula; de Martino, Domitilla; Pala, Anna

    2018-01-01

    We present a synthetic spectral analysis of the HST COS spectrum of the U Geminorum-type dwarf nova CW Mon, taken during quiescence as part of our COS survey of accreting white dwarfs in Cataclysmic Variables. We use synthetic photosphere and optically thick accretion disk spectra to model the COS spectrum as well as archival IUE spectra obtained decades ago when the system was in an even deeper quiescent state. Assuming a reddening of E(B−V)=0.06, an inclination of 60° (CW Mon has eclipses of the accretion disk, and a white dwarf mass of 0.8M⊙, our results indicate the presence of a 22–27,000 K white dwarf and a low mass accretion rate (M˙≲10−10M⊙/yr), for a derived distance o ~200 to ~300 pc. PMID:29430023

  10. Identification and genetic mapping for rht-DM, a dominant dwarfing gene in mutant semi-dwarf maize using QTL-seq approach.

    PubMed

    Chen, Qian; Song, Jun; Du, Wen-Ping; Xu, Li-Yuan; Jiang, Yun; Zhang, Jie; Xiang, Xiao-Li; Yu, Gui-Rong

    2018-06-27

    Semi-dwarfism is an agronomically important trait in breeding for stable high yields and for resistance to damage by wind and rain (lodging resistance). Many QTLs and genes causing dwarf phenotype have been found in maize. However, because of the yield loss associated with these QTLs and genes, they have been difficult to use in breeding for dwarf stature in maize. Therefore, it is important to find the new dwarfing genes or materials without undesirable characters. The objectives of this study were: (1) to figure out the inheritance of semi-dwarfism in mutants; (2) mapping dwarfing gene or QTL. Maize inbred lines '18599' and 'DM173', which is the dwarf mutant derived from the maize inbred line '173' through 60 Co-γ ray irradiation. F 2 and BC 1 F 1 population were used for genetic analysis. Whole genome resequencing-based technology (QTL-seq) were performed to map dwarfing gene and figured out the SNP markers in predicted region using dwarf bulk and tall bulk from F 2 population. Based on the polymorphic SNP markers from QTL-seq, we were fine-mapping the dwarfing gene using F 2 population. In F 2 population, 398 were dwarf plants and 135 were tall plants. Results of χ 2 tests indicated that the ratio of dwarf plants to tall plants was fitted to 3:1 ratio. Furthermore, the χ 2 tests of BC 1 F 1 population showed that the ratio was fitted to 1:1 ratio. Based on QTL-seq, the dwarfing gene was located at the region from 111.07 to 124.56 Mb of chromosome 9, and we named it rht-DM. Using traditional QTL mapping with SNP markers, the rht-DM was narrowed down to 400 kb region between SNP-21 and SNP-24. The two SNPs were located at 0.43 and 0.11 cM. Segregation analysis of F 2 and BC 1 F 1 indicated that the dwarfing gene was likely a dominant gene. This dwarfing gene was located in the region between 115.02 and 115.42 Mb on chromosome 9.

  11. The little Galaxies that could (reionize the universe): predicting faint end slopes & escape fractions at z>4

    NASA Astrophysics Data System (ADS)

    Anderson, Lauren; Governato, F.; Karcher, M.; Quinn, T.; Wadsley, J.

    2017-07-01

    The sources that reionized the universe are still unknown, but likely candidates are faint but numerous galaxies. In this paper, we present results from running a high-resolution, uniform volume simulation, the Vulcan, to predict the number densities of undetectable, faint galaxies and their escape fractions of ionizing radiation, fesc, during reionization. Our approach combines a high spatial resolution, a realistic treatment of feedback and hydroprocesses, a strict threshold for minimum number of resolution elements per galaxy, and a converged measurement of fesc. We calibrate our physical model using a novel approach to create realistic galaxies at z = 0, so the simulation is predictive at high redshifts. With this approach, we can (1) robustly predict the evolution of the galaxy UV luminosity function at faint magnitudes down to MUV ˜ -15, two magnitudes fainter than observations, and (2) estimate fesc over a large range of galaxy masses based on the detailed stellar and gas distributions in resolved galaxies. We find steep faint end slopes, implying high number densities of faint galaxies, and the dependence of fesc on the UV magnitude of a galaxy, given by the power law: log fesc = (0.51 ± 0.04)MUV + 7.3 ± 0.8, with the faint population having fesc ˜ 35 per cent. Convolving the UV luminosity function with fesc(MUV), we find an ionizing emissivity that is (1) dominated by the faintest galaxies and (2) reionizes the universe at the appropriate rate, consistent with observational constraints of the ionizing emissivity and the optical depth to the decoupling surface τes, without the need for additional sources of ionizing radiation.

  12. White Dwarfs in the GALEX Survey

    NASA Technical Reports Server (NTRS)

    Kawka, Adela; Vennes, Stephane

    2007-01-01

    We have cross-correlated the 2dF QSO Redshift Survey (2QZ) white dwarf catalog with the GALEX 2nd Data Release and the Sloan Digital Sky Survey (SDSS) data release 5 to obtain ultraviolet photometry (FUV, NUV) for approximately 700 objects and optical photometry (ugriz) for approximately 800 objects. We have compared the optical-ultraviolet colors to synthetic white dwarf colors to obtain temperature estimates for approximately 250 of these objects. These white dwarfs have effective temperatures ranging from 10 000 K (cooling age of about 1Gyr) up to about 40000 K (cooling age of about 3 Myrs), with a few that have even higher temperatures. We found that to distinguish white dwarfs from other stellar luminosity classes both optical and ultraviolet colors are necessary, in particular for the hotter objects where there is contamination from B and 0 main-sequence stars. Using this sample we build a luminosity function for the DA white dwarfs with Mv < 12 mag.

  13. Digital image profilers for detecting faint sources which have bright companions, phase 2

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham

    1991-01-01

    A breadboard image profiling system developed for the first phase of this project demonstrated the potential for detecting extremely faint optical sources in the presence of light companions. Experimental data derived from laboratory testing of the device supports the theory that image profilers of this type may approach the theoretical limit imposed by photon statistics. The objective of Phase 2 of this program is the development of a ground-based multichannel image profiling system capable of detecting faint stellar objects slightly displaced from brighter stars. We have finalized the multichannel image profiling system and attempted three field tests.

  14. Building an Unusual White-Dwarf Duo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    A new study has examined how the puzzling wide binary system HS 2220+2146 which consists of two white dwarfs orbiting each other might have formed. This system may be an example of a new evolutionary pathway for wide white-dwarf binaries.Evolution of a BinaryMore than 100 stellar systems have been discovered consisting of two white dwarfs in a wide orbit around each other. How do these binaries form? In the traditional picture, the system begins as a binary consisting of two main-sequence stars. Due to the large separation between the stars, the stars evolve independently, each passing through the main-sequence and giant branches and ending their lives as white dwarfs.An illustration of a hierarchical triple star system, in which two stars orbit each other, and a third star orbits the pair. [NASA/JPL-Caltech]Because more massive stars evolve more quickly, the most massive of the two stars in a binary pair should be the first to evolve into a white dwarf. Consequently, when we observe a double-white-dwarf binary, its usually a safe bet that the more massive of the two white dwarfs will also be the older and cooler of the pair, since it should have formed first.But in the case of the double-white-dwarf binary HS 2220+2146, the opposite is true: the more massive of the two white dwarfs appears to be the younger and hotter of the pair. If it wasnt created in the traditional way, then how did this system form?Two From Three?Led by Jeff Andrews (Foundation for Research and Technology-Hellas, Greece and Columbia University), a team of scientists recently examined this system more carefully, analyzing its spectra to confirm our understanding of the white dwarfs temperatures and masses.Based on their observations, Andrews and collaborators determined that there are no hidden additional companions that could have caused the unusual evolution of this system. Instead, the team proposed that this unusual binary might be an example of an evolutionary channel that involves three

  15. White Dwarf Critical Tests for Modified Gravity.

    PubMed

    Jain, Rajeev Kumar; Kouvaris, Chris; Nielsen, Niklas Grønlund

    2016-04-15

    Scalar-tensor theories of gravity can lead to modifications of the gravitational force inside astrophysical objects. We exhibit that compact stars such as white dwarfs provide a unique setup to test beyond Horndeski theories of G^{3} type. We obtain stringent and independent constraints on the parameter ϒ characterizing the deviations from Newtonian gravity using the mass-radius relation, the Chandrasekhar mass limit, and the maximal rotational frequency of white dwarfs. We find that white dwarfs impose stronger constraints on ϒ than red and brown dwarfs.

