Sample records for ultra fast imrt

  1. Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator

    NASA Astrophysics Data System (ADS)

    Bol, G. H.; Hissoiny, S.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2012-03-01

    The MRI accelerator, a combination of a 6 MV linear accelerator with a 1.5 T MRI, facilitates continuous patient anatomy updates regarding translations, rotations and deformations of targets and organs at risk. Accounting for these demands high speed, online intensity-modulated radiotherapy (IMRT) re-optimization. In this paper, a fast IMRT optimization system is described which combines a GPU-based Monte Carlo dose calculation engine for online beamlet generation and a fast inverse dose optimization algorithm. Tightly conformal IMRT plans are generated for four phantom cases and two clinical cases (cervix and kidney) in the presence of the magnetic fields of 0 and 1.5 T. We show that for the presented cases the beamlet generation and optimization routines are fast enough for online IMRT planning. Furthermore, there is no influence of the magnetic field on plan quality and complexity, and equal optimization constraints at 0 and 1.5 T lead to almost identical dose distributions.

  2. Ultra-fast framing camera tube

    DOEpatents

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  3. Ultra-fast ipsilateral DPOAE adaptation not modulated by attention?

    NASA Astrophysics Data System (ADS)

    Dalhoff, Ernst; Zelle, Dennis; Gummer, Anthony W.

    2018-05-01

    Efferent stimulation of outer hair cells is supposed to attenuate cochlear amplification of sound waves and is accompanied by reduced DPOAE amplitudes. Recently, a method using two subsequent f2 pulses during presentation of a longer f1 pulse was introduced to measure fast ipsilateral adaptation effects on separated DPOAE components. Compensating primary-tone onsets for their latencies at the f2-tonotopic place, the average adaptation measured in four normal-hearing subjects was 5.0 dB with a time constant below 5 ms. In the present study, two experiments were performed to determine the origin of this ultra-fast ipsilateral adaptation effect. The first experiment measured ultra-fast ipsilateral adaptation using a two-pulse paradigm at three frequencies in the four subjects, while controlling for visual attention of the subjects. The other experiment also controlled for visual attention, but utilized a sequence of f2 short pulses in the presence of a continuous f1 tone to sample ipsilateral adaptation effects with longer time constants in eight subjects. In the first experiment, no significant change in the ultra-fast adaptation between non-directed attention and visual attention could be detected. In contrast, the second experiment revealed significant changes in the magnitude of the slower ipsilateral adaptation in the visual-attention condition. In conclusion, the lack of an attentional influence indicates that the ultra-fast ipsilateral DPOAE adaptation is not solely mediated by the medial olivocochlear reflex.

  4. Bright and ultra-fast scintillation from a semiconductor?

    PubMed Central

    Derenzo, Stephen E.; Bourret-Courshesne, Edith; Bizarri, Gregory; Canning, Andrew

    2015-01-01

    Semiconductor scintillators are worth studying because they include both the highest luminosities and shortest decay times of all known scintillators. Moreover, many semiconductors have the heaviest stable elements (Tl, Hg, Pb, Bi) as a major constituent and a high ion pair yield that is proportional to the energy deposited. We review the scintillation properties of semiconductors activated by native defects, isoelectronic impurities, donors and acceptors with special emphasis on those that have exceptionally high luminosities (e.g. ZnO:Zn, ZnS:Ag,Cl, CdS:Ag,Cl) and those that have ultra-fast decay times (e.g. ZnO:Ga; CdS:In). We discuss underlying mechanisms that are consistent with these properties and the possibilities for achieving (1) 200,000 photons/MeV and 1% fwhm energy resolution for 662 keV gamma rays, (2) ultra-fast (ns) decay times and coincident resolving times of 30 ps fwhm for time-of-flight positron emission tomography, and (3) both a high luminosity and an ultra-fast decay time from the same scintillator at cryogenic temperatures. PMID:26855462

  5. mrsFAST-Ultra: a compact, SNP-aware mapper for high performance sequencing applications.

    PubMed

    Hach, Faraz; Sarrafi, Iman; Hormozdiari, Farhad; Alkan, Can; Eichler, Evan E; Sahinalp, S Cenk

    2014-07-01

    High throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for processing and downstream analysis. While tools that report the 'best' mapping location of each read provide a fast way to process HTS data, they are not suitable for many types of downstream analysis such as structural variation detection, where it is important to report multiple mapping loci for each read. For this purpose we introduce mrsFAST-Ultra, a fast, cache oblivious, SNP-aware aligner that can handle the multi-mapping of HTS reads very efficiently. mrsFAST-Ultra improves mrsFAST, our first cache oblivious read aligner capable of handling multi-mapping reads, through new and compact index structures that reduce not only the overall memory usage but also the number of CPU operations per alignment. In fact the size of the index generated by mrsFAST-Ultra is 10 times smaller than that of mrsFAST. As importantly, mrsFAST-Ultra introduces new features such as being able to (i) obtain the best mapping loci for each read, and (ii) return all reads that have at most n mapping loci (within an error threshold), together with these loci, for any user specified n. Furthermore, mrsFAST-Ultra is SNP-aware, i.e. it can map reads to reference genome while discounting the mismatches that occur at common SNP locations provided by db-SNP; this significantly increases the number of reads that can be mapped to the reference genome. Notice that all of the above features are implemented within the index structure and are not simple post-processing steps and thus are performed highly efficiently. Finally, mrsFAST-Ultra utilizes multiple available cores and processors and can be tuned for various memory settings. Our results show that mrsFAST-Ultra is roughly five times faster than its predecessor mrsFAST. In comparison to newly enhanced popular tools such as Bowtie2, it is more sensitive (it can report 10 times or more mappings per read) and much faster (six times or

  6. A low-cost, ultra-fast and ultra-low noise preamplifier for silicon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Gasmi, Khaled

    2018-02-01

    An ultra-fast and ultra-low noise preamplifier for amplifying the fast and weak electrical signals generated by silicon avalanche photodiodes has been designed and developed. It is characterized by its simplicity, compactness, reliability and low cost of construction. A very wide bandwidth of 300 MHz, a very good linearity from 1 kHz to 280 MHz, an ultra-low noise level at the input of only 1.7 nV Hz-1/2 and a very good stability are its key features. The compact size (70 mm  ×  90 mm) and light weight (45 g), as well as its excellent characteristics, make this preamplifier very competitive compared to any commercial preamplifier. The preamplifier, which is a main part of the detection system of a homemade laser remote sensing system, has been successfully tested. In addition, it is versatile and can be used in any optical detection system requiring high speed and very low noise electronics.

  7. Probing Photoinduced Structural Phase Transitions by Fast or Ultra-Fast Time-Resolved X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Cailleau, Hervé Collet, Eric; Buron-Le Cointe, Marylise; Lemée-Cailleau, Marie-Hélène Koshihara, Shin-Ya

    A new frontier in the field of structural science is the emergence of the fast and ultra-fast X-ray science. Recent developments in time-resolved X-ray diffraction promise direct access to the dynamics of electronic, atomic and molecular motions in condensed matter triggered by a pulsed laser irradiation, i.e. to record "molecular movies" during the transformation of matter initiated by light pulse. These laser pump and X-ray probe techniques now provide an outstanding opportunity for the direct observation of a photoinduced structural phase transition as it takes place. The use of X-ray short-pulse of about 100ps around third-generation synchrotron sources allows structural investigations of fast photoinduced processes. Other new X-ray sources, such as laser-produced plasma ones, generate ultra-short pulses down to 100 fs. This opens the way to femtosecond X-ray crystallography, but with rather low X-ray intensities and more limited experimental possibilities at present. However this new ultra-fast science rapidly progresses around these sources and new large-scale projects exist. It is the aim of this contribution to overview the state of art and the perspectives of fast and ultra-fast X-ray scattering techniques to study photoinduced phase transitions (here, the word ultra-fast is used for sub-picosecond time resolution). In particular we would like to largely present the contribution of crystallographic methods in comparison with optical methods, such as pump-probe reflectivity measurements, the reader being not necessary familiar with X-ray scattering. Thus we want to present which type of physical information can be obtained from the positions of the Bragg peaks, their intensity and their shape, as well as from the diffuse scattering beyond Bragg peaks. An important physical feature is to take into consideration the difference in nature between a photoinduced phase transition and conventional homogeneous photoinduced chemical or biochemical processes where

  8. Feasibility of UltraFast Doppler in Post-operative Evaluation of Hepatic Artery in Recipients following Liver Transplantation.

    PubMed

    Kim, Se-Young; Kim, Kyoung Won; Choi, Sang Hyun; Kwon, Jae Hyun; Song, Gi-Won; Kwon, Heon-Ju; Yun, Young Ju; Lee, Jeongjin; Lee, Sung-Gyu

    2017-11-01

    To determine the feasibility of using UltraFast Doppler in post-operative evaluation of the hepatic artery (HA) after liver transplantation (LT), we evaluated 283 simultaneous conventional and UltraFast Doppler sessions in 126 recipients over a 2-mo period after LT, using an Aixplorer scanner The Doppler indexes of the HA (peak systolic velocity [PSV], end-diastolic velocity [EDV], resistive index [RI] and systolic acceleration time [SAT]) by retrospective analysis of retrieved waves from UltraFast Doppler clips were compared with those obtained by conventional spectral Doppler. Correlation, performance in diagnosing the pathologic wave, examination time and reproducibility were evaluated. The PSV, EDV, RI and SAT of spectral and UltraFast Doppler measurements exhibited excellent correlation with favorable diagnostic performance. During the bedside examination, the mean time spent for UltraFast clip storing was significantly shorter than that for conventional Doppler US measurements. Both conventional and UltraFast Doppler exhibited good to excellent inter-analysis consistency. In conclusion, compared with conventional spectral Doppler, UltraFast Doppler values correlated excellently and yielded acceptable pathologic wave diagnostic performance with reduced examination time at the bedside and excellent reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Ultra-fast Object Recognition from Few Spikes

    DTIC Science & Technology

    2005-07-06

    Computer Science and Artificial Intelligence Laboratory Ultra-fast Object Recognition from Few Spikes Chou Hung, Gabriel Kreiman , Tomaso Poggio...neural code for different kinds of object-related information. *The authors, Chou Hung and Gabriel Kreiman , contributed equally to this work...Supplementary Material is available at http://ramonycajal.mit.edu/ kreiman /resources/ultrafast

  10. Patterning of OPV modules by ultra-fast laser

    NASA Astrophysics Data System (ADS)

    Kubiš, Peter; Lucera, Luca; Guo, Fei; Spyropolous, George; Voigt, Monika M.; Brabec, Christoph J.

    2014-10-01

    A novel production process combining slot-die coating, transparent flexible IMI (ITO-Metal-ITO) electrodes and ultra-fast laser ablation can be used for the realization of P3HT:PCBM based thin film flexible OPV modules. The fast and precise laser ablation allows an overall efficiency over 3 % and a device geometric fill factor (GFF) over 95 %. Three functional layers can be ablated using the same wavelength only with varying the laser fluence and overlap. Different OPV device architectures with multilayers utilizing various materials are challenging for ablation but can be structured by using a systematical approach.

  11. GPU-based ultra-fast dose calculation using a finite size pencil beam model.

    PubMed

    Gu, Xuejun; Choi, Dongju; Men, Chunhua; Pan, Hubert; Majumdar, Amitava; Jiang, Steve B

    2009-10-21

    Online adaptive radiation therapy (ART) is an attractive concept that promises the ability to deliver an optimal treatment in response to the inter-fraction variability in patient anatomy. However, it has yet to be realized due to technical limitations. Fast dose deposit coefficient calculation is a critical component of the online planning process that is required for plan optimization of intensity-modulated radiation therapy (IMRT). Computer graphics processing units (GPUs) are well suited to provide the requisite fast performance for the data-parallel nature of dose calculation. In this work, we develop a dose calculation engine based on a finite-size pencil beam (FSPB) algorithm and a GPU parallel computing framework. The developed framework can accommodate any FSPB model. We test our implementation in the case of a water phantom and the case of a prostate cancer patient with varying beamlet and voxel sizes. All testing scenarios achieved speedup ranging from 200 to 400 times when using a NVIDIA Tesla C1060 card in comparison with a 2.27 GHz Intel Xeon CPU. The computational time for calculating dose deposition coefficients for a nine-field prostate IMRT plan with this new framework is less than 1 s. This indicates that the GPU-based FSPB algorithm is well suited for online re-planning for adaptive radiotherapy.

  12. The Soft X-ray View of Ultra Fast Outflows

    NASA Astrophysics Data System (ADS)

    Reeves, J.; Braito, V.; Nardini, E.; Matzeu, G.; Lobban, A.; Costa, M.; Pounds, K.; Tombesi, F.; Behar, E.

    2017-10-01

    The recent large XMM-Newton programmes on the nearby quasars PDS 456 and PG 1211+143 have revealed prototype ultra fast outflows in the iron K band through highly blue shifted absorption lines. The wind velocities are in excess of 0.1c and are likely to make a significant contribution to the host galaxy feedback. Here we present evidence for the signature of the fast wind in the soft X-ray band from these luminous quasars, focusing on the spectroscopy with the RGS. In PDS 456, the RGS spectra reveal the presence of soft X-ray broad absorption line profiles, which suggests that PDS 456 is an X-ray equivalent to the BAL quasars, with outflow velocities reaching 0.2c. In PG 1211, the soft X-ray RGS spectra show a complex of several highly blue shifted absorption lines over a wide range of ionisation and reveal outflowing components with velocities between 0.06-0.17c. For both quasars, the soft X-ray absorption is highly variable, even on timescales of days and is most prominent when the quasar flux is low. Overall the results imply the presence of a soft X-ray component of the ultra fast outflows, which we attribute to a clumpy or inhomogeneous phase of the disk wind.

  13. Ultra-fast movies of thin-film laser ablation

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2012-11-01

    Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.

  14. Ultra-fast consensus of discrete-time multi-agent systems with multi-step predictive output feedback

    NASA Astrophysics Data System (ADS)

    Zhang, Wenle; Liu, Jianchang

    2016-04-01

    This article addresses the ultra-fast consensus problem of high-order discrete-time multi-agent systems based on a unified consensus framework. A novel multi-step predictive output mechanism is proposed under a directed communication topology containing a spanning tree. By predicting the outputs of a network several steps ahead and adding this information into the consensus protocol, it is shown that the asymptotic convergence factor is improved by a power of q + 1 compared to the routine consensus. The difficult problem of selecting the optimal control gain is solved well by introducing a variable called convergence step. In addition, the ultra-fast formation achievement is studied on the basis of this new consensus protocol. Finally, the ultra-fast consensus with respect to a reference model and robust consensus is discussed. Some simulations are performed to illustrate the effectiveness of the theoretical results.

  15. Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region.

    PubMed

    Yoneda, Hitoki; Inubushi, Yuichi; Tanaka, Toshihiro; Yamaguchi, Yuta; Sato, Fumiya; Morimoto, Shunsuke; Kumagai, Taisuke; Nagasono, Mitsuru; Higashiya, Atsushi; Yabashi, Makina; Ishikawa, Tetsuya; Ohashi, Haruhiko; Kimura, Hiroaki; Kitamura, Hikaru; Kodama, Ryosuke

    2009-12-21

    Advances in free electron lasers producing high energy photons [Nat. Photonics 2(9), 555-559 (2008)] are expected to open up a new science of nonlinear optics of high energy photons. Specifically, lasers of photon energy higher than the plasma frequency of a metal can show new interaction features because they can penetrate deeply into metals without strong reflection. Here we show the observation of ultra-fast switching of vacuum ultra-violet (VUV) light caused by saturable absorption of a solid metal target. A strong gating is observed at energy fluences above 6J/cm2 at wavelength of 51 nm with tin metal thin layers. The ratio of the transmission at high intensity to low intensity is typically greater than 100:1. This means we can design new nonlinear photonic devices such as auto-correlator and pulse slicer for the VUV region.

  16. Ultra-fast boriding of metal surfaces for improved properties

    DOEpatents

    Timur, Servet; Kartal, Guldem; Eryilmaz, Osman L.; Erdemir, Ali

    2015-02-10

    A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.

  17. SU-E-T-503: IMRT Optimization Using Monte Carlo Dose Engine: The Effect of Statistical Uncertainty.

    PubMed

    Tian, Z; Jia, X; Graves, Y; Uribe-Sanchez, A; Jiang, S

    2012-06-01

    With the development of ultra-fast GPU-based Monte Carlo (MC) dose engine, it becomes clinically realistic to compute the dose-deposition coefficients (DDC) for IMRT optimization using MC simulation. However, it is still time-consuming if we want to compute DDC with small statistical uncertainty. This work studies the effects of the statistical error in DDC matrix on IMRT optimization. The MC-computed DDC matrices are simulated here by adding statistical uncertainties at a desired level to the ones generated with a finite-size pencil beam algorithm. A statistical uncertainty model for MC dose calculation is employed. We adopt a penalty-based quadratic optimization model and gradient descent method to optimize fluence map and then recalculate the corresponding actual dose distribution using the noise-free DDC matrix. The impacts of DDC noise are assessed in terms of the deviation of the resulted dose distributions. We have also used a stochastic perturbation theory to theoretically estimate the statistical errors of dose distributions on a simplified optimization model. A head-and-neck case is used to investigate the perturbation to IMRT plan due to MC's statistical uncertainty. The relative errors of the final dose distributions of the optimized IMRT are found to be much smaller than those in the DDC matrix, which is consistent with our theoretical estimation. When history number is decreased from 108 to 106, the dose-volume-histograms are still very similar to the error-free DVHs while the error in DDC is about 3.8%. The results illustrate that the statistical errors in the DDC matrix have a relatively small effect on IMRT optimization in dose domain. This indicates we can use relatively small number of histories to obtain the DDC matrix with MC simulation within a reasonable amount of time, without considerably compromising the accuracy of the optimized treatment plan. This work is supported by Varian Medical Systems through a Master Research Agreement. © 2012

  18. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun, E-mail: wenjunwang@mail.xjtu.edu.cn

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloymore » were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.« less

  19. Ultra-Fast Hadronic Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, Dmitri; Lukić, Strahinja; Mokhov, Nikolai

    2017-12-18

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locationsmore » w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less

  20. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    NASA Astrophysics Data System (ADS)

    Cappi, M.; Tombesi, F.; Giustini, M.

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  1. Ultra-Fast Hadronic Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, Dmitri; Lukić, Strahinja; Mokhov, Nikolai

    2018-08-01

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper the time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations with respectmore » to the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 2 ns providing opportunity for ultra-fast calorimetry. Simulation results for an “ideal” calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less

  2. Ultra-fast hadronic calorimetry

    DOE PAGES

    Denisov, Dmitri; Lukic, Strahinja; Mokhov, Nikolai; ...

    2018-05-08

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper the time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations with respectmore » to the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 2 ns providing opportunity for ultra-fast calorimetry. As a result, simulation results for an “ideal” calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less

  3. Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials.

    PubMed

    Heitzer, Henry M; Savoie, Brett M; Marks, Tobin J; Ratner, Mark A

    2014-07-14

    Organic photovoltaics (OPVs) offer the opportunity for cheap, lightweight and mass-producible devices. However, an incomplete understanding of the charge generation process, in particular the timescale of dynamics and role of exciton diffusion, has slowed further progress in the field. We report a new Kinetic Monte Carlo model for the exciton dissociation mechanism in OPVs that addresses the origin of ultra-fast (<1 ps) dissociation by incorporating exciton delocalization. The model reproduces experimental results, such as the diminished rapid dissociation with increasing domain size, and also lends insight into the interplay between mixed domains, domain geometry, and exciton delocalization. Additionally, the model addresses the recent dispute on the origin of ultra-fast exciton dissociation by comparing the effects of exciton delocalization and impure domains on the photo-dynamics.This model provides insight into exciton dynamics that can advance our understanding of OPV structure-function relationships. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Monte Carlo simulations to replace film dosimetry in IMRT verification.

    PubMed

    Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig

    2011-01-01

    Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase. Copyright © 2010. Published by Elsevier GmbH.

  5. Ultra Fast, High Rep Rate, High Voltage Spark Gap Pulser

    DTIC Science & Technology

    1995-07-01

    current rise time. The spark gap was designed to have a coaxial geometry reducing its inductance. Provisions were made to pass flowing gas between the...ULTRA FAST, HIGH REP RATE, HIGH VOLTAGE SPARK GAP PULSER Robert A. Pastore Jr., Lawrence E. Kingsley, Kevin Fonda, Erik Lenzing Electrophysics and...Modeling Branch AMSRL-PS-EA Tel.: (908)-532-0271 FAX: (908)-542-3348 U.S. Army Research Laboratory Physical Sciences Directorate Ft. Monmouth

  6. Ultra-fast HPM detectors improve NAD(P)H FLIM

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Wetzker, Cornelia; Benda, Aleš

    2018-02-01

    Metabolic imaging by NAD(P)H FLIM requires the decay functions in the individual pixels to be resolved into the decay components of bound and unbound NAD(P)H. Metabolic information is contained in the lifetime and relative amplitudes of the components. The separation of the decay components and the accuracy of the amplitudes and lifetimes improves substantially by using ultra-fast HPM-100-06 and HPM-100-07 hybrid detectors. The IRF width in combination with the Becker & Hickl SPC-150N and SPC-150NX TCSPC modules is less than 20 ps. An IRF this fast does not interfere with the fluorescence decay. The usual deconvolution process in the data analysis then virtually becomes a simple curve fitting, and the parameters of the NAD(P)H decay components are obtained at unprecedented accuracy.

  7. Ultra-fast dynamics in the nonlinear optical response of silver nanoprism ordered arrays.

    PubMed

    Sánchez-Esquivel, Héctor; Raygoza-Sanchez, Karen Y; Rangel-Rojo, Raúl; Kalinic, Boris; Michieli, Niccolò; Cesca, Tiziana; Mattei, Giovanni

    2018-03-15

    In this work we present the study of the ultra-fast dynamics of the nonlinear optical response of a honeycomb array of silver triangular nanoprisms, performed using a femtosecond pulsed laser tuned with the dipolar surface plasmon resonance of the nanoarray. Nonlinear absorption and refraction, and their time-dependence, were explored using the z-scan and time-resolved excite-probe techniques. Nonlinear absorption is shown to change sign with the input irradiance and the behavior was explained on the basis of a three-level model. The response time was determined to be in the picosecond regime. A technique based on a variable frequency chopper was also used in order to discriminate the thermal and electronic contributions to the nonlinearity, which were found to have opposite signs. All these findings propel the investigated nanoprism arrays as good candidates for applications in advanced ultra-fast nonlinear nanophotonic devices.

  8. Plasmonic phased array feeder enabling ultra-fast beam steering at millimeter waves.

    PubMed

    Bonjour, R; Burla, M; Abrecht, F C; Welschen, S; Hoessbacher, C; Heni, W; Gebrewold, S A; Baeuerle, B; Josten, A; Salamin, Y; Haffner, C; Johnston, P V; Elder, D L; Leuchtmann, P; Hillerkuss, D; Fedoryshyn, Y; Dalton, L R; Hafner, C; Leuthold, J

    2016-10-31

    In this paper, we demonstrate an integrated microwave phoneeded for beamtonics phased array antenna feeder at 60 GHz with a record-low footprint. Our design is based on ultra-compact plasmonic phase modulators (active area <2.5µm2) that not only provide small size but also ultra-fast tuning speed. In our design, the integrated circuit footprint is in fact only limited by the contact pads of the electrodes and by the optical feeding waveguides. Using the high speed of the plasmonic modulators, we demonstrate beam steering with less than 1 ns reconfiguration time, i.e. the beam direction is reconfigured in-between 1 GBd transmitted symbols.

  9. Network Modeling for Functional Magnetic Resonance Imaging (fMRI) Signals during Ultra-Fast Speech Comprehension in Late-Blind Listeners

    PubMed Central

    Dietrich, Susanne; Hertrich, Ingo; Ackermann, Hermann

    2015-01-01

    In many functional magnetic resonance imaging (fMRI) studies blind humans were found to show cross-modal reorganization engaging the visual system in non-visual tasks. For example, blind people can manage to understand (synthetic) spoken language at very high speaking rates up to ca. 20 syllables/s (syl/s). FMRI data showed that hemodynamic activation within right-hemispheric primary visual cortex (V1), bilateral pulvinar (Pv), and left-hemispheric supplementary motor area (pre-SMA) covaried with their capability of ultra-fast speech (16 syllables/s) comprehension. It has been suggested that right V1 plays an important role with respect to the perception of ultra-fast speech features, particularly the detection of syllable onsets. Furthermore, left pre-SMA seems to be an interface between these syllabic representations and the frontal speech processing and working memory network. So far, little is known about the networks linking V1 to Pv, auditory cortex (A1), and (mesio-) frontal areas. Dynamic causal modeling (DCM) was applied to investigate (i) the input structure from A1 and Pv toward right V1 and (ii) output from right V1 and A1 to left pre-SMA. As concerns the input Pv was significantly connected to V1, in addition to A1, in blind participants, but not in sighted controls. Regarding the output V1 was significantly connected to pre-SMA in blind individuals, and the strength of V1-SMA connectivity correlated with the performance of ultra-fast speech comprehension. By contrast, in sighted controls, not understanding ultra-fast speech, pre-SMA did neither receive input from A1 nor V1. Taken together, right V1 might facilitate the “parsing” of the ultra-fast speech stream in blind subjects by receiving subcortical auditory input via the Pv (= secondary visual pathway) and transmitting this information toward contralateral pre-SMA. PMID:26148062

  10. Network Modeling for Functional Magnetic Resonance Imaging (fMRI) Signals during Ultra-Fast Speech Comprehension in Late-Blind Listeners.

    PubMed

    Dietrich, Susanne; Hertrich, Ingo; Ackermann, Hermann

    2015-01-01

    In many functional magnetic resonance imaging (fMRI) studies blind humans were found to show cross-modal reorganization engaging the visual system in non-visual tasks. For example, blind people can manage to understand (synthetic) spoken language at very high speaking rates up to ca. 20 syllables/s (syl/s). FMRI data showed that hemodynamic activation within right-hemispheric primary visual cortex (V1), bilateral pulvinar (Pv), and left-hemispheric supplementary motor area (pre-SMA) covaried with their capability of ultra-fast speech (16 syllables/s) comprehension. It has been suggested that right V1 plays an important role with respect to the perception of ultra-fast speech features, particularly the detection of syllable onsets. Furthermore, left pre-SMA seems to be an interface between these syllabic representations and the frontal speech processing and working memory network. So far, little is known about the networks linking V1 to Pv, auditory cortex (A1), and (mesio-) frontal areas. Dynamic causal modeling (DCM) was applied to investigate (i) the input structure from A1 and Pv toward right V1 and (ii) output from right V1 and A1 to left pre-SMA. As concerns the input Pv was significantly connected to V1, in addition to A1, in blind participants, but not in sighted controls. Regarding the output V1 was significantly connected to pre-SMA in blind individuals, and the strength of V1-SMA connectivity correlated with the performance of ultra-fast speech comprehension. By contrast, in sighted controls, not understanding ultra-fast speech, pre-SMA did neither receive input from A1 nor V1. Taken together, right V1 might facilitate the "parsing" of the ultra-fast speech stream in blind subjects by receiving subcortical auditory input via the Pv (= secondary visual pathway) and transmitting this information toward contralateral pre-SMA.

  11. H.sub.2O doped WO.sub.3, ultra-fast, high-sensitivity hydrogen sensors

    DOEpatents

    Liu, Ping [Denver, CO; Tracy, C Edwin [Golden, CO; Pitts, J Roland [Lakewood, CO; Lee, Se-Hee [Lakewood, CO

    2011-03-22

    An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO.sub.3 layer coated on the substrate; and a palladium layer coated on the water-doped WO.sub.3 layer.

  12. Open Probe fast GC-MS - combining ambient sampling ultra-fast separation and in-vacuum ionization for real-time analysis.

    PubMed

    Keshet, U; Alon, T; Fialkov, A B; Amirav, A

    2017-07-01

    An Open Probe inlet was combined with a low thermal mass ultra-fast gas chromatograph (GC), in-vacuum electron ionization ion source and a mass spectrometer (MS) of GC-MS for obtaining real-time analysis with separation. The Open Probe enables ambient sampling via sample vaporization in an oven that is open to room air, and the ultra-fast GC provides ~30-s separation, while if no separation is required, it can act as a transfer line with 2 to 3-s sample transfer time. Sample analysis is as simple as touching the sample, pushing the sample holder into the Open Probe oven and obtaining the results in 30 s. The Open Probe fast GC was mounted on a standard Agilent 7890 GC that was coupled with an Agilent 5977A MS. Open Probe fast GC-MS provides real-time analysis combined with GC separation and library identification, and it uses the low-cost MS of GC-MS. The operation of Open Probe fast GC-MS is demonstrated in the 30-s separation and 50-s full analysis cycle time of tetrahydrocannabinol and cannabinol in Cannabis flower, sub 1-min analysis of trace trinitrotoluene transferred from a finger onto a glass surface, vitamin E in canola oil, sterols in olive oil, polybrominated flame retardants in plastics, alprazolam in Xanax drug pill and free fatty acids and cholesterol in human blood. The extrapolated limit of detection for pyrene is <1 fg, but the concentration is too high and the software noise calculation is untrustworthy. The broad range of compounds amenable for analysis is demonstrated in the analysis of reserpine. The possible use with alternate standard GC-MS and Open Probe fast GC-MS is demonstrated in the analysis of heroin in its street drug powder. The use of Open Probe with the fast GC acting as a transfer line is demonstrated in <10-s analysis without separation of ibuprofen and estradiol. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Controlled nanostructrures formation by ultra fast laser pulses for color marking.

    PubMed

    Dusser, B; Sagan, Z; Soder, H; Faure, N; Colombier, J P; Jourlin, M; Audouard, E

    2010-02-01

    Precise nanostructuration of surface and the subsequent upgrades in material properties is a strong outcome of ultra fast laser irradiations. Material characteristics can be designed on mesoscopic scales, carrying new optical properties. We demonstrate in this work, the possibility of achieving material modifications using ultra short pulses, via polarization dependent structures generation, that can generate specific color patterns. These oriented nanostructures created on the metal surface, called ripples, are typically smaller than the laser wavelength and in the range of visible spectrum. In this way, a complex colorization process of the material, involving imprinting, calibration and reading, has been performed to associate a priori defined colors. This new method based on the control of the laser-driven nanostructure orientation allows cumulating high quantity of information in a minimal surface, proposing new applications for laser marking and new types of identifying codes.

  14. Ultra high performance liquid chromatography with ion-trap TOF-MS for the fast characterization of flavonoids in Citrus bergamia juice.

    PubMed

    Sommella, Eduardo; Pepe, Giacomo; Pagano, Francesco; Tenore, Gian Carlo; Dugo, Paola; Manfra, Michele; Campiglia, Pietro

    2013-10-01

    We have developed a fast ultra HPLC with ion-trap TOF-MS method for the analysis of flavonoids in Citrus bergamia juice. With respect to the typical methods for the analysis of these matrices based on conventional HPLC techniques, a tenfold faster separation was attained. The use of a core-shell particle column ensured high resolution within the fast analysis time of only 5 min. Unambiguous determination of flavonoid identity was obtained by the employment of a hybrid ion-trap TOF mass spectrometer with high mass accuracy (average error 1.69 ppm). The system showed good retention time and peak area repeatability, with maximum RSD% values of 0.36 and 3.86, respectively, as well as good linearity (R(2) ≥ 0.99). Our results show that ultra HPLC can be a useful tool for ultra fast qualitative/quantitative analysis of flavonoid compounds in citrus fruit juices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ultra-fast all-optical plasmon induced transparency in a metal–insulator–metal waveguide containing two Kerr nonlinear ring resonators

    NASA Astrophysics Data System (ADS)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-05-01

    In this work, an ultra-fast all-optical plasmon induced transparency based on a metal–insulator–metal nanoplasmonic waveguide with two Kerr nonlinear ring resonators is studied. Two-dimensional simulations utilizing the finite-difference time-domain method are used to show an obvious optical bistability and significant switching mechanisms of the signal light by varying the pump-light intensity. The proposed all-optical switching based on plasmon induced transparency demonstrates femtosecond-scale feedback time (90 fs), meaning ultra-fast switching can be achieved. The presented all-optical switch may have potential significant applications in integrated optical circuits.

  16. Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range.

    PubMed

    Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei

    2013-05-06

    A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.

  17. Theoretical ultra-fast spectroscopy in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Molina-Sanchez, Alejandro; Sangalli, Davide; Marini, Andrea; Wirtz, Ludger

    Semiconducting 2D-materials like the transition metal dichalcogenides (TMDs) MoS2, MoSe2, WS2, WSe2 are promising alternatives to graphene for designing novel opto-electronic devices. The strong spin-orbit interaction along with the breaking of inversion symmetry in single-layer TMDs allow using the valley-index as a new quantum number. The practical use of valley physics depends on the lifetimes of valley-polarized excitons which are affected by scattering at phonons, impurities and by carrier-carrier interactions. The carrier dynamics can be monitored using ultra-fast spectroscopies such as pump-probe experiments. The carrier dynamics is simulated using non-equilibrium Green's function theory in an ab-initio framework. We include carrier relaxation through electron-phonon interaction. We obtain the transient absorption spectra of single-layer TMD and compare our simulations with recent pump-probe experiments

  18. Development of Ultra-Fast Silicon Detectors for 4D tracking

    NASA Astrophysics Data System (ADS)

    Staiano, A.; Arcidiacono, R.; Boscardin, M.; Dalla Betta, G. F.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Ficorella, F.; Mandurrino, M.; Obertino, M.; Pancheri, L.; Paternoster, G.; Sola, V.

    2017-12-01

    In this contribution we review the progress towards the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~10 larger than standard silicon detectors. The basic design of UFSD consists of a thin silicon sensor with moderate internal gain and pixelated electrodes coupled to full custom VLSI chip. An overview of test beam data on time resolution and the impact on this measurement of radiation doses at the level of those expected at HL-LHC is presented. First I-V and C-V measurements on a new FBK sensor production of UFSD, 50 μm thick, with B and Ga, activated at two diffusion temperatures, with and without C co-implantation (in Low and High concentrations), and with different effective doping concentrations in the Gain layer, are shown. Perspectives on current use of UFSD in HEP experiments (UFSD detectors have been installed in the CMS-TOTEM Precision Protons Spectrometer for the forward physics tracking, and are currently taking data) and proposed applications for a MIP timing layer in the HL-LHC upgrade are briefly discussed.

  19. A flexible, on-line magnetic spectrometer for ultra-intense laser produced fast electron measurement

    NASA Astrophysics Data System (ADS)

    Ge, Xulei; Yuan, Xiaohui; Yang, Su; Deng, Yanqing; Wei, Wenqing; Fang, Yuan; Gao, Jian; Liu, Feng; Chen, Min; Zhao, Li; Ma, Yanyun; Sheng, Zhengming; Zhang, Jie

    2018-04-01

    We have developed an on-line magnetic spectrometer to measure energy distributions of fast electrons generated from ultra-intense laser-solid interactions. The spectrometer consists of a sheet of plastic scintillator, a bundle of non-scintillating plastic fibers, and an sCMOS camera recording system. The design advantages include on-line capturing ability, versatility of detection arrangement, and resistance to harsh in-chamber environment. The validity of the instrument was tested experimentally. This spectrometer can be applied to the characterization of fast electron source for understanding fundamental laser-plasma interaction physics and to the optimization of high-repetition-rate laser-driven applications.

  20. Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line.

    PubMed

    Audier, Xavier; Balla, Naveen; Rigneault, Hervé

    2017-01-15

    We demonstrate femtosecond pump-probe transient absorption spectroscopy using a programmable dispersive filter as an ultra-fast delay line. Combined with fast synchronous detection, this delay line allows for recording of 6 ps decay traces at 34 kHz. With such acquisition speed, we perform single point pump-probe spectroscopy on bulk samples in 80 μs and hyperspectral pump-probe imaging over a field of view of 100 μm in less than a second. The usability of the method is illustrated in a showcase experiment to image and discriminate between two pigments in a mixture.

  1. Dosimetric comparison of standard three-dimensional conformal radiotherapy followed by intensity-modulated radiotherapy boost schedule (sequential IMRT plan) with simultaneous integrated boost-IMRT (SIB IMRT) treatment plan in patients with localized carcinoma prostate.

    PubMed

    Bansal, A; Kapoor, R; Singh, S K; Kumar, N; Oinam, A S; Sharma, S C

    2012-07-01

    DOSIMETERIC AND RADIOBIOLOGICAL COMPARISON OF TWO RADIATION SCHEDULES IN LOCALIZED CARCINOMA PROSTATE: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose-volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT.

  2. Dosimetric comparison of standard three-dimensional conformal radiotherapy followed by intensity-modulated radiotherapy boost schedule (sequential IMRT plan) with simultaneous integrated boost–IMRT (SIB IMRT) treatment plan in patients with localized carcinoma prostate

    PubMed Central

    Bansal, A.; Kapoor, R.; Singh, S. K.; Kumar, N.; Oinam, A. S.; Sharma, S. C.

    2012-01-01

    Aims: Dosimeteric and radiobiological comparison of two radiation schedules in localized carcinoma prostate: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Material and Methods: Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose–volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. Results: The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. Conclusions: For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT. PMID:23204659

  3. Ultra-fast electron capture by electrosterically-stabilized gold nanoparticles.

    PubMed

    Ghandi, Khashayar; Findlater, Alexander D; Mahimwalla, Zahid; MacNeil, Connor S; Awoonor-Williams, Ernest; Zahariev, Federico; Gordon, Mark S

    2015-07-21

    Ultra-fast pre-solvated electron capture has been observed for aqueous solutions of room-temperature ionic liquid (RTIL) surface-stabilized gold nanoparticles (AuNPs; ∼9 nm). The extraordinarily large inverse temperature dependent rate constants (k(e)∼ 5 × 10(14) M(-1) s(-1)) measured for the capture of electrons in solution suggest electron capture by the AuNP surface that is on the timescale of, and therefore in competition with, electron solvation and electron-cation recombination reactions. The observed electron transfer rates challenge the conventional notion that radiation induced biological damage would be enhanced in the presence of AuNPs. On the contrary, AuNPs stabilized by non-covalently bonded ligands demonstrate the potential to quench radiation-induced electrons, indicating potential applications in fields ranging from radiation therapy to heterogeneous catalysis.

  4. Ultra-fast pulse propagation in nonlinear graphene/silicon ridge waveguide

    NASA Astrophysics Data System (ADS)

    Liu, Ken; Zhang, Jian Fa; Xu, Wei; Zhu, Zhi Hong; Guo, Chu Cai; Li, Xiu Jian; Qin, Shi Qiao

    2015-11-01

    We report the femtosecond laser propagation in a hybrid graphene/silicon ridge waveguide with demonstration of the ultra-large Kerr coefficient of graphene. We also fabricated a slot-like graphene/silicon ridge waveguide which can enhance its effective Kerr coefficient 1.5 times compared with the graphene/silicon ridge waveguide. Both transverse-electric-like (TE-like) mode and transverse-magnetic-like (TM-like) mode are experimentally measured and numerically analyzed. The results show nonlinearity dependence on mode polarization not in graphene/silicon ridge waveguide but in slot-like graphene/silicon ridge waveguide. Great spectral broadening was observed due to self-phase modulation (SPM) after propagation in the hybrid waveguide with length of 2 mm. Power dependence property of the slot-like hybrid waveguide is also measured and numerically analyzed. The results also confirm the effective Kerr coefficient estimation of the hybrid structures. Spectral blue shift of the output pulse was observed in the slot-like graphene/silicon ridge waveguide. One possible explanation is that the blue shift was caused by the ultra-fast free carrier effect with the optical absorption of the doped graphene. This interesting effect can be used for soliton compression in femtosecond region. We also discussed the broadband anomalous dispersion of the Kerr coefficient of graphene.

  5. After low and high dose-rate interstitial brachytherapy followed by IMRT radiotherapy for intermediate and high risk prostate cancer.

    PubMed

    Nakamura, Satoshi; Murakami, Naoya; Inaba, Koji; Wakita, Akihisa; Kobayashi, Kazuma; Takahashi, Kana; Okamoto, Hiroyuki; Umezawa, Rei; Morota, Madoka; Sumi, Minako; Igaki, Hiroshi; Ito, Yoshinori; Itami, Jun

    2016-05-03

    The study aimed to compare urinary symptoms in patients with clinically localized prostate cancer after a combination of either low-dose-rate or high-dose-rate interstitial brachytherapy along with intensity-modulated radiation therapy (LDR-ISBT + IMRT or HDR-ISBT + IMRT). From June 2009 to April 2014, 16 and 22 patients were treated with LDR-ISBT + IMRT and HDR-ISBT + IMRT, respectively. No patient from these groups was excluded from this study. The prescribed dose of LDR-ISBT, HDR-ISBT, and IMRT was 115 Gy, 20 Gy in 2 fractions, and 46 Gy in 23 fractions, respectively. Obstructive and irritative urinary symptoms were assessed by the International Prostate Symptom Score (IPSS) examined before and after treatments. After ISBT, IPSS was evaluated in the 1st and 4th weeks, then every 2-3 months for the 1st year, and every 6 months thereafter. The median follow-up of the patients treated with LDR-ISBT + IMRT and HDR-ISBT + IMRT was 1070.5 days and 1048.5 days, respectively (p = 0.321). The IPSS-increment in the LDR-ISBT + IMRT group was greater than that in the HDR-ISBT + IMRT between 91 and 180 days after ISBT (p = 0.015). In the LDR-ISBT + IMRT group, the IPSS took longer time to return to the initial level than in the HDR-ISBT + IMRT group (in LDR-ISBT + IMRT group, the recovery time was 90 days later). The dose to urethra showed a statistically significant association with the IPSS-increment in the irritative urinary symptoms (p = 0.011). Clinical outcomes were comparable between both the groups. Both therapeutic modalities are safe and well suited for patients with clinically localized prostate cancer; however, it took patients longer to recover from LDR-ISBT + IMRT than from HDR-ISBT + IMRT. It is possible that fast dose delivery induced early symptoms and early recovery, while gradual dose delivery induced late symptoms and late recovery. Urethral dose reductions were associated with small increments in IPSS.

  6. Numerical investigations of transient heat transfer characteristics and vitrification tendencies in ultra-fast cell cooling processes.

    PubMed

    Jiao, Anjun; Han, Xu; Critser, John K; Ma, Hongbin

    2006-06-01

    During freezing, cells are often damaged directly or indirectly by ice formation. Vitrification is an alternative approach to cryopreservation that avoids ice formation. The common method to achieve vitrification is to use relatively high concentrations of cryoprotectant agents (CPA) in combination with a relatively slow cooling rate. However, high concentrations of CPAs have potentially damaging toxic and/or osmotic effects on cells. Therefore, establishing methods to achieve vitrification with lower concentrations of CPAs through ultra-fast cooling rates would be advantageous in these aspects. These ultra-fast cooling rates can be realized by a cooling system with an ultra-high heat transfer coefficient (h) between the sample and coolant. The oscillating motion heat pipe (OHP), a novel cooling device utilizing the pressure change to excite the oscillation motion of the liquid plugs and vapor bubbles, can significantly increase h and may fulfill this aim. The current investigation was designed to numerically study the effects of different values of h on the transient heat transfer characteristics and vitrification tendencies of the cell suspension during the cooling processes in an ultra-thin straw (100 microm in diameter). The transient temperature distribution, the cooling rate and the volume ratio (x) of the ice quantity to the maximum crystallizable ice of the suspension were calculated. From these numerical results, it is concluded that the ultra-high h (>10(4) W/m2 K) obtained by OHPs could facilitate vitrification by efficiently decreasing x as well as the time to pass through the dangerous temperature region where the maximum ice formation happens. For comparison, OHPs can decrease both of the parameters to less than 20% of those from the widely used open pulled straw methods. Therefore, the OHP method will be a promising approach to improving vitrification tendencies of CPA solutions and could also decrease the required concentration of CPAs for

  7. A calibration method for patient specific IMRT QA using a single therapy verification film

    PubMed Central

    Shukla, Arvind Kumar; Oinam, Arun S.; Kumar, Sanjeev; Sandhu, I.S.; Sharma, S.C.

    2013-01-01

    Aim The aim of the present study is to develop and verify the single film calibration procedure used in intensity-modulated radiation therapy (IMRT) quality assurance. Background Radiographic films have been regularly used in routine commissioning of treatment modalities and verification of treatment planning system (TPS). The radiation dosimetery based on radiographic films has ability to give absolute two-dimension dose distribution and prefer for the IMRT quality assurance. However, the single therapy verification film gives a quick and significant reliable method for IMRT verification. Materials and methods A single extended dose rate (EDR 2) film was used to generate the sensitometric curve of film optical density and radiation dose. EDR 2 film was exposed with nine 6 cm × 6 cm fields of 6 MV photon beam obtained from a medical linear accelerator at 5-cm depth in solid water phantom. The nine regions of single film were exposed with radiation doses raging from 10 to 362 cGy. The actual dose measurements inside the field regions were performed using 0.6 cm3 ionization chamber. The exposed film was processed after irradiation using a VIDAR film scanner and the value of optical density was noted for each region. Ten IMRT plans of head and neck carcinoma were used for verification using a dynamic IMRT technique, and evaluated using the gamma index method with TPS calculated dose distribution. Results Sensitometric curve has been generated using a single film exposed at nine field region to check quantitative dose verifications of IMRT treatments. The radiation scattered factor was observed to decrease exponentially with the increase in the distance from the centre of each field region. The IMRT plans based on calibration curve were verified using the gamma index method and found to be within acceptable criteria. Conclusion The single film method proved to be superior to the traditional calibration method and produce fast daily film calibration for highly

  8. Letter to the Editor on 'Single-Arc IMRT?'.

    PubMed

    Otto, Karl

    2009-04-21

    In the note 'Single Arc IMRT?' (Bortfeld and Webb 2009 Phys. Med. Biol. 54 N9-20), Bortfeld and Webb present a theoretical investigation of static gantry IMRT (S-IMRT), single-arc IMRT and tomotherapy. Based on their assumptions they conclude that single-arc IMRT is inherently limited in treating complex cases without compromising delivery efficiency. Here we present an expansion of their work based on the capabilities of the Varian RapidArc single-arc IMRT system. Using the same theoretical framework we derive clinically deliverable single-arc IMRT plans based on these specific capabilities. In particular, we consider the range of leaf motion, the ability to rapidly and continuously vary the dose rate and the choice of collimator angle used for delivery. In contrast to the results of Bortfeld and Webb, our results show that single-arc IMRT plans can be generated that closely match the theoretical optimum. The disparity in the results of each investigation emphasizes that the capabilities of the delivery system, along with the ability of the optimization algorithm to exploit those capabilities, are of particular importance in single-arc IMRT. We conclude that, given the capabilities available with the RapidArc system, single-arc IMRT can produce complex treatment plans that are delivered efficiently (in approximately 2 min).

  9. Collective hydrodynamic communication through ultra-fast contractions

    NASA Astrophysics Data System (ADS)

    Bhamla, Saad; Mathijssen, Arnold; Prakash, Manu

    2017-11-01

    The biophysical relationships between physiological sensors and actuators were fundamental to the development of early life forms, as responding to external stimuli promptly is key to survival. We study an unusual protist Spirostomum ambiguum, a single-celled organism that can grow up to 4mm in size, visible to the naked eye, as a model system for impulsive systems. Coiling its cytoskeleton, this ciliate can contract its long body within milliseconds, one of the fastest accelerations known in cell biology. We demonstrate that these rapid contractions generate long-ranged vortex flows that can trigger other cells to contract, repeatedly, which collectively leads to an ultra-fast hydrodynamic signal transduction across a colony that moves hundreds of times faster than the swimming speed. By combining high-speed PIV experiments and analytical modelling we determine the critical rheosensitivity required to sustain these signal waves. Whereas the biological motive is not fully understood, contractions are known to release toxins from membrane-bound extrusomes, thus we hypothesize that synchronised discharges could facilitate the repulsion of large-scale predators cooperatively. Please also see our other talk ``Rheosensing by impulsive cells at intermediate Reynolds numbers''.

  10. Peripheral doses from pediatric IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Eric E.; Maserang, Beth; Wood, Roy

    Peripheral dose (PD) data exist for conventional fields ({>=}10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 tomore » 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10{sup -10} scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT

  11. Restricted Field IMRT Dramatically Enhances IMRT Planning for Mesothelioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Aaron M.; Schofield, Deborah; Hacker, Fred

    2007-12-01

    Purpose: To improve the target coverage and normal tissue sparing of intensity-modulated radiotherapy (IMRT) for mesothelioma after extrapleural pneumonectomy. Methods and Materials: Thirteen plans from patients previously treated with IMRT for mesothelioma were replanned using a restricted field technique. This technique was novel in two ways. It limited the entrance beams to 200{sup o} around the target and three to four beams per case had their field apertures restricted down to the level of the heart or liver to further limit the contralateral lung dose. New constraints were added that included a mean lung dose of <9.5 Gy and volumemore » receiving {>=}5 Gy of <55%. Results: In all cases, the planning target volume coverage was excellent, with an average of 97% coverage of the planning target volume by the target dose. No change was seen in the target coverage with the new technique. The heart, kidneys, and esophagus were all kept under tolerance in all cases. The average mean lung dose, volume receiving {>=}20 Gy, and volume receiving {>=}5 Gy with the new technique was 6.6 Gy, 3.0%, and 50.8%, respectively, compared with 13.8 Gy, 15%, and 90% with the previous technique (p < 0.0001 for all three comparisons). The maximal value for any case in the cohort was 8.0 Gy, 7.3%, and 57.5% for the mean lung dose, volume receiving {>=}20 Gy, and volume receiving {>=}5 Gy, respectively. Conclusion: Restricted field IMRT provides an improved method to deliver IMRT to a complex target after extrapleural pneumonectomy. An upcoming Phase I trial will provide validation of these results.« less

  12. Dosimetric Comparison of Combined Intensity-Modulated Radiotherapy (IMRT) and Proton Therapy Versus IMRT Alone for Pelvic and Para-Aortic Radiotherapy in Gynecologic Malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman Milby, Abigail; Both, Stefan, E-mail: both@uphs.upenn.edu; Ingram, Mark

    2012-03-01

    Purpose: To perform a dosimetric comparison of intensity-modulated radiotherapy (IMRT), passive scattering proton therapy (PSPT), and intensity-modulated proton therapy (IMPT) to the para-aortic (PA) nodal region in women with locally advanced gynecologic malignancies. Methods and Materials: The CT treatment planning scans of 10 consecutive patients treated with IMRT to the pelvis and PA nodes were identified. The clinical target volume was defined by the primary tumor for patients with cervical cancer and by the vagina and paravaginal tissues for patients with endometrial cancer, in addition to the regional lymph nodes. The IMRT, PSPT, and IMPT plans were generated using themore » Eclipse Treatment Planning System and were analyzed for various dosimetric endpoints. Two groups of treatment plans including proton radiotherapy were created: IMRT to pelvic nodes with PSPT to PA nodes (PSPT/IMRT), and IMRT to pelvic nodes with IMPT to PA nodes (IMPT/IMRT). The IMRT and proton RT plans were optimized to deliver 50.4 Gy or Gy (relative biologic effectiveness [RBE)), respectively. Dose-volume histograms were analyzed for all of the organs at risk. The paired t test was used for all statistical comparison. Results: The small-bowel V{sub 20}, V{sub 30}, V{sub 35}, andV{sub 40} were reduced in PSPT/IMRT by 11%, 18%, 27%, and 43%, respectively (p < 0.01). Treatment with IMPT/IMRT demonstrated a 32% decrease in the small-bowel V{sub 20}. Treatment with PSPT/IMRT showed statistically significant reductions in the body V{sub 5-20}; IMPT/IMRT showed reductions in the body V{sub 5-15}. The dose received by half of both kidneys was reduced by PSPT/IMRT and by IMPT/IMRT. All plans maintained excellent coverage of the planning target volume. Conclusions: Compared with IMRT alone, PSPT/IMRT and IMPT/IMRT had a statistically significant decrease in dose to the small and large bowel and kidneys, while maintaining excellent planning target volume coverage. Further studies should be

  13. Ultra-fast switching blue phase liquid crystals diffraction grating stabilized by chiral monomer

    NASA Astrophysics Data System (ADS)

    Manda, Ramesh; Pagidi, Srinivas; Sarathi Bhattacharya, Surjya; Yoo, Hyesun; T, Arun Kumar; Lim, Young Jin; Lee, Seung Hee

    2018-05-01

    We have demonstrated an ultra-fast switching and efficient polymer stabilized blue phase liquid crystal (PS-BPLC) diffraction grating utilizing a chiral monomer. We have obtained a 0.5 ms response time by a novel polymer stabilization method which is three times faster than conventional PS-BPLC. In addition, the diffraction efficiency was improved 2% with a much wider phase range and the driving voltage to switch the device is reduced. The polarization properties of the diffracted beam are unaffected by this novel polymer stabilization. This device can be useful for future photonic applications.

  14. Ultra fast all-optical fiber pressure sensor for blast event evaluation

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Wenhui; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

    2011-05-01

    Traumatic brain injury (TBI) is a great potential threat to soldiers who are exposed to explosions or athletes who receive cranial impacts. Protecting people from TBI has recently attracted a significant amount of attention due to recent military operations in the Middle East. Recording pressure transient data in a blast event is very critical to the understanding of the effects of blast events on TBI. However, due to the fast change of the pressure during blast events, very few sensors have the capability to effectively track the dynamic pressure transients. This paper reports an ultra fast, miniature and all-optical fiber pressure sensor which could be mounted at different locations of a helmet to measure the fast changing pressure simultaneously. The sensor is based on Fabry-Perot (FP) principle. The end face of the fiber is wet etched. A well controlled thickness silicon dioxide diaphragm is thermal bonded on the end face to form an FP cavity. A shock tube test was conducted at Natick Soldier Research Development and Engineering Center, where the sensors were mounted in a shock tube side by side with a reference sensor to measure the rapidly changing pressure. The results of the test demonstrated that the sensor developed had an improved rise time (shorter than 0.4 μs) when compared to a commercially available reference sensor.

  15. FastChem: An ultra-fast equilibrium chemistry

    NASA Astrophysics Data System (ADS)

    Kitzmann, Daniel; Stock, Joachim

    2018-04-01

    FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.

  16. Ultra-Fast Degradation of Chemical Warfare Agents Using MOF-Nanofiber Kebabs.

    PubMed

    Zhao, Junjie; Lee, Dennis T; Yaga, Robert W; Hall, Morgan G; Barton, Heather F; Woodward, Ian R; Oldham, Christopher J; Walls, Howard J; Peterson, Gregory W; Parsons, Gregory N

    2016-10-10

    The threat associated with chemical warfare agents (CWAs) motivates the development of new materials to provide enhanced protection with a reduced burden. Metal-organic frame-works (MOFs) have recently been shown as highly effective catalysts for detoxifying CWAs, but challenges still remain for integrating MOFs into functional filter media and/or protective garments. Herein, we report a series of MOF-nanofiber kebab structures for fast degradation of CWAs. We found TiO 2 coatings deposited via atomic layer deposition (ALD) onto polyamide-6 nanofibers enable the formation of conformal Zr-based MOF thin films including UiO-66, UiO-66-NH 2 , and UiO-67. Cross-sectional TEM images show that these MOF crystals nucleate and grow directly on and around the nanofibers, with strong attachment to the substrates. These MOF-functionalized nanofibers exhibit excellent reactivity for detoxifying CWAs. The half-lives of a CWA simulant compound and nerve agent soman (GD) are as short as 7.3 min and 2.3 min, respectively. These results therefore provide the earliest report of MOF-nanofiber textile composites capable of ultra-fast degradation of CWAs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Intensity-modulated radiotherapy (IMRT) for carcinoma of the maxillary sinus: A comparison of IMRT planning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Raef S.; Ove, Roger; Duan, Jun

    2006-10-01

    The treatment of maxillary sinus carcinoma with forward planning can be technically difficult when the neck also requires radiotherapy. This difficulty arises because of the need to spare the contralateral face while treating the bilateral neck. There is considerable potential for error in clinical setup and treatment delivery. We evaluated intensity-modulated radiotherapy (IMRT) as an improvement on forward planning, and compared several inverse planning IMRT platforms. A composite dose-volume histogram (DVH) was generated from a complex forward planned case. We compared the results with those generated by sliding window fixed field dynamic multileaf collimator (MLC) IMRT, using sets of coplanarmore » beams. All setups included an anterior posterior (AP) beam, and 3-, 5-, 7-, and 9-field configurations were evaluated. The dose prescription and objective function priorities were invariant. We also evaluated 2 commercial tomotherapy IMRT delivery platforms. DVH results from all of the IMRT approaches compared favorably with the forward plan. Results for the various inverse planning approaches varied considerably across platforms, despite an attempt to prescribe the therapy similarly. The improvement seen with the addition of beams in the fixed beam sliding window case was modest. IMRT is an effective means of delivering radiotherapy reliably in the complex setting of maxillary sinus carcinoma with neck irradiation. Differences in objective function definition and optimization algorithms can lead to unexpected differences in the final dose distribution, and our evaluation suggests that these factors are more significant than the beam arrangement or number of beams.« less

  18. SU-F-T-295: MLCs Performance and Patient-Specific IMRT QA Using Log File Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osman, A; American University of Biuret Medical Center, Biuret; Maalej, N

    2016-06-15

    Purpose: To analyze the performance of the multi-leaf collimators (MLCs) from the log files recorded during the intensity modulated radiotherapy (IMRT) treatment and to construct the relative fluence maps and do the gamma analysis to compare the planned and executed MLCs movement. Methods: We developed a program to extract and analyze the data from dynamic log files (dynalog files) generated from sliding window IMRT delivery treatments. The program extracts the planned and executed (actual or delivered) MLCs movement, calculates and compares the relative planned and executed fluences. The fluence maps were used to perform the gamma analysis (with 3% dosemore » difference and 3 mm distance to agreement) for 3 IMR patients. We compared our gamma analysis results with those obtained from portal dose image prediction (PDIP) algorithm performed using the EPID. Results: For 3 different IMRT patient treatments, the maximum difference between the planned and the executed MCLs positions was 1.2 mm. The gamma analysis results of the planned and delivered fluences were in good agreement with the gamma analysis from portal dosimetry. The maximum difference for number of pixels passing the gamma criteria (3%/3mm) was 0.19% with respect to portal dosimetry results. Conclusion: MLC log files can be used to verify the performance of the MLCs. Patientspecific IMRT QA based on MLC movement log files gives similar results to EPID dosimetry results. This promising method for patient-specific IMRT QA is fast, does not require dose measurements in a phantom, can be done before the treatment and for every fraction, and significantly reduces the IMRT workload. The author would like to thank King Fahd University of petroleum and Minerals for the support.« less

  19. Ultra-fast speech comprehension in blind subjects engages primary visual cortex, fusiform gyrus, and pulvinar – a functional magnetic resonance imaging (fMRI) study

    PubMed Central

    2013-01-01

    Background Individuals suffering from vision loss of a peripheral origin may learn to understand spoken language at a rate of up to about 22 syllables (syl) per second - exceeding by far the maximum performance level of normal-sighted listeners (ca. 8 syl/s). To further elucidate the brain mechanisms underlying this extraordinary skill, functional magnetic resonance imaging (fMRI) was performed in blind subjects of varying ultra-fast speech comprehension capabilities and sighted individuals while listening to sentence utterances of a moderately fast (8 syl/s) or ultra-fast (16 syl/s) syllabic rate. Results Besides left inferior frontal gyrus (IFG), bilateral posterior superior temporal sulcus (pSTS) and left supplementary motor area (SMA), blind people highly proficient in ultra-fast speech perception showed significant hemodynamic activation of right-hemispheric primary visual cortex (V1), contralateral fusiform gyrus (FG), and bilateral pulvinar (Pv). Conclusions Presumably, FG supports the left-hemispheric perisylvian “language network”, i.e., IFG and superior temporal lobe, during the (segmental) sequencing of verbal utterances whereas the collaboration of bilateral pulvinar, right auditory cortex, and ipsilateral V1 implements a signal-driven timing mechanism related to syllabic (suprasegmental) modulation of the speech signal. These data structures, conveyed via left SMA to the perisylvian “language zones”, might facilitate – under time-critical conditions – the consolidation of linguistic information at the level of verbal working memory. PMID:23879896

  20. Neutron Detection With Ultra-Fast Digitizer and Pulse Identification Techniques on DIII-D

    NASA Astrophysics Data System (ADS)

    Zhu, Y. B.; Heidbrink, W. W.; Piglowski, D. A.

    2013-10-01

    A prototype system for neutron detection with an ultra-fast digitizer and pulse identification techniques has been implemented on the DIII-D tokamak. The system consists of a cylindrical neutron fission chamber, a charge sensitive amplifier, and a GaGe Octopus 12-bit CompuScope digitizer card installed in a Linux computer. Digital pulse identification techniques have been successfully performed at maximum data acquisition rate of 50 MSPS with on-board memory of 2 GS. Compared to the traditional approach with fast nuclear electronics for pulse counting, this straightforward digital solution has many advantages, including reduced expense, improved accuracy, higher counting rate, and easier maintenance. The system also provides the capability of neutron-gamma pulse shape discrimination and pulse height analysis. Plans for the upgrade of the old DIII-D neutron counting system with these techniques will be presented. Work supported by the US Department of Energy under SC-G903402, and DE-FC02-04ER54698.

  1. Temperature dependence of the response of ultra fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Mulargia, R.; Arcidiacono, R.; Bellora, A.; Boscardin, M.; Cartiglia, N.; Cenna, F.; Cirio, R.; Dalla Betta, G. F.; Durando, S.; Fadavi, A.; Ferrero, M.; Galloway, Z.; Gruey, B.; Freeman, P.; Kramberger, G.; Mandic, I.; Monaco, V.; Obertino, M.; Pancheri, L.; Paternoster, G.; Ravera, F.; Sacchi, R.; Sadrozinski, H. F. W.; Seiden, A.; Sola, V.; Spencer, N.; Staiano, A.; Wilder, M.; Woods, N.; Zatserklyaniy, A.

    2016-12-01

    The Ultra Fast Silicon Detectors (UFSD) are a novel concept of silicon detectors based on the Low Gain Avalanche Diode (LGAD) technology, which are able to obtain time resolution of the order of few tens of picoseconds. First prototypes with different geometries (pads/pixels/strips), thickness (300 and 50 μm) and gain (between 5 and 20) have been recently designed and manufactured by CNM (Centro Nacional de Microelectrónica, Barcelona) and FBK (Fondazione Bruno Kessler, Trento). Several measurements on these devices have been performed in laboratory and in beam test and a dependence of the gain on the temperature has been observed. Some of the first measurements will be shown (leakage current, breakdown voltage, gain and time resolution on the 300 μm from FBK and gain on the 50 μm-thick sensor from CNM) and a comparison with the theoretically predicted trend will be discussed.

  2. Ultra-fast relaxation, decoherence, and localization of photoexcited states in π-conjugated polymers

    NASA Astrophysics Data System (ADS)

    Mannouch, Jonathan R.; Barford, William; Al-Assam, Sarah

    2018-01-01

    The exciton relaxation dynamics of photoexcited electronic states in poly(p-phenylenevinylene) are theoretically investigated within a coarse-grained model, in which both the exciton and nuclear degrees of freedom are treated quantum mechanically. The Frenkel-Holstein Hamiltonian is used to describe the strong exciton-phonon coupling present in the system, while external damping of the internal nuclear degrees of freedom is accounted for by a Lindblad master equation. Numerically, the dynamics are computed using the time evolving block decimation and quantum jump trajectory techniques. The values of the model parameters physically relevant to polymer systems naturally lead to a separation of time scales, with the ultra-fast dynamics corresponding to energy transfer from the exciton to the internal phonon modes (i.e., the C-C bond oscillations), while the longer time dynamics correspond to damping of these phonon modes by the external dissipation. Associated with these time scales, we investigate the following processes that are indicative of the system relaxing onto the emissive chromophores of the polymer: (1) Exciton-polaron formation occurs on an ultra-fast time scale, with the associated exciton-phonon correlations present within half a vibrational time period of the C-C bond oscillations. (2) Exciton decoherence is driven by the decay in the vibrational overlaps associated with exciton-polaron formation, occurring on the same time scale. (3) Exciton density localization is driven by the external dissipation, arising from "wavefunction collapse" occurring as a result of the system-environment interactions. Finally, we show how fluorescence anisotropy measurements can be used to investigate the exciton decoherence process during the relaxation dynamics.

  3. Effective Analysis of NGS Metagenomic Data with Ultra-Fast Clustering Algorithms (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Li, Weizhong

    2018-02-12

    San Diego Supercomputer Center's Weizhong Li on "Effective Analysis of NGS Metagenomic Data with Ultra-fast Clustering Algorithms" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  4. BEAM DYNAMICS ANALYSIS FOR THE ULTRA-FAST KICKER IN CIRCULAR COOLER RING OF JLEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.

    An ultra-fast kicker system consisting of four quarter wavelength resonator based deflecting cavities was developed that simultaneously resonates at 10 subharmonic modes of the 476.3MHz bunch repetition frequency. Thus every 10th bunch in the bunch train will experience a transverse kick while all the other bunches are undisturbed. This fast kicker is being developed for the Energy Recovery Linac (ERL) based electron Circular Cooler Ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously MEIC). The electron bunches can be reused 10-30 turns thus the beam current in the ERL can be reduced to 1/10 - 1/30 (150mAmore » - 50mA) of the cooling bunch current (1.5A). In this paper, several methods to synthesize such a kicker waveform and the comparison made by the beam dynamics tracking in Elegant will be discussed.« less

  5. Microchip capillary gel electrophoresis using programmed field strength gradients for the ultra-fast analysis of genetically modified organisms in soybeans.

    PubMed

    Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho

    2005-08-12

    We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.

  6. Nine time steps: ultra-fast statistical consistency testing of the Community Earth System Model (pyCECT v3.0)

    NASA Astrophysics Data System (ADS)

    Milroy, Daniel J.; Baker, Allison H.; Hammerling, Dorit M.; Jessup, Elizabeth R.

    2018-02-01

    The Community Earth System Model Ensemble Consistency Test (CESM-ECT) suite was developed as an alternative to requiring bitwise identical output for quality assurance. This objective test provides a statistical measurement of consistency between an accepted ensemble created by small initial temperature perturbations and a test set of CESM simulations. In this work, we extend the CESM-ECT suite with an inexpensive and robust test for ensemble consistency that is applied to Community Atmospheric Model (CAM) output after only nine model time steps. We demonstrate that adequate ensemble variability is achieved with instantaneous variable values at the ninth step, despite rapid perturbation growth and heterogeneous variable spread. We refer to this new test as the Ultra-Fast CAM Ensemble Consistency Test (UF-CAM-ECT) and demonstrate its effectiveness in practice, including its ability to detect small-scale events and its applicability to the Community Land Model (CLM). The new ultra-fast test facilitates CESM development, porting, and optimization efforts, particularly when used to complement information from the original CESM-ECT suite of tools.

  7. IMRT for Image-Guided Single Vocal Cord Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osman, Sarah O.S., E-mail: s.osman@erasmusmc.nl; Astreinidou, Eleftheria; Boer, Hans C.J. de

    2012-02-01

    Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRTmore » plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose {+-} standard deviation to the planning target volume was 67 {+-} 1 Gy. The contralateral vocal cord dose was reduced from 66 {+-} 1 Gy in the conventional plans to 39 {+-} 8 Gy and 36 {+-} 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.« less

  8. Ultra-fast Escape of a Octopus-inspired Rocket

    NASA Astrophysics Data System (ADS)

    Weymouth, Gabriel; Triantafyllou, Michael

    2013-11-01

    The octopus, squid, and other cephalopods inflate with water and then release a jet to accelerate in the opposite direction. This escape mechanism is particularly interesting in the octopus because they become initially quite bluff, yet this does not hinder them in achieving impressive bursts of speed. We examine this somewhat paradoxical maneuver using a simple deflating spheroid model in both potential and viscous flow. We demonstrate that the dynamic reduction of the width of the body completely changes the flow and forces acting on the escaping rocket in three ways. First, a body which reduces in size can generate an added mass thrust which counteracts the added mass inertia. Second, the motion of the shrinking wall acts similar to suction on a static wall, reducing separation and drag forces in a viscous fluid, but that this effects depends on the rate of size change. Third, using a combination of these two features it is possible to initially load the fluid with kinetic energy when heavy and bluff and then recover that energy when streamlined and light, enabling ultra-fast accelerations. As a notable example, these mechanisms allow a shrinking spheroid rocket in a heavy inviscid fluid to achieve speeds greater than an identical rocket in the vacuum of space. Southampton Marine and Maritime Institute.

  9. Compensators: An alternative IMRT delivery technique

    PubMed Central

    Chang, Sha X.; Cullip, Timothy J.; Deschesne, Katharin M.; Miller, Elizabeth P.; Rosenman, Julian G.

    2004-01-01

    Seven years of experience in compensator intensity‐modulated radiotherapy (IMRT) clinical implementation are presented. An inverse planning dose optimization algorithm was used to generate intensity modulation maps, which were delivered via either the compensator or segmental multileaf collimator (MLC) IMRT techniques. The in‐house developed compensator‐IMRT technique is presented with the focus on several design issues. The dosimetry of the delivery techniques was analyzed for several clinical cases. The treatment time for both delivery techniques on Siemens accelerators was retrospectively analyzed based on the electronic treatment record in LANTIS for 95 patients. We found that the compensator technique consistently took noticeably less time for treatment of equal numbers of fields compared to the segmental technique. The typical time needed to fabricate a compensator was 13 min, 3 min of which was manual processing. More than 80% of the approximately 700 compensators evaluated had a maximum deviation of less than 5% from the calculation in intensity profile. Seventy‐two percent of the patient treatment dosimetry measurements for 340 patients have an error of no more than 5%. The pros and cons of different IMRT compensator materials are also discussed. Our experience shows that the compensator‐IMRT technique offers robustness, excellent intensity modulation resolution, high treatment delivery efficiency, simple fabrication and quality assurance (QA) procedures, and the flexibility to be used in any teletherapy unit. PACS numbers: 87.53Mr, 87.53Tf PMID:15753937

  10. Statistical process control analysis for patient-specific IMRT and VMAT QA.

    PubMed

    Sanghangthum, Taweap; Suriyapee, Sivalee; Srisatit, Somyot; Pawlicki, Todd

    2013-05-01

    This work applied statistical process control to establish the control limits of the % gamma pass of patient-specific intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) quality assurance (QA), and to evaluate the efficiency of the QA process by using the process capability index (Cpml). A total of 278 IMRT QA plans in nasopharyngeal carcinoma were measured with MapCHECK, while 159 VMAT QA plans were undertaken with ArcCHECK. Six megavolts with nine fields were used for the IMRT plan and 2.5 arcs were used to generate the VMAT plans. The gamma (3%/3 mm) criteria were used to evaluate the QA plans. The % gamma passes were plotted on a control chart. The first 50 data points were employed to calculate the control limits. The Cpml was calculated to evaluate the capability of the IMRT/VMAT QA process. The results showed higher systematic errors in IMRT QA than VMAT QA due to the more complicated setup used in IMRT QA. The variation of random errors was also larger in IMRT QA than VMAT QA because the VMAT plan has more continuity of dose distribution. The average % gamma pass was 93.7% ± 3.7% for IMRT and 96.7% ± 2.2% for VMAT. The Cpml value of IMRT QA was 1.60 and VMAT QA was 1.99, which implied that the VMAT QA process was more accurate than the IMRT QA process. Our lower control limit for % gamma pass of IMRT is 85.0%, while the limit for VMAT is 90%. Both the IMRT and VMAT QA processes are good quality because Cpml values are higher than 1.0.

  11. Ultra-fast scintillation properties of β-Ga2O3 single crystals grown by Floating Zone method

    NASA Astrophysics Data System (ADS)

    He, Nuotian; Tang, Huili; Liu, Bo; Zhu, Zhichao; Li, Qiu; Guo, Chao; Gu, Mu; Xu, Jun; Liu, Jinliang; Xu, Mengxuan; Chen, Liang; Ouyang, Xiaoping

    2018-04-01

    In this investigation, β-Ga2O3 single crystals were grown by the Floating Zone method. At room temperature, the X-ray excited emission spectrum includes ultraviolet and blue emission bands. The scintillation light output is comparable to the commercial BGO scintillator. The scintillation decay times are composed of the dominant ultra-fast component of 0.368 ns and a small amount of slightly slow components of 8.2 and 182 ns. Such fast component is superior to most commercial inorganic scintillators. In contrast to most semiconductor crystals prepared by solution method such as ZnO, β-Ga2O3 single crystals can be grown by traditional melt-growth method. Thus we can easily obtain large bulk crystals and mass production.

  12. Physical Conditions in Ultra-fast Outflows in AGN

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; Tombesi, F.; Bottorff, M. C.

    2018-01-01

    XMM-Newton and Suzaku spectra of Active Galactic Nuclei (AGN) have revealed highly ionized gas, in the form of absorption lines from H-like and He-like Fe. Some of these absorbers, ultra-fast outflows (UFOs), have radial velocities of up to 0.25c. We have undertaken a detailed photoionization study of high-ionization Fe absorbers, both UFOs and non-UFOs, in a sample of AGN observed by XMM-Newton. We find that the heating and cooling processes in UFOs are Compton-dominated, unlike the non-UFOs. Both types are characterized by force multipliers on the order of unity, which suggest that they cannot be radiatively accelerated in sub-Eddington AGN, unless they were much less ionized at their point of origin. However, such highly ionized gas can be accelerated via a magneto-hydrodynamic (MHD) wind. We explore this possibility by applying a cold MHD flow model to the UFO in the well-studied Seyfert galaxy, NGC 4151. We find that the UFO can be accelerated along magnetic streamlines anchored in the accretion disk. In the process, we have been able to constrain the magnetic field strength and the magnetic pressure in the UFO and have determined that the system is not in magnetic/gravitational equipartition. Open questions include the variability of the UFOs and the apparent lack of non-UFOs in UFO sources.

  13. Ultra-fast photon counting with a passive quenching silicon photomultiplier in the charge integration regime

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqing; Lina, Liu

    2018-02-01

    An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.

  14. Dynamic conductivity and plasmon profile of aluminum in the ultra-fast-matter regime

    NASA Astrophysics Data System (ADS)

    Dharma-wardana, M. W. C.

    2016-06-01

    We use an explicitly isochoric two-temperature theory to analyze recent x-ray laser scattering data for aluminum in the ultra-fast-matter (UFM) regime up to 6 eV. The observed surprisingly low conductivities are explained by including strong electron-ion scattering effects using the phase shifts calculated via the neutral-pseudo-atom model. The difference between the static conductivity for UFM-Al and equilibrium aluminum in the warm-dense matter state is clearly brought out by comparisons with available density-fucntional+molecular-dynamics simulations. Thus the applicability of the Mermin model to UFM is questioned. The static and dynamic conductivity, collision frequency, and the plasmon line shape, evaluated within the simplest Born approximation for UFM aluminum, are in good agreement with experiment.

  15. Photon-trapping micro/nanostructures for high linearity in ultra-fast photodiodes

    NASA Astrophysics Data System (ADS)

    Cansizoglu, Hilal; Gao, Yang; Perez, Cesar Bartolo; Ghandiparsi, Soroush; Ponizovskaya Devine, Ekaterina; Cansizoglu, Mehmet F.; Yamada, Toshishige; Elrefaie, Aly F.; Wang, Shih-Yuan; Islam, M. Saif

    2017-08-01

    Photodetectors (PDs) in datacom and computer networks where the link length is up to 300 m, need to handle higher than typical input power used in other communication links. Also, to reduce power consumption due to equalization at high speed (>25Gb/s), the datacom links will use PAM-4 signaling instead of NRZ with stringent receiver linearity requirements. Si PDs with photon-trapping micro/nanostructures are shown to have high linearity in output current verses input optical power. Though there is less silicon material due to the holes, the micro-/nanostructured holes collectively reradiate the light to an in-plane direction of the PD surface and can avoid current crowding in the PD. Consequently, the photocurrent per unit volume remains at a low level contributing to high linearity in the photocurrent. We present the effect of design and lattice patterns of micro/nanostructures on the linearity of ultra-fast silicon PDs designed for high speed multi gigabit data networks.

  16. A high-speed scintillation-based electronic portal imaging device to quantitatively characterize IMRT delivery.

    PubMed

    Ranade, Manisha K; Lynch, Bart D; Li, Jonathan G; Dempsey, James F

    2006-01-01

    We have developed an electronic portal imaging device (EPID) employing a fast scintillator and a high-speed camera. The device is designed to accurately and independently characterize the fluence delivered by a linear accelerator during intensity modulated radiation therapy (IMRT) with either step-and-shoot or dynamic multileaf collimator (MLC) delivery. Our aim is to accurately obtain the beam shape and fluence of all segments delivered during IMRT, in order to study the nature of discrepancies between the plan and the delivered doses. A commercial high-speed camera was combined with a terbium-doped gadolinium-oxy-sulfide (Gd2O2S:Tb) scintillator to form an EPID for the unaliased capture of two-dimensional fluence distributions of each beam in an IMRT delivery. The high speed EPID was synchronized to the accelerator pulse-forming network and gated to capture every possible pulse emitted from the accelerator, with an approximate frame rate of 360 frames-per-second (fps). A 62-segment beam from a head-and-neck IMRT treatment plan requiring 68 s to deliver was recorded with our high speed EPID producing approximately 6 Gbytes of imaging data. The EPID data were compared with the MLC instruction files and the MLC controller log files. The frames were binned to provide a frame rate of 72 fps with a signal-to-noise ratio that was sufficient to resolve leaf positions and segment fluence. The fractional fluence from the log files and EPID data agreed well. An ambiguity in the motion of the MLC during beam on was resolved. The log files reported leaf motions at the end of 33 of the 42 segments, while the EPID observed leaf motions in only 7 of the 42 segments. The static IMRT segment shapes observed by the high speed EPID were in good agreement with the shapes reported in the log files. The leaf motions observed during beam-on for step-and-shoot delivery were not temporally resolved by the log files.

  17. Automated IMRT planning with regional optimization using planning scripts

    PubMed Central

    Wong, Eugene; Bzdusek, Karl; Lock, Michael; Chen, Jeff Z.

    2013-01-01

    Intensity‐modulated radiation therapy (IMRT) has become a standard technique in radiation therapy for treating different types of cancers. Various class solutions have been developed for simple cases (e.g., localized prostate, whole breast) to generate IMRT plans efficiently. However, for more complex cases (e.g., head and neck, pelvic nodes), it can be time‐consuming for a planner to generate optimized IMRT plans. To generate optimal plans in these more complex cases which generally have multiple target volumes and organs at risk, it is often required to have additional IMRT optimization structures such as dose limiting ring structures, adjust beam geometry, select inverse planning objectives and associated weights, and additional IMRT objectives to reduce cold and hot spots in the dose distribution. These parameters are generally manually adjusted with a repeated trial and error approach during the optimization process. To improve IMRT planning efficiency in these more complex cases, an iterative method that incorporates some of these adjustment processes automatically in a planning script is designed, implemented, and validated. In particular, regional optimization has been implemented in an iterative way to reduce various hot or cold spots during the optimization process that begins with defining and automatic segmentation of hot and cold spots, introducing new objectives and their relative weights into inverse planning, and turn this into an iterative process with termination criteria. The method has been applied to three clinical sites: prostate with pelvic nodes, head and neck, and anal canal cancers, and has shown to reduce IMRT planning time significantly for clinical applications with improved plan quality. The IMRT planning scripts have been used for more than 500 clinical cases. PACS numbers: 87.55.D, 87.55.de PMID:23318393

  18. What predicts performance in ultra-triathlon races? – a comparison between Ironman distance triathlon and ultra-triathlon

    PubMed Central

    Knechtle, Beat; Zingg, Matthias Alexander; Rosemann, Thomas; Stiefel, Michael; Rüst, Christoph Alexander

    2015-01-01

    Objective This narrative review summarizes recent intentions to find potential predictor variables for ultra-triathlon race performance (ie, triathlon races longer than the Ironman distance covering 3.8 km swimming, 180 km cycling, and 42.195 km running). Results from studies on ultra-triathletes were compared to results on studies on Ironman triathletes. Methods A literature search was performed in PubMed using the terms “ultra”, “triathlon”, and “performance” for the aspects of “ultra-triathlon”, and “Ironman”, “triathlon”, and “performance” for the aspects of “Ironman triathlon”. All resulting papers were searched for related citations. Results for ultra-triathlons were compared to results for Ironman-distance triathlons to find potential differences. Results Athletes competing in Ironman and ultra-triathlon differed in anthropometric and training characteristics, where both Ironmen and ultra-triathletes profited from low body fat, but ultra-triathletes relied more on training volume, whereas speed during training was related to Ironman race time. The most important predictive variables for a fast race time in an ultra-triathlon from Double Iron (ie, 7.6 km swimming, 360 km cycling, and 84.4 km running) and longer were male sex, low body fat, age of 35–40 years, extensive previous experience, a fast time in cycling and running but not in swimming, and origins in Central Europe. Conclusion Any athlete intending to compete in an ultra-triathlon should be aware that low body fat and high training volumes are highly predictive for overall race time. Little is known about the physiological characteristics of these athletes and about female ultra-triathletes. Future studies need to investigate anthropometric and training characteristics of female ultra-triathletes and what motivates women to compete in these races. Future studies need to correlate physiological characteristics such as maximum oxygen uptake (VO2max) with ultra

  19. Design and demonstration of ultra-fast W-band photonic transmitter-mixer and detectors for 25 Gbits/sec error-free wireless linking.

