Sample records for ultra green aircraft

  1. Subsonic Ultra Green Aircraft Research

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2011-01-01

    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  2. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  3. Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2015-01-01

    This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals

  4. Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.

    2015-01-01

    This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.

  5. Subsonic Ultra Green Aircraft Research: Phase II- Volume III-Truss Braced Wing Aeroelastic Test Report

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher

    2014-01-01

    This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.

  6. Feasibility and clinical utility of ultra-widefield indocyanine green angiography.

    PubMed

    Klufas, Michael A; Yannuzzi, Nicolas A; Pang, Claudine E; Srinivas, Sowmya; Sadda, Srinivas R; Freund, K Bailey; Kiss, Szilárd

    2015-03-01

    To evaluate the feasibility and clinical utility of a novel noncontact scanning laser ophthalmoscope-based ultra-widefield indocyanine green angiographic system. Ultra-widefield indocyanine green angiographic images were captured using a modified Optos P200Tx that produced high-resolution images of the choroidal vasculature with up to a 200° field. Ultra-widefield indocyanine green angiography was performed on patients with a variety of retinal conditions to assess utility of this imaging technique for diagnostic purposes and disease treatment monitoring. Ultra-widefield indocyanine green angiography was performed on 138 eyes of 69 patients. Mean age was 58 ± 16.9 years (range, 24-85 years). The most common ocular pathologies imaged included central serous chorioretinopathy (24 eyes), uveitis (various subtypes, 16 eyes), age-related macular degeneration (12 eyes), and polypoidal choroidal vasculopathy (4 eyes). In all eyes evaluated with ultra-widefield indocyanine green angiography, high-resolution images of choroidal and retinal circulation were obtained with sufficient detail out to 200° of the fundus. In this series of 138 eyes, scanning laser ophthalmoscope-based ultra-widefield indocyanine green angiography was clinically practical and provided detailed images of both the central and peripheral choroidal circulation. Future studies are needed to refine the clinical value of this imaging modality and the significance of peripheral choroidal vascular changes in the diagnosis, monitoring, and treatment of ocular diseases.

  7. Load test set-up for the Airmass Sunburst Ultra-Light Aircraft

    NASA Technical Reports Server (NTRS)

    Krug, Daniel W.; Smith, Howard W.

    1993-01-01

    The purpose of this project was to set up, instrument, and test a Sunburst Ultra-Light aircraft. The intentions of the project were that the aircraft would need to be suspended from the test stand, leveled in the stand, the strain gauges tested and wired to the test equipment, and finally, the aircraft would be destroyed to obtain the failing loads. All jobs were completed, except for the destruction of the aircraft. This notebook shows the group's progress as these tasks were completed, and the following section attempts to explain the photographs in the notebook.

  8. Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2004-01-01

    The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.

  9. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  10. The Design of an Ultra High Capacity Long Range Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.; Bucci, Gregory; Hare, Angela; Szolwinski, Matthew

    1993-01-01

    This paper examines the design of a 650 passenger aircraft with 8000 nautical mile range to reduce seat mile cost and to reduce airport and airway congestion. This design effort involves the usual issues that require trades between technologies, but must also include consideration of: airport terminal facilities; passenger loading and unloading; and, defeating the 'square-cube' law to design large structures. This paper will review the long range ultra high capacity or megatransport design problem and the variety of solutions developed by senior student design teams at Purdue University.

  11. New Mobile Lidar Systems Aboard Ultra-Light Aircrafts

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Shang, Xiaoxia; Totems, Julien; Marnas, Fabien; Sanak, Joseph

    2013-04-01

    Two lidar systems embedded on ultra light aircraft (ULA) flew over the Rhone valley, south-east of France, to characterize the vertical extend of pollution aerosols in this area influenced by large industrial sites. The main industrial source is the Etang de Berre (43°28' N, 5°01' E), close to Marseille city. The emissions are mainly due to metallurgy and petrochemical factories. Traffic related to Marseille's area contribute to pollution with its ~1500000 inhabitants. Note that the maritime traffic close to Marseille may play an important role due to its position as the leading French harbor . For the previous scientific purpose and for the first time on ULA, we flew a mini-N2 Raman lidar system to help the assessment of the aerosol optical properties. Another Ultra-Violet Rayleigh-Mie lidar has been integrated aboard a second ULA. The lidars are compact and eye safe instruments. They operate at the wavelength of 355 nm with a sampling along the line-of-sight of 0.75 m. Different flights plans were tested to use the two lidars in synergy. We will present the different approaches and discuss both their advantages and limitations. Acknowledgements: the lidar systems have been developed by CEA. They have been deployed with the support of FERRING France. We acknowledge the ULA pilots Franck Toussaint, François Bernard and José Coutet, and the Air Creation ULA Company for logistical help during the ULA campaign.