  16. Contribution of HI-bearing ultra-diffuse galaxies to the cosmic number density of galaxies

    NASA Astrophysics Data System (ADS)

    Jones, M. G.; Papastergis, E.; Pandya, V.; Leisman, L.; Romanowsky, A. J.; Yung, L. Y. A.; Somerville, R. S.; Adams, E. A. K.

    2018-06-01

    We estimate the cosmic number density of the recently identified class of HI-bearing ultra-diffuse sources (HUDs) based on the completeness limits of the ALFALFA survey. These objects have HI masses approximately in the range 8.5 < logMHI/M⊙ < 9.5, average r-band surface brightnesses fainter than 24 mag arcsec-2, half-light radii greater than 1.5 kpc, and are separated from neighbours by at least 350 kpc. In this work we demonstrate that they contribute at most 6% of the population of HI-bearing dwarfs detected by ALFALFA (with similar HI masses), have a total cosmic number density of (1.5 ± 0.6) × 10-3 Mpc-3, and an HI mass density of (6.0 ± 0.8) × 105 M⊙ Mpc-3. We estimate that this is similar to the total cosmic number density of ultra-diffuse galaxies (UDGs) in groups and clusters, and conclude that the relation between the number of UDGs hosted in a halo and the halo mass must have a break below M200 1012 M⊙ in order to account for the abundance of HUDs in the field. The distribution of the velocity widths of HUDs rises steeply towards low values, indicating a preference for slow rotation rates compared to the global HI-rich dwarf population. These objects were already included in previous measurements of the HI mass function, but have been absent from measurements of the galaxy stellar mass function owing to their low surface brightness. However, we estimate that due to their low number density the inclusion of HUDs would constitute a correction of less than 1%. Comparison with the Santa Cruz semi-analytic model shows that it produces HI-rich central UDGs that have similar colours to HUDs, but that these UDGs are currently produced in a much greater number. While previous results from this sample have favoured formation scenarios where HUDs form in high spin-parameter halos, comparisons with recent results which invoke that formation mechanism reveal that this model produces an order of magnitude more field UDGs than we observe in the HUD population

  17. Searching for Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Abercromby, Kira J.; Barker, Edwin S.; Burkhardt, Andrew; Cowardin, Heather; Krisko, Paula; Silha, Jiri

    2012-01-01

    We report on results from a search for optically faint debris (defined as R > 20th magnitude, or smaller than 10 cm assuming an albedo of 0.175)) at geosynchronous orbit (GEO) using the 6.5-m Magellan telescope "Walter Baade" at Las Campanas Observatory in Chile. Our goal is to characterize the brightness distribution of debris to the faintest limiting magnitude possible. Our data was obtained during 6 hours of observing time during the photometric nights of 26 and 27 March 2011 with the IMACS f/2 instrument, which has a field of view (fov) of 0.5 degrees in diameter. All observations were obtained through a Sloan r filter, and calibrated by observations of Landolt standard stars. Our primary objective was to search for optically faint objects from one of the few known fragmentations at GEO: the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris with the 6.5-m telescope, followed by a survey for unknown objects on similar orbits but with different mean anomalies. To establish the bright end of the debris population, calibrated observations were acquired on the same field centers, telescope rates, and time period with a similar filter on the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will show the calibrated brightness distributions from both telescopes, and compare the observed brightness distributions with that predicted for various population models of debris of different sizes.

  18. Hubble Space Telescope, Faint Object Spectrograph

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's), Faint Object Spectrograph (FOS). The HST's two spectrographs, the Goddard High-Resolution Spectrograph and the FOS, can detect a broader range of wavelengths than is possible from the Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The FOC can detect detail in very faint objects, such as those at great distances, and light ranging from ultraviolet to red spectral bands. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  19. L' AND M' Photometry Of Ultracool Dwarfs

    NASA Technical Reports Server (NTRS)

    Marley, M. S.; Tsvetanov, Z. I.; Vrba, F. J.; Henden, A. A.; Luginbuhl, C. B.

    2004-01-01

    We have compiled L' (3.4-4.1 microns) and M' (4.6- 4.8 microns) photometry of 63 single and binary M, L, and T dwarfs obtained at the United Kingdom Infrared Telescope using the Mauna Kea Observatory filter set. This compilation includes new L' measurements of eight L dwarfs and 13 T dwarfs and new M' measurements of seven L dwarfs, five T dwarfs, and the M1 dwarf Gl 229A. These new data increase by factors of 0. 6 and 1.6, respectively, the numbers of ultracool dwarfs T (sub eff) dwarfs whose flux-calibrated JHK spectra, L' photometry, and trigonometric parallaxes are available, and we estimate these quantities for nine other dwarfs whose parallaxes and flux-calibrated spectra have been obtained. BC(SUB K) is a well-behaved function of near-infrared spectral type with a dispersion of approx. 0.1 mag for types M6-T5 it is significantly more scattered for types T5-T9. T (sub eff) declines steeply and monotonically for types M6-L7 and T4-T9, but it is nearly constant at approx. 1450 K for types L7-T4 with assumed ages of approx. 3 Gyr. This constant T(sub eff) is evidenced by nearly unchanging values of L'-M' between types L6 and T3. It also supports recent models that attribute the changing near-infrared luminosities and spectral features across the L-T transition to the rapid migration, disruption, and/or thinning of condensate clouds over a narrow range of T(sub eff). The L' and M' luminosities of early-T dwarfs do not exhibit the pronounced humps or inflections previously noted in l through K bands, but insufficient data exist for types L6-T5 to assert that M(Sub L') and M(sub M') are strictly monotonic within this range of typew. We compare the observed K, L', and M' luminosities of L and T dwarfs in our sample with those predicted by precipitation-cloud-free models for varying surface gravities and sedimentation efficiencies.

  20. Deep UBVRI photometric calibration of high-latitude fields: SA 57 (1307+30) and Hercules (1720+50)

    NASA Technical Reports Server (NTRS)

    Majewski, S. R.; Kron, R. G.; Koo, D. C.; Bershady, M. A.

    1994-01-01

    We present CCD photometric calibration sequences in the magnitude range V = 17-22 for two fields at high Galactic latitude: SA 57 (at the North Galactic Pole) and Hercules (l = 77, b = 35). Photometry to a precision of about 0.02 mag at V = 20 and, in general, better than 0.10 mag at V = 22 was obtained in the Johnson UBV as well as the Kron-Cousins R and I bands. These data are suitable for setting magnitude zero-points in catalogues of faint stars, galaxies, and QSOs, and we apply them to our own photographic catalogs in these two fields. We also note a significant deviation in the (V-R, R-I) color-color diagram for the locus of faint (V is greater than 20) M dwarfs compared to the locus provided by much brighter M dwarfs. This deviation may indicate differences in spectral properties between Population I and older populations of late dwarfs; however we do not discount the possibility that this locus for the faint stars, which appears as a saturation in V-R color with increasing R-I color, is the result of systematic photometric error.

  1. A DWARF NOVA IN THE GLOBULAR CLUSTER M13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Servillat, M.; Van den Berg, M.; Grindlay, J.