    PubMed

    Chen, Nan-Wei; Shi, Jin-Wei; Tsai, Hsuan-Ju; Wun, Jhih-Min; Kuo, Fong-Ming; Hesler, Jeffery; Crowe, Thomas W; Bowers, John E

    2012-09-10

    A 25 Gbits/s error-free on-off-keying (OOK) wireless link between an ultra high-speed W-band photonic transmitter-mixer (PTM) and a fast W-band envelope detector is demonstrated. At the transmission end, the high-speed PTM is developed with an active near-ballistic uni-traveling carrier photodiode (NBUTC-PD) integrated with broadband front-end circuitry via the flip-chip bonding technique. Compared to our previous work, the wireless data rate is significantly increased through the improvement on the bandwidth of the front-end circuitry together with the reduction of the intermediate-frequency (IF) driving voltage of the active NBUTC-PD. The demonstrated PTM has a record-wide IF modulation (DC-25 GHz) and optical-to-electrical fractional bandwidths (68-128 GHz, ~67%). At the receiver end, the demodulation is realized with an ultra-fast W-band envelope detector built with a zero-bias Schottky barrier diode with a record wide video bandwidth (37 GHz) and excellent sensitivity. The demonstrated PTM is expected to find applications in multi-gigabit short-range wireless communication.

  20. Quantitative ultra-fast MRI of HPMC swelling and dissolution.

    PubMed

    Chen, Ya Ying; Hughes, L P; Gladden, L F; Mantle, M D

    2010-08-01

    For the first time quantitative Rapid Acquisition with Relaxation Enhancement (RARE) based ultra-fast two-dimensional magnetic resonance imaging has been used to follow the dissolution of hydroxypropylmethyl cellulose (HPMC) in water. Quantitative maps of absolute water concentration, spin-spin relaxation times and water self-diffusion coefficient are obtained at a spatial resolution of 469 microm in less than 3 min each. These maps allow the dynamic development of the medium release rate HPMC/water system to be followed. It is demonstrated that the evolution of the gel layer and, in particular, the gradient in water concentration across it, is significantly different when comparing the quantitative RARE sequence with a standard (nonquantitative) implementation of RARE. The total gel thickness in the axial direction grows faster than that in the radial direction and that the dry core initially expands anisotropically. Additionally, while HPMC absorbs a large amount of water during the dissolution process, the concentration gradient of water within the gel layer is relatively small. For the first time MRI evidence is presented for a transition swollen glassy layer which resides between the outer edge of the dry tablet core and the inner edge of the gel layer. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  1. Joining of thin glass with semiconductors by ultra-fast high-repetition laser welding

    NASA Astrophysics Data System (ADS)

    Horn, Alexander; Mingaeev, Ilja; Werth, Alexander; Kachel, Martin

    2008-02-01

    Lighting applications like OLED or on silicon for electro-optical applications need a reproducible sealing process. The joining has to be strong, the permeability for gasses and humidity very low and the process itself has to be very localized not affecting any organic or electronic parts inside the sealed region. The actual sealing process using glue does not fulfil these industrial needs. A new joining process using ultra-fast laser radiation offers a very precise joining with geometry dimensions smaller than 50 μm. Ultra-fast laser radiation is absorbed by multi-photon absorption in the glass. Due to the very definite threshold for melting and ablation the process of localized heating can be controlled without cracking. Repeating the irradiation at times smaller than the heat diffusion time the temperature in the focus is increased by heat accumulation reaching melting of the glass. Mowing the substrate relatively to the laser beam generates a seal of re-solidified glass. Joining of glass is achieved by positioning the laser focus at the interface. A similar approach is used for glass-silicon joining. The investigations presented will demonstrate the joining geometry by microscopy of cross-sections achieved by welding two glass plates (Schott D263 and AF45) with focused IR femtosecond laser radiation (wavelength λ = 1045nm, repetition rate f = 1 MHz, pulse duration t p = 500 fs, focus diameter w 0 = 4 μm, feeding velocity v= 1-10 mm/s). The strength of the welding seam is measured by tensile stress measurements and the gas and humidity is detected. A new diagnostic method for the on-line detection of the welding seam properties will be presented. Using a non-interferometric technique by quantitative phase microscopy the refractive index is measured during welding of glass in the time regime 0-2 μs. By calibration of the measured refractive index with a relation between refractive index and temperature a online-temperature detection can be achieved.

  2. Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine.

    PubMed

    Seco, J; Adams, E; Bidmead, M; Partridge, M; Verhaegen, F

    2005-03-07

    IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre

  3. Inverse-optimized 3D conformal planning: Minimizing complexity while achieving equivalence with beamlet IMRT in multiple clinical sites

    PubMed Central

    Fraass, Benedick A.; Steers, Jennifer M.; Matuszak, Martha M.; McShan, Daniel L.

    2012-01-01

    Purpose: Inverse planned intensity modulated radiation therapy (IMRT) has helped many centers implement highly conformal treatment planning with beamlet-based techniques. The many comparisons between IMRT and 3D conformal (3DCRT) plans, however, have been limited because most 3DCRT plans are forward-planned while IMRT plans utilize inverse planning, meaning both optimization and delivery techniques are different. This work avoids that problem by comparing 3D plans generated with a unique inverse planning method for 3DCRT called inverse-optimized 3D (IO-3D) conformal planning. Since IO-3D and the beamlet IMRT to which it is compared use the same optimization techniques, cost functions, and plan evaluation tools, direct comparisons between IMRT and simple, optimized IO-3D plans are possible. Though IO-3D has some similarity to direct aperture optimization (DAO), since it directly optimizes the apertures used, IO-3D is specifically designed for 3DCRT fields (i.e., 1–2 apertures per beam) rather than starting with IMRT-like modulation and then optimizing aperture shapes. The two algorithms are very different in design, implementation, and use. The goals of this work include using IO-3D to evaluate how close simple but optimized IO-3D plans come to nonconstrained beamlet IMRT, showing that optimization, rather than modulation, may be the most important aspect of IMRT (for some sites). Methods: The IO-3D dose calculation and optimization functionality is integrated in the in-house 3D planning/optimization system. New features include random point dose calculation distributions, costlet and cost function capabilities, fast dose volume histogram (DVH) and plan evaluation tools, optimization search strategies designed for IO-3D, and an improved, reimplemented edge/octree calculation algorithm. The IO-3D optimization, in distinction to DAO, is designed to optimize 3D conformal plans (one to two segments per beam) and optimizes MLC segment shapes and weights with various

  4. X-ray Evidence for Ultra-Fast Outflows in Local AGNs

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.; Dadina, M.

    2012-08-01

    X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in ga 40% of the sources. Their outflow velocities are in the range ˜ 0.03-0.3c, with a mean value of ˜ 0.14c. The ionization is high, in the range logℰ ˜3-6rm erg s-1 cm, and also the associated column densities are large, in the interval ˜ 1022-1024rm cm-2. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets, and their study can provide important clues on the connection between accretion disks, winds, and jets.

  5. A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA

    NASA Astrophysics Data System (ADS)

    Alhazmi, Abdulaziz; Gianoli, Chiara; Neppl, Sebastian; Martins, Juliana; Veloza, Stella; Podesta, Mark; Verhaegen, Frank; Reiner, Michael; Belka, Claus; Parodi, Katia

    2018-06-01

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are relatively complex treatment delivery techniques and require quality assurance (QA) procedures. Pre-treatment dosimetric verification represents a fundamental QA procedure in daily clinical routine in radiation therapy. The purpose of this study is to develop an EPID-based approach to reconstruct a 3D dose distribution as imparted to a virtual cylindrical water phantom to be used for plan-specific pre-treatment dosimetric verification for IMRT and VMAT plans. For each depth, the planar 2D dose distributions acquired in air were back-projected and convolved by depth-specific scatter and attenuation kernels. The kernels were obtained by making use of scatter and attenuation models to iteratively estimate the parameters from a set of reference measurements. The derived parameters served as a look-up table for reconstruction of arbitrary measurements. The summation of the reconstructed 3D dose distributions resulted in the integrated 3D dose distribution of the treatment delivery. The accuracy of the proposed approach was validated in clinical IMRT and VMAT plans by means of gamma evaluation, comparing the reconstructed 3D dose distributions with Octavius measurement. The comparison was carried out using (3%, 3 mm) criteria scoring 99% and 96% passing rates for IMRT and VMAT, respectively. An accuracy comparable to the one of the commercial device for 3D volumetric dosimetry was demonstrated. In addition, five IMRT and five VMAT were validated against the 3D dose calculation performed by the TPS in a water phantom using the same passing rate criteria. The median passing rates within the ten treatment plans was 97.3%, whereas the lowest was 95%. Besides, the reconstructed 3D distribution is obtained without predictions relying on forward dose calculation and without external phantom or dosimetric devices. Thus, the approach provides a fully automated, fast and easy QA

  6. An ultra-fast EOD-based force-clamp detects rapid biomechanical transitions

    NASA Astrophysics Data System (ADS)

    Woody, Michael S.; Capitanio, Marco; Ostap, E. Michael; Goldman, Yale E.

    2017-08-01

    We assembled an ultra-fast infrared optical trapping system to detect mechanical events that occur less than a millisecond after a ligand binds to its filamentous substrate, such as myosin undergoing its 5 - 10 nm working stroke after actin binding. The instrument is based on the concept of Capitanio et al.1, in which a polymer bead-actin-bead dumbbell is held in two force-clamped optical traps. A force applied by the traps causes the filament to move at a constant velocity as hydrodynamic drag balances the applied load. When the ligand binds, the filament motion stops within 100 μs as the total force from the optical traps is transferred to the attachment. Subsequent translations signal active motions, such as the magnitude and timing of the motor's working stroke. In our instrument, the beads defining the dumbbell are held in independent force clamps utilizing a field-programmable gate array (FPGA) to update the trap beam positions at 250 kHz. We found that in our setup, acousto-optical deflectors (AODs) steering the beams were unsuitable for this purpose due to a slightly non-linear response in the beam intensity and deflection angle vs. the AOD ultra-sound wavelength, likely caused by low-amplitude standing acoustic waves in the deflectors. These aberrations caused instability in the force feedback loops leading to artefactual 20 nm jumps in position. This type of AOD non-linearity has been reported to be absent in electro-optical deflectors (EODs)2. We demonstrate that replacement of the AODs with EODs improves the performance of our instrument. Combining the superior beam-steering capability of the EODs, force acquisition via back-plane interferometry, and the dual high-speed FPGA-based feedback loops, we smoothly and precisely apply constant loads to study the dynamics of interactions between biological molecules such as actin and myosin.

  7. A highly ordered mesostructured material containing regularly distributed phenols: preparation and characterization at a molecular level through ultra-fast magic angle spinning proton NMR spectroscopy.

    PubMed

    Roussey, Arthur; Gajan, David; Maishal, Tarun K; Mukerjee, Anhurada; Veyre, Laurent; Lesage, Anne; Emsley, Lyndon; Copéret, Christophe; Thieuleux, Chloé

    2011-03-14

    Highly ordered organic-inorganic mesostructured material containing regularly distributed phenols is synthesized by combining a direct synthesis of the functional material and a protection-deprotection strategy and characterized at a molecular level through ultra-fast magic angle spinning proton NMR spectroscopy.

  8. Ultra-fast three terminal perpendicular spin-orbit torque MRAM (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Boulle, Olivier; Cubukcu, Murat; Hamelin, Claire; Lamard, Nathalie; Buda-Prejbeanu, Liliana; Mikuszeit, Nikolai; Garello, Kevin; Gambardella, Pietro; Langer, Juergen; Ocker, Berthold; Miron, Mihai; Gaudin, Gilles

    2015-09-01

    The discovery that a current flowing in a heavy metal can exert a torque on a neighboring ferromagnet has opened a new way to manipulate the magnetization at the nanoscale. This "spin orbit torque" (SOT) has been demonstrated in ultrathin magnetic multilayers with structural inversion asymmetry (SIA) and high spin orbit coupling, such as Pt/Co/AlOx multilayers. We have shown that this torque can lead to the magnetization switching of a perpendicularly magnetized nanomagnet by an in-plane current injection. The manipulation of magnetization by SOT has led to a novel concept of magnetic RAM memory, the SOT-MRAM, which combines non volatility, high speed, reliability and large endurance. These features make the SOT-MRAM a good candidate to replace SRAM for non-volatile cache memory application. We will present the proof of concept of a perpendicular SOT-MRAM cell composed of a Ta/FeCoB/MgO/FeCoB magnetic tunnel junction and demonstrate ultra-fast (down to 300 ps) deterministic bipolar magnetization switching. Macrospin and micromagnetic simulations including SOT cannot reproduce the experimental results, which suggests that additional physical mechanisms are at stacks. Our results show that SOT-MRAM is fast, reliable and low power, which is promising for non-volatile cache memory application. We will also discuss recent experiments of magnetization reversal in ultrathin multilayers Pt/Co/AlOx by very short (<200 ps) current pulses. We will show that in this material, the Dzyaloshinskii-Moryia interaction plays a key role in the reversal process.

  9. Recent trends in ultra-fast HPLC: new generation superficially porous silica columns.

    PubMed

    Ali, Imran; Al-Othman, Zeid A; Nagae, Norikaju; Gaitonde, Vinay D; Dutta, Kamlesh K

    2012-12-01

    New generation columns, i.e. packed with superficially porous silica particles are available as trade names with following manufacturers: Halo, Ascentis Express, Proshell 120, Kinetex, Accucore, Sunshell, and Nucleoshell. These provide ultra-fast HPLC separations for a variety of compounds with moderate sample loading capacity and low back pressure. Chemistries of these columns are C(8), C(18), RP-Amide, hydrophilic interaction liquid chromatography, penta fluorophenyl (PFP), F5, and RP-aqua. Normally, the silica gel particles are of 2.7 and 1.7 μm as total and inner solid core diameters, respectively, with 0.5-μm-thick of outer porous layer having 90 Å pore sizes and 150 m(2)/g surface area. This article describes these new generation columns with special emphasis on their textures and chemistries, separations, optimization, and comparison (inter and intra stationary phases). Besides, future perspectives have also been discussed. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Adiabatic and fast passage ultra-wideband inversion in pulsed EPR.

    PubMed

    Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar

    2013-05-01

    We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Genital marginal failures after intensity-modulated radiation therapy (IMRT) in squamous cell anal cancer: no higher risk with IMRT when compared to 3DCRT.

    PubMed

    Dell'Acqua, V; Kobiela, J; Kraja, F; Leonardi, M C; Surgo, A; Zerella, M A; Arculeo, S; Fodor, C; Ricotti, R; Zampino, M G; Ravenda, S; Spinoglio, G; Biffi, R; Bazani, A; Luraschi, R; Vigorito, S; Spychalski, P; Orecchia, R; Glynne-Jones, R; Jereczek-Fossa, B A

    2018-03-28

    Intensity-modulated radiotherapy (IMRT) is considered the preferred option in squamous cell canal cancer (SCAC), delivering high doses to tumor volumes while minimizing dose to surrounding normal tissues. IMRT has steep dose gradients, but the technique is more demanding as deep understanding of target structures is required. To evaluate genital marginal failure in a cohort of patients with non-metastatic SCAC treated either with IMRT or 3DCRT and concurrent chemotherapy, 117 patients with SCAC were evaluated: 64 and 53 patients were treated with IMRT and 3DCRT techniques, respectively. All patients underwent clinical and radiological examination during their follow-up. Tumor response was evaluated with response evaluation criteria in solid tumors v1.1 guideline on regular basis. All patients' data were analyzed, and patients with marginal failure were identified. Concomitant chemotherapy was administered in 97 and 77.4% of patients in the IMRT and 3DCRT groups, respectively. In the IMRT group, the median follow-up was 25 months (range 6-78). Progressive disease was registered in 15.6% of patients; infield recurrence, distant recurrence and both infield recurrence and distant recurrence were identified in 5, 4 and 1 patient, respectively. Two out of 64 patients (3.1%) had marginal failures, localized at vagina/recto-vaginal septum and left perineal region. In the 3DCRT group, the median follow-up was 71.3 months (range 6-194 months). Two out of 53 patients (3.8%) had marginal failures, localized at recto-vaginal septum and perigenital structures. The rate of marginal failures was comparable in IMRT and 3DCRT groups (χ 2 test p = 0.85). In this series, the use of IMRT for the treatment of SCAC did not increase the rate of marginal failures offering improved dose conformity to the target. Dose constraints should be applied with caution-particularly in females with involvement of the vagina or the vaginal septum.

  12. Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows

    NASA Astrophysics Data System (ADS)

    Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei

    2016-02-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate the origin of the ultra-fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (˜30 Schwarzschild radii). A wide range of black hole masses (MBH) and Eddington ratios (ε) was investigated to study the conditions causing the line-driven winds. For MBH = 106-109 M⊙ and ε = 0.1-0.7, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70°-80° and with 10% of the speed of light. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as obscuration by the torus does not affect the observation of X-ray bands, the UFOs could be statistically observed in about 13%-28% of the luminous AGNs, which is not inconsistent with the observed ratio (˜40%). We also found that the results are insensitive to the X-ray luminosity and the density of the disk surface. Thus, we can conclude that UFOs could exist in any luminous AGNs, such as narrow-line Seyfert 1s and quasars with ε > 0.1, with which fast line-driven winds are associated.

  13. Measuring thermal conductivity of thin films and coatings with the ultra-fast transient hot-strip technique

    NASA Astrophysics Data System (ADS)

    Belkerk, B. E.; Soussou, M. A.; Carette, M.; Djouadi, M. A.; Scudeller, Y.

    2012-07-01

    This paper reports the ultra-fast transient hot-strip (THS) technique for determining the thermal conductivity of thin films and coatings of materials on substrates. The film thicknesses can vary between 10 nm and more than 10 µm. Precise measurement of thermal conductivity was performed with an experimental device generating ultra-short electrical pulses, and subsequent temperature increases were electrically measured on nanosecond and microsecond time scales. The electrical pulses were applied within metallized micro-strips patterned on the sample films and the temperature increases were analysed within time periods selected in the window [100 ns-10 µs]. The thermal conductivity of the films was extracted from the time-dependent thermal impedance of the samples derived from a three-dimensional heat diffusion model. The technique is described and its performance demonstrated on different materials covering a large thermal conductivity range. Experiments were carried out on bulk Si and thin films of amorphous SiO2 and crystallized aluminum nitride (AlN). The present approach can assess film thermal resistances as low as 10-8 K m2 W-1 with a precision of about 10%. This has never been attained before with the THS technique.

  14. Towards ultra-fast solvent evaporation, the development of a computer controlled solvent vapor annealing chamber

    NASA Astrophysics Data System (ADS)

    Nelson, Gunnar; Wong, J.; Drapes, C.; Grant, M.; Baruth, A.

    Despite the promise of cheap and fast nanoscale ordering of block polymer thin films via solvent vapor annealing, a standardized, scalable production scheme remains elusive. Solvent vapor annealing exposes a nano-thin film to the vapors of one or more solvents with the goal of forming a swollen and mobile state to direct the self-assembly process by tuning surface energies and mediating unfavorable chain interactions. We have shown that optimized annealing conditions, where kinetic and thermal properties for crystal growth are extremely fast (<1s), exist at solvent concentrations just below the order-disorder transition of the film. However, when investigating the propagation of a given morphology into the bulk of a film during drying, the role of solvent evaporation comes under great scrutiny. During this process, the film undergoes a competition between two fronts; phase separation and kinetic trapping. Recent results in both theory and experiment point toward this critical element in controlling the resultant morphologies; however, no current method includes a controllable solvent evaporation rate at ultra-fast time scales. We report on a computer-controlled, pneumatically actuated chamber that provides control over solvent evaporation down to 15 ms. Furthermore, in situ spectral reflectance monitors solvent concentration with 10 ms temporal resolution and reveals several possible evaporation trajectories, ranging from linear to exponential to logarithmic. Funded by Dr. Randolph Ferlic Summer Research Scholarship and NASA Nebraska Space Grant.

  15. Fast protocol for radiochromic film dosimetry using a cloud computing web application.

    PubMed

    Calvo-Ortega, Juan-Francisco; Pozo, Miquel; Moragues, Sandra; Casals, Joan

    2017-07-01

    To investigate the feasibility of a fast protocol for radiochromic film dosimetry to verify intensity-modulated radiotherapy (IMRT) plans. EBT3 film dosimetry was conducted in this study using the triple-channel method implemented in the cloud computing application (Radiochromic.com). We described a fast protocol for radiochromic film dosimetry to obtain measurement results within 1h. Ten IMRT plans were delivered to evaluate the feasibility of the fast protocol. The dose distribution of the verification film was derived at 15, 30, 45min using the fast protocol and also at 24h after completing the irradiation. The four dose maps obtained per plan were compared using global and local gamma index (5%/3mm) with the calculated one by the treatment planning system. Gamma passing rates obtained for 15, 30 and 45min post-exposure were compared with those obtained after 24h. Small differences respect to the 24h protocol were found in the gamma passing rates obtained for films digitized at 15min (global: 99.6%±0.9% vs. 99.7%±0.5%; local: 96.3%±3.4% vs. 96.3%±3.8%), at 30min (global: 99.5%±0.9% vs. 99.7%±0.5%; local: 96.5%±3.2% vs. 96.3±3.8%) and at 45min (global: 99.2%±1.5% vs. 99.7%±0.5%; local: 96.1%±3.8% vs. 96.3±3.8%). The fast protocol permits dosimetric results within 1h when IMRT plans are verified, with similar results as those reported by the standard 24h protocol. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Ultra-fast low concentration detection of Candida pathogens utilizing high resolution micropore chips.

    PubMed

    Mulero, Rafael; Lee, Dong Heun; Kutzler, Michele A; Jacobson, Jeffrey M; Kim, Min Jun

    2009-01-01

    Although Candida species are the fourth most common cause of nosocomial blood stream infections in the United States, early diagnostic tools for invasive candidemia are lacking. Due to an increasing rate of candidemia, a new screening system is needed to detect the Candida species in a timely manner. Here we describe a novel method of detection using a solid-state micro-scale pore similar to the operational principles of a Coulter counter. With a steady electrolyte current flowing through the pore, measurements are taken of changes in the current corresponding to the shape of individual yeasts as they translocate or travel through the pore. The direct ultra-fast low concentration electrical addressing of C. albicans has established criteria for distinguishing individual yeast based on their structural properties, which may reduce the currently used methods' complexity for both identification and quantification capabilities in mixed blood samples.

  17. Ultra-Fast Low Concentration Detection of Candida Pathogens Utilizing High Resolution Micropore Chips

    PubMed Central

    Mulero, Rafael; Lee, Dong Heun; Kutzler, Michele A.; Jacobson, Jeffrey M.; Kim, Min Jun

    2009-01-01

    Although Candida species are the fourth most common cause of nosocomial blood stream infections in the United States, early diagnostic tools for invasive candidemia are lacking. Due to an increasing rate of candidemia, a new screening system is needed to detect the Candida species in a timely manner. Here we describe a novel method of detection using a solid-state micro-scale pore similar to the operational principles of a Coulter counter. With a steady electrolyte current flowing through the pore, measurements are taken of changes in the current corresponding to the shape of individual yeasts as they translocate or travel through the pore. The direct ultra-fast low concentration electrical addressing of C. albicans has established criteria for distinguishing individual yeast based on their structural properties, which may reduce the currently used methods’ complexity for both identification and quantification capabilities in mixed blood samples. PMID:22573974

  18. Evaluation of Larynx-Sparing Techniques With IMRT When Treating the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, Gareth J.; Rowbottom, Carl G.; Ho, Kean F.

    2008-10-01

    Purpose: Concern exists that widespread implementation of whole-field intensity-modulated radiotherapy (IMRT) for the treatment of head-and-neck cancer has resulted in increased levels of dysphagia relative to those seen with conventional planning. Other investigators have suggested an alternative junctioned-IMRT (J-IMRT) method, which matches an IMRT plan to a centrally blocked neck field to restrict the laryngeal dose and reduce dysphagia. The effect on target coverage and sparing of organs at risk, including laryngeal sparing, in the optimization was evaluated and compared with that achieved using a J-IMRT technique. Methods and Materials: A total of 13 oropharyngeal cancer whole-field IMRT plans weremore » planned with and without including laryngeal sparing in the optimization. A comparison of the target coverage and sparing of organs at risk was made using the resulting dose-volume histograms and dose distribution. The nine plans with disease located superior to the level of the larynx were replanned using a series of J-IMRT techniques to compare the two laryngeal-sparing techniques. Results: An average mean larynx dose of 29.1 Gy was achieved if disease did not extend to the level of the larynx, with 38.8 Gy for disease extending inferiorly and close to the larynx (reduced from 46.2 and 47.7 Gy, respectively, without laryngeal sparing). Additional laryngeal sparing could be achieved with J-IMRT (mean dose 24.4 Gy), although often at the expense of significantly reduced coverage of the target volume and with no improvement to other areas of the IMRT plan. Conclusion: The benefits of J-IMRT can be achieved with whole-field IMRT if laryngeal sparing is incorporated into the class solution. Inclusion of laryngeal sparing had no effect on other parameters in the plan.« less

  19. X-ray evidence for ultra-fast outflows in AGNs

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Sambruna, Rita; Braito, Valentina; Reeves, James; Reynolds, Christopher; Cappi, Massimo

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 radio galaxies observed with XMM-Newton and Suzaku. We assessed the global detection significance of the absorption lines and performed a detailed photo-ionization modeling. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1} and the associated mechanical power is high, in the range ˜10^{43}--10^{45} erg/s. Therefore, UFOs are capable to provide a significant contribution to the AGN cosmological feedback and their study can provide important clues on the connection between accretion disks, winds and jets.

  20. Ultra-fast transient plasmonics using transparent conductive oxides

    NASA Astrophysics Data System (ADS)

    Ferrera, Marcello; Carnemolla, Enrico G.

    2018-02-01

    During the last decade, plasmonic- and metamaterial-based applications have revolutionized the field of integrated photonics by allowing for deep subwavelength confinement and full control over the effective permittivity and permeability of the optical environment. However, despite the numerous remarkable proofs of principle that have been experimentally demonstrated, few key issues remain preventing a widespread of nanophotonic technologies. Among these fundamental limitations, we remind the large ohmic losses, incompatibility with semiconductor industry standards, and largely reduced dynamic tunability of the optical properties. In this article, in the larger context of the new emerging field of all-dielectric nanophotonics, we present our recent progresses towards the study of large optical nonlinearities in transparent conducting oxides (TCOs) also giving a general overview of the most relevant and recent experimental attainments using TCO-based technology. However, it is important to underline that the present article does not represent a review paper but rather an original work with a broad introduction. Our work lays in a sort of ‘hybrid’ zone in the middle between high index contrast systems, whose behaviour is well described by applying Mie scattering theory, and standard plasmonic elements where optical modes originate from the electromagnetic coupling with the electronic plasma at the metal-to-dielectric interface. Beside remaining in the context of plasmonic technologies and retaining all the fundamental peculiarities that promoted the success of plasmonics in the first place, our strategy has the additional advantage to allow for large and ultra-fast tunability of the effective complex refractive index by accessing the index-near-zero regime in bulk materials at telecom wavelength.

  1. Intensity Modulated Radiotherapy (IMRT) in head and neck cancers - an overview.

    PubMed

    Nutting, C M

    2012-07-01

    Radiotherapy (RT) is effective in head and neck cancers. Following RT, dryness and dysphagia are the 2 major sequelae which alter the quality of life (QOL) significantly in these patients. There is randomized evidence that Intensity Modulated Radiotherapy (IMRT) effectively spares the parotid glands. IMRT has been attempted in all head and neck subsites with encouraging results (discussed below). Role of IMRT in swallowing structure (constrictor muscles) sparing is less clear.Further improvement in results may be possible by using functional imaging at the time of RT planning and by image guidance/verification at the time of treatment delivery. The following text discusses these issues in detail. Head and neck cancer, IMRT.

  2. Cardiac-Sparing Whole Lung IMRT in Children With Lung Metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalapurakal, John A., E-mail: j-kalapurakal@northwestern.edu; Zhang, Yunkai; Kepka, Alan

    Purpose: To demonstrate the dosimetric advantages of cardiac-sparing (CS) intensity modulated radiation therapy (IMRT) in children undergoing whole lung irradiation (WLI). Methods and Materials: Chest CT scans of 22 children who underwent simulation with 3-dimensional (n=10) or 4-dimensional (n=12) techniques were used for this study. Treatment planning was performed using standard anteroposterior-posteroanterior (S-RT) technique and CS-IMRT. Left and right flank fields were added to WLI fields to determine whether CS-IMRT offered any added protection to normal tissues at the junction between these fields. The radiation dose to the lung PTV, cardiac structures, liver, and thyroid were analyzed and compared. Results:more » CS-IMRT had 4 significant advantages over S-RT: (1) superior cardiac protection (2) superior 4-dimensional lung planning target volume coverage, (3) superior dose uniformity in the lungs with fewer hot spots, and (4) significantly lower dose to the heart when flank RT is administered after WLI. Conclusions: The use of CS-IMRT and 4-dimensional treatment planning has the potential to improve tumor control rates and reduce cardiac toxicity in children receiving WLI.« less

  3. A comprehensive comparison of IMRT and VMAT plan quality for prostate cancer treatment

    PubMed Central

    QUAN, ENZHUO M.; LI, XIAOQIANG; LI, YUPENG; WANG, XIAOCHUN; KUDCHADKER, RAJAT J.; JOHNSON, JENNIFER L.; KUBAN, DEBORAH A.; LEE, ANDREW K.; ZHANG, XIAODONG

    2013-01-01

    Purpose We performed a comprehensive comparative study of the plan quality between volumetric modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) for the treatment of prostate cancer. Methods and Materials Eleven patients with prostate cancer treated at our institution were randomly selected for this study. For each patient, a VMAT plan and a series of IMRT plans using an increasing number of beams (8, 12, 16, 20, and 24 beams) were examined. All plans were generated using our in-house-developed automatic inverse planning (AIP) algorithm. An existing 8-beam clinical IMRT plan, which was used to treat the patient, was used as the reference plan. For each patient, all AIP-generated plans were optimized to achieve the same level of planning target volume (PTV) coverage as the reference plan. Plan quality was evaluated by measuring mean dose to and dose-volume statistics of the organs-at-risk, especially the rectum, from each type of plan. Results For the same PTV coverage, the AIP-generated VMAT plans had significantly better plan quality in terms of rectum sparing than the 8-beam clinical and AIP-generated IMRT plans (p < 0.0001). However, the differences between the IMRT and VMAT plans in all the dosimetric indices decreased as the number of beams used in IMRT increased. IMRT plan quality was similar or superior to that of VMAT when the number of beams in IMRT was increased to a certain number, which ranged from 12 to 24 for the set of patients studied. The superior VMAT plan quality resulted in approximately 30% more monitor units than the 8-beam IMRT plans, but the delivery time was still less than 3 minutes. Conclusions Considering the superior plan quality as well as the delivery efficiency of VMAT compared with that of IMRT, VMAT may be the preferred modality for treating prostate cancer. PMID:22704703

  4. Virtual EPID standard phantom audit (VESPA) for remote IMRT and VMAT credentialing

    NASA Astrophysics Data System (ADS)

    Miri, Narges; Lehmann, Joerg; Legge, Kimberley; Vial, Philip; Greer, Peter B.

    2017-06-01

    A virtual EPID standard phantom audit (VESPA) has been implemented for remote auditing in support of facility credentialing for clinical trials using IMRT and VMAT. VESPA is based on published methods and a clinically established IMRT QA procedure, here extended to multi-vendor equipment. Facilities are provided with comprehensive instructions and CT datasets to create treatment plans. They deliver the treatment directly to their EPID without any phantom or couch in the beam. In addition, they deliver a set of simple calibration fields per instructions. Collected EPID images are uploaded electronically. In the analysis, the dose is projected back into a virtual cylindrical phantom. 3D gamma analysis is performed. 2D dose planes and linear dose profiles are provided and can be considered when needed for clarification. In addition, using a virtual flat-phantom, 2D field-by-field or arc-by-arc gamma analyses are performed. Pilot facilities covering a range of planning and delivery systems have performed data acquisition and upload successfully. Advantages of VESPA are (1) fast turnaround mainly driven by the facility’s capability of providing the requested EPID images, (2) the possibility for facilities performing the audit in parallel, as there is no need to wait for a phantom, (3) simple and efficient credentialing for international facilities, (4) a large set of data points, and (5) a reduced impact on resources and environment as there is no need to transport heavy phantoms or audit staff. Limitations of the current implementation of VESPA for trials credentialing are that it does not provide absolute dosimetry, therefore a Level I audit is still required, and that it relies on correctly delivered open calibration fields, which are used for system calibration. The implemented EPID based IMRT and VMAT audit system promises to dramatically improve credentialing efficiency for clinical trials and wider applications.

  5. Virtual EPID standard phantom audit (VESPA) for remote IMRT and VMAT credentialing.

    PubMed

    Miri, Narges; Lehmann, Joerg; Legge, Kimberley; Vial, Philip; Greer, Peter B

    2017-06-07

    A virtual EPID standard phantom audit (VESPA) has been implemented for remote auditing in support of facility credentialing for clinical trials using IMRT and VMAT. VESPA is based on published methods and a clinically established IMRT QA procedure, here extended to multi-vendor equipment. Facilities are provided with comprehensive instructions and CT datasets to create treatment plans. They deliver the treatment directly to their EPID without any phantom or couch in the beam. In addition, they deliver a set of simple calibration fields per instructions. Collected EPID images are uploaded electronically. In the analysis, the dose is projected back into a virtual cylindrical phantom. 3D gamma analysis is performed. 2D dose planes and linear dose profiles are provided and can be considered when needed for clarification. In addition, using a virtual flat-phantom, 2D field-by-field or arc-by-arc gamma analyses are performed. Pilot facilities covering a range of planning and delivery systems have performed data acquisition and upload successfully. Advantages of VESPA are (1) fast turnaround mainly driven by the facility's capability of providing the requested EPID images, (2) the possibility for facilities performing the audit in parallel, as there is no need to wait for a phantom, (3) simple and efficient credentialing for international facilities, (4) a large set of data points, and (5) a reduced impact on resources and environment as there is no need to transport heavy phantoms or audit staff. Limitations of the current implementation of VESPA for trials credentialing are that it does not provide absolute dosimetry, therefore a Level I audit is still required, and that it relies on correctly delivered open calibration fields, which are used for system calibration. The implemented EPID based IMRT and VMAT audit system promises to dramatically improve credentialing efficiency for clinical trials and wider applications.

  6. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... specialized training in the field of radiation oncology physics, ensures the linear accelerator delivers the precise radiation ... critical normal structures, as well as the patient's health. Typically, patients are scheduled for IMRT sessions five ...

  7. Poster - Thur Eve - 29: Detecting changes in IMRT QA using statistical process control.

    PubMed

    Drever, L; Salomons, G

    2012-07-01

    Statistical process control (SPC) methods were used to analyze 239 measurement based individual IMRT QA events. The selected IMRT QA events were all head and neck (H&N) cases with 70Gy in 35 fractions, and all prostate cases with 76Gy in 38 fractions planned between March 2009 and 2012. The results were used to determine if the tolerance limits currently being used for IMRT QA were able to indicate if the process was under control. The SPC calculations were repeated for IMRT QA of the same type of cases that were planned after the treatment planning system was upgraded from Eclipse version 8.1.18 to version 10.0.39. The initial tolerance limits were found to be acceptable for two of the three metrics tested prior to the upgrade. After the upgrade to the treatment planning system the SPC analysis found that the a priori limits were no longer capable of indicating control for 2 of the 3 metrics analyzed. The changes in the IMRT QA results were clearly identified using SPC, indicating that it is a useful tool for finding changes in the IMRT QA process. Routine application of SPC to IMRT QA results would help to distinguish unintentional trends and changes from the random variation in the IMRT QA results for individual plans. © 2012 American Association of Physicists in Medicine.

  8. Edge turbulence effect on ultra-fast swept reflectometry core measurements in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Zadvitskiy, G. V.; Heuraux, S.; Lechte, C.; Hacquin, S.; Sabot, R.

    2018-02-01

    Ultra-fast frequency-swept reflectometry (UFSR) enables one to provide information about the turbulence radial wave-number spectrum and perturbation amplitude with good spatial and temporal resolutions. However, a data interpretation of USFR is quiet tricky. An iterative algorithm to solve this inverse problem was used in past works, Gerbaud (2006 Rev. Sci. Instrum. 77 10E928). For a direct solution, a fast 1D Helmholtz solver was used. Two-dimensional effects are strong and should be taken into account during data interpretation. As 2D full-wave codes are still too time consuming for systematic application, fast 2D approaches based on the Born approximation are of prime interest. Such methods gives good results in the case of small turbulence levels. However in tokamak plasmas, edge turbulence is usually very strong and can distort and broaden the probing beam Sysoeva et al (2015 Nucl. Fusion 55 033016). It was shown that this can change reflectometer phase response from the plasma core. Comparison between 2D full wave computation and the simplified Born approximation was done. The approximated method can provide a right spectral shape, but it is unable to describe a change of the spectral amplitude with an edge turbulence level. Computation for the O-mode wave with the linear density profile in the slab geometry and for realistic Tore-Supra density profile, based on the experimental data turbulence amplitude and spectrum, were performed to investigate the role of strong edge turbulence. It is shown that the spectral peak in the signal amplitude variation spectrum which rises with edge turbulence can be a signature of strong edge turbulence. Moreover, computations for misaligned receiving and emitting antennas were performed. It was found that the signal amplitude variation peak changes its position with a receiving antenna poloidal displacement.

  9. Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization.

    PubMed

    Tanaka, Akihiro; Fujiwara, Mikio; Nam, Sae W; Nambu, Yoshihiro; Takahashi, Seigo; Maeda, Wakako; Yoshino, Ken-ichiro; Miki, Shigehito; Baek, Burm; Wang, Zhen; Tajima, Akio; Sasaki, Masahide; Tomita, Akihisa

    2008-07-21

    We demonstrated ultra fast BB84 quantum key distribution (QKD) transmission at 625 MHz clock rate through a 97 km field-installed fiber using practical clock synchronization based on wavelength-division multiplexing (WDM). We succeeded in over-one-hour stable key generation at a high sifted key rate of 2.4 kbps and a low quantum bit error rate (QBER) of 2.9%. The asymptotic secure key rate was estimated to be 0.78- 0.82 kbps from the transmission data with the decoy method of average photon numbers 0, 0.15, and 0.4 photons/pulse.

  10. X-ray evidence for ultra-fast outflows in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.

  11. Ultra-fast LuI{sub 3}:Ce scintillators for hard x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marton, Zsolt, E-mail: zmarton@rmdinc.com; Miller, Stuart R.; Ovechkina, Elena

    We have developed ultra-fast cerium-coped lutetium-iodide (LuI{sub 3}:Ce) films thermally evaporated as polycrystalline, structured scintillator using hot wall epitaxy (HWE) method. The films have shown a 13 ns decay compared to the 28 ns reported for crystals. The fast speed coupled with its high density (∼5.6 g/cm{sup 3}), high effective atomic number (59.7), and the fact that it can be vapor deposited in a columnar form makes LuI{sub 3}:Ce an attractive candidate for high frame rate, high-resolution, hard X-ray imaging. In crystal form, LuI{sub 3}:Ce has demonstrated bright (>100,000 photons/MeV) green (540 nm) emission, which is well matched to commercialmore » CCD/CMOS sensors and is critical for maintaining high signal to noise ratio in light starved applications. Here, we report on the scintillation properties of films and those for corresponding crystalline material. The vapor grown films were integrated into a high-speed CMOS imager to demonstrate high-speed radiography capability. The films were also tested at Advanced Photon Source, Argonne National Laboratory beamline 1-ID under hard X-ray irradiation. The data show a factor of four higher efficiency than the reference LuAG:Ce scintillators, high image quality, and linearity of scintillation response over a wide energy range. The films were employed to perform hard X-ray microtomography, the results of which will also be discussed.« less

  12. SU-F-T-336: A Quick Auto-Planning (QAP) Method for Patient Intensity Modulated Radiotherapy (IMRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, J; Zhang, Z; Wang, J

    2016-06-15

    Purpose: The aim of this study is to develop a quick auto-planning system that permits fast patient IMRT planning with conformal dose to the target without manual field alignment and time-consuming dose distribution optimization. Methods: The planning target volume (PTV) of the source and the target patient were projected to the iso-center plane in certain beameye- view directions to derive the 2D projected shapes. Assuming the target interior was isotropic for each beam direction boundary analysis under polar coordinate was performed to map the source shape boundary to the target shape boundary to derive the source-to-target shape mapping function. Themore » derived shape mapping function was used to morph the source beam aperture to the target beam aperture over all segments in each beam direction. The target beam weights were re-calculated to deliver the same dose to the reference point (iso-center) as the source beam did in the source plan. The approach was tested on two rectum patients (one source patient and one target patient). Results: The IMRT planning time by QAP was 5 seconds on a laptop computer. The dose volume histograms and the dose distribution showed the target patient had the similar PTV dose coverage and OAR dose sparing with the source patient. Conclusion: The QAP system can instantly and automatically finish the IMRT planning without dose optimization.« less

  13. Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalev, S.; Green, B.; Golz, T.

    Here, understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systemsmore » and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.« less

  14. Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates.

    PubMed

    Kovalev, S; Green, B; Golz, T; Maehrlein, S; Stojanovic, N; Fisher, A S; Kampfrath, T; Gensch, M

    2017-03-01

    Understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systems and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.

  15. Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates

    DOE PAGES

    Kovalev, S.; Green, B.; Golz, T.; ...

    2017-03-06

    Here, understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systemsmore » and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.« less

  16. Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita

    There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements

  17. Comparison of VMAT and IMRT strategies for cervical cancer patients using automated planning.

    PubMed

    Sharfo, Abdul Wahab M; Voet, Peter W J; Breedveld, Sebastiaan; Mens, Jan Willem M; Hoogeman, Mischa S; Heijmen, Ben J M

    2015-03-01

    In a published study on cervical cancer, 5-beam IMRT was inferior to single arc VMAT. Here we compare 9, 12, and 20 beam IMRT with single and dual arc VMAT. For each of 10 patients, automated plan generation with the in-house Erasmus-iCycle optimizer was used to assist an expert planner in generating the five plans with the clinical TPS. For each patient, all plans were clinically acceptable with a high and similar PTV coverage. OAR sparing increased when going from 9 to 12 to 20 IMRT beams, and from single to dual arc VMAT. For all patients, 12 and 20 beam IMRT were superior to single and dual arc VMAT, with substantial variations in gain among the study patients. As expected, delivery of VMAT plans was significantly faster than delivery of IMRT plans. Often reported increased plan quality for VMAT compared to IMRT has not been observed for cervical cancer. Twenty and 12 beam IMRT plans had a higher quality than single and dual arc VMAT. For individual patients, the optimal delivery technique depends on a complex trade-off between plan quality and treatment time that may change with introduction of faster delivery systems. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. MO-G-BRD-01: Point/Counterpoint Debate: Arc Based Techniques Will Make Conventional IMRT Obsolete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, D; Popple, R; Balter, P

    2014-06-15

    A variety of intensity modulated radiation therapy (IMRT) delivery techniques have been developed that have provided clinicians with the ability to deliver highly conformal dose distributions. The delivery techniques include compensators, step-and-shoot IMRT, sliding window IMRT, volumetric modulated arc therapy (VMAT), and tomotherapy. A key development in the field of IMRT was the introduction of new planning algorithms and delivery control systems in 2007 that made it possible to coordinate the gantry rotation speed, dose rate, and multileaf collimator leaf positions during the delivery of arc therapy. With these developments, VMAT became a routine clinical tool. The use of VMATmore » has continued to grow in recent years and some would argue that this will soon make conventional IMRT obsolete, and this is the premise of this debate. To introduce the debate, David Shepard, Ph.D. will provide an overview of IMRT delivery techniques including historical context and how they are being used today. The debate will follow with Richard Popple, Ph.D. arguing FOR the Proposition and Peter Balter, Ph.D. arguing AGAINST it. Learning Objectives: Understand the different delivery techniques for IMRT. Understand the potential benefits of conventional IMRT. Understand the potential benefits of arc-based IMRT delivery.« less

  19. Image processing for IMRT QA dosimetry.

    PubMed

    Zaini, Mehran R; Forest, Gary J; Loshek, David D

    2005-01-01

    We have automated the determination of the placement location of the dosimetry ion chamber within intensity-modulated radiotherapy (IMRT) fields, as part of streamlining the entire IMRT quality assurance process. This paper describes the mathematical image-processing techniques to arrive at the appropriate measurement locations within the planar dose maps of the IMRT fields. A specific spot within the found region is identified based on its flatness, radiation magnitude, location, area, and the avoidance of the interleaf spaces. The techniques used include applying a Laplacian, dilation, erosion, region identification, and measurement point selection based on three parameters: the size of the erosion operator, the gradient, and the importance of the area of a region versus its magnitude. These three parameters are adjustable by the user. However, the first one requires tweaking in extremely rare occasions, the gradient requires rare adjustments, and the last parameter needs occasional fine-tuning. This algorithm has been tested in over 50 cases. In about 5% of cases, the algorithm does not find a measurement point due to the extremely steep and narrow regions within the fluence maps. In such cases, manual selection of a point is allowed by our code, which is also difficult to ascertain, since the fluence map does not yield itself to an appropriate measurement point selection.

  20. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Kil-Byoung; Bellan, Paul M.

    2013-12-15

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.

  1. Optimization of Craniospinal Irradiation for Pediatric Medulloblastoma Using VMAT and IMRT.

    PubMed

    Al-Wassia, Rolina K; Ghassal, Noor M; Naga, Adly; Awad, Nesreen A; Bahadur, Yasir A; Constantinescu, Camelia

    2015-10-01

    Intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) provide highly conformal target radiation doses, but also expose large volumes of healthy tissue to low-dose radiation. With improving survival, more children with medulloblastoma (MB) are at risk of late adverse effects of radiotherapy, including secondary cancers. We evaluated the characteristics of IMRT and VMAT craniospinal irradiation treatment plans in children with standard-risk MB to compare radiation dose delivery to target organs and organs at risk (OAR). Each of 10 children with standard-risk MB underwent both IMRT and VMAT treatment planning. Dose calculations used inverse planning optimization with a craniospinal dose of 23.4 Gy followed by a posterior fossa boost to 55.8 Gy. Clinical and planning target volumes were demarcated on axial computed tomography images. Dose distributions to target organs and OAR for each planning technique were measured and compared with published dose-volume toxicity data for pediatric patients. All patients completed treatment planning for both techniques. Analyses and comparisons of dose distributions and dose-volume histograms for the planned target volumes, and dose delivery to the OAR for each technique demonstrated the following: (1) VMAT had a modest, but significantly better, planning target volume-dose coverage and homogeneity compared with IMRT; (2) there were different OAR dose-sparing profiles for IMRT versus VMAT; and (3) neither IMRT nor VMAT demonstrated dose reductions to the published pediatric dose limits for the eyes, the lens, the cochlea, the pituitary, and the brain. The use of both IMRT and VMAT provides good target tissue coverage and sparing of the adjacent tissue for MB. Both techniques resulted in OAR dose delivery within published pediatric dose guidelines, except those mentioned above. Pediatric patients with standard-risk MB remain at risk for late endocrinologic, sensory (auditory and visual), and brain

  2. Image guided IMRT dosimetry using anatomy specific MOSFET configurations.

    PubMed

    Amin, Md Nurul; Norrlinger, Bern; Heaton, Robert; Islam, Mohammad

    2008-06-23

    We have investigated the feasibility of using a set of multiple MOSFETs in conjunction with the mobile MOSFET wireless dosimetry system, to perform a comprehensive and efficient quality assurance (QA) of IMRT plans. Anatomy specific MOSFET configurations incorporating 5 MOSFETs have been developed for a specially designed IMRT dosimetry phantom. Kilovoltage cone beam computed tomography (kV CBCT) imaging was used to increase the positional precision and accuracy of the detectors and phantom, and so minimize dosimetric uncertainties in high dose gradient regions. The effectiveness of the MOSFET based dose measurements was evaluated by comparing the corresponding doses measured by an ion chamber. For 20 head and neck IMRT plans the agreement between the MOSFET and ionization chamber dose measurements was found to be within -0.26 +/- 0.88% and 0.06 +/- 1.94% (1 sigma) for measurement points in the high dose and low dose respectively. A precision of 1 mm in detector positioning was achieved by using the X-Ray Volume Imaging (XVI) kV CBCT system available with the Elekta Synergy Linear Accelerator. Using the anatomy specific MOSFET configurations, simultaneous measurements were made at five strategically located points covering high dose and low dose regions. The agreement between measurements and calculated doses by the treatment planning system for head and neck and prostate IMRT plans was found to be within 0.47 +/- 2.45%. The results indicate that a cylindrical phantom incorporating multiple MOSFET detectors arranged in an anatomy specific configuration, in conjunction with image guidance, can be utilized to perform a comprehensive and efficient quality assurance of IMRT plans.

  3. BOOK REVIEW: Image-Guided IMRT

    NASA Astrophysics Data System (ADS)

    Mayles, P.

    2006-12-01

    This book provides comprehensive coverage of the subject of intensity modulated radiotherapy and the associated imaging. Most of the names associated with advanced radiotherapy can be found among the 80 authors and the book is therefore an authoritative reference text. The early chapters deal with the basic principles and include an interesting comparison between views of quality assurance for IMRT from Europe and North America. It is refreshing to see that the advice given has moved on from the concept of individual patient based quality control to more generic testing of the delivery system. However, the point is made that the whole process including the data transfer needs to be quality assured and the need for thorough commissioning of the process is emphasised. The `tricks' needed to achieve a dose based IMRT plan are well covered by the group at Ghent and there is an interesting summary of biological aspects of treatment planning for IMRT by Andrzej Niemierko. The middle section of the book deals with advanced imaging aspects of both treatment planning and delivery. The contributions of PET and MR imaging are well covered and there is a rather rambling section on molecular imaging. Image guidance in radiotherapy treatment is addressed including the concept of adaptive radiotherapy. The treatment aspects could perhaps have merited some more coverage, but there is a very thorough discussion of 4D techniques. The final section of the book considers each site of the body in turn. This will be found useful by those wishing to embark on IMRT in a new area, although some of the sections are more comprehensive than others. The book contains a wealth of interesting and thought provoking articles giving details as well as broad principles, and would be a useful addition to every departmental library. The editors have done a good job of ensuring that the different chapters are complementary, and of encouraging a systematic approach to the descriptions of IMRT in

  4. Beam test results of a 16 ps timing system based on ultra-fast silicon detectors

    DOE PAGES

    Cartiglia, N.; Staiano, A.; Sola, V.; ...

    2017-04-01

    In this paper we report on the timing resolution obtained in a beam test with pions of 180 GeV/c momentum at CERN for the first production of 45 μm thick Ultra-Fast Silicon Detectors (UFSD). UFSD are based on the Low- Gain Avalanche Detector (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. The UFSD used in this test had a pad area of 1.7 mm 2. The gain was measured to vary between 5 and 70 depending on the sensor bias voltage. The experimental setup includedmore » three UFSD and a fast trigger consisting of a quartz bar readout by a SiPM. The timing resolution was determined by doing Gaussian fits to the time-of-flight of the particles between one or more UFSD and the trigger counter. For a single UFSD the resolution was measured to be 34 ps for a bias voltage of 200 V, and 27 ps for a bias voltage of 230 V. For the combination of 3 UFSD the timing resolution was 20 ps for a bias voltage of 200 V, and 16 ps for a bias voltage of 230 V.« less

  5. Beam test results of a 16 ps timing system based on ultra-fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Cartiglia, N.; Staiano, A.; Sola, V.; Arcidiacono, R.; Cirio, R.; Cenna, F.; Ferrero, M.; Monaco, V.; Mulargia, R.; Obertino, M.; Ravera, F.; Sacchi, R.; Bellora, A.; Durando, S.; Mandurrino, M.; Minafra, N.; Fadeyev, V.; Freeman, P.; Galloway, Z.; Gkougkousis, E.; Grabas, H.; Gruey, B.; Labitan, C. A.; Losakul, R.; Luce, Z.; McKinney-Martinez, F.; Sadrozinski, H. F.-W.; Seiden, A.; Spencer, E.; Wilder, M.; Woods, N.; Zatserklyaniy, A.; Pellegrini, G.; Hidalgo, S.; Carulla, M.; Flores, D.; Merlos, A.; Quirion, D.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Zavrtanik, M.

    2017-04-01

    In this paper we report on the timing resolution obtained in a beam test with pions of 180 GeV/c momentum at CERN for the first production of 45 μm thick Ultra-Fast Silicon Detectors (UFSD). UFSD are based on the Low-Gain Avalanche Detector (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. The UFSD used in this test had a pad area of 1.7 mm2. The gain was measured to vary between 5 and 70 depending on the sensor bias voltage. The experimental setup included three UFSD and a fast trigger consisting of a quartz bar readout by a SiPM. The timing resolution was determined by doing Gaussian fits to the time-of-flight of the particles between one or more UFSD and the trigger counter. For a single UFSD the resolution was measured to be 34 ps for a bias voltage of 200 V, and 27 ps for a bias voltage of 230 V. For the combination of 3 UFSD the timing resolution was 20 ps for a bias voltage of 200 V, and 16 ps for a bias voltage of 230 V.

  6. Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator

    NASA Astrophysics Data System (ADS)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-03-01

    In this paper, an all-optical plasmonic switch based on metal-insulator-metal (MIM) nanoplasmonic waveguide with a Kerr nonlinear ring resonator is introduced and studied. Two-dimensional simulations utilizing the finite-difference time-domain algorithm are used to demonstrate an apparent optical bistability and significant switching mechanisms (in enabled-low condition: T(ON/OFF) =21.9 and in enabled-high condition: T(ON/OFF) =24.9) of the signal light arisen by altering the pump-light intensity. The proposed all-optical switching demonstrates femtosecond-scale feedback time (90 fs) and then ultra-fast switching can be achieved. The offered all-optical switch may recognize potential significant applications in integrated optical circuits.

  7. Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap.

    PubMed

    Woody, Michael S; Capitanio, Marco; Ostap, E Michael; Goldman, Yale E

    2018-04-30

    We characterized experimental artifacts arising from the non-linear response of acousto-optical deflectors (AODs) in an ultra-fast force-clamp optical trap and have shown that using electro-optical deflectors (EODs) instead eliminates these artifacts. We give an example of the effects of these artifacts in our ultra-fast force clamp studies of the interaction of myosin with actin filaments. The experimental setup, based on the concept of Capitanio et al. [Nat. Methods 9, 1013-1019 (2012)] utilizes a bead-actin-bead dumbbell held in two force-clamped optical traps which apply a load to the dumbbell to move it at a constant velocity. When myosin binds to actin, the filament motion stops quickly as the total force from the optical traps is transferred to the actomyosin attachment. We found that in our setup, AODs were unsuitable for beam steering due to non-linear variations in beam intensity and deflection angle as a function of driving frequency, likely caused by low-amplitude standing acoustic waves in the deflectors. These aberrations caused instability in the force feedback loops leading to artifactual jumps in the trap position. We demonstrate that beam steering with EODs improves the performance of our instrument. Combining the superior beam-steering capability of the EODs, force acquisition via back-focal-plane interferometry, and dual high-speed FPGA-based feedback loops, we apply precise and constant loads to study the dynamics of interactions between actin and myosin. The same concept applies to studies of other biomolecular interactions.

  8. Limits on the Ultra-bright Fast Radio Burst Population from the CHIME Pathfinder

    NASA Astrophysics Data System (ADS)

    Amiri, M.; Bandura, K.; Berger, P.; Bond, J. R.; Cliche, J. F.; Connor, L.; Deng, M.; Denman, N.; Dobbs, M.; Domagalski, R. S.; Fandino, M.; Gilbert, A. J.; Good, D. C.; Halpern, M.; Hanna, D.; Hincks, A. D.; Hinshaw, G.; Höfer, C.; Hsyu, G.; Klages, P.; Landecker, T. L.; Masui, K.; Mena-Parra, J.; Newburgh, L. B.; Oppermann, N.; Pen, U. L.; Peterson, J. B.; Pinsonneault-Marotte, T.; Renard, A.; Shaw, J. R.; Siegel, S. R.; Sigurdson, K.; Smith, K.; Storer, E.; Tretyakov, I.; Vanderlinde, K.; Wiebe, D. V.; Scientific Collaboration20, CHIME

    2017-08-01

    We present results from a new incoherent-beam fast radio burst (FRB) search on the Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder. Its large instantaneous field of view (FoV) and relative thermal insensitivity allow us to probe the ultra-bright tail of the FRB distribution, and to test a recent claim that this distribution’s slope, α \\equiv -\\tfrac{\\partial {log}N}{\\partial {log}S}, is quite small. A 256-input incoherent beamformer was deployed on the CHIME Pathfinder for this purpose. If the FRB distribution were described by a single power law with α = 0.7, we would expect an FRB detection every few days, making this the fastest survey on the sky at present. We collected 1268 hr of data, amounting to one of the largest exposures of any FRB survey, with over 2.4 × 105 deg2 hr. Having seen no bursts, we have constrained the rate of extremely bright events to <13 sky-1 day-1 above ˜ 220\\sqrt{(τ /{ms})} {Jy} {ms} for τ between 1.3 and 100 ms, at 400-800 MHz. The non-detection also allows us to rule out α ≲ 0.9 with 95% confidence, after marginalizing over uncertainties in the GBT rate at 700-900 MHz, though we show that for a cosmological population and a large dynamic range in flux density, α is brightness dependent. Since FRBs now extend to large enough distances that non-Euclidean effects are significant, there is still expected to be a dearth of faint events and relative excess of bright events. Nevertheless we have constrained the allowed number of ultra-intense FRBs. While this does not have significant implications for deeper, large-FoV surveys like full CHIME and APERTIF, it does have important consequences for other wide-field, small dish experiments.

  9. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films

    PubMed Central

    Chen, Yanan; Egan, Garth C.; Wan, Jiayu; Zhu, Shuze; Jacob, Rohit Jiji; Zhou, Wenbo; Dai, Jiaqi; Wang, Yanbin; Danner, Valencia A.; Yao, Yonggang; Fu, Kun; Wang, Yibo; Bao, Wenzhong; Li, Teng; Zachariah, Michael R.; Hu, Liangbing

    2016-01-01

    Nanoparticles hosted in conductive matrices are ubiquitous in electrochemical energy storage, catalysis and energetic devices. However, agglomeration and surface oxidation remain as two major challenges towards their ultimate utility, especially for highly reactive materials. Here we report uniformly distributed nanoparticles with diameters around 10 nm can be self-assembled within a reduced graphene oxide matrix in 10 ms. Microsized particles in reduced graphene oxide are Joule heated to high temperature (∼1,700 K) and rapidly quenched to preserve the resultant nano-architecture. A possible formation mechanism is that microsized particles melt under high temperature, are separated by defects in reduced graphene oxide and self-assemble into nanoparticles on cooling. The ultra-fast manufacturing approach can be applied to a wide range of materials, including aluminium, silicon, tin and so on. One unique application of this technique is the stabilization of aluminium nanoparticles in reduced graphene oxide film, which we demonstrate to have excellent performance as a switchable energetic material. PMID:27515900

  10. In vivo prostate IMRT dosimetry with MOSFET detectors using brass buildup caps

    PubMed Central

    Varadhan, Raj; Miller, John; Garrity, Brenden; Weber, Michael

    2006-01-01

    The feasibility of using dual bias metal oxide semiconductor field effect transistor (MOSFET) detectors with the new hemispherical brass buildup cap for in vivo dose measurements in prostate intensity‐modulated radiotherapy (IMRT) treatments was investigated and achieved. In this work, MOSFET detectors with brass buildup caps placed on the patient's skin surface on the central axis of the individual IMRT beams are used to determine the maximum entrance dose (Dmax) from the prostate IMRT fields. A general formalism with various correction factors taken into account to predict Dmax entrance dose for the IMRT fields with MOSFETs was developed and compared against predicted dose from the treatment‐planning system (TPS). We achieved an overall accuracy of better than ±5% on all measured fields for both 6‐MV and 10‐MV beams when compared to predicted doses from the Philips Pinnacle 3 and CMS XiO TPSs, respectively. We also estimate the total uncertainty in estimation of MOSFET dose in the high‐sensitivity mode for IMRT therapy to be 4.6%. PACS numbers: 87.53Xd, 87.56Fc PMID:17533354

  11. Image guided IMRT dosimetry using anatomy specific MOSFET configurations

    PubMed Central

    Norrlinger, Bern; Heaton, Robert; Islam, Mohammad

    2008-01-01

    We have investigated the feasibility of using a set of multiple MOSFETs in conjunction with the mobileMOSFET wireless dosimetry system, to perform a comprehensive and efficient quality assurance (QA) of IMRT plans. Anatomy specific MOSFET configurations incorporating 5 MOSFETs have been developed for a specially designed IMRT dosimetry phantom. Kilovoltage cone beam computed tomography (kV CBCT) imaging was used to increase the positional precision and accuracy of the detectors and phantom, and so minimize dosimetric uncertainties in high dose gradient regions. The effectiveness of the MOSFET based dose measurements was evaluated by comparing the corresponding doses measured by an ion chamber. For 20 head and neck IMRT plans the agreement between the MOSFET and ionization chamber dose measurements was found to be within −0.26±0.88% and 0.06±1.94% (1σ) for measurement points in the high dose and low dose respectively. A precision of 1 mm in detector positioning was achieved by using the X‐Ray Volume Imaging (XVI) kV CBCT system available with the Elekta Synergy Linear Accelerator. Using the anatomy specific MOSFET configurations, simultaneous measurements were made at five strategically located points covering high dose and low dose regions. The agreement between measurements and calculated doses by the treatment planning system for head and neck and prostate IMRT plans was found to be within 0.47±2.45%. The results indicate that a cylindrical phantom incorporating multiple MOSFET detectors arranged in an anatomy specific configuration, in conjunction with image guidance, can be utilized to perform a comprehensive and efficient quality assurance of IMRT plans. PACS number: 87.55.Qr

  12. Ultra-fast vapour-liquid-solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst.

    PubMed

    Hetzel, Martin; Lugstein, Alois; Zeiner, Clemens; Wójcik, Tomasz; Pongratz, Peter; Bertagnolli, Emmerich

    2011-09-30

    The feasibility of gallium as a catalyst for vapour-liquid-solid (VLS) nanowire (NW) growth deriving from an implantation process in silicon by a focused ion beam (FIB) is investigated. Si(100) substrates are subjected to FIB implantation of gallium ions with various ion fluence rates. NW growth is performed in a hot wall chemical vapour deposition (CVD) reactor at temperatures between 400 and 500 °C with 2% SiH(4)/He as precursor gas. This process results in ultra-fast growth of (112)- and (110)-oriented Si-NWs with a length of several tens of micrometres. Further investigation by transmission electron microscopy indicates the presence of a NW core-shell structure: while the NW core yields crystalline structuring, the shell consists entirely of amorphous material.

  13. Volumetric-modulated arc therapy vs c-IMRT in esophageal cancer: A treatment planning comparison

    PubMed Central

    Yin, Li; Wu, Hao; Gong, Jian; Geng, Jian-Hao; Jiang, Fan; Shi, An-Hui; Yu, Rong; Li, Yong-Heng; Han, Shu-Kui; Xu, Bo; Zhu, Guang-Ying

    2012-01-01

    AIM: To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). METHODS: Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning system: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (9F), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normalized to 95% of the PTV that received 100% of the prescribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. RESULTS: Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09). Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs 7F 24.59 Gy and 9F 24.16 Gy) and V

  14. Volumetric-modulated arc therapy vs. c-IMRT in esophageal cancer: a treatment planning comparison.

    PubMed

    Yin, Li; Wu, Hao; Gong, Jian; Geng, Jian-Hao; Jiang, Fan; Shi, An-Hui; Yu, Rong; Li, Yong-Heng; Han, Shu-Kui; Xu, Bo; Zhu, Guang-Ying

    2012-10-07

    To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning system: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (9F), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normalized to 95% of the PTV that received 100% of the prescribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09). Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs. 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs. 5F

  15. Variable beam dose rate and DMLC IMRT to moving body anatomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papiez, Lech; Abolfath, Ramin M.

    2008-11-15

    Derivation of formulas relating leaf speeds and beam dose rates for delivering planned intensity profiles to static and moving targets in dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is presented. The analysis of equations determining algorithms for DMLC IMRT delivery under a variable beam dose rate reveals a multitude of possible delivery strategies for a given intensity map and for any given target motion patterns. From among all equivalent delivery strategies for DMLC IMRT treatments specific subclasses of strategies can be selected to provide deliveries that are particularly suitable for clinical applications providing existing delivery devices are used.more » Special attention is devoted to the subclass of beam dose rate variable DMLC delivery strategies to moving body anatomy that generalize existing techniques of such deliveries in Varian DMLC irradiation methodology to static body anatomy. Few examples of deliveries from this subclass of DMLC IMRT irradiations are investigated to illustrate the principle and show practical benefits of proposed techniques.« less

  16. SU-F-T-274: Modified Dose Calibration Methods for IMRT QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, W; Westlund, S

    2016-06-15

    Purpose: To investigate IMRT QA uncertainties caused by dose calibration and modify widely used dose calibration procedures to improve IMRT QA accuracy and passing rate. Methods: IMRT QA dose measurement is calibrated using a calibration factor (CF) that is the ratio between measured value and expected value corresponding to the reference fields delivered on a phantom. Two IMRT QA phantoms were used for this study: a 30×30×30 cm3 solid water cube phantom (Cube), and the PTW Octavius phantom. CF was obtained by delivering 100 MUs to the phantoms with different reference fields ranging from 3×3 cm2 to 20×20 cm{sup 2}.more » For Cube, CFs were obtained using the following beam arrangements: 2-AP Field - chamber at dmax, 2-AP Field - chamber at isocenter, 4-beam box - chamber at isocenter, and 8 equally spaced fields and chamber at isocenter. The same plans were delivered on Octavius and CFs were derived for the dose at the isocenter using the above beam arrangements. The Octavius plans were evaluated with PTW-VeriSoft (Gamma criteria of 3%/3mm). Results: Four head and neck IMRT plans were included in this study. For point dose measurement with Cube, the CFs with 4-Field gave the best agreement between measurement and calculation within 4% for large field plans. All the measurement results agreed within 2% for a small field plan. Compared with calibration field sizes, 5×5 to 15×15 were more accurate than other field sizes. For Octavius, 4-Field calibration increased passing rate by up to 10% compared to AP calibration. Passing rate also increased by up to 4% with the increase of field size from 3×3 to 20×20. Conclusion: IMRT QA results are correlated with calibration methods used. The dose calibration using 4-beam box with field sizes from 5×5 to 20×20 can improve IMRT QA accuracy and passing rate.« less

  17. Volumetric modulated arc therapy vs. IMRT for the treatment of distal esophageal cancer.

    PubMed

    Van Benthuysen, Liam; Hales, Lee; Podgorsak, Matthew B

    2011-01-01

    Several studies have demonstrated that volumetric modulated arc therapy (VMAT) has the ability to reduce monitor units and treatment time when compared with intensity-modulated radiation therapy (IMRT). This study aims to demonstrate that VMAT is able to provide adequate organs at risk (OAR) sparing and planning target volume (PTV) coverage for adenocarcinoma of the distal esophagus while reducing monitor units and treatment time. Fourteen patients having been treated previously for esophageal cancer were planned using both VMAT and IMRT techniques. Dosimetric quality was evaluated based on doses to several OARs, as well as coverage of the PTV. Treatment times were assessed by recording the number of monitor units required for dose delivery. Body V(5) was also recorded to evaluate the increased volume of healthy tissue irradiated to low doses. Dosimetric differences in OAR sparing between VMAT and IMRT were comparable. PTV coverage was similar for the 2 techniques but it was found that IMRT was capable of delivering a slightly more homogenous dose distribution. Of the 14 patients, 12 were treated with a single arc and 2 were treated with a double arc. Single-arc plans reduced monitor units by 42% when compared with the IMRT plans. Double-arc plans reduced monitor units by 67% when compared with IMRT. The V(5) for the body was found to be 18% greater for VMAT than for IMRT. VMAT has the capability to decrease treatment times over IMRT while still providing similar OAR sparing and PTV coverage. Although there will be a smaller risk of patient movement during VMAT treatments, this advantage comes at the cost of delivering small doses to a greater volume of the patient. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  18. Improved Data Acquisition Methods for Uninterrupted Signal Monitoring and Ultra-Fast Plasma Diagnostics in LHD

    NASA Astrophysics Data System (ADS)

    Nakanishi, Hideya; Imazu, Setsuo; Ohsuna, Masaki; Kojima, Mamoru; Nonomura, Miki; Shoji, Mamoru; Emoto, Masahiko; Yoshida, Masanobu; Iwata, Chie; Miyake, Hitoshi; Nagayama, Yoshio; Kawahata, Kazuo

    To deal with endless data streams acquired in LHD steady-state experiments, the LHD data acquisition system was designed with a simple concept that divides a long pulse into a consecutive series of 10-s “subshots”. Latest digitizers applying high-speed PCI-Express technology, however, output nonstop gigabyte per second data streams whose subshot intervals would be extremely long if 10-s rule was applied. These digitizers need shorter subshot intervals, less than 10-s long. In contrast, steady-state fusion plants need uninterrupted monitoring of the environment and device soundness. They adopt longer subshot lengths of either 10 min or 1 day. To cope with both uninterrupted monitoring and ultra-fast diagnostics, the ability to vary the subshot length according to the type of operation is required. In this study, a design modification that enables variable subshot lengths was implemented and its practical effectiveness in LHD was verified.

  19. Superior sulcus non-small cell lung carcinoma: A comparison of IMRT and 3D-RT dosimetry.

    PubMed

    Truntzer, Pierre; Antoni, Delphine; Santelmo, Nicola; Schumacher, Catherine; Falcoz, Pierre-Emmanuel; Quoix, Elisabeth; Massard, Gilbert; Noël, Georges

    2016-01-01

    A dosimetric study comparing intensity modulated radiotherapy (IMRT) by TomoTherapy to conformational 3D radiotherapy (3D-RT) in patients with superior sulcus non-small cell lung cancer (NSCLC). IMRT became the main technique in modern radiotherapy. However it was not currently used for lung cancers. Because of the need to increase the dose to control lung cancers but because of the critical organs surrounding the tumors, the gains obtainable with IMRT is not still demonstrated. A dosimetric comparison of the planned target and organs at risk parameters between IMRT and 3D-RT in eight patients who received preoperative or curative intent irradiation. In the patients who received at least 66 Gy, the mean V95% was significantly better with IMRT than 3D-RT (p = 0.043). IMRT delivered a lower D2% compared to 3D-RT (p = 0.043). The IH was significantly better with IMRT (p = 0.043). The lung V 5 Gy and V 13 Gy were significantly higher in IMRT than 3D-RT (p = 0.043), while the maximal dose (D max) to the spinal cord was significantly lower in IMRT (p = 0.043). The brachial plexus D max was significantly lower in IMRT than 3D-RT (p = 0.048). For patients treated with 46 Gy, no significant differences were found. Our study showed that IMRT is relevant for SS-NSCLC. In patients treated with a curative dose, it led to a reduction of the exposure of critical organs, allowing a better dose distribution in the tumor. For the patients treated with a preoperative schedule, our results provide a basis for future controlled trials to improve the histological complete response by increasing the radiation dose.

  20. Intensity-modulated radiotherapy (IMRT) in pediatric low-grade glioma.

    PubMed

    Paulino, Arnold C; Mazloom, Ali; Terashima, Keita; Su, Jack; Adesina, Adekunle M; Okcu, M Faith; Teh, Bin S; Chintagumpala, Murali

    2013-07-15

    The objective of this study was to evaluate local control and patterns of failure in pediatric patients with low-grade glioma (LGG) who received treatment with intensity-modulated radiation therapy (IMRT). In total, 39 children received IMRT after incomplete resection or disease progression. Three methods of target delineation were used. The first was to delineate the gross tumor volume (GTV) and add a 1-cm margin to create the clinical target volume (CTV) (Method 1; n = 19). The second was to add a 0.5-cm margin around the GTV to create the CTV (Method 2; n = 6). The prescribed dose to the GTV was the same as dose to the CTV for both Methods 1 and 2 (median, 50.4 grays [Gy]). The final method was dose painting, in which a GTV was delineated with a second target volume (2TV) created by adding 1 cm to the GTV (Method 3; n = 14). Different doses were prescribed to the GTV (median, 50.4 Gy) and the 2TV (median, 41.4 Gy). The 8-year progression-free and overall survival rates were 78.2% and 93.7%, respectively. Seven failures occurred, all of which were local in the high-dose (≥95%) region of the IMRT field. On multivariate analysis, age ≤5 years at time of IMRT had a detrimental impact on progression-free survival. IMRT provided local control rates comparable to those provided by 2-dimensional and 3-dimensional radiotherapy. Margins ≥1 cm added to the GTV may not be necessary, because excellent local control was achieved by adding a 0.5-cm margin (Method 2) and by dose painting (Method 3). © 2013 American Cancer Society.

  1. CALIBRATED ULTRA FAST IMAGE SIMULATIONS FOR THE DARK ENERGY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruderer, Claudio; Chang, Chihway; Refregier, Alexandre

    2016-01-20

    Image simulations are becoming increasingly important in understanding the measurement process of the shapes of galaxies for weak lensing and the associated systematic effects. For this purpose we present the first implementation of the Monte Carlo Control Loops (MCCL), a coherent framework for studying systematic effects in weak lensing. It allows us to model and calibrate the shear measurement process using image simulations from the Ultra Fast Image Generator (UFig) and the image analysis software SExtractor. We apply this framework to a subset of the data taken during the Science Verification period (SV) of the Dark Energy Survey (DES). Wemore » calibrate the UFig simulations to be statistically consistent with one of the SV images, which covers ∼0.5 square degrees. We then perform tolerance analyses by perturbing six simulation parameters and study their impact on the shear measurement at the one-point level. This allows us to determine the relative importance of different parameters. For spatially constant systematic errors and point-spread function, the calibration of the simulation reaches the weak lensing precision needed for the DES SV survey area. Furthermore, we find a sensitivity of the shear measurement to the intrinsic ellipticity distribution, and an interplay between the magnitude-size and the pixel value diagnostics in constraining the noise model. This work is the first application of the MCCL framework to data and shows how it can be used to methodically study the impact of systematics on the cosmic shear measurement.« less

  2. Gas bubble formation in fused silica generated by ultra-short laser pulses.

    PubMed

    Cvecek, Kristian; Miyamoto, Isamu; Schmidt, Michael

    2014-06-30

    During processing of glass using ultra-fast lasers the formation of bubble-like structures can be observed in several glass types such as fused silica. Their formation can be exploited to generate periodic gratings in glasses but for other glass processing techniques such as waveguide-writing or glass welding by ultra-fast lasers the bubble formation proves often detrimental. In this work we present experiments and their results in order to gain understanding of the origins and on the underlying formation and transportation mechanisms of the gas bubbles.

  3. SU-F-T-372: Surface and Peripheral Dose in Compensator-Based FFF Beam IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D; Feygelman, V; Moros, E

    2016-06-15

    Purpose: Flattening filter free (FFF) beams produce higher dose rates. Combined with compensator IMRT techniques, the dose delivery for each beam can be much shorter compared to the flattened beam MLC-based or compensator-based IMRT. This ‘snap shot’ IMRT delivery is beneficial to patients for tumor motion management. Due to softer energy, surface doses in FFF beam treatment are usually higher than those from flattened beams. Because of less scattering due to no flattening filter, peripheral doses are usually lower in FFF beam treatment. However, in compensator-based IMRT using FFF beams, the compensator is in the beam pathway. Does it introducemore » beam hardening effects and scattering such that the surface dose is lower and peripheral dose is higher compared to FFF beam MLC-based IMRT? Methods: This study applied Monte Carlo techniques to investigate the surface and peripheral doses in compensator-based IMRT using FFF beams and compared it to the MLC-based IMRT using FFF beams and flattened beams. Besides various thicknesses of copper slabs to simulate various thicknesses of compensators, a simple cone-shaped compensator was simulated to mimic a clinical application. The dose distribution in water phantom by the cone-shaped compensator was then simulated by multiple MLC defined FFF and flattened beams with various openings. After normalized to Dmax, the surface and peripheral dose was compared between the FFF beam compensator-based IMRT and FFF/flattened beam MLC-based IMRT. Results: The surface dose at the central 0.5mm depth was close between the compensator and 6FFF MLC dose distributions, and about 8% (of Dmax) higher than the flattened 6MV MLC dose. At 8cm off axis at dmax, the peripheral dose between the 6FFF and flattened 6MV MLC demonstrated similar doses, while the compensator dose was about 1% higher. Conclusion: Compensator does not reduce the surface doses but slightly increases the peripheral doses due to scatter inside compensator.« less

  4. Comparison of IMRT versus 3D-CRT in the treatment of esophagus cancer

    PubMed Central

    Xu, Dandan; Li, Guowen; Li, Hongfei; Jia, Fei

    2017-01-01

    Abstract Background: Esophageal cancer (EC) is a common cancer with high mortality because of its rapid progression and poor prognosis. Radiotherapy is one of the most effective treatments for EC. Three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) are 2 recently developed radiotherapy techniques. IMRT is believed to be more effective than 3D-CRT in target coverage, dose homogeneity, and reducing toxicity to normal organs. However, these advantages have not been demonstrated in the treatment of EC. This meta-analysis was performed to compare IMRT and 3D-CRT in the treatment of EC in terms of dose–volume histograms and outcomes including survival and toxicity. Methods: A literature search was performed in PubMed, Embase, and the Cochrane library databases from their inceptions to Dec 30, 2016. Two authors independently assessed the included studies and extracted data. The average percent irradiated volumes of adjacent noncancerous organs were calculated and compared between IMRT and 3D-CRT. The odds ratio of overall survival (OS), and radiation pneumonitis and radiation esophagitis was also evaluated. Results: Totally 7 studies were included. Of them, 5 studies (80 patients) were included in the dosimetric comparison, 3 studies (871 patients) were included in the OS analysis, and 2 studies (205 patients) were included in the irradiation toxicity analysis. For lung in patients receiving doses ≥20 Gy and heart in patients receiving dose = 50 Gy, the average irradiated volumes of IMRT were less than those from 3D-CRT. IMRT resulted in a higher OS than 3D-CRT. However, no significant difference was observed in the incidence of radiation pneumonitis and radiation esophagitis between 2 radiotherapy techniques. Conclusion: Our data suggest that IMRT-delivered high radiation dose produces significantly less average percent volumes of irradiated lung and heart than 3D-CRT. IMRT is superior to 3D-CRT in the OS of EC while

  5. SU-F-BRE-01: A Rapid Method to Determine An Upper Limit On a Radiation Detector's Correction Factor During the QA of IMRT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamio, Y; Bouchard, H

    2014-06-15

    Purpose: Discrepancies in the verification of the absorbed dose to water from an IMRT plan using a radiation dosimeter can be wither caused by 1) detector specific nonstandard field correction factors as described by the formalism of Alfonso et al. 2) inaccurate delivery of the DQA plan. The aim of this work is to develop a simple/fast method to determine an upper limit on the contribution of composite field correction factors to these discrepancies. Methods: Indices that characterize the non-flatness of the symmetrised collapsed delivery (VSC) of IMRT fields over detector-specific regions of interest were shown to be correlated withmore » IMRT field correction factors. The indices introduced are the uniformity index (UI) and the mean fluctuation index (MF). Each one of these correlation plots have 10 000 fields generated with a stochastic model. A total of eight radiation detectors were investigated in the radial orientation. An upper bound on the correction factors was evaluated by fitting values of high correction factors for a given index value. Results: These fitted curves can be used to compare the performance of radiation dosimeters in composite IMRT fields. Highly water-equivalent dosimeters like the scintillating detector (Exradin W1) and a generic alanine detector have been found to have corrections under 1% over a broad range of field modulations (0 – 0.12 for MF and 0 – 0.5 for UI). Other detectors have been shown to have corrections of a few percent over this range. Finally, a full Monte Carlo simulations of 18 clinical and nonclinical IMRT field showed good agreement with the fitted curve for the A12 ionization chamber. Conclusion: This work proposes a rapid method to evaluate an upper bound on the contribution of correction factors to discrepancies found in the verification of DQA plans.« less

  6. Constraining physical parameters of ultra-fast outflows in PDS 456 with Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Odaka, H.; Done, C.; Gandhi, P.; Takahashi, T.

    2014-07-01

    Deep absorption lines with extremely high velocity of ˜0.3c observed in PDS 456 spectra strongly indicate the existence of ultra-fast outflows (UFOs). However, the launching and acceleration mechanisms of UFOs are still uncertain. One possible way to solve this is to constrain physical parameters as a function of distance from the source. In order to study the spatial dependence of parameters, it is essential to adopt 3-dimensional Monte Carlo simulations that treat radiation transfer in arbitrary geometry. We have developed a new simulation code of X-ray radiation reprocessed in AGN outflow. Our code implements radiative transfer in 3-dimensional biconical disk wind geometry, based on Monte Carlo simulation framework called MONACO (Watanabe et al. 2006, Odaka et al. 2011). Our simulations reproduce FeXXV and FeXXVI absorption features seen in the spectra. Also, broad Fe emission lines, which reflects the geometry and viewing angle, is successfully reproduced. By comparing the simulated spectra with Suzaku data, we obtained constraints on physical parameters. We discuss launching and acceleration mechanisms of UFOs in PDS 456 based on our analysis.

  7. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218.