  12. High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device

    NASA Astrophysics Data System (ADS)

    Thangavel, Ranjith; Kannan, Aravindaraj G.; Ponraj, Rubha; Thangavel, Vigneysh; Kim, Dong-Won; Lee, Yun-Sung

    2018-04-01

    Development of supercapacitors with high energy density and long cycle life using sustainable materials for next-generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 °C) with maximum energy densities of ∼174 Wh kg-1 (25 °C), and 177 Wh kg-1 (60 °C) - based on active mass of both electrodes. Furthermore, an ultra-high specific power of ∼20 kW kg-1 along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 °C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.

  13. Evaluation of an Aircraft Concept With Over-Wing, Hydrogen-Fueled Engines for Reduced Noise and Emissions

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Olson, Erik D.

    2002-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A strut-braced wing configuration with overwing, ultra-high bypass ratio, hydrogen fueled turbofan engines is considered. Estimated noise and emission characteristics are compared to a conventional configuration designed for the same mission and significant benefits are identified. The design challenges and technology issues which would have to be addressed to make the concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program seeks to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify enabling advanced technology requirements for the concepts.

  14. The Ultra Light Aircraft Testing

    NASA Technical Reports Server (NTRS)

    Smith, Howard W.

    1993-01-01

    The final report for grant NAG1-345 is presented. Recently, the bulk of the work that the grant has supported has been in the areas of ride quality and the structural analysis and testing of ultralight aircraft. The ride quality work ended in May 1989. Hence, the papers presented in this final report are concerned with ultralight aircraft.

  15. Ultra-widefield imaging with autofluorescence and indocyanine green angiography in central serous chorioretinopathy.

    PubMed

    Pang, Claudine E; Shah, Vinnie P; Sarraf, David; Freund, K Bailey

    2014-08-01

    To describe the spectrum of ultra-widefield autofluorescence (AF) and indocyanine green (ICG) angiographic findings in central serous chorioretinopathy (CSC). Retrospective observational case series. In 37 patients, 65 eyes with CSC from 2 vitreoretinal clinical practices were imaged using ultra-widefield AF and 24 of these eyes with ultra-widefield ICG angiography. Images were correlated with clinical findings and spectral-domain optical coherence tomography (OCT). In 37 (57%) eyes, a variety of altered AF patterns, including gravitational tracts, extended beyond the posterior 50 degrees of retina. Hyper-AF corresponded to areas of subretinal fluid (SRF) on spectral-domain OCT and was found to persist in 44 (70%) eyes for up to 8 years despite resolution of SRF. These areas corresponded to outer retinal atrophy with viable retinal pigment epithelium (RPE) on spectral-domain OCT and may be explained by the unmasking of normal background RPE AF. Ultra-widefield ICG angiography revealed dilated choroidal vessels and choroidal hyperpermeability in areas corresponding to altered AF on ultra-widefield AF in all 24 eyes. In 20 (83.3%) eyes, dilated vessels were observed in association with 1 or more congested vortex veins ampullas, suggesting that outflow congestion may be a contributing factor to the pathogenesis of CSC. Ultra-widefield AF and ICG angiography in CSC revealed more widespread disease in a single image than with standard field imaging and may be useful for identifying peripheral areas of previous or ongoing SRF and choroidal hyperpermeability that can assist in the diagnosis of CSC, surveillance of recurrent disease and treatment of active disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The hyper-fluorescent transitional bands in ultra-late phase of indocyanine green angiography in chronic central serous chorioretinopathy.

    PubMed

    Hua, Rui; Yao, Kai; Xia, Fan; Li, Jun; Guo, Lei; Yang, Guoxing; Tao, Jun

    2016-03-01

    Chronic central serous chorioretinopathy (CSCR) is regarded as a type of severe diffuse retinal pigment epitheliopathy. There is an atrophic tract at level of retinal pigment epithelium (RPE) due to hyper-permeability of choroidal vessels, along with photoreceptor (PR) atrophy. Indocyanine green angiography (ICGA) is considered a gold standard for diagnosis. The purpose of this work is to investigate the hyper-fluorescent transitional bands (HFTB) between hypo-fluorescent and normal regions of the retina in the ultra-late phase of ICGA in CSCR. 26 chronic CSCR eyes and 12 relative normal eyes received spectral domain optical coherence tomography (SD-OCT), and ICGA at the 24th hour after indocyanine green (ICG) intravenous injection. In the ultra-late phase, images showed homogenous fluorescence in all normal eyes. On the contrary, geographical hypofluorescent lesions with atrophy of RPE was noted in 26 chronic CSCR eyes. Moreover, HFTB with intact RPE and disrupted PR was detected in 20 out of 26 chronic CSCR eyes (76.9%). The HFTB may indicate the early damage in chronic CSCR. Ultra-late ICGA can monitor not only metabolic status by endogenous melanin, but also membrane function in RPE by exogenous ICG molecule. © 2015 Wiley Periodicals, Inc.

  17. Aerodynamic interference effects on tilting proprotor aircraft. [using the Green function method

    NASA Technical Reports Server (NTRS)

    Soohoo, P.; Morino, L.; Noll, R. B.; Ham, N. D.