    Dwarf novae (DNe) in globular clusters (GCs) seem to be rare with only 13 detections in the 157 known Galactic GCs. We report the identification of a new DN in M13, the 14th DN identified in a GC to date. Using the 2 m Faulkes Telescope North, we conducted a search for stars in M13 that show variability over a year (2005-2006) on timescales of days and months. This led to the detection of one DN showing several outbursts. A Chandra X-ray source is coincident with this DN and shows both a spectrum and variability consistent with that expected frommore » a DN, thus supporting the identification. We searched for a counterpart in Hubble Space Telescope Advanced Camera for Surveys/Wide Field Camera archived images and found at least 11 candidates, of which we could characterize only the 7 brightest, including one with a 3{sigma} H{alpha} excess and a faint blue star. The detection of one DN when more could have been expected likely indicates that our knowledge of the global Galactic population of cataclysmic variables is too limited. The proportion of DNe may be lower than found in catalogs, or they may have a much smaller mean duty cycle ({approx}1%) as proposed by some population synthesis models and recent observations in the field.« less

  2. Dwarf galaxy populations in present-day galaxy clusters - II. The history of early-type and late-type dwarfs

    NASA Astrophysics Data System (ADS)

    Lisker, Thorsten; Weinmann, Simone M.; Janz, Joachim; Meyer, Hagen T.

    2013-06-01

    How did the dwarf galaxy population of present-day galaxy clusters form and grow over time? We address this question by analysing the history of dark matter subhaloes in the Millennium II cosmological simulation. A semi-analytic model serves as the link to observations. We argue that a reasonable analogue to early morphological types or red-sequence dwarf galaxies are those subhaloes that experienced strong mass-loss, or alternatively those that have spent a long time in massive haloes. This approach reproduces well the observed morphology-distance relation of dwarf galaxies in the Virgo and Coma clusters, and thus provides insight into their history. Over their lifetime, present-day late types have experienced an amount of environmental influence similar to what the progenitors of dwarf ellipticals had already experienced at redshifts above 2. Therefore, dwarf ellipticals are more likely to be a result of early and continuous environmental influence in group- and cluster-size haloes, rather than a recent transformation product. The observed morphological sequences of late-type and early-type galaxies have developed in parallel, not consecutively. Consequently, the characteristics of today's late-type galaxies are not necessarily representative for the progenitors of today's dwarf ellipticals. Studies aiming to reproduce the present-day dwarf population thus need to start at early epochs, model the influence of various environments, and also take into account the evolution of the environments themselves.

  3. DISCOVERY OF A FAINT QUASAR AT z ∼ 6 AND IMPLICATIONS FOR COSMIC REIONIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yongjung; Im, Myungshin; Jeon, Yiseul

    2015-11-10

    Recent studies suggest that faint active galactic nuclei may be responsible for the reionization of the universe. Confirmation of this scenario requires spectroscopic identification of faint quasars (M{sub 1450} > −24 mag) at z ≳ 6, but only a very small number of such quasars have been spectroscopically identified so far. Here, we report the discovery of a faint quasar IMS J220417.92+011144.8 at z ∼ 6 in a 12.5 deg{sup 2} region of the SA22 field of the Infrared Medium-deep Survey (IMS). The spectrum of the quasar shows a sharp break at ∼8443 Å, with emission lines redshifted to zmore » = 5.944 ± 0.002 and rest-frame ultraviolet continuum magnitude M{sub 1450} = −23.59 ± 0.10 AB mag. The discovery of IMS J220417.92+011144.8 is consistent with the expected number of quasars at z ∼ 6 estimated from quasar luminosity functions based on previous observations of spectroscopically identified low-luminosity quasars. This suggests that the number of M{sub 1450} ∼ −23 mag quasars at z ∼ 6 may not be high enough to fully account for the reionization of the universe. In addition, our study demonstrates that faint quasars in the early universe can be identified effectively with a moderately wide and deep near-infrared survey such as the IMS.« less

  4. Understanding the Milky Way Halo through Large Surveys

    NASA Astrophysics Data System (ADS)

    Koposov, Sergey

    This thesis presents an extensive study of stellar substructure in the outskirts of the Milky Way(MW), combining data mining of SDSS with theoretical modeling. Such substructure, either bound star clusters and satellite galaxies, or tidally disrupted objects forming stellar streams are powerful diagnostics of the Milky Way's dynamics and formation history. I have developed an algorithmic technique of searching for stellar overdensities in the MW halo, based on SDSS catalogs. This led to the discovery of unusual ultra-faint ~ (1000Lsun) globular clusters with very compact sizes and relaxation times << t_Hubble. The detailed analysis of a known stellar stream (GD-1), allowed me to make the first 6-D phase space map for such an object along 60 degrees on the sky. By modeling the stream's orbit I could place strong constraints on the Galactic potential, e.g. Vcirc(R0)= 224+/-13 km/s. The application of the algorithmic search for stellar overdensities to the SDSS dataset and to mock datasets allowed me to quantify SDSS's severe radial incompleteness in its search for ultra-faint dwarf galaxies and to determine the luminosity function of MW satellites down to luminosities of M_V ~ -3. I used the semi-analytical model in order to compare the CDM model predictions for the MW satellite population with the observations; this comparison has shown that the recently increased census of MW satellites, better understanding of the radial incompleteness and the suppression of star formation after the reionization can fully solve the "Missing satellite problem".

  5. The interacting binary white dwarf systems

    NASA Astrophysics Data System (ADS)

    Provencal, Judith Lucille

    1994-01-01

    Interacting binary white dwarfs are believed to contain two white dwarfs of extreme mass ratio, one of which is filling its Roche Lobe, transferring material to its companion via an accretion disk. The defining characteristic of an IBWD is the nondetection of hydrogen in the system. IBWD's represent the culmination of binary star evolution. In this final death dance, two degenerate objects are entangled, the massive white dwarf tidally stripping and devouring its helpless companion's outer layers. Because a white dwarf expands as it loses mass, the end result of this process is the complete absorption of one star by the other . My goal in the examination of these systems is to understand their photometric behavior and determine the best model of these objects. The IBWD's represent the endpoint of binary evolution. Knowledge of the physical properties of these objects will provide constraints on theories of binary evolution, white dwarf formation, the thermal and physical structure of accreting white dwarfs, and nucleosynthesis. To achieve this goal, I have analyzed the most comprehensive high speed photometric data sets available on 5 of the 6 known objects: AM CVn, PG1346+082, CP Eri, V803 Cen, and G61-29. AM CVn and PG1346+0S2 were targets of the Whole Earth Telescope in 1988 and 1990 respectively. We find a range of variation timescales, from minutes to days, and a range of physical behaviour. Most importantly, we measure a rate of period change of P = 1.68 +/- 0.03 x 10-11s/s for the dominant variation in AM CVn. We also find the differences in behavior can be attributed to a difference in mass transfer rate that may be evolutionary in origin. Finally, I discuss in detail the observational characteristics of each object, and overall properties of the IBWD family. In conclusion, I discuss past and future history of these objects, and touch on their possible influence on our knowledge of white dwarf evolution and formation. The IBWD's are possible progenitors of

  6. Investigating the FUV Emission of Young M dwarfs with FUMES: the Far Ultraviolet M-dwarf Evolution Survey

    NASA Astrophysics Data System (ADS)

    Pineda, John

    2016-10-01

    M dwarf stars have become attractive candidates for exoplanet searches and will be a main focus of the upcoming TESS mission, with the continued search for nearby potentially habitable worlds. However, the atmospheric characterization of these exoplanetary systems depends critically on the high energy stellar radiation environment from X-ray to NUV. Strong radiation at these energies can lead to atmospheric mass loss and is a strong driver of photochemistry in planetary atmospheres. Recently, the MUSCLES Treasury Survey (Cycles 19, 22) provided the first comprehensive assessment of the high energy radiation field around old, planet hosting M dwarfs. However, the habitability and potential for such exoplanetary atmospheres to develop life also depends on the evolution of the atmosphere and hence the evolution of the incident radiation field. The strong high energy spectrum of young M dwarfs can have devastating consequences for the potential habitability of a given system. We, thus, propose the Far Ultraviolet M-dwarf Evolution Survey (FUMES) to measure the strong FUV coronal/chromospheric emission features of young M dwarfs (12 - 650 Myr), e.g. He II, C IV, and S IV. FUMES will observe objects with a wide range of rotation rates to directly connect the emission features to the evolution of coronal heating and upper atmospheric structure, and provide observational benchmarks at young ages for models of M dwarf upper atmospheres. Building on results from MUSCLES, we will be able to estimate the whole high energy radiation field and establish the evolutionary picture of the incident radiation throughout the lifetime of exoplanetary systems around early-mid M dwarf hosts.