    PubMed

    Miften, Moyed; Olch, Arthur; Mihailidis, Dimitris; Moran, Jean; Pawlicki, Todd; Molineu, Andrea; Li, Harold; Wijesooriya, Krishni; Shi, Jie; Xia, Ping; Papanikolaou, Nikos; Low, Daniel A

    2018-04-01

    Patient-specific IMRT QA measurements are important components of processes designed to identify discrepancies between calculated and delivered radiation doses. Discrepancy tolerance limits are neither well defined nor consistently applied across centers. The AAPM TG-218 report provides a comprehensive review aimed at improving the understanding and consistency of these processes as well as recommendations for methodologies and tolerance limits in patient-specific IMRT QA. The performance of the dose difference/distance-to-agreement (DTA) and γ dose distribution comparison metrics are investigated. Measurement methods are reviewed and followed by a discussion of the pros and cons of each. Methodologies for absolute dose verification are discussed and new IMRT QA verification tools are presented. Literature on the expected or achievable agreement between measurements and calculations for different types of planning and delivery systems are reviewed and analyzed. Tests of vendor implementations of the γ verification algorithm employing benchmark cases are presented. Operational shortcomings that can reduce the γ tool accuracy and subsequent effectiveness for IMRT QA are described. Practical considerations including spatial resolution, normalization, dose threshold, and data interpretation are discussed. Published data on IMRT QA and the clinical experience of the group members are used to develop guidelines and recommendations on tolerance and action limits for IMRT QA. Steps to check failed IMRT QA plans are outlined. Recommendations on delivery methods, data interpretation, dose normalization, the use of γ analysis routines and choice of tolerance limits for IMRT QA are made with focus on detecting differences between calculated and measured doses via the use of robust analysis methods and an in-depth understanding of IMRT verification metrics. The recommendations are intended to improve the IMRT QA process and establish consistent, and comparable IMRT QA

  8. Automatic learning-based beam angle selection for thoracic IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amit, Guy; Marshall, Andrea; Purdie, Thomas G., E-mail: tom.purdie@rmp.uhn.ca

    Purpose: The treatment of thoracic cancer using external beam radiation requires an optimal selection of the radiation beam directions to ensure effective coverage of the target volume and to avoid unnecessary treatment of normal healthy tissues. Intensity modulated radiation therapy (IMRT) planning is a lengthy process, which requires the planner to iterate between choosing beam angles, specifying dose–volume objectives and executing IMRT optimization. In thorax treatment planning, where there are no class solutions for beam placement, beam angle selection is performed manually, based on the planner’s clinical experience. The purpose of this work is to propose and study a computationallymore » efficient framework that utilizes machine learning to automatically select treatment beam angles. Such a framework may be helpful for reducing the overall planning workload. Methods: The authors introduce an automated beam selection method, based on learning the relationships between beam angles and anatomical features. Using a large set of clinically approved IMRT plans, a random forest regression algorithm is trained to map a multitude of anatomical features into an individual beam score. An optimization scheme is then built to select and adjust the beam angles, considering the learned interbeam dependencies. The validity and quality of the automatically selected beams evaluated using the manually selected beams from the corresponding clinical plans as the ground truth. Results: The analysis included 149 clinically approved thoracic IMRT plans. For a randomly selected test subset of 27 plans, IMRT plans were generated using automatically selected beams and compared to the clinical plans. The comparison of the predicted and the clinical beam angles demonstrated a good average correspondence between the two (angular distance 16.8° ± 10°, correlation 0.75 ± 0.2). The dose distributions of the semiautomatic and clinical plans were equivalent in terms of primary

  9. Automated IMRT planning in Pinnacle : A study in head-and-neck cancer.

    PubMed

    Kusters, J M A M; Bzdusek, K; Kumar, P; van Kollenburg, P G M; Kunze-Busch, M C; Wendling, M; Dijkema, T; Kaanders, J H A M

    2017-12-01

    This study evaluates the performance and planning efficacy of the Auto-Planning (AP) module in the clinical version of Pinnacle 9.10 (Philips Radiation Oncology Systems, Fitchburg, WI, USA). Twenty automated intensity-modulated radiotherapy (IMRT) plans were compared with the original manually planned clinical IMRT plans from patients with oropharyngeal cancer. Auto-Planning with IMRT offers similar coverage of the planning target volume as the original manually planned clinical plans, as well as better sparing of the contralateral parotid gland, contralateral submandibular gland, larynx, mandible, and brainstem. The mean dose of the contralateral parotid gland and contralateral submandibular gland could be reduced by 2.5 Gy and 1.7 Gy on average. The number of monitor units was reduced with an average of 143.9 (18%). Hands-on planning time was reduced from 1.5-3 h to less than 1 h. The Auto-Planning module was able to produce clinically acceptable head and neck IMRT plans with consistent quality.

  10. Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer.

    PubMed

    Abo-Madyan, Yasser; Aziz, Muhammad Hammad; Aly, Moamen M O M; Schneider, Frank; Sperk, Elena; Clausen, Sven; Giordano, Frank A; Herskind, Carsten; Steil, Volker; Wenz, Frederik; Glatting, Gerhard

    2014-03-01

    Second cancer risk after breast conserving therapy is becoming more important due to improved long term survival rates. In this study, we estimate the risks for developing a solid second cancer after radiotherapy of breast cancer using the concept of organ equivalent dose (OED). Computer-tomography scans of 10 representative breast cancer patients were selected for this study. Three-dimensional conformal radiotherapy (3D-CRT), tangential intensity modulated radiotherapy (t-IMRT), multibeam intensity modulated radiotherapy (m-IMRT), and volumetric modulated arc therapy (VMAT) were planned to deliver a total dose of 50 Gy in 2 Gy fractions. Differential dose volume histograms (dDVHs) were created and the OEDs calculated. Second cancer risks of ipsilateral, contralateral lung and contralateral breast cancer were estimated using linear, linear-exponential and plateau models for second cancer risk. Compared to 3D-CRT, cumulative excess absolute risks (EAR) for t-IMRT, m-IMRT and VMAT were increased by 2 ± 15%, 131 ± 85%, 123 ± 66% for the linear-exponential risk model, 9 ± 22%, 82 ± 96%, 71 ± 82% for the linear and 3 ± 14%, 123 ± 78%, 113 ± 61% for the plateau model, respectively. Second cancer risk after 3D-CRT or t-IMRT is lower than for m-IMRT or VMAT by about 34% for the linear model and 50% for the linear-exponential and plateau models, respectively. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. SU-E-J-125: A Novel IMRT Planning Technique to Spare Sacral Bone Marrow in Pelvic Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, S; Bhatia, S; Sun, W

    Purpose: Develop an IMRT planning technique that can preferentially spare sacral bone marrow for pelvic cancer patients. Methods: Six pelvic cancer patients (two each with anal, cervical, and rectal cancer) were enrolled in an IRB approved protocol to obtain FLT PET images at simulation, during, and post chemoradiation therapy. Initially, conventional IMRT plans were created to maintain target coverage and reduce dose to OARs such as bladder, bowel, rectum, and femoral heads. Simulation FLT PET images were used to create IMRT plans to spare bone marrow identified as regions with SUV of 2 or greater (IMRT-BMS) within the pelvic bonesmore » from top of L3 to 5mm below the greater trochanter without compromising PTV coverage or OAR sparing when compared to the initial IMRT plan. IMRT-BMS plans used 8–10 beam angles that surrounded the subject. These plans were used for treatment. Retrospectively, the same simulation FLT PET images were used to create IMRT plans that spared bone marrow located in the sacral pelvic bone region (IMRT-FAN) also without compromising PTV coverage or OAR sparing. IMRT-FAN plans used 16 beam angles every 12° anteriorly from 90° – 270°. Optimization objectives for the sacral bone marrow avoidance region were weighted to reduce ≥V10. Results: IMRT-FAN reduced dose to the sacral bone marrow for all six subjects. The average V5, V10, V20, and V30 differences from the IMRT-BMS plan were −2.2 ± 1.7%, −11.4 ± 3.6%, −17.6 ± 5.1%, and −19.1 ± 8.1% respectively. Average PTV coverage change was 0.5% ± 0.8% from the conventional IMRT plan. Conclusion: An IMRT planning technique that uses beams from the anterior and lateral directions reduced the volume of sacral bone marrow that receives ≤10Gy while maintaining PTV coverage and OAR sparing. Additionally, the volume of sacral bone marrow that received 20 or 30 Gy was also reduced.« less

  12. An ultra-fast fiber optic pressure sensor for blast event measurements

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Zou, Xiaotian; Tian, Ye; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2012-05-01

    Soldiers who are exposed to explosions are at risk of suffering traumatic brain injury (TBI). Since the causal relationship between a blast and TBI is poorly understood, it is critical to have sensors that can accurately quantify the blast dynamics and resulting wave propagation through a helmet and skull that are imparted onto and inside the brain. To help quantify the cause of TBI, it is important to record transient pressure data during a blast event. However, very few sensors feature the capabilities of tracking the dynamic pressure transients due to the rapid change of the pressure during blast events, while not interfering with the physical material layers or wave propagation. In order to measure the pressure transients efficiently, a pressure sensor should have a high resonant frequency and a high spatial resolution. This paper describes an ultra-fast fiber optic pressure sensor based on the Fabry-Perot principle for the application of measuring the rapid pressure changes in a blast event. A shock tube experiment performed in US Army Natick Soldier Research, Development and Engineering Center has demonstrated that the resonant frequency of the sensor is 4.12 MHz, which is relatively close to the designed theoretical value of 4.113 MHz. Moreover, the experiment illustrated that the sensor has a rise time of 120 ns, which demonstrates that the sensor is capable of observing the dynamics of the pressure transient during a blast event.

  13. Optimal Normal Tissue Sparing in Craniospinal Axis Irradiation Using IMRT With Daily Intrafractionally Modulated Junction(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusters, Johannes M.A.M.; Louwe, Rob J.W.; Kollenburg, Peter G.M. van

    2011-12-01

    Purpose: To develop a treatment technique for craniospinal irradiation using intensity-modulated radiotherapy (IMRT) with improved dose homogeneity at the field junction(s), increased target volume conformity, and minimized dose to the organs at risk (OARs). Methods and Materials: Five patients with high-risk medulloblastoma underwent CT simulation in supine position. For each patient, an IMRT plan with daily intrafractionally modulated junction(s) was generated, as well as a treatment plan based on conventional three-dimensional planning (3DCRT). A dose of 39.6 Gy in 22 daily fractions of 1.8 Gy was prescribed. Dose-volume parameters for target volumes and OARs were compared for the two techniques.more » Results: The maximum dose with IMRT was <107% in all patients. V{sub <95} and V{sub >107} were <1 cm{sup 3} for IMRT compared with 3-9 cm{sup 3} for the craniospinal and 26-43 cm{sup 3} for the spinal-spinal junction with 3DCRT. These observations corresponded with a lower homogeneity index and a higher conformity index for the spinal planning target volume with IMRT. IMRT provided considerable sparing of acute and late reacting tissues. V{sub 75} for the esophagus, gastroesophageal junction, and intestine was 81%, 81%, and 22% with 3DCRT versus 5%, 0%, and 1% with IMRT, respectively. V{sub 75} for the heart and thyroid was 42% and 32% vs. 0% with IMRT. Conclusion: IMRT with daily intrafractionally modulated junction results in a superior target coverage and junction homogeneity compared with 3DCRT. A significant dose reduction can be obtained for acute as well as late-reacting tissues.« less

  14. Parotid gland sparing IMRT for head and neck cancer improves xerostomia related quality of life

    PubMed Central

    van Rij, CM; Oughlane-Heemsbergen, WD; Ackerstaff, AH; Lamers, EA; Balm, AJM; Rasch, CRN

    2008-01-01

    Background and purpose To assess the impact of intensity modulated radiotherapy (IMRT) versus conventional radiation on late xerostomia and Quality of Life aspects in head and neck cancer patients. Patients and nethods Questionnaires on xerostomia in rest and during meals were sent to all patients treated between January 1999 and December 2003 with a T1-4, N0-2 M0 head and neck cancer, with parotid gland sparing IMRT or conventional bilateral neck irradiation to a dose of at least 60 Gy, who were progression free and had no disseminated disease (n = 192). Overall response was 85% (n = 163); 97% in the IMRT group (n = 75) and 77% in the control group (n = 88) the median follow-up was 2.6 years. The prevalence of complaints was compared between the two groups, correcting for all relevant factors at multivariate ordinal regression analysis. Results Patients treated with IMRT reported significantly less difficulty transporting and swallowing their food and needed less water for a dry mouth during day, night and meals. They also experienced fewer problems with speech and eating in public. Laryngeal cancer patients in general had fewer complaints than oropharynx cancer patients but both groups benefited from IMRT. Within the IMRT group the xerostomia scores were better for those patients with a mean parotid dose to the "spared" parotid below 26 Gy. Conclusion Parotid gland sparing IMRT for head and neck cancer patients improves xerostomia related quality of life compared to conventional radiation both in rest and during meals. Laryngeal cancer patients had fewer complaints but benefited equally compared to oropharyngeal cancer patients from IMRT. PMID:19068126

  15. Incidental Testicular Irradiation From Prostate IMRT: It All Adds Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Christopher R., E-mail: crking@stanford.ed; Maxim, Peter G.; Hsu, Annie

    Purpose: To identify the technical aspects of image-guided intensity-modulated radiation therapy (IMRT) for localized prostate cancer that could result in a clinically meaningful incidental dose to the testes. Methods and Materials: We examined three sources that contribute incidental dose to the testes, namely, from internal photon scattering from IMRT small field and large pelvic nodal fields with 6 or 15 MV, from neutrons when >10-MV photons are used, and from daily image-guided fiducial-based portal imaging. Using clinical data from 10 patients who received IMRT for prostate cancer, and thermo-luminescent dosimeter measurements in phantom, we estimated the dose to the testesmore » from each of these sources. Results: A mean testicular dose of 172 and 220 cGy results from internal photon scatter for pelvic nodal fields and 68 and 93 cGy for prostate-only fields, for 6- and 15-MV energies, respectively. For 15-MV photon energies, the mean testicular dose from neutrons is 60 cGy for pelvic fields and 31 cGy for prostate-only fields. From daily portal MV image guidance, the testes-in-field mean dose is 350 cGy, whereas the testes-out-of-field scatter dose is 16 cGy. Dosimetric comparisons between IMRT using 6-MV and 15-MV photon energies are not significantly different. Worst-case scenarios can potentially deliver cumulative incidental mean testicular doses of 630 cGy, whereas best-case scenarios can deliver only 84 cGy. Conclusions: Incidental dose to the testes from prostate IMRT can be minimized by opting to restrict the use of elective pelvic nodal fields, by choosing photon energies <10 MV, and by using the smallest port sizes necessary for daily image guidance.« less

  16. Recent Chandra/HETGS and NuSTAR observations of the quasar PDS 456 and its Ultra-Fast Outflow

    NASA Astrophysics Data System (ADS)

    Boissay Malaquin, Rozenn; Marshall, Herman L.; Nowak, Michael A.

    2018-01-01

    Evidence is growing that the interaction between outflows from active galactic nuclei (AGN) and their surrounding medium may play an important role in galaxy evolution, i.e. in the regulation of star formation in galaxies, through AGN feedback processes. Indeed, powerful outflows, such as the ultra-fast outflows (UFOs) that can reach mildly relativistic velocities of 0.2-0.4c, could blow away a galaxy’s reservoir of star-forming gas and hence quench the star formation in host galaxies. The low-redshift (z=0.184) radio-quiet quasar PDS 456 has showed the presence of a strong and blueshifted absorption trough in the Fe K band above 7 keV, that has been associated with the signature of such a fast and highly ionized accretion disk wind of a velocity of 0.25-0.3c. This persistent and variable feature has been detected in many observations of PDS 456, in particular by XMM-Newton, Suzaku and NuSTAR, together with other blueshifted absorption lines in the soft energy band (e.g. Nardini et al. 2015, Reeves et al. 2016). I will present here the results of the analysis of recent and contemporaneous high-resolution Chandra/HETGS and NuSTAR observations of PDS 456, and compare them with the previous findings.

  17. Multiadaptive Plan (MAP) IMRT to Accommodate Independent Movement of the Prostate and Pelvic Lymph Nodes

    DTIC Science & Technology

    2013-06-01

    08-1-0358 TITLE: Multiadaptive Plan (MAP) IMRT to Accommodate Independent Movement of the Prostate and Pelvic Lymph Nodes PRINCIPAL...AND SUBTITLE Multi-Adaptive Plan (MAP) IMRT to Accommodate Independent 5a. CONTRACT NUMBER W81XWH-08-1-0358 Movement of the Prostate and...multi-adaptive plan (MAP) IMRT to accommodate independent movement of the two targeted tumor volumes. In this project, we evaluated two adaptive

  18. Simple and ultra-fast recognition and quantitation of compounded monoclonal antibodies: Application to flow injection analysis combined to UV spectroscopy and matching method.

    PubMed

    Jaccoulet, E; Schweitzer-Chaput, A; Toussaint, B; Prognon, P; Caudron, E

    2018-09-01

    Compounding of monoclonal antibody (mAbs) constantly increases in hospital. Quality control (QC) of the compounded mAbs based on quantification and identification is required to prevent potential errors and fast method is needed to manage outpatient chemotherapy administration. A simple and ultra-fast (less than 30 s) method using flow injection analysis associated to least square matching method issued from the analyzer software was performed and evaluated for the routine hospital QC of three compounded mAbs: bevacizumab, infliximab and rituximab. The method was evaluated through qualitative and quantitative parameters. Preliminary analysis of the UV absorption and second derivative spectra of the mAbs allowed us to adapt analytical conditions according to the therapeutic range of the mAbs. In terms of quantitative QC, linearity, accuracy and precision were assessed as specified in ICH guidelines. Very satisfactory recovery was achieved and the RSD (%) of the intermediate precision were less than 1.1%. Qualitative analytical parameters were also evaluated in terms of specificity, sensitivity and global precision through a matrix of confusion. Results showed to be concentration and mAbs dependant and excellent (100%) specificity and sensitivity were reached within specific concentration range. Finally, routine application on "real life" samples (n = 209) from different batch of the three mAbs complied with the specifications of the quality control i.e. excellent identification (100%) and ± 15% of targeting concentration belonging to the calibration range. The successful use of the combination of second derivative spectroscopy and partial least square matching method demonstrated the interest of FIA for the ultra-fast QC of mAbs after compounding using matching method. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. SU-E-T-59: A Novel Multi-Beam Dynamic IMRT with Fixed-Jaw Technique for Left Breast Cancer Patients with Regional Lymph Nodes Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Yang, Z; Hu, W

    2015-06-15

    Purpose: This study was to investigate the dosimetric benefit of a novel intensity modulated radiation therapy (IMRT) technique for irradiating the left breast and regional lymph node (RLN). Methods: The breast and RLN (internal mammary node and periclavicular node) and normal tissue were contoured for 16 consecutive left-sided breast cancer patients previously treated with RT after lumpectomy. Nine equi-spaced fields IMRT (9 -field IMRT), tangential multi-beam IMRT (tangential-IMRT) and IMRT with fixed-jaw technique (FJT-IMRT) were developed and compared with three-dimensional conformal RT (3DCRT). Prescribed dose was 50 Gy in 25 fractions. Dose distributions and dose volume histograms were used tomore » evaluate plans. Results: All IMRTs achieved similar target coverage and substantially reduced heart V30 and V20 compared to the 3DCRT. The average heart mean dose had different changes, which were 9.0Gy for 9-field IMRT, 5.7Gy for tangential-IMRT and 4.2Gy for FJT-IMRT. For the contralateral lung and breast, the 9-field IMRT has the highest mean dose; and the FJT-IMRT and tangential-IMRT had similar lower value. For the thyroid, both 9-field IMRT and FJT-IMRT had similar V30 (20% and 22%) and were significantly lower than that of 3DCRT (34%) and tangential-IMRT (46%). Moreover, the thyroid mean dose of FJT-IMRT is the lowest. For cervical esophagus and humeral head, the FJT-IMRT also had the best sparing. Conclusion: All 9-field IMRT, tangential-IMRT and FJT-IMRT had superiority for targets coverage and substantially reduced the heart volume of high dose irradiation. The FJT-IMRT showed advantages of avoiding the contralateral breast and lung irradiation and decreasing the thyroid, humeral head and cervical esophagus radiation dose at the expense of a slight monitor units (MUs) increasing.« less

  20. Probing the Physical Properties and Origins of Ultra-fast Outflows in AGN

    NASA Astrophysics Data System (ADS)

    Kraemer, Steven B.; Tombesi, Francesco; Bottorff, Mark

    2017-01-01

    Approximately half of Type 1 AGN possess intrinsic absorption and high resolution UV and X-ray spectroscopy have revealed that the absorbing gas is radially outflowing, with velocities of 100s to 1000s km/sec. X-ray ("warm") absorbers, originally revealed by the presence of bound-free edges of O~VII and O~VIII, are more highly ionized than their UV counterparts, and photo-ionization modeling studies have determined that they have ionization parameters of logU ~ -1 to 1. Recently, muchmore highly ionized gas, with logU > 2, has been detected in XMM-Newton spectra, as evidenced by absorption lines from H- and He-like Fe. Some of these absorbers, ``Ultra Fast Outlows (UFOs)'', have radial velocities up to 0.2c. We have undertaken a detailed photo-ionization study of high-ionization Fe absorbers, both UFOs and non-UFOs, in a sample of AGN observed by XMM-Newton. We find that the UFOs are completely Compton-cooled, unlike the non-UFOS. Both types are too highly ionized to be radiatively accelerated, hence they are more likely driven via Magneto-Hydrodynamic processes. Their large column densities and velocity gradients are consistent with flows along magnetic streamlines emanating from accretion disks. Open questions include: the temporal stability of the UFOs, the apparent lack of non-UFOs in UFO sources, and their relationship to warm absorbers.

  1. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    PubMed

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases. © The Author(s) 2015.

  2. A case study of IMRT planning (Plan B) subsequent to a previously treated IMRT plan (Plan A)

    NASA Astrophysics Data System (ADS)

    Cao, F.; Leong, C.; Schroeder, J.; Lee, B.

    2014-03-01

    Background and purpose: Treatment of the contralateral neck after previous ipsilateral intensity modulated radiation therapy (IMRT) for head and neck cancer is a challenging problem. We have developed a technique that limits the cumulative dose to the spinal cord and brainstem while maximizing coverage of a planning target volume (PTV) in the contralateral neck. Our case involves a patient with right tonsil carcinoma who was given ipsilateral IMRT with 70Gy in 35 fractions (Plan A). A left neck recurrence was detected 14 months later. The patient underwent a neck dissection followed by postoperative left neck radiation to a dose of 66 Gy in 33 fractions (Plan B). Materials and Methods: The spinal cord-brainstem margin (SCBM) was defined as the spinal cord and brainstem with a 1.0 cm margin. Plan A was recalculated on the postoperative CT scan but the fluence outside of SCBM was deleted. A further modification of Plan A resulted in a base plan that was summed with Plan B to evaluate the cumulative dose received by the spinal cord and brainstem. Plan B alone was used to evaluate for coverage of the contralateral neck PTV. Results: The maximum cumulative doses to the spinal cord with 0.5cm margin and brainstem with 0.5cm margin were 51.96 Gy and 45.60 Gy respectively. For Plan B, 100% of the prescribed dose covered 95% of PTVb1. Conclusion: The use of a modified ipsilateral IMRT plan as a base plan is an effective way to limit the cumulative dose to the spinal cord and brainstem while enabling coverage of a PTV in the contralateral neck.

  3. Dosimetric comparison of helical tomotherapy, RapidArc, and a novel IMRT & Arc technique for esophageal carcinoma.

    PubMed

    Martin, Spencer; Chen, Jeff Z; Rashid Dar, A; Yartsev, Slav

    2011-12-01

    To compare radiotherapy treatment plans for mid- and distal-esophageal cancer with primary involvement of the gastroesophageal (GE) junction using a novel IMRT & Arc technique (IMRT & Arc), helical tomotherapy (HT), and RapidArc (RA1 and RA2). Eight patients treated on HT for locally advanced esophageal cancer with radical intent were re-planned for RA and IMRT&Arc. RA plans employed single and double arcs (RA1 and RA2, respectively), while IMRT&Arc plans had four fixed-gantry IMRT fields and a conformal arc. Dose-volume histogram statistics, dose uniformity, and dose homogeneity were analyzed to compare treatment plans. RA2 plans showed significant improvement over RA1 plans in terms of OAR dose and PTV dose uniformity and homogeneity. HT plan provided best dose uniformity (p=0.001) and dose homogeneity (p=0.002) to planning target volume (PTV), while IMRT&Arc and RA2 plans gave lowest dose to lungs among four radiotherapy techniques with acceptable PTV dose coverage. Mean V(10) of the lungs was significantly reduced by the RA2 plans compared to IMRT&Arc (40.3%, p=0.001) and HT (66.2%, p<0.001) techniques. Mean V(15) of the lungs for the RA2 plans also showed significant improvement over the IMRT&Arc (25.2%, p=0.042) and HT (34.8%, p=0.027) techniques. These improvements came at the cost of higher doses to the heart volume compared to HT and IMRT&Arc techniques. Mean lung dose (MLD) for the IMRT&Arc technique (21.2 ± 5.0% of prescription dose) was significantly reduced compared to HT (26.3%, p=0.004), RA1 (23.3%, p=0.028), and RA2 (23.2%, p=0.017) techniques. The IMRT&Arc technique is a good option for treating esophageal cancer with thoracic involvement. It achieved optimal low dose to the lungs and heart with acceptable PTV coverage. HT is a good option for treating esophageal cancer with little thoracic involvement as it achieves superior dose conformality and uniformity. The RA2 technique provided for improved treatment plans using additional arcs with low

  4. MO-FG-202-09: Virtual IMRT QA Using Machine Learning: A Multi-Institutional Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdes, G; Scheuermann, R; Solberg, T

    Purpose: To validate a machine learning approach to Virtual IMRT QA for accurately predicting gamma passing rates using different QA devices at different institutions. Methods: A Virtual IMRT QA was constructed using a machine learning algorithm based on 416 IMRT plans, in which QA measurements were performed using diode-array detectors and a 3%local/3mm with 10% threshold. An independent set of 139 IMRT measurements from a different institution, with QA data based on portal dosimetry using the same gamma index and 10% threshold, was used to further test the algorithm. Plans were characterized by 90 different complexity metrics. A weighted poisonmore » regression with Lasso regularization was trained to predict passing rates using the complexity metrics as input. Results: In addition to predicting passing rates with 3% accuracy for all composite plans using diode-array detectors, passing rates for portal dosimetry on per-beam basis were predicted with an error <3.5% for 120 IMRT measurements. The remaining measurements (19) had large areas of low CU, where portal dosimetry has larger disagreement with the calculated dose and, as such, large errors were expected. These beams need to be further modeled to correct the under-response in low dose regions. Important features selected by Lasso to predict gamma passing rates were: complete irradiated area outline (CIAO) area, jaw position, fraction of MLC leafs with gaps smaller than 20 mm or 5mm, fraction of area receiving less than 50% of the total CU, fraction of the area receiving dose from penumbra, weighted Average Irregularity Factor, duty cycle among others. Conclusion: We have demonstrated that the Virtual IMRT QA can predict passing rates using different QA devices and across multiple institutions. Prediction of QA passing rates could have profound implications on the current IMRT process.« less

  5. Transit dosimetry in IMRT with an a-Si EPID in direct detection configuration

    NASA Astrophysics Data System (ADS)

    Sabet, Mahsheed; Rowshanfarzad, Pejman; Vial, Philip; Menk, Frederick W.; Greer, Peter B.

    2012-08-01

    In this study an amorphous silicon electronic portal imaging device (a-Si EPID) converted to direct detection configuration was investigated as a transit dosimeter for intensity modulated radiation therapy (IMRT). After calibration to dose and correction for a background offset signal, the EPID-measured absolute IMRT transit doses for 29 fields were compared to a MatriXX two-dimensional array of ionization chambers (as reference) using Gamma evaluation (3%, 3 mm). The MatriXX was first evaluated as reference for transit dosimetry. The accuracy of EPID measurements was also investigated by comparison of point dose measurements by an ionization chamber on the central axis with slab and anthropomorphic phantoms in a range of simple to complex fields. The uncertainty in ionization chamber measurements in IMRT fields was also investigated by its displacement from the central axis and comparison with the central axis measurements. Comparison of the absolute doses measured by the EPID and MatriXX with slab phantoms in IMRT fields showed that on average 96.4% and 97.5% of points had a Gamma index<1 in head and neck and prostate fields, respectively. For absolute dose comparisons with anthropomorphic phantoms, the values changed to an average of 93.6%, 93.7% and 94.4% of points with Gamma index<1 in head and neck, brain and prostate fields, respectively. Point doses measured by the EPID and ionization chamber were within 3% difference for all conditions. The deviations introduced in the response of the ionization chamber in IMRT fields were<1%. The direct EPID performance for transit dosimetry showed that it has the potential to perform accurate, efficient and comprehensive in vivo dosimetry for IMRT.

  6. Quality correction factors of composite IMRT beam deliveries: theoretical considerations.

    PubMed

    Bouchard, Hugo

    2012-11-01

    In the scope of intensity modulated radiation therapy (IMRT) dosimetry using ionization chambers, quality correction factors of plan-class-specific reference (PCSR) fields are theoretically investigated. The symmetry of the problem is studied to provide recommendable criteria for composite beam deliveries where correction factors are minimal and also to establish a theoretical limit for PCSR delivery k(Q) factors. The concept of virtual symmetric collapsed (VSC) beam, being associated to a given modulated composite delivery, is defined in the scope of this investigation. Under symmetrical measurement conditions, any composite delivery has the property of having a k(Q) factor identical to its associated VSC beam. Using this concept of VSC, a fundamental property of IMRT k(Q) factors is demonstrated in the form of a theorem. The sensitivity to the conditions required by the theorem is thoroughly examined. The theorem states that if a composite modulated beam delivery produces a uniform dose distribution in a volume V(cyl) which is symmetric with the cylindrical delivery and all beams fulfills two conditions in V(cyl): (1) the dose modulation function is unchanged along the beam axis, and (2) the dose gradient in the beam direction is constant for a given lateral position; then its associated VSC beam produces no lateral dose gradient in V(cyl), no matter what beam modulation or gantry angles are being used. The examination of the conditions required by the theorem lead to the following results. The effect of the depth-dose gradient not being perfectly constant with depth on the VSC beam lateral dose gradient is found negligible. The effect of the dose modulation function being degraded with depth on the VSC beam lateral dose gradient is found to be only related to scatter and beam hardening, as the theorem holds also for diverging beams. The use of the symmetry of the problem in the present paper leads to a valuable theorem showing that k(Q) factors of composite IMRT

  7. IMRT delivers lower radiation doses to dental structures than 3DRT in head and neck cancer patients.

    PubMed

    Fregnani, Eduardo Rodrigues; Parahyba, Cláudia Joffily; Morais-Faria, Karina; Fonseca, Felipe Paiva; Ramos, Pedro Augusto Mendes; de Moraes, Fábio Yone; da Conceição Vasconcelos, Karina Gondim Moutinho; Menegussi, Gisela; Santos-Silva, Alan Roger; Brandão, Thais B

    2016-09-07

    Radiotherapy (RT) is frequently used in the treatment of head and neck cancer, but different side-effects are frequently reported, including a higher frequency of radiation-related caries, what may be consequence of direct radiation to dental tissue. The intensity-modulated radiotherapy (IMRT) was developed to improve tumor control and decrease patient's morbidity by delivering radiation beams only to tumor shapes and sparing normal tissue. However, teeth are usually not included in IMRT plannings and the real efficacy of IMRT in the dental context has not been addressed. Therefore, the aim of this study is to assess whether IMRT delivers lower radiation doses to dental structures than conformal 3D radiotherapy (3DRT). Radiation dose delivery to dental structures of 80 patients treated for head and neck cancers (oral cavity, tongue, nasopharynx and oropharynx) with IMRT (40 patients) and 3DRT (40 patients) were assessed by individually contouring tooth crowns on patients' treatment plans. Clinicopathological data were retrieved from patients' medical files. The average dose of radiation to teeth delivered by IMRT was significantly lower than with 3DRT (p = 0.007); however, only patients affected by nasopharynx and oral cavity cancers demonstrated significantly lower doses with IMRT (p = 0.012 and p = 0.011, respectively). Molars received more radiation with both 3DRT and IMRT, but the latter delivered significantly lower radiation in this group of teeth (p < 0.001), whereas no significant difference was found for the other dental groups. Maxillary teeth received lower doses than mandibular teeth, but only IMRT delivered significantly lower doses (p = 0.011 and p = 0.003). Ipsilateral teeth received higher doses than contralateral teeth with both techniques and IMRT delivered significantly lower radiation than 3DRT for contralateral dental structures (p < 0.001). IMRT delivered lower radiation doses to teeth than 3DRT, but only for some

  8. Dosimetry investigation of MOSFET for clinical IMRT dose verification.

    PubMed

    Deshpande, Sudesh; Kumar, Rajesh; Ghadi, Yogesh; Neharu, R M; Kannan, V

    2013-06-01

    In IMRT, patient-specific dose verification is followed regularly at each centre. Simple and efficient dosimetry techniques play a very important role in routine clinical dosimetry QA. The MOSFET dosimeter offers several advantages over the conventional dosimeters such as its small detector size, immediate readout, immediate reuse, multiple point dose measurements. To use the MOSFET as routine clinical dosimetry system for pre-treatment dose verification in IMRT, a comprehensive set of experiments has been conducted, to investigate its linearity, reproducibility, dose rate effect and angular dependence for 6 MV x-ray beam. The MOSFETs shows a linear response with linearity coefficient of 0.992 for a dose range of 35 cGy to 427 cGy. The reproducibility of the MOSFET was measured by irradiating the MOSFET for ten consecutive irradiations in the dose range of 35 cGy to 427 cGy. The measured reproducibility of MOSFET was found to be within 4% up to 70 cGy and within 1.4% above 70 cGy. The dose rate effect on the MOSFET was investigated in the dose rate range 100 MU/min to 600 MU/min. The response of the MOSFET varies from -1.7% to 2.1%. The angular responses of the MOSFETs were measured at 10 degrees intervals from 90 to 270 degrees in an anticlockwise direction and normalized at gantry angle zero and it was found to be in the range of 0.98 ± 0.014 to 1.01 ± 0.014. The MOSFETs were calibrated in a phantom which was later used for IMRT verification. The measured calibration coefficients were found to be 1 mV/cGy and 2.995 mV/cGy in standard and high sensitivity mode respectively. The MOSFETs were used for pre-treatment dose verification in IMRT. Nine dosimeters were used for each patient to measure the dose in different plane. The average variation between calculated and measured dose at any location was within 3%. Dose verification using MOSFET and IMRT phantom was found to quick and efficient and well suited for a busy radiotherapy

  9. From analytic inversion to contemporary IMRT optimization: Radiation therapy planning revisited from a mathematical perspective

    PubMed Central

    Censor, Yair; Unkelbach, Jan

    2011-01-01

    In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). PMID:21616694

  10. Suzaku Discovery of Ultra-fast Outflows in Radio-loud AGN

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita M.; Tombesi, F.; Reeves, J.; Braito, V.; Gofford, J.; Cappi, M.

    2010-03-01

    We present the results of an analysis of the 3.5--10.5 keV spectra of five bright Broad-Line Radio Galaxies (BLRGs) using proprietary and archival Suzaku observations. In three sources -- 3C 111, 3C 120, and 3C 390.3 -- we find evidence, for the first time in a radio-loud AGN, for absorption features at observed energies 7 keV and 8--9 keV, with high significance according to both the F-test and extensive Monte Carlo simulations (99% or larger). In the remaining two BLRGs, 3C 382 and 3C 445, there is no evidence for such absorption features in the XIS spectra. If interpreted as due to Fe XXV and/or Fe XXVI K-shell resonance lines, the absorption features in 3C 111, 3C 120, and 3C 390.3 imply an origin from an ionized gas outflowing with velocities in the range v 0.04-0.15c, reminiscent of Ultra-Fast Outflows (UFOs) previously observed in radio-quiet Seyfert galaxies. A fit with specific photoionization models gives ionization parameters log ξ 4--5.6 erg s-1 cm and column densities of NH 1022-23 cm-2, similar to the values observed in Seyferts. Based on light travel time arguments, we estimate that the UFOs in the three BLRGs are located within 20--500 gravitational radii from the central black hole, and thus most likely are connected to disk winds/outflows. Our estimates show that the UFOs mass outflow rate is comparable to the accretion rate and their kinetic energy a significant fraction of the AGN bolometric luminosity, making these outflows significant for the global energetic of these systems, in particular for mechanisms of jet formation.

  11. Dosimetric advantages of IMPT over IMRT for laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Luo, W.; Li, J.; Fourkal, E.; Fan, J.; Xu, X.; Chen, Z.; Jin, L.; Price, R.; Ma, C.-M.

    2008-12-01

    As a clinical application of an exciting scientific breakthrough, a compact and cost-efficient proton therapy unit using high-power laser acceleration is being developed at Fox Chase Cancer Center. The significance of this application depends on whether or not it can yield dosimetric superiority over intensity-modulated radiation therapy (IMRT). The goal of this study is to show how laser-accelerated proton beams with broad energy spreads can be optimally used for proton therapy including intensity-modulated proton therapy (IMPT) and achieve dosimetric superiority over IMRT for prostate cancer. Desired energies and spreads with a varying δE/E were selected with the particle selection device and used to generate spread-out Bragg peaks (SOBPs). Proton plans were generated on an in-house Monte Carlo-based inverse-planning system. Fifteen prostate IMRT plans previously used for patient treatment have been included for comparison. Identical dose prescriptions, beam arrangement and consistent dose constrains were used for IMRT and IMPT plans to show the dosimetric differences that were caused only by the different physical characteristics of proton and photon beams. Different optimization constrains and beam arrangements were also used to find optimal IMPT. The results show that conventional proton therapy (CPT) plans without intensity modulation were not superior to IMRT, but IMPT can generate better proton plans if appropriate beam setup and optimization are used. Compared to IMRT, IMPT can reduce the target dose heterogeneity ((D5-D95)/D95) by up to 56%. The volume receiving 65 Gy and higher (V65) for the bladder and the rectum can be reduced by up to 45% and 88%, respectively, while the volume receiving 40 Gy and higher (V40) for the bladder and the rectum can be reduced by up to 49% and 68%, respectively. IMPT can also reduce the whole body non-target tissue dose by up to 61% or a factor 2.5. This study has shown that the laser accelerator under development has a

  12. Seafloor Spreading in the Lau-Havre Backarc Basins: From Fast to Ultra Slow

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Dunn, R. A.; Sleeper, J. D.

    2013-12-01

    2D narrow ridge axis. Effects of the cross trending compositional 'fingers' are minimized and only expressed as second-order geological and geochemical features at the ridge. As opening rates decrease to ultra-slow in the Havre Trough, 2D plate-driven components of mantle advection and melting are minimized. The inherent buoyancy of melts dominate advection and volcanic emplacement allowing a clearer expression of intrinsic 3D compositional and melt generation patterns in the mantle wedge. These observations suggest that mantle wedge structure fundamentally consists of arc-like mantle source compositional fingers trailing basinward from arc front volcanoes within a hydrous but more MORB source-like mantle. Spreading rate controls the degree of expression of these compositional fingers in back-arc volcanic crustal accretion. Fast to intermediate rate spreading imposes a 2D ridge-parallel distribution to crustal domains whereas slow to ultra slow spreading rates allow 3D mantle wedge compositional and melt generation patterns to be expressed.

  13. Fraction-variant beam orientation optimization for non-coplanar IMRT

    NASA Astrophysics Data System (ADS)

    O'Connor, Daniel; Yu, Victoria; Nguyen, Dan; Ruan, Dan; Sheng, Ke

    2018-02-01

    Conventional beam orientation optimization (BOO) algorithms for IMRT assume that the same set of beam angles is used for all treatment fractions. In this paper we present a BOO formulation based on group sparsity that simultaneously optimizes non-coplanar beam angles for all fractions, yielding a fraction-variant (FV) treatment plan. Beam angles are selected by solving a multi-fraction fluence map optimization problem involving 500-700 candidate beams per fraction, with an additional group sparsity term that encourages most candidate beams to be inactive. The optimization problem is solved using the fast iterative shrinkage-thresholding algorithm. Our FV BOO algorithm is used to create five-fraction treatment plans for digital phantom, prostate, and lung cases as well as a 30-fraction plan for a head and neck case. A homogeneous PTV dose coverage is maintained in all fractions. The treatment plans are compared with fraction-invariant plans that use a fixed set of beam angles for all fractions. The FV plans reduced OAR mean dose and D 2 values on average by 3.3% and 3.8% of the prescription dose, respectively. Notably, mean OAR dose was reduced by 14.3% of prescription dose (rectum), 11.6% (penile bulb), 10.7% (seminal vesicle), 5.5% (right femur), 3.5% (bladder), 4.0% (normal left lung), 15.5% (cochleas), and 5.2% (chiasm). D 2 was reduced by 14.9% of prescription dose (right femur), 8.2% (penile bulb), 12.7% (proximal bronchus), 4.1% (normal left lung), 15.2% (cochleas), 10.1% (orbits), 9.1% (chiasm), 8.7% (brainstem), and 7.1% (parotids). Meanwhile, PTV homogeneity defined as D 95/D 5 improved from .92 to .95 (digital phantom), from .95 to .98 (prostate case), and from .94 to .97 (lung case), and remained constant for the head and neck case. Moreover, the FV plans are dosimetrically similar to conventional plans that use twice as many beams per fraction. Thus, FV BOO offers the potential to reduce delivery time for non-coplanar IMRT.

  14. Analysis of Local Control in Patients Receiving IMRT for Resected Pancreatic Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yovino, Susannah; Maidment, Bert W.; Herman, Joseph M.

    2012-07-01

    Purpose: Intensity-modulated radiotherapy (IMRT) is increasingly incorporated into therapy for pancreatic cancer. A concern regarding this technique is the potential for geographic miss and decreased local control. We analyzed patterns of first failure among patients treated with IMRT for resected pancreatic cancer. Methods and Materials: Seventy-one patients who underwent resection and adjuvant chemoradiation for pancreas cancer are included in this report. IMRT was used for all to a median dose of 50.4 Gy. Concurrent chemotherapy was 5-FU-based in 72% of patients and gemcitabine-based in 28%. Results: At median follow-up of 24 months, 49/71 patients (69%) had failed. The predominant failuremore » pattern was distant metastases in 35/71 patients (49%). The most common site of metastases was the liver. Fourteen patients (19%) developed locoregional failure in the tumor bed alone in 5 patients, regional nodes in 4 patients, and concurrently with metastases in 5 patients. Median overall survival (OS) was 25 months. On univariate analysis, nodal status, margin status, postoperative CA 19-9 level, and weight loss during treatment were predictive for OS. On multivariate analysis, higher postoperative CA19-9 levels predicted for worse OS on a continuous basis (p < 0.01). A trend to worse OS was seen among patients with more weight loss during therapy (p = 0.06). Patients with positive nodes and positive margins also had significantly worse OS (HR for death 2.8, 95% CI 1.1-7.5; HR for death 2.6, 95% CI 1.1-6.2, respectively). Grade 3-4 nausea and vomiting was seen in 8% of patients. Late complication of small bowel obstruction occurred in 4 (6%) patients. Conclusions: This is the first comprehensive report of patterns of failure among patients treated with adjuvant IMRT for pancreas cancer. IMRT was not associated with an increase in local recurrences in our cohort. These data support the use of IMRT in the recently activated EORTC/US Intergroup/RTOG 0848 adjuvant

  15. Comparison of dental health of patients with head and neck cancer receiving IMRT vs conventional radiation.

    PubMed

    Duarte, Victor M; Liu, Yuan F; Rafizadeh, Sassan; Tajima, Tracey; Nabili, Vishad; Wang, Marilene B

    2014-01-01

    To analyze the dental health of patients with head and neck cancer who received comprehensive dental care after intensity-modulated radiation therapy (IMRT) compared with radiation therapy (RT). Historical cohort study. Veteran Affairs (VA) hospital. In total, 158 patients at a single VA hospital who were treated with RT or IMRT between 2003 and 2011 were identified. A complete dental evaluation was performed prior to radiation treatment, including periodontal probing, tooth profile, cavity check, and mobility. The dental treatment plan was formulated to eliminate current and potential dental disease. The rates of dental extractions, infections, caries, mucositis, xerostomia, and osteoradionecrosis (ORN) were analyzed, and a comparison was made between patients treated with IMRT and those treated with RT. Of the 158 patients, 99 were treated with RT and 59 were treated with IMRT. Compared with those treated with IMRT, significantly more patients treated with RT exhibited xerostomia (46.5% vs 16.9%; P < .001; odds ratio [OR], 0.24; 95% confidence interval [CI], 0.11-0.52), mucositis (46.5% vs 16.9%; P < .001; OR, 0.24; 95% CI, 0.11-0.52), and ORN (10.1% vs 0%; P = .014; OR, 0.07; 95% CI, 0.00-1.21). However, significantly more patients treated with IMRT were edentulous by the conclusion of radiation treatment (32.2% vs 11.1%; P = .002; OR, 3.8; 95% CI, 1.65-8.73). Patients who were treated with IMRT had fewer instances of dental disease, more salivary flow, and fewer requisite posttreatment extractions compared with those treated with RT. The number of posttreatment extractions has been reduced with the advent of IMRT and more so with a complete dental evaluation prior to treatment.

  16. Esophagus and Contralateral Lung-Sparing IMRT for Locally Advanced Lung Cancer in the Community Hospital Setting.

    PubMed

    Kao, Johnny; Pettit, Jeffrey; Zahid, Soombal; Gold, Kenneth D; Palatt, Terry

    2015-01-01

    The optimal technique for performing lung IMRT remains poorly defined. We hypothesize that improved dose distributions associated with normal tissue-sparing IMRT can allow safe dose escalation resulting in decreased acute and late toxicity. We performed a retrospective analysis of 82 consecutive lung cancer patients treated with curative intent from 1/10 to 9/14. From 1/10 to 4/12, 44 patients were treated with the community standard of three-dimensional conformal radiotherapy or IMRT without specific esophagus or contralateral lung constraints (standard RT). From 5/12 to 9/14, 38 patients were treated with normal tissue-sparing IMRT with selective sparing of contralateral lung and esophagus. The study endpoints were dosimetry, toxicity, and overall survival. Despite higher mean prescribed radiation doses in the normal tissue-sparing IMRT cohort (64.5 vs. 60.8 Gy, p = 0.04), patients treated with normal tissue-sparing IMRT had significantly lower lung V20, V10, V5, mean lung, esophageal V60, and mean esophagus doses compared to patients treated with standard RT (p ≤ 0.001). Patients in the normal tissue-sparing IMRT group had reduced acute grade ≥3 esophagitis (0 vs. 11%, p < 0.001), acute grade ≥2 weight loss (2 vs. 16%, p = 0.04), and late grade ≥2 pneumonitis (7 vs. 21%, p = 0.02). The 2-year overall survival was 52% with normal tissue-sparing IMRT arm compared to 28% for standard RT (p = 0.015). These data provide proof of principle that suboptimal radiation dose distributions are associated with significant acute and late lung and esophageal toxicity that may result in hospitalization or even premature mortality. Strict attention to contralateral lung and esophageal dose-volume constraints are feasible in the community hospital setting without sacrificing disease control.

  17. Rapid 3D in vivo 1H human lung respiratory imaging at 1.5 T using ultra-fast balanced steady-state free precession.

    PubMed

    Pusterla, Orso; Bauman, Grzegorz; Wielpütz, Mark O; Nyilas, Sylvia; Latzin, Philipp; Heussel, Claus P; Bieri, Oliver

    2017-09-01

    To introduce a reproducible, nonenhanced 1H MRI method for rapid in vivo functional assessment of the whole lung at 1.5 Tesla (T). At different respiratory volumes, the pulmonary signal of ultra-fast steady-state free precession (ufSSFP) follows an adapted sponge model, characterized by a respiratory index α. From the model, α reflects local ventilation-related information, is virtually independent from the lung density and thus from the inspiratory phase and breathing amplitude. Respiratory α-mapping is evaluated for healthy volunteers and patients with obstructive lung disease from a set of five consecutive 3D ultra-fast steady-state free precession (ufSSFP) scans performed in breath-hold and at different inspiratory volumes. For the patients, α-maps were compared with CT, dynamic contrast-enhanced MRI (DCE-MRI), and Fourier decomposition (FD). In healthy volunteers, respiratory α-maps showed good reproducibility and were homogeneous on iso-gravitational planes, but showed a gravity-dependent respiratory gradient. In patients with obstructive pulmonary disease, the functional impairment observed in respiratory α-maps was associated with emphysematous regions present on CT images, perfusion defects observable on DCE-MRI, and impairments visualized on FD ventilation and perfusion maps. Respiratory α-mapping derived from multivolumetric ufSSFP provides insights into functional lung impairment and may serve as a reproducible and normative measure for clinical studies. Magn Reson Med 78:1059-1069, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. IMRT QA: Selecting gamma criteria based on error detection sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steers, Jennifer M.; Fraass, Benedick A., E-mail: benedick.fraass@cshs.org

    Purpose: The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique,more » and software utilized in a specific clinic. Methods: A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. Results: This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing

  19. IMRT QA: Selecting gamma criteria based on error detection sensitivity.

    PubMed

    Steers, Jennifer M; Fraass, Benedick A

    2016-04-01

    The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique, and software utilized in a specific clinic. A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose threshold was consistent

  20. From analytic inversion to contemporary IMRT optimization: radiation therapy planning revisited from a mathematical perspective.

    PubMed

    Censor, Yair; Unkelbach, Jan

    2012-04-01

    In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Ultra-FDst Object Recognition from Few Spikes

    DTIC Science & Technology

    2005-07-01

    Ultra-fast Object Recognition from Few Spikes Chou Hung, Gabriel Kreiman , Tomaso Poggio & James J. DiCarlo AI Memo 2005-022 July 2005 CBCL Memo 253...authors, Chou Hung and Gabriel Kreiman , contributed equally to this work. Supplementary Material is available at http://ramonycajal.mit.edu... kreiman /resources/ultrafast/. _____________________________________________________________________________ This report describes research done at

  2. Ultra-fast magnetic resonance encephalography of physiological brain activity – Glymphatic pulsation mechanisms?

    PubMed Central

    Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2015-01-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001–0.023 Hz) and low frequency (LF 0.023–0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases. PMID:26690495

  3. Ultra-fast DNA-based multiplex convection PCR method for meat species identification with possible on-site applications.

    PubMed

    Song, Kyung-Young; Hwang, Hyun Jin; Kim, Jeong Hee

    2017-08-15

    The aim of this study was to develop an ultra-fast molecular detection method for meat identification using convection Palm polymerase chain reaction (PCR). The mitochondrial cytochrome b (Cyt b) gene was used as a target gene. Amplicon size was designed to be different for beef, lamb, and pork. When these primer sets were used, each species-specific set specifically detected the target meat species in singleplex and multiplex modes in a 24min PCR run. The detection limit was 1pg of DNA for each meat species. The convection PCR method could detect as low as 1% of meat adulteration. The stability of the assay was confirmed using thermal processed meats. We also showed that direct PCR can be successfully performed with mixed meats and food samples. These results suggest that the developed assay may be useful in the authentication of meats and meat products in laboratory and rapid on-site applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Independent calculation-based verification of IMRT plans using a 3D dose-calculation engine.

    PubMed

    Arumugam, Sankar; Xing, Aitang; Goozee, Gary; Holloway, Lois

    2013-01-01

    Independent monitor unit verification of intensity-modulated radiation therapy (IMRT) plans requires detailed 3-dimensional (3D) dose verification. The aim of this study was to investigate using a 3D dose engine in a second commercial treatment planning system (TPS) for this task, facilitated by in-house software. Our department has XiO and Pinnacle TPSs, both with IMRT planning capability and modeled for an Elekta-Synergy 6MV photon beam. These systems allow the transfer of computed tomography (CT) data and RT structures between them but do not allow IMRT plans to be transferred. To provide this connectivity, an in-house computer programme was developed to convert radiation therapy prescription (RTP) files as generated by many planning systems into either XiO or Pinnacle IMRT file formats. Utilization of the technique and software was assessed by transferring 14 IMRT plans from XiO and Pinnacle onto the other system and performing 3D dose verification. The accuracy of the conversion process was checked by comparing the 3D dose matrices and dose volume histograms (DVHs) of structures for the recalculated plan on the same system. The developed software successfully transferred IMRT plans generated by 1 planning system into the other. Comparison of planning target volume (TV) DVHs for the original and recalculated plans showed good agreement; a maximum difference of 2% in mean dose, - 2.5% in D95, and 2.9% in V95 was observed. Similarly, a DVH comparison of organs at risk showed a maximum difference of +7.7% between the original and recalculated plans for structures in both high- and medium-dose regions. However, for structures in low-dose regions (less than 15% of prescription dose) a difference in mean dose up to +21.1% was observed between XiO and Pinnacle calculations. A dose matrix comparison of original and recalculated plans in XiO and Pinnacle TPSs was performed using gamma analysis with 3%/3mm criteria. The mean and standard deviation of pixels passing gamma

  5. Preliminary results on performance of new ultra-fast static positioning module - POZGEO-2 in areas outside the ASG-EUPOS network

    NASA Astrophysics Data System (ADS)

    Paziewski, Jacek; Krukowska, Marta; Wielgosz, Paweł

    2014-06-01

    The presented preliminary research concerns the accuracy and reliability of new ultra-fast static positioning module - POZGEO-2 - in case of processing GPS data collected outside the ASG-EUPOS network. Such a case requires extrapolation of the network-derived atmospheric corrections which limits correction accuracy and, therefore, has adverse effect on the carrier phase ambiguity resolution. The presented processing tests are based on processing 5-minute long observing sessions and show that precise positioning can be supported up to 35 km from the ASG-EUPOS borders. This means that precise positioning with POZGEO-2 module can be assured for the most of the border areas of Poland. W pracy prezentowane są badania dotyczące dokładności i wiarygodności pozycji wyznaczanej z wykorzystaniem nowego modułu ultra-szybkiego pozycjonowania - POZGEO-2 opracowanego dla systemu ASG-EUPOS. Przedstawione testy obliczeniowe dotyczą szczególnego przypadku wyznaczania pozycji, gdy użytkownik znajduje się poza granicami sieci stacji referencyjnych. W takich warunkach wymagana jest ekstrapolacja sieciowych poprawek atmosferycznych. Wpływa to negatywnie na dokładność tych poprawek i może doprowadzić do sytuacji, w której wyznaczenie nieoznaczoności będzie niemożliwe. Prezentowane badania oparte są na pięciominutowych sesjach obserwacyjnych i pokazują, że poprawki mogą być ekstrapolowane dla obszarów położonych do około 35 km od granic sieci ASG-EUPOS. Oznacza to, że w praktyce precyzyjne pozycjonowanie ultra-szybkie z użyciem modułu POZGEO-2 może być zapewnione dla niemal całego obszaru Polski

  6. SU-E-T-126: Dosimetric Comparisons of VMAT, IMRT and 3DCRT for Locally Advanced Rectal Cancer with Simultaneous Integrated Boost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J; Wang, J; Zhang, Z

    2014-06-01

    Purpose: The purpose of this study is to compare the dosimetric differences among volumetric modulated arc therapy (VMAT), fixed-field intensity modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for the preoperative locally advanced rectal cancer (LARC). Methods: Ten LARC patients treated in our department using the simultaneous escalate strategy were retrospectively analyzed in this study. All patients had T3 with N+/− and were treated with IMRT. Two additional VMAT and 3DCRT plans were created for each patient. Both IMRT and VMAT had similar optimization objectives. The prescription was 50Gy to the PTV and 55Gy to the GTV. The target coveragemore » and organs at risk were compared for all the techniques.The paired, two-tailed Wilcoxcon signed-rank test was applied for statistical analysis. Results: IMRT and VMAT plans achieved comparable tumor response except for the conformality index (1.07 vs 1.19 and 1.08 vs 1.03 of IMRT vs VMAT for PTV-G and PTV-C respectively). Compared to VMAT, IMRT showed superior or similar dose sparing in the small bowel, bladder, femoral head. Both IMRT and VMAT had better organs at risk sparing and homogeneity index of PTV-G. Conclusion: All 3DCRT, IMRT and VMAT meet the prescript. The IMRT and VMAT provided comparable dosemitric parameters for target volume. IMRT shows better sparing for small bowel, bladder, femoral heads and normal tissue to 3DCRT and VMAT.« less

  7. Mechanochemical coupling and bi-phasic force-velocity dependence in the ultra-fast ring ATPase SpoIIIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ninning; Chistol, Gheorghe; Cui, Yuanbo

    Multi-subunit ring-shaped ATPases are molecular motors that harness chemical free energy to perform vital mechanical tasks such as polypeptide translocation, DNA unwinding, and chromosome segregation. Previously we reported the intersubunit coordination and stepping behavior of the hexameric ring-shaped ATPase SpoIIIE (Liu et al., 2015). Here we use optical tweezers to characterize the motor’s mechanochemistry. Analysis of the motor response to external force at various nucleotide concentrations identifies phosphate release as the likely force-generating step. Analysis of SpoIIIE pausing indicates that pauses are off-pathway events. Characterization of SpoIIIE slipping behavior reveals that individual motor subunits engage DNA upon ATP binding. Furthermore,more » we find that SpoIIIE’s velocity exhibits an intriguing bi-phasic dependence on force. We hypothesize that this behavior is an adaptation of ultra-fast motors tasked with translocating DNA from which they must also remove DNA-bound protein roadblocks. Based on these results, we formulate a comprehensive mechanochemical model for SpoIIIE.« less

  8. Mechanochemical coupling and bi-phasic force-velocity dependence in the ultra-fast ring ATPase SpoIIIE

    DOE PAGES

    Liu, Ninning; Chistol, Gheorghe; Cui, Yuanbo; ...

    2018-03-05

    Multi-subunit ring-shaped ATPases are molecular motors that harness chemical free energy to perform vital mechanical tasks such as polypeptide translocation, DNA unwinding, and chromosome segregation. Previously we reported the intersubunit coordination and stepping behavior of the hexameric ring-shaped ATPase SpoIIIE (Liu et al., 2015). Here we use optical tweezers to characterize the motor’s mechanochemistry. Analysis of the motor response to external force at various nucleotide concentrations identifies phosphate release as the likely force-generating step. Analysis of SpoIIIE pausing indicates that pauses are off-pathway events. Characterization of SpoIIIE slipping behavior reveals that individual motor subunits engage DNA upon ATP binding. Furthermore,more » we find that SpoIIIE’s velocity exhibits an intriguing bi-phasic dependence on force. We hypothesize that this behavior is an adaptation of ultra-fast motors tasked with translocating DNA from which they must also remove DNA-bound protein roadblocks. Based on these results, we formulate a comprehensive mechanochemical model for SpoIIIE.« less

  9. Ultra-fast LC-ESI-MS/MS method for the simultaneous determination of six highly toxic Aconitum alkaloids from Aconiti kusnezoffii radix in rat plasma and its application to a pharmacokinetic study.

    PubMed

    Liu, Jingjing; Li, Qing; Yin, Yidi; Liu, Ran; Xu, Huarong; Bi, Kaishun

    2014-01-01

    A fast, sensitive, and efficient ultra-fast LC-ESI-MS/MS method was developed for the simultaneous quantitation of six highly toxic Aconitum alkaloids, that is, aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, in rat plasma after oral administration of crude ethanol extracts from Aconiti kusnezoffii radix by ultrasonic extraction, reflux extraction for 1 h, and reflux extraction for 3 h, respectively. The separation of six Aconitum alkaloids and aminopyrine (internal standard) was performed on an InertSustain® C18 column, and the quantification of the analytes was performed on a 4000Q ultra-fast LC-MS/MS system with turbo ion spray source in the positive ion and multiple-reaction monitoring mode. Absolute recoveries ranged within 65.06-85.1% for plasma samples. The intra- and interday precision and accuracy of analytes were satisfactory. The methods were validated with sensitivity reaching the lower LOQ for aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, which were 0.025, 0.025, 0.050, 0.025, 0.025, and 0.100 ng/mL, respectively. The method was successfully applied to a pharmacokinetic study of six Aconitum alkaloids in rat plasma after oral administration of crude ethanol extracts from the raw root of Aconitum kusnezoffii Reichb. by three different extraction processes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation.

    PubMed

    Han, Xu; Ma, Hongbin; Jiao, Anjun; Critser, John K

    2008-06-01

    Theoretically, direct vitrification of cell suspensions with relatively low concentrations ( approximately 1 M) of permeating cryoprotective agents (CPA) is suitable for cryopreservation of almost all cell types and can be accomplished by ultra-fast cooling rates that are on the order of 10(6-7) K/min. However, the methods and devices currently available for cell cryopreservation cannot achieve such high cooling rates. In this study, we constructed a novel cryogenic oscillating heat pipe (COHP) using liquid nitrogen as its working fluid and investigated its heat transport capability to assess its application for achieving ultra-fast cooling rates for cell cryopreservation. The experimental results showed that the apparent heat transfer coefficient of the COHP can reach 2 x 10(5) W/m(2).K, which is two orders of the magnitude higher than traditional heat pipes. Theoretical analyzes showed that the average local heat transfer coefficient in the thin film evaporation region of the COHP can reach 1.2 x 10(6) W/m(2).K, which is approximately 10(3) times higher than that achievable with standard pool-boiling approaches. Based on these results, a novel device design applying the COHP and microfabrication techniques is proposed and its efficiency for cell vitrification is demonstrated through numerical simulation. The estimated average cooling rates achieved through this approach is 10(6-7)K/min, which is much faster than the currently available methods and sufficient for achieving vitrification with relatively low concentrations of CPA.

  11. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation☆

    PubMed Central

    Han, Xu; Ma, Hongbin; Jiao, Anjun; Critser, John K.

    2010-01-01

    Theoretically, direct vitrification of cell suspensions with relatively low concentrations (~1 M) of permeating cryoprotective agents (CPA) is suitable for cryopreservation of almost all cell types and can be accomplished by ultra-fast cooling rates that are on the order of 106–7 K/min. However, the methods and devices currently available for cell cryopreservation cannot achieve such high cooling rates. In this study, we constructed a novel cryogenic oscillating heat pipe (COHP) using liquid nitrogen as its working fluid and investigated its heat transport capability to assess its application for achieving ultra-fast cooling rates for cell cryopreservation. The experimental results showed that the apparent heat transfer coefficient of the COHP can reach 2 × 105 W/m2·K, which is two orders of the magnitude higher than traditional heat pipes. Theoretical analyzes showed that the average local heat transfer coefficient in the thin film evaporation region of the COHP can reach 1.2 × 106 W/m2·K, which is approximately 103 times higher than that achievable with standard pool-boiling approaches. Based on these results, a novel device design applying the COHP and microfabrication techniques is proposed and its efficiency for cell vitrification is demonstrated through numerical simulation. The estimated average cooling rates achieved through this approach is 106–7 K/min, which is much faster than the currently available methods and sufficient for achieving vitrification with relatively low concentrations of CPA. PMID:18430413

  12. Effect of Ultra-Fast Cooling on Microstructure and Properties of High Strength Steel for Shipbuilding

    NASA Astrophysics Data System (ADS)

    Zhou, Cheng; Ye, Qibin; Yan, Ling

    The effect of ultra-fast cooling(UFC) and conventional accelerated cooling(AcC) on the mechanical properties and microstructure of controlled rolled AH32 grade steel plates on industrial scale were compared using tensile test, Charpy impact test, welding thermal simulation, and microscopic analysis. The results show that the properties of the plate produced by UFC are improved considerably comparing to that by AcC. The yield strength is increased with 54 MPa without deterioration in the ductility and the impact energy is improved to more than 260 J at -60 °C with much lower ductile-to-brittle transition temperature(DBTT). The ferrite grain size is refined to ASTM No. 11.5 in the UFC steel with uniform microstructure throughout the thickness direction, while that of the AcC steel is ASTM No. 9.5. The analysis of nucleation kinetics of α-ferrite indicates that the microstructure is refined due to the increased nucleation rate of α-ferrite by much lower γ→α transition temperature through the UFC process. The Hall-Petch effect is quantified for the improvement of the strength and toughness of the UFC steel attributed to the grain refinement.

  13. Comparative Effectiveness Study of Patient-Reported Outcomes following Proton Therapy or IMRT for Prostate Cancer

    PubMed Central

    Hoppe, Bradford S.; Michalski, Jeff M.; Mendenhall, Nancy P.; Morris, Christopher G.; Henderson, Randal H.; Nichols, Romaine C.; Mendenhall, William M.; Williams, Christopher; Regan, Meredith M.; Chipman, Jonathan; Crociani, Catrina; Sandler, Howard M.; Sanda, Martin G.; Hamstra, Daniel A.

    2014-01-01

    Background Data continues to emerge on the relative merits of different treatment modalities for prostate cancer. The purpose of this study is to compare patient-reported quality-of-life outcomes (QOL) after proton therapy (PT) and intensity-modulated radiation therapy (IMRT) for prostate cancer. Methods A comparison was performed of prospectively collected QOL data using the expanded prostate cancer index (EPIC) questionnaire. QOL data was collected during the first 2 years following treatment for men treated with PT and IMRT. PT was delivered to 1,243 men at a single center to 76-82Gy. IMRT was delivered to 204 men included in the Prostate Cancer Quality Assurance Study (PROSTQA) in doses of 75.6-79.4Gy.The Wilcoxon rank sum test was used to compare EPIC outcomes by modality using baseline-adjusted scores at different time points. Individual questions were assessed by converting to binary outcomes and testing with generalized estimating equations. Results No differences in changes in summary scores for bowel, urinary incontinence, urinary irritative/obstructive, and sexual domains were seen between the two cohorts. However, more men treated with IMRT reported moderate/big problems with rectal urgency (p=0.02) and frequent bowel movements (p=0.05) than men treated with PT. Conclusions There were no differences in QOL summary scores between the IMRT and PT cohorts during early follow-up up to 2-years. Response to individual questions suggests possible differences in specific bowel symptoms between the two cohorts. These outcomes highlight the need for further comparative studies of PT and IMRT. PMID:24382757

  14. Reduced Feeding Tube Duration with IMRT for Head and Neck Cancer: A SEER-Medicare Analysis

    PubMed Central

    Beadle, Beth M.; Liao, Kai-Ping; Giordano, Sharon H.; Garden, Adam S.; Hutcheson, Katherine A.; Lai, Stephen Y.; Guadagnolo, B. Ashleigh

    2016-01-01

    Background Intensity-modulated radiation therapy (IMRT) is a technologically advanced and resource-intensive method of delivering radiation therapy (RT) used to minimize toxicity for patients with head and neck cancers (HNC). Dependence on feeding tubes is a significant marker of toxicity of RT. The goal of this analysis was to compare the placement and duration of feeding tube use for patients with HNC from 1999-2011. Methods The cohort, demographics, and cancer-related variables were determined using the linked Surveillance, Epidemiology, and End Results (SEER)-Medicare database and analyzed regarding treatment details using claims data. Results A total of 2993 patients were identified. With a median follow-up of 47 months, 54.4% of patients had a feeding tube placed. The median duration from feeding tube placement to removal was 277 days. On zero-inflated negative binomial regression, patients treated with IMRT and 3DRT (non-IMRT) had similar rates of feeding tube placement (odds ratio (OR) 1.10; p=.35); however, patients treated with 3DRT had the feeding tube in place 1.18 times longer than those treated with IMRT (p=.03). The difference was only seen amongst patients treated with definitive radiation; patients treated with surgery and adjuvant radiation had no statistically significant difference in placement or duration. Conclusions Patients with HNC treated with definitive IMRT had significantly shorter duration of feeding tubes in place than those treated with 3DRT. These data suggest that there may be significant quality of life benefits to IMRT with respect to long-term swallowing function for patients. PMID:27662641

  15. Intensity-modulated radiation therapy (IMRT) in the treatment of anal cancer: Toxicity and clinical outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milano, Michael T.; Jani, Ashesh B.; Farrey, Karl J.

    2005-10-01

    Purpose: To assess survival, local control, and toxicity of intensity modulated radiation therapy (IMRT) in squamous cell carcinoma of the anal canal. Methods and Materials: Seventeen patients were treated with nine-field IMRT plans. Thirteen received concurrent 5-fluorouracil and mitomycin C, whereas 1 patient received 5-fluorouracil alone. Seven patients were planned with three-dimensional anteroposterior/posterior-anterior (AP/PA) fields for dosimetric comparison to IMRT. Results: Compared with AP/PA, IMRT reduced the mean and threshold doses to small bowel, bladder, and genitalia. Treatment was well tolerated, with no Grade {>=}3 acute nonhematologic toxicity. There were no treatment breaks attributable to gastrointestinal or skin toxicity. Ofmore » patients who received mitomycin C, 38% experienced Grade 4 hematologic toxicity. IMRT did not afford bone marrow sparing, possibly resulting from the clinical decision to prescribe 45 Gy to the whole pelvis in most patients, vs. the Radiation Therapy Oncology Group-recommended 30.6 Gy whole pelvic dose. Three of 17 patients, who did not achieve a complete response, proceeded to an abdominoperineal resection and colostomy. At a median follow-up of 20.3 months, there were no other local failures. Two-year overall survival, disease-free survival, and colostomy-free survival are: 91%, 65%, and 82% respectively. Conclusions: In this hypothesis-generating analysis, the acute toxicity and clinical outcome with IMRT in the treatment of anal cancer is encouraging. Compared with historical controls, local control is not compromised despite efforts to increase conformality and reduce normal structure dose.« less

  16. Total dural irradiation: RapidArc versus static-field IMRT: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Paul J., E-mail: paulj.kelly@hse.ie; Mannarino, Edward; Lewis, John Henry

    2012-07-01

    The purpose of this study was to compare conventional fixed-gantry angle intensity-modulated radiation therapy (IMRT) with RapidArc for total dural irradiation. We also hypothesize that target volume-individualized collimator angles may produce substantial normal tissue sparing when planning with RapidArc. Five-, 7-, and 9-field fixed-gantry angle sliding-window IMRT plans were generated for comparison with RapidArc plans. Optimization and normal tissue constraints were constant for all plans. All plans were normalized so that 95% of the planning target volume (PTV) received at least 100% of the dose. RapidArc was delivered using 350 Degree-Sign clockwise and counterclockwise arcs. Conventional collimator angles of 45more » Degree-Sign and 315 Degree-Sign were compared with 90 Degree-Sign on both arcs. Dose prescription was 59.4 Gy in 33 fractions. PTV metrics used for comparison were coverage, V{sub 107}%, D1%, conformality index (CI{sub 95}%), and heterogeneity index (D{sub 5}%-D{sub 95}%). Brain dose, the main challenge of this case, was compared using D{sub 1}%, Dmean, and V{sub 5} Gy. Dose to optic chiasm, optic nerves, globes, and lenses was also compared. The use of unconventional collimator angles (90 Degree-Sign on both arcs) substantially reduced dose to normal brain. All plans achieved acceptable target coverage. Homogeneity was similar for RapidArc and 9-field IMRT plans. However, heterogeneity increased with decreasing number of IMRT fields, resulting in unacceptable hotspots within the brain. Conformality was marginally better with RapidArc relative to IMRT. Low dose to brain, as indicated by V5Gy, was comparable in all plans. Doses to organs at risk (OARs) showed no clinically meaningful differences. The number of monitor units was lower and delivery time was reduced with RapidArc. The case-individualized RapidArc plan compared favorably with the 9-field conventional IMRT plan. In view of lower monitor unit requirements and shorter delivery time

  17. Microionization chamber for reference dosimetry in IMRT verification: clinical implications on OAR dosimetric errors

    NASA Astrophysics Data System (ADS)

    Sánchez-Doblado, Francisco; Capote, Roberto; Leal, Antonio; Roselló, Joan V.; Lagares, Juan I.; Arráns, Rafael; Hartmann, Günther H.

    2005-03-01

    Intensity modulated radiotherapy (IMRT) has become a treatment of choice in many oncological institutions. Small fields or beamlets with sizes of 1 to 5 cm2 are now routinely used in IMRT delivery. Therefore small ionization chambers (IC) with sensitive volumes <=0.1 cm3are generally used for dose verification of an IMRT treatment. The measurement conditions during verification may be quite different from reference conditions normally encountered in clinical beam calibration, so dosimetry of these narrow photon beams pertains to the so-called non-reference conditions for beam calibration. This work aims at estimating the error made when measuring the organ at risk's (OAR) absolute dose by a micro ion chamber (μIC) in a typical IMRT treatment. The dose error comes from the assumption that the dosimetric parameters determining the absolute dose are the same as for the reference conditions. We have selected two clinical cases, treated by IMRT, for our dose error evaluations. Detailed geometrical simulation of the μIC and the dose verification set-up was performed. The Monte Carlo (MC) simulation allows us to calculate the dose measured by the chamber as a dose averaged over the air cavity within the ion-chamber active volume (Dair). The absorbed dose to water (Dwater) is derived as the dose deposited inside the same volume, in the same geometrical position, filled and surrounded by water in the absence of the ion chamber. Therefore, the Dwater/Dair dose ratio is the MC estimator of the total correction factor needed to convert the absorbed dose in air into the absorbed dose in water. The dose ratio was calculated for the μIC located at the isocentre within the OARs for both clinical cases. The clinical impact of the calculated dose error was found to be negligible for the studied IMRT treatments.

  18. WE-D-BRA-06: IMRT QA with ArcCHECK: The MD Anderson Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristophanous, M; Suh, Y; Chi, P

    Purpose: The objective of this project was to report our initial IMRT QA results and experience with the SunNuclear ArcCHECK. Methods: Three thousand one-hundred and sixteen cases were treated with IMRT or VMAT at our institution between October 2013 and September 2014. All IMRT/VMAT treatment plans underwent Quality Assurance (QA) using ArcCHECK prior to therapy. For clinical evaluation, a Gamma analysis is performed following QA delivery using the SNC Patient software (Sun Nuclear Corp) at the 3%/3mm level. QA Gamma pass rates were analyzed based on categories of treatment site, technique, and type of MLCs. Our current clinical threshold formore » passing a QA (Tclin) is set at a Gamma pass rate greater than 90%. We recorded the percent of failures for each category, as well as the Gamma pass rate threshold that would Result in 95% of QAs to pass (T95). Results: Using Tclin a failure rate of 5.9% over all QAs was observed. The highest failure rate was observed for gynecological (22%) and the lowest for CNS (0.9%) treatments. T95 was 91% over all QAs and ranged from 73% (gynecological) to 96.5% (CNS) for individual treatments sites. T95 was lower for IMRT and non-HD (high definition) MLCs at 88.5% and 94.5%, respectively, compared to 92.4% and 97.1% for VMAT and HD MLC treatments, respectively. There was a statistically significant difference between the passing rates for IMRT vs. VMAT and for HD MLCs vs. non-HD MLCs (p-values << 0.01). Gynecological, IMRT, and HD MLC treatments typically include more plans with larger field sizes. Conclusion: On average, Tclin with ArcCHECK was consistent with T95, as well as the 90% action level reported in TG-119. However, significant variations between the examined categories suggest a link between field size and QA passing rates and may warrant field size-specific passing rate thresholds.« less

  19. Dose Volume Histogram (DVH) Analysis in Intensity Modulation Radiation Therapy (IMRT) Treatments for Prostate Cancers

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-05-01

    Studies have shown that as many as 8 out of 10 men had prostate cancer by age 80.Prostate cancer begins with small changes (prostatic intraepithelial neoplasia(PIN)) in size and shape of prostate gland cells,known as prostate adenocarcinoma.With advent in technology, prostate cancer has been the most widely used application of IMRT with the longest follow-up periods.Prostate cancer fits the ideal target criteria for IMRT of adjacent sensitive dose-limiting tissue (rectal, bladder).A retrospective study was performed on 10 prostate cancer patients treated with radiation to a limited pelvic field with a standard 4 field arrangements at dose 45 Gy, and an IMRT boost field to a total isocenter dose of 75 Gy.Plans were simulated for 4 field and the supplementary IMRT treatments with proposed dose delivery at 1.5 Gy/fraction in BID basis.An automated DVH analysis software, HART (S. Jang et al., 2008,Med Phys 35,p.2812)was used to perform DVH assessments in IMRT plans.A statistical analysis of dose coverage at targets in prostate gland and neighboring critical organs,and the plan indices(homogeneity, conformality etc) evaluations were also performed using HART extracted DVH statistics.Analyzed results showed a better correlation with the proposed outcomes (TCP, NTCP) of the treatments.

  20. Dosimetric comparison of 3D conformal, IMRT, and V-MAT techniques for accelerated partial-breast irradiation (APBI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jian-Jian; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai

    2014-07-01

    The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies includingmore » gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10 Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V{sub 10}) or 20 Gy (V{sub 20}) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V{sub 5} and D{sub 5}). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral

  1. A difference-matrix metaheuristic for intensity map segmentation in step-and-shoot IMRT delivery.

    PubMed

    Gunawardena, Athula D A; D'Souza, Warren D; Goadrich, Laura D; Meyer, Robert R; Sorensen, Kelly J; Naqvi, Shahid A; Shi, Leyuan

    2006-05-21

    At an intermediate stage of radiation treatment planning for IMRT, most commercial treatment planning systems for IMRT generate intensity maps that describe the grid of beamlet intensities for each beam angle. Intensity map segmentation of the matrix of individual beamlet intensities into a set of MLC apertures and corresponding intensities is then required in order to produce an actual radiation delivery plan for clinical use. Mathematically, this is a very difficult combinatorial optimization problem, especially when mechanical limitations of the MLC lead to many constraints on aperture shape, and setup times for apertures make the number of apertures an important factor in overall treatment time. We have developed, implemented and tested on clinical cases a metaheuristic (that is, a method that provides a framework to guide the repeated application of another heuristic) that efficiently generates very high-quality (low aperture number) segmentations. Our computational results demonstrate that the number of beam apertures and monitor units in the treatment plans resulting from our approach is significantly smaller than the corresponding values for treatment plans generated by the heuristics embedded in a widely use commercial system. We also contrast the excellent results of our fast and robust metaheuristic with results from an 'exact' method, branch-and-cut, which attempts to construct optimal solutions, but, within clinically acceptable time limits, generally fails to produce good solutions, especially for intensity maps with more than five intensity levels. Finally, we show that in no instance is there a clinically significant change of quality associated with our more efficient plans.

  2. SU-G-TeP4-02: A Method for Evaluating the Direct Impact of Failed IMRT QAs On Patient Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geneser, S; Butkus, M

    Purpose: We developed a method to calculate patient doses corresponding to IMRT QA measurements in order to determine and assess the actual dose delivered for plans with failed (or borderline) IMRT QA. This work demonstrates the feasibility of automatically computing delivered patient dose from portal dosimetry measurements in the Varian TPS system, which would provide a valuable and clinically viable IMRT QA tool for physicists and physicians. Methods: IMRT QA fluences were measured using portal dosimetry, processed using in-house matlab software, and imported back into Eclipse to calculate dose on the planning CT. To validate the proposed workflow, the Eclipsemore » calculated portal dose for a 5-field sliding window prostate boost plan was processed as described above. The resulting dose was compared to the planned dose and found to be within 0.5 Gy. Two IMRT QA results for the prostate boost plan (one that failed and one that passed) were processed and the resulting patient doses were evaluated. Results: The max dose difference between IMRT QA #1 and the original planned and approved dose is 4.5 Gy, while the difference between the planned and IMRT QA #2 dose is 4.0 Gy. The inferior portion of the PTV is slightly underdosed in both plans, and the superior portion is slightly overdosed. The patient dose resulting from IMRT QA #1 and #2 differs by only 0.5 Gy. With this new information, it may be argued that the evaluated plan alteration to obtain passing gamma analysis produced clinically irrelevant differences. Conclusion: Evaluation of the delivered QA dose on the planning CT provides valuable information about the clinical relevance of failed or borderline IMRT QAs. This particular workflow demonstrates the feasibility of pushing the measured IMRT QA portal dosimetry results directly back onto the patient planning CT within the Varian system.« less

  3. Intensity modulated radiation therapy (IMRT): differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma.

    PubMed

    Mok, Henry; Crane, Christopher H; Palmer, Matthew B; Briere, Tina M; Beddar, Sam; Delclos, Marc E; Krishnan, Sunil; Das, Prajnan

    2011-06-08

    A strong dose-volume relationship exists between the amount of small bowel receiving low- to intermediate-doses of radiation and the rates of acute, severe gastrointestinal toxicity, principally diarrhea. There is considerable interest in the application of highly conformal treatment approaches, such as intensity-modulated radiation therapy (IMRT), to reduce dose to adjacent organs-at-risk in the treatment of carcinoma of the rectum. Therefore, we performed a comprehensive dosimetric evaluation of IMRT compared to 3-dimensional conformal radiation therapy (3DCRT) in standard, preoperative treatment for rectal cancer. Using RTOG consensus anorectal contouring guidelines, treatment volumes were generated for ten patients treated preoperatively at our institution for rectal carcinoma, with IMRT plans compared to plans derived from classic anatomic landmarks, as well as 3DCRT plans treating the RTOG consensus volume. The patients were all T3, were node-negative (N = 1) or node-positive (N = 9), and were planned to a total dose of 45-Gy. Pairwise comparisons were made between IMRT and 3DCRT plans with respect to dose-volume histogram parameters. IMRT plans had superior PTV coverage, dose homogeneity, and conformality in treatment of the gross disease and at-risk nodal volume, in comparison to 3DCRT. Additionally, in comparison to the 3DCRT plans, IMRT achieved a concomitant reduction in doses to the bowel (small bowel mean dose: 18.6-Gy IMRT versus 25.2-Gy 3DCRT; p = 0.005), bladder (V40Gy: 56.8% IMRT versus 75.4% 3DCRT; p = 0.005), pelvic bones (V40Gy: 47.0% IMRT versus 56.9% 3DCRT; p = 0.005), and femoral heads (V40Gy: 3.4% IMRT versus 9.1% 3DCRT; p = 0.005), with an improvement in absolute volumes of small bowel receiving dose levels known to induce clinically-relevant acute toxicity (small bowel V15Gy: 138-cc IMRT versus 157-cc 3DCRT; p = 0.005). We found that the IMRT treatment volumes were typically larger than that covered by classic bony landmark-derived fields

  4. Quality correction factors of composite IMRT beam deliveries: Theoretical considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchard, Hugo

    2012-11-15

    Purpose: In the scope of intensity modulated radiation therapy (IMRT) dosimetry using ionization chambers, quality correction factors of plan-class-specific reference (PCSR) fields are theoretically investigated. The symmetry of the problem is studied to provide recommendable criteria for composite beam deliveries where correction factors are minimal and also to establish a theoretical limit for PCSR delivery k{sub Q} factors. Methods: The concept of virtual symmetric collapsed (VSC) beam, being associated to a given modulated composite delivery, is defined in the scope of this investigation. Under symmetrical measurement conditions, any composite delivery has the property of having a k{sub Q} factor identicalmore » to its associated VSC beam. Using this concept of VSC, a fundamental property of IMRT k{sub Q} factors is demonstrated in the form of a theorem. The sensitivity to the conditions required by the theorem is thoroughly examined. Results: The theorem states that if a composite modulated beam delivery produces a uniform dose distribution in a volume V{sub cyl} which is symmetric with the cylindrical delivery and all beams fulfills two conditions in V{sub cyl}: (1) the dose modulation function is unchanged along the beam axis, and (2) the dose gradient in the beam direction is constant for a given lateral position; then its associated VSC beam produces no lateral dose gradient in V{sub cyl}, no matter what beam modulation or gantry angles are being used. The examination of the conditions required by the theorem lead to the following results. The effect of the depth-dose gradient not being perfectly constant with depth on the VSC beam lateral dose gradient is found negligible. The effect of the dose modulation function being degraded with depth on the VSC beam lateral dose gradient is found to be only related to scatter and beam hardening, as the theorem holds also for diverging beams. Conclusions: The use of the symmetry of the problem in the present paper

  5. Future ultra-speed tube-flight

    NASA Astrophysics Data System (ADS)

    Salter, Robert M.