    1977-01-01

    The Green's function method was used to study tilting proprotor aircraft aerodynamics with particular application to the problem of the mutual interference of the wing-fuselage-tail-rotor wake configuration. While the formulation is valid for fully unsteady rotor aerodynamics, attention was directed to steady state aerodynamics, which was achieved by replacing the rotor with the actuator disk approximation. The use of an actuator disk analysis introduced a mathematical singularity into the formulation; this problem was studied and resolved. The pressure distribution, lift, and pitching moment were obtained for an XV-15 wing-fuselage-tail rotor configuration at various flight conditions. For the flight configurations explored, the effects of the rotor wake interference on the XV-15 tilt rotor aircraft yielded a reduction in the total lift and an increase in the nose-down pitching moment. This method provides an analytical capability that is simple to apply and can be used to investigate fuselage-tail rotor wake interference as well as to explore other rotor design problem areas.

  18. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The e-Genius aircraft crew wait as their aircraft is inspected during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  19. 36 CFR 327.4 - Aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices or..., material or equipment by parachute, balloon, helicopter or other means onto or from project lands or waters...

  20. Assessment of ECG and respiration recordings from simulated emergency landings of ultra light aircraft.

    PubMed

    Bruna, Ondřej; Levora, Tomáš; Holub, Jan

    2018-05-08

    Pilots of ultra light aircraft have limited training resources, but with the use of low cost simulators it might be possible to train and test some parts of their training on the ground. The purpose of this paper is to examine possibility of stress inducement on a low cost flight simulator. Stress is assessed from electrocardiogram and respiration. Engine failure during flight served as a stress inducement stimuli. For one flight, pilots had access to an emergency navigation system. There were recorded some statistically significant changes in parameters regarding breathing frequency. Although no significant change was observed in ECG parameters, there appears to be an effect on respiration parameters. Physiological signals processed with analysis of variance suggest, that the moment of engine failure and approach for landing affected average breathing frequency. Presence of navigation interface does not appear to have a significant effect on pilots.

  1. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The PhoEnix aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  2. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The e-Genius aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  3. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder solar-powered research aircraft settles in for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. The ultra-light craft flew a racetrack pattern at low altitudes over the flight test area for two hours while project engineers checked out various systems and sensors on the uninhabited aircraft. The Pathfinder was controlled by two pilots, one in a mobile control unit which followed the craft, the other in a stationary control station. Pathfinder, developed by AeroVironment, Inc., is one of several designs being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  4. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    e-Genius Aircraft Pilot Klaus Ohlmann poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  5. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The Pipistrel-USA, Taurus G4 aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  6. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    e-Genius Aircraft Pilot Eric Raymond poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  7. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    PhoEnix Aircraft Co-Pilot Jeff Shingleton poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  8. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    PhoEnix Aircraft Pilot Jim Lee poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  9. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    EcoEagle Aircraft Pilot Mikhael Ponso poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  10. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The Embry-Riddle Aeronautical University, EcoEagle aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  11. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    Various team members applaud as aircraft return from the speed competition during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  12. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    The PhoEnix aircraft takes off for the start of the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  13. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius aircraft prepares to takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  14. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The PhoEnix aircraft prepares to takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  15. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    Pipistrel-USA Taurus G4 Aircraft Pilot Robin Reid poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  16. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    Pipistrel-USA Taurus G4 Aircraft Pilot David Morss poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  17. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The EcoEagle, left, and the PhoEnix aircraft are seen on the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Wednesday, Sept. 28, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  18. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Team members of the e-Genius aircraft prepare their plane prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  19. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    The e-Genius aircraft takes off for the start of the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  20. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn waves the speed competition checkered flag for the PhoEnix aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  1. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn waves the speed competition checkered flag for the EcoEagle aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  2. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    A Pipistrel-USA team member wipes down the Taurus G4 aircraft prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  3. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius aircraft is pulled pulled out to the runway for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  4. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn waves the speed competition checkered flag for the Taurus G4 aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  5. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The Pipistrel-USA Taurus G4 aircraft is pushed back to the weigh-in hanger as they start the day's 2011 Green Flight Challenge competition, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  6. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    CAFE Foundation Weights crew member Ron Stout, left, and Weights Chief Wayne Cook, weigh-in the e-Genius aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  7. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Pipistrel-USA, Taurus G4 aircraft prepares to takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  8. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius aircraft is pulled out to the runway for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  9. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The Pipistrel-USA, Taurus G4 aircraft approaches for landing as a Grumman Albatross plane is seen in the forground during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  10. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn directs the e-Genius aircraft to the start of the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  11. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn waves the speed competition start flag for the Pipistrel-USA, Taurus G4 aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  12. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Pipistrel-USA team look up at aircraft as they participate in the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  13. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn directs the EcoEagle aircraft to the start of the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  14. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn waves the speed competition start flag for the EcoEagle aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  15. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    Media and ground crew look at aircraft as they participate in the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  16. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    CAFE Foundation Weights Chief Wayne Cook, left, talks with the e-Genius aircraft crew about their weigh-in during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  17. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The Pipistrel-USA, Taurus G4 aircraft is prepared to be rolled out of the weigh-in hanger during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  18. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn waves the speed competition checkered flag for the e-Genius aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  19. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Pipistrel-USA, Taurus G4 aircraft is seen as it participates in the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  20. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Brien A. Seeley M.D., President of Comparative Aircraft Flight Efficiency (CAFE) Foundation briefs pilots and ground crew prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  1. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Brien A. Seeley M.D., President of Comparative Aircraft Flight Efficiency (CAFE) Foundation, right, briefs pilots and ground crew prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  2. Green Flight Challenge