  7. A Study of the Effects of Faint Dust Comae on the Spectra of Asteroids

    NASA Astrophysics Data System (ADS)

    Rondón, E.; Carvano, J.; Lorenz-Martins, S.

    2017-09-01

    The presence of dust comae on asteroids and centaurs is a phenomenon that became accepted in the last decades and which challenges the traditional definitions of asteroids and comets. A possible way of improving the chances of discovery of Active Asteroids is to use large multi-colour surveys or catalogs, like SDSS Moving Object Catalog. In this work we analyze the effects of faint dust comae on asteroid spectra and then use it to investigate the effects that a faint dust comae would have over the spectrum, magnitude, and radial profile of asteroids.

  8. A Spectral Analysis of a Rare "Dwarf Eat Dwarf" Cannibalism Event

    NASA Astrophysics Data System (ADS)

    Theakanath, Kuriakose; Toloba, E.; Guhathakurta, P.; Romanowsky, A. J.; Ramachandran, N.; Arnold, J.

    2014-01-01

    We have used Keck/DEIMOS to conduct the first detailed spectroscopic study of the recently discovered stellar stream in the Large Magellanic Cloud analog NGC 4449. Martinez-Delgado et al. (2012), using the tip of the red giant branch (TRGB), found that both objects, the stream and NGC 4449, are at the same distance, which suggests that this stream is the remnant of the first ongoing dwarf-dwarf cannibalism event known so far. Learning about the orbital properties of this event is a powerful tool to constrain the physical conditions involved in dwarf-dwarf merger events. The low surface-brightness of this structure makes impossible to obtain integrated light spectroscopic measurements, and its distance (3.8 Mpc) is too large as to observe stars individually. In the color-magnitude diagram of the stellar stream there is an excess of objects brighter than the TRGB which are potential star blends. We designed our DEIMOS mask to contain as many of these objects as possible and, while some of them turned out to be background galaxies, a handful happened to be star blends in the stream. Our velocity measurements along the stream prove that it is gravitationally bound to NGC 4449 and put strong constraints on the orbital properties of the infall. This research was carried out under the auspices of UCSC's Science Internship Program. We thank the National Science Foundation for funding support. ET was supported by a Fulbright fellowship.

  9. Morphology and Structures of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Mira; Ann, HongBae

    2015-08-01

    We performed an analysis of the structure of nearby dwarf galaxies based on a 2-dimensional decomposition of galaxy images using GALFIT. The present sample consists of ~1,100 dwarf galaxies with redshift less than z = 0.01, which is is derived from the morphology catalog of the Visually classified galaxies in the local universe (Ann, Seo, and Ha 2015). In this catalog, dwarf galaxies are divided into 5 subtypes: dS0, dE, dSph, dEbc, dEblue with distinction of the presence of nucleation in dE, dSph, and dS0. We found that dSph and dEblue galaxies are fainter than other subtypes of dwarf galaxies. In most cases, single component, represented by the Sersic profile with n=1~1.5, well describes the luminosity distribution of dwarf galaxies in the present sample. However, a significant fraction of dS0, dEbc, and dEbue galaxies show sub-structures such as spiral arms and rings. We will discuss the morphology dependent evolutionary history of the local dwarf galaxies.

  10. The Universe Going Green: Extraordinarily Strong [OIII]5007 in Typical Dwarf Galaxies at z~3

    NASA Astrophysics Data System (ADS)

    Malkan, Matthew Arnold; Cohen, Daniel

    2017-01-01

    We constructed the average SEDs of U-dropout galaxies in the Subaru Deep Field. This sample contains more than 5000 Lyman-break galaxies at z~3. Their average near- and mid-IR colors were obtained by stacking JHK and IRAC imaging, in bins of stellar mass. At the lowest mass bins an increasingly strong excess flux is seen in the K filter. This excess can reach 1 magnitude in the broadband filter, and we attribute it to strong \\OIII $\\lambda{5007}$ line emission. The equivalent width is extraordinarily high, reaching almost 1000\\Ang\\ for the average z=3 galaxy at an i magnitude of 27. Such extreme [OIII] emission is very rare in the current epoch, only seen in a handful of metal-deficient dwarf starbursts sometimes referred to as ''Green Peas". In contrast, extreme [OIII]--strong enough to dominate the entire broad-band SED--was evidently the norm for faint galaxies at high redshift. We present evidence that these small but numerous galaxies were primarily responsible for the reionization of the Universe.

  11. ARE THE FAINT STRUCTURES AHEAD OF SOLAR CORONAL MASS EJECTIONS REAL SIGNATURES OF DRIVEN SHOCKS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-Ok; Moon, Y.-J.; Lee, Kangjin

    2014-11-20

    Recently, several studies have assumed that the faint structures ahead of coronal mass ejections (CMEs) are caused by CME-driven shocks. In this study, we have conducted a statistical investigation to determine whether or not the appearance of such faint structures depends on CME speeds. For this purpose, we use 127 Solar and Heliospheric Observatory/Large Angle Spectroscopic COronagraph (LASCO) front-side halo (partial and full) CMEs near the limb from 1997 to 2011. We classify these CMEs into two groups by visual inspection of CMEs in the LASCO-C2 field of view: Group 1 has the faint structure ahead of a CME andmore » Group 2 does not have such a structure. We find the following results. (1) Eighty-seven CMEs belong to Group 1 and 40 CMEs belong to Group 2. (2) Group 1 events have much higher speeds (average = 1230 km s{sup –1} and median = 1199 km s{sup –1}) than Group 2 events (average = 598 km s{sup –1} and median = 518 km s{sup –1}). (3) The fraction of CMEs with faint structures strongly depends on CME speeds (V): 0.93 (50/54) for fast CMEs with V ≥ 1000 km s{sup –1}, 0.65 (34/52) for intermediate CMEs with 500 km s{sup –1} ≤ V < 1000 km s{sup –1}, and 0.14 (3/21) for slow CMEs with V < 500 km s{sup –1}. We also find that the fraction of CMEs with deca-hecto metric type II radio bursts is consistent with the above tendency. Our results indicate that the observed faint structures ahead of fast CMEs are most likely an enhanced density manifestation of CME-driven shocks.« less

  12. A Survey for Hα Emission from Late L Dwarfs and T Dwarfs

    NASA Astrophysics Data System (ADS)

    Pineda, J. Sebastian; Hallinan, Gregg; Kirkpatrick, J. Davy; Cotter, Garret; Kao, Melodie M.; Mooley, Kunal

    2016-07-01

    Recently, studies of brown dwarfs have demonstrated that they possess strong magnetic fields and have the potential to produce radio and optical auroral emissions powered by magnetospheric currents. This emission provides the only window on magnetic fields in the coolest brown dwarfs and identifying additional benchmark objects is key to constraining dynamo theory in this regime. To this end, we conducted a new red optical (6300-9700 Å) survey with the Keck telescopes looking for Hα emission from a sample of late L dwarfs and T dwarfs. Our survey gathered optical spectra for 29 targets, 18 of which did not have previous optical spectra in the literature, greatly expanding the number of moderate-resolution (R ˜ 2000) spectra available at these spectral types. Combining our sample with previous surveys, we confirm an Hα detection rate of 9.2±{}2.13.5% for L and T dwarfs in the optical spectral range of L4-T8. This detection rate is consistent with the recently measured detection rate for auroral radio emission from Kao et al., suggesting that geometrical selection effects due to the beaming of the radio emission are small or absent. We also provide the first detection of Hα emission from 2MASS 0036+1821, previously notable as the only electron cyclotron maser radio source without a confirmed detection of Hα emission. Finally, we also establish optical standards for spectral types T3 and T4, filling in the previous gap between T2 and T5. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  13. Hunting for brown dwarf binaries with X-Shooter

    NASA Astrophysics Data System (ADS)

    Manjavacas, E.; Goldman, B.; Alcalá, J. M.; Zapatero-Osorio, M. R.; Béjar, B. J. S.; Homeier, D.; Bonnefoy, M.; Smart, R. L.; Henning, T.; Allard, F.