    1994-05-01

    Future long-link, ultra-speed, surface transport systems will require electromagnetically (EM) driven and restrained vehicles operating under reduced-atmosphere in very straight tubes. Such tube-flight trains will be safe, energy conservative, pollution-free, and in a protected environment. Hypersonic (and even hyperballistic) speeds are theoretically achievable. Ultimate system choices will represent tradeoffs between amoritized capital costs (ACC) and operating costs. For example, long coasting links might employ aerodynamic lift coupled with EM restraint and drag make-up. Optimized, combined EM lift, and thrust vectors could reduce energy costs but at increased ACC. (Repulsive levitation can produce lift-over-drag l/d ratios a decade greater than aerodynamic), Alternatively, vehicle-emanated, induced-mirror fields in a conducting (aluminum sheet) road bed could reduce ACC but at substantial energy costs. Ultra-speed tube flight will demand fast-acting, high-precision sensors and computerized magnetic shimming. This same control system can maintain a magnetic 'guide way' invariant in inertial space with inertial detectors imbedded in tube structures to sense and correct for earth tremors. Ultra-speed tube flight can complete with aircraft for transit time and can provide even greater passenger convenience by single-model connections with local subways and feeder lines. Although cargo transport generally will not need to be performed at ultra speeds, such speeds may well be desirable for high throughput to optimize channel costs. Thus, a large and expensive pipeline might be replaced with small EM-driven pallets at high speeds.

  6. Future ultra-speed tube-flight

    NASA Technical Reports Server (NTRS)

    Salter, Robert M.

    1994-01-01

    Future long-link, ultra-speed, surface transport systems will require electromagnetically (EM) driven and restrained vehicles operating under reduced-atmosphere in very straight tubes. Such tube-flight trains will be safe, energy conservative, pollution-free, and in a protected environment. Hypersonic (and even hyperballistic) speeds are theoretically achievable. Ultimate system choices will represent tradeoffs between amoritized capital costs (ACC) and operating costs. For example, long coasting links might employ aerodynamic lift coupled with EM restraint and drag make-up. Optimized, combined EM lift, and thrust vectors could reduce energy costs but at increased ACC. (Repulsive levitation can produce lift-over-drag l/d ratios a decade greater than aerodynamic), Alternatively, vehicle-emanated, induced-mirror fields in a conducting (aluminum sheet) road bed could reduce ACC but at substantial energy costs. Ultra-speed tube flight will demand fast-acting, high-precision sensors and computerized magnetic shimming. This same control system can maintain a magnetic 'guide way' invariant in inertial space with inertial detectors imbedded in tube structures to sense and correct for earth tremors. Ultra-speed tube flight can complete with aircraft for transit time and can provide even greater passenger convenience by single-model connections with local subways and feeder lines. Although cargo transport generally will not need to be performed at ultra speeds, such speeds may well be desirable for high throughput to optimize channel costs. Thus, a large and expensive pipeline might be replaced with small EM-driven pallets at high speeds.

  7. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT).

    PubMed

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-12-01

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147-53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose-volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  8. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    PubMed Central

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623

  9. Study of the in vitro metabolism of TJ0711 using ultra high performance liquid chromatography with quadrupole time-of-flight and ultra fast liquid chromatography with quadrupole linear ion trap mass spectrometry.

    PubMed

    Hu, Lei; Lv, Zhenhua; Li, Gao; Xu, Xiaolong; Zhang, Chenghao; Cao, Peng; Huang, Jiangeng; Si, Luqin

    2015-06-01

    TJ0711 (1-[4-(2-methoxyethyl)phenoxy]-3-[2-(2-methoxyphenoxy)ethylamino]-2-propanol) is a novel β-adrenoreceptor blocker with vasodilating activity. The aim of this study was to investigate the in vitro metabolic properties of TJ0711 from both qualitative and quantitative aspects using mouse, rat, dog, and human liver microsomes as well as rat hepatocytes. Two modern liquid chromatography with tandem mass spectrometry systems, ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry and ultra fast liquid chromatography with quadrupole linear ion trap mass spectrometry, were utilized for the analysis. To better characterize the metabolic pathways of TJ0711, two major metabolites were incubated under the same conditions as that for TJ0711. TJ0711 was extensively metabolized in vitro, and a total of 34 metabolites, including 19 phase I and 15 phase II metabolites, were identified. Similar metabolite profiles were observed among species, and demethylation, hydroxylation, carboxylic acid formation, and glucuronidation were proposed as the major metabolic routes. Significant interspecies differences were observed in the metabolic stability studies of TJ0711. Furthermore, gender differences were significant in mice, rats, and dogs, but were negligible in humans. The valuable information provided in this work will be useful in planning and interpreting further pharmacokinetic, in vivo metabolism and toxicological studies of this novel β-blocker. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Comparison of 3DCRT,VMAT and IMRT techniques in metastatic vertebra radiotherapy: A phantom Study

    NASA Astrophysics Data System (ADS)

    Gedik, Sonay; Tunc, Sema; Kahraman, Arda; Kahraman Cetintas, Sibel; Kurt, Meral

    2017-09-01

    Vertebra metastases can be seen during the prognosis of cancer patients. Treatment ways of the metastasis are radiotherapy, chemotherapy and surgery. Three-dimensional conformal therapy (3D-CRT) is widely used in the treatment of vertebra metastases. Also, Intensity Modulated Radiotherapy (IMRT) and Volumetric Arc Therapy (VMAT) are used too. The aim of this study is to examine the advantages and disadvantages of the different radiotherapy techniques. In the aspect of this goal, it is studied with a randophantom in Uludag University Medicine Faculty, Radiation Oncology Department. By using a computerized tomography image of the phantom, one 3DCRT plan, two VMAT and three IMRT plans for servical vertebra and three different 3DCRT plans, two VMAT and two IMRT plans for lomber vertebra are calculated. To calculate 3DCRT plans, CMS XiO Treatment System is used and to calculate VMAT and IMRT plans Monaco Treatment Planning System is used in the department. The study concludes with the dosimetric comparison of the treatment plans in the spect of critical organ doses, homogeneity and conformity index. As a result of this study, all critical organ doses are suitable for QUANTEC Dose Limit Report and critical organ doses depend on the techniques which used in radiotherapy. According to homogeneity and conformity indices, VMAT and IMRT plans are better than one in 3DCRT plans in servical and lomber vertebra radiotherapy plans.

  11. Treatment plan comparison between helical tomotherapy and MLC-based IMRT using radiobiological measures

    NASA Astrophysics Data System (ADS)

    Mavroidis, Panayiotis; Costa Ferreira, Brigida; Shi, Chengyu; Lind, Bengt K.; Papanikolaou, Nikos

    2007-07-01

    The rapid implementation of advanced treatment planning and delivery technologies for radiation therapy has brought new challenges in evaluating the most effective treatment modality. Intensity-modulated radiotherapy (IMRT) using multi-leaf collimators (MLC) and helical tomotherapy (HT) are becoming popular modes of treatment delivery and their application and effectiveness continues to be investigated. Presently, there are several treatment planning systems (TPS) that can generate and optimize IMRT plans based on user-defined objective functions for the internal target volume (ITV) and organs at risk (OAR). However, the radiobiological parameters of the different tumours and normal tissues are typically not taken into account during dose prescription and optimization of a treatment plan or during plan evaluation. The suitability of a treatment plan is typically decided based on dosimetric criteria such as dose-volume histograms (DVH), maximum, minimum, mean and standard deviation of the dose distribution. For a more comprehensive treatment plan evaluation, the biologically effective uniform dose ({\\bar{\\bar{D}}}) is applied together with the complication-free tumour control probability (P+). Its utilization is demonstrated using three clinical cases that were planned with two different forms of IMRT. In this study, three different cancer types at different anatomical sites were investigated: head and neck, lung and prostate cancers. For each cancer type, a linac MLC-based step-and-shoot IMRT plan and a HT plan were developed. The MLC-based IMRT treatment plans were developed on the Philips treatment-planning platform, using the Pinnacle 7.6 software release. For the tomotherapy HiArt plans, the dedicated tomotherapy treatment planning station was used, running version 2.1.2. By using {\\bar{\\bar{D}}} as the common prescription point of the treatment plans and plotting the tissue response probabilities versus {\\bar{\\bar{D}}} for a range of prescription doses

  12. Long-term disease control and toxicity outcomes following surgery and intensity modulated radiation therapy (IMRT) in pediatric craniopharyngioma.

    PubMed

    Greenfield, Brad J; Okcu, Mehmet F; Baxter, Patricia A; Chintagumpala, Murali; Teh, Bin S; Dauser, Robert C; Su, Jack; Desai, Snehal S; Paulino, Arnold C

    2015-02-01

    To report long-term progression-free survival (PFS) and late-toxicity outcomes in pediatric craniopharyngioma patients treated with IMRT. Twenty-four children were treated with IMRT to a median dose of 50.4Gy (range, 49.8-54Gy). The clinical target volume (CTV) was the gross tumor volume (GTV) with a 1cm margin. The planning target volume (PTV) was the CTV with a 3-5mm margin. Median follow-up was 107.3months. The 5- and 10-year PFS rates were 65.8% and 60.7%. The 5- and 10-year cystic PFS rates were 70.2% and 65.2% while the 5- and 10-year solid PFS were the same at 90.7%. Endocrinopathy was seen in 42% at initial diagnosis and in 74% after surgical intervention, prior to IMRT. Hypothalamic dysfunction and visual deficits were associated with increasing PTV and number of surgical interventions. IMRT is a viable treatment option for pediatric craniopharyngioma. Despite the use of IMRT, majority of the craniopharyngioma patients experienced long-term toxicity, many of which present prior to radiotherapy. Limitations of retrospective analyses on small patient cohort elicit the need for a prospective multi-institutional study to determine the absolute benefit of IMRT in pediatric craniopharyngioma. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Ultra-high density aligned Carbon-nanotube with controled nano-morphology for supercapacitors

    NASA Astrophysics Data System (ADS)

    Ghaffari, Mehdi; Zhao, Ran; Liu, Yang; Zhou, Yue; Cheng, Jiping; Guzman de Villoria, Roberto; Wardle, B. L.; Zhang, Q. M.

    2012-02-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fractioncreate unique opportunities for developing unconventional supercapacitors with ultra-high energy density, power density, and long charge/discharge cycle life.Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast discharge speed. We investigate the charge-discharge characteristics of VA-CNTs with >20 vol% of CNT and ionic liquids as electrolytes. By employing both the electric and electromechanical spectroscopes, as well as nanostructured materials characterization, the ion transport and storage behaviors in porous electrodes are studied. The results suggest pathways for optimizing the electrode morphology in supercapacitorsusing ultra-high volume fraction VA-CNTs to further enhance performance.

  14. MO-G-BRE-02: A Survey of IMRT QA Practices for More Than 800 Institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulliam, K; Kerns, J; Howell, R

    Purpose: A wide range of techniques and measurement devices are employed for IMRT QA, causing a large variation of accepted action limits and potential follow up for failing plans. Such procedures are not well established or accepted in the medical physics community. To achieve the goal of proving insight into current IMRT QA practices, we created an electronic IMRT QA survey. The survey was open to a variety of the most common QA devices and assessed the type of comparison to measurement, action limits, delivery methods, and clinical action for failing QA plans. Methods: We conducted an online survey throughmore » the Radiological Physics Center's (RPC) annual survey with the goal of ascertaining elements of routine patient-specific IMRT QA. A total of 874 institutions responded to the survey. The questions ranged from asking for action limits, dosimeter type(s) used, delivery techniques, and actions taken when a plan fails IMRT QA. Results: The most common (52%) planar gamma criteria was 3%/3 mm with a 95% of pixels passing criteria. The most common QA device were diode arrays (48%). The most common first response to a plan failing QA was to re-measure at the same point the point dose (89%), second was to re-measure at a new point (13%), and third was to analyze the plan in relative instead of absolute mode (10%) (Does not add to 100% as not all institutions placed a response for each QA follow-up option). Some institutions, however, claimed that they had never observed a plan failure. Conclusion: The survey provided insights into the way the community currently performs IMRT QA. This information will help in the push to standardize action limits among dosimeters.« less

  15. Investigation of effective decision criteria for multiobjective optimization in IMRT.

    PubMed

    Holdsworth, Clay; Stewart, Robert D; Kim, Minsun; Liao, Jay; Phillips, Mark H

    2011-06-01

    To investigate how using different sets of decision criteria impacts the quality of intensity modulated radiation therapy (IMRT) plans obtained by multiobjective optimization. A multiobjective optimization evolutionary algorithm (MOEA) was used to produce sets of IMRT plans. The MOEA consisted of two interacting algorithms: (i) a deterministic inverse planning optimization of beamlet intensities that minimizes a weighted sum of quadratic penalty objectives to generate IMRT plans and (ii) an evolutionary algorithm that selects the superior IMRT plans using decision criteria and uses those plans to determine the new weights and penalty objectives of each new plan. Plans resulting from the deterministic algorithm were evaluated by the evolutionary algorithm using a set of decision criteria for both targets and organs at risk (OARs). Decision criteria used included variation in the target dose distribution, mean dose, maximum dose, generalized equivalent uniform dose (gEUD), an equivalent uniform dose (EUD(alpha,beta) formula derived from the linear-quadratic survival model, and points on dose volume histograms (DVHs). In order to quantatively compare results from trials using different decision criteria, a neutral set of comparison metrics was used. For each set of decision criteria investigated, IMRT plans were calculated for four different cases: two simple prostate cases, one complex prostate Case, and one complex head and neck Case. When smaller numbers of decision criteria, more descriptive decision criteria, or less anti-correlated decision criteria were used to characterize plan quality during multiobjective optimization, dose to OARs and target dose variation were reduced in the final population of plans. Mean OAR dose and gEUD (a = 4) decision criteria were comparable. Using maximum dose decision criteria for OARs near targets resulted in inferior populations that focused solely on low target variance at the expense of high OAR dose. Target dose range, (D

  16. SU-E-T-643: Pure Alanine Dosimeter for Verification Dosimetry in IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Karmi, Anan M.; Zraiqat, Fadi

    Purpose: The objective of this study was evaluation of accuracy of pure alanine dosimeters measuring intensity-modulated radiation therapy (IMRT) dose distributions in a thorax phantom. Methods: Alanine dosimeters were prepared in the form of 110 mg pure L-α-alanine powder filled into clear tissue-equivalent polymethylmethacrylate (PMMA) plastic tubes with the dimensions 25 mm length, 3 mm inner diameter, and 1 mm wall thickness. A dose-response calibration curve was established for the alanine by placing the dosimeters at 1.5 cm depth in a 30×30×30 cm{sup 3} solid water phantom and then irradiating on a linac with 6 MV photon beam at 10×10more » cm{sup 2} field size to doses ranging from 1 to 5 Gy. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the absorbed dose in alanine. An IMRT treatment plan was designed for a commercial heterogeneous CIRS thorax phantom and the dose values were calculated at three different points located in tissue, lung, and bone equivalent materials. A set of dose measurements was carried out to compare measured and calculated dose values by placing the alanine dosimeters at those selected locations inside the thorax phantom and delivering the IMRT to the phantom. Results: The alanine dose measurements and the IMRT plan dose calculations were found to be in agreement within ±2%. Specifically, the deviations were −0.5%, 1.3%, and −1.7% for tissue, lung, and bone; respectively. The slightly large deviations observed for lung and bone may be attributed to tissue inhomogeneity, steep dose gradients in these regions, and uncontrollable changes in spectrometer conditions. Conclusion: The results described herein confirmed that pure alanine dosimeter was suitable for in-phantom dosimetry of IMRT beams because of its high sensitivity and acceptable accuracy. This makes the dosimeter a promising option for quality control of the therapeutic beams, complementing the commonly used ionization chambers, TLDs, and

  17. FusionArc optimization: a hybrid volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) planning strategy.

    PubMed

    Matuszak, Martha M; Steers, Jennifer M; Long, Troy; McShan, Daniel L; Fraass, Benedick A; Romeijn, H Edwin; Ten Haken, Randall K

    2013-07-01

    To introduce a hybrid volumetric modulated arc therapy/intensity modulated radiation therapy (VMAT/IMRT) optimization strategy called FusionArc that combines the delivery efficiency of single-arc VMAT with the potentially desirable intensity modulation possible with IMRT. A beamlet-based inverse planning system was enhanced to combine the advantages of VMAT and IMRT into one comprehensive technique. In the hybrid strategy, baseline single-arc VMAT plans are optimized and then the current cost function gradients with respect to the beamlets are used to define a metric for predicting which beam angles would benefit from further intensity modulation. Beams with the highest metric values (called the gradient factor) are converted from VMAT apertures to IMRT fluence, and the optimization proceeds with the mixed variable set until convergence or until additional beams are selected for conversion. One phantom and two clinical cases were used to validate the gradient factor and characterize the FusionArc strategy. Comparisons were made between standard IMRT, single-arc VMAT, and FusionArc plans with one to five IMRT∕hybrid beams. The gradient factor was found to be highly predictive of the VMAT angles that would benefit plan quality the most from beam modulation. Over the three cases studied, a FusionArc plan with three converted beams achieved superior dosimetric quality with reductions in final cost ranging from 26.4% to 48.1% compared to single-arc VMAT. Additionally, the three beam FusionArc plans required 22.4%-43.7% fewer MU∕Gy than a seven beam IMRT plan. While the FusionArc plans with five converted beams offer larger reductions in final cost--32.9%-55.2% compared to single-arc VMAT--the decrease in MU∕Gy compared to IMRT was noticeably smaller at 12.2%-18.5%, when compared to IMRT. A hybrid VMAT∕IMRT strategy was implemented to find a high quality compromise between gantry-angle and intensity-based degrees of freedom. This optimization method will allow

  18. Impulse radio ultra wideband wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry.

    PubMed

    Ebrazeh, Ali; Bozorgzadeh, Bardia; Mohseni, Pedram

    2015-01-01

    This paper demonstrates the feasibility of utilizing impulse radio ultra wideband (IR-UWB) signaling technique for reliable, wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) to address the problem of elevated data rates in high-channel-count neurochemical monitoring. Utilizing an FSCV-sensing chip fabricated in AMS 0.35μm 2P/4M CMOS, a 3-5-GHz, IR-UWB transceiver (TRX) chip fabricated in TSMC 90nm 1P/9M RF CMOS, and two off-chip, miniature, UWB antennae, wireless transfer of pseudo-random binary sequence (PRBS) data at 50Mbps over a distance of <;1m is first shown with bit-error rates (BER) <; 10(-3). Further, IR-UWB wireless transmission of dopamine concentration levels prerecorded with FSCV at a CFM during flow injection analysis (FIA) is also demonstrated with transmitter (TX) power dissipation of only ~4.4μW from 1.2V, representing two orders of magnitude reduction in TX power consumption compared to that of a conventional frequency-shift-keyed (FSK) link operating at ~433MHz.

  19. NuSTAR REVEALS RELATIVISTIC REFLECTION BUT NO ULTRA-FAST OUTFLOW IN THE QUASAR PG 1211+143

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoghbi, A.; Miller, J. M.; Walton, D. J.

    We report on four epochs of observations of the quasar PG 1211+143 using NuSTAR. The net exposure time is 300 ks. Prior work on this source found suggestive evidence of an ultra-fast outflow (UFO) in the Fe K band with a velocity of approximately 0.1c. The putative flow would carry away a high-mass flux and kinetic power, with broad implications for feedback and black hole--galaxy co-evolution. NuSTAR detects PG 1211+143 out to 30 keV, meaning that the continuum is well-defined both through and above the Fe K band. A characteristic relativistic disk reflection spectrum is clearly revealed via a broadmore » Fe K emission line and Compton back-scattering curvature. The data offer only weak constraints on the spin of the black hole. A careful search for UFOs shows no significant absorption feature above 90% confidence. The limits are particularly tight when relativistic reflection is included. We discuss the statistics and the implications of these results in terms of connections between accretion onto quasars, Seyferts, and stellar-mass black holes, and feedback into their host environments.« less

  20. NuSTAR Reveals Relativistic Reflection But No Ultra-Fast Outflow in the Quasar Pg∼1211+143

    NASA Astrophysics Data System (ADS)

    Zoghbi, A.; Miller, J. M.; Walton, D. J.; Harrison, F. A.; Fabian, A. C.; Reynolds, C. S.; Boggs, S. E.; Christensen, F. E.; Craig, W.; Hailey, C. J.; Stern, D.; Zhang, W. W.

    2015-01-01

    We report on four epochs of observations of the quasar PG 1211+143 using NuSTAR. The net exposure time is 300 ks. Prior work on this source found suggestive evidence of an ultra-fast outflow (UFO) in the Fe K band with a velocity of approximately 0.1c. The putative flow would carry away a high-mass flux and kinetic power, with broad implications for feedback and black hole--galaxy co-evolution. NuSTAR detects PG 1211+143 out to 30 keV, meaning that the continuum is well-defined both through and above the Fe K band. A characteristic relativistic disk reflection spectrum is clearly revealed via a broad Fe K emission line and Compton back-scattering curvature. The data offer only weak constraints on the spin of the black hole. A careful search for UFOs shows no significant absorption feature above 90% confidence. The limits are particularly tight when relativistic reflection is included. We discuss the statistics and the implications of these results in terms of connections between accretion onto quasars, Seyferts, and stellar-mass black holes, and feedback into their host environments.

  1. The effects of small field dosimetry on the biological models used in evaluating IMRT dose distributions

    NASA Astrophysics Data System (ADS)

    Cardarelli, Gene A.

    The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance

  2. A fiducial detection algorithm for real-time image guided IMRT based on simultaneous MV and kV imaging

    PubMed Central

    Mao, Weihua; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Xing, Lei

    2008-01-01

    The advantage of highly conformal dose techniques such as 3DCRT and IMRT is limited by intrafraction organ motion. A new approach to gain near real-time 3D positions of internally implanted fiducial markers is to analyze simultaneous onboard kV beam and treatment MV beam images (from fluoroscopic or electronic portal image devices). Before we can use this real-time image guidance for clinical 3DCRT and IMRT treatments, four outstanding issues need to be addressed. (1) How will fiducial motion blur the image and hinder tracking fiducials? kV and MV images are acquired while the tumor is moving at various speeds. We find that a fiducial can be successfully detected at a maximum linear speed of 1.6 cm∕s. (2) How does MV beam scattering affect kV imaging? We investigate this by varying MV field size and kV source to imager distance, and find that common treatment MV beams do not hinder fiducial detection in simultaneous kV images. (3) How can one detect fiducials on images from 3DCRT and IMRT treatment beams when the MV fields are modified by a multileaf collimator (MLC)? The presented analysis is capable of segmenting a MV field from the blocking MLC and detecting visible fiducials. This enables the calculation of nearly real-time 3D positions of markers during a real treatment. (4) Is the analysis fast enough to track fiducials in nearly real time? Multiple methods are adopted to predict marker positions and reduce search regions. The average detection time per frame for three markers in a 1024×768 image was reduced to 0.1 s or less. Solving these four issues paves the way to tracking moving fiducial markers throughout a 3DCRT or IMRT treatment. Altogether, these four studies demonstrate that our algorithm can track fiducials in real time, on degraded kV images (MV scatter), in rapidly moving tumors (fiducial blurring), and even provide useful information in the case when some fiducials are blocked from view by the MLC. This technique can provide a gating signal

  3. Waste heat recovery with ultra high-speed turbomachinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vakkilainen, E.; Larjola, J.; Lindgren, O.

    1984-08-01

    A new ORC heat recovery system which converts waste heat to electricity has been developed in Lappeenranta University of Technology with support from Department of Energy in Finnish Ministry of Trade and Industry. Use of ultra high-speed turbomachinery (10 000 rpm - 200 000 rpm) promises lower unit costs, higher efficiencies and fast amortization rate, 2,4 - 3,0 years.

  4. Optimization of the temporal pattern of radiation: An IMRT based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altman, Michael B.; Chmura, Steven J.; Deasy, Joseph O.

    Purpose: To investigate how the temporal pattern of dose applied during a single-intensity modulated radiation therapy (IMRT) fraction can be arranged to maximize or minimize cell kill. Methods and Materials: Using the linear-quadratic repair-time model and a simplified IMRT delivery pattern model, the surviving fraction of cells for a single fraction was calculated for all permutations of the dose delivery pattern for an array of clinically based IMRT cases. Maximization of cell kill was achieved by concentrating the highest doses in the middle of a fraction, while minimization was achieved by spreading the highest doses between the beginning and end.more » The percent difference between maximum and minimum cell kill (%Diff{sub min/max}) and the difference between maximum and minimum total doses normalized to 2 Gy/fx ({delta}NTD{sub 2Gy}) was calculated for varying fraction durations (T), {alpha}/{beta} ratios, and doses/fx. Results: %Diff{sub min/max} and {delta}NTD{sub 2Gy} both increased with increasing T and with decreasing {alpha}/{beta}. The largest increases occurred with dose/fx. With {alpha}/{beta} = 3 Gy and 30 min/fx, %Diff{sub min/max} ranged from 2.7-5.3% for 2 Gy/fx to 48.6-74.1% for 10 Gy/fx, whereas {delta}NTD{sub 2Gy} ranged from 1.2 Gy-2.4 Gy for 30 fractions of 2 Gy/fx to 2.3-4.8 Gy for 2 fractions of 10.84 Gy/fx. Using {alpha}/{beta} = 1.5 Gy, an analysis of prostate hypofractionation schemes yielded differences in clinical outcome based on the pattern of applied dose ranging from 3.2%-6.1% of the treated population. Conclusions: Rearrangement of the temporal pattern of dose for a single IMRT fraction could be used to optimize cell kill and to directly, though modestly, affect treatment outcome.« less

  5. 3D conformal planning using low segment multi-criteria IMRT optimization

    PubMed Central

    Khan, Fazal; Craft, David

    2014-01-01

    Purpose To evaluate automated multicriteria optimization (MCO) – designed for intensity modulated radiation therapy (IMRT), but invoked with limited segmentation – to efficiently produce high quality 3D conformal radiation therapy (3D-CRT) plans. Methods Ten patients previously planned with 3D-CRT to various disease sites (brain, breast, lung, abdomen, pelvis), were replanned with a low-segment inverse multicriteria optimized technique. The MCO-3D plans used the same beam geometry of the original 3D plans, but were limited to an energy of 6 MV. The MCO-3D plans were optimized using fluence-based MCO IMRT and then, after MCO navigation, segmented with a low number of segments. The 3D and MCO-3D plans were compared by evaluating mean dose for all structures, D95 (dose that 95% of the structure receives) and homogeneity indexes for targets, D1 and clinically appropriate dose volume objectives for individual organs at risk (OARs), monitor units (MUs), and physician preference. Results The MCO-3D plans reduced the OAR mean doses (41 out of a total of 45 OARs had a mean dose reduction, p<<0.01) and monitor units (seven out of ten plans have reduced MUs; the average reduction is 17%, p=0.08) while maintaining clinical standards on coverage and homogeneity of target volumes. All MCO-3D plans were preferred by physicians over their corresponding 3D plans. Conclusion High quality 3D plans can be produced using MCO-IMRT optimization, resulting in automated field-in-field type plans with good monitor unit efficiency. Adopting this technology in a clinic could improve plan quality, and streamline treatment plan production by utilizing a single system applicable to both IMRT and 3D planning. PMID:25413405

  6. Improving IMRT delivery efficiency using intensity limits during inverse planning.

    PubMed

    Coselmon, Martha M; Moran, Jean M; Radawski, Jeffrey D; Fraass, Benedick A

    2005-05-01

    Inverse planned intensity modulated radiotherapy (IMRT) fields can be highly modulated due to the large number of degrees of freedom involved in the inverse planning process. Additional modulation typically results in a more optimal plan, although the clinical rewards may be small or offset by additional delivery complexity and/or increased dose from transmission and leakage. Increasing modulation decreases delivery efficiency, and may lead to plans that are more sensitive to geometrical uncertainties. The purpose of this work is to assess the use of maximum intensity limits in inverse IMRT planning as a simple way to increase delivery efficiency without significantly affecting plan quality. Nine clinical cases (three each for brain, prostate, and head/neck) were used to evaluate advantages and disadvantages of limiting maximum intensity to increase delivery efficiency. IMRT plans were generated using in-house protocol-based constraints and objectives for the brain and head/neck, and RTOG 9406 dose volume objectives in the prostate. Each case was optimized at a series of maximum intensity ratios (the product of the maximum intensity and the number of beams divided by the prescribed dose to the target volume), and evaluated in terms of clinical metrics, dose-volume histograms, monitor units (MU) required per fraction (SMLC and DMLC delivery), and intensity map variation (a measure of the beam modulation). In each site tested, it was possible to reduce total monitor units by constraining the maximum allowed intensity without compromising the clinical acceptability of the plan. Monitor unit reductions up to 38% were observed for SMLC delivery, while reductions up to 29% were achieved for DMLC delivery. In general, complicated geometries saw a smaller reduction in monitor units for both delivery types, although DMLC delivery required significantly more monitor units in all cases. Constraining the maximum intensity in an inverse IMRT plan is a simple way to improve

  7. Fast and sensitive analysis of beta blockers by ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry.

    PubMed

    Tomková, Jana; Ondra, Peter; Kocianová, Eva; Václavík, Jan

    2017-07-01

    This paper presents a method for the determination of acebutolol, betaxolol, bisoprolol, metoprolol, nebivolol and sotalol in human serum by liquid-liquid extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. After liquid-liquid extraction, beta blockers were separated on a reverse-phase analytical column (Acclaim RS 120; 100 × 2.1 mm, 2.2 μm). The total run time was 6 min for each sample. Linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery and sample stability were evaluated. The method was successfully applied to the therapeutic drug monitoring of 108 patients with hypertension. This method was also used for determination of beta blockers in 33 intoxicated patients. Copyright © 2016 John Wiley & Sons, Ltd.

  8. SU-F-T-391: Comparative Study of Treatment Planning Between IMRT and IMAT for Malignant Pleural Mesothelioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, J

    Purpose: The purpose of this study was to compare the dosimetric differences between intensitymodulated radiation therapy (IMRT) and intensity modulated arc therapy (IMAT) for malignant pleural mesothelioma (MPM) patients with regard to the sparing effect on organs at risk (OARs), plan quality, and delivery efficiency. Methods: Ten MPM patients were recruited in this study. To avoid the inter-operator variability, IMRT and IMAT plans for each patient were performed by one experienced dosimetrist. The treatment planning optimization process was carried out using the Eclipse 13.0 software. For a fair comparison, the planning target volume (PTV) coverage of the two plans wasmore » normalized to the same level. The treatment plans were evaluated on the following dosimetric variables: conformity index (CI) and homogeneity index (HI) for PTV, OARs dose, and the delivery efficiency for each plan. Results: All plans satisfied clinical requirements. The IMAT plans gained better CI and HI. The IMRT plans performed better sparing for heart and lung. Less MUs and control points were found in the IMAT plans. IMAT shortened delivery time compared with IMRT. Conclusion: For MPM, IMAT gains better conformity and homogeneity for PTV with IMRT, but increases the irradiation dose for OARs. IMAT shows an advantage in delivery efficiency.« less

  9. Investigation of pulsed IMRT and VMAT for re-irradiation treatments: dosimetric and delivery feasibilities

    NASA Astrophysics Data System (ADS)

    Lin, Mu-Han; Price, Robert A., Jr.; Li, Jinsheng; Kang, Shengwei; Li, Jie; Ma, C.-M.

    2013-11-01

    Many tumor cells demonstrate hyperradiosensitivity at doses below ˜50 cGy. Together with the increased normal tissue repair under low dose rate, the pulsed low dose rate radiotherapy (PLDR), which separates a daily fractional dose of 200 cGy into 10 pulses with 3 min interval between pulses (˜20 cGy/pulse and effective dose rate 6.7 cGy min-1), potentially reduces late normal tissue toxicity while still providing significant tumor control for re-irradiation treatments. This work investigates the dosimetric and technical feasibilities of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based PLDR treatments using Varian Linacs. Twenty one cases (12 real re-irradiation cases) including treatment sites of pancreas, prostate, pelvis, lung, head-and-neck, and breast were recruited for this study. The lowest machine operation dose rate (100 MU min-1) was employed in the plan delivery. Ten-field step-and-shoot IMRT and dual-arc VMAT plans were generated using the Eclipse TPS with routine planning strategies. The dual-arc plans were delivered five times to achieve a 200 cGy daily dose (˜20 cGy arc-1). The resulting plan quality was evaluated according to the heterogeneity and conformity indexes (HI and CI) of the planning target volume (PTV). The dosimetric feasibility of retaining the hyperradiosensitivity for PLDR was assessed based on the minimum and maximum dose in the target volume from each pulse. The delivery accuracy of VMAT and IMRT at the 100 MU min-1 machine operation dose rate was verified using a 2D diode array and ion chamber measurements. The delivery reproducibility was further investigated by analyzing the Dynalog files of repeated deliveries. A comparable plan quality was achieved by the IMRT (CI 1.10-1.38 HI 1.04-1.10) and the VMAT (CI 1.08-1.26 HI 1.05-1.10) techniques. The minimum/maximum PTV dose per pulse is 7.9 ± 5.1 cGy/33.7 ± 6.9 cGy for the IMRT and 12.3 ± 4.1 cGy/29.2 ± 4.7 cGy for the VMAT. Six out of

  10. IMRT treatment of anal cancer with a scrotal shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, Rodney C., E-mail: Rodney.Hood@duke.edu; Wu, Q. Jackie; McMahon, Ryan

    The risk of sterility in males undergoing radiotherapy in the pelvic region indicates the use of a shielding device, which offers protection to the testes for patients wishing to maintain fertility. The use of such devices in the realm of intensity-modulated radiotherapy (IMRT) in the pelvic region can pose many obstacles during simulation, treatment planning, and delivery of radiotherapy. This work focuses on the development and execution of an IMRT plan for the treatment of anal cancer using a scrotal shielding device on a clinical patient. An IMRT plan was developed using Eclipse treatment planning system (Varian Medical Systems, Palomore » Alto, CA), using a wide array of gantry angles as well as fixed jaw and fluence editing techniques. When possible, the entire target volume was encompassed by the treatment field. When the beam was incident on the scrotal shield, the jaw was fixed to avoid the device and the collimator rotation optimized to irradiate as much of the target as possible. This technique maximizes genital sparing and allows minimal irradiation of the gonads. When this fixed-jaw technique was found to compromise adequate coverage of the target, manual fluence editing techniques were used to avoid the shielding device. Special procedures for simulation, imaging, and treatment verification were also developed. In vivo dosimetry was used to verify and ensure acceptable dose to the gonads. The combination of these techniques resulted in a highly conformal plan that spares organs and risk and avoids the genitals as well as entrance of primary radiation onto the shielding device.« less

  11. Poster - Thur Eve - 57: Craniospinal irradiation with jagged-junction IMRT approach without beam edge matching for field junctions.

    PubMed

    Cao, F; Ramaseshan, R; Corns, R; Harrop, S; Nuraney, N; Steiner, P; Aldridge, S; Liu, M; Carolan, H; Agranovich, A; Karva, A

    2012-07-01

    Craniospinal irradiation were traditionally treated the central nervous system using two or three adjacent field sets. A intensity-modulated radiotherapy (IMRT) plan (Jagged-Junction IMRT) which overcomes problems associated with field junctions and beam edge matching, improves planning and treatment setup efficiencies with homogenous target dose distribution was developed. Jagged-Junction IMRT was retrospectively planned on three patients with prescription of 36 Gy in 20 fractions and compared to conventional treatment plans. Planning target volume (PTV) included the whole brain and spinal canal to the S3 vertebral level. The plan employed three field sets, each with a unique isocentre. One field set with seven fields treated the cranium. Two field sets treated the spine, each set using three fields. Fields from adjacent sets were overlapped and the optimization process smoothly integrated the dose inside the overlapped junction. For the Jagged-Junction IMRT plans vs conventional technique, average homogeneity index equaled 0.08±0.01 vs 0.12±0.02, and conformity number equaled 0.79±0.01 vs 0.47±0.12. The 95% isodose surface covered (99.5±0.3)% of the PTV vs (98.1±2.0)%. Both Jagged-Junction IMRT plans and the conventional plans had good sparing of the organs at risk. Jagged-Junction IMRT planning provided good dose homogeneity and conformity to the target while maintaining a low dose to the organs at risk. Jagged-Junction IMRT optimization smoothly distributed dose in the junction between field sets. Since there was no beam matching, this treatment technique is less likely to produce hot or cold spots at the junction in contrast to conventional techniques. © 2012 American Association of Physicists in Medicine.

  12. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRTmore » plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.« less

  13. Applications of IMAT in cervical esophageal cancer radiotherapy: a comparison with fixed-field IMRT in dosimetry and implementation.

    PubMed

    Yin, Yong; Chen, Jinhu; Xing, Ligang; Dong, Xiaoling; Liu, Tonghai; Lu, Jie; Yu, Jinming

    2011-01-13

    This study aimed to compare fixed-field, intensity-modulated radiotherapy (f-IMRT) with intensity-modulated arc therapy (IMAT) treatment plans in dosimetry and practical application for cervical esophageal carcinoma. For ten cervical esophageal carcinoma cases, f-IMRT plan (seven fixed-fields) and two IMAT plans, namely RA (coplanar 360° arcs) and RAx (coplanar 360° arcs without sectors from 80° to 110°, and 250° to 280°), were generated. DVHs were adopted for the statistics of above parameters, as well as conformal index (CI), homogeneity index (HI), dose-volumetric parameters of normal tissues, total accelerator output MUs and total treatment time. There were differences between RAx and f-IMRT, as well as RA in PTV parameters such as HI, V(95%) and V(110%), but not in CI. RAx reduced lung V₅ from (50.9% ± 9.8% in f-IMRT and (51.4% ± 10.8% in RA to (49.3% ± 10.4% in RAx (p < 0.05). However, lung V₃₀, V₄₀, V₅₀ and MLD increased in RAx. There was no difference in the mean heart dose in three plans. Total MU was reduced from 1174.8 ± 144.6 in f-IMRT to 803.8 ± 122.2 in RA and 736.2 ± 186.9 in RAx (p < 0.05). Compared with f-IMRT, IMAT reduced low dose volumes of lung and total MU on the basis of meeting clinical requirements.

  14. Intensity modulated radiotherapy (IMRT) in the treatment of children and adolescents--a single institution's experience and a review of the literature.

    PubMed

    Sterzing, Florian; Stoiber, Eva M; Nill, Simeon; Bauer, Harald; Huber, Peter; Debus, Jürgen; Münter, Marc W

    2009-09-23

    While IMRT is widely used in treating complex oncological cases in adults, it is not commonly used in pediatric radiation oncology for a variety of reasons. This report evaluates our 9 year experience using stereotactic-guided, inverse planned intensity-modulated radiotherapy (IMRT) in children and adolescents in the context of the current literature. Between 1999 and 2008 thirty-one children and adolescents with a mean age of 14.2 years (1.5 - 20.5) were treated with IMRT in our department. This heterogeneous group of patients consisted of 20 different tumor entities, with Ewing's sarcoma being the largest (5 patients), followed by juvenile nasopharyngeal fibroma, esthesioneuroblastoma and rhabdomyosarcoma (3 patients each). In addition a review of the available literature reporting on technology, quality, toxicity, outcome and concerns of IMRT was performed. With IMRT individualized dose distributions and excellent sparing of organs at risk were obtained in the most challenging cases. This was achieved at the cost of an increased volume of normal tissue receiving low radiation doses. Local control was achieved in 21 patients. 5 patients died due to progressive distant metastases. No severe acute or chronic toxicity was observed. IMRT in the treatment of children and adolescents is feasible and was applied safely within the last 9 years at our institution. Several reports in literature show the excellent possibilities of IMRT in selective sparing of organs at risk and achieving local control. In selected cases the quality of IMRT plans increases the therapeutic ratio and outweighs the risk of potentially increased rates of secondary malignancies by the augmented low dose exposure.

  15. Detection of IMRT delivery errors based on a simple constancy check of transit dose by using an EPID

    NASA Astrophysics Data System (ADS)

    Baek, Tae Seong; Chung, Eun Ji; Son, Jaeman; Yoon, Myonggeun

    2015-11-01

    Beam delivery errors during intensity modulated radiotherapy (IMRT) were detected based on a simple constancy check of the transit dose by using an electronic portal imaging device (EPID). Twenty-one IMRT plans were selected from various treatment sites, and the transit doses during treatment were measured by using an EPID. Transit doses were measured 11 times for each course of treatment, and the constancy check was based on gamma index (3%/3 mm) comparisons between a reference dose map (the first measured transit dose) and test dose maps (the following ten measured dose maps). In a simulation using an anthropomorphic phantom, the average passing rate of the tested transit dose was 100% for three representative treatment sites (head & neck, chest, and pelvis), indicating that IMRT was highly constant for normal beam delivery. The average passing rate of the transit dose for 1224 IMRT fields from 21 actual patients was 97.6% ± 2.5%, with the lower rate possibly being due to inaccuracies of patient positioning or anatomic changes. An EPIDbased simple constancy check may provide information about IMRT beam delivery errors during treatment.

  16. TU-G-BRD-03: IMRT Dosimetry Differences in An Institution with Community and Academic Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, S; Indiana University School of Medicine, Indianapolis, IN; Andersen, A

    Purpose: Radiation outcome among institutions can be interpreted meaningfully if the dose delivery and prescription to the target volume is documented accurately and consistently. ICRU-83 recommended specific guidelines in IMRT for target volume definitions and dose reporting. This retrospective study evaluates the pattern of IMRT dose prescription and recording in an academic institution (AI) and a community hospital (CH) models in a single institution with reference to ICRU-83 recommendation. Materials & Methods: Dosimetric information of 625 (500 from academic and 125 from community) patients treated with IMRT was collected retrospectively from the AI and a CH. The dose-volume histogram (DVH)more » for the target volume of each patient was extracted. Standard dose parameters such as D2, D50, D95, D98, D100, as well as the homogeneity index (HI) defined as (D2-D98)/D50 and monitor units (MUs) were collected. Results: Significant dosimetric variations were observed in disease sites and between AI and CH. The variation in the mean value of D95 for AI is 98.48±4.12 and for CH is 96.41±4.13. A similar pattern was noticed for D50 (104.18±6.04 for AI and 101.05±3.49 for CH). Thus, nearly 95% of patients received dosage higher than 100% to the site viewed by D50 and varied between AI and CH models. The average variation of HI is found to be 0.12±0.08 and 0.11±0.08 for AI and CH model, showing better IMRT treatment plans for academic model compared to community. Conclusion: Even with the implementation of ICRU-83 guidelines, there is a large variation in dose prescription and delivery in IMRT. The variation is institution and site specific. For any meaningful comparison of the IMRT outcome, strict guidelines for dose reporting should be maintained in every institution.« less

  17. Clinical validation of an in-house EPID dosimetry system for IMRT QA at the Prince of Wales Hospital

    NASA Astrophysics Data System (ADS)

    Tyler, M.; Vial, P.; Metcalfe, P.; Downes, S.

    2013-06-01

    In this study a simple method using standard flood-field corrected Electronic Portal Imaging Device (EPID) images for routine Intensity Modulated Radiation Therapy (IMRT) Quality Assurance (QA) was investigated. The EPID QA system was designed and tested on a Siemens Oncor Impression linear accelerator with an OptiVue 1000ST EPID panel (Siemens Medical Solutions USA, Inc, USA) and an Elekta Axesse linear accelerator with an iViewGT EPID (Elekta AB, Sweden) for 6 and 10 MV IMRT fields with Step-and-Shoot and dynamic-MLC delivery. Two different planning systems were used for patient IMRT field generation for comparison with the measured EPID fluences. All measured IMRT plans had >95% agreement to the planning fluences (using 3 cGy / 3 mm Gamma Criteria) and were comparable to the pass-rates calculated using a 2-D diode array dosimeter.

  18. Ultra-processed Food Intake and Obesity: What Really Matters for Health-Processing or Nutrient Content?

    PubMed

    Poti, Jennifer M; Braga, Bianca; Qin, Bo

    2017-12-01

    The aim of this narrative review was to summarize and critique recent evidence evaluating the association between ultra-processed food intake and obesity. Four of five studies found that higher purchases or consumption of ultra-processed food was associated with overweight/obesity. Additional studies reported relationships between ultra-processed food intake and higher fasting glucose, metabolic syndrome, increases in total and LDL cholesterol, and risk of hypertension. It remains unclear whether associations can be attributed to processing itself or the nutrient content of ultra-processed foods. Only three of nine studies used a prospective design, and the potential for residual confounding was high. Recent research provides fairly consistent support for the association of ultra-processed food intake with obesity and related cardiometabolic outcomes. There is a clear need for further studies, particularly those using longitudinal designs and with sufficient control for confounding, to potentially confirm these findings in different populations and to determine whether ultra-processed food consumption is associated with obesity independent of nutrient content.

  19. SU-F-T-378: Evaluation of Dose-Volume Variability and Parameters Between Prostate IMRT and VMAT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, J; Jiang, R; Kiciak, A

    2016-06-15

    Purpose: This study compared the rectal dose-volume consistency, equivalent uniform dose (EUD) and normal tissue complication probability (NTCP) in prostate intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods: For forty prostate IMRT and fifty VMAT patients treated using the same dose prescription (78 Gy/39 fraction) and dose-volume criteria in inverse planning optimization, the rectal EUD and NTCP were calculated for each patient. The rectal dose-volume consistency, showing the variability of dose-volume histogram (DVH) among patients, was defined and calculated based on the deviation between the mean and corresponding rectal DVH. Results: From both the prostate IMRT andmore » VMAT plans, the rectal EUD and NTCP were found decreasing with the rectal volume. The decrease rates for the IMRT plans (EUD = 0.47 × 10{sup −3} Gy cm{sup −3} and NTCP = 3.94 × 10{sup −2} % cm{sup −3}) were higher than those for the VMAT (EUD = 0.28 × 10{sup −3} Gy cm{sup −3} and NTCP = 2.61 × 10{sup −2} % cm{sup −3}). In addition, the dependences of the rectal EUD and NTCP on the dose-volume consistency were found very similar between the prostate IMRT and VMAT plans. This shows that both delivery techniques have similar variations of the rectal EUD and NTCP on the dose-volume consistency. Conclusion: Dependences of the dose-volume consistency on the rectal EUD and NTCP were compared between the prostate IMRT and VMAT plans. It is concluded that both rectal EUD and NTCP decreased with an increase of the rectal volume. The variation rates of the rectal EUD and NTCP on the rectal volume were higher for the IMRT plans than VMAT. However, variations of the rectal dose-volume consistency on the rectal EUD and NTCP were found not significant for both delivery techniques.« less

  20. Hematologic Toxicity in RTOG 0418: A Phase 2 Study of Postoperative IMRT for Gynecologic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klopp, Ann H., E-mail: aklopp@mdanderson.org; Moughan, Jennifer; Portelance, Lorraine

    2013-05-01

    Purpose: Intensity modulated radiation therapy (IMRT), compared with conventional 4-field treatment, can reduce the volume of bone marrow irradiated. Pelvic bone marrow sparing has produced a clinically significant reduction in hematologic toxicity (HT). This analysis investigated HT in Radiation Therapy Oncology Group (RTOG) 0418, a prospective study to test the feasibility of delivering postoperative IMRT for cervical and endometrial cancer in a multiinstitutional setting. Methods and Materials: Patients in the RTOG 0418 study were treated with postoperative IMRT to 50.4 Gy to the pelvic lymphatics and vagina. Endometrial cancer patients received IMRT alone, whereas patients with cervical cancer received IMRTmore » and weekly cisplatin (40 mg/m{sup 2}). Pelvic bone marrow was defined within the treatment field by using a computed tomography density-based autocontouring algorithm. The volume of bone marrow receiving 10, 20, 30, and 40 Gy and the median dose to bone marrow were correlated with HT, graded by Common Terminology Criteria for Adverse Events, version 3.0, criteria. Results: Eighty-three patients were eligible for analysis (43 with endometrial cancer and 40 with cervical cancer). Patients with cervical cancer treated with weekly cisplatin and pelvic IMRT had grades 1-5 HT (23%, 33%, 25%, 0%, and 0% of patients, respectively). Among patients with cervical cancer, 83% received 5 or more cycles of cisplatin, and 90% received at least 4 cycles of cisplatin. The median percentage volume of bone marrow receiving 10, 20, 30, and 40 Gy in all 83 patients, respectively, was 96%, 84%, 61%, and 37%. Among cervical cancer patients with a V40 >37%, 75% had grade 2 or higher HT compared with 40% of patients with a V40 less than or equal to 37% (P =.025). Cervical cancer patients with a median bone marrow dose of >34.2 Gy also had higher rates of grade ≥2 HT than did those with a dose of ≤34.2 Gy (74% vs 43%, P=.049). Conclusions: Pelvic IMRT with weekly

  1. A quantitative study of IMRT delivery effects in commercial planning systems for the case of oesophagus and prostate tumours.

    PubMed

    Seco, J; Clark, C H; Evans, P M; Webb, S

    2006-05-01

    This study focuses on understanding the impact of intensity-modulated radiotherapy (IMRT) delivery effects when applied to plans generated by commercial treatment-planning systems such as Pinnacle (ADAC Laboratories Inc.) and CadPlan/Helios (Varian Medical Systems). These commercial planning systems have had several version upgrades (with improvements in the optimization algorithm), but the IMRT delivery effects have not been incorporated into the optimization process. IMRT delivery effects include head-scatter fluence from IMRT fields, transmission through leaves and the effect of the rounded shape of the leaf ends. They are usually accounted for after optimization when leaf sequencing the "optimal" fluence profiles, to derive the delivered fluence profile. The study was divided into two main parts: (a) analysing the dose distribution within the planning-target volume (PTV), produced by each of the commercial treatment-planning systems, after the delivered fluence had been renormalized to deliver the correct dose to the PTV; and (b) studying the impact of the IMRT delivery technique on the surrounding critical organs such as the spinal cord, lungs, rectum, bladder etc. The study was performed for tumours of (i) the oesophagus and (ii) the prostate and pelvic nodes. An oesophagus case was planned with the Pinnacle planning system for IMRT delivery, via multiple-static fields (MSF) and compensators, using the Elekta SL25 with a multileaf collimator (MLC) component. A prostate and pelvic nodes IMRT plan was performed with the Cadplan/Helios system for a dynamic delivery (DMLC) using the Varian 120-leaf Millennium MLC. In these commercial planning systems, since IMRT delivery effects are not included into the optimization process, fluence renormalization is required such that the median delivered PTV dose equals the initial prescribed PTV dose. In preparing the optimum fluence profile for delivery, the PTV dose has been "smeared" by the IMRT delivery techniques. In

  2. Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. II: Confirmatory analysis.

    PubMed

    Badoud, F; Grata, E; Perrenoud, L; Saugy, M; Rudaz, S; Veuthey, J-L

    2010-06-18

    For doping control, analyses of samples are generally achieved in two steps: a rapid screening and, in the case of a positive result, a confirmatory analysis. A two-step methodology based on ultra-high-pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was developed to screen and confirm 103 doping agents from various classes (e.g., beta-blockers, stimulants, diuretics, and narcotics). The screening method was presented in a previous article as part I (i.e., Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. Part I: screening analysis). For the confirmatory method, basic, neutral and acidic compounds were extracted by a dedicated solid-phase extraction (SPE) in a 96-well plate format and detected by MS in the tandem mode to obtain precursor and characteristic product ions. The mass accuracy and the elemental composition of precursor and product ions were used for compound identification. After validation including matrix effect determination, the method was considered reliable to confirm suspect results without ambiguity according to the positivity criteria established by the World Anti-Doping Agency (WADA). Moreover, an isocratic method was developed to separate ephedrine from its isomer pseudoephedrine and cathine from phenylpropanolamine in a single run, what allowed their direct quantification in urine. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. Fast and Accurate Construction of Ultra-Dense Consensus Genetic Maps Using Evolution Strategy Optimization

    PubMed Central

    Mester, David; Ronin, Yefim; Schnable, Patrick; Aluru, Srinivas; Korol, Abraham

    2015-01-01

    Our aim was to develop a fast and accurate algorithm for constructing consensus genetic maps for chip-based SNP genotyping data with a high proportion of shared markers between mapping populations. Chip-based genotyping of SNP markers allows producing high-density genetic maps with a relatively standardized set of marker loci for different mapping populations. The availability of a standard high-throughput mapping platform simplifies consensus analysis by ignoring unique markers at the stage of consensus mapping thereby reducing mathematical complicity of the problem and in turn analyzing bigger size mapping data using global optimization criteria instead of local ones. Our three-phase analytical scheme includes automatic selection of ~100-300 of the most informative (resolvable by recombination) markers per linkage group, building a stable skeletal marker order for each data set and its verification using jackknife re-sampling, and consensus mapping analysis based on global optimization criterion. A novel Evolution Strategy optimization algorithm with a global optimization criterion presented in this paper is able to generate high quality, ultra-dense consensus maps, with many thousands of markers per genome. This algorithm utilizes "potentially good orders" in the initial solution and in the new mutation procedures that generate trial solutions, enabling to obtain a consensus order in reasonable time. The developed algorithm, tested on a wide range of simulated data and real world data (Arabidopsis), outperformed two tested state-of-the-art algorithms by mapping accuracy and computation time. PMID:25867943

  4. Beam engineering for zero conicity cutting and drilling with ultra fast laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Letan, Amelie; Mishchik, Konstantin; Audouard, Eric; Hoenninger, Clemens; Mottay, Eric P.

    2017-03-01

    With the development of high average power, high repetition rate, industrial ultrafast lasers, it is now possible to achieve a high throughput with femtosecond laser processing, providing that the operating parameters are finely tuned to the application. Femtosecond lasers play a key role in these processes, due to their ability to high quality micro processing. They are able to drill high thickness holes (up to 1 mm) with arbitrary shapes, such as zero-conicity or even inversed taper, but can also perform zero-taper cutting. A clear understanding of all the processing steps necessary to optimize the processing speed is a main challenge for industrial developments. Indeed, the laser parameters are not independent of the beam steering devices. Pulses energy and repetition rate have to be precisely adjusted to the beam angle with the sample, and to the temporal and spatial sequences of pulses superposition. The purpose of the present work is to identify the role of these parameters for high aspect ratio drilling and cutting not only with experimental trials, but also with numerical estimations, using a simple engineering model based on the two temperature description of ultra-fast ablation. Assuming a nonlinear logarithmic response of the materials to ultrafast pulses, each material can be described by only two adjustable parameters. Simple assumptions allow to predict the effect of beam velocity and non-normal incident beams to estimate profile shapes and processing time.

  5. SU-E-T-163: Evaluation of Dose Distributions Recalculated with Per-Field Measurement Data Under the Condition of Respiratory Motion During IMRT for Liver Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, J; Yoon, M; Nam, T

    2014-06-01

    Purpose: The dose distributions within the real volumes of tumor targets and critical organs during internal target volume-based intensity-modulated radiation therapy (ITV-IMRT) for liver cancer were recalculated by applying the effects of actual respiratory organ motion, and the dosimetric features were analyzed through comparison with gating IMRT (Gate-IMRT) plan results. Methods: The 4DCT data for 10 patients who had been treated with Gate-IMRT for liver cancer were selected to create ITV-IMRT plans. The ITV was created using MIM software, and a moving phantom was used to simulate respiratory motion. The period and range of respiratory motion were recorded in allmore » patients from 4DCT-generated movie data, and the same period and range were applied when operating the dynamic phantom to realize coincident respiratory conditions in each patient. The doses were recalculated with a 3 dose-volume histogram (3DVH) program based on the per-field data measured with a MapCHECK2 2-dimensional diode detector array and compared with the DVHs calculated for the Gate-IMRT plan. Results: Although a sufficient prescription dose covered the PTV during ITV-IMRT delivery, the dose homogeneity in the PTV was inferior to that with the Gate-IMRT plan. We confirmed that there were higher doses to the organs-at-risk (OARs) with ITV-IMRT, as expected when using an enlarged field, but the increased dose to the spinal cord was not significant and the increased doses to the liver and kidney could be considered as minor when the reinforced constraints were applied during IMRT plan optimization. Conclusion: Because Gate-IMRT cannot always be considered an ideal method with which to correct the respiratory motional effect, given the dosimetric variations in the gating system application and the increased treatment time, a prior analysis for optimal IMRT method selection should be performed while considering the patient's respiratory condition and IMRT plan results.« less

  6. Comparison of IMRT versus 3D-CRT in the treatment of esophagus cancer: A systematic review and meta-analysis.

    PubMed

    Xu, Dandan; Li, Guowen; Li, Hongfei; Jia, Fei

    2017-08-01

    Esophageal cancer (EC) is a common cancer with high mortality because of its rapid progression and poor prognosis. Radiotherapy is one of the most effective treatments for EC. Three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) are 2 recently developed radiotherapy techniques. IMRT is believed to be more effective than 3D-CRT in target coverage, dose homogeneity, and reducing toxicity to normal organs. However, these advantages have not been demonstrated in the treatment of EC. This meta-analysis was performed to compare IMRT and 3D-CRT in the treatment of EC in terms of dose-volume histograms and outcomes including survival and toxicity. A literature search was performed in PubMed, Embase, and the Cochrane library databases from their inceptions to Dec 30, 2016. Two authors independently assessed the included studies and extracted data. The average percent irradiated volumes of adjacent noncancerous organs were calculated and compared between IMRT and 3D-CRT. The odds ratio of overall survival (OS), and radiation pneumonitis and radiation esophagitis was also evaluated. Totally 7 studies were included. Of them, 5 studies (80 patients) were included in the dosimetric comparison, 3 studies (871 patients) were included in the OS analysis, and 2 studies (205 patients) were included in the irradiation toxicity analysis. For lung in patients receiving doses ≥20 Gy and heart in patients receiving dose = 50 Gy, the average irradiated volumes of IMRT were less than those from 3D-CRT. IMRT resulted in a higher OS than 3D-CRT. However, no significant difference was observed in the incidence of radiation pneumonitis and radiation esophagitis between 2 radiotherapy techniques. Our data suggest that IMRT-delivered high radiation dose produces significantly less average percent volumes of irradiated lung and heart than 3D-CRT. IMRT is superior to 3D-CRT in the OS of EC while shows no benefit on radiation toxicity.

  7. Ultra-fast underwater suction traps.

    PubMed

    Vincent, Olivier; Weisskopf, Carmen; Poppinga, Simon; Masselter, Tom; Speck, Thomas; Joyeux, Marc; Quilliet, Catherine; Marmottant, Philippe

    2011-10-07

    Carnivorous aquatic Utricularia species catch small prey animals using millimetre-sized underwater suction traps, which have fascinated scientists since Darwin's early work on carnivorous plants. Suction takes place after mechanical triggering and is owing to a release of stored elastic energy in the trap body accompanied by a very fast opening and closing of a trapdoor, which otherwise closes the trap entrance watertight. The exceptional trapping speed--far above human visual perception--impeded profound investigations until now. Using high-speed video imaging and special microscopy techniques, we obtained fully time-resolved recordings of the door movement. We found that this unique trapping mechanism conducts suction in less than a millisecond and therefore ranks among the fastest plant movements known. Fluid acceleration reaches very high values, leaving little chance for prey animals to escape. We discovered that the door deformation is morphologically predetermined, and actually performs a buckling/unbuckling process, including a complete trapdoor curvature inversion. This process, which we predict using dynamical simulations and simple theoretical models, is highly reproducible: the traps are autonomously repetitive as they fire spontaneously after 5-20 h and reset actively to their ready-to-catch condition.

  8. [Comparison of SIB-IMRT treatment plans for upper esophageal carcinoma].

    PubMed

    Fu, Wei-hua; Wang, Lv-hua; Zhou, Zong-mei; Dai, Jian-rong; Hu, Yi-min

    2003-06-01

    To implement simultaneous integrated boost intensity-modulated radiotherapy(SIB-IMRT) plans for upper esophageal carcinoma and investigate the dose profiles of tumor and electively treated region and the dose to organs at risk (OARs). SIB-IMRT plans were designed for two patients with upper esophageal carcinoma. Two target volumes were predefined: PTV1, the target volume of the primary lesion, which was given to 67.2 Gy, and PTV2, the target volume of electively treated region, which was given to 50.4 Gy. With the same dose-volume constraints, but different beams arrangements (3, 5, 7, or 9 equispaced coplanar beams), four plans were generated. Indices, including dose distribution, dose volume histogram (DVH) and conformity index, were used for comparison of these plans. The plan with three intensity-modulated beams could produce good dose distribution for the two target volumes. The dose conformity to targets and the dose to OARs were improved as the beam number increased. The dose distributions in targets changed little when the beam number increased from 7 to 9. Five to seven intensity-modulated beams can produce desirable dose distributions for simultaneous integrated boost (SIB) treatment for upper esophageal carcinoma. The primary tumor can get higher equivalent dose by SIB treatments. It is easier and more efficient to design plans with equispaced coplanar beams. The efficacy of SIB-IMRT remains to be determined by the clinical outcome.

  9. Rapid Determination of Bile Acids in Bile from Various Mammals by Reversed-Phase Ultra-Fast Liquid Chromatography.

    PubMed

    Si, Gu Leng Ri; Yao, Peng; Shi, Luwen

    2015-08-01

    A valid and efficient reversed-phase ultra-fast liquid chromatography method was developed for the simultaneous determination of 13 bile acids in the bile of three mammal species, including rat, pig and human gallstone patients. Chromatographic separation was performed with a Shim-pack XR-ODS column, and the mobile phase consisted of acetonitrile and potassium phosphate buffer (pH 2.6) at a flow rate of 0.5 mL min(-1). The linear detection range of most bile acids ranged from 2 to 600 ng µL(-1) with a good correlation coefficient (>0.9995). The precision of each bile acid was <1.8% for intraday and <4.8% for interday. All bile acids were separated in 15 min with satisfactory resolution, and the total analysis time was 18 min, including equilibration. The method was successfully applied in rapid screening of bile samples from the three mammals. Significant metabolic frameworks of bile acids among various species were observed, whereas considerable quantitative variations in both inter- and intraspecies were also observed, especially for gallstone patients. Our results suggest that detecting the change of bile acid profiles could be applied for the diagnosis of gallstone disease. © Crown copyright 2014.

  10. Study on pharmacokinetics of 3,4-divanillyltetrahydrofuran in rats by ultra-fast liquid chromatography/tandem mass spectrometry.

    PubMed

    Shan, Chen-Xiao; Cui, Xiao-Bing; Yu, Sheng; Chai, Chuan; Wen, Hong-Mei; Wang, Xin-Zhi; Sun, Xue

    2016-01-01

    3,4-Divanillyltetrahydrofuran is the main active ingredient of nettle root which can increase steroid hormones in the bloodstream for many of bodybuilders. To better understand its pharmacological activities, we need to determine its pharmacokinetic profiles. In this study, a rapid and sensitive ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed for the determination of 3,4-divanillyltetrahydrofuran in the plasma of rats. Chromatographic separation was performed on a C18 column at 40°C, with a gradient elution consisting of methanol and water containing 0.3% (v/v) formic acid at a flow rate of 0.8mL/min. The detection was performed using an electrospray triple-quadrupole MS/MS via positive ion multiple reaction monitoring mode. The lower limits-of-quantification determined were 0.5ng/mL. The intra- and inter-day precision (RSD%) was found to be within 15% and the accuracy (RE%) ranged from -4.0% to 7.0%. This simple yet sensitive method was fully validated and could be successfully applied to the study on pharmacokinetics of 3, 4-divanillyltetrahydrofuran. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Fast log P determination by ultra-high-pressure liquid chromatography coupled with UV and mass spectrometry detections.

    PubMed

    Henchoz, Yveline; Guillarme, Davy; Martel, Sophie; Rudaz, Serge; Veuthey, Jean-Luc; Carrupt, Pierre-Alain

    2009-08-01

    Ultra-high-pressure liquid chromatography (UHPLC) systems able to work with columns packed with sub-2 microm particles offer very fast methods to determine the lipophilicity of new chemical entities. The careful development of the most suitable experimental conditions presented here will help medicinal chemists for high-throughput screening (HTS) log P(oct) measurements. The approach was optimized using a well-balanced set of 38 model compounds and a series of 28 basic compounds such as beta-blockers, local anesthetics, piperazines, clonidine, and derivatives. Different organic modifiers and hybrid stationary phases packed with 1.7-microm particles were evaluated in isocratic as well as gradient modes, and the advantages and limitations of tested conditions pointed out. The UHPLC approach offered a significant enhancement over the classical HPLC methods, by a factor 50 in the lipophilicity determination throughput. The hyphenation of UHPLC with MS detection allowed a further increase in the throughput. Data and results reported herein prove that the UHPLC-MS method can represent a progress in the HTS-measurement of lipophilicity due to its speed (at least a factor of 500 with respect to HPLC approaches) and to an extended field of application.

  12. Multi-institutional Comparison of Intensity Modulated Radiation Therapy (IMRT) Planning Strategies and Planning Results for Nasopharyngeal Cancer

    PubMed Central

    Park, Sung Ho; Park, Suk Won; Oh, Do Hoon; Choi, Youngmin; Kim, Jeung Kee; Ahn, Yong Chan; Park, Won; Suh, Hyun Sook; Lee, Rena; Bae, Hoonsik

    2009-01-01

    The intensity-modulated radiation therapy (IMRT) planning strategies for nasopharyngeal cancer among Korean radiation oncology facilities were investigated. Five institutions with IMRT planning capacity using the same planning system were invited to participate in this study. The institutions were requested to produce the best plan possible for 2 cases that would deliver 70 Gy to the planning target volume of gross tumor (PTV1), 59.4 Gy to the PTV2, and 51.5 Gy to the PTV3 in which elective irradiation was required. The advised fractionation number was 33. The planning parameters, resultant dose distributions, and biological indices were compared. We found 2-3-fold variations in the volume of treatment targets. Similar degree of variation was found in the delineation of normal tissue. The physician-related factors in IMRT planning had more influence on the plan quality. The inhomogeneity index of PTV dose ranged from 4 to 49% in Case 1, and from 5 to 46% in Case 2. Variation in tumor control probabilities for the primary lesion and involved LNs was less marked. Normal tissue complication probabilities for parotid glands and skin showed marked variation. Results from this study suggest that greater efforts in providing training and continuing education in terms of IMRT planning parameters usually set by physician are necessary for the successful implementation of IMRT. PMID:19399266

  13. Prostate Dose Escalation by Innovative Inverse Planning-Driven IMRT

    DTIC Science & Technology

    2005-11-01

    Galvin, J. M.; Low, D.; Palta , J. R.; Rosen, I.; Sharpe, M. B.; Xia, P.; Xiao, Y.; Xing, L.; Yu, C. X., Guidance document on delivery, treatment planning... Palta , J., Implementing IMRT in clinical practice: ajoint document of the American Society for Therapeutic Radiology and Oncology and the American

  14. Confidence limit variation for a single IMRT system following the TG119 protocol.

    PubMed

    Gordon, J D; Krafft, S P; Jang, S; Smith-Raymond, L; Stevie, M Y; Hamilton, R J

    2011-03-01

    To evaluate the robustness of TG119-based quality assurance metrics for an IMRT system. Four planners constructed treatment plans for the five IMRT test cases described in TG119. All plans were delivered to a 30 cm x 30 cm x 15 cm solid water phantom in one treatment session in order to minimize session-dependent variation from phantom setup, film quality, machine performance, etc. Composite measurements utilized film and an ionization chamber. Per-field measurements were collected using a diode array device at an effective depth of 5 cm. All data collected were analyzed using the TG119 specifications to determine the confidence limit values for each planner separately and then compared. The mean variance of ion chamber measurements for each planner was within 1.7% of the planned dose. The resulting confidence limits were 3.13%, 1.98%, 3.65%, and 4.39%. Confidence limit values determined by composite film analysis were 8.06%, 13.4%, 9.30%, and 16.5%. Confidence limits from per-field measurements were 1.55%, 0.00%, 0.00%, and 2.89%. For a single IMRT system, the accuracy assessment provided by TG119-based quality assurance metrics showed significant variations in the confidence limits between planners across all composite and per-field evaluations. This observed variation is likely due to the different levels of modulation between each planner's set of plans. Performing the TG119 evaluation using plans produced by a single planner may not provide an adequate estimation of IMRT system accuracy.

  15. SU-F-J-124: Reduction in Dosimetric Impact of Motion Using VMAT Compared to IMRT in Hypofractionated Prostate Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravindranath, B; Xiong, J; Happersett, L

    2016-06-15

    Purpose: To quantify and compare the dosimetric impact of motion management correction strategies during VMAT and IMRT for hypofractionated prostate treatment. Methods: Two arc VMAT and 9 field IMRT plans were generated for two prostate cancer patients undergoing hypofractionated radiotherapy (7.5Gy × 5 and 8Gy × 5). 212 motion traces were retrospectively extracted from treatment records of prostate cancer patients with implanted Calypso beacons. Dose to the CTV and normal tissues was reconstructed for each trace and plan taking into account the actual treatment delivery time. Following motion correction scenarios were simulated: (1) VMAT plan – (a) No correction, (b)more » correction between arcs, (c) correction every 20 degrees of gantry rotation and (2) IMRT plan - (a) No correction,(b) correction between fields. Two mm action threshold for position correction was assumed. The 5–95% confidence interval (CI) range was extracted from the family of DVHs for each correction scenario. Results: Treatment duration for 8Gy plan (VMAT vs IMRT) was 3 vs 12 mins and for 7.5Gy plan was 3 vs 9 mins. In the absence of correction, the VMAT 5–−95% CI dose spread was, on average, less than the IMRT dose spread by 2% for CTVD95, 9% for rectalwall (RW) D1cc and 9% for bladderwall (BW) D53. Further, VMAT b/w arcs correction strategy reduced the spread about the planned value compared to IMRT b/w fields correction by: 1% for CTVD95, 2.6% for RW1cc and 2% for BWD53. VMAT 20 degree strategy led to greater reduction in dose spread compared to IMRT by: 2% for CTVD95, 4.5% for RW1cc and 6.7% for BWD53. Conclusion: In the absence of a correction strategy, the limited motion during VMAT’s shorter delivery times translates into less motion-induced dosimetric degradation than IMRT. Performing limited periodic motion correction during VMAT can yield excellent conformity to planned values that is superior to IMRT. This work was partially supported by Varian Medical Systems.« less

  16. Magnetically Driven Accretion Disk Winds and Ultra-fast Outflows in PG 1211+143

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-05-01

    We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξc[erg cm s-1]) ≃ 5-6 and a column density on the order of NH ≃ 1023 cm-2 outflowing at a characteristic velocity of vc/c ≃ 0.1-0.2 (where c is the speed of light). The best-fit model favors its radial location at rc ≃ 200 Ro (Ro is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at Rt ≃ 30 Ro. The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143.

  17. Fast Spectroscopic Imaging and Field Compensation Using Frequency Modulation at Ultra-High-Field

    NASA Astrophysics Data System (ADS)

    Jang, Albert Woo Ju

    The high energy phosphates (HEP) in the myocardium, which are critical to understanding the cardiac function in both normal and pathophysiologic states, can be assessed non-invasively in vivo using phosphorus-31 (31P) spectroscopy. Compared to proton, for the same volume and magnetic field strength, the available signal-to-noise (SNR) ratio of the HEP metabolites is orders of magnitude lower mainly due to its intrinsically low concentration. Hence, cardiac spectroscopy greatly benefits when performed at ultra-high-fields (UHF, ≥ 7 T), both in terms of increased SNR and increased spectroscopic resolution. However, at ultra-high-field strengths, complications arise from the RF transmit wavelength becoming comparable or smaller than the field-of-view (FOV), thus exhibiting wave-like behavior. Furthermore, even with the spectroscopic resolution afforded at UHF, measuring myocardial inorganic phosphate (Pi) is still a challenge and has been a major barrier in extracting the ATP turnover rate. Recently, an indirect way of extracting the ATP hydrolysis rate forgoing direct measurement of Pi was established. In this work, we combine this method with the T1 nom method to monitor the transmural distribution of forward creatine kinase reaction (kf,CK) and ATP hydrolysis rate (kr,ATPase) of the myocardium, effectively reducing data acquisition time by up to an order of magnitude. In addition, a new class of 2D FM pulses and multidimensional adiabatic pulses are presented, which can compensate for B1 inhomogeneity through its spatiotemporal properties. These pulses should be valuable for spectroscopic applications at ultra-high-fields.

  18. The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow

    NASA Astrophysics Data System (ADS)

    Feruglio, C.; Fiore, F.; Carniani, S.; Piconcelli, E.; Zappacosta, L.; Bongiorno, A.; Cicone, C.; Maiolino, R.; Marconi, A.; Menci, N.; Puccetti, S.; Veilleux, S.

    2015-11-01

    Mrk 231 is a nearby ultra-luminous IR galaxy exhibiting a kpc-scale, multi-phase AGN-driven outflow. This galaxy represents the best target to investigate in detail the morphology and energetics of powerful outflows, as well as their still poorly-understood expansion mechanism and impact on the host galaxy. In this work, we present the best sensitivity and angular resolution maps of the molecular disk and outflow of Mrk 231, as traced by CO(2-1) and (3-2) observations obtained with the IRAM/PdBI. In addition, we analyze archival deep Chandra and NuSTAR X-ray observations. We use this unprecedented combination of multi-wavelength data sets to constrain the physical properties of both the molecular disk and outflow, the presence of a highly-ionized ultra-fast nuclear wind, and their connection. The molecular CO(2-1) outflow has a size of 1 kpc, and extends in all directions around the nucleus, being more prominent along the south-west to north-east direction, suggesting a wide-angle biconical geometry. The maximum projected velocity of the outflow is nearly constant out to 1 kpc, thus implying that the density of the outflowing material must decrease from the nucleus outwards as r-2. This suggests that either a large part of the gas leaves the flow during its expansion or that the bulk of the outflow has not yet reached out to 1 kpc, thus implying a limit on its age of 1 Myr. Mapping the mass and energy rates of the molecular outflow yields dot {M} OF = [500-1000] M⊙ yr-1 and Ėkin,OF = [7-10] × 1043 erg s-1. The total kinetic energy of the outflow is Ekin,OF is of the same order of the total energy of the molecular disk, Edisk. Remarkably, our analysis of the X-ray data reveals a nuclear ultra-fast outflow (UFO) with velocity -20 000 km s-1, dot {M}UFO = [0.3-2.1] M⊙ yr-1, and momentum load dot {P}UFO/ dot {P}rad = [0.2-1.6]. We find Ėkin,UFO Ėkin,OF as predicted for outflows undergoing an energy conserving expansion. This suggests that most of the UFO

  19. IMRT verification using a radiochromic/optical-CT dosimetry system

    NASA Astrophysics Data System (ADS)

    Oldham, Mark; Guo, Pengyi; Gluckman, Gary; Adamovics, John

    2006-12-01

    This work represents our first experiences relating to IMRT verification using a relatively new 3D dosimetry system consisting of a PRESAGETM dosimeter (Heuris Inc, Pharma LLC) and an optical-CT scanning system (OCTOPUSTM TM MGS Inc). This work builds in a step-wise manner on prior work in our lab.

  20. Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculations in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Tyagi, N.; Curran, B. H.; Roberson, P. L.; Moran, J. M.; Acosta, E.; Fraass, B. A.

    2008-02-01

    IMRT often requires delivering small fields which may suffer from electronic disequilibrium effects. The presence of heterogeneities, particularly low-density tissues in patients, complicates such situations. In this study, we report on verification of the DPM MC code for IMRT treatment planning in heterogeneous media, using a previously developed model of the Varian 120-leaf MLC. The purpose of this study is twofold: (a) design a comprehensive list of experiments in heterogeneous media for verification of any dose calculation algorithm and (b) verify our MLC model in these heterogeneous type geometries that mimic an actual patient geometry for IMRT treatment. The measurements have been done using an IMRT head and neck phantom (CIRS phantom) and slab phantom geometries. Verification of the MLC model has been carried out using point doses measured with an A14 slim line (SL) ion chamber inside a tissue-equivalent and a bone-equivalent material using the CIRS phantom. Planar doses using lung and bone equivalent slabs have been measured and compared using EDR films (Kodak, Rochester, NY).

  1. Plan averaging for multicriteria navigation of sliding window IMRT and VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craft, David, E-mail: dcraft@partners.org; Papp, Dávid; Unkelbach, Jan

    2014-02-15

    Purpose: To describe a method for combining sliding window plans [intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT)] for use in treatment plan averaging, which is needed for Pareto surface navigation based multicriteria treatment planning. Methods: The authors show that by taking an appropriately defined average of leaf trajectories of sliding window plans, the authors obtain a sliding window plan whose fluence map is the exact average of the fluence maps corresponding to the initial plans. In the case of static-beam IMRT, this also implies that the dose distribution of the averaged plan is the exact dosimetricmore » average of the initial plans. In VMAT delivery, the dose distribution of the averaged plan is a close approximation of the dosimetric average of the initial plans. Results: The authors demonstrate the method on three Pareto optimal VMAT plans created for a demanding paraspinal case, where the tumor surrounds the spinal cord. The results show that the leaf averaged plans yield dose distributions that approximate the dosimetric averages of the precomputed Pareto optimal plans well. Conclusions: The proposed method enables the navigation of deliverable Pareto optimal plans directly, i.e., interactive multicriteria exploration of deliverable sliding window IMRT and VMAT plans, eliminating the need for a sequencing step after navigation and hence the dose degradation that is caused by such a sequencing step.« less

  2. SU-E-T-83: A Study On Evaluating the Directional Dependency of 2D Seven 29 Ion Chamber Array Clinically with Different IMRT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Syam; Aswathi, C.P.

    Purpose: To evaluate the directional dependency of 2D seven 29 ion chamber array clinically with different IMRT plans. Methods: 25 patients already treated with IMRT plans were selected for the study. Verification plans were created for each treatment plan in eclipse 10 treatment planning system using the AAA algorithm with the 2D array and the Octavius CT phantom. Verification plans were done 2 times for a single patient. First plan with real IMRT (plan-related approach) and second plan with zero degree gantry angle (field-related approach). Measurements were performed on a Varian Clinac-iX, linear accelerator equipped with a millennium 120 multileafmore » collimator. Fluence was measured for all the delivered plans and analyzed using the verisoft software. Comparison was done by selecting the fluence delivered in static gantry (zero degree gantry) versus IMRT with real gantry angles. Results: The gamma pass percentage is greater than 97 % for all IMRT delivered with zero gantry angle and between 95%–98% for real gantry angles. Dose difference between the TPS calculated and measured for IMRT delivered with zero gantry angle was found to be between (0.03 to 0.06Gy) and with real gantry angles between (0.02 to 0.05Gy). There is a significant difference between the gamma analysis between the zero degree and true angle with a significance of 0.002. Standard deviation of gamma pass percentage between the IMRT plans with zero gantry angle was 0.68 and for IMRT with true gantry angle was found to be 0.74. Conclusion: The gamma analysis for IMRT with zero degree gantry angles shows higher pass percentage than IMRT delivered with true gantry angles. Verification plans delivered with true gantry angles lower the verification accuracy when 2D array is used for measurement.« less

  3. Cardiac dose-sparing effects of deep-inspiration breath-hold in left breast irradiation : Is IMRT more beneficial than VMAT?

    PubMed

    Sakka, Mazen; Kunzelmann, Leonie; Metzger, Martin; Grabenbauer, Gerhard G

    2017-10-01

    Given the reduction in death from breast cancer, as well as improvements in overall survival, adjuvant radiotherapy is considered the standard treatment for breast cancer. However, left-sided breast irradiation was associated with an increased rate of fatal cardiovascular events due to incidental irradiation of the heart. Recently, considerable efforts have been made to minimize cardiac toxicity of left-sided breast irradiation by new treatment methods such as deep-inspiration breath-hold (DIBH) and new radiation techniques, particularly intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). The primary aim of this study was to evaluate the effect of DIBH irradiation on cardiac dose compared with free-breathing (FB) irradiation, while the secondary objective was to compare the advantages of IMRT versus VMAT plans in both the FB and the DIBH position for left-sided breast cancer. In all, 25 consecutive left-sided breast cancer patients underwent CT simulation in the FB and DIBH position. Five patients were excluded with no cardiac displacement following DIBH-CT simulation. The other 20 patients were irradiated in the DIBH position using respiratory gating. Four different treatment plans were generated for each patient, an IMRT and a VMAT plan in the DIBH and in the FB position, respectively. The following parameters were used for plan comparison: dose to the heart, left anterior descending coronary artery (mean dose, maximum dose, D25% and D45%), ipsilateral, contralateral lung (mean dose, D20%, D30%) and contralateral breast (mean dose). The percentage in dose reduction for organs at risk achieved by DIBH for both IMRT and VMAT plans was calculated and compared for each patient by each treatment plan. DIBH irradiation significantly reduced mean dose to the heart and left anterior descending coronary artery (LADCA) using both IMRT (heart -20%; p = 0.0002, LADCA -9%; p = 0.001) and VMAT (heart -23%; p = 0.00003, LADCA -16%; p = 0

  4. Monte Carlo-based QA for IMRT of head and neck cancers

    NASA Astrophysics Data System (ADS)

    Tang, F.; Sham, J.; Ma, C.-M.; Li, J.-S.