    NASA Image and Video Library

    2011-10-03

    Team Lead Jack Langelaan poses for a photograph next to the Pipistrel-USA, Taurus G4, aircraft prior to winning the 2011 Green Flight Challenge, sponsored by Google, on Monday, Oct. 3, 2011 at the NASA Ames Research Center, Mountain View, Calif. The all electric Taurus G4 aircraft achieved the equivalency of more than 400 miles per gallon. NASA and CAFE held the challenge to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  3. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Phoenix Air team members reattach the wings to their PhoEnix aircraft after pulling it out the weigh-in hanger as they start the day's 2011 Green Flight Challenge competition, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  4. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Embry-Riddle Aeronautical University, EcoEagle prepares to takeoff as an demonstration aircraft for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  5. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius, left, Taurus G4, 2nd from left, EcoEagle, and PhoEnix aircraft, top right, are seen on the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Wednesday, Sept. 28, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  6. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The checkered flag is waved as the PhoEnix aircraft crosses the finish line of the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  7. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    CAFE Foundation Hanger Boss Mike Fenn waves the checkered flag as aircraft pass the finish line of the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  8. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    Pipistrel-USA Pilots Robin Reid, left, and David Morss, talk on their cell phones shortly after participating in the miles per gallon (MPG) flight in their Taurus G4 aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  9. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The PhoEnix, lower left, EcoEagle, 2nd from left, Taurus G4, and e-Genius aircraft, top right, are seen on the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Wednesday, Sept. 28, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  10. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Team members of Pipistrel-USA prepare to have their Taurus G4 aircraft wings weighed using a scale built into the floor of the hanger during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  11. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation safety volunteers Meg Hurt, left, and Gail Vann wait on the runway for the arrival of the next aircraft to take part in the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  12. 36 CFR 327.4 - Aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.4..., helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices or..., material or equipment by parachute, balloon, helicopter or other means onto or from project lands or waters...

  13. 36 CFR 327.4 - Aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.4..., helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices or..., material or equipment by parachute, balloon, helicopter or other means onto or from project lands or waters...

  14. 36 CFR 327.4 - Aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.4..., helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices or..., material or equipment by parachute, balloon, helicopter or other means onto or from project lands or waters...

  15. 36 CFR § 327.4 - Aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REGULATIONS GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS..., seaplanes, helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered... person, material or equipment by parachute, balloon, helicopter or other means onto or from project lands...

  16. Green Flight Challenge

    NASA Image and Video Library

    2011-10-03

    Comparative Aircraft Flight Efficiency (CAFE) Foundation President Brien A. Seeley M.D., left, NASA Acting Chief Technologist Joe Parrish, 2nd from left, and Pipistrel-USA Team Lead Jack Langelaan, center with suit, and the entire Pipistrel-USA, Taurus G4 aircraft team pose for a photograph shortly after winning the 2011 Green Flight Challenge, sponsored by Google, on Monday, Oct. 3, 2011 at the NASA Ames Research Center, Mountain View, Calif. The all electric Taurus G4 aircraft achieved the equivalency of more than 400 miles per gallon. NASA and CAFE held the challenge to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  17. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    A hot air balloon passes over the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  18. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The campus of the 2011 Green Flight Challenge, sponsored by Google, is seen in this aerial view at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Wednesday, Sept. 28, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  19. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    A hot air balloons pass over the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  20. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation volunteer Oliver Dyer-Bennet, left, CAFE Foundation Hanger Boss Mike Fenn, center, and CAFE Foundation volunteer, Justin Dyer-Bennett scan the sky for aircraft during the speed competition portion of the 2011 Green Flight Challenge, sponsored by Google, being held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  1. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  2. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Support personnel prepare noise level measuring equipment along the runway for the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  3. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Sid Siddiqi, seated, and other support personnel prepare noise level measuring equipment for the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  4. Graphene-Based Ultra-Light Batteries for Aircraft

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Kaner, Richard B.