    2015-05-01

    The refinement of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Peculiar brown dwarf spectra or discrepancy between optical and near-infrared spectral type classification of brown dwarfs may indicate unresolved brown dwarf binary systems. We obtained medium-resolution spectra of 22 brown dwarfs of potential binary candidates using X-Shooter at the VLT. We aimed to select brown dwarf binary candidates. We also tested whether BT-Settl 2014 atmospheric models reproduce the physics in the atmospheres of these objects. To find different spectral type spectral binaries, we used spectral indices and we compared the selected candidates to single spectra and composition of two single spectra from libraries, to try to reproduce our X-Shooter spectra. We also created artificial binaries within the same spectral class, and we tried to find them using the same method as for brown dwarf binaries with different spectral types. We compared our spectra to the BT-Settl models 2014. We selected six possible candidates to be combination of L plus T brown dwarfs. All candidates, except one, are better reproduced by a combination of two single brown dwarf spectra than by a single spectrum. The one-sided F-test discarded this object as a binary candidate. We found that we are not able to find the artificial binaries with components of the same spectral type using the same method used for L plus T brown dwarfs. Best matches to models gave a range of effective temperatures between 950 K and 1900 K, a range of gravities between 4.0 and 5.5. Some best matches corresponded to supersolar metallicity.

  14. A DARK SPOT ON A MASSIVE WHITE DWARF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilic, Mukremin; Gianninas, Alexandros; Curd, Brandon

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips mustmore » be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B < 70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope.« less

  15. (Almost) Dark Galaxies in the ALFALFA Survey: Isolated H I-bearing Ultra-diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Leisman, Lukas; Haynes, Martha P.; Janowiecki, Steven; Hallenbeck, Gregory; Józsa, Gyula; Giovanelli, Riccardo; Adams, Elizabeth A. K.; Bernal Neira, David; Cannon, John M.; Janesh, William F.; Rhode, Katherine L.; Salzer, John J.

    2017-06-01

    We present a sample of 115 very low optical surface brightness, highly extended, H I-rich galaxies carefully selected from the ALFALFA survey that have similar optical absolute magnitudes, surface brightnesses, and radii to recently discovered “ultra-diffuse” galaxies (UDGs). However, these systems are bluer and have more irregular morphologies than other UDGs, are isolated, and contain significant reservoirs of H I. We find that while these sources have normal star formation rates for H I-selected galaxies of similar stellar mass, they have very low star formation efficiencies. We further present deep optical and H I-synthesis follow-up imaging of three of these H I-bearing ultra-diffuse sources. We measure H I diameters extending to ˜40 kpc, but note that while all three sources have large H I diameters for their stellar mass, they are consistent with the H I mass-H I radius relation. We further analyze the H I velocity widths and rotation velocities for the unresolved and resolved sources, respectively, and find that the sources appear to inhabit halos of dwarf galaxies. We estimate spin parameters, and suggest that these sources may exist in high spin parameter halos, and as such may be potential H I-rich progenitors to the ultra-diffuse galaxies observed in cluster environments.

  16. Dark Matter Search Using XMM-Newton Observations of Willman 1

    NASA Technical Reports Server (NTRS)

    Lowenstein, Michael; Kusenko, Alexander

    2012-01-01

    We report the results of a search for an emission line from radiatively decaying dark matter in the ultra-faint dwarf spheroidal galaxy Willman 1 based on analysis of spectra extracted from XMM-Newton X-ray Observatory data. The observation follows up our analysis of Chandra data of Willman 1that resulted in line flux upper limits over the Chandra bandpass and evidence of a 2.5 keY feature at a significance below the 99% confidence threshold used to define the limits. The higher effective area of the XMM-Newton detectors, combined with application of recently developing methods for extended-source analysis, allow us to derive improved constraints on the combination of mass and mixing angle of the sterile neutrino dark matter candidate. We do not confirm the Chandra evidence for a 2.5 keV emission line.

  17. The L dwarf/T dwarf transition: Multiplicity, magnetic activity and mineral meteorology across the hydrogen burning limit

    NASA Astrophysics Data System (ADS)

    Burgasser, A. J.

    2013-02-01

    The transition between the L dwarf and T dwarf spectral classes is one of the most remarkable along the stellar/brown dwarf main sequence, separating sources with photospheres containing mineral condensate clouds from those containing methane and ammonia gases. Unusual characteristics of this transition include a 1 μm brightening between late L and early T dwarfs observed in both parallax samples and coeval binaries; a spike in the multiplicity fraction; evidence of increased photometric variability, possibly arising from patchy cloud structures; and a delayed transition for young, planetary-mass objects. All of these features can be explained if this transition is governed by the ``rapid'' (nonequlibrium) rainout of clouds from the photosphere, triggered by temperature, surface gravity, metallicity and (perhaps) rotational effects. While the underlying mechanism of this rainout remains under debate, the transition is now being exploited to discover and precisely characterize tight (<1 AU) very low-mass binaries that can be used to test brown dwarf evolutionary and atmospheric theories, and resolved binaries that further constrain the properties of this remarkable transition.

  18. A distinctly disorganised dwarf

    NASA Image and Video Library

    2016-03-28

    Despite being less famous than their elliptical and spiral galactic cousins, irregular dwarf galaxies, such as the one captured in this NASA/ESA Hubble Space Telescope image, are actually one of the most common types of galaxy in the Universe. Known as UGC 4459, this dwarf galaxy is located approximately 11 million light-years away in the constellation of Ursa Major (The Great Bear), a constellation that is also home to the Pinwheel Galaxy (M101), the Owl Nebula (M97), Messier 81, Messier 82 and several other galaxies all part of the M81 group. UGC 4459’s diffused and disorganised appearance is characteristic of an irregular dwarf galaxy. Lacking a distinctive structure or shape, irregular dwarf galaxies are often chaotic in appearance, with neither a nuclear bulge — a huge, tightly packed central group of stars — nor any trace of spiral arms — regions of stars extending from the centre of the galaxy. Astronomers suspect that some irregular dwarf galaxies were once spiral or elliptical galaxies, but were later deformed by the gravitational pull of nearby objects. Rich with young blue stars and older red stars, UGC 4459 has a stellar population of several billion. Though seemingly impressive, this is small when compared to the 200 to 400 billion stars in the Milky Way! Observations with Hubble have shown that because of their low masses, star formation is very low compared to larger galaxies. Only very little of their original gas has been turned into stars. Thus, these small galaxies are interesting to study to better understand primordial environments and the star formation process.