    2007-06-01

    It is well-known that the presence of large air cavity in a dense medium (or patient) introduces significant electronic disequilibrium when irradiated with megavoltage X-ray field. This condition may worsen by the possible use of tiny beamlets in intensity-modulated radiation therapy (IMRT). Commercial treatment planning systems (TPSs), in particular those based on the pencil-beam method, do not provide accurate dose computation for the lungs and other cavity-laden body sites such as the head and neck. In this paper we present the use of Monte Carlo (MC) technique for dose re-calculation of IMRT of head and neck cancers. In our clinic, a turn-key software system is set up for MC calculation and comparison with TPS-calculated treatment plans as part of the quality assurance (QA) programme for IMRT delivery. A set of 10 off-the-self PCs is employed as the MC calculation engine with treatment plan parameters imported from the TPS via a graphical user interface (GUI) which also provides a platform for launching remote MC simulation and subsequent dose comparison with the TPS. The TPS-segmented intensity maps are used as input for the simulation hence skipping the time-consuming simulation of the multi-leaf collimator (MLC). The primary objective of this approach is to assess the accuracy of the TPS calculations in the presence of air cavities in the head and neck whereas the accuracy of leaf segmentation is verified by fluence measurement using a fluoroscopic camera-based imaging device. This measurement can also validate the correct transfer of intensity maps to the record and verify system. Comparisons between TPS and MC calculations of 6 MV IMRT for typical head and neck treatments review regional consistency in dose distribution except at and around the sinuses where our pencil-beam-based TPS sometimes over-predicts the dose by up to 10%, depending on the size of the cavities. In addition, dose re-buildup of up to 4% is observed at the posterior nasopharyngeal

  5. SU-F-T-388: Comparison of Biophysical Indices in Hippocampal-Avoidance Whole Brain VMAT and IMRT Radiation Therapy Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendall, E; Ahmad, S; Algan, O

    2016-06-15

    Purpose: To compare biophysical indices of Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT) treatment plans for whole brain radiation therapy following the NRG-CC001 protocol. Methods: In this retrospective study, a total of fifteen patients were planned with Varian Eclipse Treatment Planning System using VMAT (RapidArc) and IMRT techniques. The planning target volume (PTV) was defined as the whole brain volume excluding a uniform three-dimensional 5mm expansion of the hippocampus volume. Prescribed doses in all plans were 30 Gy delivered over 10 fractions normalized to a minimum of 95% of the target volume receiving 100% of themore » prescribed dose. The NRG Oncology protocol guidelines were followed for contouring and dose-volume constraints. A single radiation oncologist evaluated all treatment plans. Calculations of statistical significance were performed using Student’s paired t-test. Results: All VMAT and IMRT plans met the NRG-CC001 protocol dose-volume criteria. The average equivalent uniform dose (EUD) for the PTV for VMAT vs. IMRT was respectively (19.05±0.33 Gy vs. 19.38±0.47 Gy) for α/β of 2 Gy and (19.47±0.30 Gy vs. 19.84±0.42 Gy) for α/β of 10 Gy. For the PTV, the average mean and maximum doses were 2% and 5% lower in VMAT plans than in IMRT plans, respectively. The average EUD and the normal tissue complication probability (NTCP) for the hippocampus in VMAT vs. IMRT plans were (15.28±1.35 Gy vs. 15.65±0.99 Gy, p=0.18) and (0.305±0.012 Gy vs. 0.308±0.008 Gy, p=0.192), respectively. The average EUD and NTCP for the optic chiasm were both 2% higher in VMAT than in IMRT plans. Conclusion: Though statistically insignificant, VMAT plans indicate a lower hippocampus EUD than IMRT plans. Also, a small variation in NTCP was found between plans.« less

  6. Verification of eye lens dose in IMRT by MOSFET measurement.

    PubMed

    Wang, Xuetao; Li, Guangjun; Zhao, Jianling; Song, Ying; Xiao, Jianghong; Bai, Sen

    2018-04-17

    The eye lens is recognized as one of the most radiosensitive structures in the human body. The widespread use of intensity-modulated radiotherapy (IMRT) complicates dose verification and necessitates high standards of dose computation. The purpose of this work was to assess the computed dose accuracy of eye lens through measurements using a metal-oxide-semiconductor field-effect transistor (MOSFET) dosimetry system. Sixteen clinical IMRT plans of head and neck patients were copied to an anthropomorphic head phantom. Measurements were performed using the MOSFET dosimetry system based on the head phantom. Two MOSFET detectors were imbedded in the eyes of the head phantom as the left and the right lens, covered by approximately 5-mm-thick paraffin wax. The measurement results were compared with the calculated values with a dose grid size of 1 mm. Sixteen IMRT plans were delivered, and 32 measured lens doses were obtained for analysis. The MOSFET dosimetry system can be used to verify the lens dose, and our measurements showed that the treatment planning system used in our clinic can provide adequate dose assessment in eye lenses. The average discrepancy between measurement and calculation was 6.7 ± 3.4%, and the largest discrepancy was 14.3%, which met the acceptability criterion set by the American Association of Physicists in Medicine Task Group 53 for external beam calculation for multileaf collimator-shaped fields in buildup regions. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  7. Ultra-fast escape maneuver of an octopus-inspired robot.

    PubMed

    Weymouth, G D; Subramaniam, V; Triantafyllou, M S

    2015-02-02

    We design and test an octopus-inspired flexible hull robot that demonstrates outstanding fast-starting performance. The robot is hyper-inflated with water, and then rapidly deflates to expel the fluid so as to power the escape maneuver. Using this robot we verify for the first time in laboratory testing that rapid size-change can substantially reduce separation in bluff bodies traveling several body lengths, and recover fluid energy which can be employed to improve the propulsive performance. The robot is found to experience speeds over ten body lengths per second, exceeding that of a similarly propelled optimally streamlined rigid rocket. The peak net thrust force on the robot is more than 2.6 times that on an optimal rigid body performing the same maneuver, experimentally demonstrating large energy recovery and enabling acceleration greater than 14 body lengths per second squared. Finally, over 53% of the available energy is converted into payload kinetic energy, a performance that exceeds the estimated energy conversion efficiency of fast-starting fish. The Reynolds number based on final speed and robot length is [Formula: see text]. We use the experimental data to establish a fundamental deflation scaling parameter [Formula: see text] which characterizes the mechanisms of flow control via shape change. Based on this scaling parameter, we find that the fast-starting performance improves with increasing size.

  8. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences.

    PubMed

    Meinicke, Peter

    2009-09-02

    Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.

  9. Acousto-Optic Tunable Filter for Time-Domain Processing of Ultra-Short Optical Pulses,

    DTIC Science & Technology

    The application of acousto - optic tunable filters for shaping of ultra-fast pulses in the time domain is analyzed and demonstrated. With the rapid...advance of acousto - optic tunable filter (AOTF) technology, the opportunity for sophisticated signal processing capabilities arises. AOTFs offer unique

  10. Brain MR imaging at ultra-low radiofrequency power.

    PubMed

    Sarkar, Subhendra N; Alsop, David C; Madhuranthakam, Ananth J; Busse, Reed F; Robson, Philip M; Rofsky, Neil M; Hackney, David B

    2011-05-01

    To explore the lower limits for radiofrequency (RF) power-induced specific absorption rate (SAR) achievable at 1.5 T for brain magnetic resonance (MR) imaging without loss of tissue signal or contrast present in high-SAR clinical imaging in order to create a potentially viable MR method at ultra-low RF power to image tissues containing implanted devices. An institutional review board-approved HIPAA-compliant prospective MR study design was used, with written informed consent from all subjects prior to MR sessions. Seven healthy subjects were imaged prospectively at 1.5 T with ultra-low-SAR optimized three-dimensional (3D) fast spin-echo (FSE) and fluid-attenuated inversion-recovery (FLAIR) T2-weighted sequences and an ultra-low-SAR 3D spoiled gradient-recalled acquisition in the steady state T1-weighted sequence. Corresponding high-SAR two-dimensional (2D) clinical sequences were also performed. In addition to qualitative comparisons, absolute signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) for multicoil, parallel imaging acquisitions were generated by using a Monte Carlo method for quantitative comparison between ultra-low-SAR and high-SAR results. There were minor to moderate differences in the absolute tissue SNR and CNR values and in qualitative appearance of brain images obtained by using ultra-low-SAR and high-SAR techniques. High-SAR 2D T2-weighted imaging produced slightly higher SNR, while ultra-low-SAR 3D technique not only produced higher SNR for T1-weighted and FLAIR images but also higher CNRs for all three sequences for most of the brain tissues. The 3D techniques adopted here led to a decrease in the absorbed RF power by two orders of magnitude at 1.5 T, and still the image quality was preserved within clinically acceptable imaging times. RSNA, 2011

  11. Development of a four-axis moving phantom for patient-specific QA of surrogate signal-based tracking IMRT.

    PubMed

    Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Yamada, Masahiro; Takahashi, Kunio; Akimoto, Mami; Miyabe, Yuki; Yokota, Kenji; Kaneko, Shuji; Nakamura, Akira; Itasaka, Satoshi; Matsuo, Yukinori; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro

    2016-12-01

    The purposes of this study were two-fold: first, to develop a four-axis moving phantom for patient-specific quality assurance (QA) in surrogate signal-based dynamic tumor-tracking intensity-modulated radiotherapy (DTT-IMRT), and second, to evaluate the accuracy of the moving phantom and perform patient-specific dosimetric QA of the surrogate signal-based DTT-IMRT. The four-axis moving phantom comprised three orthogonal linear actuators for target motion and a fourth one for surrogate motion. The positional accuracy was verified using four laser displacement gauges under static conditions (±40 mm displacements along each axis) and moving conditions [eight regular sinusoidal and fourth-power-of-sinusoidal patterns with peak-to-peak motion ranges (H) of 10-80 mm and a breathing period (T) of 4 s, and three irregular respiratory patterns with H of 1.4-2.5 mm in the left-right, 7.7-11.6 mm in the superior-inferior, and 3.1-4.2 mm in the anterior-posterior directions for the target motion, and 4.8-14.5 mm in the anterior-posterior direction for the surrogate motion, and T of 3.9-4.9 s]. Furthermore, perpendicularity, defined as the vector angle between any two axes, was measured using an optical measurement system. The reproducibility of the uncertainties in DTT-IMRT was then evaluated. Respiratory motions from 20 patients acquired in advance were reproduced and compared three-dimensionally with the originals. Furthermore, patient-specific dosimetric QAs of DTT-IMRT were performed for ten pancreatic cancer patients. The doses delivered to Gafchromic films under tracking and moving conditions were compared with those delivered under static conditions without dose normalization. Positional errors of the moving phantom under static and moving conditions were within 0.05 mm. The perpendicularity of the moving phantom was within 0.2° of 90°. The differences in prediction errors between the original and reproduced respiratory motions were -0.1 ± 0.1 mm for the lateral

  12. Dosimetric benefits of IMRT and VMAT in the treatment of middle thoracic esophageal cancer: is the conformal radiotherapy still an alternative option?

    PubMed

    Wu, Zhiqin; Xie, Congying; Hu, Meilong; Han, Ce; Yi, Jinling; Zhou, Yongqiang; Yuan, Huawei; Jin, Xiance

    2014-05-08

    The purpose of this study is to investigate the dosimetric differences among conformal radiotherapy (CRT), intensity-modulated radiotherapy (IMRT), and volumetric-modulated radiotherapy (VMAT) in the treatment of middle thoracic esophageal cancer, and determine the most appropriate treatment modality. IMRT and one-arc VMAT plans were generated for eight middle thoracic esophageal cancer patients treated previous with CRT. The planning target volume (PTV) coverage and protections on organs at risk of three planning schemes were compared. All plans have sufficient PTV coverage and no significant differences were observed, except for the conformity and homogeneity. The lung V5, V10, and V13 in CRT were 47.9% ± 6.1%, 36.5% ± 4.6%, and 33.2% ± 4.2%, respectively, which were greatly increased to 78.2% ± 13.7% (p < 0.01), 80.8% ± 14.9% (p < 0.01), 48.4% ± 8.2% (p = 0.05) in IMRT and 58.6% ± 10.5% (p = 0.03), 67.7% ± 14.0% (p < 0.01), and 53.0% ± 10.1% (p < 0.01) in VMAT, respectively. The lung V20 (p = 0.03) in VMAT and the V30 (p = 0.04) in IMRT were lower than those in CRT. Both IMRT and VMAT achieved a better protection on heart. However, the volumes of the healthy tissue outside of PTV irradiated by a low dose were higher for IMRT and VMAT. IMRT and VMAT also had a higher MU, optimization time, and delivery time compared to CRT. In conclusion, all CRT, IMRT, and VMAT plans are able to meet the prescription and there is no clear distinction on PTV coverage. IMRT and VMAT can only decrease the volume of lung and heart receiving a high dose, but at a cost of delivering low dose to more volume of lung and normal tissues. CRT is still a feasible option for middle thoracic esophageal cancer radiotherapy, especially for the cost-effective consideration.

  13. A randomized phase II/III study of adverse events between sequential (SEQ) versus simultaneous integrated boost (SIB) intensity modulated radiation therapy (IMRT) in nasopharyngeal carcinoma; preliminary result on acute adverse events.

    PubMed

    Songthong, Anussara P; Kannarunimit, Danita; Chakkabat, Chakkapong; Lertbutsayanukul, Chawalit

    2015-08-08

    To investigate acute and late toxicities comparing sequential (SEQ-IMRT) versus simultaneous integrated boost intensity modulated radiotherapy (SIB-IMRT) in nasopharyngeal carcinoma (NPC) patients. Newly diagnosed stage I-IVB NPC patients were randomized to receive SEQ-IMRT or SIB-IMRT, with or without chemotherapy. SEQ-IMRT consisted of two sequential radiation treatment plans: 2 Gy x 25 fractions to low-risk planning target volume (PTV-LR) followed by 2 Gy x 10 fractions to high-risk planning target volume (PTV-HR). In contrast, SIB-IMRT consisted of only one treatment plan: 2.12 Gy and 1.7 Gy x 33 fractions to PTV-HR and PTV-LR, respectively. Toxicities were evaluated according to CTCAE version 4.0. Between October 2010 and November 2013, 122 eligible patients were randomized between SEQ-IMRT (54 patients) and SIB-IMRT (68 patients). With median follow-up time of 16.8 months, there was no significant difference in toxicities between the two IMRT techniques. During chemoradiation, the most common grade 3-5 acute toxicities were mucositis (15.4% vs 13.6%, SEQ vs SIB, p = 0.788) followed by dysphagia (9.6% vs 9.1%, p = 1.000) and xerostomia (9.6% vs 7.6%, p = 0.748). During the adjuvant chemotherapy period, 25.6% and 32.7% experienced grade 3 weight loss in SEQ-IMRT and SIB-IMRT (p = 0.459). One-year overall survival (OS) and progression-free survival (PFS) were 95.8% and 95.5% in SEQ-IMRT and 98% and 90.2% in SIB-IMRT, respectively (p = 0.472 for OS and 0.069 for PFS). This randomized, phase II/III trial comparing SIB-IMRT versus SEQ-IMRT in NPC showed no statistically significant difference between both IMRT techniques in terms of acute adverse events. Short-term tumor control and survival outcome were promising.

  14. AAA and AXB algorithms for the treatment of nasopharyngeal carcinoma using IMRT and RapidArc techniques.

    PubMed

    Kamaleldin, Maha; Elsherbini, Nader A; Elshemey, Wael M

    2017-09-27

    The aim of this study is to evaluate the impact of anisotropic analytical algorithm (AAA) and 2 reporting systems (AXB-D m and AXB-D w ) of Acuros XB algorithm (AXB) on clinical plans of nasopharyngeal patients using intensity-modulated radiotherapy (IMRT) and RapidArc (RA) techniques. Six plans of different algorithm-technique combinations are performed for 10 patients to calculate dose-volume histogram (DVH) physical parameters for planning target volumes (PTVs) and organs at risk (OARs). The number of monitor units (MUs) and calculation time are also determined. Good coverage is reported for all algorithm-technique combination plans without exceeding the tolerance for OARs. Regardless of the algorithm, RA plans persistently reported higher D 2% values for PTV-70. All IMRT plans reported higher number of MUs (especially with AXB) than did RA plans. AAA-IMRT produced the minimum calculation time of all plans. Major differences between the investigated algorithm-technique combinations are reported only for the number of MUs and calculation time parameters. In terms of these 2 parameters, it is recommended to employ AXB in calculating RA plans and AAA in calculating IMRT plans to achieve minimum calculation times at reduced number of MUs. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  15. Dosimetric effects of patient rotational setup errors on prostate IMRT treatments

    NASA Astrophysics Data System (ADS)

    Fu, Weihua; Yang, Yong; Li, Xiang; Heron, Dwight E.; Saiful Huq, M.; Yue, Ning J.

    2006-10-01

    The purpose of this work is to determine dose delivery errors that could result from systematic rotational setup errors (ΔΦ) for prostate cancer patients treated with three-phase sequential boost IMRT. In order to implement this, different rotational setup errors around three Cartesian axes were simulated for five prostate patients and dosimetric indices, such as dose-volume histogram (DVH), tumour control probability (TCP), normal tissue complication probability (NTCP) and equivalent uniform dose (EUD), were employed to evaluate the corresponding dosimetric influences. Rotational setup errors were simulated by adjusting the gantry, collimator and horizontal couch angles of treatment beams and the dosimetric effects were evaluated by recomputing the dose distributions in the treatment planning system. Our results indicated that, for prostate cancer treatment with the three-phase sequential boost IMRT technique, the rotational setup errors do not have significant dosimetric impacts on the cumulative plan. Even in the worst-case scenario with ΔΦ = 3°, the prostate EUD varied within 1.5% and TCP decreased about 1%. For seminal vesicle, slightly larger influences were observed. However, EUD and TCP changes were still within 2%. The influence on sensitive structures, such as rectum and bladder, is also negligible. This study demonstrates that the rotational setup error degrades the dosimetric coverage of target volume in prostate cancer treatment to a certain degree. However, the degradation was not significant for the three-phase sequential boost prostate IMRT technique and for the margin sizes used in our institution.

  16. In vivo and phantom measurements of the secondary photon and neutron doses for prostate patients undergoing 18 MV IMRT.

    PubMed

    Reft, Chester S; Runkel-Muller, Renate; Myrianthopoulos, Leon

    2006-10-01

    For intensity modulated radiation therapy (IMRT) treatments 6 MV photons are typically used, however, for deep seated tumors in the pelvic region, higher photon energies are increasingly being employed. IMRT treatments require more monitor units (MU) to deliver the same dose as conformal treatments, causing increased secondary radiation to tissues outside the treated area from leakage and scatter, as well as a possible increase in the neutron dose from photon interactions in the machine head. Here we provide in vivo patient and phantom measurements of the secondary out-of-field photon radiation and the neutron dose equivalent for 18 MV IMRT treatments. The patients were treated for prostate cancer with 18 MV IMRT at institutions using different therapy machines and treatment planning systems. Phantom exposures at the different facilities were used to compare the secondary photon and neutron dose equivalent between typical IMRT delivered treatment plans with a six field three-dimensional conformal radiotherapy (3DCRT) plan. For the in vivo measurements LiF thermoluminescent detectors (TLDs) and Al2O3 detectors using optically stimulated radiation were used to obtain the photon dose and CR-39 track etch detectors were used to obtain the neutron dose equivalent. For the phantom measurements a Bonner sphere (25.4 cm diameter) containing two types of TLDs (TLD-600 and TLD-700) having different thermal neutron sensitivities were used to obtain the out-of-field neutron dose equivalent. Our results showed that for patients treated with 18 MV IMRT the photon dose equivalent is greater than the neutron dose equivalent measured outside the treatment field and the neutron dose equivalent normalized to the prescription dose varied from 2 to 6 mSv/Gy among the therapy machines. The Bonner sphere results showed that the ratio of neutron equivalent doses for the 18 MV IMRT and 3DCRT prostate treatments scaled as the ratio of delivered MUs. We also observed differences in the

  17. How short are ultra short light pulses? (looking back to the mid sixties)

    NASA Astrophysics Data System (ADS)

    Weber, H. P.; Dändliker, R.

    2010-09-01

    With the arrival of mode locking for Q-switched lasers to generate ultra short light pulses, a method to measure their expected time duration in the psec range was needed. A novel method, based on an intensity correlation measurement using optical second harmonic generation, was developed. Other reported approaches for the same purpose were critically analysed. Theoretical and subsequent experimental studies lead to surprising new insight into the ultra fast temporal behaviour of broadband laser radiation: Any non mode locked multimode emission of a laser consists of random intensity fluctuations with duration of the total inverse band width of emitted radiation. However, it was shown, that with mode locking isolated ultra short pulses of psec duration can be generated. This article summarizes activities performed in the mid sixties at the University of Berne, Switzerland.

  18. Optimization of chemical compositions in low-carbon Al-killed enamel steel produced by ultra-fast continuous annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Futao, E-mail: dongft@sina.com; Du, Linxiu; Liu, Xianghua

    2013-10-15

    The influence of Mn,S and B contents on microstructural characteristics, mechanical properties and hydrogen trapping ability of low-carbon Al-killed enamel steel was investigated. The materials were produced and processed in a laboratory and the ultra-fast continuous annealing processing was performed using a continuous annealing simulator. It was found that increasing Mn,S contents in steel can improve its hydrogen trapping ability which is attributed by refined ferrite grains, more dispersed cementite and added MnS inclusions. Nevertheless, it deteriorates mechanical properties of steel sheet. Addition of trace boron results in both good mechanical properties and significantly improved hydrogen trapping ability. The boronmore » combined with nitrogen segregating at grain boundaries, cementite and MnS inclusions, provides higher amount of attractive hydrogen trapping sites and raises the activation energy for hydrogen desorption from them. - Highlights: • We study microstructures and properties in low-carbon Al-killed enamel steel. • Hydrogen diffusion coefficients are measured to reflect fish-scale resistance. • Manganese improves hydrogen trapping ability but decrease deep-drawing ability. • Boron improves both hydrogen trapping ability and deep-drawing ability. • Both excellent mechanical properties and fish-scale resistance can be matched.« less

  19. Quantitative structure-retention relationship studies for taxanes including epimers and isomeric metabolites in ultra fast liquid chromatography.

    PubMed

    Dong, Pei-Pei; Ge, Guang-Bo; Zhang, Yan-Yan; Ai, Chun-Zhi; Li, Guo-Hui; Zhu, Liang-Liang; Luan, Hong-Wei; Liu, Xing-Bao; Yang, Ling

    2009-10-16

    Seven pairs of epimers and one pair of isomeric metabolites of taxanes, each pair of which have similar structures but different retention behaviors, together with additional 13 taxanes with different substitutions were chosen to investigate the quantitative structure-retention relationship (QSRR) of taxanes in ultra fast liquid chromatography (UFLC). Monte Carlo variable selection (MCVS) method was adopted to choose descriptors. The selected four descriptors were used to build QSRR model with multi-linear regression (MLR) and artificial neural network (ANN) modeling techniques. Both linear and nonlinear models show good predictive ability, of which ANN model was better with the determination coefficient R(2) for training, validation and test set being 0.9892, 0.9747 and 0.9840, respectively. The results of 100 times' leave-12-out cross validation showed the robustness of this model. All the isomers can be correctly differentiated by this model. According to the selected descriptors, the three dimensional structural information was critical for recognition of epimers. Hydrophobic interaction was the uppermost factor for retention in UFLC. Molecules' polarizability and polarity properties were also closely correlated with retention behaviors. This QSRR model will be useful for separation and identification of taxanes including epimers and metabolites from botanical or biological samples.

  20. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment.

    PubMed

    Fuangrod, Todsaporn; Woodruff, Henry C; van Uytven, Eric; McCurdy, Boyd M C; Kuncic, Zdenka; O'Connor, Daryl J; Greer, Peter B

    2013-09-01

    To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient. The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance. The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s). A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  1. IMRT and 3D conformal radiotherapy with or without elective nodal irradiation in locally advanced NSCLC: A direct comparison of PET-based treatment planning.

    PubMed

    Fleckenstein, Jochen; Kremp, Katharina; Kremp, Stephanie; Palm, Jan; Rübe, Christian

    2016-02-01

    The potential of intensity-modulated radiation therapy (IMRT) as opposed to three-dimensional conformal radiotherapy (3D-CRT) is analyzed for two different concepts of fluorodeoxyglucose positron emission tomography (FDG PET)-based target volume delineation in locally advanced non-small cell lung cancer (LA-NSCLC): involved-field radiotherapy (IF-RT) vs. elective nodal irradiation (ENI). Treatment planning was performed for 41 patients with LA-NSCLC, using four different planning approaches (3D-CRT-IF, 3D-CRT-ENI, IMRT-IF, IMRT-ENI). ENI included a boost irradiation after 50 Gy. For each plan, maximum dose escalation was calculated based on prespecified normal tissue constraints. The maximum prescription dose (PD), tumor control probability (TCP), conformal indices (CI), and normal tissue complication probabilities (NTCP) were analyzed. IMRT resulted in statistically significant higher prescription doses for both target volume concepts as compared with 3D-CRT (ENI: 68.4 vs. 60.9 Gy, p < 0.001; IF: 74.3 vs. 70.1 Gy, p < 0.03). With IMRT-IF, a PD of at least 66 Gy was achieved for 95 % of all plans. For IF as compared with ENI, there was a considerable theoretical increase in TCP (IMRT: 27.3 vs. 17.7 %, p < 0.00001; 3D-CRT: 20.2 vs. 9.9 %, p < 0.00001). The esophageal NTCP showed a particularly good sparing with IMRT vs. 3D-CRT (ENI: 12.3 vs. 30.9 % p < 0.0001; IF: 15.9 vs. 24.1 %; p < 0.001). The IMRT technique and IF target volume delineation allow a significant dose escalation and an increase in TCP. IMRT results in an improved sparing of OARs as compared with 3D-CRT at equivalent dose levels.

  2. SU-E-T-393: Evaluation of Large Field IMRT Versus RapidArc Planning for Carcinoma Cervix with Para-Aotic Node Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, S Kothanda; Girigesh, Y; MISHRA, M

    Purpose: The objective of this work is to evaluate and compare Large field IMRT and RapidArc planning for Carcinoma Cervix and Para-aotic node irradiation. Methods: In this study, ten patients of Cervix with para-aotic node have been selected with PTV length 35+2cm. All plans were generated in Eclipse TPS V10.0 with Dynamic IMRT and RapidArc technique using 6MV photon energy. In IMRT planning, 7 fields were chosen to get optimal plan and in RapidArc, double Full arc clockwise and counter clockwise were used for planning. All the plans were generated with single isocenter and calculated using AAA dose algorithm. Formore » all the cases the prescribed dose to PTV was same and the plan acceptance criteria is; 95% of the PTV volume should receive 100% prescribed dose. The tolerance doses for the OAR’s is also taken in to account. The evaluation criteria used for analysis are; 1) Homogeneity Index, 2) Conformity Index, 3) Mean Dose to OAR’s, 4)Total monitor units delivered. Results: DVH analysis were performed for both IMRT and RapidArc planning. In both the plans, 95% of PTV volume receives prescribed dose and maximum dose are less than 107%. The conformity index are same in both the techniques. The mean Homogeneity index are 1.036 and 1.053 for IMRT and RapidArc plan. The mean (mean + SD) dose of bladder and rectum in IMRT is 44.2+1.55, 42.05+2.52 and RapidArc is 46.66+1.6, 44.2+2.75 respectively. There is no significant difference found in Right Femoral head, Left Femoral head and Kidney doses. It is found that total MU’s are more in IMRT compared with RapidArc planning. Conclusion: In the case of cervix with Para-arotic node single isocenter irradiation, IMRT planning in large-field is better compared to RapidArc planning in terms of Homogeneity Index and mean dose of Bladder and Rectum.« less

  3. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    PubMed Central

    Nishiyama, Yusuke; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems. PMID:25856081

  4. Ultra-short pulse laser micro patterning with highest throughput by utilization of a novel multi-beam processing head

    NASA Astrophysics Data System (ADS)

    Homburg, Oliver; Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan

    2017-02-01

    In the last decade much improvement has been achieved for ultra-short pulse lasers with high repetition rates. This laser technology has vastly matured so that it entered a manifold of industrial applications recently compared to mainly scientific use in the past. Compared to ns-pulse ablation ultra-short pulses in the ps- or even fs regime lead to still colder ablation and further reduced heat-affected zones. This is crucial for micro patterning when structure sizes are getting smaller and requirements are getting stronger at the same time. An additional advantage of ultra-fast processing is its applicability to a large variety of materials, e.g. metals and several high bandgap materials like glass and ceramics. One challenge for ultra-fast micro machining is throughput. The operational capacity of these processes can be maximized by increasing the scan rate or the number of beams - parallel processing. This contribution focuses on process parallelism of ultra-short pulsed lasers with high repetition rate and individually addressable acousto-optical beam modulation. The core of the multi-beam generation is a smooth diffractive beam splitter component with high uniform spots and negligible loss, and a prismatic array compressor to match beam size and pitch. The optical design and the practical realization of an 8 beam processing head in combination with a high average power single mode ultra-short pulsed laser source are presented as well as the currently on-going and promising laboratory research and micro machining results. Finally, an outlook of scaling the processing head to several tens of beams is given.

  5. A new plan quality index for nasopharyngeal cancer SIB IMRT.

    PubMed

    Jin, X; Yi, J; Zhou, Y; Yan, H; Han, C; Xie, C

    2014-02-01

    A new plan quality index integrating dosimetric and radiobiological indices was proposed to facilitate the evaluation and comparison of simultaneous integrated boost (SIB) intensity modulated radiotherapy (IMRT) plans for nasopharyngeal cancer (NPC) patients. Ten NPC patients treated by SIB-IMRT were enrolled in the study. Custom software was developed to read dose-volume histogram (DVH) curves from the treatment planning system (TPS). A plan filtering matrix was introduced to filter plans that fail to satisfy treatment protocol. Target plan quality indices and organ at risk (OAR) plan quality indices were calculated for qualified plans. A unique composite plan quality index (CPQI) was proposed based on the relative weight of these indices to evaluate and compare competing plans. Plan ranking results were compared with detailed statistical analysis, radiation oncology quality system (ROQS) scoring results and physician's evaluation results to verify the accuracy of this new plan quality index. The average CPQI values for plans with OAR priority of low, normal, high, and PTV only were 0.22 ± 0.08, 0.49 ± 0.077, 0.71 ± 0.062, and -0.21 ± 0.16, respectively. There were significant differences among these plan quality indices (One-way ANOVA test, p < 0.01). This was consistent with statistical analysis, ROQS results and physician's ranking results in which 90% OAR high plans were selected. Plan filtering matrix was able to speed up the plan evaluation process. The new matrix plan quality index CPQI showed good consistence with physician ranking results. It is a promising index for NPC SIB-IMRT plan evaluation. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Evaluation of dose coverage to target volume and normal tissue sparing in the adjuvant radiotherapy of gastric cancers: 3D-CRT compared with dynamic IMRT.

    PubMed

    Murthy, Kk; Shukeili, Ka; Kumar, Ss; Davis, Ca; Chandran, Rr; Namrata, S

    2010-01-01

    To assess the potential advantage of intensity-modulated radiotherapy (IMRT) over 3D-conformal radiotherapy (3D-CRT) planning in postoperative adjuvant radiotherapy for patients with gastric carcinoma. In a retrospective study, for plan comparison, dose distribution was recalculated in 15 patients treated with 3D-CRT on the contoured structures of same CT images using an IMRT technique. 3D-conformal plans with three fields and four-fields were compared with seven-field dynamic IMRT plans. The different plans were compared by analyzing the dose coverage of planning target volume using TV(95), D(mean), uniformity index, conformity index and homogeneity index parameters. To assess critical organ sparing, D(mean), D(max), dose to one-third and two-third volumes of the OARs and percentage of volumes receiving more than their tolerance doses were compared. The average dose coverage values of PTV with 3F-CRT and 4F-CRT plans were comparable, where as IMRT plans achieved better target coverage(p<0.001) with higher conformity index value of 0.81±0.07 compared to both the 3D-CRT plans. The doses to the liver and bowel reduced significantly (p<0.001) with IMRT plans compared to other 3D-CRT plans. For all OARs the percentage of volumes receiving more than their tolerance doses were reduced with the IMRT plans. This study showed that a better target coverage and significant dose reduction to OARs could be achieved with the IMRT plans. The IMRT can be preferred with caution for organ motion. The authors are currently studying organ motion in the upper abdomen to use IMRT for patient treatment.

  7. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badziak, J.; Rosiński, M.; Krousky, E.

    2015-03-15

    A novel, efficient method of generating ultra-high-pressure shocks is proposed and investigated. In this method, the shock is generated by collision of a fast plasma projectile (a macro-particle) driven by laser-induced cavity pressure acceleration (LICPA) with a solid target placed at the LICPA accelerator channel exit. Using the measurements performed at the kilojoule PALS laser facility and two-dimensional hydrodynamic simulations, it is shown that the shock pressure ∼ Gbar can be produced with this method at the laser driver energy of only a few hundred joules, by an order of magnitude lower than the energy needed for production of suchmore » pressure with other laser-based methods known so far.« less

  8. Sensitivity in error detection of patient specific QA tools for IMRT plans

    NASA Astrophysics Data System (ADS)

    Lat, S. Z.; Suriyapee, S.; Sanghangthum, T.

    2016-03-01

    The high complexity of dose calculation in treatment planning and accurate delivery of IMRT plan need high precision of verification method. The purpose of this study is to investigate error detection capability of patient specific QA tools for IMRT plans. The two H&N and two prostate IMRT plans with MapCHECK2 and portal dosimetry QA tools were studied. Measurements were undertaken for original and modified plans with errors introduced. The intentional errors composed of prescribed dose (±2 to ±6%) and position shifting in X-axis and Y-axis (±1 to ±5mm). After measurement, gamma pass between original and modified plans were compared. The average gamma pass for original H&N and prostate plans were 98.3% and 100% for MapCHECK2 and 95.9% and 99.8% for portal dosimetry, respectively. In H&N plan, MapCHECK2 can detect position shift errors starting from 3mm while portal dosimetry can detect errors started from 2mm. Both devices showed similar sensitivity in detection of position shift error in prostate plan. For H&N plan, MapCHECK2 can detect dose errors starting at ±4%, whereas portal dosimetry can detect from ±2%. For prostate plan, both devices can identify dose errors starting from ±4%. Sensitivity of error detection depends on type of errors and plan complexity.

  9. On the performances of different IMRT Treatment Planning Systems for selected paediatric cases.

    PubMed

    Fogliata, Antonella; Nicolini, Giorgia; Alber, Markus; Asell, Mats; Clivio, Alessandro; Dobler, Barbara; Larsson, Malin; Lohr, Frank; Lorenz, Friedlieb; Muzik, Jan; Polednik, Martin; Vanetti, Eugenio; Wolff, Dirk; Wyttenbach, Rolf; Cozzi, Luca

    2007-02-15

    To evaluate the performance of seven different TPS (Treatment Planning Systems: Corvus, Eclipse, Hyperion, KonRad, Oncentra Masterplan, Pinnacle and PrecisePLAN) when intensity modulated (IMRT) plans are designed for paediatric tumours. Datasets (CT images and volumes of interest) of four patients were used to design IMRT plans. The tumour types were: one extraosseous, intrathoracic Ewing Sarcoma; one mediastinal Rhabdomyosarcoma; one metastatic Rhabdomyosarcoma of the anus; one Wilm's tumour of the left kidney with multiple liver metastases. Prescribed doses ranged from 18 to 54.4 Gy. To minimise variability, the same beam geometry and clinical goals were imposed on all systems for every patient. Results were analysed in terms of dose distributions and dose volume histograms. For all patients, IMRT plans lead to acceptable treatments in terms of conformal avoidance since most of the dose objectives for Organs At Risk (OARs) were met, and the Conformity Index (averaged over all TPS and patients) ranged from 1.14 to 1.58 on primary target volumes and from 1.07 to 1.37 on boost volumes. The healthy tissue involvement was measured in terms of several parameters, and the average mean dose ranged from 4.6 to 13.7 Gy. A global scoring method was developed to evaluate plans according to their degree of success in meeting dose objectives (lower scores are better than higher ones). For OARs the range of scores was between 0.75 +/- 0.15 (Eclipse) to 0.92 +/- 0.18 (Pinnacle(3) with physical optimisation). For target volumes, the score ranged from 0.05 +/- 0.05 (Pinnacle(3) with physical optimisation) to 0.16 +/- 0.07 (Corvus). A set of complex paediatric cases presented a variety of individual treatment planning challenges. Despite the large spread of results, inverse planning systems offer promising results for IMRT delivery, hence widening the treatment strategies for this very sensitive class of patients.

  10. Image-guided, intensity-modulated radiation therapy (IG-IMRT) for skull base chordoma and chondrosarcoma: preliminary outcomes.

    PubMed

    Sahgal, Arjun; Chan, Michael W; Atenafu, Eshetu G; Masson-Cote, Laurence; Bahl, Gaurav; Yu, Eugene; Millar, Barbara-Ann; Chung, Caroline; Catton, Charles; O'Sullivan, Brian; Irish, Jonathan C; Gilbert, Ralph; Zadeh, Gelareh; Cusimano, Michael; Gentili, Fred; Laperriere, Normand J

    2015-06-01

    We report our preliminary outcomes following high-dose image-guided intensity modulated radiotherapy (IG-IMRT) for skull base chordoma and chondrosarcoma. Forty-two consecutive IG-IMRT patients, with either skull base chordoma (n = 24) or chondrosarcoma (n = 18) treated between August 2001 and December 2012 were reviewed. The median follow-up was 36 months (range, 3-90 mo) in the chordoma cohort, and 67 months (range, 15-125) in the chondrosarcoma cohort. Initial surgery included biopsy (7% of patients), subtotal resection (57% of patients), and gross total resection (36% of patients). The median IG-IMRT total doses in the chondrosarcoma and chordoma cohorts were 70 Gy and 76 Gy, respectively, delivered with 2 Gy/fraction. For the chordoma and chondrosarcoma cohorts, the 5-year overall survival and local control rates were 85.6% and 65.3%, and 87.8% and 88.1%, respectively. In total, 10 patients progressed locally: 8 were chordoma patients and 2 chondrosarcoma patients. Both chondrosarcoma failures were in higher-grade tumors (grades 2 and 3). None of the 8 patients with grade 1 chondrosarcoma failed, with a median follow-up of 77 months (range, 34-125). There were 8 radiation-induced late effects-the most significant was a radiation-induced secondary malignancy occurring 6.7 years following IG-IMRT. Gross total resection and age were predictors of local control in the chordoma and chondrosarcoma patients, respectively. We report favorable survival, local control and adverse event rates following high dose IG-IMRT. Further follow-up is needed to confirm long-term efficacy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Rhabdomyolysis and exercise-associated hyponatremia in ultra-bikers and ultra-runners.

    PubMed

    Chlíbková, Daniela; Knechtle, Beat; Rosemann, Thomas; Tomášková, Ivana; Novotný, Jan; Žákovská, Alena; Uher, Tomáš

    2015-01-01

    Exercise-associated hyponatremia (EAH), rhabdomyolysis and renal failure appear to be a unique problem in ultra-endurance racers. We investigated the combined occurrence of EAH and rhabdomyolysis in seven different ultra-endurance races and disciplines (i.e. multi-stage mountain biking, 24-h mountain biking, 24-h ultra-running and 100-km ultra-running). Two (15.4%) ultra-runners (man and woman) from hyponatremic ultra-athletes (n = 13) and four (4%) ultra-runners (four men) from the normonatremic group (n = 100) showed rhabdomyolysis following elevated blood creatine kinase (CK) levels > 10,000 U/L without the development of renal failure and the necessity of a medical treatment. Post-race creatine kinase, plasma and urine creatinine significantly increased, while plasma [Na(+)] and creatine clearance decreased in hyponatremic and normonatremic athletes, respectively. The percentage increase of CK was higher in the hyponatremic compared to the normonatremic group (P < 0.05). Post-race CK levels were higher in ultra-runners compared to mountain bikers (P < 0.01), in faster normonatremic (P < 0.05) and older and more experienced hyponatremic ultra-athletes (P < 0.05). In all finishers, pre-race plasma [K(+)] was related to post-race CK (P < 0.05). Hyponatremic ultra-athletes tended to develop exercise-induced rhabdomyolysis more frequently than normonatremic ultra-athletes. Ultra-runners tended to develop rhabdomyolysis more frequently than mountain bikers. We found no association between post-race plasma [Na(+)] and CK concentration in both hypo- and normonatremic ultra-athletes.

  12. Multi-Case Knowledge-Based IMRT Treatment Planning in Head and Neck Cancer

    NASA Astrophysics Data System (ADS)

    Grzetic, Shelby Mariah

    Head and neck cancer (HNC) IMRT treatment planning is a challenging process that relies heavily on the planner's experience. Previously, we used the single, best match from a library of manually planned cases to semi-automatically generate IMRT plans for a new patient. The current multi-case Knowledge Based Radiation Therapy (MC-KBRT) study utilized different matching cases for each of six individual organs-at-risk (OARs), then combined those six cases to create the new treatment plan. From a database of 103 patient plans created by experienced planners, MC-KBRT plans were created for 40 (17 unilateral and 23 bilateral) HNC "query" patients. For each case, 2D beam's-eye-view images were used to find similar geometric "match" patients separately for each of 6 OARs. Dose distributions for each OAR from the 6 matching cases were combined and then warped to suit the query case's geometry. The dose-volume constraints were used to create the new query treatment plan without the need for human decision-making throughout the IMRT optimization. The optimized MC-KBRT plans were compared against the clinically approved plans and Version 1 (previous KBRT using only one matching case with dose warping) using the dose metrics: mean, median, and maximum (brainstem and cord+5mm) doses. Compared to Version 1, MC-KBRT had no significant reduction of the dose to any of the OARs in either unilateral or bilateral cases. Compared to the manually planned unilateral cases, there was significant reduction of the oral cavity mean/median dose (>2Gy) at the expense of the contralateral parotid. Compared to the manually planned bilateral cases, reduction of dose was significant in the ipsilateral parotid, larynx, and oral cavity (>3Gy mean/median) while maintaining PTV coverage. MC-KBRT planning in head and neck cancer generates IMRT plans with better dose sparing than manually created plans. MC-KBRT using multiple case matches does not show significant dose reduction compared to using a

  13. SU-F-T-356: DosimetricComparison of VMAT Vs Step and Shoot IMRT Plans for Stage III Lung CancerPatients with Mediastinal Involvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, D; Bogue, J

    Purpose: For Stage III lung cancers that entail treatment of some or all of the mediastinum, anterior-posterior focused Step and Shoot IMRT (SS-IMRT) and VMAT plans have been clinically used to deliver the prescribed dose while working to minimize lung dose and avoid other critical structures. A comparison between the two planning methods was completed to see which treatment method is superior and minimizes dose to healthy lung tissue. Methods: Ten patients who were recently treated with SS-IMRT or VMAT plans for Stage III lung cancer with mediastinal involvement were selected. All patients received a simulation CT for treatment planning,more » as well as a 4D CT and PET/CT fusion for target delineation. Plans were prescribed 6250 cGy in 25 fractions and normalized such that 100% of the prescription dose covered 95% of the PTV. Clinically approved SS-IMRT or VMAT plans were then copied and planned using the alternative modality with identical optimization criteria. SS-IMRT plans utilized seven to nine beams distributed around the patient while the VMAT plans consisted of two full 360 degree arcs. Plans were compared for the lung volume receiving 20 Gy (V20). Results: Both SS-IMRT and VMAT can be used to achieve clinical treatment plans for patients with Stage III Lung cancer with targets encompassing the mediastinum. VMAT plans produced an average V20 of 23.0+/−8.3% and SS-IMRT produced an average of 24.2+/−10.0%. Conclusion: Results indicate that either method can achieve comparable dose distributions, however, VMAT can allow the optimizer to distribute dose over paths of minimal lung tissue and reduce the V20. Therefore, creating a VMAT with constraints identical to an SS-IMRT plan could help to reduce the V20 in clinical treatment plans.« less

  14. A Varian DynaLog file-based procedure for patient dose-volume histogram-based IMRT QA.

    PubMed

    Calvo-Ortega, Juan F; Teke, Tony; Moragues, Sandra; Pozo, Miquel; Casals-Farran, Joan

    2014-03-06

    In the present study, we describe a method based on the analysis of the dynamic MLC log files (DynaLog) generated by the controller of a Varian linear accelerator in order to perform patient-specific IMRT QA. The DynaLog files of a Varian Millennium MLC, recorded during an IMRT treatment, can be processed using a MATLAB-based code in order to generate the actual fluence for each beam and so recalculate the actual patient dose distribution using the Eclipse treatment planning system. The accuracy of the DynaLog-based dose reconstruction procedure was assessed by introducing ten intended errors to perturb the fluence of the beams of a reference plan such that ten subsequent erroneous plans were generated. In-phantom measurements with an ionization chamber (ion chamber) and planar dose measurements using an EPID system were performed to investigate the correlation between the measured dose changes and the expected ones detected by the reconstructed plans for the ten intended erroneous cases. Moreover, the method was applied to 20 cases of clinical plans for different locations (prostate, lung, breast, and head and neck). A dose-volume histogram (DVH) metric was used to evaluate the impact of the delivery errors in terms of dose to the patient. The ionometric measurements revealed a significant positive correlation (R² = 0.9993) between the variations of the dose induced in the erroneous plans with respect to the reference plan and the corresponding changes indicated by the DynaLog-based reconstructed plans. The EPID measurements showed that the accuracy of the DynaLog-based method to reconstruct the beam fluence was comparable with the dosimetric resolution of the portal dosimetry used in this work (3%/3 mm). The DynaLog-based reconstruction method described in this study is a suitable tool to perform a patient-specific IMRT QA. This method allows us to perform patient-specific IMRT QA by evaluating the result based on the DVH metric of the planning CT image (patient

  15. Volumetric modulated arc therapy vs. c-IMRT for the treatment of upper thoracic esophageal cancer.

    PubMed

    Zhang, Wu-Zhe; Zhai, Tian-Tian; Lu, Jia-Yang; Chen, Jian-Zhou; Chen, Zhi-Jian; Li, De-Rui; Chen, Chuang-Zhen

    2015-01-01

    To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 values than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2; however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT.

  16. Volumetric Modulated Arc Therapy vs. c-IMRT for the Treatment of Upper Thoracic Esophageal Cancer

    PubMed Central

    Lu, Jia-Yang; Chen, Jian-Zhou; Chen, Zhi-Jian; Li, De-Rui; Chen, Chuang-Zhen

    2015-01-01

    Objective To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). Methods CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. Results All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 values than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. Conclusion The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2; however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT. PMID:25815477

  17. Improving IMRT delivery efficiency with reweighted L1-minimization for inverse planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hojin; Becker, Stephen; Lee, Rena

    2013-07-15

    Purpose: This study presents an improved technique to further simplify the fluence-map in intensity modulated radiation therapy (IMRT) inverse planning, thereby reducing plan complexity and improving delivery efficiency, while maintaining the plan quality.Methods: First-order total-variation (TV) minimization (min.) based on L1-norm has been proposed to reduce the complexity of fluence-map in IMRT by generating sparse fluence-map variations. However, with stronger dose sparing to the critical structures, the inevitable increase in the fluence-map complexity can lead to inefficient dose delivery. Theoretically, L0-min. is the ideal solution for the sparse signal recovery problem, yet practically intractable due to its nonconvexity of themore » objective function. As an alternative, the authors use the iteratively reweighted L1-min. technique to incorporate the benefits of the L0-norm into the tractability of L1-min. The weight multiplied to each element is inversely related to the magnitude of the corresponding element, which is iteratively updated by the reweighting process. The proposed penalizing process combined with TV min. further improves sparsity in the fluence-map variations, hence ultimately enhancing the delivery efficiency. To validate the proposed method, this work compares three treatment plans obtained from quadratic min. (generally used in clinic IMRT), conventional TV min., and our proposed reweighted TV min. techniques, implemented by a large-scale L1-solver (template for first-order conic solver), for five patient clinical data. Criteria such as conformation number (CN), modulation index (MI), and estimated treatment time are employed to assess the relationship between the plan quality and delivery efficiency.Results: The proposed method yields simpler fluence-maps than the quadratic and conventional TV based techniques. To attain a given CN and dose sparing to the critical organs for 5 clinical cases, the proposed method reduces the number of

  18. SU-E-J-81: Adaptive Radiotherapy for IMRT Head & Neck Patient in AKUH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yousuf, A; Qureshi, B; Qadir, A

    2015-06-15

    Purpose: In this study we proposed Adaptive radiotherapy for IMRT patients which will brought an additional dimension to the management of patients with H&N cancer in Aga Khan University Hospital. Methods: In this study 5 Head and Neck (H&N) patients plan where selected, who’s Re-CT were done during the course of their treatment, they were simulated with IMRT technique to learn the consequence of anatomical changes that may occur during the treatment, as they are more dramatic changes can occur as compare to conventional treatment. All the organ at risk were drawn according RTOG guidelines and doses were checked asmore » per NCCN guidelines. Results: The reduction in size of Planning target volume (PTV) is more than 20% in all the cases which leads to 3 to 5 % overdose to normal tissues and Organ at Risk. Conclusion: Through this study we would like to emphasis the importance of Adaptive Radiotherapy practice in all IMRT (H&N) patients, although prospective studies are required with larger sample sizes to address the safety and the clinical effect of such approaches on patient outcome, also one need to develop protocols before implementation of this technique in practice.« less

  19. Coverage-based constraints for IMRT optimization

    NASA Astrophysics Data System (ADS)

    Mescher, H.; Ulrich, S.; Bangert, M.

    2017-09-01

    Radiation therapy treatment planning requires an incorporation of uncertainties in order to guarantee an adequate irradiation of the tumor volumes. In current clinical practice, uncertainties are accounted for implicitly with an expansion of the target volume according to generic margin recipes. Alternatively, it is possible to account for uncertainties by explicit minimization of objectives that describe worst-case treatment scenarios, the expectation value of the treatment or the coverage probability of the target volumes during treatment planning. In this note we show that approaches relying on objectives to induce a specific coverage of the clinical target volumes are inevitably sensitive to variation of the relative weighting of the objectives. To address this issue, we introduce coverage-based constraints for intensity-modulated radiation therapy (IMRT) treatment planning. Our implementation follows the concept of coverage-optimized planning that considers explicit error scenarios to calculate and optimize patient-specific probabilities q(\\hat{d}, \\hat{v}) of covering a specific target volume fraction \\hat{v} with a certain dose \\hat{d} . Using a constraint-based reformulation of coverage-based objectives we eliminate the trade-off between coverage and competing objectives during treatment planning. In-depth convergence tests including 324 treatment plan optimizations demonstrate the reliability of coverage-based constraints for varying levels of probability, dose and volume. General clinical applicability of coverage-based constraints is demonstrated for two cases. A sensitivity analysis regarding penalty variations within this planing study based on IMRT treatment planning using (1) coverage-based constraints, (2) coverage-based objectives, (3) probabilistic optimization, (4) robust optimization and (5) conventional margins illustrates the potential benefit of coverage-based constraints that do not require tedious adjustment of target volume objectives.

  20. IMRT vs. 3D Noncoplanar Treatment Plans for Maxillary Sinus Tumors: A New Tool for Quantitative Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Daphne; Menhel, Janna; Alezra, Dror

    2008-01-01

    We compared 9-field, equispaced intensity modulated radiation therapy (IMRT), 4- to 5-field, directionally optimized IMRT, and 3-dimensional (3D) noncoplanar planning approaches for tumors of the maxillary sinus. Ten patients were planned retrospectively to compare the different treatment techniques. Prescription doses were 60 to 70 Gy. Critical structures contoured included optic nerves and chiasm, lacrimal glands, lenses, and retinas. As an aid for plan assessment, we introduced a new tool: Critical Organ Scoring Index (COSI), which allows quantitative evaluation of the tradeoffs between target coverage and critical organ sparing. This index was compared with other, commonly used conformity indices. For amore » reliable assessment of both tumor coverage and dose to critical organs in the different planning techniques, we introduced a 2D, graphical representation of COSI vs. conformity index (CI). Dose-volume histograms and mean, maximum, and minimum organ doses were also compared. IMRT plans delivered lower doses to ipsilateral structures, but were unable to spare them. 3D plans delivered less dose to contralateral structures, and were more homogeneous, as well. Both IMRT approaches gave similar results. In cases where choice of optimal plan was difficult, the novel 2D COSI-CI representation gave an accurate picture of the tradeoffs between target coverage and organ sparing, even in cases where other conformity indices failed. Due to their unique anatomy, maxillary sinus tumors may benefit more from a noncoplanar approach than from IMRT. The new graphical representation proposed is a quick, visual, reliable tool, which may facilitate the physician's choice of best treatment plan for a given patient.« less

  1. Evaluations of secondary cancer risk in spine radiotherapy using 3DCRT, IMRT, and VMAT: A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehman, Jalil ur, E-mail: jalil_khanphy@yahoo.com; Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX; Tailor, Ramesh C.

    2015-04-01

    This study evaluated the secondary cancer risk from volumetric-modulated arc therapy (VMAT) for spine radiotherapy compared with intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3DCRT). Computed tomography images of an Radiological Physics Center spine anthropomorphic phantom were exported to a treatment planning system (Pinnacle{sup 3}, version 9.4). Radiation treatment plans for spine were prepared using VMAT (dual-arc), 7-field IMRT (beam angles: 110°, 130°, 150°, 180°, 210°, 230°, and 250°), and 4-field 3DCRT technique. The mean and maximum doses, dose-volume histograms, and volumes receiving more than 2 and 4 Gy to organs at risk (OARs) were calculated and compared. The lifetimemore » risk for secondary cancers was estimated according to the National Cancer Registry Programme Report 116. VMAT delivered the lowest maximum dose to the esophagus (4.03 Gy), bone (8.11 Gy), heart (2.11 Gy), spinal cord (6.45 Gy), and whole lung (5.66 Gy) as compared with other techniques (IMRT and 3DCRT). The volumes of OAR (esophagus) receiving more than 4 Gy were 0% for VMAT, 27.06% for IMRT, and up to 32.35% for 3DCRT. The estimated risk for secondary cancer in the respective OAR is considerably lower in VMAT compared with other techniques. The results of maximum doses and volumes of OARs suggest that the risk of secondary cancer induction for the spine in VMAT is lower than IMRT and 3DCRT, whereas VMAT has the best target coverage compared with the other techniques.« less

  2. SU-E-T-503: Intensity Modulated Proton Therapy (IMPT) Versus Intensity Modulated X-Ray Therapy (IMRT) for Patient with Hepatocellular Carcinoma: A Dosimetric Comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, H; Zhao, L; Prabhu, K

    2015-06-15

    Purpose This study compares the dosimetric parameters in treatment of unresectable hepatocellular carcinoma between intensity modulated proton therapy (IMPT) and intensity modulated x-ray radiation therapy (IMRT). Methods and Materials: We studied four patients treated at our institution. All patients were simulated supine with 4D-CT using a GE light speed simulator with a maximum slice thickness of 3mm. The average CT and an internal target volume to account for respiration motion were used for planning. Both IMRT and IMPT plans were created using Elekta’s CMSXiO treatment planning system (TPS). The prescription dose was 58.05 CGE in 15 fractions. The IMRT plansmore » had five beams with combination of co-planar and non-co-planar. The IMPT plans had 2 to 3 beams. Dose comparison was performed based on the averaged results of the four patients. Results The mean dose and V95% to PTV were 58.24CGE, 98.57% for IMPT, versus 57.34CGE and 96.68% for IMRT, respectively. The V10, V20, V30 and mean dose of the normal liver for IMPT were 23.10%, 18.61%, 13.75% and 9.78 CGE; and 47.19%, 37.55%, 22.73% and 17.12CGE for IMRT. The spinal cord didn’t receive any dose in IMPT technique, but received a maximum of 18.77CGE for IMRT. The IMPT gave lower maximum dose to the stomach as compared to IMRT (19.26 vs 26.35CGE). V14 for left and right kidney was 0% and 2.32% for IMPT and 3.89% and 29.54% for IMRT. The mean dose, V35, V40 and V45 for small bowl were similar in both techniques, 0.74CGE, 6.27cc, 4.85cc and 3.53 cc for IMPT, 3.47CGE, 9.73cc, 7.61cc 5.35cc for IMRT. Conclusion Based on this study, IMPT plans gave less dose to the critical structures such as normal liver, kidney, stomach and spinal cord as compared to IMRT plans, potentially leading to less toxicity and providing better quality of life for patients.« less

  3. Surface buildup dose dependence on photon field delivery technique for IMRT

    PubMed Central

    Yokoyama, Shigeru; Roberson, Peter L.; Litzenberg, Dale W.; Moran, Jean M.; Fraass, Benedick A.

    2004-01-01

    The more complex delivery techniques required for implementation of intensity‐modulated radiotherapy (IMRT) based on inverse planning optimization have changed the relationship between dose at depth and dose at buildup regions near the surface. Surface buildup dose is dependent on electron contamination primarily from the unblocked view of the flattening filter and secondarily from air and collimation systems. To evaluate the impact of beam segmentation on buildup dose, measurements were performed with 10×10 cm2 fields, which were delivered with 3 static 3.5×10 cm2 or 3×10 cm2 strips, 5 static 2×10 cm2 strips, 10 static 1×10 cm2 strips, and 1.1×10 cm2 dynamic delivery, compared with a 10×10 cm2 open field. Measurements were performed in water and Solid Water using parallel plate chambers, a stereotactic diode, and thermoluminescent dosimeters (TLDs) for a 6 MV X‐ray beam. Depth doses at 2 mm depth (relative to dose at 10 cm depth) were lower by 6%, 7%, 11%, and 10% for the above field delivery techniques, respectively, compared to the open field. These differences are most influenced by differences in multileaf collimator (MLC) transmission contributing to the useful beam. An example IMRT field was also studied to assess variations due to delivery technique (static vs. dynamic) and intensity level. Buildup dose is weakly dependent on the multileaf delivery technique for efficient IMRT fields. PACS numbers: 87.53.‐j, 87.53.Dq PMID:15738914

  4. Dosimetric evaluation of integrated IMRT treatment of the chest wall and supraclavicular region for breast cancer after modified radical mastectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bo; Wei, Xian-ding; Zhao, Yu-tian

    2014-07-01

    To investigate the dosimetric characteristics of irradiation of the chest wall and supraclavicular region as an integrated volume with intensity-modulated radiation therapy (IMRT) after modified radical mastectomy. This study included 246 patients who received modified radical mastectomy. The patients were scanned with computed tomography, and the chest wall (with or without the internal mammary lymph nodes) and supraclavicular region were delineated. For 143 patients, the chest wall and supraclavicular region were combined as an integrated planning volume and treated with IMRT. For 103 patients, conventional treatments were employed with 2 tangential fields for the chest wall, abutting a mixed fieldmore » of 6-MV x-rays (16 Gy) and 9-MeV electrons (34 Gy) for the upper supraclavicular region. The common prescription dose was 50 Gy/25 Fx/5 W to 90% of the target volume. The dosimetric characteristics of the chest wall, the supraclavicular region, and normal organs were compared. For the chest wall target, compared with conventional treatments, the integrated IMRT plans lowered the maximum dose, increased the minimum dose, and resulted in better conformity and uniformity of the target volume. There was an increase in minimum, average, and 95% prescription dose for the integrated IMRT plans in the supraclavicular region, and conformity and uniformity were improved. The V{sub 30} of the ipsilateral lung and V{sub 10}, V{sub 30}, and mean dose of the heart on the integrated IMRT plans were lower than those of the conventional plans. The V{sub 5} and V{sub 10} of the ipsilateral lung and V{sub 5} of the heart were higher on the integrated IMRT plans (p < 0.05) than on conventional plans. Without an increase in the radiation dose to organs at risk, the integrated IMRT treatment plans improved the dose distribution of the supraclavicular region and showed better dose conformity and uniformity of the integrated target volume of the chest wall and supraclavicular region.« less

  5. Analysis of the sources of uncertainty for EDR2 film‐based IMRT quality assurance

    PubMed Central

    Shi, Chengyu; Papanikolaou, Nikos; Yan, Yulong; Weng, Xuejun; Jiang, gyu

    2006-01-01

    In our institution, patient‐specific quality assurance (QA) for intensity‐modulated radiation therapy (IMRT) is usually performed by measuring the dose to a point using an ion chamber and by measuring the dose to a plane using film. In order to perform absolute dose comparison measurements using film, an accurate calibration curve should be used. In this paper, we investigate the film response curve uncertainty factors, including film batch differences, film processor temperature effect, film digitization, and treatment unit. In addition, we reviewed 50 patient‐specific IMRT QA procedures performed in our institution in order to quantify the sources of error in film‐based dosimetry. Our study showed that the EDR2 film dosimetry can be done with less than 3% uncertainty. The EDR2 film response was not affected by the choice of treatment unit provided the nominal energy was the same. This investigation of the different sources of uncertainties in the film calibration procedure can provide a better understanding of the film‐based dosimetry and can improve quality control for IMRT QA. PACS numbers: 87.86.Cd, 87.53.Xd, 87.57.Nk PMID:17533329

  6. Ultra High Strain Rate Nanoindentation Testing.

    PubMed

    Sudharshan Phani, Pardhasaradhi; Oliver, Warren Carl

    2017-06-17

    Strain rate dependence of indentation hardness has been widely used to study time-dependent plasticity. However, the currently available techniques limit the range of strain rates that can be achieved during indentation testing. Recent advances in electronics have enabled nanomechanical measurements with very low noise levels (sub nanometer) at fast time constants (20 µs) and high data acquisition rates (100 KHz). These capabilities open the doors for a wide range of ultra-fast nanomechanical testing, for instance, indentation testing at very high strain rates. With an accurate dynamic model and an instrument with fast time constants, step load tests can be performed which enable access to indentation strain rates approaching ballistic levels (i.e., 4000 1/s). A novel indentation based testing technique involving a combination of step load and constant load and hold tests that enables measurement of strain rate dependence of hardness spanning over seven orders of magnitude in strain rate is presented. A simple analysis is used to calculate the equivalent uniaxial response from indentation data and compared to the conventional uniaxial data for commercial purity aluminum. Excellent agreement is found between the indentation and uniaxial data over several orders of magnitude of strain rate.

  7. Quantitation of heterocyclic aromatic amines in ready to eat meatballs by ultra fast liquid chromatography.

    PubMed

    Oz, Fatih

    2011-06-15

    Heterocyclic aromatic amines (HCAs) in meatballs ready to eat and sold in restaurants in Turkey were determined. A solid phase extraction method was used to isolate HCAs from meatballs. Various HCAs analysed by ultra fast liquid chromatography (UFLC) were varying levels of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) (up to 1.59ng/g), 2-amino-3-methylimidazo[4,5-f]quinoxaline (IQx) (up to 3.81ng/g), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) (up to 0.66ng/g), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (not detected or not quantified), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) (not detected or not quantified), 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx) (up to 0.43ng/g), 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) (up to 1.93ng/g), 2-amino-9H-pyrido[2,3-b]indole (AαC) (up to 0.35ng/g), and 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC) (up to 0.43ng/g) in cooked meatballs which are consumed in Turkey. Overall average of total HCA amount was 5.54ng/g. The present study is to prove that HCAs can be isolated in a very short time (5min) by using UFLC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Automated generation of IMRT treatment plans for prostate cancer patients with metal hip prostheses: Comparison of different planning strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voet, Peter W. J.; Dirkx, Maarten L. P.; Breedveld, Sebastiaan

    2013-07-15

    Purpose: To compare IMRT planning strategies for prostate cancer patients with metal hip prostheses.Methods: All plans were generated fully automatically (i.e., no human trial-and-error interactions) using iCycle, the authors' in-house developed algorithm for multicriterial selection of beam angles and optimization of fluence profiles, allowing objective comparison of planning strategies. For 18 prostate cancer patients (eight with bilateral hip prostheses, ten with a right-sided unilateral prosthesis), two planning strategies were evaluated: (i) full exclusion of beams containing beamlets that would deliver dose to the target after passing a prosthesis (IMRT{sub remove}) and (ii) exclusion of those beamlets only (IMRT{sub cut}). Plansmore » with optimized coplanar and noncoplanar beam arrangements were generated. Differences in PTV coverage and sparing of organs at risk (OARs) were quantified. The impact of beam number on plan quality was evaluated.Results: Especially for patients with bilateral hip prostheses, IMRT{sub cut} significantly improved rectum and bladder sparing compared to IMRT{sub remove}. For 9-beam coplanar plans, rectum V{sub 60Gy} reduced by 17.5%{+-} 15.0% (maximum 37.4%, p= 0.036) and rectum D{sub mean} by 9.4%{+-} 7.8% (maximum 19.8%, p= 0.036). Further improvements in OAR sparing were achievable by using noncoplanar beam setups, reducing rectum V{sub 60Gy} by another 4.6%{+-} 4.9% (p= 0.012) for noncoplanar 9-beam IMRT{sub cut} plans. Large reductions in rectum dose delivery were also observed when increasing the number of beam directions in the plans. For bilateral implants, the rectum V{sub 60Gy} was 37.3%{+-} 12.1% for coplanar 7-beam plans and reduced on average by 13.5% (maximum 30.1%, p= 0.012) for 15 directions.Conclusions: iCycle was able to automatically generate high quality plans for prostate cancer patients with prostheses. Excluding only beamlets that passed through the prostheses (IMRT{sub cut} strategy) significantly improved

  9. SU-E-T-478: Sliding Window Multi-Criteria IMRT Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craft, D; Papp, D; Unkelbach, J

    2014-06-01

    Purpose: To demonstrate a method for what-you-see-is-what-you-get multi-criteria Pareto surface navigation for step and shoot IMRT treatment planning. Methods: We show mathematically how multiple sliding window treatment plans can be averaged to yield a single plan whose dose distribution is the dosimetric average of the averaged plans. This is incorporated into the Pareto surface navigation based approach to treatment planning in such a way that as the user navigates the surface, the plans he/she is viewing are ready to be delivered (i.e. there is no extra ‘segment the plans’ step that often leads to unacceptable plan degradation in step andmore » shoot Pareto surface navigation). We also describe how the technique can be applied to VMAT. Briefly, sliding window VMAT plans are created such that MLC leaves paint out fluence maps every 15 degrees or so. These fluence map leaf trajectories are averaged in the same way the static beam IMRT ones are. Results: We show mathematically that fluence maps are exactly averaged using our leaf sweep averaging algorithm. Leaf transmission and output factor corrections effects, which are ignored in this work, can lead to small errors in terms of the dose distributions not being exactly averaged even though the fluence maps are. However, our demonstrations show that the dose distributions are almost exactly averaged as well. We demonstrate the technique both for IMRT and VMAT. Conclusions: By turning to sliding window delivery, we show that the problem of losing plan fidelity during the conversion of an idealized fluence map plan into a deliverable plan is remedied. This will allow for multicriteria optimization that avoids the pitfall that the planning has to be redone after the conversion into MLC segments due to plan quality decline. David Craft partially funded by RaySearch Laboratories.« less

  10. Ultra-high throughput real-time instruments for capturing fast signals and rare events

    NASA Astrophysics Data System (ADS)

    Buckley, Brandon Walter

    Wide-band signals play important roles in the most exciting areas of science, engineering, and medicine. To keep up with the demands of exploding internet traffic, modern data centers and communication networks are employing increasingly faster data rates. Wide-band techniques such as pulsed radar jamming and spread spectrum frequency hopping are used on the battlefield to wrestle control of the electromagnetic spectrum. Neurons communicate with each other using transient action potentials that last for only milliseconds at a time. And in the search for rare cells, biologists flow large populations of cells single file down microfluidic channels, interrogating them one-by-one, tens of thousands of times per second. Studying and enabling such high-speed phenomena pose enormous technical challenges. For one, parasitic capacitance inherent in analog electrical components limits their response time. Additionally, converting these fast analog signals to the digital domain requires enormous sampling speeds, which can lead to significant jitter and distortion. State-of-the-art imaging technologies, essential for studying biological dynamics and cells in flow, are limited in speed and sensitivity by finite charge transfer and read rates, and by the small numbers of photo-electrons accumulated in short integration times. And finally, ultra-high throughput real-time digital processing is required at the backend to analyze the streaming data. In this thesis, I discuss my work in developing real-time instruments, employing ultrafast optical techniques, which overcome some of these obstacles. In particular, I use broadband dispersive optics to slow down fast signals to speeds accessible to high-bit depth digitizers and signal processors. I also apply telecommunication multiplexing techniques to boost the speeds of confocal fluorescence microscopy. The photonic time stretcher (TiSER) uses dispersive Fourier transformation to slow down analog signals before digitization and

  11. Dosimetric comparison between Volumetric Modulated Arc Therapy (VMAT) vs Intensity Modulated Radiation Therapy (IMRT) for radiotherapy of mid esophageal carcinoma.

    PubMed

    Kataria, Tejinder; Govardhan, H B; Gupta, Deepak; Mohanraj, U; Bisht, Shyam Singh; Sambasivaselli, R; Goyal, S; Abhishek, A; Srivatsava, A; Pushpan, L; Kumar, V; Vikraman, S

    2014-01-01

    Dosimetric comparison of VMAT with IMRT in middle third esophageal cancer for planning target volume (PTV) and organs at risk (OAR). Ten patients in various stages from I‒III were inducted in the neo-adjuvant chemoradiation protocol for this study. The prescribed dose was 4500 cGy in 25 fractions. Both VMAT and IMRT plan were generated in all cases and Dose Volume Histogram (DVH) comparative analysis was performed for PTV and OAR. Paired t-test was used for statistical analysis. The PTV Dmean and D95 in IMRT and VMAT plan were 4566.6±50.6 cGy vs 4462.8±81.8 cGy (P=0.1) and 4379.8±50.6 cGy Vs 4424.3±109.8 cGy (P=0.1), respectively. The CI and HI for PTV in IMRT vs VMAT plans were 0.96±0.02 vs 0.97±0.01 (P=0.4) and 10.58±3.07 vs 9.45±2.42 (P=0.2), respectively. Lung doses for VMAT vs IMRT were 4.19 vs 2.59% (P=0.03) for V35-7.63 vs 4.76% (P=0.01) for V30-13.6 vs 9.98% (P=0.01) for V25-24.77 vs 18.57% (P=0.04) for V20-46.5 vs 34.73% (P=0.002) for V15. The Mean Lung Dose (MLD) was reduced by VMAT technique compared to IMRT; 1524.6±308.37 cGy and 1353±186.32 cGy (P=0.012). There was no change in Dmax to spinal cord in both the techniques. There was a dose reduction by VMAT compared to IMRT to the heart but it was statistically insignificant; V35-6.75% vs 5.55% (P=0.223); V30-12.3% vs 10.91% (P=0.352); V25-21.81% vs 20.16% (P=0.459); V20-38.11% vs 32.88% (P=0.070); V15-61.05% vs 54.2% (P=0.10). VMAT can be a better option in treating mid esophageal carcinoma as compared to IMRT. The VMAT plans resulted in equivalent or superior dose distribution with a reduction in the dose to lung and heart.

  12. Ultra-fast microwave-assisted hydrothermal synthesis of long vertically aligned ZnO nanowires for dye-sensitized solar cell application.

    PubMed

    Mahpeykar, S M; Koohsorkhi, J; Ghafoori-Fard, H

    2012-04-27

    Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200 nm min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.

  13. HI-bearing Ultra Diffuse Galaxies in the ALFALFA Survey

    NASA Astrophysics Data System (ADS)

    Leisman, Lukas; Janowiecki, Steven; Jones, Michael G.; ALFALFA Almost Darks Team

    2018-01-01

    The Arecibo Legacy Fast ALFA (Arecibo L-band Feed Array) extragalactic HI survey, with over 30,000 high significance extragalactic sources, is well positioned to locate gas-bearing, low surface brightness sources missed by optical detection algorithms. We investigate the nature of a population of HI-bearing sources in ALFALFA with properties similar to "ultra-diffuse" galaxies (UDGs): galaxies with stellar masses of dwarf galaxies, but radii of L* galaxies. These "HI-bearing ultra-diffuse" sources (HUDS) constitute a small, but pertinent, fraction of the dwarf-mass galaxies in ALFALFA. They are bluer and have more irregular morphologies than the optically-selected UDGs found in clusters, and they appear to be gas-rich for their stellar mass, indicating low star formation efficiency. To illuminate potential explanations for the extreme properties of these sources we explore their environments and estimate their halo properties. We conclude that environmental mechanism are unlikely the cause of HUDS' properties, as they exist in environments equivalent to that of the other ALFALFA sources of similar HI-masses, however, we do find some suggestion that these HUDS may reside in high spin parameter halos, a potential explanation for their "ultra-diffuse" nature.

  14. SU-E-T-233: Cyberknife Versus Linac IMRT for Dose Comparision in Hypofractionated Hemi Larynx Irradiation of Early Stage True Vocal Cord Cancer: A Dosimetric Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, C; Lee, P; Jiang, S

    2015-06-15

    Purpose: To compare dosimetric data of patients treated for early-stage larynx cancer on Cyberknife and Linac IMRT. Methods: Nine patients were treated with Cyberknife to a dose of 45 Gy in 10 fractions of the involved hemilarynx. The prescription dose provided at least 95% of PTV coverage. After Cyberknife treatment, the CT images and contours were sent to Pinnacle treatment planning system for IMRT planning on a regular SBRT linac with same dose prescription and constrains. Dose to target and normal tissue, including the arytenoids, cord, carotid arteries, thyroid, and skin, were analyzed using dose volume histograms. Results: For Cyberknifemore » plan, the conformity indices are within 1.11–1.33. The average dose to the contralateral arytenoids for Cyberknife plans was 28.9±6.5Gy), which is lower than the same mean dose for IMRT plans (34.0±5.2 Gy). The average maximum dose to the ipsilateral and contralateral carotid artery were 20.6 ±9.1 Gy and 10.2±6.0 Gy respectively for Cybeknife comparing with 22.1±8.0 Gy and 12.0±5.1 Gy for IMRT. The mean dose to the thyroid was 3.6±2.2 Gy for Cyberknife and 3.4±2.4 Gy for IMRT. As shown in DVH, the Cyberknife can deliver less dose to the normal tissue which is close to target area comparing with IMRT Plans. However, IMRT plan’s can give more sparing for the critical organs which is far away from the target area. Conclusion: We have compared the dosimetric parameters of Cyberknife and linac IMRT plans for patients with early-stage larynx cancer. Both Cyberknife and IMRT plans can achieve conformal dose distribution to the target area. Cyberknife was able to reduce normal tissue dose in high doses region while IMRT plans can reduce the dose of the normal tissue at the low dose region. These dosimetric parameters can be used to guide future prospective protocols using SBRT for larynx cancer.« less

  15. Patient-specific IMRT verification using independent fluence-based dose calculation software: experimental benchmarking and initial clinical experience.

    PubMed

    Georg, Dietmar; Stock, Markus; Kroupa, Bernhard; Olofsson, Jörgen; Nyholm, Tufve; Ahnesjö, Anders; Karlsson, Mikael

    2007-08-21

    Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm(3) ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 +/- 1.2% and 0.5 +/- 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 +/- 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental

  16. High-performance rechargeable batteries with fast solid-state ion conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Joseph C.

    A high-performance rechargeable battery using ultra-fast ion conductors. In one embodiment the rechargeable battery apparatus includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanomaterial in the enclosure, and a heat transfer unit.

  17. A dosimetric analysis of intensity-modulated radiation therapy (IMRT) as an alternative to adjuvant high-dose-rate (HDR) brachytherapy in early endometrial cancer patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, Bulent; Mundt, Arno J.; Department of Radiation Oncology, University of Illinois at Chicago, Chicago, IL

    2006-05-01

    Purpose: To evaluate the role of intensity-modulated radiation treatment (IMRT) as an alternative to high-dose-rate (HDR) brachytherapy in the treatment of the vagina in postoperative early endometrial cancer patients after surgery. Methods and Materials: Planning computed tomography (CT) scans of 10 patients previously treated with HDR were used in this study. In all cases, a dose of 700 cGy/fraction was prescribed at a distance of 0.5 cm from the cylinder surface. The same CT scans were then used in IMRT planning. In this paradigm, the vaginal cylinder represents a component of a hypothetical immobilization system that would be indexed tomore » the linac treatment table. Results: Our study showed that IMRT provided relatively lower rectal doses than HDR when treatment was prescribed at a distance of 0.5 cm away from the cylinder surface. Maximum rectal doses were lower with IMRT compared with HDR (average: 89.0% vs. 142.6%, respectively, p < 0.05). Moreover, the mean rectal dose was lower in IMRT plans compared with HDR plans with treatment prescribed either to the surface (average: 14.8% vs. 21.4%, respectively, p < 0.05) or to 0.5 cm (average: 19.6% vs. 33.5%, respectively, p < 0.05). IMRT plans had planning target volume (PTV) coverage comparable with HDR (average PTV minimum for treatment prescribed to 0.5 cm: 93.9% vs. 92.1%, p = 0.71, respectively) with less inhomogeneity (average PTV maximum: 110.8% vs. 381.6%, p < 0.05). Conclusion: Our dosimetric analysis suggests that when used in conjunction with a suitable immobilization system, IMRT may provide an alternative to HDR brachytherapy in women with early endometrial cancer after hysterectomy. However, more studies are needed to evaluate the clinical merit of the IMRT in these patients.« less

  18. NTCP modeling analysis of acute hematologic toxicity in whole pelvic radiation therapy for gynecologic malignancies - A dosimetric comparison of IMRT and spot-scanning proton therapy (SSPT).

    PubMed

    Yoshimura, Takaaki; Kinoshita, Rumiko; Onodera, Shunsuke; Toramatsu, Chie; Suzuki, Ryusuke; Ito, Yoichi M; Takao, Seishin; Matsuura, Taeko; Matsuzaki, Yuka; Umegaki, Kikuo; Shirato, Hiroki; Shimizu, Shinichi

    2016-09-01

    This treatment planning study was conducted to determine whether spot scanning proton beam therapy (SSPT) reduces the risk of grade ⩾3 hematologic toxicity (HT3+) compared with intensity modulated radiation therapy (IMRT) for postoperative whole pelvic radiation therapy (WPRT). The normal tissue complication probability (NTCP) of the risk of HT3+ was used as an in silico surrogate marker in this analysis. IMRT and SSPT plans were created for 13 gynecologic malignancy patients who had received hysterectomies. The IMRT plans were generated using the 7-fields step and shoot technique. The SSPT plans were generated using anterior-posterior field with single field optimization. Using the relative biological effectives (RBE) value of 1.0 for IMRT and 1.1 for SSPT, the prescribed dose was 45Gy(RBE) in 1.8Gy(RBE) per fractions for 95% of the planning target volume (PTV). The homogeneity index (HI) and the conformity index (CI) of the PTV were also compared. The bone marrow (BM) and femoral head doses using SSPT were significantly lower than with IMRT. The NTCP modeling analysis showed that the risk of HT3+ using SSPT was significantly lower than with IMRT (NTCP=0.04±0.01 and 0.19±0.03, p=0.0002, respectively). There were no significant differences in the CI and HI of the PTV between IMRT and SSPT (CI=0.97±0.01 and 0.96±0.02, p=0.3177, and HI=1.24±0.11 and 1.27±0.05, p=0.8473, respectively). The SSPT achieves significant reductions in the dose to BM without compromising target coverage, compared with IMRT. The NTCP value for HT3+ in SSPT was significantly lower than in IMRT. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Tracking the Iron Kα line and the Ultra Fast Outflow in NGC 2992 at different accretion states

    NASA Astrophysics Data System (ADS)

    Marinucci, A.; Bianchi, S.; Braito, V.; Matt, G.; Nardini, E.; Reeves, J.

    2018-06-01

    The Seyfert 2 galaxy NGC 2992 has been monitored eight times by XMM-Newton in 2010 and then observed again in 2013, while in 2015 it was simultaneously targeted by Swift and NuSTAR. XMM-Newton always caught the source in a faint state (2-10 keV fluxes ranging from 0.3 to 1.6× 10-11 erg cm-2 s-1) but NuSTAR showed an increase in the 2-10 keV flux up to 6× 10-11 erg cm-2 s-1. We find possible evidence of an Ultra Fast Outflow with velocity v1 = 0.21 ± 0.01c (detected at about 99% confidence level) in such a flux state. The UFO in NGC 2992 is consistent with being ejected at a few tens of gravitational radii only at accretion rates greater than 2% of the Eddington luminosity. The analysis of the low flux 2010/2013 XMM data allowed us to determine that the Iron Kα emission line complex in this object is likely the sum of three distinct components: a constant, narrow one due to reflection from cold, distant material (likely the molecular torus); a narrow, but variable one which is more intense in brighter observations and a broad relativistic one emitted in the innermost regions of the accretion disk, which has been detected only in the 2003 XMM observation.