    2014-01-01

    Develop a graphene-based ultracapacitor prototype that is flexible, thin, lightweight, durable, low cost, and safe and that will demonstrate the feasibility for use in aircraft center dot These graphene-based devices store charge on graphene sheets and take advantage of the large accessible surface area of graphene (2,600 m2/g) to increase the electrical energy that can be stored. center dot The proposed devices should have the electrical storage capacity of thin-film-ion batteries but with much shorter charge/discharge cycle times as well as longer lives center dot The proposed devices will be carbon-based and so will not have the same issues with flammability or toxicity as the standard lithium-based storage cells There are two main established methods for the storage and delivery of electrical energy: center dot Batteries - Store energy with electrochemical reactions - High energy densities - Slow charge/discharge cycles - Used in applications requiring large amounts of energy ? aircraft center dot Electrochemical capacitors - Store energy in electrochemical double layers - Fast charge/discharge cycles - Low energy densities - Used in electronics devices - Large capacitors are used in truck engine cranking

  5. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The Embry-Riddle Aeronautical University, EcoEagle is seen as it passes a Grumman Albatross during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  6. Green Flight Challenge

    NASA Image and Video Library

    2011-10-03

    Pipistrel-USA Team Lead Jack Langelaan talks after his team won the 2011 Green Flight Challenge, sponsored by Google, on Monday, Oct. 3, 2011 at the NASA Ames Research Center, Mountain View, Calif. The all electric Taurus G4 aircraft achieved the equivalency of more than 400 miles per gallon. NASA and CAFE Foundation held the challenge to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  7. Sports aviation accidents: fatality and aircraft specificity.

    PubMed

    de Voogt, Alexander J; van Doorn, Robert R A

    2010-11-01

    Sports aviation is a special category of general aviation characterized by diverse aircraft types and a predominantly recreational flight operation. A general comparison of aircraft accidents within sports aviation is missing, but should guide future research. A comparison of accidents in sports aviation was made using 2118 records from the National Transportation Safety Board for the period 1982-2007. In addition, the available denominator data from the Federal Aviation Administration were used to interpret the data. The highest number of accidents was found with gliders (N = 991), but the highest relative number of fatal accidents came from ultra-light (45%) and gyroplane operations (40%), which are homebuilt more often than other aircraft types. The most common cause of accident in sports aviation was in-flight planning and decision-making (N = 200, 9.4%). The most frequent occurrences were hard landings and undershoots, of which the numbers differ significantly from one aircraft type to the other. Homebuilt aircraft are at particular risk in sports aviation. Although denominator data remain problematic for motorized sports aviation, these aircraft show a high proportion of homebuilt aircraft and, more importantly, a higher relative number of fatal accidents.

  8. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius pilots talk with a fellow team member prior to their takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  9. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Wayne Cook, Weights Chief, inspects the Pipistrel-USA, Taurus G4 as it rest on a scale built into the floor of the hanger during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  10. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Rich; Madavan, Nateri

    2014-01-01

    Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets.The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The paper will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe

  11. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    CAFE Foundation Security Chief and Event Manager Bruno Mombrinie, left, talks with CAFE Foundation eCharging Chief Alan Soule as flight crews prepare for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  12. Alternate Fuels for Use in Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  13. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  14. Determination of lutein from green tea and green tea by-products using accelerated solvent extraction and UPLC.

    PubMed

    Heo, Ji-Young; Kim, Suna; Kang, Jae-Hyun; Moon, Bokyung

    2014-05-01

    We aimed to identify the optimum conditions for the extraction of lutein from green tea using accelerated solvent extraction, and achieve improved analytical resolution and sensitivity between lutein and zeaxanthin using an ultra performance liquid chromatography (UPLC) system. The optimized method employed 80% ethanol as the extraction solvent, 160 °C as the temperature, 2 static cycles, and 5 min of static time. In the validation of the UPLC method, recovery was found to be in the range approximately 93.73 to 108.79%, with a correlation coefficient of 0.9974 and a relative standard deviation of <9.29% in inter- and intraday precision analyses. Finally, the lutein contents of green tea and green tea by-products were measured as 32.67 ± 0.70 and 18.18 ± 0.68 mg/100g dw, respectively. Furthermore, we verified that green tea by-products, which are discarded after producing green tea beverages, might be used as a great resource for massive lutein production. We have demonstrated that the common problem of inadequate resolution between lutein and zeaxanthin during carotenoid analyses can be overcome by optimizing the combined techniques of accelerated solvent extraction and ultra performance liquid chromatography (UPLC). UPLC was highly effective for saving time, solvent, and labor, as well as providing better resolution. The results in this study demonstrated that green tea by-products could be used as new sources for industrial lutein production owing to their massive production during the extraction of green tea beverages. © 2014 Institute of Food Technologists®

  15. Backscatter-depolarisation lidars on high-altitude research aircraft

    NASA Astrophysics Data System (ADS)

    Mitev, Valentin; Matthey, Renaud; Makarov, Vladislav

    2014-11-01

    This article presents an overview of the development and the applications of two compact elastic backscatter depolarisation lidars, installed on-board the high-altitude research aircraft Myasishchev M-55 Geophysica. The installation of the lidars is intended for simultaneous probing of air parcels respectively upward and downward from the aircraft flight altitude to identify the presence of clouds (or aerosol )above and below the aircraft and to collocate them with in situ instruments. The lidar configuration and the procedure for its on-ground validation is outlined. Example of airborne measurements include polar stratospheric clouds, both synoptical and in lee-waves, ultra-thin cirrus clouds around the tropical tropopause and observation of aerosol layers emerging from the top of deep tropical convection.