  19. RED DWARF DYNAMO RAISES PUZZLE OVER INTERIORS OF LOWEST-MASS STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    -years away in the constellation Aquila. Gliese 752A is a red dwarf that is one-third the mass of the Sun and slightly more than half its diameter. By contrast, VB10 is physically smaller than the planet Jupiter and only about nine percent the mass of our Sun. This very faint star is near the threshold of the lowest possible mass for a true star (.08 solar masses), below which nuclear fusion processes cannot take place according to current models. A team led by Linsky used Hubble's Goddard High Resolution Spectrograph (GHRS) to make a one-hour long exposure of VB10 on October 12, 1994. No detectable ultraviolet emission was seen until the last five minutes, when bright emission was detected in a flare. Though the star's normal surface temperature is 4,500 degrees Fahrenheit, Hubble's GHRS detected a sudden burst of 270,000 degrees Fahrenheit in the star's outer atmosphere. Linsky attributes this rapid heating to the presence of an intense, but unstable, magnetic field. THE INTERIOR WORKINGS OF A STELLAR DYNAMO Before the Hubble observation, astronomers thought magnetic fields in stars required the same dynamo process which creates magnetic fields on the Sun. In the classic solar model, heat generated by nuclear fusion reactions at the star's center escapes through a radiative zone just outside the core. The heat travels from the radiative core to the star's surface through a convection zone. In this region, heat bubbles to the surface by motions similar to boiling in a pot of water. Dynamos, which accelerate electrons to create magnetic forces, operate when the interior of a star rotates faster than the surface. Recent studies of the Sun indicate its convective zone rotates at nearly the same rate at all depths. This means the solar dynamo must operate in the more rapidly rotating radiative core just below the convective zone. The puzzle is that stars below 20 percent the mass of our Sun do not have radiative cores, but instead transport heat from their core through

  20. Accretion Flows in Magnetic White Dwarf Systems

    NASA Technical Reports Server (NTRS)

    Imamura, James N.

    2005-01-01

    We received Type A and B funding under the NASA Astrophysics Data Program for the analysis and interpretation of hard x-ray data obtained by the Rossi X-ray Timing Explorer and other NASA sponsored missions for Intermediate Polars (IPS) and Polars. For some targets, optical data was available. We reduced and analyzed the X-ray spectra and the X-ray and optical (obtained at the Cerro Tololo Inter-American Observatory) timing data using detailed shock models (which we constructed) to place constraints on the properties of the accreting white dwarfs, the high energy emission mechanisms of white dwarfs, and the large-scale accretion flows of Polars and IPS. IPS and Polars are white dwarf mass-transfer binaries, members of the larger class of cata,clysmic variables. They differ from the bulk of the cataclysmic variables in that they contain strongly magnetic white dwarfs; the white dwarfs in Polars have B, = 7 to 230 MG and those in IPS have B, less than 10 MG. The IPS and Polars are both examples of funneled accretion flows in strong magnetic field systems. The IPS are similar to x-ray pulsars in that accretion disks form in the systems which are disrupted by the strong stellar magnetic fields of the white dwarfs near the stellar surface from where the plasma is funneled to the surface of the white dwarf. The localized hot spots formed at the footpoints of the funnels coupled with the rotation of the white dwarf leads to coherent pulsed x-ray emission. The Polars offer an example of a different accretion topology; the magnetic field of the white dwarf controls the accretion flow from near the inner Lagrangian point of the system directly to the stellar surface. Accretion disks do not form. The strong magnetic coupling generally leads to synchronous orbital/rotational motion in the Polars. The physical system in this sense resembles the Io/Jupiter system. In both IPS and Polars, pulsed emission from the infrared to x-rays is produced as the funneled flows merge onto the

  1. Mystery of a Dimming White Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    In the wake of the recent media attention over an enigmatic, dimming star, another intriguing object has been discovered: J1529+2928, a white dwarf that periodically dims. This mystery, however, may have a simple solution with interesting consequences for future surveys of white dwarfs.Unexpected VariabilityJ1529+2928 is an isolated white dwarf that appears to have a mass of slightly more than the Sun. But rather than radiating steadily, J1529+2928 dims once every 38 minutes almost as though it were being eclipsed.The team that discovered these variations, led by Mukremin Kilic (University of Oklahoma), used telescopes at the Apache Point Observatory and the McDonald Observatory to obtain follow-up photometric data of J1529+2928 spread across 66 days. The team also took spectra of the white dwarf with the Gemini North telescope.Kilic and collaborators then began, one by one, to rule out possible causes of this objects variability.Eliminating OptionsThe period of the variability is too long for J1529+2928 to be a pulsating white dwarf with luminosity variation caused by gravity-wave pulsations.The variability cant be due to an eclipse by a stellar or brown-dwarf companion, because there isnt any variation in J1529+2928s radial velocity.Its not due to the orbit of a solid-body planetary object; such a transit would be too short to explain observations.It cant be due to the orbit of a disintegrated planet; this wouldnt explain the light curves observed in different filters plus the light curve doesnt change over the 66-day span.Spotty SurfaceTop and middle two panels: light curves from three different nights observing J1529+2928s periodic dimming. Bottom panel: The Fourier transform shows a peak at 37.7 cycles/day (and another, smaller peak at its first harmonic). [Kilic et al. 2015]So what explanation is left? The authors suggest that J1529+2928s variability is likely caused by a starspot on the white dwarfs surface that rotates into and out of our view. Estimates

  2. Brown Dwarf Companion Frequencies and Dynamical Interactions

    NASA Astrophysics Data System (ADS)

    Sterzik, Michael F.; Durisen, Richard H.

    2003-06-01

    Numerical simulations are used to explore how gravitational interactions within young multiple star systems may determine the binary properties of brown dwarfs. We compare different scenarios for cluster formation and decay and find that brown dwarf binaries, although possible, generally have a low frequency. We also discuss the frequencies of brown dwarf companions to normal stars expected from these models.

  3. Limber Pine Dwarf Mistletoe (FIDL)

    Treesearch

    Jane E. Taylor; Robert L. Mathiason

    1999-01-01

    Limber pine dwarf mistletoe (Arceuthobium cyanocarpum (A. Nelson ex Rydberg) Coulter & Nelson) is a damaging parasite of limber pine (Pinus flexilis James), whitebark pine (P. albicaulis Engelm.), Rocky Mountain bristlecone pine (P. aristata Engelm.) and Great Basin bristlecone pine (P. longaeva D.K. Bailey). Limber pine dwarf mistletoe occurs in the Rocky...

  4. Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    NASA Astrophysics Data System (ADS)

    Helling, Ch; Rimmer, P. B.; Rodriguez-Barrera, I. M.; Wood, Kenneth; Robertson, G. B.; Stark, C. R.

    2016-07-01

    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field \\gg {{B}\\text{Earth}} , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.

  5. CHEMICAL SIGNATURES OF THE FIRST GALAXIES: CRITERIA FOR ONE-SHOT ENRICHMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frebel, Anna; Bromm, Volker, E-mail: afrebel@mit.edu, E-mail: vbromm@astro.as.utexas.edu

    We utilize metal-poor stars in the local, ultra-faint dwarf galaxies (UFDs; L {sub tot} {<=} 10{sup 5} L {sub Sun }) to empirically constrain the formation process of the first galaxies. Since UFDs have much simpler star formation histories than the halo of the Milky Way, their stellar populations should preserve the fossil record of the first supernova (SN) explosions in their long-lived, low-mass stars. Guided by recent hydrodynamical simulations of first galaxy formation, we develop a set of stellar abundance signatures that characterize the nucleosynthetic history of such an early system if it was observed in the present-day universe.more » Specifically, we argue that the first galaxies are the product of chemical 'one-shot' events, where only one (long-lived) stellar generation forms after the first, Population III, SN explosions. Our abundance criteria thus constrain the strength of negative feedback effects inside the first galaxies. We compare the stellar content of UFDs with these one-shot criteria. Several systems (Ursa Major II, and also Coma Berenices, Bootes I, Leo IV, Segue 1) largely fulfill the requirements, indicating that their high-redshift predecessors did experience strong feedback effects that shut off star formation. We term the study of the entire stellar population of a dwarf galaxy for the purpose of inferring details about the nature and origin of the first galaxies 'dwarf galaxy archaeology'. This will provide clues to the connection of the first galaxies, the surviving, metal-poor dwarf galaxies, and the building blocks of the Milky Way.« less

  6. A MEGACAM SURVEY OF OUTER HALO SATELLITES. II. BLUE STRAGGLERS IN THE LOWEST STELLAR DENSITY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana, Felipe A.; Munoz, Ricardo R.; Geha, Marla