  20. SU-E-T-49: A Multi-Institutional Study of Independent Dose Verification for IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, H; Tachibana, H; Kamima, T

    2015-06-15

    Purpose: AAPM TG114 does not cover the independent verification for IMRT. We conducted a study of independent dose verification for IMRT in seven institutes to show the feasibility. Methods: 384 IMRT plans in the sites of prostate and head and neck (HN) were collected from the institutes, where the planning was performed using Eclipse and Pinnacle3 with the two techniques of step and shoot (S&S) and sliding window (SW). All of the institutes used a same independent dose verification software program (Simple MU Analysis: SMU, Triangle Product, Ishikawa, JP), which is Clarkson-based and CT images were used to compute radiologicalmore » path length. An ion-chamber measurement in a water-equivalent slab phantom was performed to compare the doses computed using the TPS and an independent dose verification program. Additionally, the agreement in dose computed in patient CT images between using the TPS and using the SMU was assessed. The dose of the composite beams in the plan was evaluated. Results: The agreement between the measurement and the SMU were −2.3±1.9 % and −5.6±3.6 % for prostate and HN sites, respectively. The agreement between the TPSs and the SMU were −2.1±1.9 % and −3.0±3.7 for prostate and HN sites, respectively. There was a negative systematic difference with similar standard deviation and the difference was larger in the HN site. The S&S technique showed a statistically significant difference between the SW. Because the Clarkson-based method in the independent program underestimated (cannot consider) the dose under the MLC. Conclusion: The accuracy would be improved when the Clarkson-based algorithm should be modified for IMRT and the tolerance level would be within 5%.« less

  1. Knowledge-based IMRT planning for individual liver cancer patients using a novel specific model.

    PubMed

    Yu, Gang; Li, Yang; Feng, Ziwei; Tao, Cheng; Yu, Zuyi; Li, Baosheng; Li, Dengwang

    2018-03-27

    The purpose of this work is to benchmark RapidPlan against clinical plans for liver Intensity-modulated radiotherapy (IMRT) treatment of patients with special anatomical characteristics, and to investigate the prediction capability of the general model (Model-G) versus our specific model (Model-S). A library consisting of 60 liver cancer patients with IMRT planning was used to set up two models (Model-S, Model-G), using the RapidPlan knowledge-based planning system. Model-S consisted of 30 patients with special anatomical characteristics where the distance from planning target volume (PTV) to the right kidney was less than three centimeters and Model-G was configurated using all 60 patients in this library. Knowledge-based IMRT plans were created for the evaluation group formed of 13 patients similar to those included in Model-S by Model-G, Model-S and manually (M), named RPG-plans, RPS-plans and M-plans, respectively. The differences in the dose-volume histograms (DVHs) were compared, not only between RP-plans and their respective M-plans, but also between RPG-plans and RPS-plans. For all 13 patients, RapidPlan could automatically produce clinically acceptable plans. Comparing RP-plans to M-plans, RP-plans improved V 95% of PTV and had greater dose sparing in the right kidney. For the normal liver, RPG-plans delivered similar doses, while RPS-plans delivered a higher dose than M-plans. With respect to RapidPlan models, RPS-plans had better conformity index (CI) values and delivered lower doses to the right kidney V 20Gy and maximizing point doses to spinal cord, while delivering higher doses to the normal liver. The study shows that RapidPlan can create high-quality plans, and our specific model can improve the CI of PTV, resulting in more sparing of OAR in IMRT for individual liver cancer patients.

  2. Deep nets vs expert designed features in medical physics: An IMRT QA case study.

    PubMed

    Interian, Yannet; Rideout, Vincent; Kearney, Vasant P; Gennatas, Efstathios; Morin, Olivier; Cheung, Joey; Solberg, Timothy; Valdes, Gilmer

    2018-03-30

    The purpose of this study was to compare the performance of Deep Neural Networks against a technique designed by domain experts in the prediction of gamma passing rates for Intensity Modulated Radiation Therapy Quality Assurance (IMRT QA). A total of 498 IMRT plans across all treatment sites were planned in Eclipse version 11 and delivered using a dynamic sliding window technique on Clinac iX or TrueBeam Linacs. Measurements were performed using a commercial 2D diode array, and passing rates for 3%/3 mm local dose/distance-to-agreement (DTA) were recorded. Separately, fluence maps calculated for each plan were used as inputs to a convolution neural network (CNN). The CNNs were trained to predict IMRT QA gamma passing rates using TensorFlow and Keras. A set of model architectures, inspired by the convolutional blocks of the VGG-16 ImageNet model, were constructed and implemented. Synthetic data, created by rotating and translating the fluence maps during training, was created to boost the performance of the CNNs. Dropout, batch normalization, and data augmentation were utilized to help train the model. The performance of the CNNs was compared to a generalized Poisson regression model, previously developed for this application, which used 78 expert designed features. Deep Neural Networks without domain knowledge achieved comparable performance to a baseline system designed by domain experts in the prediction of 3%/3 mm Local gamma passing rates. An ensemble of neural nets resulted in a mean absolute error (MAE) of 0.70 ± 0.05 and the domain expert model resulted in a 0.74 ± 0.06. Convolutional neural networks (CNNs) with transfer learning can predict IMRT QA passing rates by automatically designing features from the fluence maps without human expert supervision. Predictions from CNNs are comparable to a system carefully designed by physicist experts. © 2018 American Association of Physicists in Medicine.

  3. Pre-trial quality assurance processes for an intensity-modulated radiation therapy (IMRT) trial: PARSPORT, a UK multicentre Phase III trial comparing conventional radiotherapy and parotid-sparing IMRT for locally advanced head and neck cancer.

    PubMed

    Clark, C H; Miles, E A; Urbano, M T Guerrero; Bhide, S A; Bidmead, A M; Harrington, K J; Nutting, C M

    2009-07-01

    The purpose of this study was to compare conventional radiotherapy with parotid gland-sparing intensity-modulated radiation therapy (IMRT) using the PARSPORT trial. The validity of such a trial depends on the radiotherapy planning and delivery meeting a defined standard across all centres. At the outset, many of the centres had little or no experience of delivering IMRT; therefore, quality assurance processes were devised to ensure consistency and standardisation of all processes for comparison within the trial. The pre-trial quality assurance (QA) programme and results are described. Each centre undertook exercises in target volume definition and treatment planning, completed a resource questionnaire and produced a process document. Additionally, the QA team visited each participating centre. Each exercise had to be accepted before patients could be recruited into the trial. 10 centres successfully completed the quality assurance exercises. A range of treatment planning systems, linear accelerators and delivery methods were used for the planning exercises, and all the plans created reached the standard required for participation in this multicentre trial. All 10 participating centres achieved implementation of a comprehensive and robust IMRT programme for treatment of head and neck cancer.

  4. An ultra-fast optical shutter exploiting total light absorption in a phase change material

    NASA Astrophysics Data System (ADS)

    Jafari, Mohsen; Guo, L. Jay; Rais-Zadeh, Mina

    2017-02-01

    In this paper, we present an ultra-fast and high-contrast optical shutter with applications in atomic clock assemblies, integrated photonic systems, communication hardware, etc. The shutter design exploits the total light absorption phenomenon in a thin phase change (PC) material placed over a metal layer. The shutter switches between ON and OFF states by changing PC material phase and thus its refractive index. The PC material used in this work is Germanium Telluride (GeTe), a group IV-VI chalcogenide compound, which exhibits good optical contrast when switching from amorphous to crystalline state and vice versa. The stable phase changing behavior and reliability of GeTe and GeSbTe (GST) have been verified in optical memories and RF switches. Here, GeTe is used as it has a lower extinction coefficient in near-IR regions compared to GST. GeTe can be thermally transitioned between two phases by applying electrical pulses to an integrated heater. The memory behavior of GeTe results in zero static power consumption which is useful in applications requiring long time periods between switching activities. We previously demonstrated a meta-surface employing GeTe in sub-wavelength slits with >14 dB isolation at 1.5 μm by exciting the surface plasmon polariton and localized slit resonances. In this work, strong interference effects in a thin layer of GeTe over a gold mirror result in near total light absorption of up to 40 dB (21 dB measured) in the amorphous phase of the shutter at 780 nm with much less fabrication complexity. The optical loss at the shutter ON state is less than 1.5 dB. A nickel chrome (NiCr) heater provides the Joule heating energy required to achieve the crystallographic phase change. The measured switching speed is 2 μs.

  5. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells.

    PubMed

    Warkiani, Majid Ebrahimi; Guan, Guofeng; Luan, Khoo Bee; Lee, Wong Cheng; Bhagat, Ali Asgar S; Chaudhuri, Parthiv Kant; Tan, Daniel Shao-Weng; Lim, Wan Teck; Lee, Soo Chin; Chen, Peter C Y; Lim, Chwee Teck; Han, Jongyoon

    2014-01-07

    The enumeration and characterization of circulating tumor cells (CTCs), found in the peripheral blood of cancer patients, provide a potentially accessible source for cancer diagnosis and prognosis. This work reports on a novel spiral microfluidic device with a trapezoidal cross-section for ultra-fast, label-free enrichment of CTCs from clinically relevant blood volumes. The technique utilizes the inherent Dean vortex flows present in curvilinear microchannels under continuous flow, along with inertial lift forces which focus larger CTCs against the inner wall. Using a trapezoidal cross-section as opposed to a traditional rectangular cross-section, the position of the Dean vortex core can be altered to achieve separation. Smaller hematologic components are trapped in the Dean vortices skewed towards the outer channel walls and eventually removed at the outer outlet, while the larger CTCs equilibrate near the inner channel wall and are collected from the inner outlet. By using a single spiral microchannel with one inlet and two outlets, we have successfully isolated and recovered more than 80% of the tested cancer cell line cells (MCF-7, T24 and MDA-MB-231) spiked in 7.5 mL of blood within 8 min with extremely high purity (400-680 WBCs mL(-1); ~4 log depletion of WBCs). Putative CTCs were detected and isolated from 100% of the patient samples (n = 10) with advanced stage metastatic breast and lung cancer using standard biomarkers (CK, CD45 and DAPI) with the frequencies ranging from 3-125 CTCs mL(-1). We expect this simple and elegant approach can surmount the shortcomings of traditional affinity-based CTC isolation techniques as well as enable fundamental studies on CTCs to guide treatment and enhance patient care.

  6. SU-F-BRD-05: Dosimetric Comparison of Protocol-Based SBRT Lung Treatment Modalities: Statistically Significant VMAT Advantages Over Fixed- Beam IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, R; Harrell, A; Geesey, C

    2014-06-15

    Purpose: The purpose of this study is to inter-compare and find statistically significant differences between flattened field fixed-beam (FB) IMRT with flattening-filter free (FFF) volumetric modulated arc therapy (VMAT) for stereotactic body radiation therapy SBRT. Methods: SBRT plans using FB IMRT and FFF VMAT were generated for fifteen SBRT lung patients using 6 MV beams. For each patient, both IMRT and VMAT plans were created for comparison. Plans were generated utilizing RTOG 0915 (peripheral, 10 patients) and RTOG 0813 (medial, 5 patients) lung protocols. Target dose, critical structure dose, and treatment time were compared and tested for statistical significance. Parametersmore » of interest included prescription isodose surface coverage, target dose heterogeneity, high dose spillage (location and volume), low dose spillage (location and volume), lung dose spillage, and critical structure maximum- and volumetric-dose limits. Results: For all criteria, we found equivalent or higher conformality with VMAT plans as well as reduced critical structure doses. Several differences passed a Student's t-test of significance: VMAT reduced the high dose spillage, evaluated with conformality index (CI), by an average of 9.4%±15.1% (p=0.030) compared to IMRT. VMAT plans reduced the lung volume receiving 20 Gy by 16.2%±15.0% (p=0.016) compared with IMRT. For the RTOG 0915 peripheral lesions, the volumes of lung receiving 12.4 Gy and 11.6 Gy were reduced by 27.0%±13.8% and 27.5%±12.6% (for both, p<0.001) in VMAT plans. Of the 26 protocol pass/fail criteria, VMAT plans were able to achieve an average of 0.2±0.7 (p=0.026) more constraints than the IMRT plans. Conclusions: FFF VMAT has dosimetric advantages over fixed beam IMRT for lung SBRT. Significant advantages included increased dose conformity, and reduced organs-at-risk doses. The overall improvements in terms of protocol pass/fail criteria were more modest and will require more patient data to establish

  7. Parotid gland shrinkage during IMRT predicts the time to Xerostomia resolution.

    PubMed

    Sanguineti, Giuseppe; Ricchetti, Francesco; Wu, Binbin; McNutt, Todd; Fiorino, Claudio

    2015-01-17

    To assess the impact of mid-treatment parotid gland shrinkage on long term xerostomia during IMRT for oropharyngeal SCC. All patients treated with IMRT at a single Institution from November 2007 to June 2010 and undergoing weekly CT scans were selected. Parotid glands were contoured retrospectively on the mid treatment CT scan. For each parotid gland, the percent change relative to the planning volume was calculated and combined as weighted average. Patients were considered to be xerostomic if developed GR2+ dry mouth according to CTCAE v3.0. Predictors of the time to xerostomia resolution or downgrade to 1 were investigated at both uni- and multivariate analysis. 85 patients were selected. With a median follow up of 35.8 months (range: 2.4-62.6 months), the actuarial rate of xerostomia is 26.2% (SD: 5.3%) and 15.9% (SD: 5.3%) at 2 and 3 yrs, respectively. At multivariate analysis, mid-treatment shrink along with weighted average mean parotid dose at planning and body mass index are independent predictors of the time to xerostomia resolution. Patients were pooled in 4 groups based on median values of both mid-treatment shrink (cut-off: 19.6%) and mean WA parotid pl-D (cut-off: 35.7 Gy). Patients with a higher than median parotid dose at planning and who showed poor shrinkage at mid treatment are the ones with the outcome significantly worse (3-yr rate of xerostomia ≈ 50%) than the other three subgroups (3-yr rate of xerostomia ≈ 10%). For a given planned dose, patients whose parotids significantly shrink during IMRT are less likely to be long-term supplemental fluids dependent.

  8. Consumption of ultra-processed foods and body fat during childhood and adolescence: a systematic review.

    PubMed

    Costa, Caroline Santos; Del-Ponte, Bianca; Assunção, Maria Cecília Formoso; Santos, Iná Silva

    2018-01-01

    To review the available literature on the association between consumption of ultra-processed foods and body fat during childhood and adolescence. A systematic review was conducted in the PubMed, Web of Science and LILACS databases. Studies that evaluated the association between consumption of ultra-processed food (exposure) and body fat (outcome) during childhood and adolescence were eligible. Healthy children and adolescents. Twenty-six studies that evaluated groups of ultra-processed foods (such as snacks, fast foods, junk foods and convenience foods) or specific ultra-processed foods (soft drinks/sweetened beverages, sweets, chocolate and ready-to-eat cereals) were selected. Most of the studies (n 15) had a cohort design. Consumption was generally evaluated by means of FFQ or food records; and body composition, by means of double indirect methods (bioelectrical impedance analysis and skinfolds). Most of the studies that evaluated consumption of groups of ultra-processed foods and soft drinks/sweetened beverages found positive associations with body fat. Our review showed that most studies have found positive associations between consumption of ultra-processed food and body fat during childhood and adolescence. There is a need to use a standardized classification that considers the level of food processing to promote comparability between studies.

  9. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehler, E; Higgins, P; Dusenbery, K

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT)more » was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use.« less

  10. On the performances of different IMRT treatment planning systems for selected paediatric cases

    PubMed Central

    Fogliata, Antonella; Nicolini, Giorgia; Alber, Markus; Åsell, Mats; Clivio, Alessandro; Dobler, Barbara; Larsson, Malin; Lohr, Frank; Lorenz, Friedlieb; Muzik, Jan; Polednik, Martin; Vanetti, Eugenio; Wolff, Dirk; Wyttenbach, Rolf; Cozzi, Luca

    2007-01-01

    Background To evaluate the performance of seven different TPS (Treatment Planning Systems: Corvus, Eclipse, Hyperion, KonRad, Oncentra Masterplan, Pinnacle and PrecisePLAN) when intensity modulated (IMRT) plans are designed for paediatric tumours. Methods Datasets (CT images and volumes of interest) of four patients were used to design IMRT plans. The tumour types were: one extraosseous, intrathoracic Ewing Sarcoma; one mediastinal Rhabdomyosarcoma; one metastatic Rhabdomyosarcoma of the anus; one Wilm's tumour of the left kidney with multiple liver metastases. Prescribed doses ranged from 18 to 54.4 Gy. To minimise variability, the same beam geometry and clinical goals were imposed on all systems for every patient. Results were analysed in terms of dose distributions and dose volume histograms. Results For all patients, IMRT plans lead to acceptable treatments in terms of conformal avoidance since most of the dose objectives for Organs At Risk (OARs) were met, and the Conformity Index (averaged over all TPS and patients) ranged from 1.14 to 1.58 on primary target volumes and from 1.07 to 1.37 on boost volumes. The healthy tissue involvement was measured in terms of several parameters, and the average mean dose ranged from 4.6 to 13.7 Gy. A global scoring method was developed to evaluate plans according to their degree of success in meeting dose objectives (lower scores are better than higher ones). For OARs the range of scores was between 0.75 ± 0.15 (Eclipse) to 0.92 ± 0.18 (Pinnacle3 with physical optimisation). For target volumes, the score ranged from 0.05 ± 0.05 (Pinnacle3 with physical optimisation) to 0.16 ± 0.07 (Corvus). Conclusion A set of complex paediatric cases presented a variety of individual treatment planning challenges. Despite the large spread of results, inverse planning systems offer promising results for IMRT delivery, hence widening the treatment strategies for this very sensitive class of patients. PMID:17302972

  11. Can IMRT or Brachytherapy Reduce Dysphagia Associated With Chemoradiotherapy of Head and Neck Cancer? The Michigan and Rotterdam Experiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisbruch, Avraham; Levendag, Peter C.; Feng, Felix Y.

    Purpose: Dysphagia is a major late complication of intensive chemoradiotherapy of head and neck cancer. The initial clinical results of intensity-modulated radiotherapy (IMRT), or brachytherapy, planned specifically to reduce dysphagia are presented. Patients and Methods: Previous research at Michigan University has suggested that the pharyngeal constrictors and glottic and supraglottic larynx are likely structures whose damage by chemo-RT causes dysphagia and aspiration. In a prospective Michigan trial, 36 patients with oropharyngeal (n = 31) or nasopharyngeal (n = 5) cancer underwent chemo-IMRT. IMRT cost functions included sparing noninvolved pharyngeal constrictors and the glottic and supraglottic larynx. After a review ofmore » published studies, the retropharyngeal nodes at risk were defined as the lateral, but not the medial, retropharyngeal nodes, which facilitated sparing of the swallowing structures. In Rotterdam, 77 patients with oropharyngeal cancer were treated with IMRT, three dimensional RT, or conventional RT; also one-half received brachytherapy. The dysphagia endpoints included videofluoroscopy and observer-assessed scores at Michigan and patient-reported quality-of-life instruments in both studies. Results: In both studies, the doses to the upper and middle constrictors correlated highly with the dysphagia endpoints. In addition, doses to the glottic and supraglottic larynx were significant in the Michigan series. In the Rotterdam series, brachytherapy (which reduced the doses to the swallowing structures) was the only significant factor on multivariate analysis. Conclusion: The dose-response relationships for the swallowing structures found in these studies suggest that reducing their doses, using either IMRT aimed at their sparing, or brachytherapy, might achieve clinical gains in dysphagia.« less

  12. Dosimetric evaluation of incidental irradiation to the axilla during whole breast radiotherapy for patients with left-sided early breast cancer in the IMRT era.

    PubMed

    Lee, Jayoung; Kim, Shin-Wook; Son, Seok Hyun

    2016-06-01

    The purpose of this study was to compare the dosimetric parameters for incidental irradiation to the axilla during whole breast radiotherapy (WBRT) with 3-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). Twenty left breast cancer patients treated with WBRT after breast-conserving surgery (BCS) were enrolled in this study. Remnant breast tissue, 3 levels of the axilla, heart, and lung were delineated. We used 2 different radiotherapy methods: 3D-CRT with field-in-field technique and 7-field fixed-beam IMRT. The target coverage of IMRT was significantly better than that of 3D-CRT (Dmean: 49.72 ± 0.64 Gy vs 50.24 ± 0.66 Gy, P < 0.001; V45: 93.19 ± 1.40% vs 98.59 ± 0.30%, P < 0.001; V47.5: 86.43 ± 2.72% vs 95.00 ± 0.02%, P < 0.001, for 3D-CRT and IMRT, respectively). In the IMRT plan, a lower dose was delivered to a wider region of the heart and lung. Significantly lower axillary irradiation was shown throughout each level of axilla by IMRT compared to 3D-CRT (Dmean for level I: 42.58 ± 5.31 Gy vs 14.49 ± 6.91 Gy, P < 0.001; Dmean for level II: 26.25 ± 10.43 Gy vs 3.41 ± 3.11 Gy, P < 0.001; Dmean for level III: 6.26 ± 4.69 Gy vs 1.16 ± 0.51 Gy, P < 0.001; Dmean for total axilla: 33.9 ± 6.89 Gy vs 9.96 ± 5.21 Gy, P < 0.001, for 3D-CRT and IMRT, respectively). In conclusion, the incidental dose delivered to the axilla was significantly lower for IMRT compared to 3D-CRT. Therefore, IMRT, which only includes the breast parenchyma, should be cautiously used in patients with limited positive sentinel lymph nodes and who do not undergo complete axillary lymph node dissection.

  13. A non-voxel-based broad-beam (NVBB) framework for IMRT treatment planning.

    PubMed

    Lu, Weiguo

    2010-12-07

    We present a novel framework that enables very large scale intensity-modulated radiation therapy (IMRT) planning in limited computation resources with improvements in cost, plan quality and planning throughput. Current IMRT optimization uses a voxel-based beamlet superposition (VBS) framework that requires pre-calculation and storage of a large amount of beamlet data, resulting in large temporal and spatial complexity. We developed a non-voxel-based broad-beam (NVBB) framework for IMRT capable of direct treatment parameter optimization (DTPO). In this framework, both objective function and derivative are evaluated based on the continuous viewpoint, abandoning 'voxel' and 'beamlet' representations. Thus pre-calculation and storage of beamlets are no longer needed. The NVBB framework has linear complexities (O(N(3))) in both space and time. The low memory, full computation and data parallelization nature of the framework render its efficient implementation on the graphic processing unit (GPU). We implemented the NVBB framework and incorporated it with the TomoTherapy treatment planning system (TPS). The new TPS runs on a single workstation with one GPU card (NVBB-GPU). Extensive verification/validation tests were performed in house and via third parties. Benchmarks on dose accuracy, plan quality and throughput were compared with the commercial TomoTherapy TPS that is based on the VBS framework and uses a computer cluster with 14 nodes (VBS-cluster). For all tests, the dose accuracy of these two TPSs is comparable (within 1%). Plan qualities were comparable with no clinically significant difference for most cases except that superior target uniformity was seen in the NVBB-GPU for some cases. However, the planning time using the NVBB-GPU was reduced many folds over the VBS-cluster. In conclusion, we developed a novel NVBB framework for IMRT optimization. The continuous viewpoint and DTPO nature of the algorithm eliminate the need for beamlets and lead to better plan

  14. Ultra-Rapid Categorization of Meaningful Real-Life Scenes in Adults with and without ASD

    ERIC Educational Resources Information Center

    Vanmarcke, Steven; Van Der Hallen, Ruth; Evers, Kris; Noens, Ilse; Steyaert, Jean; Wagemans, Johan

    2016-01-01

    In comparison to typically developing (TD) individuals, people with autism spectrum disorder (ASD) appear to be worse in the fast extraction of the global meaning of a situation or picture. Ultra-rapid categorization [paradigm developed by Thorpe et al. ("Nature" 381:520-522, 1996)] involves such global information processing. We…

  15. Effects of Ultra-Fast Cooling After Hot Rolling and Intercritical Treatment on Microstructure and Cryogenic Toughness of 3.5%Ni Steel

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Liu, Zhenyu

    2017-07-01

    A novel process comprised of ultra-fast cooling after control rolling, intercritical quenching and tempering (UFC-LT) was applied to 3.5%Ni steel. In addition, quenching and tempering (QT) treatment was conducted in comparison. The present study focuses on the relationship between the microstructure and cryogenic toughness of 3.5%Ni steel. Results show that the microstructure of steel treated by UFC-LT consisted of tempered martensite, intercritical ferrite and two types of reversed austenite (RA) (needle shape and blocky). Compared to the QT sample, the UFC-LT sample's ultimate tensile strength decreased slightly, while its elongation increased from 32.3 to 35.7%, and its Charpy absorption energy at -135 °C increased from 112 to 237 J. The ductile-brittle transition temperature of UFC-LT sample was lower than that of the QT sample by 18 °C. The superior cryogenic toughness after UFC-LT compared to QT treatment can be attributed to the dissolution of cementite, approximately 3.0% increase in RA and the decrease in effective grain size.

  16. Fast and comprehensive analysis of secondary metabolites in cocoa products using ultra high-performance liquid chromatography directly after pressurized liquid extraction.

    PubMed

    Damm, Irina; Enger, Eileen; Chrubasik-Hausmann, Sigrun; Schieber, Andreas; Zimmermann, Benno F

    2016-08-01

    Fast methods for the extraction and analysis of various secondary metabolites from cocoa products were developed and optimized regarding speed and separation efficiency. Extraction by pressurized liquid extraction is automated and the extracts are analyzed by rapid reversed-phase ultra high-performance liquid chromatography and normal-phase high-performance liquid chromatography methods. After extraction, no further sample treatment is required before chromatographic analysis. The analytes comprise monomeric and oligomeric flavanols, flavonols, methylxanthins, N-phenylpropenoyl amino acids, and phenolic acids. Polyphenols and N-phenylpropenoyl amino acids are separated in a single run of 33 min, procyanidins are analyzed by normal-phase high-performance liquid chromatography within 16 min, and methylxanthins require only 6 min total run time. A fourth method is suitable for phenolic acids, but only protocatechuic acid was found in relevant quantities. The optimized methods were validated and applied to 27 dark chocolates, one milk chocolate, two cocoa powders and two food supplements based on cocoa extract. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. SU-F-T-380: Comparing the Effect of Respiration On Dose Distribution Between Conventional Tangent Pair and IMRT Techniques for Adjuvant Radiotherapy in Early Stage Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M; Ramaseshan, R

    2016-06-15

    Purpose: In this project, we compared the conventional tangent pair technique to IMRT technique by analyzing the dose distribution. We also investigated the effect of respiration on planning target volume (PTV) dose coverage in both techniques. Methods: In order to implement IMRT technique a template based planning protocol, dose constrains and treatment process was developed. Two open fields with optimized field weights were combined with two beamlet optimization fields in IMRT plans. We compared the dose distribution between standard tangential pair and IMRT. The improvement in dose distribution was measured by parameters such as conformity index, homogeneity index and coveragemore » index. Another end point was the IMRT technique will reduce the planning time for staff. The effect of patient’s respiration on dose distribution was also estimated. The four dimensional computed tomography (4DCT) for different phase of breathing cycle was used to evaluate the effect of respiration on IMRT planned dose distribution. Results: We have accumulated 10 patients that acquired 4DCT and planned by both techniques. Based on the preliminary analysis, the dose distribution in IMRT technique was better than conventional tangent pair technique. Furthermore, the effect of respiration in IMRT plan was not significant as evident from the 95% isodose line coverage of PTV drawn on all phases of 4DCT. Conclusion: Based on the 4DCT images, the breathing effect on dose distribution was smaller than what we expected. We suspect that there are two reasons. First, the PTV movement due to respiration was not significant. It might be because we used a tilted breast board to setup patients. Second, the open fields with optimized field weights in IMRT technique might reduce the breathing effect on dose distribution. A further investigation is necessary.« less

  18. IMRT and RapidArc commissioning of a TrueBeam linear accelerator using TG-119 protocol cases.

    PubMed

    Wen, Ning; Zhao, Bo; Kim, Jinkoo; Chin-Snyder, Karen; Bellon, Maria; Glide-Hurst, Carri; Barton, Kenneth; Chen, Daiquan; Chetty, Indrin J

    2014-09-08

    The purpose of this study is to evaluate the overall accuracy of intensity-modulated radiation therapy (IMRT) and RapidArc delivery using both flattening filter (FF) and flattening filter-free (FFF) modalities based on test cases developed by AAPM Task Group 119. Institutional confidence limits (CLs) were established as the baseline for patient specific treatment plan quality assurance (QA). The effects of gantry range, gantry speed, leaf speed, dose rate, as well as the capability to capture intentional errors, were evaluated by measuring a series of Picket Fence (PF) tests using the electronic portal imaging device (EPID) and EBT3 films. Both IMRT and RapidArc plans were created in a Solid Water phantom (30 × 30 × 15 cm3) for the TG-119 test cases representative of normal clinical treatment sites for all five photon energies (6X, 10X, 15X, 6X-FFF, 10X-FFF) and the Exact IGRT couch was included in the dose calculation. One high-dose point in the PTV and one low-dose point in the avoidance structure were measured with an ion chamber in each case for each energy. Similarly, two GAFCHROMIC EBT3 films were placed in the coronal planes to measure planar dose distributions in both high- and low-dose regions. The confidence limit was set to have 95% of the measured data fall within the tolerance. The mean of the absolute dose deviation for variable dose rate and gantry speed during RapidArc delivery was within 0.5% for all energies. The corresponding results for leaf speed tests were all within 0.4%. The combinations of dynamic leaf gap (DLG) and MLC transmission factor were optimized based on the ion chamber measurement results of RapidArc delivery for each energy. The average 95% CLs for the high-dose point in the PTV were 0.030 ± 0.007 (range, 0.022-0.038) for the IMRT plans and 0.029 ± 0.011 (range, 0.016-0.043) for the RapidArc plans. For low-point dose in the avoidance structures, the CLs were 0.029 ± 0.006 (range, 0.024-0.039) for the IMRT plans and 0.027

  19. Ultra fast polymer network blue phase liquid crystals

    NASA Astrophysics Data System (ADS)

    Hussain, Zakir; Masutani, Akira; Danner, David; Pleis, Frank; Hollfelder, Nadine; Nelles, Gabriele; Kilickiran, Pinar

    2011-06-01

    Polymer-stabilization of blue phase liquid crystal systems within a host polymer network are reported, which enables ultrafast switching flexible displays. Our newly developed method to stabilize the blue phase in an existing polymer network (e.g., that of a polymer network liquid crystal; PNLC) has shown wide temperature stability and fast response speeds. Systems where the blue phase is stabilized in an already existing polymer network are attractive candidates for ultrafast LCDs. The technology also promises to be applied to flexible PNLC and/or polymer dispersed liquid crystal (PDLC) displays using plastic substrate such as polyethylene terephthalate (PET).

  20. Explaining the apparent impenetrable barrier to ultra-relativistic electrons in the outer Van Allen belt.

    PubMed

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Degeling, Alex W; Claudepierre, Seth G; Spence, Harlan E

    2018-05-10

    Recent observations have shown the existence of an apparent impenetrable barrier at the inner edge of the ultra-relativistic outer electron radiation belt. This apparent impenetrable barrier has not been explained. However, recent studies have suggested that fast loss, such as associated with scattering into the atmosphere from man-made very-low frequency transmissions, is required to limit the Earthward extent of the belt. Here we show that the steep flux gradient at the implied barrier location is instead explained as a natural consequence of ultra-low frequency wave radial diffusion. Contrary to earlier claims, sharp boundaries in fast loss processes at the barrier are not needed. Moreover, we show that penetration to the barrier can occur on the timescale of days rather than years as previously reported, with the Earthward extent of the belt being limited by the finite duration of strong solar wind driving, which can encompass only a single geomagnetic storm.

  1. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Cappi, M.; Reeves, J.; Nemmen, R.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60%, consistent with previous studies. The fraction of sources with UFOs is >34%, >67% of which also show WAs. The large dynamic range obtained when considering all the absorbers together allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. The absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. This strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The observed parameters and correlations are consistent with both radiation pressure through Compton scattering and MHD processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, have a sufficiently high mechanical power to significantly contribute to the AGN feedback.

  2. Energy modulated electron therapy using a few leaf electron collimator in combination with IMRT and 3D-CRT: Monte Carlo-based planning and dosimetric evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Yahya, Khalid; Schwartz, Matthew; Shenouda, George

    2005-09-15

    Energy modulated electron therapy (EMET) based on Monte Carlo dose calculation is a promising technique that enhances the treatment planning and delivery of superficially located tumors. This study investigated the application of EMET using a novel few-leaf electron collimator (FLEC) in head and neck and breast sites in comparison with three-dimensional conventional radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) techniques. Treatment planning was performed for two parotid cases and one breast case. Four plans were compared for each case: 3D-CRT, IMRT, 3D-CRT in conjunction with EMET (EMET-CRT), and IMRT in conjunction with EMET (EMET-IMRT), all of which weremore » performed and calculated with Monte Carlo techniques. For all patients, dose volume histograms (DVHs) were obtained for all organs of interest and the DVHs were used as a means of comparing the plans. Homogeneity and conformity of dose distributions were calculated, as well as a sparing index that compares the effect of the low isodose lines. In addition, the whole-body dose equivalent (WBDE) was estimated for each plan. Adding EMET delivered with the FLEC to 3D-CRT improves sparing of normal tissues. For the two head and neck cases, the mean dose to the contralateral parotid and brain stem was reduced relative to IMRT by 43% and 84%, and by 57% and 71%, respectively. Improved normal tissue sparing was quantified as an increase in sparing index of 47% and 30% for the head and neck and the breast cases, respectively. Adding EMET to either 3D-CRT or IMRT results in preservation of target conformity and dose homogeneity. When adding EMET to the treatment plan, the WBDE was reduced by between 6% and 19% for 3D-CRT and by between 21% and 33% for IMRT, while WBDE for EMET-CRT was reduced by up to 72% when compared with IMRT. FLEC offers a practical means of delivering modulated electron therapy. Although adding EMET delivered using the FLEC results in perturbation of target

  3. Shielding evaluation for IMRT implementation in an existing accelerator vault

    PubMed Central

    Price, R. A.; Chibani, O.; Ma, C.‐M.

    2003-01-01

    A formalism is developed for evaluating the shielding in an existing vault to be used for IMRT. Existing exposure rate measurements are utilized as well as a newly developed effective modulation scaling factor. Examples are given for vaults housing 6, 10 and 18 MV linear accelerators. The use of an 18 MV Siemens linear accelerator is evaluated for IMRT delivery with respect to neutron production and the effects on individual patients. A modified modulation scaling factor is developed and the risk of the incurrence of fatal secondary malignancies is estimated. The difference in neutron production between 18 MV Varian and Siemens accelerators is estimated using Monte Carlo results. The neutron production from the Siemens accelerator is found to be approximately 4 times less than that of the Varian accelerator resulting in a risk of fatal secondary malignancy occurrence of approximately 1.6% when using the SMLC delivery technique and our measured modulation scaling factors. This compares with a previously published value of 1.6% for routine 3D CRT delivery on the Varian accelerator. PACS number(s): 87.52.Ga, 87.52.Px, 87.53.Qc, 87.53.Wz PMID:12841794

  4. IMRT plan verification with EBT2 and EBT3 films compared to PTW 2D-ARRAY seven29

    NASA Astrophysics Data System (ADS)

    Hanušová, Tereza; Horáková, Ivana; Koniarová, Irena

    2017-11-01

    The aim of this study was to compare dosimetry with Gafchromic EBT2 and EBT3 films to the ion chamber array PTW seven29 in terms of their performance in clinical IMRT plan verification. A methodology for film processing and calibration was developed. Calibration curves were obtained in MATLAB and in FilmQA Pro. The best calibration curve was then used to calibrate EBT2 and EBT3 films for IMRT plan verification measurements. Films were placed in several coronal planes into an RW3 slab phantom and irradiated with a clinical IMRT plan for prostate and lymph nodes using 18 MV photon beams. Individual fields were tested and irradiated with gantry at 0°. Results were evaluated using gamma analysis with 3%/3 mm criteria in OmniPro I'mRT version 1.7. The same measurements were performed with the ion chamber array PTW seven29 in RW3 slabs (different depths) and in the OCTAVIUS II phantom (isocenter depth only; both original and nominal gantry angles). Results were evaluated in PTW VeriSoft version 3.1 using the same criteria. Altogether, 45 IMRT planes were tested with film and 25 planes with the PTW 2D-ARRAY seven29. Film measuerements showed different results than ion chamber matrix measurements. With PTW 2D-ARRAY seven29, worse results were obtained when the detector was placed into the OCTAVIUS phantom than into the RW3 slab phantom, and the worst pass rates were seen for rotational measurements. EBT2 films showed inconsistent results and could differ significantly for different planes in one field. EBT3 films seemed to give the best results of all the tested configurations.

  5. Polarization-dependent force driving the Eg mode in bismuth under optical excitation: comparison of first-principles theory with ultra-fast x-ray experiments

    NASA Astrophysics Data System (ADS)

    Fahy, Stephen; Murray, Eamonn

    2015-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of a ultrafast pulse of polarized light. To compare the results with recent ultra-fast, time-resolved x-ray diffraction experiments, we include the decay of the force due to carrier scattering, as measured in optical Raman scattering experiments, and simulate the optical absorption process, depth-dependent atomic driving forces, and x-ray diffraction in the experimental geometry. We find excellent agreement between the theoretical predictions and the observed oscillations of the x-ray diffraction signal, indicating that first-principles theory of optical absorption is well suited to the calculation of initial atomic driving forces in photo-excited materials following ultrafast excitation. This work is supported by Science Foundation Ireland (Grant No. 12/IA/1601) and EU Commission under the Marie Curie Incoming International Fellowships (Grant No. PIIF-GA-2012-329695).

  6. Evaluating deviations in prostatectomy patients treated with IMRT.

    PubMed

    Sá, Ana Cravo; Peres, Ana; Pereira, Mónica; Coelho, Carina Marques; Monsanto, Fátima; Macedo, Ana; Lamas, Adrian

    2016-01-01

    To evaluate the deviations in prostatectomy patients treated with IMRT in order to calculate appropriate margins to create the PTV. Defining inappropriate margins can lead to underdosing in target volumes and also overdosing in healthy tissues, increasing morbidity. 223 CBCT images used for alignment with the CT planning scan based on bony anatomy were analyzed in 12 patients treated with IMRT following prostatectomy. Shifts of CBCT images were recorded in three directions to calculate the required margin to create PTV. The mean and standard deviation (SD) values in millimetres were -0.05 ± 1.35 in the LR direction, -0.03 ± 0.65 in the SI direction and -0.02 ± 2.05 the AP direction. The systematic error measured in the LR, SI and AP direction were 1.35 mm, 0.65 mm, and 2.05 mm with a random error of 2.07 mm; 1.45 mm and 3.16 mm, resulting in a PTV margin of 4.82 mm; 2.64 mm, and 7.33 mm, respectively. With IGRT we suggest a margin of 5 mm, 3 mm and 8 mm in the LR, SI and AP direction, respectively, to PTV1 and PTV2. Therefore, this study supports an anisotropic margin expansion to the PTV being the largest expansion in the AP direction and lower in SI.

  7. Ultra-fast magnetic vortex core reversal by a local field pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rückriem, R.; Albrecht, M., E-mail: manfred.albrecht@physik.uni-augsburg.de; Schrefl, T.

    2014-02-03

    Magnetic vortex core reversal of a 20-nm-thick permalloy disk with a diameter of 100 nm was studied by micromagnetic simulations. By applying a global out-of-plane magnetic field pulse, it turned out that the final core polarity is very sensitive to pulse width and amplitude, which makes it hard to control. The reason for this phenomenon is the excitation of radial spin waves, which dominate the reversal process. The excitation of spin waves can be strongly suppressed by applying a local field pulse within a small area at the core center. With this approach, ultra-short reversal times of about 15 ps weremore » achieved, which are ten times faster compared to a global pulse.« less

  8. Ultra-sensitive detection of leukemia by graphene

    NASA Astrophysics Data System (ADS)

    Akhavan, Omid; Ghaderi, Elham; Hashemi, Ehsan; Rahighi, Reza

    2014-11-01

    Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses <2 nm) were applied in extraction of the overexpressed guanine synthesized in the cytoplasm of leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to guanine oxidation of normal and abnormal cells overlapped at LFs <10-9, and consequently, the performance of rGONWs alone was limited at this level. As a benchmark, the DPV using glassy carbon electrodes was able to detect only LFs ~ 10-2. The ultra-sensitivity obtained by this combination method (guanine extraction by GONPs and then guanine oxidation by rGONWs) is five orders of magnitude better than the sensitivity of the best current technologies (e.g., specific mutations by polymerase chain reaction) which not only are expensive, but also require a few days for diagnosis.Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses <2 nm) were applied in extraction of the overexpressed guanine synthesized in the cytoplasm of leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to

  9. MO-D-213-05: Sensitivity of Routine IMRT QA Metrics to Couch and Collimator Rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alaei, P

    Purpose: To assess the sensitivity of gamma index and other IMRT QA metrics to couch and collimator rotations. Methods: Two brain IMRT plans with couch and/or collimator rotations in one or more of the fields were evaluated using the IBA MatriXX ion chamber array and its associated software (OmniPro-I’mRT). The plans were subjected to routine QA by 1) Creating a composite planar dose in the treatment planning system (TPS) with the couch/collimator rotations and 2) Creating the planar dose after “zeroing” the rotations. Plan deliveries to MatriXX were performed with all rotations set to zero on a Varian 21ex linearmore » accelerator. This in effect created TPS-created planar doses with an induced rotation error. Point dose measurements for the delivered plans were also performed in a solid water phantom. Results: The IMRT QA of the plans with couch and collimator rotations showed clear discrepancies in the planar dose and 2D dose profile overlays. The gamma analysis, however, did pass with the criteria of 3%/3mm (for 95% of the points), albeit with a lower percentage pass rate, when one or two of the fields had a rotation. Similar results were obtained with tighter criteria of 2%/2mm. Other QA metrics such as percentage difference or distance-to-agreement (DTA) histograms produced similar results. The point dose measurements did not obviously indicate the error due to location of dose measurement (on the central axis) and the size of the ion chamber used (0.6 cc). Conclusion: Relying on Gamma analysis, percentage difference, or DTA to determine the passing of an IMRT QA may miss critical errors in the plan delivery due to couch/collimator rotations. A combination of analyses for composite QA plans, or per-beam analysis, would detect these errors.« less

  10. SU-E-T-472: Improvement of IMRT QA Passing Rate by Correcting Angular Dependence of MatriXX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Q; Watkins, W; Kim, T

    2015-06-15

    Purpose: Multi-channel planar detector arrays utilized for IMRT-QA, such as the MatriXX, exhibit an incident-beam angular dependent response which can Result in false-positive gamma-based QA results, especially for helical tomotherapy plans which encompass the full range of beam angles. Although MatriXX can use with gantry angle sensor to provide automatically angular correction, this sensor does not work with tomotherapy. The purpose of the study is to reduce IMRT-QA false-positives by correcting for the MatriXX angular dependence. Methods: MatriXX angular dependence was characterized by comparing multiple fixed-angle irradiation measurements with corresponding TPS computed doses. For 81 Tomo-helical IMRT-QA measurements, two differentmore » correction schemes were tested: (1) A Monte-Carlo dose engine was used to compute MatriXX signal based on the angular-response curve. The computed signal was then compared with measurement. (2) Uncorrected computed signal was compared with measurements uniformly scaled to account for the average angular dependence. Three scaling factor (+2%, +2.5%, +3%) were tested. Results: The MatriXX response is 8% less than predicted for a PA beam even when the couch is fully accounted for. Without angular correction, only 67% of the cases pass the >90% points γ<1 (3%, 3mm). After full angular correction, 96% of the cases pass the criteria. Of three scaling factors, +2% gave the highest passing rate (89%), which is still less than the full angular correction method. With a stricter γ(2%,3mm) criteria, the full angular correction method was still able to achieve the 90% passing rate while the scaling method only gives 53% passing rate. Conclusion: Correction for the MatriXX angular dependence reduced the false-positives rate of our IMRT-QA process. It is necessary to correct for the angular dependence to achieve the IMRT passing criteria specified in TG129.« less

  11. A 10Gbps optical burst switching network incorporating ultra-fast (5ns) wavelength switched tunable laser sources

    NASA Astrophysics Data System (ADS)

    Ryan, Neil; Todd, Michael; Farrell, Tom; Lavin, Adrian; Rigole, Pierre-Jean; Corbett, Brian; Roycroft, Brendan; Engelstaedter, Jan-Peter

    2017-11-01

    This paper outlines the development of a prototype optical burst mode switching network based upon a star topology, the ultimate application of which could be as a transparent payload processor onboard satellite repeaters. The network architecture incorporates multiple tunable laser sources, burst mode receivers and a passive optical router (Arrayed Waveguide Grating). Each tunable optical signal should carry >=10Gbps and be capable of wavelength switching in c. 5ns timescales. Two monolithic tunable laser types, based upon different technologies, will be utilised: a Slotted Fabry Perot laser (a Fabry Perot laser with slots added in order to introduce controlled cavity perturbations); and a Modulated Grating Y-Branch Laser (MGY: a widely tunable, multi-section device similar to the DBR laser). While the Slotted Fabry Perot laser is expected to achieve the required switching times, it is an immature technology not yet capable of achieving tunability over 80 ITU channels from a single chip. The MGY device is a more mature technology and has full C-band ITU channel coverage, but is not capable of the required short switching times. Hence, in order to facilitate the integration of this more mature technology into the prototype breadboard with the requisite switching time capabilities, a system of `dual laser' transmitters is being developed to enable data transmission from one MGY laser while the other switches and vice-versa. This work is being performed under ESA contract AO 1-5025/06/NL/PM, Optical Technologies for Ultra - fast Processing.

  12. Dynamic optical modulation of an electron beam on a photocathode RF gun: Toward intensity-modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Kondoh, Takafumi; Kashima, Hiroaki; Yang, Jinfeng; Yoshida, Yoichi; Tagawa, Seiichi

    2008-10-01

    In intensity-modulated radiation therapy (IMRT), the aim is to deliver reduced doses of radiation to normal tissue. As a step toward IMRT, we examined dynamic optical modulation of an electron beam produced by a photocathode RF gun. Images on photomasks were transferred onto a photocathode by relay imaging. The resulting beam was controlled by a remote mirror. The modulated electron beam maintained its shape on acceleration, had a fine spatial resolution, and could be moved dynamically by optical methods.

  13. Multicentre validation of IMRT pre-treatment verification: comparison of in-house and external audit.

    PubMed

    Jornet, Núria; Carrasco, Pablo; Beltrán, Mercè; Calvo, Juan Francisco; Escudé, Lluís; Hernández, Victor; Quera, Jaume; Sáez, Jordi

    2014-09-01

    We performed a multicentre intercomparison of IMRT optimisation and dose planning and IMRT pre-treatment verification methods and results. The aims were to check consistency between dose plans and to validate whether in-house pre-treatment verification results agreed with those of an external audit. Participating centres used two mock cases (prostate and head and neck) for the intercomparison and audit. Compliance to dosimetric goals and total number of MU per plan were collected. A simple quality index to compare the different plans was proposed. We compared gamma index pass rates using the centre's equipment and methodology to those of an external audit. While for the prostate case, all centres fulfilled the dosimetric goals and plan quality was homogeneous, that was not the case for the head and neck case. The number of MU did not correlate with the plan quality index. Pre-treatment verifications results of the external audit did not agree with those of the in-house measurements for two centres: being within tolerance for in-house measurements and unacceptable for the audit or the other way round. Although all plans fulfilled dosimetric constraints, plan quality is highly dependent on the planner expertise. External audits are an excellent tool to detect errors in IMRT implementation and cannot be replaced by intercomparison using results obtained by centres. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Tracking the Speech Signal--Time-Locked MEG Signals during Perception of Ultra-Fast and Moderately Fast Speech in Blind and in Sighted Listeners

    ERIC Educational Resources Information Center

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2013-01-01

    Blind people can learn to understand speech at ultra-high syllable rates (ca. 20 syllables/s), a capability associated with hemodynamic activation of the central-visual system. To further elucidate the neural mechanisms underlying this skill, magnetoencephalographic (MEG) measurements during listening to sentence utterances were cross-correlated…

  15. Leptons from decay of mesons in the laser-induced particle pulse from ultra-dense protium p(0)

    NASA Astrophysics Data System (ADS)

    Holmlid, Leif

    2016-10-01

    Kaons and pions are observed by their characteristic decay times of 12, 52 and 26 ns after impact of relatively weak ns-long laser pulses on ultra-dense hydrogen H(0), as reported previously. The signal using an ultra-dense protium p(0) generator with natural hydrogen is now studied. Deflection in a weak magnetic field or penetration through metal foils cannot distinguish between the types of decaying mesons. The signals observed are thus not caused by the decaying mesons themselves, but by the fast particles often at >50MeV u-1 formed in their decay. The fast particles are concluded to be mainly muons from their relatively small magnetic deflection and strong penetration. This is further supported by published studies on the direct observation of the beta decay of muons in scintillators and solid converters using the same type of p(0) generator.

  16. SU-F-T-384: Step and Shoot IMRT, VMAT and Autoplan VMAT Nasopharnyx Plan Robustness to Linear Accelerator Delivery Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogson, EM; Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW; Ingham Institute for Applied Medical Research, Sydney, NSW

    Purpose: To identify the robustness of different treatment techniques in respect to simulated linac errors on the dose distribution to the target volume and organs at risk for step and shoot IMRT (ssIMRT), VMAT and Autoplan generated VMAT nasopharynx plans. Methods: A nasopharynx patient dataset was retrospectively replanned with three different techniques: 7 beam ssIMRT, one arc manual generated VMAT and one arc automatically generated VMAT. Treatment simulated uncertainties: gantry, collimator, MLC field size and MLC shifts, were introduced into these plans at increments of 5,2,1,−1,−2 and −5 (degrees or mm) and recalculated in Pinnacle. The mean and maximum dosesmore » were calculated for the high dose PTV, parotids, brainstem, and spinal cord and then compared to the original baseline plan. Results: Simulated gantry angle errors have <1% effect on the PTV, ssIMRT is most sensitive. The small collimator errors (±1 and ±2 degrees) impacted the mean PTV dose by <2% for all techniques, however for the ±5 degree errors mean target varied by up to 7% for the Autoplan VMAT and 10% for the max dose to the spinal cord and brain stem, seen in all techniques. The simulated MLC shifts introduced the largest errors for the Autoplan VMAT, with the larger MLC modulation presumably being the cause. The most critical error observed, was the MLC field size error, where even small errors of 1 mm, caused significant changes to both the PTV and the OAR. The ssIMRT is the least sensitive and the Autoplan the most sensitive, with target errors of up to 20% over and under dosages observed. Conclusion: For a nasopharynx patient the plan robustness observed is highest for the ssIMRT plan and lowest for the Autoplan generated VMAT plan. This could be caused by the more complex MLC modulation seen for the VMAT plans. This project is supported by a grant from NSW Cancer Council.« less

  17. SU-F-T-395: Evaluation of Best Dosimetry Achievable with VMAT and IMRT Treatment Techniques Targeting Borderline Resectable Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harpool, K; Schnell, E; Herman, T

    Purpose: To determine from retrospective study the most appropriate technique for targeting small borderline operable pancreatic cancer surrounding blood vessels by evaluating the dosimetry and normal tissue sparing achievable using Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT). Methods: Treatment plans from ten patients who have undergone treatment with a prescribed dose of 4950 cGy, at 275 cGy per fraction, were analyzed. All plans were replanned using Eclipse TPS (Varian Medical Systems, Palo Alto, CA) with complementary VMAT or IMRT techniques to obtain paired data sets for comparison. The coverage to at least 95% of the plannedmore » target volume (PTV) was normalized to receive 100% of the prescription dose. The normal tissue constraints followed the quantitative analysis of normal tissue effects in the clinic (QUANTEC) guidelines and the organs at risks (OARs) were liver, kidneys, spinal cord and bowel. The plan evaluation was based on conformity index (CI), homogeneity index (HI), uniformity index (UI), DVH parameters, and student’s-t statistics (2 tails). Results: The VMAT technique delivered less maximum dose to the right kidney, left kidney, total kidney, liver, spinal cord, and bowel by 9.3%, 5.9%, 6.7%, 3.9%, 15.1%, 3.9%, and 4.3%, respectively. The averaged V15 for the total kidney was 10.21% for IMRT and 7.29% for VMAT. The averaged V20 for the bowel was 19.89% for IMRT and 14.06% for VMAT. On average, the CI for IMRT was 1.20 and 1.16 for VMAT (p = 0.20). The HI was 0.08 for both techniques (p = 0.91) and UI was 1.05 and 1.06 for IMRT and VMAT respectively (p = 0.59). Conclusion: Both techniques achieve adequate PTV coverage. Although VMAT techniques show better normal tissue sparing from excessive dose, no significant differences were observed. Slight discrepancies may rise from different versions of calculation algorithms.« less

  18. SU-E-T-365: Dosimetric Impact of Dental Amalgam CT Image Artifacts On IMRT and VMAT Head and Neck Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, N; Young, L; Parvathaneni, U

    Purpose: The presence of high density dental amalgam in patient CT image data sets causes dose calculation errors for head and neck (HN) treatment planning. This study assesses and compares dosimetric variations in IMRT and VMAT treatment plans due to dental artifacts. Methods: Sixteen HN patients with similar treatment sites (oropharynx), tumor volume and extensive dental artifacts were divided into two groups: IMRT (n=8, 6 to 9 beams) and VMAT (n=8, 2 arcs with 352° rotation). All cases were planned with the Pinnacle 9.2 treatment planning software using the collapsed cone convolution superposition algorithm and a range of prescription dosemore » from 60 to 72Gy. Two different treatment plans were produced, each based on one of two image sets: (a)uncorrected; (b)dental artifacts density overridden (set to 1.0g/cm{sup 3}). Differences between the two treatment plans for each of the IMRT and VMAT techniques were quantified by the following dosimetric parameters: maximum point dose, maximum spinal cord and brainstem dose, mean left and right parotid dose, and PTV coverage (V95%Rx). Average differences generated for these dosimetric parameters were compared between IMRT and VMAT plans. Results: The average absolute dose differences (plan a minus plan b) for the VMAT and IMRT techniques, respectively, caused by dental artifacts were: 2.2±3.3cGy vs. 37.6±57.5cGy (maximum point dose, P=0.15); 1.2±0.9cGy vs. 7.9±6.7cGy (maximum spinal cord dose, P=0.026); 2.2±2.4cGy vs. 12.1±13.0cGy (maximum brainstem dose, P=0.077); 0.9±1.1cGy vs. 4.1±3.5cGy (mean left parotid dose, P=0.038); 0.9±0.8cGy vs. 7.8±11.9cGy (mean right parotid dose, P=0.136); 0.021%±0.014% vs. 0.803%±1.44% (PTV coverage, P=0.17). Conclusion: For the HN plans studied, dental artifacts demonstrated a greater dose calculation error for IMRT plans compared to VMAT plans. Rotational arcs appear on the average to compensate dose calculation errors induced by dental artifacts. Thus, compared to VMAT

  19. A dosimetric comparison of 3D-CRT, IMRT, and static tomotherapy with an SIB for large and small breast volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalski, Andrea; Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales; Atyeo, John, E-mail: john.atyeo@sydney.edu.au

    2014-07-01

    Radiation therapy to the breast is a complex task, with many different techniques that can be employed to ensure adequate dose target coverage while minimizing doses to the organs at risk. This study compares the dose planning outcomes of 3 radiation treatment modalities, 3 dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and static tomotherapy, for left-sided whole-breast radiation treatment with a simultaneous integrated boost (SIB). Overall, 20 patients with left-sided breast cancer were separated into 2 cohorts, small and large, based on breast volume. Dose plans were produced for each patient using 3D-CRT, IMRT, and static tomotherapy. Allmore » patients were prescribed a dose of 45 Gy in 20 fractions to the breast with an SIB of 56 Gy in 20 fractions to the tumor bed and normalized so that D{sub 98%} > 95% of the prescription dose. Dosimetric comparisons were made between the 3 modalities and the interaction of patient size. All 3 modalities offered adequate planning target volume (PTV) coverage with D{sub 98%} > 95% and D{sub 2%} < 107%. Static tomotherapy offered significantly improved (p = 0.006) dose homogeneity to the PTV{sub boost} {sub eval} (0.079 ± 0.011) and breast minus the SIB volume (Breast{sub SIB}) (p < 0.001, 0.15 ± 0.03) compared with the PTV{sub boost} {sub eval} (0.085 ± 0.008, 0.088 ± 0.12) and Breast{sub SIB} (0.22 ± 0.05, 0.23 ± 0.03) for IMRT and 3D-CRT, respectively. Static tomotherapy also offered statistically significant reductions (p < 0.001) in doses to the ipsilateral lung mean dose of 6.79 ± 2.11 Gy compared with 7.75 ± 2.54 Gy and 8.29 ± 2.76 Gy for IMRT and 3D-CRT, respectively, and significantly (p < 0.001) reduced heart doses (mean = 2.83 ± 1.26 Gy) compared to both IMRT and 3D-CRT (mean = 3.70 ± 1.44 Gy and 3.91 ± 1.58 Gy). Static tomotherapy is the dosimetrically superior modality for the whole breast with an SIB compared with IMRT and 3D-CRT. IMRT is superior to

  20. SU-E-T-436: Accelerated Gated IMRT: A Feasibility Study for Lung Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilles, M; Boussion, N; Visvikis, D

    Purpose: To evaluate the feasibility of delivering a gated Intensity Modulated Radiotherapy (IMRT) treatment using multiple respiratory phases in order to account for all anatomic changes during free breathing and accelerate the gated treatment without increasing the dose per fraction. Methods: For 7 patients with lung cancer, IMRT treatment plans were generated on a full inspiration (FI) Computed Tomography (CT) and a Mid Intensity Position (MIP) CT. Moreover, in order to achieve an accelerated gated IMRT, multiple respiratory phase plans were calculated: 2-phase plans including the FI and the full expiration phases, and 3-phase plans by adding the mid-inspiration phase.more » In order to assess the tolerance limits, plans' doses were registered and summed to the FI-based plan. Mean dose received by Organs at Risk (OARs) and target volumes were used to compare obtained plans. Results: The mean dose differences between the FI plans and the multi-phase plans never exceeded 0.4 Gy (Fig. 1). Concerning the clinical target volume these differences were even smaller: less than 0.1 Gy for both the 2-phase and 3-phase plans. Regarding the MIP treatment plan, higher doses in different healthy structures were observed, with a relative mean increase of 0.4 to 1.5 Gy. Finally, compared to the prescribed dose, the FI as well as the multi-phase plans were associated with a mean difference of 0.4 Gy, whereas in the case of MIP a higher mean difference of 0.6 Gy was observed. Conclusion: The doses obtained while planning a multi-phase gated IMRT treatment were within the tolerance limits. Compared to MIP, a better healthy tissue sparing was observed in the case of treatment planning based on one or multiple phases. Future work will consist in testing the multi-phase treatment delivery while accounting for the multileaf collimator speed constraints.« less

  1. Expert consensus contouring guidelines for IMRT in esophageal and gastroesophageal junction cancer

    PubMed Central

    Wu, Abraham J.; Bosch, Walter R.; Chang, Daniel T.; Hong, Theodore S.; Jabbour, Salma K.; Kleinberg, Lawrence R.; Mamon, Harvey J.; Thomas, Charles R.; Goodman, Karyn A.

    2015-01-01

    Purpose/Objective(s) Current guidelines for esophageal cancer contouring are derived from traditional two-dimensional fields based on bony landmarks, and do not provide sufficient anatomical detail to ensure consistent contouring for more conformal radiotherapy techniques such as intensity-modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Methods and Materials Eight expert academically-based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophageal cancer. Uniform CT simulation datasets and an accompanying diagnostic PET-CT were distributed to each expert, and he/she was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. Results Kappa statistics indicated substantial agreement between panelists for each of the three test cases. A consensus CTV atlas was generated for the three test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. Conclusions This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets utilizing these guidelines may require modification in the future. PMID:26104943

  2. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    DOE PAGES

    Mann, I. R.; Ozeke, L. G.; Murphy, K. R.; ...

    2016-06-20

    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave–particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. In this paper, using a data-driven, time-dependent specification of ultra-low-frequency (ULF) waves we showmore » for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave–particle scattering loss into the atmosphere is not needed in this case. Finally, when rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.« less

  3. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, I. R.; Ozeke, L. G.; Murphy, K. R.

    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave–particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. In this paper, using a data-driven, time-dependent specification of ultra-low-frequency (ULF) waves we showmore » for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave–particle scattering loss into the atmosphere is not needed in this case. Finally, when rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.« less

  4. Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry I. Screening analysis.

    PubMed

    Badoud, F; Grata, E; Perrenoud, L; Avois, L; Saugy, M; Rudaz, S; Veuthey, J-L

    2009-05-15

    The general strategy to perform anti-doping analyses of urine samples starts with the screening for a wide range of compounds. This step should be fast, generic and able to detect any sample that may contain a prohibited substance while avoiding false negatives and reducing false positive results. The experiments presented in this work were based on ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry. Thanks to the high sensitivity of the method, urine samples could be diluted 2-fold prior to injection. One hundred and three forbidden substances from various classes (such as stimulants, diuretics, narcotics, anti-estrogens) were analysed on a C(18) reversed-phase column in two gradients of 9min (including two 3min equilibration periods) for positive and negative electrospray ionisation and detected in the MS full scan mode. The automatic identification of analytes was based on retention time and mass accuracy, with an automated tool for peak picking. The method was validated according to the International Standard for Laboratories described in the World Anti-Doping Code and was selective enough to comply with the World Anti-Doping Agency recommendations. In addition, the matrix effect on MS response was measured on all investigated analytes spiked in urine samples. The limits of detection ranged from 1 to 500ng/mL, allowing the identification of all tested compounds in urine. When a sample was reported positive during the screening, a fast additional pre-confirmatory step was performed to reduce the number of confirmatory analyses.

  5. Simultaneous determination of 11 designated hallucinogenic phenethylamines by ultra-fast liquid chromatography with fluorescence detection.

    PubMed

    Min, Jun Zhe; Shimizu, Yoshiha; Toyo'oka, Toshimasa; Inagaki, Shinsuke; Kikura-Hanajiri, Ruri; Goda, Yukihiro

    2008-10-01

    To avoid the spreading of illegal drugs, a designated drug regulation system was introduced along with revision of the Pharmaceutical Affairs Law in Japan in 2006, and 32 substances including phenethylamine-type drugs were listed in April 2007. In this study, a new simultaneous determination method, based on ultra-fast liquid chromatography coupled with fluorescence detection (UFLC-FL), was developed for the 11 designated phenethylamine drugs. The phenethylamines were labeled with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F) at 60 degrees C for 2h in 0.1M borax (pH 9.3). The resulting 11 fluorophores were completely separated by reversed-phase chromatography using an ACQUITY UPLC BEH C(18) column (2.1 mm x 100 mm 1.7 microm) and fluorometrically detected at 550 nm (excitation at 450 nm). The calibration curves obtained from the peak areas versus the injection amounts of the phenethylamines showed a good linearity. The limits of detection (signal-to-noise ratio of 3: S/N=3) on the chromatogram were in the range from 10 fmol (PMMA) to 2.5pmol (MMDA-2). Good accuracy (%) and precision (CV) by intra-day assay and inter-day assay were also obtained using the present procedure. The method was applied to the qualitative and quantitative analyses of phenethylamine in real products obtained from the Japanese market. As the results, BDB (0.24 mg/mg), MMDA-2 (0.98 mg/mL) and 2C-I (0.016 mg/mg) were identified from the different products (powder, liquid and mushroom like). Because the procedure is simple, selective and sensitive, the present method seems to be useful for the qualitative and quantitative analyses of the designated phenethylamines in various samples including biological specimens.

  6. Propensity score based comparison of long term outcomes with 3D conformal radiotherapy (3DCRT) versus Intensity Modulated Radiation Therapy (IMRT) in the treatment of esophageal cancer

    PubMed Central

    Lin, Steven H.; Wang, Lu; Myles, Bevan; Thall, Peter F.; Hofstetter, Wayne L.; Swisher, Stephen G.; Ajani, Jaffer A.; Cox, James D.; Komaki, Ritsuko; Liao, Zhongxing

    2014-01-01

    Purpose Although 3DCRT is the worldwide standard for the treatment of esophageal cancers, IMRT improves dose conformality and reduces radiation exposure to normal tissues. We hypothesized that the dosimetric advantages of IMRT should translate to substantive benefits in clinical outcomes compared to 3DCRT. Methods and Materials Analysis was performed on 676 nonrandomized patients (3DCRT=413, IMRT=263) with stage Ib-IVa (AJCC 2002) esophageal cancers treated with chemoradiation at a single institution from 1998–2008. An inverse probability of treatment weighting (IPW) and inclusion of propensity score (treatment probability) as a covariate were used to compare overall survival (OS) time, time to local failure, and time to distant metastasis, while accounting for effects of other clinically relevant covariates. Propensity scores were estimated using logistic regression. Results A fitted multivariate inverse probability weighted (IPW)-adjusted Cox model showed that OS time was significantly associated with several well-known prognostic factors, along with radiation modality (IMRT vs 3DCRT, HR=0.72, p<0.001). Compared to IMRT, 3DCRT patients had a significantly greater risk of dying (72.6% vs 52.9%, IPW log rank test: p<0.0001) and for local-regional recurrence (LRR) (p=0.0038). There was no difference in cancer-specific mortality (Gray’s test, p=0.86), or distant metastasis (p=0.99) between the two groups. An increased cumulative incidence of cardiac deaths was seen in the 3DCRT group (p=0.049), but most deaths were undocumented (5 year estimate: 11.7% in 3DCRT vs 5.4% in IMRT, Gray’s test, p=0.0029). Conclusions Overall survival, locoregional control, and non-cancer related deaths were significantly better for IMRT compared to 3DCRT. Although these results need confirmation, IMRT should be considered for the treatment of esophageal cancer. PMID:22867894

  7. SU-F-T-522: Dosimetric Study of Junction Dose in Double Isocenter Flatten and Flatten Filter Free IMRT and VMAT Plan Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuvel, K; Yadav, G; Bhushan, M

    2016-06-15

    Purpose: To quantify the dosimetric accuracy of junction dose in double isocenter flattened and flatten filter free(FFF) intensity modulated radiation therapy(IMRT) and volumetric modulated arc therapy(VMAT) plan delivery using pelvis phantom. Methods: Five large field pelvis patients were selected for this study. Double isocenter IMRT and VMAT treatment plans were generated in Eclipse Treatment planning System (V.11.0) using 6MV FB and FFF beams. For all the plans same distance 17.0cm was kept between one isocenter to another isocenter. IMRT Plans were made with 7 coplanar fields and VMAT plans were made with full double arcs. Dose calculation was performed usingmore » AAA algorithms with dose grid size of 0.25 cm. Verification plans were calculated on Scanditronix Wellhofer pelvis slab phantom. Measurement point was selected and calculated, where two isocenter plan fields are overlapping, this measurement point was kept at distance 8.5cm from both isocenter. The plans were delivered using Varian TrueBeamTM machine on pelvis slab phantom. Point dose measurements was carried out using CC13 ion chamber volume of 0.13cm3. Results: The measured junction point dose are compared with TPS calculated dose. The mean difference observed was 4.5%, 6.0%, 4.0% and 7.0% for IMRT-FB,IMRT-FFF, VMAT-FB and VMAT-FFF respectively. The measured dose results shows closer agreement with calculated dose in Flatten beam planning in both IMRT and VMAT, whereas in FFF beam plan dose difference are more compared with flatten beam plan. Conclusion: Dosimetry accuracy of Large Field junction dose difference was found less in Flatten beam compared with FFF beam plan delivery. Even though more dosimetric studies are required to analyse junction dose for FFF beam planning using multiple point dose measurements and fluence map verification in field junction area.« less

  8. Characterization and clinical evaluation of a novel 2D detector array for conventional and flattening filter free (FFF) IMRT pre-treatment verification.

    PubMed

    Sekar, Yuvaraj; Thoelking, Johannes; Eckl, Miriam; Kalichava, Irakli; Sihono, Dwi Seno Kuncoro; Lohr, Frank; Wenz, Frederik; Wertz, Hansjoerg

    2018-04-01

    The novel MatriXX FFF (IBA Dosimetry, Germany) detector is a new 2D ionization chamber detector array designed for patient specific IMRT-plan verification including flattening-filter-free (FFF) beams. This study provides a detailed analysis of the characterization and clinical evaluation of the new detector array. The verification of the MatriXX FFF was subdivided into (i) physical dosimetric tests including dose linearity, dose rate dependency and output factor measurements and (ii) patient specific IMRT pre-treatment plan verifications. The MatriXX FFF measurements were compared to the calculated dose distribution of a commissioned treatment planning system by gamma index and dose difference evaluations for 18 IMRT-sequences. All IMRT-sequences were measured with original gantry angles and with collapsing all beams to 0° gantry angle to exclude the influence of the detector's angle dependency. The MatriXX FFF was found to be linear and dose rate independent for all investigated modalities (deviations ≤0.6%). Furthermore, the output measurements of the MatriXX FFF were in very good agreement to reference measurements (deviations ≤1.8%). For the clinical evaluation an average pixel passing rate for γ (3%,3mm) of (98.5±1.5)% was achieved when applying a gantry angle correction. Also, with collapsing all beams to 0° gantry angle an excellent agreement to the calculated dose distribution was observed (γ (3%,3mm) =(99.1±1.1)%). The MatriXX FFF fulfills all physical requirements in terms of dosimetric accuracy. Furthermore, the evaluation of the IMRT-plan measurements showed that the detector particularly together with the gantry angle correction is a reliable device for IMRT-plan verification including FFF. Copyright © 2017. Published by Elsevier GmbH.

  9. Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruszyna, Marta

    This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The evaluation of dosimetric verification for various organ, during a 2 year period is given.

  10. SMUVS: Spitzer Matching survey of the UltraVISTA ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Caputi, Karina; Ashby, Matthew; Fazio, Giovanni; Huang, Jiasheng; Dunlop, James; Franx, Marijn; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Muzzin, Adam; Ilbert, Olivier; Somerville, Rachel; Wechsler, Risa; Behroozi, Peter; Lu, Yu

    2014-12-01

    We request 2026.5 hours to homogenize the matching ultra-deep IRAC data of the UltraVISTA ultra-deep stripes, producing a final area of ~0.6 square degrees with the deepest near- and mid-IR coverage existing in any such large area of the sky (H, Ks, [3.6], [4.5] ~ 25.3-26.1 AB mag; 5 sigma). The UltraVISTA ultra-deep stripes are contained within the larger COSMOS field, which has a rich collection of multi-wavelength, ancillary data, making it ideal to study different aspects of galaxy evolution with high statistical significance and excellent redshift accuracy. The UltraVISTA ultra-deep stripes are the region of the COSMOS field where these studies can be pushed to the highest redshifts, but securely identifying high-z galaxies, and determining their stellar masses, will only be possible if ultra-deep mid-IR data are available. Our IRAC observations will allow us to: 1) extend the galaxy stellar mass function at redshifts z=3 to z=5 to the intermediate mass regime (M~5x10^9-10^10 Msun), which is critical to constrain galaxy formation models; 2) gain a factor of six in the area where it is possible to effectively search for z>=6 galaxies and study their properties; 3) measure, for the first time, the large-scale structure traced by an unbiased galaxy sample at z=5 to z=7, and make the link to their host dark matter haloes. This cannot be done in any other field of the sky, as the UltraVISTA ultra-deep stripes form a quasi-contiguous, regular-shape field, which has a unique combination of large area and photometric depth. 4) provide a unique resource for the selection of secure z>5 targets for JWST and ALMA follow up. Our observations will have an enormous legacy value which amply justifies this new observing-time investment in the COSMOS field. Spitzer cannot miss this unique opportunity to open up a large 0.6 square-degree window to the early Universe.

  11. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  12. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    PubMed Central

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-01-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices. PMID:25491282

  13. Poster — Thur Eve — 33: The Influence of a Modeled Treatment Couch on Dose Distributions During IMRT and RapidArc Treatment Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldosary, Ghada; Nobah, Ahmad; Al-Zorkani, Faisal

    2014-08-15

    Treatment couches have been known to perturb dose delivery in patients. This effect is most pronounced in techniques such as IMRT and RapidArc. Although modern treatment planning systems (TPS) include data for a “default” treatment couch, actual couches are not manufactured identically. Thus, variations in their Hounsfield Unit (HU) values may exist. This study demonstrates a practical and simple method of acquiring reliable HU data for any treatment couch. We also investigate the effects of both the default and modeled treatment couches on absorbed dose. Experimental verifications show that by neglecting to incorporate the treatment couch in the TPS, dosemore » differences of up to 9.5% and 7.3% were present for 4 MV and 10 MV photon beams, respectively. Furthermore, a clinical study based on a cohort of 20 RapidArc and IMRT (brain, pelvis and abdominal) cases is performed. 2D dose distributions show that without the couch in the planning phase, differences ≤ 4.6% and 5.9% for RapidArc and IMRT cases are present for the same cases that the default couch was added to. Additionally, in comparison to the default couch, employing the modeled couch in the calculation process influences dose distributions by ≤ 2.7% and 8% for RapidArc and IMRT cases, respectively. This result was found to be site specific; where an accurate couch proves to be preferable for IMRT brain plans. As such, adding the couch during dose calculation decreases dose calculation errors, and a precisely modeled treatment couch offers higher dose delivery accuracy for brain treatment using IMRT.« less

  14. A two‐point scheme for optimal breast IMRT treatment planning

    PubMed Central

    2013-01-01

    We propose an approach to determining optimal beam weights in breast/chest wall IMRT treatment plans. The goal is to decrease breathing effect and to maximize skin dose if the skin is included in the target or, otherwise, to minimize the skin dose. Two points in the target are utilized to calculate the optimal weights. The optimal plan (i.e., the plan with optimal beam weights) consists of high energy unblocked beams, low energy unblocked beams, and IMRT beams. Six breast and five chest wall cases were retrospectively planned with this scheme in Eclipse, including one breast case where CTV was contoured by the physician. Compared with 3D CRT plans composed of unblocked and field‐in‐field beams, the optimal plans demonstrated comparable or better dose uniformity, homogeneity, and conformity to the target, especially at beam junction when supraclavicular nodes are involved. Compared with nonoptimal plans (i.e., plans with nonoptimized weights), the optimal plans had better dose distributions at shallow depths close to the skin, especially in cases where breathing effect was taken into account. This was verified with experiments using a MapCHECK device attached to a motion simulation table (to mimic motion caused by breathing). PACS number: 87.55 de PMID:24257291

  15. Interplay effect on a 6-MV flattening-filter-free linear accelerator with high dose rate and fast multi-leaf collimator motion treating breast and lung phantoms.

    PubMed

    Netherton, Tucker; Li, Yuting; Nitsch, Paige; Shaitelman, Simona; Balter, Peter; Gao, Song; Klopp, Ann; Muruganandham, Manickam; Court, Laurence

    2018-06-01

    Using a new linear accelerator with high dose rate (800 MU/min), fast MLC motions (5.0 cm/s), fast gantry rotation (15 s/rotation), and 1 cm wide MLCs, we aimed to quantify the effects of complexity, arc number, and fractionation on interplay for breast and lung treatments under target motion. To study lung interplay, eight VMAT plans (1-6 arcs) and four-nine-field sliding-window IMRT plans varying in complexity were created. For the breast plans, four-four-field sliding-window IMRT plans were created. Using the Halcyon 1.0 linear accelerator, each plan was delivered five times each under sinusoidal breathing motion to a phantom with 20 implanted MOSFET detectors; MOSFET dose (cGy), delivery time, and MU/cGy values were recorded. Maximum and mean dose deviations were calculated from MOSFET data. The number of MOSFETs with at least 19 of 20 detectors agreeing with their expected dose within 5% per fraction was calculated across 10 6 iterations to model dose deviation as function of fraction number for all plan variants. To put interplay plans into clinical context, additional IMRT and VMAT plans were created and delivered for the sites of head and neck, prostate, whole brain, breast, pelvis, and lung. Average modulation and interplay effect were compared to those from conventional linear accelerators, as reported from previous studies. The mean beam modulation for plans created for the Halcyon 1.0 linear accelerator was 2.9 MU/cGy (two- to four-field IMRT breast plans), 6.2 MU/cGy (at least five-field IMRT), and 3.6 MU/cGy (four-arc VMAT). To achieve treatment plan objectives, Halcyon 1.0 VMAT plans require more arcs and modulation than VMAT on conventional linear accelerators. Maximum and mean dose deviations increased with increasing plan complexity under tumor motion for breast and lung treatments. Concerning VMAT plans under motion, maximum, and mean dose deviations were higher for one arc than for two arcs regardless of plan complexity. For plan variants

  16. Ultra-stripped supernovae: progenitors and fate

    NASA Astrophysics Data System (ADS)

    Tauris, Thomas M.; Langer, Norbert; Podsiadlowski, Philipp

    2015-08-01

    The explosion of ultra-stripped stars in close binaries can lead to ejecta masses <0.1 M⊙ and may explain some of the recent discoveries of weak and fast optical transients. In Tauris et al., it was demonstrated that helium star companions to neutron stars (NSs) may experience mass transfer and evolve into naked ˜1.5 M⊙ metal cores, barely above the Chandrasekhar mass limit. Here, we elaborate on this work and present a systematic investigation of the progenitor evolution leading to ultra-stripped supernovae (SNe). In particular, we examine the binary parameter space leading to electron-capture (EC SNe) and iron core-collapse SNe (Fe CCSNe), respectively, and determine the amount of helium ejected with applications to their observational classification as Type Ib or Type Ic. We mainly evolve systems where the SN progenitors are helium star donors of initial mass MHe = 2.5-3.5 M⊙ in tight binaries with orbital periods of Porb = 0.06-2.0 d, and hosting an accreting NS, but we also discuss the evolution of wider systems and of both more massive and lighter - as well as single - helium stars. In some cases, we are able to follow the evolution until the onset of silicon burning, just a few days prior to the SN explosion. We find that ultra-stripped SNe are possible for both EC SNe and Fe CCSNe. EC SNe only occur for MHe = 2.60-2.95 M⊙ depending on Porb. The general outcome, however, is an Fe CCSN above this mass interval and an ONeMg or CO white dwarf for smaller masses. For the exploding stars, the amount of helium ejected is correlated with Porb - the tightest systems even having donors being stripped down to envelopes of less than 0.01 M⊙. We estimate the rise time of ultra-stripped SNe to be in the range 12 h-8 d, and light-curve decay times between 1 and 50 d. A number of fitting formulae for our models are provided with applications to population synthesis. Ultra-stripped SNe may produce NSs in the mass range 1.10-1.80 M⊙ and are highly relevant for

  17. Fast ultra-wideband microwave spectral scanning utilizing photonic wavelength- and time-division multiplexing.

    PubMed

    Li, Yihan; Kuse, Naoya; Fermann, Martin

    2017-08-07

    A high-speed ultra-wideband microwave spectral scanning system is proposed and experimentally demonstrated. Utilizing coherent dual electro-optical frequency combs and a recirculating optical frequency shifter, the proposed system realizes wavelength- and time-division multiplexing at the same time, offering flexibility between scan speed and size, weight and power requirements (SWaP). High-speed spectral scanning spanning from ~1 to 8 GHz with ~1.2 MHz spectral resolution is achieved experimentally within 14 µs. The system can be easily scaled to higher bandwidth coverage, faster scanning speed or finer spectral resolution with suitable hardware.

  18. Comparison of testicular dose delivered by intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in patients with prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Jeffrey M.; Handorf, Elizabeth A.; Price, Robert A.

    A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 receivedmore » a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality.« less

  19. WE-AB-202-04: Statistical Evaluation of Lung Function Using 4DCT Ventilation Imaging: Proton Therapy VS IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Q; Zhang, M; Chen, T

    Purpose: Variation in function of different lung regions has been ignored so far for conventional lung cancer treatment planning, which may lead to higher risk of radiation induced lung disease. 4DCT based lung ventilation imaging provides a novel yet convenient approach for lung functional imaging as 4DCT is taken as routine for lung cancer treatment. Our work aims to evaluate the impact of accounting for spatial heterogeneity in lung function using 4DCT based lung ventilation imaging for proton and IMRT plans. Methods: Six patients with advanced stage lung cancer of various tumor locations were retrospectively evaluated for the study. Protonmore » and IMRT plans were designed following identical planning objective and constrains for each patient. Ventilation images were calculated from patients’ 4DCT using deformable image registration implemented by Velocity AI software based on Jacobian-metrics. Lung was delineated into two function level regions based on ventilation (low and high functional area). High functional region was defined as lung ventilation greater than 30%. Dose distribution and statistics in different lung function area was calculated for patients. Results: Variation in dosimetric statistics of different function lung region was observed between proton and IMRT plans. In all proton plans, high function lung regions receive lower maximum dose (100.2%–108.9%), compared with IMRT plans (106.4%–119.7%). Interestingly, three out of six proton plans gave higher mean dose by up to 2.2% than IMRT to high function lung region. Lower mean dose (lower by up to 14.1%) and maximum dose (lower by up to 9%) were observed in low function lung for proton plans. Conclusion: A systematic approach was developed to generate function lung ventilation imaging and use it to evaluate plans. This method hold great promise in function analysis of lung during planning. We are currently studying more subjects to evaluate this tool.« less

  20. Reliable detection of fluence anomalies in EPID-based IMRT pretreatment quality assurance using pixel intensity deviations

    PubMed Central

    Gordon, J. J.; Gardner, J. K.; Wang, S.; Siebers, J. V.

    2012-01-01

    Purpose: This work uses repeat images of intensity modulated radiation therapy (IMRT) fields to quantify fluence anomalies (i.e., delivery errors) that can be reliably detected in electronic portal images used for IMRT pretreatment quality assurance. Methods: Repeat images of 11 clinical IMRT fields are acquired on a Varian Trilogy linear accelerator at energies of 6 MV and 18 MV. Acquired images are corrected for output variations and registered to minimize the impact of linear accelerator and electronic portal imaging device (EPID) positioning deviations. Detection studies are performed in which rectangular anomalies of various sizes are inserted into the images. The performance of detection strategies based on pixel intensity deviations (PIDs) and gamma indices is evaluated using receiver operating characteristic analysis. Results: Residual differences between registered images are due to interfraction positional deviations of jaws and multileaf collimator leaves, plus imager noise. Positional deviations produce large intensity differences that degrade anomaly detection. Gradient effects are suppressed in PIDs using gradient scaling. Background noise is suppressed using median filtering. In the majority of images, PID-based detection strategies can reliably detect fluence anomalies of ≥5% in ∼1 mm2 areas and ≥2% in ∼20 mm2 areas. Conclusions: The ability to detect small dose differences (≤2%) depends strongly on the level of background noise. This in turn depends on the accuracy of image registration, the quality of the reference image, and field properties. The longer term aim of this work is to develop accurate and reliable methods of detecting IMRT delivery errors and variations. The ability to resolve small anomalies will allow the accuracy of advanced treatment techniques, such as image guided, adaptive, and arc therapies, to be quantified. PMID:22894421

  1. Prostate Dose Escalation by Innovative Inverse Planning-Driven IMRT

    DTIC Science & Technology

    2006-11-01

    fLJ and at each step, we find the minimizer u,\\ of J’. The Euler-Lagrange equation for the regularized J’ functional is u- div ( 1 Vu )= f E S1,2A...GD, Agazaryan N, Solberg TD . 2003. The effects of tumor motion on planning and delivery of respiratory-gated IMRT. Med Phys 30:1052-1066. Jaffray DA...modulated) radiation therapy: a review. Phys Med Biol 51 :R403-425. Wink NM, McNitt-Gray MF, Solberg TD . 2005. Optimization of multi-slice helical

  2. Note: A fast pneumatic sample-shuttle with attenuated shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biancalana, Valerio; Dancheva, Yordanka; Stiaccini, Leonardo

    2014-03-15

    We describe a home-built pneumatic shuttle suitable for the fast displacement of samples in the vicinity of a highly sensitive atomic magnetometer. The samples are magnetized at 1 T using a Halbach assembly of magnets. The device enables the remote detection of free-induction-decay in ultra-low-field and zero-field nuclear magnetic resonance (NMR) experiments, in relaxometric measurements and in other applications involving the displacement of magnetized samples within time intervals as short as a few tens of milliseconds. Other possible applications of fast sample shuttling exist in radiological studies, where samples have to be irradiated and then analyzed in a cold environment.