  16. The blue-to-green reflectance ratio and lake water quality

    NASA Technical Reports Server (NTRS)

    Piech, K. R.; Schott, J. R.; Stewart, K. M.

    1978-01-01

    Correlations between the relative values of the blue and green reflectances of a lake and water quality indices, such as depth of photic zone, Secchi disk transparency, attenuation coefficient, and chlorophyll concentration, have been observed during an intensive satellite, aircraft, and surface vessel study of Lake Ontario and Conesus Lake. Determinations of blue and green reflectances from Skylab S190A color imagery are in excellent agreement with values obtained from small-scale color imagery from aircraft. Further, the accuracy of the satellite data appears within that required for extrapolation to the water quality indices. The study has also determined that changes in chlorophyll, lignin, and humic acid concentration can be discriminated by the behavior of the blue-to-green reflectance ratio and the reflectances of the green and red bands.

  17. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Pipistrel-USA Pilot David Morss, left, CAFE Foundation Weights Chief Wayne Cook, 2nd from left, and Weight crew member Ron Stout look on as Pipistrel-USA Pilot Robin Reid is weighed-in during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  18. Evaluation of ultra-low-volume insecticide dispensing systems for use in single-engined aircraft and their effectiveness against Aedes aegypti populations in South-East Asia*

    PubMed Central

    Kilpatrick, John W.; Tonn, Robert J.; Jatanasen, Sujarti

    1970-01-01

    An evaluation study of ultra-low-volume (ULV) spraying of insecticide from aircraft was carried out in Thailand, to determine if this technique could be used for the emergency control of Aedes aegypti, the major vector of haemorrhagic fever. A small, single-engined aircraft, a Cessna-180, was used in the trials and 2 types of spraying equipment were tested; both were found to be equally effective. The aircraft was fitted with 6 spraying nozzles and flew at an altitude of 150 feet (46 m) at a speed of 100 miles/h (161 km/h). The insecticide used was 95% technical grade malathion and swaths 75 feet wide (22.8 m) were laid down; the rate of application was 3 US fl oz/acre (219 ml/ha). Trials were made in 3 villages near Bangkok and it became apparent that a small aircraft could not produce the required even distribution of insecticide; the rate of application was therefore increased to 6 US fl oz/acre (438 ml/ha). This increased rate appeared to compensate for the narrow width of the swath and produced very satisfactory mortalities in caged mosquitos as well as in natural populations. The size and distribution of droplets was monitored by the use of oil-sensitive red dye cards which showed that there was a good penetration of insecticide into dwellings, etc. Trial results were evaluated by biting counts, bioassays of Aedes and Culex adults and larvae, Culex dips and ovitraps. Biossays indicated that the 6 US fl oz/acre rate of application was almost 100% effective in the open and produced satisfactory mortalities inside markets and dwellings. It was concluded that larger aircraft would be required to treat areas of more than 1000 acres (405 ha) and congested city areas but that the rate of application of insecticide could be considerably lower. Nevertheless, small aircraft can be useful in smaller and less congested areas. PMID:5309517

  19. An Updated Assessment of NASA Ultra-Efficient Engine Technologies

    NASA Technical Reports Server (NTRS)

    Tong Michael T.; Jones, Scott M.

    2005-01-01

    NASA's Ultra Efficient Engine Technology (UEET) project features advanced aeropropulsion technologies that include highly loaded turbomachinery, an advanced low-NOx combustor, high-temperature materials, and advanced fan containment technology. A probabilistic system assessment is performed to evaluate the impact of these technologies on aircraft CO2 (or equivalent fuel burn) and NOx reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-lb) engines is chosen for the study. The results show that a large subsonic aircraft equipped with the current UEET technology portfolio has very high probabilities of meeting the UEET minimum success criteria for CO2 reduction (-12% from the baseline) and LTO (landing and takeoff) NOx reductions (-65% relative to the 1996 International Civil Aviation Organization rule).

  20. Green Thunderstorms Observed.

    NASA Astrophysics Data System (ADS)

    Gallagher, Frank W., III; Beasley, William H.; Bohren, Craig F.

    1996-12-01

    Green thunderstorms have been observed from time to time in association with deep convection or severe weather events. Often the green coloration has been attributed to hail or to reflections of light from green foliage on the ground. Some skeptics who have not personally observed a green thunderstorm do not believe that green thunderstorms exist. They suggest that the green storms may be fabrications by excited observers. The authors have demonstrated the existence of green thunderstorms objectively using a spectrophotometer. During the spring and summer of 1995 the authors observed numerous storms and recorded hundreds of spectra of the light emanating corn these storms. It was found that the subjective judgment of colors can vary somewhat between observers, but the variation is usually in the shade of green. The authors recorded spectra of green and nongreen thunderstorms and recorded spectral measurements as a storm changed its appearance from dark blue to a bluish green. The change in color is gradual when observed from a stationary position. Also, as the light from a storm becomes greener, the luminance decreases. The authors also observed and recorded the spectrum of a thunderstorm during a period of several hours as they flew in an aircraft close to a supercell that appeared somewhat green. The authors' observations refute the ground reflection hypothesis and raise questions about explanations that require the presence of hail.