    2013-09-10

    We present a homogeneous study of blue straggler stars across 10 outer halo globular clusters, 3 classical dwarf spheroidal galaxies, and 9 ultra-faint galaxies based on deep and wide-field photometric data taken with MegaCam on the Canada-France-Hawaii Telescope. We find blue straggler stars to be ubiquitous among these Milky Way satellites. Based on these data, we can test the importance of primordial binaries or multiple systems on blue straggler star formation in low-density environments. For the outer halo globular clusters, we find an anti-correlation between the specific frequency of blue stragglers and absolute magnitude, similar to that previously observed formore » inner halo clusters. When plotted against density and encounter rate, the frequency of blue stragglers is well fit by a single trend with a smooth transition between dwarf galaxies and globular clusters; this result points to a common origin for these satellites' blue stragglers. The fraction of blue stragglers stays constant and high in the low encounter rate regime spanned by our dwarf galaxies, and decreases with density and encounter rate in the range spanned by our globular clusters. We find that young stars can mimic blue stragglers in dwarf galaxies only if their ages are 2.5 {+-} 0.5 Gyr and they represent {approx}1%-7% of the total number of stars, which we deem highly unlikely. These results point to mass-transfer or mergers of primordial binaries or multiple systems as the dominant blue straggler formation mechanism in low-density systems.« less

  7. A white dwarf with an oxygen atmosphere.

    PubMed

    Kepler, S O; Koester, Detlev; Ourique, Gustavo

    2016-04-01

    Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs. Copyright © 2016, American Association for the Advancement of Science.

  8. Improving the ability of image sensors to detect faint stars and moving objects using image deconvolution techniques.

    PubMed

    Fors, Octavi; Núñez, Jorge; Otazu, Xavier; Prades, Albert; Cardinal, Robert D

    2010-01-01

    In this paper we show how the techniques of image deconvolution can increase the ability of image sensors as, for example, CCD imagers, to detect faint stars or faint orbital objects (small satellites and space debris). In the case of faint stars, we show that this benefit is equivalent to double the quantum efficiency of the used image sensor or to increase the effective telescope aperture by more than 30% without decreasing the astrometric precision or introducing artificial bias. In the case of orbital objects, the deconvolution technique can double the signal-to-noise ratio of the image, which helps to discover and control dangerous objects as space debris or lost satellites. The benefits obtained using CCD detectors can be extrapolated to any kind of image sensors.

  9. View of southeast side, faint "141" sign, Cranes P76 and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of southeast side, faint "141" sign, Cranes P-76 and P-71 are behind, view facing northwest - U.S. Naval Base, Pearl Harbor, Dry Dock No. 1, Latrine, Sixth Street, adjacent to Dry Dock No. 1, Pearl City, Honolulu County, HI

  10. Rapid Rotation of a Heavy White Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    New Kepler observations of a pulsating white dwarf have revealed clues about the rotation of intermediate-mass stars.Learning About ProgenitorsStars weighing in at under 8 solar masses generally end their lives as slowly cooling white dwarfs. By studying the rotation of white dwarfs, therefore, we are able to learn about the final stages of angular momentum evolution in these progenitor stars.Most isolated field white dwarfs cluster in mass around 0.62 solar masses, which corresponds to a progenitor mass of around 2.2 solar masses. This abundance means that weve already learned a good deal about the final rotation of low-mass (13 solar-mass) stars. Our knowledge about the angular momentum of intermediate-mass (38 solar-mass) stars, on the other hand, remains fairly limited.Fourier transform of the pulsations from SDSSJ0837+1856. The six frequencies of stellar variability, marked with red dots, reveal a rotation period of 1.13 hours. [Hermes et al. 2017]Record-Breaking FindA newly discovered white dwarf, SDSSJ0837+1856, is now helping to shed light on this mass range. SDSSJ0837+1856 appears to be unusually massive: its measured at 0.87 solar masses, which corresponds to a progenitor mass of roughly 4.0 solar masses. Determining the rotation of this white dwarf would therefore tell us about the final stages of angular momentum in an intermediate-mass star.In a new study led by J.J. Hermes (Hubble Fellow at University of North Carolina, Chapel Hill), a team of scientists presents a series of measurements of SDSSJ0837+1856 that suggest its the highest-mass and fastest-rotating isolated pulsating white dwarf known.Histogram of rotation rates determined from the asteroseismology of pulsating white dwarfs (marked in red). SDSSJ0837+1856 (indicated in black) is more massive and rotates faster than any other known pulsating white dwarf. [Hermes et al. 2017]Rotation from PulsationsWhy pulsating? In the absence of measurable spots and other surface features, the way we

  11. An intriguing young-looking dwarf galaxy

    NASA Image and Video Library

    2015-03-16

    The bright streak of glowing gas and stars in this NASA/ESA Hubble Space Telescope image is known as PGC 51017, or SBSG 1415+437. It is type of galaxy known as a blue compact dwarf. This particular dwarf is well studied and has an interesting star formation history. Astronomers initially thought that SBS 1415+437 was a very young galaxy currently undergoing its very first burst of star formation, but more recent studies have suggested that the galaxy is in fact a little older, containing stars over 1.3 billion years old. Starbursts are an area of ongoing research for astronomers — short-lived and intense periods of star formation, during which huge amounts of gas within a galaxy are hungrily used up to form newborn stars. They have been seen in gas-rich disc galaxies, and in some lower-mass dwarfs. However, it is still unclear whether all dwarf galaxies experience starbursts as part of their evolution. It is possible that dwarf galaxies undergo a star formation cycle, with bursts occurring repeatedly over time. SBS 1415+437 is an interesting target for another reason. Dwarf galaxies like this are thought to have formed early in the Universe, producing some of the very first stars before merging together to create more massive galaxies. Dwarf galaxies which contain very few of the heavier elements formed from having several generations of stars, like SBS 1415+437, remain some of the best places to study star-forming processes similar to those thought to occur in the early Universe. However, it seems that our nearby patch of the Universe may not contain any galaxies that are currently undergoing their first burst of star formation. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Nick Rose.

  12. A new benchmark T8-9 brown dwarf and a couple of new mid-T dwarfs from the UKIDSS DR5+ LAS

    NASA Astrophysics Data System (ADS)

    Goldman, B.; Marsat, S.; Henning, T.; Clemens, C.; Greiner, J.

    2010-06-01

    Benchmark brown dwarfs are those objects for which fiducial constraints are available, including effective temperature, parallax, age and metallicity. We searched for new cool brown dwarfs in 186deg2 of the new area covered by the data release DR5+ of the UKIRT Deep Infrared Sky Survey (UKIDSS) Large Area Survey. Follow-up optical and near-infrared broad-band photometry, and methane imaging of four promising candidates, revealed three objects with distinct methane absorption, typical of mid- to late-T dwarfs and one possibly T4 dwarf. The latest-type object, classified as T8-9, shares its large proper motion with Ross 458 (BD+13o2618), an active M0.5 binary which is 102arcsec away, forming a hierarchical low-mass star+brown dwarf system. Ross 458C has an absolute J-band magnitude of 16.4, and seems overluminous, particularly in the K band, compared to similar field brown dwarfs. We estimate the age of the system to be less than 1Gyr, and its mass to be as low as 14 Jupiter masses for the age of 1Gyr. At 11.4pc, this new late-T benchmark dwarf is a promising target to constrain the evolutionary and atmospheric models of very low-mass brown dwarfs. We present proper motion measurements for our targets and for 13 known brown dwarfs. Two brown dwarfs have velocities typical of the thick disc and may be old brown dwarfs. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andaluc'a (CSIC), and on observations made with ESO/MPG Telescope at the La Silla Observatory under programme ID 081.A-9012 and 081.A-9014. E-mail: goldman@mpia.de

  13. General relativistic calculations for white dwarfs

    NASA Astrophysics Data System (ADS)

    Mathew, Arun; Nandy, Malay K.