  3. Exploring contrasts between fast and slow rifting

    NASA Astrophysics Data System (ADS)

    de Montserrat Navarro, A.; Morgan, J. P.; Hall, R.; White, L. T.

    2016-12-01

    Researchers are now finding that extension sometimes occurs at rates much faster than the mean rates observed in the development of passive margins. Examples of rapid and ultra-rapid extension are found in several locations in Eastern Indonesia, including northern and central Sulawesi as well as eastern- and westernmost New Guinea. Periods of extension are associated with sedimentary basin growth and phases of crustal melting and rapid uplift. This is recorded by seismic imagery of basins offshore Sulawesi and New Guinea as well as through new field studies of the onshore geology in these regions. A growing body of new geochronological and biostratigraphic data provides some control on the rates of processes, indicating that extension rates can be up to an order of magnitude faster than the rates inferred for the more commonly studied rift settings (e.g. Atlantic opening, East African Rift, Australia-Antarctica opening). We explore a suite of numerical experiments comparing the evolution of these `fast' (20-100 mm/year full rate) rifting models to rifting at slow and ultra-slow extension rates (5-20 mm/year). The experiments focus on the 2-D margin architecture and predicted melt volumes. These extension episodes occurring in Eastern Indonesia take place under different thermal conditions. Thus, we also investigate the role of the initial thermal structure in controlling the evolution of rifting. We explore to what depths hot lower crust and mantle can be exhumed by fast rifting, and infer that many of the extensional basins in SE Asia cannot be explained by simple rifting episodes of fragments of continental crust. Instead, fast extension appears to be initiated by subduction related processes that we will briefly discuss.

  4. Dose planning objectives in anal canal cancer IMRT: the TROG ANROTAT experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Elizabeth, E-mail: elizabeth@mebrown.net; Cray, Alison; Haworth, Annette

    2015-06-15

    Intensity modulated radiotherapy (IMRT) is ideal for anal canal cancer (ACC), delivering high doses to irregular tumour volumes whilst minimising dose to surrounding normal tissues. Establishing achievable dose objectives is a challenge. The purpose of this paper was to utilise data collected in the Assessment of New Radiation Oncology Treatments and Technologies (ANROTAT) project to evaluate the feasibility of ACC IMRT dose planning objectives employed in the Australian situation. Ten Australian centres were randomly allocated three data sets from 15 non-identifiable computed tomography data sets representing a range of disease stages and gender. Each data set was planned by twomore » different centres, producing 30 plans. All tumour and organ at risk (OAR) contours, prescription and dose constraint details were provided. Dose–volume histograms (DVHs) for each plan were analysed to evaluate the feasibility of dose planning objectives provided. All dose planning objectives for the bone marrow (BM) and femoral heads were achieved. Median planned doses exceeded one or more objectives for bowel, external genitalia and bladder. This reached statistical significance for bowel V30 (P = 0.04), V45 (P < 0.001), V50 (P < 0.001), external genitalia V20 (P < 0.001) and bladder V35 (P < 0.001), V40 (P = 0.01). Gender was found to be the only significant factor in the likelihood of achieving the bowel V50 (P = 0.03) and BM V30 constraints (P = 0.04). The dose planning objectives used in the ANROTAT project provide a good starting point for ACC IMRT planning. To facilitate clinical implementation, it is important to prioritise OAR objectives and recognise factors that affect the achievability of these objectives.« less

  5. SU-E-T-217: Comprehensive Dosimetric Evaluation On 3D-CRT, IMRT and Non-Coplanar Arc Treatment for Prone Accelerated Partial Breast Irradiation (APBI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, T; Yan, Y; Ramirez, E

    2015-06-15

    Purpose: Accelerated partial breast irradiation (APBI) is an effective treatment for early stage breast-cancer. Irradiation in a prone position can mitigate breast motion and spare heart and lung. In this study, a comprehensive study is performed to evaluate various treatment techniques for prone APBI treatment including: 3D-CRT, IMRT, co-planar and non-coplanar partial arcs treatment. Methods: In this treatment planning study, a left breast patient treated in prone position in our clinic was imported into Varian Eclipse TPS. Six beams tangential to chest wall were used in both 3D-CRT and IMRT plans. These six beams were coplanar in a transactional planemore » achieved by both gantry and couch rotation. A 60-beam IMRT plan was also created to explore the maximum benefit of co-planar IMRT. Within deliverable couch rotation range (±30°), partial arc treatment plans with one and up to ten couch positions were generated for comparison. For each plan, 30Gy in 6 fractions was prescribed to 95% PTV volume. Critical dosimetric parameters, such as conformity index, mean, maximum, and volume dose of organ at risk, are evaluated. Results: The conformity indexes (CI) are 3.53, 3.17, 2.21 and 1.08 respectively to 3D-CRT, 6-beam IMRT, 60-beam IMRT, and two-partial-arcs coplanar plans. However, arc plans increase heart dose. CI for non-coplanar arc plans decreases from 1.19 to 1.10 when increases couch positions. Maximum dose in ipsilateral lung (1.98 to 1.13 Gy), and heart (0.62 to 0.43 Gy) are steadily decreased with the increased number of non-coplanar arcs. Conclusions: The dosimetric evaluation results show that partial arc plans have improved CIs compared to conventional 3D-CRT and IMRT plans. Increasing number of partial arcs decreases lung and heart dose. The dosimetric benefit obtained from non-coplanar arcs should be considered with treatment delivery time.« less

  6. In vivo dose verification of IMRT treated head and neck cancer patients.

    PubMed

    Engström, Per E; Haraldsson, Pia; Landberg, Torsten; Sand Hansen, Hanne; Aage Engelholm, Svend; Nyström, Håkan

    2005-01-01

    An independent in vivo dose verification procedure for IMRT treatments of head and neck cancers was developed. Results of 177 intracavitary TLD measurements from 10 patients are presented. The study includes data from 10 patients with cancer of the rhinopharynx or the thyroid treated with dynamic IMRT. Dose verification was performed by insertion of a flexible naso-oesophageal tube containing TLD rods and markers for EPID and simulator image detection. Part of the study focussed on investigating the accuracy of the TPS calculations in the presence of inhomogeneities. Phantom measurements and Monte Carlo simulations were performed for a number of geometries involving lateral electronic disequilibrium and steep density shifts. The in vivo TLD measurements correlated well with the predictions of the treatment planning system with a measured/calculated dose ratio of 1.002+/-0.051 (1 SD, N=177). The measurements were easily performed and well tolerated by the patients. We conclude that in vivo intracavitary dosimetry with TLD is suitable and accurate for dose determination in intensity-modulated beams.

  7. Looking for Speed!! Go Optical Ultra-Fast Photonic Logic Gates for the Future Optical Communication and Computing

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.

    2003-01-01

    Recently, we developed two ultra-fast all-optical switches in the nanosecond and picosecond regimes. The picosecond switch is made of a polydiacetylene thin film coated on the interior wall of a hollow capillary of approximately 50 micron diameter by a photo-polymerization process. In the setup a picosecond Nd:YAG laser at 10 Hz and at 532 nm with a pulse duration of approximately 40 ps was sent collinearly along a cw He-Ne laser beam and both were waveguided through the hollow capillary. The setup functioned as an Exclusive OR gate. On the other hand, the material used in the nanosecond switch is a phthalocyanine thin film, deposited on a glass substrate by a vapor deposition technique. In the setup a nanosecond, 10 Hz, Nd:YAG laser of 8 ns pulse duration was sent collinearly along a cw He-Ne laser beam and both were wave-guided through the phthalocyanine thin film. The setup in this case functioned as an all-optical AND logic gate. The characteristic table of the ExOR gate in polydiacetylene film was attributed to an excited state absorption process, while that of the AND gate was attributed to a saturation process of the first excited state. Both mechanisms were thoroughly investigated theoretically and found to agree remarkably well with the experimental results. An all-optical inverter gate has been designed but has not yet been demonstrated. The combination of all these three gates form the foundation for building all the necessary gates needed to build a prototype of an all-optical system.

  8. Correction of respiratory motion for IMRT using aperture adaptive technique and visual guidance: A feasibility study

    NASA Astrophysics Data System (ADS)

    Chen, Ho-Hsing; Wu, Jay; Chuang, Keh-Shih; Kuo, Hsiang-Chi

    2007-07-01

    Intensity-modulated radiation therapy (IMRT) utilizes nonuniform beam profile to deliver precise radiation doses to a tumor while minimizing radiation exposure to surrounding normal tissues. However, the problem of intrafraction organ motion distorts the dose distribution and leads to significant dosimetric errors. In this research, we applied an aperture adaptive technique with a visual guiding system to toggle the problem of respiratory motion. A homemade computer program showing a cyclic moving pattern was projected onto the ceiling to visually help patients adjust their respiratory patterns. Once the respiratory motion becomes regular, the leaf sequence can be synchronized with the target motion. An oscillator was employed to simulate the patient's breathing pattern. Two simple fields and one IMRT field were measured to verify the accuracy. Preliminary results showed that after appropriate training, the amplitude and duration of volunteer's breathing can be well controlled by the visual guiding system. The sharp dose gradient at the edge of the radiation fields was successfully restored. The maximum dosimetric error in the IMRT field was significantly decreased from 63% to 3%. We conclude that the aperture adaptive technique with the visual guiding system can be an inexpensive and feasible alternative without compromising delivery efficiency in clinical practice.

  9. [The Dose Effect of Isocenter Selection during IMRT Dose Verification with the 2D Chamber Array].

    PubMed

    Xie, Chuanbin; Cong, Xiaohu; Xu, Shouping; Dai, Xiangkun; Wang, Yunlai; Han, Lu; Gong, Hanshun; Ju, Zhongjian; Ge, Ruigang; Ma, Lin

    2015-03-01

    To investigate the dose effect of isocenter difference during IMRT dose verification with the 2D chamber array. The samples collected from 10 patients were respectively designed for IMRT plans, the isocenter of which was independently defined as P(o), P(x) and P(y). P(o) was fixed on the target center and the other points shifted 8cm from the target center in the orientation of x/y. The PTW729 was used for 2D dose verification in the 3 groups which beams of plans were set to 0 degrees. The γ-analysis passing rates for the whole plan and each beam were gotten using the different standards in the 3 groups, The results showed the mean passing rate of γ-analysis was highest in the P(o) group, and the mean passing rate of the whole plan was better than that of each beam. In addition, it became worse with the increase of dose leakage between the leaves in P(y) group. Therefore, the determination of isocenter has a visible effect for IMRT dose verification of the 2D chamber array, The isocenter of the planning design should be close to the geometric center of target.

  10. Ultra-processed products are becoming dominant in the global food system.

    PubMed

    Monteiro, C A; Moubarac, J-C; Cannon, G; Ng, S W; Popkin, B

    2013-11-01

    The relationship between the global food system and the worldwide rapid increase of obesity and related diseases is not yet well understood. A reason is that the full impact of industrialized food processing on dietary patterns, including the environments of eating and drinking, remains overlooked and underestimated. Many forms of food processing are beneficial. But what is identified and defined here as ultra-processing, a type of process that has become increasingly dominant, at first in high-income countries, and now in middle-income countries, creates attractive, hyper-palatable, cheap, ready-to-consume food products that are characteristically energy-dense, fatty, sugary or salty and generally obesogenic. In this study, the scale of change in purchase and sales of ultra-processed products is examined and the context and implications are discussed. Data come from 79 high- and middle-income countries, with special attention to Canada and Brazil. Results show that ultra-processed products dominate the food supplies of high-income countries, and that their consumption is now rapidly increasing in middle-income countries. It is proposed here that the main driving force now shaping the global food system is transnational food manufacturing, retailing and fast food service corporations whose businesses are based on very profitable, heavily promoted ultra-processed products, many in snack form. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  11. Ultra-fast AC electro-osmotic micropump with arrays of asymmetric ring electrode pairs in 3D cylindrical microchannel

    NASA Astrophysics Data System (ADS)

    Gao, Xiaobo; Li, Yu Xiao

    2018-04-01

    AC electro-osmotic (ACEO) micropumps presently involve the planar or nonplanar electrode pair array in the rectangular microchannel. However, this paper presented a theoretical model of an ultra-fast 3D ring ACEO micropump with arrays of asymmetric ring electrode pairs in the cylindrical microchannel. The theory is on the basis of the interaction between the nonuniform electric field and ions of an electric double layer (EDL) on the surface of ring electrodes. Therefore, we first established the equivalent hollow cylinder capacitance of EDL for ring ACEO micropumps. Then, the 3D Poisson-Boltzmann model by solving the electric field and fluidic flow field with the charge conservation and the slip velocity boundary conditions was numerically calculated. For a dilute strong electrolyte solution, the conductivity as a function of the electrolyte concentration can be obtained by the modified Kohlrausch's dilution empirical equation with the molar conductivity. The results revealed that the flow rate of ring ACEO was higher than the planar ACEO, which agreed well with the experiment. The dependences of the time-averaged pumping velocity on the frequency and concentration have similar bell profiles with a maximal value. Moreover, the optimal velocity with proper geometric parameters was obtained at a given frequency, voltage, concentration, and radius. The high-speed ring ACEO micropump will be significant for the experimental studies to further improve the flow rate and be hopeful for applications of microfluidic mixing, particle manipulation, and so on.

  12. Use of recombinantly produced 15N3-labelled nicotianamine for fast and sensitive stable isotope dilution ultra-performance liquid chromatography/electrospray ionization time-of-flight mass spectrometry.

    PubMed

    Schmidt, Holger; Böttcher, Christoph; Trampczynska, Aleksandra; Clemens, Stephan

    2011-01-01

    Nicotianamine (NA) is an important metal chelator, implicated in the intra- and intercellular trafficking of several transition metal ions in plants. To decipher its roles in physiological processes such as micronutrient acquisition, distribution or storage, fast and sensitive analytical techniques for quantification of this non-proteinogenic amino acid will be required. The use of a recombinant Schizosaccharomyces pombe strain expressing a nicotianamine synthase (NAS) gene allowed for the production of [(15)N(3)]-NA, which was enriched from cell extracts through cation exchange and used for stable isotope dilution analysis of NA. Such an approach should be widely applicable to important bioanalytes that are difficult to synthesize. The analytical procedure comprises mild aqueous extraction and rapid Fmoc derivatization, followed by fast separation using ultra-performance liquid chromatography (UPLC) and sensitive detection by positive ion electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) with a chromatographic cycle time of only 8 min. Derivatization was optimized with respect to incubation time and species suitable for quantification. The limit of detection was 0.14 to 0.23 pmol in biological matrices with the response being linear up to 42 pmol. Recovery rates were between 83% and 104% in various biological matrices including fission yeast cells, fungal mycelium, plant leaves and roots.

  13. Reducing Xerostomia After Chemo-IMRT for Head and Neck Cancer: Beyond Sparing the Parotid Glands

    PubMed Central

    Little, Michael; Schipper, Matthew; Feng, Felix Y.; Vineberg, Karen; Cornwall, Craig; Murdoch-Kinch, Carol-Anne; Eisbruch, Avraham

    2011-01-01

    Purpose To assess whether in addition to sparing parotid glands (PGs), xerostomia after chemo-IMRT of head and neck cancer is affected by reducing doses to other salivary glands. Methods Prospective study: 78 patients with stages III/IV oropharynx/nasopharynx cancers received chemo-IMRT aiming to spare the parts outside the targets of bilateral PGs, oral cavity (OC) containing the minor salivary glands, and contralateral submandibular gland (SMG) (when contralateral level I was not a target). Pretherapy and periodically through 24 months, validated patient-reported xerostomia questionnaires (XQ) scores and observer-graded xerostomia were recorded, and stimulated and unstimulated saliva measured selectively from each of the PGs and SMGs. Mean OC doses served as surrogates of minor salivary glands dysfunction. Regression models assessed XQ and observer-graded xerostomia predictors. Results Statistically significant predictors of the XQ score in univariate analysis included OC, PG, and SMG mean doses, as well as baseline XQ score, time since RT, and both stimulated and unstimulated PG saliva flow rates. Similar factors were statistically significant predictors of observer-graded xerostomia. OC, PG and SMG mean doses were moderately inter-correlated (r=0.47–0.55). In multivariate analyses, after adjusting for PG and SMG doses, OC mean dose (p < 0.0001), time from RT (p < 0.0001), and stimulated PG saliva (p < 0.0025) were significant predictors for XQ scores, and OC mean dose and time for observer-graded xerostomia. While scatter plots showed no thresholds, OC mean doses <40 Gy and contralateral SMG mean <50 Gy were each associated with low patient-reported and observer-rated xerostomia at almost all post-therapy time points. Conclusion PG, SMG and OC mean doses were significant predictors of both patient-reported and observer-rated xerostomia after chemo-IMRT, with OC doses remaining significant after adjusting for PG and SMG doses. These results support efforts to

  14. Advantages and limitations of navigation-based multicriteria optimization (MCO) for localized prostate cancer IMRT planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGarry, Conor K., E-mail: conor.mcgarry@belfasttrust.hscni.net; Bokrantz, Rasmus; RaySearch Laboratories, Stockholm

    2014-10-01

    Efficacy of inverse planning is becoming increasingly important for advanced radiotherapy techniques. This study’s aims were to validate multicriteria optimization (MCO) in RayStation (v2.4, RaySearch Laboratories, Sweden) against standard intensity-modulated radiation therapy (IMRT) optimization in Oncentra (v4.1, Nucletron BV, the Netherlands) and characterize dose differences due to conversion of navigated MCO plans into deliverable multileaf collimator apertures. Step-and-shoot IMRT plans were created for 10 patients with localized prostate cancer using both standard optimization and MCO. Acceptable standard IMRT plans with minimal average rectal dose were chosen for comparison with deliverable MCO plans. The trade-off was, for the MCO plans, managedmore » through a user interface that permits continuous navigation between fluence-based plans. Navigated MCO plans were made deliverable at incremental steps along a trajectory between maximal target homogeneity and maximal rectal sparing. Dosimetric differences between navigated and deliverable MCO plans were also quantified. MCO plans, chosen as acceptable under navigated and deliverable conditions resulted in similar rectal sparing compared with standard optimization (33.7 ± 1.8 Gy vs 35.5 ± 4.2 Gy, p = 0.117). The dose differences between navigated and deliverable MCO plans increased as higher priority was placed on rectal avoidance. If the best possible deliverable MCO was chosen, a significant reduction in rectal dose was observed in comparison with standard optimization (30.6 ± 1.4 Gy vs 35.5 ± 4.2 Gy, p = 0.047). Improvements were, however, to some extent, at the expense of less conformal dose distributions, which resulted in significantly higher doses to the bladder for 2 of the 3 tolerance levels. In conclusion, similar IMRT plans can be created for patients with prostate cancer using MCO compared with standard optimization. Limitations exist within MCO regarding conversion of navigated plans to

  15. SU-F-T-296: Modulated Therapy Down Under: A Survey of IMRT & VMAT Physics Practice in Australia and New Zealand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, J; School of Physics, University of Sydney; Vial, P

    Purpose: A comprehensive survey of Australasian radiation oncology physics departments was undertaken to capture a snapshot of current usage, commissioning and QA practices for intensity-modulated therapies. Methods: An online survey was developed and advertised to Australian and New Zealand radiation oncology physicists through the local college (ACPSEM) in April 2015. The survey consisted of 147 questions in total, covering IMRT, VMAT and Tomotherapy, and details specific to different treatment planning systems. Questions captured detailed information on equipment, policies and procedures for the commissioning and QA of each treatment technique. Results: 41 partial or complete responses were collected, representing 59 departmentsmore » out of the 78 departments operational. 137 and 84 linacs from these departments were using IMRT and VMAT respectively, from a total 150 linacs. 100% and 78% of respondents were treating with IMRT and VMAT respectively. There are at least 8 different treatment planning systems being used for IMRT or VMAT, and large variations in all aspects of QA policies and procedures. 29 responses indicated 72 methods routinely used for pre-treatment QA, when breaking down by device and analysis type. Similar numbers of departments use field-by-field analysis compared to composite analysis (56% to 44%) while a majority use true gantry angle delivery compared to fixed gantry at 0° (72% to 28%). 19 different implementations of gamma index analysis parameters were reported from 33 responses. A follow-up one-day workshop to highlight the results, discuss the role of QA and share equipment-specific knowledge across users was conducted in November 2015. Conclusion: While IMRT and VMAT are almost universally available in Australasia, large variations in practice indicate a need for national or consensus guidelines.« less

  16. VMAT vs. 7-Field-IMRT: Assessing the Dosimetric Parameters of Prostate Cancer Treatment with a 292-Patient Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Robert W.; Duff, Michael, E-mail: mduff@cancercarewny.com; Catalfamo, Frank

    2011-01-01

    We compared normal tissue radiation dose for the treatment of prostate cancer using 2 different radiation therapy delivery methods: volumetric modulated arc therapy (VMAT) vs. fixed-field intensity-modulated radiation therapy (IMRT). Radiotherapy plans for 292 prostate cancer patients treated with VMAT to a total dose of 7740 cGy were analyzed retrospectively. Fixed-angle, 7-field IMRT plans were created using the same computed tomography datasets and contours. Radiation doses to the planning target volume (PTV) and organs at risk (bladder, rectum, penile bulb, and femoral heads) were measured, means were calculated for both treatment methods, and dose-volume comparisons were made with 2-tailed, pairedmore » t-tests. The mean dose to the bladder was lower with VMAT at all measured volumes: 5, 10, 15, 25, 35, and 50% (p < 0.05). The mean doses to 5 and 10% of the rectum, the high-dose regions, were lower with VMAT (p < 0.05). The mean dose to 15% of the rectal volume was not significantly different (p = 0.95). VMAT exposed larger rectal volumes (25, 35, and 50%) to more radiation than fixed-field IMRT (p < 0.05). Average mean dose to the penile bulb (p < 0.05) and mean dose to 10% of the femoral heads (p < 0.05) were lower with VMAT. VMAT therapy for prostate cancer has dosimetric advantages for critical structures, notably for high-dose regions compared with fixed-field IMRT, without compromising PTV coverage. This may translate into reduced acute and chronic toxicity.« less

  17. Cardiac function and perfusion dynamics measured on a beat-by-beat basis in the live mouse using ultra-fast 4D optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel

    2015-03-01

    The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.

  18. MRI-based IMRT planning for MR-linac: comparison between CT- and MRI-based plans for pancreatic and prostate cancers

    NASA Astrophysics Data System (ADS)

    Prior, Phil; Chen, Xinfeng; Botros, Maikel; Paulson, Eric S.; Lawton, Colleen; Erickson, Beth; Li, X. Allen

    2016-05-01

    The treatment planning in radiation therapy (RT) can be arranged to combine benefits of computed tomography (CT) and magnetic resonance imaging (MRI) together to maintain dose calculation accuracy and improved target delineation. Our aim is study the dosimetric impact of uniform relative electron density assignment on IMRT treatment planning with additional consideration given to the effect of a 1.5 T transverse magnetic field (TMF) in MR-Linac. A series of intensity modulated RT (IMRT) plans were generated for two representative tumor sites, pancreas and prostate, using CT and MRI datasets. Representative CT-based IMRT plans were generated to assess the impact of different electron density (ED) assignment on plan quality using CT without the presence of a 1.5 T TMF. The relative ED (rED) values used were taken from the ICRU report 46. Four types of rED assignment in the organs at risk (OARs), the planning target volumes (PTV) and in the non-specified tissue (NST) were considered. Dose was recalculated (no optimization) using a Monaco 5.09.07a research planning system employing Monte Carlo calculations with an option to include TMF. To investigate the dosimetric effect of different rED assignment, the dose-volume parameters (DVPs) obtained from these specific rED plans were compared to those obtained from the original plans based on CT. Overall, we found that uniform rED assignment results in differences in DVPs within 3% for the PTV and 5% for OAR. The presence of 1.5 T TMF on IMRT DVPs resulted in differences that were generally within 3% of the Gold St for both the pancreas and prostate. The combination of uniform rED assignment and TMF produced differences in DVPs that were within 4-5% of the Gold St. Larger differences in DVPs were observed for OARs on T2-based plans. The effects of using different rED assignments and the presence of 1.5 T TMF for pancreas and prostate IMRT plans are generally within 3% and 5% of PTV and OAR Gold St values. There are

  19. Dosimetric Predictors of Radiation-induced Acute Nausea and Vomiting in IMRT for Nasopharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Victor H.F., E-mail: vhflee@hku.hk; Ng, Sherry C.Y.; Leung, T.W.

    Purpose: We wanted to investigate dosimetric parameters that would predict radiation-induced acute nausea and vomiting in intensity-modulated radiation therapy (IMRT) for undifferentiated carcinoma of the nasopharynx (NPC). Methods and Materials: Forty-nine consecutive patients with newly diagnosed NPC were treated with IMRT alone in this prospective study. Patients receiving any form of chemotherapy were excluded. The dorsal vagal complex (DVC) as well as the left and right vestibules (VB-L and VB-R, respectively) were contoured on planning computed tomography images. A structure combining both the VB-L and the VB-R, named VB-T, was also generated. All structures were labeled organs at risk (OAR).more » A 3-mm three-dimensional margin was added to these structures and labeled DVC+3 mm, VB-L+3 mm, VB-R+3 mm, and VB-T+3 mm to account for physiological body motion and setup error. No weightings were given to these structures during optimization in treatment planning. Dosimetric parameters were recorded from dose-volume histograms. Statistical analysis of parameters' association with nausea and vomiting was performed using univariate and multivariate logistic regression. Results: Six patients (12.2%) reported Grade 1 nausea, and 8 patients (16.3%) reported Grade 2 nausea. Also, 4 patients (8.2%) complained of Grade 1 vomiting, and 4 patients (8.2%) experienced Grade 2 vomiting. No patients developed protracted nausea and vomiting after completion of IMRT. For radiation-induced acute nausea, V40 (percentage volume receiving at least 40Gy) to the VB-T and V40>=80% to the VB-T were predictors, using univariate analysis. On multivariate analysis, V40>=80% to the VB-T was the only predictor. There were no predictors of radiation-induced acute vomiting, as the number of events was too small for analysis. Conclusions: This is the first study demonstrating that a V40 to the VB-T is predictive of radiation-induced acute nausea. The vestibules should be labeled as sensitive

  20. TH-EF-204-04: Experience of IMRT and Other Conformal Techniques in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krylova, T.

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in

  1. TH-A-9A-02: BEST IN PHYSICS (THERAPY) - 4D IMRT Planning Using Highly- Parallelizable Particle Swarm Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modiri, A; Gu, X; Sawant, A

    2014-06-15

    Purpose: We present a particle swarm optimization (PSO)-based 4D IMRT planning technique designed for dynamic MLC tracking delivery to lung tumors. The key idea is to utilize the temporal dimension as an additional degree of freedom rather than a constraint in order to achieve improved sparing of organs at risk (OARs). Methods: The target and normal structures were manually contoured on each of the ten phases of a 4DCT scan acquired from a lung SBRT patient who exhibited 1.5cm tumor motion despite the use of abdominal compression. Corresponding ten IMRT plans were generated using the Eclipse treatment planning system. Thesemore » plans served as initial guess solutions for the PSO algorithm. Fluence weights were optimized over the entire solution space i.e., 10 phases × 12 beams × 166 control points. The size of the solution space motivated our choice of PSO, which is a highly parallelizable stochastic global optimization technique that is well-suited for such large problems. A summed fluence map was created using an in-house B-spline deformable image registration. Each plan was compared with a corresponding, internal target volume (ITV)-based IMRT plan. Results: The PSO 4D IMRT plan yielded comparable PTV coverage and significantly higher dose—sparing for parallel and serial OARs compared to the ITV-based plan. The dose-sparing achieved via PSO-4DIMRT was: lung Dmean = 28%; lung V20 = 90%; spinal cord Dmax = 23%; esophagus Dmax = 31%; heart Dmax = 51%; heart Dmean = 64%. Conclusion: Truly 4D IMRT that uses the temporal dimension as an additional degree of freedom can achieve significant dose sparing of serial and parallel OARs. Given the large solution space, PSO represents an attractive, parallelizable tool to achieve globally optimal solutions for such problems. This work was supported through funding from the National Institutes of Health and Varian Medical Systems. Amit Sawant has research funding from Varian Medical Systems, VisionRT Ltd. and Elekta.« less

  2. Rapid determination of caffeoylquinic acid derivatives in Cynara scolymus L. by ultra-fast liquid chromatography/tandem mass spectrometry based on a fused core C18 column.

    PubMed

    Shen, Qing; Dai, Zhiyuan; Lu, Yanbin

    2010-10-01

    An ultra-fast high-performance LC-ESI-MS/MS method was developed for the analysis and quantification of caffeoylquinic acid derivatives, including chlorogenic acid, 1,3-di-O-caffeoylquinic acid (cynarin) and 1,5-di-O-caffeoylquinic acid, in artichoke (Cynara scolymus L.) heads and leaves. The rapid separation (less than 4  min) was achieved based on a Halo fused core C18-silica column (50  mm × 2.1  mm id, 2.7  μm). The target compounds were detected and quantified by a triple-quadrupole mass spectrometer in multiple-reaction monitoring mode. The calibration function is linear from 0.06 to 2800  ng/mL for chlorogenic acid, 0.3-3000  ng/mL for cynarin and 0.24-4800  ng/mL for 1,5-di-O-caffeoylquinic acid, respectively. The average recoveries ranged from 92.1 to 113.2% with RSDs ≤6.5%. Moreover, four batches of artichoke head and leaf extracts were analyzed using the established method. The results indicated that the Halo fused core column provided much faster separations and higher sample throughput without sacrificing column ruggedness and reliability, and triple-quadrupole MS provided extraordinarily lower LOQs for most of the target analytes. Comparing to conventional quantitative approaches, the established method was fast, sensitive and reliable for the determination of caffeoylquinic acid derivatives in artichoke.

  3. Impact of Salivary Gland Dosimetry on Post-IMRT Recovery of Saliva Output and Xerostomia Grade for Head-and-Neck Cancer Patients Treated With or Without Contralateral Submandibular Gland Sparing: A Longitudinal Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Zhonghe; Yan Chao; Zhang Zhiyuan

    Purpose: To observe the recovery of saliva output and effect on xerostomia grade after intensity-modulated radiotherapy (IMRT) with or without contralateral submandibular gland (cSMG) sparing and to assess the impact of salivary gland dosimetry on this recovery among patients with head-and-neck cancer. Methods and Materials: Between May 2007 and May 2008, 52 patients with head-and-neck cancer received definitive (n = 5 patients) and postoperative (n = 47 patients) IMRT at our institution, with at least one parotid gland spared. Of these patients, 26 patients with a low risk of recurrence in the cSMG region underwent IMRT and had their cSMGsmore » spared (cSMG-sparing group). The remaining 26 high-risk patients had no cSMGs spared (cSMG-unspared group). Xerostomia grades and salivary flow rates were monitored at five time points (before IMRT and at 2, 6, 12, and 18 months after IMRT). Results: Average mean doses and mean volumes receiving 30 Gy (V30) of the cSMGs were lower in the cSMG-sparing group than in the cSMG-unspared group (mean dose, 20.4 Gy vs. 57.4 Gy; mean V30, 14.7% vs. 99.8%, respectively). Xerostomia grades at 2 and 6 months post-IMRT were also significantly lower among patients in the cSMG-sparing group than in the cSMG-unspared group, but differences were not significant at 12 and 18 months after IMRT. Patients in the cSMG-sparing group had significantly better mean unstimulated salivary flow rates at each time point post- IMRT as well as better mean stimulated salivary flow rates at 2 months post-IMRT. Conclusions: Recovery of saliva output and grade of xerostomia post-IMRT in patients whose cSMGs were spared were much better than in patients whose cSMGs were not spared. The influence of the mean doses to the cSMG and parotid gland on the recovery of saliva output was equivalent to that of the mean V30 to the glands.« less

  4. Discovery of Ultra-fast Outflows in a Sample of Broad-line Radio Galaxies Observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Ballo, L.; Gofford, J.; Cappi, M.; Mushotzky, R. F.

    2010-08-01

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ~= 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ~= 4-5.6 erg s-1 cm and column densities of N H ~= 1022-1023 cm-2. These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ~0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  5. Examination of the properties of IMRT and VMAT beams and evaluation against pre-treatment quality assurance results

    NASA Astrophysics Data System (ADS)

    Crowe, S. B.; Kairn, T.; Middlebrook, N.; Sutherland, B.; Hill, B.; Kenny, J.; Langton, C. M.; Trapp, J. V.

    2015-03-01

    This study aimed to provide a detailed evaluation and comparison of a range of modulated beam evaluation metrics, in terms of their correlation with QA testing results and their variation between treatment sites, for a large number of treatments. Ten metrics including the modulation index (MI), fluence map complexity, modulation complexity score (MCS), mean aperture displacement (MAD) and small aperture score (SAS) were evaluated for 546 beams from 122 intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) treatment plans targeting the anus, rectum, endometrium, brain, head and neck and prostate. The calculated sets of metrics were evaluated in terms of their relationships to each other and their correlation with the results of electronic portal imaging based quality assurance (QA) evaluations of the treatment beams. Evaluation of the MI, MAD and SAS suggested that beams used in treatments of the anus, rectum, head and neck were more complex than the prostate and brain treatment beams. Seven of the ten beam complexity metrics were found to be strongly correlated with the results from QA testing of the IMRT beams (p < 0.00008). For example, values of SAS (with multileaf collimator apertures narrower than 10 mm defined as ‘small’) less than 0.2 also identified QA passing IMRT beams with 100% specificity. However, few of the metrics are correlated with the results from QA testing of the VMAT beams, whether they were evaluated as whole 360° arcs or as 60° sub-arcs. Select evaluation of beam complexity metrics (at least MI, MCS and SAS) is therefore recommended, as an intermediate step in the IMRT QA chain. Such evaluation may also be useful as a means of periodically reviewing VMAT planning or optimiser performance.

  6. Phase II Study of Long-Term Androgen Suppression With Bevacizumab and Intensity-Modulated Radiation Therapy (IMRT) in High-Risk Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuky, Jacqueline, E-mail: vukyja@ohsu.edu; Pham, Huong T.; Warren, Sarah

    Purpose: We report a Phase II trial assessing the acute and late toxicities of intensity-modulated radiation therapy (IMRT), long-term androgen suppression (LTAS), and bevacizumab in patients with high-risk localized prostate cancer. Methods and Materials: We treated 18 patients with LTAS with bicalutamide and goserelin in combination with bevacizumab and IMRT. Bevacizumab (10 mg/kg every 2 weeks) was administered for the first 16 weeks, and 15 mg/kg was then given every 3 weeks for 12 additional weeks, with an IMRT dose of 77.9 Gy to the prostate, 64.6 Gy to the seminal vesicles, and 57 Gy to the pelvic lymph nodes.more » Patients were eligible if they had clinical stage T2b to T4, a Gleason sum score of 8 to 10, or a prostate- specific antigen level of 20ng/mL or greater. The primary endpoint of the study was evaluation of acute and late toxicities. Results: The median age was 69 years, with a median pretreatment prostate-specific antigen level of 12.5 ng/mL and Gleason score of 8. The pretreatment clinical stage was T1c in 4 patients, T2 in 11, and T3 in 3. All patients completed IMRT with median follow-up of 34 months (range, 28-40 months) The most common Grade 2 or higher toxicities were hypertension (61% of patients with Grade 2 and 11% with Grade 3), proteinuria (28% with Grade 2 and 6% with Grade 3), and leucopenia (28% with Grade 2). No Grade 4 or higher acute toxicities were reported. Late toxicities included proctitis (6% of patients with Grade 2 and 11% with Grade 3), rectal bleeding (6% with Grade 2 and 11% with Grade 3), hematuria (6% with Grade 2), proteinuria (17% with Grade 2), hyponatremia (6% with Grade 3), cystitis (6% with Grade 3), and urinary retention (6% with Grade 2 and 11% with Grade 3). Grade 4 prostatitis occurred in 1 patient (6%). Conclusions: Bevacizumab does not appear to exacerbate the acute effects of IMRT. Late toxicities may have been worsened with this regimen. Further investigations of bevacizumab with LTAS and IMRT should

  7. Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance.

    PubMed

    Narayanasamy, Ganesh; Zalman, Travis; Ha, Chul S; Papanikolaou, Niko; Stathakis, Sotirios

    2015-05-08

    The purpose of this study is to evaluate the use of the Dosimetry Check system for patient-specific IMRT QA. Typical QA methods measure the dose in an array dosimeter surrounded by homogenous medium for which the treatment plan has been recomputed. With the Dosimetry Check system, fluence measurements acquired on a portal dosimeter is applied to the patient's CT scans. Instead of making dose comparisons in a plane, Dosimetry Check system produces isodose lines and dose-volume histograms based on the planning CT images. By exporting the dose distribution from the treatment planning system into the Dosimetry Check system, one is able to make a direct comparison between the calculated dose and the planned dose. The versatility of the software is evaluated with respect to the two IMRT techniques - step and shoot and volumetric arc therapy. The system analyzed measurements made using EPID, PTW seven29, and IBA MatriXX, and an intercomparison study was performed. Plans from patients previously treated at our institution with treated anatomical site on brain, head & neck, liver, lung, and prostate were analyzed using Dosimetry Check system for any anatomical site dependence. We have recommendations and possible precautions that may be necessary to ensure proper QA with the Dosimetry Check system.

  8. Fast-response LCDs for virtual reality applications

    NASA Astrophysics Data System (ADS)

    Chen, Haiwei; Peng, Fenglin; Gou, Fangwang; Wand, Michael; Wu, Shin-Tson

    2017-02-01

    We demonstrate a fast-response liquid crystal display (LCD) with an ultra-low-viscosity nematic LC mixture. The measured average motion picture response time is only 6.88 ms, which is comparable to 6.66 ms for an OLED at a 120 Hz frame rate. If we slightly increase the TFT frame rate and/or reduce the backlight duty ratio, image blurs can be further suppressed to unnoticeable level. Potential applications of such an image-blur-free LCD for virtual reality, gaming monitors, and TVs are foreseeable.

  9. Sensitivity of an Elekta iView GT a-Si EPID model to delivery errors for pre-treatment verification of IMRT fields.

    PubMed

    Herwiningsih, Sri; Hanlon, Peta; Fielding, Andrew

    2014-12-01

    A Monte Carlo model of an Elekta iViewGT amorphous silicon electronic portal imaging device (a-Si EPID) has been validated for pre-treatment verification of clinical IMRT treatment plans. The simulations involved the use of the BEAMnrc and DOSXYZnrc Monte Carlo codes to predict the response of the iViewGT a-Si EPID model. The predicted EPID images were compared to the measured images obtained from the experiment. The measured EPID images were obtained by delivering a photon beam from an Elekta Synergy linac to the Elekta iViewGT a-Si EPID. The a-Si EPID was used with no additional build-up material. Frame averaged EPID images were acquired and processed using in-house software. The agreement between the predicted and measured images was analyzed using the gamma analysis technique with acceptance criteria of 3 %/3 mm. The results show that the predicted EPID images for four clinical IMRT treatment plans have a good agreement with the measured EPID signal. Three prostate IMRT plans were found to have an average gamma pass rate of more than 95.0 % and a spinal IMRT plan has the average gamma pass rate of 94.3 %. During the period of performing this work a routine MLC calibration was performed and one of the IMRT treatments re-measured with the EPID. A change in the gamma pass rate for one field was observed. This was the motivation for a series of experiments to investigate the sensitivity of the method by introducing delivery errors, MLC position and dosimetric overshoot, into the simulated EPID images. The method was found to be sensitive to 1 mm leaf position errors and 10 % overshoot errors.

  10. Optimal field-splitting algorithm in intensity-modulated radiotherapy: Evaluations using head-and-neck and female pelvic IMRT cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Xin; Kim, Yusung, E-mail: yusung-kim@uiowa.edu; Bayouth, John E.

    2013-04-01

    To develop an optimal field-splitting algorithm of minimal complexity and verify the algorithm using head-and-neck (H and N) and female pelvic intensity-modulated radiotherapy (IMRT) cases. An optimal field-splitting algorithm was developed in which a large intensity map (IM) was split into multiple sub-IMs (≥2). The algorithm reduced the total complexity by minimizing the monitor units (MU) delivered and segment number of each sub-IM. The algorithm was verified through comparison studies with the algorithm as used in a commercial treatment planning system. Seven IMRT, H and N, and female pelvic cancer cases (54 IMs) were analyzed by MU, segment numbers, andmore » dose distributions. The optimal field-splitting algorithm was found to reduce both total MU and the total number of segments. We found on average a 7.9 ± 11.8% and 9.6 ± 18.2% reduction in MU and segment numbers for H and N IMRT cases with an 11.9 ± 17.4% and 11.1 ± 13.7% reduction for female pelvic cases. The overall percent (absolute) reduction in the numbers of MU and segments were found to be on average −9.7 ± 14.6% (−15 ± 25 MU) and −10.3 ± 16.3% (−3 ± 5), respectively. In addition, all dose distributions from the optimal field-splitting method showed improved dose distributions. The optimal field-splitting algorithm shows considerable improvements in both total MU and total segment number. The algorithm is expected to be beneficial for the radiotherapy treatment of large-field IMRT.« less

  11. SU-E-T-430: Modeling MLC Leaf End in 2D for Sliding Window IMRT and Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, X; Zhu, T

    2014-06-01

    Purpose: To develop a 2D geometric model for MLC accounting for leaf end dose leakage for dynamic IMRT and Rapidarc therapy. Methods: Leaf-end dose leakage is one of the problems for MLC dose calculation and modeling. Dosimetric leaf gap used to model the MLC and to count for leakage in dose calculation, but may not be accurate for smaller leaf gaps. We propose another geometric modeling method to compensate for the MLC round-shape leaf ends dose leakage, and improve the accuracy of dose calculation and dose verification. A triangular function is used to geometrically model the MLC leaf end leakagemore » in the leaf motion direction, and a step function is used in the perpendicular direction. Dose measurements with different leaf gap, different window width, and different window height were conducted, and the results were used to fit the analytical model to get the model parameters. Results: Analytical models have been obtained for stop-and-shoot and dynamic modes for MLC motion. Parameters a=0.4, lw'=5.0 mm for 6X and a=0.54, lw'=4.1 mm for 15x were obtained from the fitting process. The proposed MLC leaf end model improves the dose profile at the two ends of the sliding window opening. This improvement is especially significant for smaller sliding window openings, which are commonly used for highly modulated IMRT plans and arc therapy plans. Conclusion: This work models the MLC round leaf end shape and movement pattern for IMRT dose calculation. The theory, as well as the results in this work provides a useful tool for photon beam IMRT dose calculation and verification.« less

  12. A versatile, stability-indicating and high-throughput ultra-fast liquid chromatography method for the determination of isoflavone aglycones in soybeans, topical formulations, and permeation assays.

    PubMed

    Nemitz, Marina C; Yatsu, Francini K J; Bidone, Juliana; Koester, Letícia S; Bassani, Valquiria L; Garcia, Cássia V; Mendez, Andreas S L; von Poser, Gilsane L; Teixeira, Helder F

    2015-03-01

    There is a growing interest in the pharmaceutical field concerning isoflavones topical delivery systems, especially with regard to their skin care properties and antiherpetic activity. In this context, the present work describes an ultra-fast liquid chromatography method (UFLC) for determining daidzein, glycitein, and genistein in different matrices during the development of topical systems containing isoflavone aglycones (IA) obtained from soybeans. The method showed to be specific, precise, accurate, and linear (0.1 to 5 µg mL(-1)) for IA determination in soybean acid extract, IA-rich fraction obtained after the purification process, IA loaded-nanoemulsions, and topical hydrogel, as well as for permeation/retention assays in porcine skin and porcine esophageal mucosa. The matrix effect was determined for all complex matrices, demonstrating low effect during the analysis. The stability indicating UFLC method was verified by submitting IA to acidic, alkaline, oxidative, and thermal stress conditions, and no interference of degradation products was detected during analysis. Mass spectrometry was performed to show the main compounds produced after acid hydrolysis of soybeans, as well as suggest the main degradation products formed after stress conditions. Besides the IA, hydroxymethylfurfural and ethoxymethylfurfural were produced and identified after acid hydrolysis of the soybean extract and well separated by the UFLC method. The method's robustness was confirmed using the Plackett-Burman experimental design. Therefore, the new method affords fast IA analysis during routine processes, extract purification, products development, and bioanalytical assays. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Phase I study of icotinib, an EGFR tyrosine kinase inhibitor combined with IMRT in nasopharyngeal carcinoma.

    PubMed

    Hu, Wei; Wang, Wei; Yang, Peinong; Zhou, Chao; Yang, Weifang; Wu, Bo; Lu, Hongsheng; Yang, Haihua

    2015-01-01

    Epidermal growth factor receptor (EGFR) is a new target for nasopharyngeal carcinoma (NPC) therapy. This prospective phase I study sought to determine the safety and recommended phase II dose of icotinib, a novel highly selective oral EGFR tyrosine kinase inhibitor, in combination with intensity-modulated radiotherapy (IMRT) in patients with NPC. Eligible patients with NPC received escalating doses of icotinib during IMRT. We treated six patients at a particular dose level until the maximum tolerated dose (MTD) was determined. The starting dose was 125 mg, once-daily and the dose was escalated to another level 125 mg, twice- and thrice- daily, until dose-limiting toxicity (DLT) occurred in two or more patients at a dose level. Expression and mutation analysis of EGFR were performed in all cases. A total of twelve patients were enrolled. Three patients experienced DLT (250 mg/day cohort) and MTD was 125 mg/day. Mucositis toxicity appears to be the major DLT. While EGFR expression in tumor tissue was detected in 75% (9/12) patients, EGFR mutation was detected in 16.67% (1/6) patients in 125 mg/day cohort, and 50% (3/6) in 250 mg/day cohort. The combination of icotinib (125 mg/day) and IMRT in patients with locally NPC had an acceptable safety profile and was well tolerated.

  14. A Prospective Trial of Intensity Modulated Radiation Therapy (IMRT) Incorporating a Simultaneous Integrated Boost for Prostate Cancer: Long-term Outcomes Compared With Standard Image Guided IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schild, Michael H.; Schild, Steven E., E-mail: sschild@mayo.edu; Wong, William W.

    Purpose: This report describes the long-term outcomes of a prospective trial of intensity modulated radiation therapy (IMRT), integrating a {sup 111}In capromab pendetide (ProstaScint) scan-directed simultaneous integrated boost (SIB) for localized prostate cancer. Methods and Materials: Seventy-one patients with T1N0M0 to T4N0M0 prostate cancer were enrolled, and their ProstaScint and pelvic computed tomography scans were coregistered for treatment planning. The entire prostate received 75.6 Gy in 42 fractions with IMRT, whereas regions of increased uptake on ProstaScint scans received 82 Gy as an SIB. Patients with intermediate- and high-risk disease also received 6 months and 12 months of adjuvant hormonal therapy, respectively. Results: The studymore » enrolled 31 low-, 30 intermediate-, and 10 high-risk patients. The median follow-up was 120 months (range, 24-150 months). The 10-year biochemical control rates were 85% for the entire cohort and 84%, 84%, and 90% for patients with low-, intermediate-, and high-risk disease, respectively. The 10-year survival rate of the entire cohort was 69%. Pretreatment prostate-specific antigen level >10 ng/mL and boost volume of >10% of the prostate volume were significantly associated with poorer biochemical control and survival. The outcomes were compared with those of a cohort of 302 patients treated similarly but without the SIB and followed up for a median of 91 months (range, 6-138 months). The 5- and 10-year biochemical control rates were 86% and 61%, respectively, in patients without the SIB compared with 94% and 85%, respectively, in patients in this trial who received the SIB (P=.02). The cohort that received an SIB did not have increased toxicity. Conclusions: The described IMRT strategy, integrating multiple imaging modalities to administer 75.6 Gy to the entire prostate with a boost dose of 82 Gy, was feasible. The addition of the SIB was associated with greater biochemical control but not toxicity

  15. The dosimetric effects of tissue heterogeneities in intensity-modulated radiation therapy (IMRT) of the head and neck

    NASA Astrophysics Data System (ADS)

    Al-Hallaq, H. A.; Reft, C. S.; Roeske, J. C.

    2006-03-01

    The dosimetric effects of bone and air heterogeneities in head and neck IMRT treatments were quantified. An anthropomorphic RANDO phantom was CT-scanned with 16 thermoluminescent dosimeter (TLD) chips placed in and around the target volume. A standard IMRT plan generated with CORVUS was used to irradiate the phantom five times. On average, measured dose was 5.1% higher than calculated dose. Measurements were higher by 7.1% near the heterogeneities and by 2.6% in tissue. The dose difference between measurement and calculation was outside the 95% measurement confidence interval for six TLDs. Using CORVUS' heterogeneity correction algorithm, the average difference between measured and calculated doses decreased by 1.8% near the heterogeneities and by 0.7% in tissue. Furthermore, dose differences lying outside the 95% confidence interval were eliminated for five of the six TLDs. TLD doses recalculated by Pinnacle3's convolution/superposition algorithm were consistently higher than CORVUS doses, a trend that matched our measured results. These results indicate that the dosimetric effects of air cavities are larger than those of bone heterogeneities, thereby leading to a higher delivered dose compared to CORVUS calculations. More sophisticated algorithms such as convolution/superposition or Monte Carlo should be used for accurate tailoring of IMRT dose in head and neck tumours.

  16. Quantifying the interplay effect in prostate IMRT delivery using a convolution-based method.

    PubMed

    Li, Haisen S; Chetty, Indrin J; Solberg, Timothy D

    2008-05-01

    The authors present a segment-based convolution method to account for the interplay effect between intrafraction organ motion and the multileaf collimator position for each particular segment in intensity modulated radiation therapy (IMRT) delivered in a step-and-shoot manner. In this method, the static dose distribution attributed to each segment is convolved with the probability density function (PDF) of motion during delivery of the segment, whereas in the conventional convolution method ("average-based convolution"), the static dose distribution is convolved with the PDF averaged over an entire fraction, an entire treatment course, or even an entire patient population. In the case of IMRT delivered in a step-and-shoot manner, the average-based convolution method assumes that in each segment the target volume experiences the same motion pattern (PDF) as that of population. In the segment-based convolution method, the dose during each segment is calculated by convolving the static dose with the motion PDF specific to that segment, allowing both intrafraction motion and the interplay effect to be accounted for in the dose calculation. Intrafraction prostate motion data from a population of 35 patients tracked using the Calypso system (Calypso Medical Technologies, Inc., Seattle, WA) was used to generate motion PDFs. These were then convolved with dose distributions from clinical prostate IMRT plans. For a single segment with a small number of monitor units, the interplay effect introduced errors of up to 25.9% in the mean CTV dose compared against the planned dose evaluated by using the PDF of the entire fraction. In contrast, the interplay effect reduced the minimum CTV dose by 4.4%, and the CTV generalized equivalent uniform dose by 1.3%, in single fraction plans. For entire treatment courses delivered in either a hypofractionated (five fractions) or conventional (> 30 fractions) regimen, the discrepancy in total dose due to interplay effect was negligible.

  17. Generation of a novel phase-space-based cylindrical dose kernel for IMRT optimization.

    PubMed

    Zhong, Hualiang; Chetty, Indrin J

    2012-05-01

    Improving dose calculation accuracy is crucial in intensity-modulated radiation therapy (IMRT). We have developed a method for generating a phase-space-based dose kernel for IMRT planning of lung cancer patients. Particle transport in the linear accelerator treatment head of a 21EX, 6 MV photon beam (Varian Medical Systems, Palo Alto, CA) was simulated using the EGSnrc/BEAMnrc code system. The phase space information was recorded under the secondary jaws. Each particle in the phase space file was associated with a beamlet whose index was calculated and saved in the particle's LATCH variable. The DOSXYZnrc code was modified to accumulate the energy deposited by each particle based on its beamlet index. Furthermore, the central axis of each beamlet was calculated from the orientation of all the particles in this beamlet. A cylinder was then defined around the central axis so that only the energy deposited within the cylinder was counted. A look-up table was established for each cylinder during the tallying process. The efficiency and accuracy of the cylindrical beamlet energy deposition approach was evaluated using a treatment plan developed on a simulated lung phantom. Profile and percentage depth doses computed in a water phantom for an open, square field size were within 1.5% of measurements. Dose optimized with the cylindrical dose kernel was found to be within 0.6% of that computed with the nontruncated 3D kernel. The cylindrical truncation reduced optimization time by approximately 80%. A method for generating a phase-space-based dose kernel, using a truncated cylinder for scoring dose, in beamlet-based optimization of lung treatment planning was developed and found to be in good agreement with the standard, nontruncated scoring approach. Compared to previous techniques, our method significantly reduces computational time and memory requirements, which may be useful for Monte-Carlo-based 4D IMRT or IMAT treatment planning.

  18. Ultra-fast Movies of the Sky

    NASA Astrophysics Data System (ADS)

    2005-06-01

    British scientists have opened a new window on the Universe with the recent commissioning of the Visitor Instrument ULTRACAM on the European Southern Observatory's (ESO) Very Large Telescope (VLT) in Chile. ULTRACAM is an ultra fast camera capable of capturing some of the most rapid astronomical events. It can take up to 500 pictures a second in three different colours simultaneously. It has been designed and built by scientists from the Universities of Sheffield and Warwick (United Kingdom), in collaboration with the UK Astronomy Technology Centre in Edinburgh. ULTRACAM employs the latest in charged coupled device (CCD) detector technology in order to take, store and analyse data at the required sensitivities and speeds. CCD detectors can be found in digital cameras and camcorders, but the devices used in ULTRACAM are special because they are larger, faster and most importantly, much more sensitive to light than the detectors used in today's consumer electronics products. In May 2002, the instrument saw "first light" on the 4.2-m William Herschel Telescope (WHT) on La Palma. Since then the instrument has been awarded a total of 75 nights of time on the WHT to study any object in the Universe which eclipses, transits, occults, flickers, flares, pulsates, oscillates, outbursts or explodes. These observations have produced a bonanza of new and exciting results, leading to already 11 scientific publications published or in press. To study the very faintest stars at the very highest speeds, however, it is necessary to use the largest telescopes. Thus, work began 2 years ago preparing ULTRACAM for use on the VLT. "Astronomers using the VLT now have an instrument specifically designed for the study of high-speed phenomena", said Vik Dhillon, from the University of Sheffield (UK) and the ULTRACAM project scientist. "Using ULTRACAM in conjunction with the current generation of large telescopes makes it now possible to study high-speed celestial phenomena such as eclipses

  19. SU-E-T-618: Dosimetric Comparison of Manual and Beam Angle Optimization of Gantry Angles in IMRT for Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, X; Sun, T; Liu, T

    2014-06-01

    Purpose: To evaluate the dosimetric characteristics of intensity-modulated radiotherapy (IMRT) treatment plan with beam angle optimization. Methods: Ten post-operation patients with cervical cancer were included in this analysis. Two IMRT plans using seven beams were designed in each patient. A standard coplanar equi-space beam angles were used in the first plan (plan 1), whereas the selection of beam angle was optimized by beam angle optimization algorithm in Varian Eclipse treatment planning system for the same number of beams in the second plan (plan 2). Two plans were designed for each patient with the same dose-volume constraints and prescription dose. Allmore » plans were normalized to the mean dose to PTV. The dose distribution in the target, the dose to the organs at risk and total MU were compared. Results: For conformity and homogeneity in PTV, no statistically differences were observed in the two plans. For the mean dose in bladder, plan 2 were significantly lower than plan 1(p<0.05). No statistically significant differences were observed between two plans for the mean doses in rectum, left and right femur heads. Compared with plan1, the average monitor units reduced 16% in plan 2. Conclusion: The IMRT plan based on beam angle optimization for cervical cancer could reduce the dose delivered to bladder and also reduce MU. Therefore there were some dosimetric advantages in the IMRT plan with beam angle optimization for cervical cancer.« less

  20. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    PubMed

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  1. AOM optimization with ultra stable high power CO2 lasers for fast laser engraving

    NASA Astrophysics Data System (ADS)

    Bohrer, Markus

    2015-05-01

    A new ultra stable CO2 laser in carbon fibre resonator technology with an average power of more than 600W has been developed especially as basis for the use with AOMs. Stability of linear polarisation and beam pointing stability are important issues as well as appropriate shaping of the incident beam. AOMs are tested close to the laser-induced damage threshold with pulses on demand close to one megahertz. Transversal and rotational optimization of the AOMs benefits from the parallel-kinematic principle of a hexapod used for this research.

  2. Enhanced hole boring with two-color relativistic laser pulses in the fast ignition scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Changhai; Tian, Ye; Li, Wentao

    A scheme of using two-color laser pulses for hole boring into overdense plasma as well as energy transfer into electron and ion beams has been studied using particle-in-cell simulations. Following an ultra-short ultra-intense hole-boring laser pulse with a short central wavelength in extreme ultra-violet range, the main infrared driving laser pulse can be guided in the hollow channel preformed by the former laser and propagate much deeper into an overdense plasma, as compared to the case using the infrared laser only. In addition to efficiently transferring the main driving laser energy into energetic electrons and ions generation deep inside themore » overdense plasma, the ion beam divergence can be greatly reduced. The results might be beneficial for the fast ignition concept of inertial confinement fusion.« less

  3. The sensitivity of patient specific IMRT QC to systematic MLC leaf bank offset errors.

    PubMed

    Rangel, Alejandra; Palte, Gesa; Dunscombe, Peter

    2010-07-01

    Patient specific IMRT QC is performed routinely in many clinics as a safeguard against errors and inaccuracies which may be introduced during the complex planning, data transfer, and delivery phases of this type of treatment. The purpose of this work is to evaluate the feasibility of detecting systematic errors in MLC leaf bank position with patient specific checks. 9 head and neck (H&N) and 14 prostate IMRT beams were delivered using MLC files containing systematic offsets (+/- 1 mm in two banks, +/- 0.5 mm in two banks, and 1 mm in one bank of leaves). The beams were measured using both MAPCHECK (Sun Nuclear Corp., Melbourne, FL) and the aS1000 electronic portal imaging device (Varian Medical Systems, Palo Alto, CA). Comparisons with calculated fields, without offsets, were made using commonly adopted criteria including absolute dose (AD) difference, relative dose difference, distance to agreement (DTA), and the gamma index. The criteria most sensitive to systematic leaf bank offsets were the 3% AD, 3 mm DTA for MAPCHECK and the gamma index with 2% AD and 2 mm DTA for the EPID. The criterion based on the relative dose measurements was the least sensitive to MLC offsets. More highly modulated fields, i.e., H&N, showed greater changes in the percentage of passing points due to systematic MLC inaccuracy than prostate fields. None of the techniques or criteria tested is sufficiently sensitive, with the population of IMRT fields, to detect a systematic MLC offset at a clinically significant level on an individual field. Patient specific QC cannot, therefore, substitute for routine QC of the MLC itself.

  4. SU-F-T-271: Comparing IMRT QA Pass Rates Before and After MLC Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazza, A; Perrin, D; Fontenot, J

    Purpose: To compare IMRT QA pass rates before and after an in-house MLC leaf calibration procedure. Methods: The MLC leaves and backup jaws on four Elekta linear accelerators with MLCi2 heads were calibrated using the EPID-based RIT Hancock Test as the means for evaluation. The MLCs were considered to be successfully calibrated when they could pass the Hancock Test with criteria of 1 mm jaw position tolerance, and 1 mm leaf position tolerance. IMRT QA results were collected pre- and postcalibration and analyzed using gamma analysis with 3%/3mm DTA criteria. AAPM TG-119 test plans were also compared pre- and post-calibration,more » at both 2%/2mm DTA and 3%/3mm DTA. Results: A weighted average was performed on the results for all four linear accelerators. The pre-calibration IMRT QA pass rate was 98.3 ± 0.1%, compared with the post-calibration pass rate of 98.5 ± 0.1%. The TG-119 test plan results showed more of an improvement, particularly at the 2%/2mm criteria. The averaged results were 89.1% pre and 96.1% post for the C-shape plan, 94.8% pre and 97.1% post for the multi-target plan, 98.6% pre and 99.7% post for the prostate plan, 94.7% pre and 94.8% post for the head/neck plan. Conclusion: The patient QA results did not show statistically significant improvement at the 3%/3mm DTA criteria after the MLC calibration procedure. However, the TG-119 test cases did show significant improvement at the 2%/2mm level.« less

  5. IMRT for Sinonasal Tumors Minimizes Severe Late Ocular Toxicity and Preserves Disease Control and Survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duprez, Frederic, E-mail: frederic.duprez@ugent.be; Madani, Indira; Morbee, Lieve

    2012-05-01

    Purpose: To report late ocular (primary endpoint) and other toxicity, disease control, and survival (secondary endpoints) after intensity-modulated radiotherapy (IMRT) for sinonasal tumors. Methods and Materials: Between 1998 and 2009, 130 patients with nonmetastatic sinonasal tumors were treated with IMRT at Ghent University Hospital. Prescription doses were 70 Gy (n = 117) and 60-66 Gy (n = 13) at 2 Gy per fraction over 6-7 weeks. Most patients had adenocarcinoma (n = 82) and squamous cell carcinoma (n = 23). One hundred and one (101) patients were treated postoperatively. Of 17 patients with recurrent tumors, 9 were reirradiated. T-stages weremore » T1-2 (n = 39), T3 (n = 21), T4a (n = 38), and T4b (n = 22). Esthesioneuroblastoma was staged as Kadish A, B, and C in 1, 3, and 6 cases, respectively. Results: Median follow-up was 52, range 15-121 months. There was no radiation-induced blindness in 86 patients available for late toxicity assessment ({>=}6 month follow-up). We observed late Grade 3 tearing in 10 patients, which reduced to Grade 1-2 in 5 patients and Grade 3 visual impairment because of radiation-induced ipsilateral retinopathy and neovascular glaucoma in 1 patient. There was no severe dry eye syndrome. The worst grade of late ocular toxicity was Grade 3 (n = 11), Grade 2 (n = 31), Grade 1 (n = 33), and Grade 0 (n = 11). Brain necrosis and osteoradionecrosis occurred in 6 and 1 patients, respectively. Actuarial 5-year local control and overall survival were 59% and 52%, respectively. On multivariate analysis local control was negatively affected by cribriform plate and brain invasion (p = 0.044 and 0.029, respectively) and absence of surgery (p = 0.009); overall survival was negatively affected by cribriform plate and orbit invasion (p = 0.04 and <0.001, respectively) and absence of surgery (p = 0.001). Conclusions: IMRT for sinonasal tumors allowed delivering high doses to targets at minimized ocular toxicity, while maintaining disease control and

  6. SU-E-T-278: Realization of Dose Verification Tool for IMRT Plan Based On DPM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Jinfeng; Cao, Ruifen; Dai, Yumei

    Purpose: To build a Monte Carlo dose verification tool for IMRT Plan by implementing a irradiation source model into DPM code. Extend the ability of DPM to calculate any incident angles and irregular-inhomogeneous fields. Methods: With the virtual source and the energy spectrum which unfolded from the accelerator measurement data,combined with optimized intensity maps to calculate the dose distribution of the irradiation irregular-inhomogeneous field. The irradiation source model of accelerator was substituted by a grid-based surface source. The contour and the intensity distribution of the surface source were optimized by ARTS (Accurate/Advanced Radiotherapy System) optimization module based on the tumormore » configuration. The weight of the emitter was decided by the grid intensity. The direction of the emitter was decided by the combination of the virtual source and the emitter emitting position. The photon energy spectrum unfolded from the accelerator measurement data was adjusted by compensating the contaminated electron source. For verification, measured data and realistic clinical IMRT plan were compared with DPM dose calculation. Results: The regular field was verified by comparing with the measured data. It was illustrated that the differences were acceptable (<2% inside the field, 2–3mm in the penumbra). The dose calculation of irregular field by DPM simulation was also compared with that of FSPB (Finite Size Pencil Beam) and the passing rate of gamma analysis was 95.1% for peripheral lung cancer. The regular field and the irregular rotational field were all within the range of permitting error. The computing time of regular fields were less than 2h, and the test of peripheral lung cancer was 160min. Through parallel processing, the adapted DPM could complete the calculation of IMRT plan within half an hour. Conclusion: The adapted parallelized DPM code with irradiation source model is faster than classic Monte Carlo codes. Its computational accuracy

  7. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, Drew Pitney

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets whenmore » intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at

  8. Hybrid adaptive radiotherapy with on-line MRI in cervix cancer IMRT.

    PubMed

    Oh, Seungjong; Stewart, James; Moseley, Joanne; Kelly, Valerie; Lim, Karen; Xie, Jason; Fyles, Anthony; Brock, Kristy K; Lundin, Anna; Rehbinder, Henrik; Milosevic, Michael; Jaffray, David; Cho, Young-Bin

    2014-02-01

    Substantial organ motion and tumor shrinkage occur during radiotherapy for cervix cancer. IMRT planning studies have shown that the quality of radiation delivery is influenced by these anatomical changes, therefore the adaptation of treatment plans may be warranted. Image guidance with off-line replanning, i.e. hybrid-adaptation, is recognized as one of the most practical adaptation strategies. In this study, we investigated the effects of soft tissue image guidance using on-line MR while varying the frequency of off-line replanning on the adaptation of cervix IMRT. 33 cervical cancer patients underwent planning and weekly pelvic MRI scans during radiotherapy. 5 patients of 33 were identified in a previous retrospective adaptive planning study, in which the coverage of gross tumor volume/clinical target volume (GTV/CTV) was not acceptable given single off-line IMRT replan using a 3mm PTV margin with bone matching. These 5 patients and a randomly selected 10 patients from the remaining 28 patients, a total of 15 patients of 33, were considered in this study. Two matching methods for image guidance (bone to bone and soft tissue to dose matrix) and three frequencies of off-line replanning (none, single, and weekly) were simulated and compared with respect to target coverage (cervix, GTV, lower uterus, parametrium, upper vagina, tumor related CTV and elective lymph node CTV) and OAR sparing (bladder, bowel, rectum, and sigmoid). Cost (total process time) and benefit (target coverage) were analyzed for comparison. Hybrid adaptation (image guidance with off-line replanning) significantly enhanced target coverage for both 5 difficult and 10 standard cases. Concerning image guidance, bone matching was short of delivering enough doses for 5 difficult cases even with a weekly off-line replan. Soft tissue image guidance proved successful for all cases except one when single or more frequent replans were utilized in the difficult cases. Cost and benefit analysis preferred

  9. FFT-impedance spectroscopy analysis of the growth of magnetic metal nanowires in ultra-high aspect ratio InP membranes

    NASA Astrophysics Data System (ADS)

    Gerngross, M.-D.; Carstensen, J.; Föll, H.; Adelung, R.

    2016-01-01

    This paper reports on the characterization of the electrochemical growth process of magnetic nanowires in ultra-high-aspect ratio InP membranes via in situ fast Fourier transform impedance spectroscopy in a typical frequency range from 75 Hz to 18.5 kHz. The measured impedance data from the Ni, Co, and FeCo can be very well fitted using the same electric equivalent circuit consisting of a series resistance in serial connection to an RC-element and a Maxwell element. The impedance data clearly indicate the similarities in the growth behavior of Ni, Co and FeCo nanowires in ultra-high aspect ratio InP membranes—the beneficial impact of boric acid on the metal deposition in ultra-high aspect ratio membranes and the diffusion limitation of boric acid, as well as differences such as passivation or side reactions.

  10. Accelerating IMRT optimization by voxel sampling

    NASA Astrophysics Data System (ADS)

    Martin, Benjamin C.; Bortfeld, Thomas R.; Castañon, David A.

    2007-12-01

    This paper presents a new method for accelerating intensity-modulated radiation therapy (IMRT) optimization using voxel sampling. Rather than calculating the dose to the entire patient at each step in the optimization, the dose is only calculated for some randomly selected voxels. Those voxels are then used to calculate estimates of the objective and gradient which are used in a randomized version of a steepest descent algorithm. By selecting different voxels on each step, we are able to find an optimal solution to the full problem. We also present an algorithm to automatically choose the best sampling rate for each structure within the patient during the optimization. Seeking further improvements, we experimented with several other gradient-based optimization algorithms and found that the delta-bar-delta algorithm performs well despite the randomness. Overall, we were able to achieve approximately an order of magnitude speedup on our test case as compared to steepest descent.

  11. SU-F-T-352: Development of a Knowledge Based Automatic Lung IMRT Planning Algorithm with Non-Coplanar Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, W; Wu, Q; Yuan, L

    Purpose: To improve the robustness of a knowledge based automatic lung IMRT planning method and to further validate the reliability of this algorithm by utilizing for the planning of clinical cases with non-coplanar beams. Methods: A lung IMRT planning method which automatically determines both plan optimization objectives and beam configurations with non-coplanar beams has been reported previously. A beam efficiency index map is constructed to guide beam angle selection in this algorithm. This index takes into account both the dose contributions from individual beams and the combined effect of multiple beams which is represented by a beam separation score. Wemore » studied the effect of this beam separation score on plan quality and determined the optimal weight for this score.14 clinical plans were re-planned with the knowledge-based algorithm. Significant dosimetric metrics for the PTV and OARs in the automatic plans are compared with those in the clinical plans by the two-sample t-test. In addition, a composite dosimetric quality index was defined to obtain the relationship between the plan quality and the beam separation score. Results: On average, we observed more than 15% reduction on conformity index and homogeneity index for PTV and V{sub 40}, V{sub 60} for heart while an 8% and 3% increase on V{sub 5}, V{sub 20} for lungs, respectively. The variation curve of the composite index as a function of angle spread score shows that 0.6 is the best value for the weight of the beam separation score. Conclusion: Optimal value for beam angle spread score in automatic lung IMRT planning is obtained. With this value, model can result in statistically the “best” achievable plans. This method can potentially improve the quality and planning efficiency for IMRT plans with no-coplanar angles.« less

  12. Ultraviolet spectroscopy combined with ultra-fast liquid chromatography and multivariate statistical analysis for quality assessment of wild Wolfiporia extensa from different geographical origins.

    PubMed

    Li, Yan; Zhang, Ji; Jin, Hang; Liu, Honggao; Wang, Yuanzhong

    2016-08-05

    A quality assessment system comprised of a tandem technique of ultraviolet (UV) spectroscopy and ultra-fast liquid chromatography (UFLC) aided by multivariate analysis was presented for the determination of geographic origin of Wolfiporia extensa collected from five regions in Yunnan Province of China. Characteristic UV spectroscopic fingerprints of samples were determined based on its methanol extract. UFLC was applied for the determination of pachymic acid (a biomarker) presented in individual test samples. The spectrum data matrix and the content of pachymic acid were integrated and analyzed by partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA). The results showed that chemical properties of samples were clearly dominated by the epidermis and inner part as well as geographical origins. The relationships among samples obtained from these five regions have been also presented. Moreover, an interesting finding implied that geographical origins had much greater influence on the chemical properties of epidermis compared with that of the inner part. This study demonstrated that a rapid tool for accurate discrimination of W. extensa by UV spectroscopy and UFLC could be available for quality control of complicated medicinal mushrooms. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Application of dispersive solid-phase extraction and ultra-fast liquid chromatography-tandem quadrupole mass spectrometry in food additive residue analysis of red wine.

    PubMed

    Chen, Xiao-Hong; Zhao, Yong-Gang; Shen, Hao-Yu; Jin, Mi-Cong

    2012-11-09

    A novel and effective dispersive solid-phase extraction (dSPE) procedure with rapid magnetic separation using ethylenediamine-functionalized magnetic polymer as an adsorbent was developed. The new procedure had excellent clean-up ability for the selective removal of the matrix in red wine. An accurate, simple, and rapid analytical method using ultra-fast liquid chromatography-tandem quadrupole mass spectrometry (UFLC-MS/MS) for the simultaneous determination of nine food additives (i.e., acesulfame, saccharin, sodium cyclamate, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid, and neotame) in red wine was also used and validated. Recoveries ranging from 78.5% to 99.2% with relative standard deviations ranging from 0.46% to 6.3% were obtained using the new method. All target compounds showed good linearities in the tested range with correlation coefficients (r) higher than 0.9993. The limits of quantification for the nine food additives were between 0.10 μg/L and 50.0 μg/L. The proposed dSPE-UFLC-MS/MS method was successfully applied in the food-safety risk monitoring of real red wine in Zhejiang Province, China. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  14. SU-E-T-811: Volumetric Modulated Arc Therapy Vs. C-IMRT for the Treatment of Upper Thoracic Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W; Wu, L; Lu, J

    2015-06-15

    Purpose: To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). Methods: CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (planning target volume 64, PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. Results:more » All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. Conclusion: The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2. however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT. This work was sponsored by Shantou University Medical College Clinical Research Enhancement Initiative(NO.201424)« less

  15. Compliance of Ultra-Orthodox and secular pedestrians with traffic lights in Ultra-Orthodox and secular locations.

    PubMed

    Rosenbloom, Tova; Shahar, Amit; Perlman, Amotz

    2008-11-01

    Following a previous study that revealed the disobedience of Ultra-Orthodox citizens, as compared to secular citizens, of traffic lights at crosswalks, the present study examined the road habits of 995 Ultra-Orthodox and secular pedestrians in neighboring Ultra-Orthodox and secular cities. Using an observation grid designed specially for this study, the pedestrians were observed at two crosswalks--one in an Ultra-Orthodox city and one in a secular city--as far as similar traffic parameters, using a logistic regression. The tendency to cross on a red light was assessed as a function of estimated age, gender, religiosity, location (religious/secular), the duration of the red light, the number of vehicles crossing and the number of pedestrians waiting at the curb. Ultra-Orthodox pedestrians committed more violations than secular pedestrians did, and there were more road violations in the Ultra-Orthodox location than there were in the secular location. Fewer traffic violations were committed by "local" pedestrians (Ultra-Orthodox pedestrians in the Ultra-Orthodox location and secular pedestrians in the secular location) than by "foreigners" (Ultra-Orthodox pedestrians in the secular location and secular pedestrians in the Ultra-Orthodox location). The odds of crossing on a red light decreased as a function of both the number of people waiting at the curb and the number of vehicles. Consistent with previous research, males crossed on red much more than females did, regardless of religiosity and location. Our discussion focuses on theoretical and practical explanations of the findings.

  16. The picosecond structure of ultra-fast rogue waves

    NASA Astrophysics Data System (ADS)

    Klein, Avi; Shahal, Shir; Masri, Gilad; Duadi, Hamootal; Sulimani, Kfir; Lib, Ohad; Steinberg, Hadar; Kolpakov, Stanislav A.; Fridman, Moti

    2018-02-01

    We investigated ultrafast rogue waves in fiber lasers and found three different patterns of rogue waves: single- peaks, twin-peaks, and triple-peaks. The statistics of the different patterns as a function of the pump power of the laser reveals that the probability for all rogue waves patterns increase close to the laser threshold. We developed a numerical model which prove that the ultrafast rogue waves patterns result from both the polarization mode dispersion in the fiber and the non-instantaneous nature of the saturable absorber. This discovery reveals that there are three different types of rogue waves in fiber lasers: slow, fast, and ultrafast, which relate to three different time-scales and are governed by three different sets of equations: the laser rate equations, the nonlinear Schrodinger equation, and the saturable absorber equations, accordingly. This discovery is highly important for analyzing rogue waves and other extreme events in fiber lasers and can lead to realizing types of rogue waves which were not possible so far such as triangular rogue waves.

  17. Hypofractionated IMRT of the Prostate Bed After Radical Prostatectomy: Acute Toxicity in the PRIAMOS-1 Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katayama, Sonja, E-mail: sonja.katayama@med.uni-heidelberg.de; Striecker, Thorbjoern; Kessel, Kerstin

    Purpose: Hypofractionated radiation therapy as primary treatment for prostate cancer is currently being investigated in large phase 3 trials. However, there are few data on postoperative hypofractionation. The Radiation therapy for the Prostate Bed With or Without the Pelvic Lymph Nodes (PRIAMOS 1) trial was initiated as a prospective phase 2 trial to assess treatment safety and toxicity of a hypofractionated intensity modulated radiation therapy (IMRT) of the prostate bed. Methods and Materials: From February to September 2012, 40 patients with indications for adjuvant or salvage radiation therapy were enrolled. One patient dropped out before treatment. Patients received 54 Gy inmore » 18 fractions to the prostate bed with IMRT and daily image guidance. Gastrointestinal (GI) and genitourinary (GU) toxicities (according to National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0) were recorded weekly during treatment and 10 weeks after radiation therapy. Results: Overall acute toxicity was favorable, with no recorded adverse events grade ≥3. Acute GI toxicity rates were 56.4% (grade 1) and 17.9% (grade 2). Acute GU toxicity was recorded in 35.9% of patients (maximum grade 1). Urinary stress incontinence was not influenced by radiation therapy. The incidence of grade 1 urinary urge incontinence increased from 2.6% before to 23.1% 10 weeks after therapy, but grade 2 urge incontinence remained unchanged. Conclusions: Postoperative hypofractionated IMRT of the prostate bed is tolerated well, with no severe acute side effects.« less

  18. Investigation of a pulsed current annealing method in reusing MOSFET dosimeters for in vivo IMRT dosimetry.

    PubMed

    Luo, Guang-Wen; Qi, Zhen-Yu; Deng, Xiao-Wu; Rosenfeld, Anatoly

    2014-05-01

    To explore the feasibility of pulsed current annealing in reusing metal oxide semiconductor field-effect transistor (MOSFET) dosimeters for in vivo intensity modulated radiation therapy (IMRT) dosimetry. Several MOSFETs were irradiated at d(max) using a 6 MV x-ray beam with 5 V on the gate and annealed with zero bias at room temperature. The percentage recovery of threshold voltage shift during multiple irradiation-annealing cycles was evaluated. Key dosimetry characteristics of the annealed MOSFET such as the dosimeter's sensitivity, reproducibility, dose linearity, and linearity of response within the dynamic range were investigated. The initial results of using the annealed MOSFETs for IMRT dosimetry practice were also presented. More than 95% of threshold voltage shift can be recovered after 24-pulse current continuous annealing in 16 min. The mean sensitivity degradation was found to be 1.28%, ranging from 1.17% to 1.52%, during multiple annealing procedures. Other important characteristics of the annealed MOSFET remained nearly consistent before and after annealing. Our results showed there was no statistically significant difference between the annealed MOSFETs and their control samples in absolute dose measurements for IMRT QA (p = 0.99). The MOSFET measurements agreed with the ion chamber results on an average of 0.16% ± 0.64%. Pulsed current annealing provides a practical option for reusing MOSFETs to extend their operational lifetime. The current annealing circuit can be integrated into the reader, making the annealing procedure fully automatic.

  19. Macro-motion detection using ultra-wideband impulse radar.

    PubMed

    Xin Li; Dengyu Qiao; Ye Li

    2014-01-01

    Radar has the advantage of being able to detect hidden individuals, which can be used in homeland security, disaster rescue, and healthcare monitoring-related applications. Human macro-motion detection using ultra-wideband impulse radar is studied in this paper. First, a frequency domain analysis is carried out to show that the macro-motion yields a bandpass signal in slow-time. Second, the FTFW (fast-time frequency windowing), which has the advantage of avoiding the measuring range reduction, and the HLF (high-pass linear-phase filter), which can preserve the motion signal effectively, are proposed to preprocess the radar echo. Last, a threshold decision method, based on the energy detector structure, is presented.

  20. Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: Dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Li, Guangjun; Zhang, Yingjie

    2013-01-01

    To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMATmore » plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.« less

  1. Generalized field-splitting algorithms for optimal IMRT delivery efficiency.

    PubMed

    Kamath, Srijit; Sahni, Sartaj; Li, Jonathan; Ranka, Sanjay; Palta, Jatinder

    2007-09-21

    Intensity-modulated radiation therapy (IMRT) uses radiation beams of varying intensities to deliver varying doses of radiation to different areas of the tissue. The use of IMRT has allowed the delivery of higher doses of radiation to the tumor and lower doses to the surrounding healthy tissue. It is not uncommon for head and neck tumors, for example, to have large treatment widths that are not deliverable using a single field. In such cases, the intensity matrix generated by the optimizer needs to be split into two or three matrices, each of which may be delivered using a single field. Existing field-splitting algorithms used the pre-specified arbitrary split line or region where the intensity matrix is split along a column, i.e., all rows of the matrix are split along the same column (with or without the overlapping of split fields, i.e., feathering). If three fields result, then the two splits are along the same two columns for all rows. In this paper we study the problem of splitting a large field into two or three subfields with the field width as the only constraint, allowing for an arbitrary overlap of the split fields, so that the total MU efficiency of delivering the split fields is maximized. Proof of optimality is provided for the proposed algorithm. An average decrease of 18.8% is found in the total MUs when compared to the split generated by a commercial treatment planning system and that of 10% is found in the total MUs when compared to the split generated by our previously published algorithm.