  1. Multi-aircraft dynamics, navigation and operation

    NASA Astrophysics Data System (ADS)

    Houck, Sharon Wester

    Air traffic control stands on the brink of a revolution. Fifty years from now, we will look back and marvel that we ever flew by radio beacons and radar alone, much as we now marvel that early aviation pioneers flew by chronometer and compass alone. The microprocessor, satellite navigation systems, and air-to-air data links are the technical keys to this revolution. Many airports are near or at capacity now for at least portions of the day, making it clear that major increases in airport capacity will be required in order to support the projected growth in air traffic. This can be accomplished by adding airports, adding runways at existing airports, or increasing the capacity of the existing runways. Technology that allows use of ultra closely spaced (750 ft to 2500 ft) parallel approaches would greatly reduce the environmental impact of airport capacity increases. This research tackles the problem of multi aircraft dynamics, navigation, and operation, specifically in the terminal area, and presents new findings on how ultra closely spaced parallel approaches may be accomplished. The underlying approach considers how multiple aircraft are flown in visual conditions, where spacing criteria is much less stringent, and then uses this data to study the critical parameters for collision avoidance during an ultra closely spaced parallel approach. Also included is experimental and analytical investigations on advanced guidance systems that are critical components of precision approaches. Together, these investigations form a novel approach to the design and analysis of parallel approaches for runways spaced less than 2500 ft apart. This research has concluded that it is technically feasible to reduce the required runway spacing during simultaneous instrument approaches to less than the current minimum of 3400 ft with the use of advanced navigation systems while maintaining the currently accepted levels of safety. On a smooth day with both pilots flying a tunnel

  2. Inhibited-coupling HC-PCF based beam-delivery-system for high power green industrial lasers

    NASA Astrophysics Data System (ADS)

    Chafer, M.; Gorse, A.; Beaudou, B.; Lekiefs, Q.; Maurel, M.; Debord, B.; Gérôme, F.; Benabid, F.

    2018-02-01

    We report on an ultra-low loss Hollow-Core Photonic Crystal Fiber (HC-PCF) beam delivery system (GLO-GreenBDS) for high power ultra-short pulse lasers operating in the green spectral range (including 515 nm and 532 nm). The GLOBDS- Green combines ease-of-use, high laser-coupling efficiency, robustness and industrial compatible cabling. It comprises a pre-aligned laser-injection head, a sheath-cable protected HC-PCF and a modular fiber-output head. It enables fiber-core gas loading and evacuation in a hermetic fashion. A 5 m long GLO-BDS were demonstrated for a green short pulse laser with a transmission coefficient larger than 80%, and a laser output profile close to single-mode (M2 <1.3).

  3. Ultra-Low Density Organic-Inorganic Composite Materials Possessing Thermally Insulating and Acoustic Damping Properties

    DTIC Science & Technology

    1992-05-07

    Officer. Dr. Kenneth Wynne d. Brief Description of Project- We are investigating the design and synthesis of strong, ultra-low density xerogel and aerogel ...materials of this type would have applications in a broad range of areas including lightweight engine components, high temperature coatings, aircraft wings...we plan to investigate the formation of ultra-low density composites using supercritical universal drying (SCUD) techniques. SiO2 aerogel materials

  4. ACD16-0013-015

    NASA Image and Video Library

    2016-02-04

    Truss-braced wind model installed in the Ames 11x11 Foot Wind Tunnel for testing as part of the Subsonic Ultra Green Aircraft Research Project (SUGAR) Shown here with test engineer Greg Gatlin, Langley Research Center.

  5. Fiber optical sensors for aircraft applications

    NASA Astrophysics Data System (ADS)

    Pechstedt, Ralf D.

    2014-09-01

    In this paper selected fiber optical point sensors that are of potential interest for deployment in aircraft are discussed. The operating principles together with recent measurement results are described. Examples include a high-temperature combined pressure and temperature sensor for engine health, hydraulics and landing gear monitoring, an ultra-high sensitive pressure sensor for oil, pneumatic and fluid aero systems applications and a combined acceleration and temperature sensor for condition monitoring of rotating components.

  6. Future ultra-speed tube-flight

    NASA Astrophysics Data System (ADS)

    Salter, Robert M.