    2017-05-01

    The mass-radius relations for white dwarfs are investigated by solving the Newtonian as well as Tolman-Oppenheimer-Volkoff (TOV) equations for hydrostatic equilibrium assuming the electron gas to be non-interacting. We find that the Newtonian limiting mass of 1.4562{M}⊙ is modified to 1.4166{M}⊙ in the general relativistic case for {}_2^4{{He}} (and {}_612{{C}}) white dwarfs. Using the same general relativistic treatment, the critical mass for {}2656{{Fe}} white dwarfs is obtained as 1.2230{M}⊙ . In addition, departure from the ideal degenerate equation of state (EoS) is accounted for by considering Salpeter’s EoS along with the TOV equation, yielding slightly lower values for the critical masses, namely 1.4081{M}⊙ for {}_2^4{{He}}, 1.3916{M}⊙ for {}_612{{C}} and 1.1565{M}⊙ for {}2656{{Fe}} white dwarfs. We also compare the critical densities for gravitational instability with the neutronization threshold densities to find that {}_2^4{{He}} and {}_612{{C}} white dwarfs are stable against neutronization with the critical values of 1.4081{M}⊙ and 1.3916{M}⊙ , respectively. However, the critical masses for {}_816{{O}}, {}1020{{Ne}}, {}1224{{Mg}}, {}1428{{Si}}, {}1632{{S}} and {}2656{{Fe}} white dwarfs are lower due to neutronization. Corresponding to their central densities for neutronization thresholds, we obtain their maximum stable masses due to neutronization by solving the TOV equation coupled with the Salpeter EoS.

  14. WHITE DWARFS IN LOCAL STAR STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, Burkhard; Dettbarn, Christian

    2011-01-15

    We have studied the fine structure of the phase space distribution of white dwarfs in the solar neighborhood. White dwarfs have kinematics that are typical for the stellar population of the old thin disk of the Milky Way. Using a projection of the space velocities of stars onto vertical angular momentum components and eccentricities of the stellar orbits we demonstrate that stellar streams can be identified in the phase space distribution of the white dwarfs. These correspond to the well-known Sirius, Pleiades, and Hercules star streams. Membership of white dwarfs, which represent the oldest population in the Galaxy, in thesemore » streams lends support to the interpretation that the streams owe their existence to dynamical resonance effects of the stars with Galactic spiral arms or the Galactic bar, because these indiscriminately affect all stellar populations.« less

  15. Is EG 50 a White or Strange Dwarf?

    NASA Astrophysics Data System (ADS)

    Hajyan, G. S.; Vartanyan, Yu. L.

    2017-12-01

    The time dependences of the luminosity of a white dwarf and four strange dwarfs with masses of 0.5 M (the mass of the white dwarf EG 50 with a surface temperature of 2.1·104 K) are determined taking neutrino energy losses into account. It was assumed that these configurations radiate only at the expense of thermal energy reserves. It is shown that the sources of thermal energy owing to nonequilibrium b-processes and the phenomenon of crystallization of electron-nuclear matter are insignificant in determining the cooling time of white and strange dwarfs with masses of 0.5 M⨀. It is shown that in this approximation the time dependences of the luminosity of white and strange dwarfs with masses of 0.5 M⨀ differ significantly only for surface temperatures TR≥7·104 K, so it is impossible to determine whether EG 50 is a white or strange dwarf based on the cooling time.

  16. Accretional Heating by Periodic Dwarf Nova Outburst Events

    NASA Astrophysics Data System (ADS)

    Godon, P.; Sion, E. M.

    2001-12-01

    We carry out simulations of evolutionary models of accreting white dwarfs in dwarf novae to assess the combined effect of boundary layer irradiation and compressional heating on the accreting star. We focus on the behavior of the surface observables of the accreting white dwarf for different value of the mass accretion rate and accretor mass. Outburst of days to weeks are followed by a shut off of the radial infall during quiescences lasting weeks to months. Preliminary results indicate that after a long evolution time of many accretion cycles, the effective surface temperature of the white dwarf will increase substantially. The purpose of this work is to generate a grid of models that will then be used to compared with observations of white dwarf heating and cooling in dwarf nova systems. This work is supported by NASA HST grant GO-8139 and in part by NSF grant AST99-01955 and NASA grant NAG5-8388.

  17. White dwarf evolution - Cradle-to-grave constraints via pulsation

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  18. Correlation between low level fluctuations in the x ray background and faint galaxies

    NASA Technical Reports Server (NTRS)

    Tolstoy, Eline; Griffiths, R. E.

    1993-01-01

    A correlation between low-level x-ray fluctuations in the cosmic x-ray background flux and the large numbers of galaxies found in deep optical imaging, to m(sub v) is less than or equal to 24 - 26, is desired. These (faint) galaxies by their morphology and color in deep multi-color CCD images and plate material were optically identified. Statistically significant correlations between these galaxies and low-level x-ray fluctuations at the same positions in multiple deep Einstein HRI observations in PAVO and in a ROSAT PSPC field were searched for. Our aim is to test the hypothesis that faint 'star burst' galaxies might contribute significantly to the cosmic x-ray background (at approximately 1 keV).

  19. Searching for chemical signatures of brown dwarf formation

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Villaver, E.

    2017-06-01

    Context. Recent studies have shown that close-in brown dwarfs in the mass range 35-55 MJup are almost depleted as companions to stars, suggesting that objects with masses above and below this gap might have different formation mechanisms. Aims: We aim to test whether stars harbouring massive brown dwarfs and stars with low-mass brown dwarfs show any chemical peculiarity that could be related to different formation processes. Methods: Our methodology is based on the analysis of high-resolution échelle spectra (R 57 000) from 2-3 m class telescopes. We determine the fundamental stellar parameters, as well as individual abundances of C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn for a large sample of stars known to have a substellar companion in the brown dwarf regime. The sample is divided into stars hosting massive and low-mass brown dwarfs. Following previous works, a threshold of 42.5 MJup was considered. The metallicity and abundance trends of the two subsamples are compared and set in the context of current models of planetary and brown dwarf formation. Results: Our results confirm that stars with brown dwarf companions do not follow the well-established gas-giant planet metallicity correlation seen in main-sequence planet hosts. Stars harbouring massive brown dwarfs show similar metallicity and abundance distribution as stars without known planets or with low-mass planets. We find a tendency of stars harbouring less-massive brown dwarfs of having slightly higher metallicity, [XFe/Fe] values, and abundances of Sc II, Mn I, and Ni I than the stars having the massive brown dwarfs. The data suggest, as previously reported, that massive and low-mass brown dwarfs might present differences in period and eccentricity. Conclusions: We find evidence of a non-metallicity dependent mechanism for the formation of massive brown dwarfs. Our results agree with a scenario in which massive brown dwarfs are formed as stars. At high metallicities, the core

  20. Cloud Atlas: Rotational Modulations in the L/T Transition Brown Dwarf Companion HN Peg B

    NASA Astrophysics Data System (ADS)

    Zhou, Yifan; Apai, Dániel; Metchev, Stanimir; Lew, Ben W. P.; Schneider, Glenn; Marley, Mark S.; Karalidi, Theodora; Manjavacas, Elena; Bedin, Luigi R.; Cowan, Nicolas B.; Miles-Páez, Paulo A.; Lowrance, Patrick J.; Radigan, Jacqueline; Burgasser, Adam J.

    2018-03-01

    Time-resolved observations of brown dwarfs’ rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes, and cloud morphology, which directly constrain condensate cloud and atmospheric circulation models. We report results from Hubble Space Telescope/Wide Field Camera 3 near-infrared G141 taken in six consecutive orbits observations of HN Peg B, an L/T transition brown dwarf companion to a G0V type star. The best-fit sine wave to the 1.1–1.7 μm broadband light curve has an amplitude of 1.206% ± 0.025% and period of 15.4 ± 0.5 hr. The modulation amplitude has no detectable wavelength dependence except in the 1.4 μm water absorption band, indicating that the characteristic condensate particle sizes are large (>1 μm). We detect significantly (4.4σ) lower modulation amplitude in the 1.4 μm water absorption band and find that HN Peg B’s spectral modulation resembles those of early T type brown dwarfs. We also describe a new empirical interpolation method to remove spectral contamination from the bright host star. This method may be applied in other high-contrast time-resolved observations with WFC3.