  2. Extraretinal induced visual sensations during IMRT of the brain.

    PubMed

    Wilhelm-Buchstab, Timo; Buchstab, Barbara Myrthe; Leitzen, Christina; Garbe, Stephan; Müdder, Thomas; Oberste-Beulmann, Susanne; Sprinkart, Alois Martin; Simon, Birgit; Nelles, Michael; Block, Wolfgang; Schoroth, Felix; Schild, Hans Heinz; Schüller, Heinrich

    2015-01-01

    We observed visual sensations (VSs) in patients undergoing intensity modulated radiotherapy (IMRT) of the brain without the beam passing through ocular structures. We analyzed this phenomenon especially with regards to reproducibility, and origin. Analyzed were ten consecutive patients (aged 41-71 years) with glioblastoma multiforme who received pulsed IMRT (total dose 60Gy) with helical tomotherapy (TT). A megavolt-CT (MVCT) was performed daily before treatment. VSs were reported and recorded using a triggered event recorder. The frequency of VSs was calculated and VSs were correlated with beam direction and couch position. Subjective patient perception was plotted on an 8x8 visual field (VF) matrix. Distance to the orbital roof (OR) from the first beam causing a VS was calculated from the Dicom radiation therapy data and MVCT data. During 175 treatment sessions (average 17.5 per patient) 5959 VSs were recorded and analyzed. VSs occurred only during the treatment session not during the MVCTs. Plotting events over time revealed patient-specific patterns. The average cranio-caudad extension of VS-inducing area was 63.4mm (range 43.24-92.1mm). The maximum distance between the first VS and the OR was 56.1mm so that direct interaction with the retina is unlikely. Data on subjective visual perception showed that VSs occurred mainly in the upper right and left quadrants of the VF. Within the visual pathways the highest probability for origin of VSs was seen in the optic chiasm and the optic tract (22%). There is clear evidence that interaction of photon irradiation with neuronal structures distant from the eye can lead to VSs.

  3. A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips.

    PubMed

    Hu, Chong; Lin, Sheng; Li, Wanbo; Sun, Han; Chen, Yangfan; Chan, Chiu-Wing; Leung, Chung-Hang; Ma, Dik-Lung; Wu, Hongkai; Ren, Kangning

    2016-10-05

    An ultra-fast, extremely cost-effective, and environmentally friendly method was developed for fabricating flexible microfluidic chips with plastic membranes. With this method, we could fabricate plastic microfluidic chips rapidly (within 12 seconds per piece) at an extremely low cost (less than $0.02 per piece). We used a heated perfluoropolymer perfluoroalkoxy (often called Teflon PFA) solid stamp to press a pile of two pieces of plastic membranes, low density polyethylene (LDPE) and polyethylene terephthalate (PET) coated with an ethylene-vinyl acetate copolymer (EVA). During the short period of contact with the heated PFA stamp, the pressed area of the membranes permanently bonded, while the LDPE membrane spontaneously rose up at the area not pressed, forming microchannels automatically. These two regions were clearly distinguishable even at the micrometer scale so we were able to fabricate microchannels with widths down to 50 microns. This method combines the two steps in the conventional strategy for microchannel fabrication, generating microchannels and sealing channels, into a single step. The production is a green process without using any solvent or generating any waste. Also, the chips showed good resistance against the absorption of Rhodamine 6G, oligonucleotides, and green fluorescent protein (GFP). We demonstrated some typical microfluidic manipulations with the flexible plastic membrane chips, including droplet formation, on-chip capillary electrophoresis, and peristaltic pumping for quantitative injection of samples and reagents. In addition, we demonstrated convenient on-chip detection of lead ions in water samples by a peristaltic-pumping design, as an example of the application of the plastic membrane chips in a resource-limited environment. Due to the high speed and low cost of the fabrication process, this single-step method will facilitate the mass production of microfluidic chips and commercialization of microfluidic technologies.

  4. Systematic chemical profiling of Citrus grandis 'Tomentosa' by ultra-fast liquid chromatography/diode-array detector/quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Li, Pan-lin; Liu, Meng-hua; Hu, Jie-hui; Su, Wei-wei

    2014-03-01

    Citrus grandis 'Tomentosa', as the original plant of the traditional Chinese medicine "Huajuhong", has been used as antitussive and expectorant in clinic for thousands of years. The fruit epicarp and whole fruit of this plant were both literarily recorded and commonly used. In the present study, an ultra-fast liquid chromatography coupled with diode-array detection and quadrupole/time-of-flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) based chemical profiling method was developed for rapid holistic quality evaluation of C. grandis 'Tomentosa', which laid basis for chemical comparison of two medicinal parts. As a result, forty-eight constituents, mainly belonging to flavonoids and coumarins, were unambiguously identified by comparison with reference standards and/or tentatively characterized by elucidating UV spectra, quasi-molecular ions and fragment ions referring to information available in literature. Both of the epicarp and whole fruit samples were rich in flavonoids and coumarins, but major flavonoids contents in whole fruit were significantly higher than in epicarp (P<0.5). The proposed method could be useful in quality control and standardization of C. grandis 'Tomentosa' raw materials and its products. Results obtained in this study will provide a basis for quality assessment and further study in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Clinical implementation and error sensitivity of a 3D quality assurance protocol for prostate and thoracic IMRT

    PubMed Central

    Cotter, Christopher; Turcotte, Julie Catherine; Crawford, Bruce; Sharp, Gregory; Mah'D, Mufeed

    2015-01-01

    This work aims at three goals: first, to define a set of statistical parameters and plan structures for a 3D pretreatment thoracic and prostate intensity‐modulated radiation therapy (IMRT) quality assurance (QA) protocol; secondly, to test if the 3D QA protocol is able to detect certain clinical errors; and third, to compare the 3D QA method with QA performed with single ion chamber and 2D gamma test in detecting those errors. The 3D QA protocol measurements were performed on 13 prostate and 25 thoracic IMRT patients using IBA's COMPASS system. For each treatment planning structure included in the protocol, the following statistical parameters were evaluated: average absolute dose difference (AADD), percent structure volume with absolute dose difference greater than 6% (ADD6), and 3D gamma test. To test the 3D QA protocol error sensitivity, two prostate and two thoracic step‐and‐shoot IMRT patients were investigated. Errors introduced to each of the treatment plans included energy switched from 6 MV to 10 MV, multileaf collimator (MLC) leaf errors, linac jaws errors, monitor unit (MU) errors, MLC and gantry angle errors, and detector shift errors. QA was performed on each plan using a single ion chamber and 2D array of ion chambers for 2D and 3D QA. Based on the measurements performed, we established a uniform set of tolerance levels to determine if QA passes for each IMRT treatment plan structure: maximum allowed AADD is 6%; maximum 4% of any structure volume can be with ADD6 greater than 6%, and maximum 4% of any structure volume may fail 3D gamma test with test parameters 3%/3 mm DTA. Out of the three QA methods tested the single ion chamber performed the worst by detecting 4 out of 18 introduced errors, 2D QA detected 11 out of 18 errors, and 3D QA detected 14 out of 18 errors. PACS number: 87.56.Fc PMID:26699299

  6. SU-E-T-541: Bolus Effect of Thermoplastic Masks in IMRT and VMAT Head and Neck Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, H; Nedzi, L; Chen, S

    2014-06-01

    Purpose: To quantitatively evaluate the bolus effect of thermoplalstic mask on patient skin dose during multi-field IMRT and VMAT treatment. Methods: The clinically approved target contours for five head and neck patients were deformably registered to an anthropomorphic Rando phantom. Two plans: Multifield IMRT plan with 7-9 beams and VMAT plan with 2-4 arcs were created for each patient following same dose constraints. 3mm skin was excluded from PTVs but not constrained during optimization. The prescription dose was 200-220 cGy/fraction. A thermoplastic head and shoulder mask was customized for the Rando phantom. Each plan was delivered to the phantom twicemore » with and without mask. During each delivery, two rectangular strips of EBT3 films (1cm x 6.8cm) were placed across the anterior upper and lower neck near PTVs to measure the surface dose. For consistency films were positioned at same locations for same patient. A total of 8 film strips were obtained for each patient. Film dose was calibrated in the range of 0-400cGy on the day of plan delivery. For dose comparison 3 regions of interests (ROIs) of 1×1 cm{sup 2} were selected at left, right and middle part of each film, resulting in 6 point doses at each plan delivery. Results: The films without mask show relatively uniform dose distribution while those with mask clearly show mesh pattern of mask, usually indicating an increase in skin dose. On average the increase in skin dose over all ROIs with mask was 31.9%(±14.8%) with a range of 11.4%- 58.4%. There is no statistically significant difference (p=0.44) between skin dose increase in VMAT (30.8%±15.3%) and IMRT delivery (33.0%±14.9%). Conclusion: Thermoplastic immobilization masks increase surface dose for HN patient by around 30%. The magnitude is comparable between multi-field IMRT and VMAT. Radiochromic EBT3 film serves as an effective tool to quantify bolus effect.« less

  7. SU-E-T-593: Clinical Evaluation of Direct Aperture Optimization in Head/Neck and Prostate IMRT Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosini, M; GALAL, M; Emam, I

    2014-06-01

    Purpose: To investigate the planning and dosimetric advantages of direct aperture optimization (DAO) over beam-let optimization in IMRT treatment of head and neck (H/N) and prostate cancers. Methods: Five Head and Neck as well as five prostate patients were planned using the beamlet optimizer in Elekta-Xio ver 4.6 IMRT treatment planning system. Based on our experience in beamlet IMRT optimization, PTVs in H/N plans were prescribed to 70 Gy delivered by 7 fields. While prostate PTVs were prescribed to 76 Gy with 9 fields. In all plans, fields were set to be equally spaced. All cases were re-planed using Directmore » Aperture optimizer in Prowess Panther ver 5.01 IMRT planning system at same configurations and dose constraints. Plans were evaluated according to ICRU criteria, number of segments, number of monitor units and planning time. Results: For H/N plans, the near maximum dose (D2) and the dose that covers 95% D95 of PTV has improved by 4% in DAO. For organs at risk (OAR), DAO reduced the volume covered by 30% (V30) in spinal cord, right parotid, and left parotid by 60%, 54%, and 53% respectively. This considerable dosimetric quality improvement achieved using 25% less planning time and lower number of segments and monitor units by 46% and 51% respectively. In DAO prostate plans, Both D2 and D95 for the PTV were improved by only 2%. The V30 of the right femur, left femur and bladder were improved by 35%, 15% and 3% respectively. On the contrary, the rectum V30 got even worse by 9%. However, number of monitor units, and number of segments decreased by 20% and 25% respectively. Moreover the planning time reduced significantly too. Conclusion: DAO introduces considerable advantages over the beamlet optimization in regards to organs at risk sparing. However, no significant improvement occurred in most studied PTVs.« less

  8. Clinical applications of image guided-intensity modulated radiation therapy (IG-IMRT) for conformal avoidance of normal tissue

    NASA Astrophysics Data System (ADS)

    Gutierrez, Alonso Navar

    2007-12-01

    Recent improvements in imaging technology and radiation delivery have led to the development of advanced treatment techniques in radiotherapy which have opened the door for novel therapeutic approaches to improve the efficacy of radiation cancer treatments. Among these advances is image-guided, intensity modulated radiation therapy (IG-IMRT), in which imaging is incorporated to aid in inter-/intra-fractional target localization and to ensure accurate delivery of precise and highly conformal dose distributions. In principle, clinical implementation of IG-IMRT should improve normal tissue sparing and permit effective biological dose escalation thus widening the radiation therapeutic window and lead to increases in survival through improved local control of primary neoplastic diseases. Details of the development of three clinical applications made possible solely with IG-IMRT radiation delivery techniques are presented: (1) Laparoscopically implanted tissue expander radiotherapy (LITE-RT) has been developed to enhance conformal avoidance of normal tissue during the treatment of intra-abdominopelvic cancers. LITE-RT functions by geometrically displacing surrounding normal tissue and isolating the target volume through the interfractional inflation of a custom-shaped tissue expander throughout the course of treatment. (2) The unique delivery geometry of helical tomotherapy, a novel form of IG-IMRT, enables the delivery of composite treatment plan m which whole brain radiotherapy (WBRT) with hippocampal avoidance, hypothesized to reduce the risk of memory function decline and improve the patient's quality of life, and simultaneously integrated boost to multiple brain metastases to improve intracranial tumor control is achieved. (3) Escalation of biological dose to targets through integrated, selective subvolume boosts have been shown to efficiently increase tumor dose without significantly increasing normal tissue dose. Helical tomotherapy was used to investigate the

  9. Ultra-high-speed variable focus optics for novel applications in advanced imaging

    NASA Astrophysics Data System (ADS)

    Kang, S.; Dotsenko, E.; Amrhein, D.; Theriault, C.; Arnold, C. B.

    2018-02-01

    With the advancement of ultra-fast manufacturing technologies, high speed imaging with high 3D resolution has become increasingly important. Here we show the use of an ultra-high-speed variable focus optical element, the TAG Lens, to enable new ways to acquire 3D information from an object. The TAG Lens uses sound to adjust the index of refraction profile in a liquid and thereby can achieve focal scanning rates greater than 100 kHz. When combined with a high-speed pulsed LED and a high-speed camera, we can exploit this phenomenon to achieve high-resolution imaging through large depths. By combining the image acquisition with digital image processing, we can extract relevant parameters such as tilt and angle information from objects in the image. Due to the high speeds at which images can be collected and processed, we believe this technique can be used as an efficient method of industrial inspection and metrology for high throughput applications.

  10. Age-related changes in ultra-triathlon performances

    PubMed Central

    2012-01-01

    Background The age-related decline in performance has been investigated in swimmers, runners and triathletes. No study has investigated the age-related performance decline in ultra-triathletes. The purpose of this study was to analyse the age-related declines in swimming, cycling, running and overall race time for both Triple Iron ultra-triathlon (11.4-km swimming, 540-km cycling and 126.6-km running) and Deca Iron ultra-triathlon (38-km swimming, 1,800-km cycling and 420-km running). Methods The age and performances of 423 male Triple Iron ultra-triathletes and 119 male Deca Iron ultra-triathletes were analysed from 1992 to 2010 using regression analyses and ANOVA. Results The mean age of the finishers was significantly higher for Deca Iron ultra-triathletes (41.3 ± 3.1 years) compared to a Triple Iron ultra-triathletes (38.5 ± 3.3 years) (P < 0.05). For both ultra-distances, the fastest overall race times were achieved between the ages of 25 and 44 years. Deca Iron ultra-triathletes achieved the same level of performance in swimming and cycling between 25 and 54 years of age. Conclusions The magnitudes of age-related declines in performance in the three disciplines of ultra-triathlon differ slightly between Triple and Deca Iron ultra-triathlon. Although the ages of Triple Iron ultra-triathletes were on average younger compared to Deca Iron ultra-triathletes, the fastest race times were achieved between 25 and 44 years for both distances. Further studies should investigate the motivation and training of ultra-triathletes to gain better insights in ultra-triathlon performance. PMID:23849327

  11. BESTIA - the next generation ultra-fast CO 2 laser for advanced accelerator research

    DOE PAGES

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; ...

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO 2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO 2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO 2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimesmore » in the particle acceleration of ions and electrons.« less

  12. Reduced Toxicity With Intensity Modulated Radiation Therapy (IMRT) for Desmoplastic Small Round Cell Tumor (DSRCT): An Update on the Whole Abdominopelvic Radiation Therapy (WAP-RT) Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Neil B.; Stein, Nicholas F.; LaQuaglia, Michael P.

    2013-01-01

    Purpose: Desmoplastic small round cell tumor (DSRCT) is a rare malignancy typically involving the peritoneum in young men. Whole abdominopelvic radiation therapy (WAP-RT) using conventional 2-dimensional (2D) radiation therapy (RT) is used to address local recurrence but has been limited by toxicity. Our objectives were to assess the benefit of intensity modulated radiation therapy (IMRT) on toxicity and to update the largest series on radiation for DSRCT. Methods and Materials: The records of 31 patients with DSRCT treated with WAP-RT (22 with 2D-RT and 9 with IMRT) between 1992 and 2011 were retrospectively reviewed. All received multi-agent chemotherapy and maximalmore » surgical debulking followed by 30 Gy of WAP-RT. A further focal boost of 12 to 24 Gy was used in 12 cases. Boost RT and autologous stem cell transplantation were nearly exclusive to patients treated with 2D-RT. Toxicities were assessed with the Common Terminology Criteria for Adverse Events. Dosimetric analysis compared IMRT and simulated 2D-RT dose distributions. Results: Of 31 patients, 30 completed WAP-RT, with a median follow-up after RT of 19 months. Acute toxicity was reduced with IMRT versus 2D-RT: P=.04 for gastrointestinal toxicity of grade 2 or higher (33% vs 77%); P=.02 for grade 4 hematologic toxicity (33% vs 86%); P=.01 for rates of granulocyte colony-stimulating factor; and P=.04 for rates of platelet transfusion. Post treatment red blood cell and platelet transfusion rates were also reduced (P=.01). IMRT improved target homogeneity ([D05-D95]/D05 of 21% vs 46%) and resulted in a 21% mean bone dose reduction. Small bowel obstruction was the most common late toxicity (23% overall). Updated 3-year overall survival and progression-free survival rates were 50% and 24%, respectively. Overall survival was associated with distant metastasis at diagnosis on multivariate analysis. Most failures remained intraperitoneal (88%). Conclusions: IMRT for consolidative WAP-RT in DSRCT improves

  13. An EGSnrc Monte Carlo study of the microionization chamber for reference dosimetry of narrow irregular IMRT beamlets.

    PubMed

    Capote, Roberto; Sánchez-Doblado, Francisco; Leal, Antonio; Lagares, Juan Ignacio; Arráns, Rafael; Hartmann, Günther H

    2004-09-01

    Intensity modulated radiation therapy (IMRT) has evolved toward the use of many small radiation fields, or "beamlets," to increase the resolution of the intensity map. The size of smaller beamlets can be typically about 1-5 cm2. Therefore small ionization chambers (IC) with sensitive volumes < or = 0.1 cm3 are generally used for dose verification of IMRT treatment. The dosimetry of these narrow photon beams pertains to the so-called nonreference conditions for beam calibration. The use of ion chambers for such narrow beams remains questionable due to the lack of electron equilibrium in most of the field. The present contribution aims to estimate, by the Monte Carlo (MC) method, the total correction needed to convert the IBA-Wellhöfer NAC007 micro IC measured charge in such radiation field to the absolute dose to water. Detailed geometrical simulation of the microionization chamber was performed. The ion chamber was always positioned at a 10 cm depth in water, parallel to the beam axis. The delivered doses to air and water cavity were calculated using the CAVRZ EGSnrc user code. The 6 MV phase-spaces for Primus Clinac (Siemens) used as an input to the CAVRZnrc code were derived by BEAM/EGS4 modeling of the treatment head of the machine along with the multileaf collimator [Sánchez-Doblado et al., Phys. Med. Biol. 48, 2081-2099 (2003)] and contrasted with experimental measurements. Dose calculations were carried out for two irradiation geometries, namely, the reference 10x10 cm2 field and an irregular (approximately 2x2 cm2) IMRT beamlet. The dose measured by the ion chamber is estimated by MC simulation as a dose averaged over the air cavity inside the ion-chamber (Dair). The absorbed dose to water is derived as the dose deposited inside the same volume, in the same geometrical position, filled and surrounded by water (Dwater) in the absence of the ionization chamber. Therefore, the Dwater/Dair dose ratio is a MC direct estimation of the total correction factor

  14. SU-E-J-193: Feasibility of MRI-Only Based IMRT Planning for Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prior, P; Botros, M; Chen, X

    2014-06-01

    Purpose: With the increasing use of MRI simulation and the advent of MRI-guided delivery, it is desirable to use MRI only for treatment planning. In this study, we assess the dosimetric difference between MRI- and CTbased IMRT planning for pancreatic cancer. Methods: Planning CTs and MRIs acquired for a representative pancreatic cancer patient were used. MRI-based planning utilized forced relative electron density (rED) assignment of organ specific values from IRCU report 46, where rED = 1.029 for PTV and a rED = 1.036 for non-specified tissue (NST). Six IMRT plans were generated with clinical dose-volume (DV) constraints using a researchmore » Monaco planning system employing Monte Carlo dose calculation with optional perpendicular magnetic field (MF) of 1.5T. The following five plans were generated and compared with the planning CT: 1.) CT plan with MF and dose recalculation without optimization; 2.) MRI (T2) plan with target and OARs redrawn based on MRI, forced rED, no MF, and recalculation without optimization; 3.) Similar as in 2 but with MF; 4.) MRI plan with MF but without optimization; and 5.) Similar as in 4 but with optimization. Results: Generally, noticeable differences in PTV point doses and DV parameters (DVPs) between the CT-and MRI-based plans with and without the MF were observed. These differences between the optimized plans were generally small, mostly within 2%. Larger differences were observed in point doses and mean doses for certain OARs between the CT and MRI plan, mostly due to differences between image acquisition times. Conclusion: MRI only based IMRT planning for pancreatic cancer is feasible. The differences observed between the optimized CT and MRI plans with or without the MF were practically negligible if excluding the differences between MRI and CT defined structures.« less

  15. Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification

    PubMed Central

    Borca, Valeria Casanova; Russo, Giuliana; Grosso, Pierangelo; Cante, Domenico; Sciacero, Piera; Girelli, Giuseppe; Porta, Maria Rosa La; Tofani, Santi

    2013-01-01

    Radiochromic film has become an important tool to verify dose distributions in highly conformal radiation therapy such as IMRT. Recently, a new generation of these films, EBT3, has become available. EBT3 has the same composition and thickness of the sensitive layer of the previous EBT2 films, but its symmetric layer configuration allows the user to eliminate side orientation dependence, which is reported for EBT2 films. The most important EBT3 characteristics have been investigated, such as response at high‐dose levels, sensitivity to scanner orientation and postirradiation coloration, energy and dose rate dependence, and orientation dependence with respect to film side. Additionally, different IMRT fields were measured with both EBT3 and EBT2 films and evaluated using gamma index analysis. The results obtained show that most of the characteristics of EBT3 film are similar to the EBT2 film, but the orientation dependence with respect to film side is completely eliminated in EBT3 films. The study confirms that EBT3 film can be used for clinical practice in the same way as the previous EBT2 film. PACS number: 87.56.Fc PMID:23470940

  16. Speed and convergence properties of gradient algorithms for optimization of IMRT.

    PubMed

    Zhang, Xiaodong; Liu, Helen; Wang, Xiaochun; Dong, Lei; Wu, Qiuwen; Mohan, Radhe

    2004-05-01

    Gradient algorithms are the most commonly employed search methods in the routine optimization of IMRT plans. It is well known that local minima can exist for dose-volume-based and biology-based objective functions. The purpose of this paper is to compare the relative speed of different gradient algorithms, to investigate the strategies for accelerating the optimization process, to assess the validity of these strategies, and to study the convergence properties of these algorithms for dose-volume and biological objective functions. With these aims in mind, we implemented Newton's, conjugate gradient (CG), and the steepest decent (SD) algorithms for dose-volume- and EUD-based objective functions. Our implementation of Newton's algorithm approximates the second derivative matrix (Hessian) by its diagonal. The standard SD algorithm and the CG algorithm with "line minimization" were also implemented. In addition, we investigated the use of a variation of the CG algorithm, called the "scaled conjugate gradient" (SCG) algorithm. To accelerate the optimization process, we investigated the validity of the use of a "hybrid optimization" strategy, in which approximations to calculated dose distributions are used during most of the iterations. Published studies have indicated that getting trapped in local minima is not a significant problem. To investigate this issue further, we first obtained, by trial and error, and starting with uniform intensity distributions, the parameters of the dose-volume- or EUD-based objective functions which produced IMRT plans that satisfied the clinical requirements. Using the resulting optimized intensity distributions as the initial guess, we investigated the possibility of getting trapped in a local minimum. For most of the results presented, we used a lung cancer case. To illustrate the generality of our methods, the results for a prostate case are also presented. For both dose-volume and EUD based objective functions, Newton's method far

  17. The Ultra-fast Outflow of the Quasar PG 1211+143 as Viewed by Time-averaged Chandra Grating Spectroscopy

    NASA Astrophysics Data System (ADS)

    Danehkar, Ashkbiz; Nowak, Michael A.; Lee, Julia C.; Kriss, Gerard A.; Young, Andrew J.; Hardcastle, Martin J.; Chakravorty, Susmita; Fang, Taotao; Neilsen, Joseph; Rahoui, Farid; Smith, Randall K.

    2018-02-01

    We present a detailed X-ray spectral study of the quasar PG 1211+143 based on Chandra High Energy Transmission Grating Spectrometer (HETGS) observations collected in a multi-wavelength campaign with UV data using the Hubble Space Telescope Cosmic Origins Spectrograph (HST-COS) and radio bands using the Jansky Very Large Array (VLA). We constructed a multi-wavelength ionizing spectral energy distribution using these observations and archival infrared data to create XSTAR photoionization models specific to the PG 1211+143 flux behavior during the epoch of our observations. Our analysis of the Chandra-HETGS spectra yields complex absorption lines from H-like and He-like ions of Ne, Mg, and Si, which confirm the presence of an ultra-fast outflow (UFO) with a velocity of approximately ‑17,300 km s‑1 (outflow redshift z out ∼ ‑0.0561) in the rest frame of PG 1211+143. This absorber is well described by an ionization parameter {log}ξ ∼ 2.9 {erg} {{{s}}}-1 {cm} and column density {log}{N}{{H}}∼ 21.5 {{cm}}-2. This corresponds to a stable region of the absorber’s thermal stability curve, and furthermore its implied neutral hydrogen column is broadly consistent with a broad Lyα absorption line at a mean outflow velocity of approximately ‑16,980 km s‑1 detected by our HST-COS observations. Our findings represent the first simultaneous detection of a UFO in both X-ray and UV observations. Our VLA observations provide evidence for an active jet in PG 1211+143, which may be connected to the X-ray and UV outflows; this possibility can be evaluated using very-long-baseline interferometric observations.

  18. Optimization and application of cooled avalanche photodiodes for spectroscopic fluctuation measurements with ultra-fast charge exchange recombination spectroscopy

    DOE PAGES

    Truong, D. D.; Fonck, R. J.; McKee, G. R.

    2016-09-23

    The Ultra Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic is a highly specialized spectroscopic instrument with 2 spatial channels consisting of 8 spectral channels each and a resolution of ~0.25 nm deployed at DIII-D to measure turbulent ion temperature fluctuations. Charge exchange emissions are obtained between 528-530 nm with 1 μs time resolution to study plasma instabilities. A primary challenge of extracting fluctuation measurements from raw UF-CHERS signals is photon and electronic noise. In order to reduce dark current, the Avalanche Photodiode (APD) detectors are thermoelectrically cooled. State-of-the-art components are used for the signal amplifiers and conditioners to minimize electronicmore » noise. Due to the low incident photon power (≤ 1 nW), APDs with a gain of up to 300 are used to optimize the signal to noise ratio. Maximizing the APDs’ gain while minimizing the excess noise factor (ENF) is essential since the total noise of the diagnostic sets a floor for the minimum level of detectable broadband fluctuations. The APDs’ gain should be high enough that photon noise dominates electronic noise, but not excessive so that the ENF overwhelms plasma fluctuations. A new generation of cooled APDs and optimized preamplifiers exhibits significantly enhanced signal-to-noise compared to a previous generation. Experiments at DIII-D have allowed for characterization and optimization of the ENF vs. gain. Here, a gain of ~100 at 1700 V is found to be near optimal for most plasma conditions. Ion temperature and toroidal velocity fluctuations due to the Edge Harmonic Oscillation (EHO) in Quiescent H-mode (QH) plasmas are presented to demonstrate UF-CHERS’ capabilities.« less

  19. Outcomes of xerostomia-related quality of life for nasopharyngeal carcinoma treated by IMRT: based on the EORTC QLQ-C30 and H&N35 questionnaires.

    PubMed

    Bian, Xiuhua; Song, Tao; Wu, Shixiu

    2015-01-01

    The aim of this study was to review the published literature addressing the question of whether intensity-modulated radiotherapy (IMRT) resulted in an improvement of quality of life (QoL), especially xerostomia-related QoL of all nasopharyngeal carcinoma patients as time progressed. A literature search of PubMed, Embase and Google Scholar was performed, only reports containing original data of the QoL scores after treated by IMRT were included. Two independent reviewers extracted information of study design, study population, interventions, outcome measures and conclusions for each article. The inclusion criteria were met by 14 articles covering outcomes based on the questionnaires treated by IMRT. Data from same questionnaires (European Organization of Research and Treatment of Cancer QLQ-C30 and H&N35 questionnaires) were exacted and we analyzed four items (global health status, dry mouth and sticky saliva, swallowing, social eating and social contact), which have a close relationship with xerostomia-related QoL. Results indicated that a maximal deterioration of most QoL scales including global health status developed during treatment or at the end of the treatment course and then followed by a gradual recovery to 1 year, 1-2 years after IMRT, compared with their baseline level, some specific head and neck items, most in the EORTC QLQ H&N35, remained worse for the surviving patients. In conclusion, the published data reasonably support the benefits of IMRT in improving QoL, but xerostomia-related items still had a significantly negative effect in 2 years to impact a survivor's QoL.

  20. SU-E-T-605: Performance Evaluation of MLC Leaf-Sequencing Algorithms in Head-And-Neck IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, J; Lin, H; Chow, J

    2015-06-15

    Purpose: To investigate the efficiency of three multileaf collimator (MLC) leaf-sequencing algorithms proposed by Galvin et al, Chen et al and Siochi et al using external beam treatment plans for head-and-neck intensity modulated radiation therapy (IMRT). Methods: IMRT plans for head-and-neck were created using the CORVUS treatment planning system. The plans were optimized and the fluence maps for all photon beams determined. Three different MLC leaf-sequencing algorithms based on Galvin et al, Chen et al and Siochi et al were used to calculate the final photon segmental fields and their monitor units in delivery. For comparison purpose, the maximum intensitymore » of fluence map was kept constant in different plans. The number of beam segments and total number of monitor units were calculated for the three algorithms. Results: From results of number of beam segments and total number of monitor units, we found that algorithm of Galvin et al had the largest number of monitor unit which was about 70% larger than the other two algorithms. Moreover, both algorithms of Galvin et al and Siochi et al have relatively lower number of beam segment compared to Chen et al. Although values of number of beam segment and total number of monitor unit calculated by different algorithms varied with the head-and-neck plans, it can be seen that algorithms of Galvin et al and Siochi et al performed well with a lower number of beam segment, though algorithm of Galvin et al had a larger total number of monitor units than Siochi et al. Conclusion: Although performance of the leaf-sequencing algorithm varied with different IMRT plans having different fluence maps, an evaluation is possible based on the calculated number of beam segment and monitor unit. In this study, algorithm by Siochi et al was found to be more efficient in the head-and-neck IMRT. The Project Sponsored by the Fundamental Research Funds for the Central Universities (J2014HGXJ0094) and the Scientific Research Foundation

  1. Physiology and Pathophysiology in Ultra-Marathon Running

    PubMed Central

    Knechtle, Beat; Nikolaidis, Pantelis T.

    2018-01-01

    In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time) is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat) and training (e.g., high volume and running speed during training) characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10–20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35–45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold) or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In longer ultra

  2. Physiology and Pathophysiology in Ultra-Marathon Running.

    PubMed

    Knechtle, Beat; Nikolaidis, Pantelis T

    2018-01-01

    In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time) is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat) and training (e.g., high volume and running speed during training) characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10-20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35-45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold) or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In longer ultra

  3. Cavitation in confined water: ultra-fast bubble dynamics

    NASA Astrophysics Data System (ADS)

    Vincent, Olivier; Marmottant, Philippe

    2012-02-01

    In the hydraulic vessels of trees, water can be found at negative pressure. This metastable state, corresponding to mechanical tension, is achieved by evaporation through a porous medium. It can be relaxed by cavitation, i.e. the sudden nucleation of vapor bubbles. Harmful for the tree due to the subsequent emboli of sap vessels, cavitation is on the contrary used by ferns to eject spores very swiftly. We will focus here on the dynamics of the cavitation bubble, which is of primary importance to explain the previously cited natural phenomena. We use the recently developed method of artificial tress, using transparent hydrogels as the porous medium. Our experiments, on water confined in micrometric hydrogel cavities, show an extremely fast dynamics: bubbles are nucleated at the microsecond timescale. For cavities larger than 100 microns, the bubble ``rings'' with damped oscillations at MHz frequencies, whereas for smaller cavities the oscillations become overdamped. This rich dynamics can be accounted for by a model we developed, leading to a modified Rayleigh-Plesset equation. Interestingly, this model predicts the impossibility to nucleate bubbles above a critical confinement that depends on liquid negative pressure and corresponds to approximately 100 nm for 20 MPa tensions.

  4. Quantitative determination of hederagenin in rat plasma and cerebrospinal fluid by ultra fast liquid chromatography-tandem mass spectrometry method.

    PubMed

    Yang, Xuemei; Li, Guoliang; Chen, Lingyun; Zhang, Cong; Wan, Xinxiang; Xu, Jiangping

    2011-07-01

    A rapid, sensitive and selective method was developed for the quantitative determination of hederagenin in rat plasma and cerebrospinal fluid (CSF) by ultra fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS). It has been successfully applied in a pharmacokinetic study of hederagenin in the central nervous system (CNS). Sample pretreatment involved a simple protein precipitation with methanol and a one-step extraction with ethyl acetate. Separation was carried out in a Shim-pack XR-ODS II (75 mm × 2.0 mm, i.d., 2.1 μm) column with gradient elution at a flow rate of 0.35 mL/min. The mobile phase was 5mM ammonium acetate and acetonitrile. Detection was performed in a triple-quadruple tandem mass spectrometer by multiple-reaction-monitoring mode via electrospray ionization. A linear calibration curve for hederagenin was obtained over a concentration range of 0.406 (lower limit of quantification, LLOQ) to 203 ng/mL (r² > 0.99) for both plasma and CSF. The intra-day and inter-day precision (relative standard deviation, RSD) values were less than 15%. At all quality control (QC) levels, the accuracy (relative error, RE) was within -9.0% and 11.1% for plasma and CSF, respectively. The pharmacokinetics results indicated that hederagenin could pass through the blood-brain barrier. This UFLC-MS/MS method demonstrates higher sensitivity and sample throughput than previous methods. It was also successfully applied to the pharmacokinetic study of hederagenin following oral administration of Fructus akebiae extract in rats. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Accelerated iterative beam angle selection in IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bangert, Mark, E-mail: m.bangert@dkfz.de; Unkelbach, Jan

    2016-03-15

    Purpose: Iterative methods for beam angle selection (BAS) for intensity-modulated radiation therapy (IMRT) planning sequentially construct a beneficial ensemble of beam directions. In a naïve implementation, the nth beam is selected by adding beam orientations one-by-one from a discrete set of candidates to an existing ensemble of (n − 1) beams. The best beam orientation is identified in a time consuming process by solving the fluence map optimization (FMO) problem for every candidate beam and selecting the beam that yields the largest improvement to the objective function value. This paper evaluates two alternative methods to accelerate iterative BAS based onmore » surrogates for the FMO objective function value. Methods: We suggest to select candidate beams not based on the FMO objective function value after convergence but (1) based on the objective function value after five FMO iterations of a gradient based algorithm and (2) based on a projected gradient of the FMO problem in the first iteration. The performance of the objective function surrogates is evaluated based on the resulting objective function values and dose statistics in a treatment planning study comprising three intracranial, three pancreas, and three prostate cases. Furthermore, iterative BAS is evaluated for an application in which a small number of noncoplanar beams complement a set of coplanar beam orientations. This scenario is of practical interest as noncoplanar setups may require additional attention of the treatment personnel for every couch rotation. Results: Iterative BAS relying on objective function surrogates yields similar results compared to naïve BAS with regard to the objective function values and dose statistics. At the same time, early stopping of the FMO and using the projected gradient during the first iteration enable reductions in computation time by approximately one to two orders of magnitude. With regard to the clinical delivery of noncoplanar IMRT treatments, we

  6. Accelerated iterative beam angle selection in IMRT.

    PubMed

    Bangert, Mark; Unkelbach, Jan

    2016-03-01

    Iterative methods for beam angle selection (BAS) for intensity-modulated radiation therapy (IMRT) planning sequentially construct a beneficial ensemble of beam directions. In a naïve implementation, the nth beam is selected by adding beam orientations one-by-one from a discrete set of candidates to an existing ensemble of (n - 1) beams. The best beam orientation is identified in a time consuming process by solving the fluence map optimization (FMO) problem for every candidate beam and selecting the beam that yields the largest improvement to the objective function value. This paper evaluates two alternative methods to accelerate iterative BAS based on surrogates for the FMO objective function value. We suggest to select candidate beams not based on the FMO objective function value after convergence but (1) based on the objective function value after five FMO iterations of a gradient based algorithm and (2) based on a projected gradient of the FMO problem in the first iteration. The performance of the objective function surrogates is evaluated based on the resulting objective function values and dose statistics in a treatment planning study comprising three intracranial, three pancreas, and three prostate cases. Furthermore, iterative BAS is evaluated for an application in which a small number of noncoplanar beams complement a set of coplanar beam orientations. This scenario is of practical interest as noncoplanar setups may require additional attention of the treatment personnel for every couch rotation. Iterative BAS relying on objective function surrogates yields similar results compared to naïve BAS with regard to the objective function values and dose statistics. At the same time, early stopping of the FMO and using the projected gradient during the first iteration enable reductions in computation time by approximately one to two orders of magnitude. With regard to the clinical delivery of noncoplanar IMRT treatments, we could show that optimized beam

  7. SU-E-T-784: Using MLC Log Files for Daily IMRT Delivery Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stathakis, S; Defoor, D; Linden, P

    2015-06-15

    Purpose: To verify daily intensity modulated radiation therapy (IMRT) treatments using multi-leaf collimator (MLC) log files. Methods: The MLC log files from a NovalisTX Varian linear accelerator were used in this study. The MLC files were recorded daily for all patients undergoing IMRT or volumetric modulated arc therapy (VMAT). The first record of each patient was used as reference and all records for subsequent days were compared against the reference. An in house MATLAB software code was used for the comparisons. Each MLC log file was converted to a fluence map (FM) and a gamma index (γ) analysis was usedmore » for the evaluation of each daily delivery for every patient. The tolerance for the gamma index was set to 2% dose difference and 2mm distance to agreement while points with signal of 10% or lower of the maximum value were excluded from the comparisons. Results: The γ between each of the reference FMs and the consecutive daily fraction FMs had an average value of 99.1% (ranged from 98.2 to 100.0%). The FM images were reconstructed at various resolutions in order to study the effect of the resolution on the γ and at the same time reduce the time for processing the images. We found that the comparison of images with the highest resolution (768×1024) yielded on average a lower γ (99.1%) than the ones with low resolution (192×256) (γ 99.5%). Conclusion: We developed an in-house software that allows us to monitor the quality of daily IMRT and VMAT treatment deliveries using information from the MLC log files of the linear accelerator. The information can be analyzed and evaluated as early as after the completion of each daily treatment. Such tool can be valuable to assess the effect of MLC positioning on plan quality, especially in the context of adaptive radiotherapy.« less

  8. A portable fluorescence detector for fast ultra trace detection of explosive vapors

    NASA Astrophysics Data System (ADS)

    Xin, Yunhong; He, Gang; Wang, Qi; Fang, Yu

    2011-10-01

    This paper developed a portable detector based on a specific material-based fluorescent sensing film for an ultra trace detection of explosives, such as 2,4,6-trinitrotoluene (TNT) or its derivate 2,4-dinitrotoluene (DNT), in ambient air or on objects tainted by explosives. The fluorescent sensing films are based on single-layer chemistry and the signal amplification effect of conjugated polymers, which exhibited higher sensitivity and shorter response time to TNT or DNT at their vapor pressures. Due to application of the light emitting diode and the solid state photomultiplier and the cross-correlation-based circuit design technology, the device has the advantages of low-power, low-cost, small size, and an improved signal to noise ratio. The results of the experiments showed that the detector can real-time detect and identify of explosive vapors at extremely low levels; it is suitable for the identification of suspect luggage, forensic analyses, or battlefields clearing.

  9. Efficient monoenergetic proton beam from ultra-fast laser interaction with nanostructured targets

    NASA Astrophysics Data System (ADS)

    Fazeli, R.

    2018-03-01

    The broad energy spectrum of laser-accelerated proton beams is the most important difficulty associated with such particle sources on the way to future applications such as medical therapy, proton imaging, inertial fusion, and high-energy physics. The generation of proton beams with enhanced monoenergetic features through an ultra-intense laser interaction with optimized nanostructured targets is reported. Targets were irradiated by 40 fs laser pulses of intensity 5.5 ×1020 W c m -2 and wavelength 1 μm. The results of multi-parametric Particle-in-Cell calculations showed that proton beams with considerably reduced energy spread can be obtained by using the proposed nanostructured target. At optimized target dimensions, the proton spectrum was found to exhibit a narrow peak at about 63 MeV with a relative energy spread of ΔE /Epeak˜ 5 % which is efficiently lower than what is expected for unstructured double layer targets (˜70%).

  10. A portable fluorescence detector for fast ultra trace detection of explosive vapors.

    PubMed

    Xin, Yunhong; He, Gang; Wang, Qi; Fang, Yu

    2011-10-01

    This paper developed a portable detector based on a specific material-based fluorescent sensing film for an ultra trace detection of explosives, such as 2,4,6-trinitrotoluene (TNT) or its derivate 2,4-dinitrotoluene (DNT), in ambient air or on objects tainted by explosives. The fluorescent sensing films are based on single-layer chemistry and the signal amplification effect of conjugated polymers, which exhibited higher sensitivity and shorter response time to TNT or DNT at their vapor pressures. Due to application of the light emitting diode and the solid state photomultiplier and the cross-correlation-based circuit design technology, the device has the advantages of low-power, low-cost, small size, and an improved signal to noise ratio. The results of the experiments showed that the detector can real-time detect and identify of explosive vapors at extremely low levels; it is suitable for the identification of suspect luggage, forensic analyses, or battlefields clearing.

  11. Performance analysis of a film dosimetric quality assurance procedure for IMRT with regard to the employment of quantitative evaluation methods.

    PubMed

    Winkler, Peter; Zurl, Brigitte; Guss, Helmuth; Kindl, Peter; Stuecklschweiger, Georg

    2005-02-21

    A system for dosimetric verification of intensity-modulated radiotherapy (IMRT) treatment plans using absolute calibrated radiographic films is presented. At our institution this verification procedure is performed for all IMRT treatment plans prior to patient irradiation. Therefore clinical treatment plans are transferred to a phantom and recalculated. Composite treatment plans are irradiated to a single film. Film density to absolute dose conversion is performed automatically based on a single calibration film. A software application encompassing film calibration, 2D registration of measurement and calculated distributions, image fusion, and a number of visual and quantitative evaluation utilities was developed. The main topic of this paper is a performance analysis for this quality assurance procedure, with regard to the specification of tolerance levels for quantitative evaluations. Spatial and dosimetric precision and accuracy were determined for the entire procedure, comprising all possible sources of error. The overall dosimetric and spatial measurement uncertainties obtained thereby were 1.9% and 0.8 mm respectively. Based on these results, we specified 5% dose difference and 3 mm distance-to-agreement as our tolerance levels for patient-specific quality assurance for IMRT treatments.

  12. Validation of OSLD and a treatment planning system for surface dose determination in IMRT treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Audrey H., E-mail: hzhuang@usc.edu; Olch, Arthur J.

    2014-08-15

    Purpose: To evaluate the accuracy of skin dose determination for composite multibeam 3D conformal radiation therapy (3DCRT) and intensity modulated radiation therapy (IMRT) treatments using optically stimulated luminescent dosimeters (OSLDs) and Eclipse treatment planning system. Methods: Surface doses measured by OSLDs in the buildup region for open field 6 MV beams, either perpendicular or oblique to the surface, were evaluated by comparing against dose measured by Markus Parallel Plate (PP) chamber, surface diodes, and calculated by Monte Carlo simulations. The accuracy of percent depth dose (PDD) calculation in the buildup region from the authors’ Eclipse system (Version 10), which wasmore » precisely commissioned in the buildup region and was used with 1 mm calculation grid, was also evaluated by comparing to PP chamber measurements and Monte Carlo simulations. Finally, an anthropomorphic pelvic phantom was CT scanned with OSLDs in place at three locations. A planning target volume (PTV) was defined that extended close to the surface. Both an 8 beam 3DCRT and IMRT plan were generated in Eclipse. OSLDs were placed at the CT scanned reference locations to measure the skin doses and were compared to diode measurements and Eclipse calculations. Efforts were made to ensure that the dose comparison was done at the effective measurement points of each detector and corresponding locations in CT images. Results: The depth of the effective measurement point is 0.8 mm for OSLD when used in the buildup region in a 6 MV beam and is 0.7 mm for the authors’ surface diode. OSLDs and Eclipse system both agree well with Monte Carlo and/or Markus PP ion chamber and/or diode in buildup regions in 6 MV beams with normal or oblique incidence and across different field sizes. For the multiple beam 3DCRT plan and IMRT plans, the differences between OSLDs and Eclipse calculations on the surface of the anthropomorphic phantom were within 3% and distance-to-agreement less than 0

  13. Analysis of ultra-triathlon performances

    PubMed Central

    Lepers, Romuald; Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas

    2011-01-01

    Despite increased interest in ultra-endurance events, little research has examined ultra-triathlon performance. The aims of this study were: (i) to compare swimming, cycling, running, and overall performances in three ultra-distance triathlons, double Ironman distance triathlon (2IMT) (7.6 km swimming, 360 km cycling, and 84.4 km running), triple Ironman distance triathlon (3IMT) (11.4 km, 540 km, and 126.6 km), and deca Ironman distance triathlon (10IMT) (38 km, 1800 km, and 420 km) and (ii) to examine the relationships between the 2IMT, 3IMT, and 10IMT performances to create predicted equations of the 10IMT performances. Race results from 1985 through 2009 were examined to identify triathletes who performed the three considered ultra-distances. In total, 73 triathletes (68 men and 5 women) were identified. The contribution of swimming to overall ultra-triathlon performance was lower than for cycling and running. Running performance was more important to overall performance for 2IMT and 3IMT compared with 10IMT The 2IMT and 3IMT performances were significantly correlated with 10IMT performances for swimming and cycling, but not for running. 10IMT total time performance might be predicted by the following equation: 10IMT race time (minutes) = 5885 + 3.69 × 3IMT race time (minutes). This analysis of human performance during ultra-distance triathlons represents a unique data set in the field of ultra-endurance events. Additional studies are required to determine the physiological and psychological factors associated with ultra-triathlon performance. PMID:24198579

  14. Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.

    PubMed

    Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V

    2017-10-03

    The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.

  15. Multibeam inverse intensity-modulated radiotherapy (IMRT) for whole breast irradiation: a single center experience in China.

    PubMed

    Yang, Zhaozhi; Zhang, Li; Chen, Xingxing; Ma, Jinli; Mei, Xin; Chen, Jiayi; Yu, Xiaoli; Guo, Xiaomao

    2015-10-27

    To present the clinical experience in our cancer center with multibeam inverse intensity-modulated radiotherapy (IMRT) for early stage breast cancer (BC) patients with whole breast irradiation (WBI). We retrospectively analyzed 622 patients with Stage 0 to III BC treated from 2008 to 2011 with wide local excision and WBI, using an inverse IMRT technique. All of the patients were prescribed a total dose of 50 Gy to the whole breast in 2-Gy fractions, followed by a tumor bed boost of 10 Gy in 5 fractions using an electron beam. Of all of the patients, 132 (21.2%) received whole breast plus regional lymph node (RLN) irradiation. 438 of 622 patients had records of acute skin toxicity based on common terminology criteria (CTC) for adverse events. Two hundred eighty (64%) patients had Grade 0/1 toxicity, 153 (35%) had Grade 2 and only 4 patients experienced grade 3 toxicity. Seventy patients (16%) had moist desquamation. Univariate analysis revealed that breast planning target volume was the only predictive factor for Grade ≥2 acute dermatitis (P = 0.002). After 4 years, 170 patients reported cosmetic results by self-assessment, of whom 151 (89%) patients reported good/excellent cosmetic results, and 17 (11%) patients reported fair assessments. For invasive cancer, the four-year rate of freedom from locoregional recurrence survival was 98.3%. Regarding carcinoma in situ, no patients experienced recurrence. BC patients who underwent conservative surgery followed by inverse IMRT plan exhibited acceptable acute toxicities and clinical outcomes. Longer follow-up is needed.

  16. Investigating multi-objective fluence and beam orientation IMRT optimization

    NASA Astrophysics Data System (ADS)

    Potrebko, Peter S.; Fiege, Jason; Biagioli, Matthew; Poleszczuk, Jan

    2017-07-01

    Radiation Oncology treatment planning requires compromises to be made between clinical objectives that are invariably in conflict. It would be beneficial to have a ‘bird’s-eye-view’ perspective of the full spectrum of treatment plans that represent the possible trade-offs between delivering the intended dose to the planning target volume (PTV) while optimally sparing the organs-at-risk (OARs). In this work, the authors demonstrate Pareto-aware radiotherapy evolutionary treatment optimization (PARETO), a multi-objective tool featuring such bird’s-eye-view functionality, which optimizes fluence patterns and beam angles for intensity-modulated radiation therapy (IMRT) treatment planning. The problem of IMRT treatment plan optimization is managed as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. To achieve this, PARETO is built around a powerful multi-objective evolutionary algorithm, called Ferret, which simultaneously optimizes multiple fitness functions that encode the attributes of the desired dose distribution for the PTV and OARs. The graphical interfaces within PARETO provide useful information such as: the convergence behavior during optimization, trade-off plots between the competing objectives, and a graphical representation of the optimal solution database allowing for the rapid exploration of treatment plan quality through the evaluation of dose-volume histograms and isodose distributions. PARETO was evaluated for two relatively complex clinical cases, a paranasal sinus and a pancreas case. The end result of each PARETO run was a database of optimal (non-dominated) treatment plans that demonstrated trade-offs between the OAR and PTV fitness functions, which were all equally good in the Pareto-optimal sense (where no one objective can be improved without worsening at least one other). Ferret was able to produce high quality solutions even though a large number of parameters

  17. Knowledge-based IMRT treatment planning for prostate cancer.

    PubMed

    Chanyavanich, Vorakarn; Das, Shiva K; Lee, William R; Lo, Joseph Y

    2011-05-01

    To demonstrate the feasibility of using a knowledge base of prior treatment plans to generate new prostate intensity modulated radiation therapy (IMRT) plans. Each new case would be matched against others in the knowledge base. Once the best match is identified, that clinically approved plan is used to generate the new plan. A database of 100 prostate IMRT treatment plans was assembled into an information-theoretic system. An algorithm based on mutual information was implemented to identify similar patient cases by matching 2D beam's eye view projections of contours. Ten randomly selected query cases were each matched with the most similar case from the database of prior clinically approved plans. Treatment parameters from the matched case were used to develop new treatment plans. A comparison of the differences in the dose-volume histograms between the new and the original treatment plans were analyzed. On average, the new knowledge-based plan is capable of achieving very comparable planning target volume coverage as the original plan, to within 2% as evaluated for D98, D95, and D1. Similarly, the dose to the rectum and dose to the bladder are also comparable to the original plan. For the rectum, the mean and standard deviation of the dose percentage differences for D20, D30, and D50 are 1.8% +/- 8.5%, -2.5% +/- 13.9%, and -13.9% +/- 23.6%, respectively. For the bladder, the mean and standard deviation of the dose percentage differences for D20, D30, and D50 are -5.9% +/- 10.8%, -12.2% +/- 14.6%, and -24.9% +/- 21.2%, respectively. A negative percentage difference indicates that the new plan has greater dose sparing as compared to the original plan. The authors demonstrate a knowledge-based approach of using prior clinically approved treatment plans to generate clinically acceptable treatment plans of high quality. This semiautomated approach has the potential to improve the efficiency of the treatment planning process while ensuring that high quality plans are

  18. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-01-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  19. Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  20. Comparison and Limitations of DVH-Based NTCP Models Derived From 3D-CRT and IMRT Data for Prediction of Gastrointestinal Toxicities in Prostate Cancer Patients by Using Propensity Score Matched Pair Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troeller, Almut; Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-Universität, Munich; Yan, Di, E-mail: dyan@beaumont.edu

    2015-02-01

    Purpose: This study compared normal tissue complication probability (NTCP) modeling of chronic gastrointestinal toxicities following prostate cancer treatment for 2 treatment modalities. Possible factors causing discrepancies in optimal NTCP model parameters between 3-dimensional conformal radiation therapy (3D-CRT) and intensity modulated RT (IMRT) were analyzed and discussed, including the impact of patient characteristics, image guidance, toxicity scoring bias, and NTCP model limitations. Methods and Materials: Rectal wall dose-volume histograms of 1115 patients treated for prostate cancer under an adaptive radiation therapy protocol were used to model gastrointestinal toxicity grade ≥2 (according to Common Terminology Criteria for Adverse Events). A total ofmore » 457 patients were treated with 3D-CRT and 658 with IMRT. 3D-CRT patients were matched to IMRT patients based on various patient characteristics, using a propensity score–based algorithm. Parameters of the Lyman equivalent uniform dose and cut-off dose logistic regression NTCP models were estimated for the 2 matched treatment modalities and the combined group. Results: After they were matched, the 3D-CRT and IMRT groups contained 275 and 550 patients with a large discrepancy of 28.7% versus 7.8% toxicities, respectively (P<.001). For both NTCP models, optimal parameters found for the 3D-CRT groups did not fit the IMRT patients well and vice versa. Models developed for the combined data overestimated NTCP for the IMRT patients and underestimated NTCP for the 3D-CRT group. Conclusions: Our analysis did not reveal a single definitive cause for discrepancies of model parameters between 3D-CRT and IMRT. Patient characteristics and bias in toxicity scoring, as well as image guidance alone, are unlikely causes of the large discrepancy of toxicities. Whether the cause was inherent to the specific NTCP models used in this study needs to be verified by future investigations. Because IMRT is increasingly

  1. Comparison and limitations of DVH-based NTCP models derived from 3D-CRT and IMRT data for prediction of gastrointestinal toxicities in prostate cancer patients by using propensity score matched pair analysis.

    PubMed

    Troeller, Almut; Yan, Di; Marina, Ovidiu; Schulze, Derek; Alber, Markus; Parodi, Katia; Belka, Claus; Söhn, Matthias

    2015-02-01

    This study compared normal tissue complication probability (NTCP) modeling of chronic gastrointestinal toxicities following prostate cancer treatment for 2 treatment modalities. Possible factors causing discrepancies in optimal NTCP model parameters between 3-dimensional conformal radiation therapy (3D-CRT) and intensity modulated RT (IMRT) were analyzed and discussed, including the impact of patient characteristics, image guidance, toxicity scoring bias, and NTCP model limitations. Rectal wall dose-volume histograms of 1115 patients treated for prostate cancer under an adaptive radiation therapy protocol were used to model gastrointestinal toxicity grade ≥2 (according to Common Terminology Criteria for Adverse Events). A total of 457 patients were treated with 3D-CRT and 658 with IMRT. 3D-CRT patients were matched to IMRT patients based on various patient characteristics, using a propensity score-based algorithm. Parameters of the Lyman equivalent uniform dose and cut-off dose logistic regression NTCP models were estimated for the 2 matched treatment modalities and the combined group. After they were matched, the 3D-CRT and IMRT groups contained 275 and 550 patients with a large discrepancy of 28.7% versus 7.8% toxicities, respectively (P<.001). For both NTCP models, optimal parameters found for the 3D-CRT groups did not fit the IMRT patients well and vice versa. Models developed for the combined data overestimated NTCP for the IMRT patients and underestimated NTCP for the 3D-CRT group. Our analysis did not reveal a single definitive cause for discrepancies of model parameters between 3D-CRT and IMRT. Patient characteristics and bias in toxicity scoring, as well as image guidance alone, are unlikely causes of the large discrepancy of toxicities. Whether the cause was inherent to the specific NTCP models used in this study needs to be verified by future investigations. Because IMRT is increasingly used clinically, it is important that appropriate NTCP model

  2. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  3. Fully-reversible optical sensor for hydrogen peroxide with fast response.

    PubMed

    Ding, Longjiang; Chen, Siyu; Zhang, Wei; Zhang, Yinglu; Wang, Xu-Dong

    2018-05-09

    A fully reversible optical sensor for hydrogen peroxide with fast response is presented. The sensor was fabricated by in-situ growing ultra-small platinum nanoparticles (PtNPs) inside the pores of fibrous silica particles (KCC-1). The nanocomposite was then embedded into a hydrogel matrix and form a sensor layer, the immobilized PtNPs can catalytically convert hydrogen peroxide into molecular oxygen, which is measured via luminescent quenching based oxygen sensor underneath. Owing to the high porosity and permeability of KCC-1 and high local concentration of PtNPs, the sensor exhibits fast response (less than 1 min) and full reversibility. The measurement range of the sensor covers 1.0 μM to 10.0 mM, and very small amount of sample is required during measurement (200 μL). Because of its high stability, excellent reversibility and selectivity, and extremely fast response, the sensor could fulfill all industry requirements for real-time measurement, and fill market vacancy.

  4. SU-E-T-629: Feasibility Study of Treating Multiple Brain Tumors with Large Number of Noncoplanar IMRT Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, P; Ma, L

    Purpose: To study the feasibility of treating multiple brain tumors withlarge number of noncoplanar IMRT beams. Methods: Thirty beams are selected from 390 deliverable beams separated by six degree in 4pi space. Beam selection optimization is based on a column generation algorithm. MLC leaf size is 2 mm. Dose matrices are calculated with collapsed cone convolution and superposition method in a 2 mm by 2mm by 2 mm grid. Twelve brain tumors of various shapes, sizes and locations are used to generate four plans treating 3, 6, 9 and 12 tumors. The radiation dose was 20 Gy prescribed to themore » 100% isodose line. Dose Volume Histograms for tumor and brain were compared. Results: All results are based on a 2 mm by 2 mm by 2 mm CT grid. For 3, 6, 9 and 12 tumor plans, minimum tumor doses are all 20 Gy. Mean tumor dose are 20.0, 20.1, 20.1 and 20.1 Gy. Maximum tumor dose are 23.3, 23.6, 25.4 and 25.4 Gy. Mean ventricles dose are 0.7, 1.7, 2.4 and 3.1 Gy.Mean subventricular zone dose are 0.8, 1.3, 2.2 and 3.2 Gy. Average Equivalent uniform dose (gEUD) values for tumor are 20.1, 20.1, 20.2 and 20.2 Gy. The conformity index (CI) values are close to 1 for all 4 plans. The gradient index (GI) values are 2.50, 2.05, 2.09 and 2.19. Conclusion: Compared with published Gamma Knife treatment studies, noncoplanar IMRT treatment plan is superior in terms of dose conformity. Due to maximum limit of beams per plan, Gamma knife has to treat multiple tumors separately in different plans. Noncoplanar IMRT plans theoretically can be delivered in a single plan on any modern linac with an automated couch and image guidance. This warrants further study of using noncoplanar IMRT as a viable treatment solution for multiple brain tumors.« less

  5. SU-C-BRC-04: Efficient Dose Calculation Algorithm for FFF IMRT with a Simplified Bivariate Gaussian Source Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, F; Park, J; Barraclough, B

    2016-06-15

    Purpose: To develop an efficient and accurate independent dose calculation algorithm with a simplified analytical source model for the quality assurance and safe delivery of Flattening Filter Free (FFF)-IMRT on an Elekta Versa HD. Methods: The source model consisted of a point source and a 2D bivariate Gaussian source, respectively modeling the primary photons and the combined effect of head scatter, monitor chamber backscatter and collimator exchange effect. The in-air fluence was firstly calculated by back-projecting the edges of beam defining devices onto the source plane and integrating the visible source distribution. The effect of the rounded MLC leaf end,more » tongue-and-groove and interleaf transmission was taken into account in the back-projection. The in-air fluence was then modified with a fourth degree polynomial modeling the cone-shaped dose distribution of FFF beams. Planar dose distribution was obtained by convolving the in-air fluence with a dose deposition kernel (DDK) consisting of the sum of three 2D Gaussian functions. The parameters of the source model and the DDK were commissioned using measured in-air output factors (Sc) and cross beam profiles, respectively. A novel method was used to eliminate the volume averaging effect of ion chambers in determining the DDK. Planar dose distributions of five head-and-neck FFF-IMRT plans were calculated and compared against measurements performed with a 2D diode array (MapCHECK™) to validate the accuracy of the algorithm. Results: The proposed source model predicted Sc for both 6MV and 10MV with an accuracy better than 0.1%. With a stringent gamma criterion (2%/2mm/local difference), the passing rate of the FFF-IMRT dose calculation was 97.2±2.6%. Conclusion: The removal of the flattening filter represents a simplification of the head structure which allows the use of a simpler source model for very accurate dose calculation. The proposed algorithm offers an effective way to ensure the safe delivery

  6. Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Davis, Scott C.

    Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank dopedmore » with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real

  7. TU-G-BRB-01: Continuous Path Optimization for Non-Coplanar Variant SAD IMRT Delivery Using C-Arm Machines.

    PubMed

    Ruan, D; Dong, P; Low, D; Sheng, K

    2012-06-01

    To develop and investigate a continuous path optimization methodology to traverse prescribed non-coplanar IMRT beams with variant SADs, by orchestrating the couch and gantry movement with zero-collision, minimal patient motion consequence and machine travel time. We convert the given collision zone definition and the prescribed beam location/angles to a tumor-centric coordinate, and represent the traversing path as a continuous open curve. We proceed to optimize a composite objective function consisting of (1) a strong attraction energy to ensure all prescribed beams are en-route, (2) a penalty for patient-motion inducing couch motion, and (3) a penalty for travel-time inducing overall path-length. Feasibility manifold is defined as complement to collision zone and the optimization is performed with a level set representation evolved with variational flows. The proposed method has been implemented and tested on clinically derived data. In the absence of any existing solutions for the same problem, we validate by: (1) visual inspecting the generated path rendered in the 3D tumor-centric coordinates, and (2) comparing with a traveling-salesman (TSP) solution obtained from relaxing the variant SADs and continuous collision-avoidance requirement. The proposed method has generated delivery paths that are smooth and intuitively appealing. Under relaxed settings, our results outperform the generic TSP solutions and agree with specially tuned versions. We have proposed a novel systematic approach that automatically determines the continuous path to cover non-coplanar, varying SAD IMRT beams. The proposed approach accommodates patient-specific collision zone definition and ensures its avoidance continuously. The differential penalty to couch and gantry motions allows customizable tradeoff between patient geometry stability and delivery efficiency. This development paves the path to achieve safe, accurate and efficient non-coplanar IMRT delivery with the advanced robotic

  8. Rectal balloon use limits vaginal displacement, rectal dose, and rectal toxicity in patients receiving IMRT for postoperative gynecological malignancies.

    PubMed

    Wu, Cheng-Chia; Wuu, Yen-Ruh; Yanagihara, Theodore; Jani, Ashish; Xanthopoulos, Eric P; Tiwari, Akhil; Wright, Jason D; Burke, William M; Hou, June Y; Tergas, Ana I; Deutsch, Israel

    2018-01-01

    Pelvic radiotherapy for gynecologic malignancies traditionally used a 4-field box technique. Later trials have shown the feasibility of using intensity-modulated radiotherapy (IMRT) instead. But vaginal movement between fractions is concerning when using IMRT due to greater conformality of the isodose curves to the target and the resulting possibility of missing the target while the vagina is displaced. In this study, we showed that the use of a rectal balloon during treatment can decrease vaginal displacement, limit rectal dose, and limit acute and late toxicities. Little is known regarding the use of a rectal balloon (RB) in treating patients with IMRT in the posthysterectomy setting. We hypothesize that the use of an RB during treatment can limit rectal dose and acute and long-term toxicities, as well as decrease vaginal cuff displacement between fractions. We performed a retrospective review of patients with gynecological malignancies who received postoperative IMRT with the use of an RB from January 1, 2012 to January 1, 2015. Rectal dose constraint was examined as per Radiation Therapy Oncology Group (RTOG) 1203 and 0418. Daily cone beam computed tomography (CT) was performed, and the average (avg) displacement, avg magnitude, and avg magnitude of vector were calculated. Toxicity was reported according to RTOG acute radiation morbidity scoring criteria. Acute toxicity was defined as less than 90 days from the end of radiation treatment. Late toxicity was defined as at least 90 days after completing radiation. Twenty-eight patients with postoperative IMRT with the use of an RB were examined and 23 treatment plans were reviewed. The avg rectal V40 was 39.3% ± 9.0%. V30 was65.1% ± 10.0%. V50 was 0%. Separate cone beam computed tomography (CBCT) images (n = 663) were reviewed. The avg displacement was as follows: superior 0.4 + 2.99 mm, left 0.23 ± 4.97 mm, and anterior 0.16 ± 5.18 mm. The avg magnitude of displacement was superior

  9. General strategy for the protection of organs at risk in IMRT therapy of a moving body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abolfath, Ramin M.; Papiez, Lech

    2009-07-15

    We investigated protection strategies of organs at risk (OARs) in intensity modulated radiation therapy (IMRT). These strategies apply to delivery of IMRT to moving body anatomies that show relative displacement of OAR in close proximity to a tumor target. We formulated an efficient genetic algorithm which makes it possible to search for global minima in a complex landscape of multiple irradiation strategies delivering a given, predetermined intensity map to a target. The optimal strategy was investigated with respect to minimizing the dose delivered to the OAR. The optimization procedure developed relies on variability of all parameters available for control ofmore » radiation delivery in modern linear accelerators, including adaptation of leaf trajectories and simultaneous modification of beam dose rate during irradiation. We showed that the optimization algorithms lead to a significant reduction in the dose delivered to OAR in cases where organs at risk move relative to a treatment target.« less

  10. Development of independent MU/treatment time verification algorithm for non-IMRT treatment planning: A clinical experience

    NASA Astrophysics Data System (ADS)

    Tatli, Hamza; Yucel, Derya; Yilmaz, Sercan; Fayda, Merdan

    2018-02-01

    The aim of this study is to develop an algorithm for independent MU/treatment time (TT) verification for non-IMRT treatment plans, as a part of QA program to ensure treatment delivery accuracy. Two radiotherapy delivery units and their treatment planning systems (TPS) were commissioned in Liv Hospital Radiation Medicine Center, Tbilisi, Georgia. Beam data were collected according to vendors' collection guidelines, and AAPM reports recommendations, and processed by Microsoft Excel during in-house algorithm development. The algorithm is designed and optimized for calculating SSD and SAD treatment plans, based on AAPM TG114 dose calculation recommendations, coded and embedded in MS Excel spreadsheet, as a preliminary verification algorithm (VA). Treatment verification plans were created by TPSs based on IAEA TRS 430 recommendations, also calculated by VA, and point measurements were collected by solid water phantom, and compared. Study showed that, in-house VA can be used for non-IMRT plans MU/TT verifications.

  11. Adjuvant helical IMRT by tomotherapy for bulky adrenocortical carcinoma operated with positive margins: a case report.

    PubMed

    Delmastro, Elena; Garibaldi, Elisabetta; Gabriele, Domenico; Bresciani, Sara; Cattari, Gabriella; Dia, Amalia Di; Manini, Claudia; Collura, Devis; Redda, Maria Grazia Ruo; Gabriele, Pietro

    2016-11-11

    Adrenocortical carcinoma (ACC) is a rare tumor in the adult. The main therapy is surgery but in some cases radiotherapy may be needed to control the disease locally. A patient with a surgically removed bulky ACC and pathologic finding of a positive margin was treated at our center by adjuvant mitotane and radiotherapy using an intensity-modulated radiation therapy (IMRT)/image-guided radiotherapy (IGRT) technique by tomotherapy. Dose prescriptions were 63 Gy on the surgical bed and 50.4 Gy on the lymphatic drainage in 28 sessions. Patient compliance was good with no evidence of acute or late toxicities. Thirty months after radiotherapy, the patient is alive without evidence of disease checked by 18F-fluorodeoxyglucose positron emission tomography/computed tomography and without any complication. In patients with adverse prognostic features, the delivery of adequate adjuvant radiotherapy doses with IMRT and daily IGRT is feasible and safe and could result in an improved outcome for patients with ACC.

  12. Volumetric modulation arc radiotherapy with flattening filter-free beams compared with static gantry IMRT and 3D conformal radiotherapy for advanced esophageal cancer: a feasibility study.

    PubMed

    Nicolini, Giorgia; Ghosh-Laskar, Sarbani; Shrivastava, Shyam Kishore; Banerjee, Sushovan; Chaudhary, Suresh; Agarwal, Jai Prakash; Munshi, Anusheel; Clivio, Alessandro; Fogliata, Antonella; Mancosu, Pietro; Vanetti, Eugenio; Cozzi, Luca

    2012-10-01

    A feasibility study was performed to evaluate RapidArc (RA), and the potential benefit of flattening filter-free beams, on advanced esophageal cancer against intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT). The plans for 3D-CRT and IMRT with three to seven and five to seven fixed beams were compared against double-modulated arcs with avoidance sectors to spare the lungs for 10 patients. All plans were optimized for 6-MV photon beams. The RA plans were studied for conventional and flattening filter-free (FFF) beams. The objectives for the planning target volume were the volume receiving ≥ 95% or at most 107% of the prescribed dose of <1% with a dose prescription of 59.4 Gy. For the organs at risk, the lung volume (minus the planning target volume) receiving ≥ 5 Gy was <60%, that receiving 20 Gy was <20%-30%, and the mean lung dose was <15.0 Gy. The heart volume receiving 45 Gy was <20%, volume receiving 30 Gy was <50%. The spinal dose received by 1% was <45 Gy. The technical delivery parameters for RA were assessed to compare the normal and FFF beam characteristics. RA and IMRT provided equivalent coverage and homogeneity, slightly superior to 3D-CRT. The conformity index was 1.2 ± 0.1 for RA and IMRT and 1.5 ± 0.2 for 3D-CRT. The mean lung dose was 12.2 ± 4.5 for IMRT, 11.3 ± 4.6 for RA, and 10.8 ± 4.4 for RA with FFF beams, 18.2 ± 8.5 for 3D-CRT. The percentage of volume receiving ≥ 20 Gy ranged from 23.6% ± 9.1% to 21.1% ± 9.7% for IMRT and RA (FFF beams) and 39.2% ± 17.0% for 3D-CRT. The heart and spine objectives were met by all techniques. The monitor units for IMRT and RA were 457 ± 139, 322 ± 20, and 387 ± 40, respectively. RA with FFF beams showed, compared with RA with normal beams, a ∼20% increase in monitor units per Gray, a 90% increase in the average dose rate, and 20% reduction in beam on time (owing to different gantry speeds). RA demonstrated, compared with conventional IMRT, a

  13. Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebers, Jeffrey V.; Keall, Paul J.; Wu Qiuwen

    2005-10-01

    Purpose: The purpose of this study is to determine dose delivery errors that could result from random and systematic setup errors for head-and-neck patients treated using the simultaneous integrated boost (SIB)-intensity-modulated radiation therapy (IMRT) technique. Methods and Materials: Twenty-four patients who participated in an intramural Phase I/II parotid-sparing IMRT dose-escalation protocol using the SIB treatment technique had their dose distributions reevaluated to assess the impact of random and systematic setup errors. The dosimetric effect of random setup error was simulated by convolving the two-dimensional fluence distribution of each beam with the random setup error probability density distribution. Random setup errorsmore » of {sigma} = 1, 3, and 5 mm were simulated. Systematic setup errors were simulated by randomly shifting the patient isocenter along each of the three Cartesian axes, with each shift selected from a normal distribution. Systematic setup error distributions with {sigma} = 1.5 and 3.0 mm along each axis were simulated. Combined systematic and random setup errors were simulated for {sigma} = {sigma} = 1.5 and 3.0 mm along each axis. For each dose calculation, the gross tumor volume (GTV) received by 98% of the volume (D{sub 98}), clinical target volume (CTV) D{sub 90}, nodes D{sub 90}, cord D{sub 2}, and parotid D{sub 50} and parotid mean dose were evaluated with respect to the plan used for treatment for the structure dose and for an effective planning target volume (PTV) with a 3-mm margin. Results: Simultaneous integrated boost-IMRT head-and-neck treatment plans were found to be less sensitive to random setup errors than to systematic setup errors. For random-only errors, errors exceeded 3% only when the random setup error {sigma} exceeded 3 mm. Simulated systematic setup errors with {sigma} = 1.5 mm resulted in approximately 10% of plan having more than a 3% dose error, whereas a {sigma} = 3.0 mm resulted in half of the plans

  14. Quality of life after parotid-sparing IMRT for head-and-neck cancer: a prospective longitudinal study.

    PubMed

    Lin, Alexander; Kim, Hyungjin M; Terrell, Jeffrey E; Dawson, Laura A; Ship, Jonathan A; Eisbruch, Avraham

    2003-09-01

    Parotid-sparing intensity-modulated radiotherapy (IMRT) for head-and-neck cancer reduces xerostomia compared with standard RT. To assess potential improvements in broader aspects of quality of life (QOL), we initiated a study of patient-reported QOL and its predictors after IMRT. This was a prospective longitudinal study of head-and-neck cancer patients receiving multisegmental static IMRT. Patients were given a validated xerostomia questionnaire (XQ), and a validated head-and-neck cancer-related QOL questionnaire consisting of four multi-item domains: Eating, Communication, Pain, and Emotion. The Eating domain contains one question (total of six) asking directly about xerostomia. In both questionnaires, higher scores denote worse symptoms or QOL. The questionnaires and measurements of salivary output from the major glands were completed before RT started (pre-RT) and at 3, 6, and 12 months after RT. The association between the QOL scores and patient-, tumor-, and therapy-related factors was assessed using the random effects model. Thirty-six patients participating in the study completed the questionnaires through 12 months. The XQ scores worsened significantly at 3 months compared with the pre-RT scores, but later they improved gradually through 12 months (p = 0.003), in parallel with an increase in the salivary output from the spared salivary glands. The QOL summary scores were stable between the baseline (pre-RT) and 3 months after RT scores. Patients receiving postoperative RT (whose pre-RT questionnaires were taken a few weeks after surgery) tended to have improved scores after RT, reflecting the subsidence of acute postoperative sequelae, compared with a tendency toward worsened scores in patients receiving definitive RT. After 3 months, statistically significant improvement was noted in the summary QOL scores for all patients, through 12 months after RT (p = 0.01). The salivary flow rates, tumor doses, mean oral cavity dose, age, gender, sites or stages of

  15. Consumers' conceptualization of ultra-processed foods.

    PubMed

    Ares, Gastón; Vidal, Leticia; Allegue, Gimena; Giménez, Ana; Bandeira, Elisa; Moratorio, Ximena; Molina, Verónika; Curutchet, María Rosa

    2016-10-01

    Consumption of ultra-processed foods has been associated with low diet quality, obesity and other non-communicable diseases. This situation makes it necessary to develop educational campaigns to discourage consumers from substituting meals based on unprocessed or minimally processed foods by ultra-processed foods. In this context, the aim of the present work was to investigate how consumers conceptualize the term ultra-processed foods and to evaluate if the foods they perceive as ultra-processed are in concordance with the products included in the NOVA classification system. An online study was carried out with 2381 participants. They were asked to explain what they understood by ultra-processed foods and to list foods that can be considered ultra-processed. Responses were analysed using inductive coding. The great majority of the participants was able to provide an explanation of what ultra-processed foods are, which was similar to the definition described in the literature. Most of the participants described ultra-processed foods as highly processed products that usually contain additives and other artificial ingredients, stressing that they have low nutritional quality and are unhealthful. The most relevant products for consumers' conceptualization of the term were in agreement with the NOVA classification system and included processed meats, soft drinks, snacks, burgers, powdered and packaged soups and noodles. However, some of the participants perceived processed foods, culinary ingredients and even some minimally processed foods as ultra-processed. This suggests that in order to accurately convey their message, educational campaigns aimed at discouraging consumers from consuming ultra-processed foods should include a clear definition of the term and describe some of their specific characteristics, such as the type of ingredients included in their formulation and their nutritional composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. SU-F-T-269: Preliminary Experience of Kuwait Cancer Control Center (KCCC) On IMRT Treatment Planning and Pre-Treatment Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, TKR; Sherif, M; Subramanian, N

    Purpose: The complexity of IMRT delivery requires pre-treatment quality assurance and plan verification. KCCC has implemented IMRT clinically in few sites and will extend to all sites. Recently, our Varian linear accelerator and Eclipse planning system were upgraded from Millennium 80 to 120 Multileaf Collimator (MLC) and from v8.6 to 11.0 respectively. Our preliminary experience on the pre-treatment quality assurance verification is discussed. Methods: Eight Breast, Three Prostate and One Hypopharynx cancer patients were planned with step and shoot IMRT. All breast cases were planned before the upgrade with 60% cases treated. The ICRU 83 recommendations were followed for themore » dose prescription and constraints to OAR for all cases. Point dose measurement was done with CIRS cylindrical phantom and PTW 0.125 cc ionization chamber. Measured dose was compared with calculated dose at the point of measurement. Map CHECK diode array phantom was used for the plan verification. Planned and measured doses were compared by applying gamma index of 3% (dose difference) / 3 mm DTA (average distance to agreement). For all cases, a plan is considered to be successful if more than 95% of the tested diodes pass the gamma test. A prostate case was chosen to compare the plan verification before and after the upgrade. Results: Point dose measurement results were in agreement with the calculated doses. The maximum deviation observed was 2.3%. The passing rate of average gamma index was measured higher than 97% for the plan verification of all cases. Similar result was observed for plan verification of the chosen prostate case before and after the upgrade. Conclusion: Our preliminary experience from the obtained results validates the accuracy of our QA process and provides confidence to extend IMRT to all sites in Kuwait.« less

  17. NOTE: MCDE: a new Monte Carlo dose engine for IMRT

    NASA Astrophysics Data System (ADS)

    Reynaert, N.; DeSmedt, B.; Coghe, M.; Paelinck, L.; Van Duyse, B.; DeGersem, W.; DeWagter, C.; DeNeve, W.; Thierens, H.

    2004-07-01

    A new accurate Monte Carlo code for IMRT dose computations, MCDE (Monte Carlo dose engine), is introduced. MCDE is based on BEAMnrc/DOSXYZnrc and consequently the accurate EGSnrc electron transport. DOSXYZnrc is reprogrammed as a component module for BEAMnrc. In this way both codes are interconnected elegantly, while maintaining the BEAM structure and only minimal changes to BEAMnrc.mortran are necessary. The treatment head of the Elekta SLiplus linear accelerator is modelled in detail. CT grids consisting of up to 200 slices of 512 × 512 voxels can be introduced and up to 100 beams can be handled simultaneously. The beams and CT data are imported from the treatment planning system GRATIS via a DICOM interface. To enable the handling of up to 50 × 106 voxels the system was programmed in Fortran95 to enable dynamic memory management. All region-dependent arrays (dose, statistics, transport arrays) were redefined. A scoring grid was introduced and superimposed on the geometry grid, to be able to limit the number of scoring voxels. The whole system uses approximately 200 MB of RAM and runs on a PC cluster consisting of 38 1.0 GHz processors. A set of in-house made scripts handle the parallellization and the centralization of the Monte Carlo calculations on a server. As an illustration of MCDE, a clinical example is discussed and compared with collapsed cone convolution calculations. At present, the system is still rather slow and is intended to be a tool for reliable verification of IMRT treatment planning in the case of the presence of tissue inhomogeneities such as air cavities.

  18. Ultra-fast quantitative imaging using ptychographic iterative engine based digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    Sun, Aihui; Tian, Xiaolin; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-01-01

    As a lensfree imaging technique, ptychographic iterative engine (PIE) method can provide both quantitative sample amplitude and phase distributions avoiding aberration. However, it requires field of view (FoV) scanning often relying on mechanical translation, which not only slows down measuring speed, but also introduces mechanical errors decreasing both resolution and accuracy in retrieved information. In order to achieve high-accurate quantitative imaging with fast speed, digital micromirror device (DMD) is adopted in PIE for large FoV scanning controlled by on/off state coding by DMD. Measurements were implemented using biological samples as well as USAF resolution target, proving high resolution in quantitative imaging using the proposed system. Considering its fast and accurate imaging capability, it is believed the DMD based PIE technique provides a potential solution for medical observation and measurements.

  19. Feasibility of CBCT dosimetry for IMRT using a normoxic polymethacrylic-acid gel dosimeter

    NASA Astrophysics Data System (ADS)

    Bong, Ji Hye; Kwon, Soo-Il; Kim, Kum Bae; Kim, Mi Suk; Jung, Hai Jo; Ji, Young Hoon; Ko, In Ok; Park, Ji Ae; Kim, Kyeong Min

    2013-09-01

    The purpose of this study is to evaluate the availability of cone-beam computed tomography(CBCT) for gel dosimetry. The absorbed dose was analyzed by using intensity-modulated radiation therapy(IMRT) to irradiate several tumor shapes with a calculated dose and several tumor acquiring images with CBCT in order to verify the possibility of reading a dose on the polymer gel dosimeter by means of the CBCT image. The results were compared with those obtained using magnetic resonance imaging(MRI) and CT. The linear correlation coefficients at doses less than 10 Gy for the polymer gel dosimeter were 0.967, 0.933 and 0.985 for MRI, CT and CBCT, respectively. The dose profile was symmetric on the basis of the vertical axis in a circular shape, and the uniformity was 2.50% for the MRI and 8.73% for both the CT and the CBCT. In addition, the gradient in the MR image of the gel dosimeter irradiated in an H shape was 109.88 while the gradients of the CT and the CBCT were 71.95 and 14.62, respectively. Based on better image quality, the present study showed that CBCT dosimetry for IMRT could be restrictively performed using a normoxic polymethacrylic-acid gel dosimeter.

  20. High-performance rechargeable batteries with nanoparticle active materials, photochemically regenerable active materials, and fast solid-state ion conductors

    DOEpatents

    Farmer, Joseph C.

    2017-04-04

    A high-performance rechargeable battery using ultra-fast ion conductors. In one embodiment the rechargeable battery apparatus includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanomaterial in the enclosure, and a heat transfer unit.