    1994-05-01

    Future long-link, ultra-speed, surface transport systems will require electromagnetically (EM) driven and restrained vehicles operating under reduced-atmosphere in very straight tubes. Such tube-flight trains will be safe, energy conservative, pollution-free, and in a protected environment. Hypersonic (and even hyperballistic) speeds are theoretically achievable. Ultimate system choices will represent tradeoffs between amoritized capital costs (ACC) and operating costs. For example, long coasting links might employ aerodynamic lift coupled with EM restraint and drag make-up. Optimized, combined EM lift, and thrust vectors could reduce energy costs but at increased ACC. (Repulsive levitation can produce lift-over-drag l/d ratios a decade greater than aerodynamic), Alternatively, vehicle-emanated, induced-mirror fields in a conducting (aluminum sheet) road bed could reduce ACC but at substantial energy costs. Ultra-speed tube flight will demand fast-acting, high-precision sensors and computerized magnetic shimming. This same control system can maintain a magnetic 'guide way' invariant in inertial space with inertial detectors imbedded in tube structures to sense and correct for earth tremors. Ultra-speed tube flight can complete with aircraft for transit time and can provide even greater passenger convenience by single-model connections with local subways and feeder lines. Although cargo transport generally will not need to be performed at ultra speeds, such speeds may well be desirable for high throughput to optimize channel costs. Thus, a large and expensive pipeline might be replaced with small EM-driven pallets at high speeds.

  7. Future ultra-speed tube-flight

    NASA Technical Reports Server (NTRS)

    Salter, Robert M.

    1994-01-01

    Future long-link, ultra-speed, surface transport systems will require electromagnetically (EM) driven and restrained vehicles operating under reduced-atmosphere in very straight tubes. Such tube-flight trains will be safe, energy conservative, pollution-free, and in a protected environment. Hypersonic (and even hyperballistic) speeds are theoretically achievable. Ultimate system choices will represent tradeoffs between amoritized capital costs (ACC) and operating costs. For example, long coasting links might employ aerodynamic lift coupled with EM restraint and drag make-up. Optimized, combined EM lift, and thrust vectors could reduce energy costs but at increased ACC. (Repulsive levitation can produce lift-over-drag l/d ratios a decade greater than aerodynamic), Alternatively, vehicle-emanated, induced-mirror fields in a conducting (aluminum sheet) road bed could reduce ACC but at substantial energy costs. Ultra-speed tube flight will demand fast-acting, high-precision sensors and computerized magnetic shimming. This same control system can maintain a magnetic 'guide way' invariant in inertial space with inertial detectors imbedded in tube structures to sense and correct for earth tremors. Ultra-speed tube flight can complete with aircraft for transit time and can provide even greater passenger convenience by single-model connections with local subways and feeder lines. Although cargo transport generally will not need to be performed at ultra speeds, such speeds may well be desirable for high throughput to optimize channel costs. Thus, a large and expensive pipeline might be replaced with small EM-driven pallets at high speeds.

  8. Modeling Materials: Design for Planetary Entry, Electric Aircraft, and Beyond

    NASA Technical Reports Server (NTRS)

    Thompson, Alexander; Lawson, John W.

    2014-01-01

    NASA missions push the limits of what is possible. The development of high-performance materials must keep pace with the agency's demanding, cutting-edge applications. Researchers at NASA's Ames Research Center are performing multiscale computational modeling to accelerate development times and further the design of next-generation aerospace materials. Multiscale modeling combines several computationally intensive techniques ranging from the atomic level to the macroscale, passing output from one level as input to the next level. These methods are applicable to a wide variety of materials systems. For example: (a) Ultra-high-temperature ceramics for hypersonic aircraft-we utilized the full range of multiscale modeling to characterize thermal protection materials for faster, safer air- and spacecraft, (b) Planetary entry heat shields for space vehicles-we computed thermal and mechanical properties of ablative composites by combining several methods, from atomistic simulations to macroscale computations, (c) Advanced batteries for electric aircraft-we performed large-scale molecular dynamics simulations of advanced electrolytes for ultra-high-energy capacity batteries to enable long-distance electric aircraft service; and (d) Shape-memory alloys for high-efficiency aircraft-we used high-fidelity electronic structure calculations to determine phase diagrams in shape-memory transformations. Advances in high-performance computing have been critical to the development of multiscale materials modeling. We used nearly one million processor hours on NASA's Pleiades supercomputer to characterize electrolytes with a fidelity that would be otherwise impossible. For this and other projects, Pleiades enables us to push the physics and accuracy of our calculations to new levels.

  9. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advances in multidisciplinary technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the FW Project vision of revolutionary systems and technologies needed to achieve the challenging goals of aviation. Specifically, the primary focus of the FW Project is on the N+3 generation that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  10. Test results of smart aircraft fastener for KC-135 structural integrity

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Seifert, Greg

    1998-07-01

    Hidden and inaccessible corrosion in aircraft structures is the number one logistics problem for the US Air Force, with an estimated maintenance cost in excess of $LR 1.0B per year in 1990-equivalent dollars. The Smart Aircraft Fastener Evaluation (SAFE) system was developed to provide early warning detection of corrosion-related symptoms in hidden locations of aircraft structures. The SAFE system incorporates an in situ measurement approach that measures and autonomously records several environmental conditions within a Hi-Lok aircraft fastener that could cause corrosion. The SAFE system integrates a miniature electrochemical microsensor array and a time-of-wetness sensor with an ultra low power 8-bit microcontroller and 4- Mbyte solid-state FLASH archival memory to measure evidence of active corrosion. A summary of the technical approach and a detailed analysis of the KC-135 lap joint test coupon results are presented.

  11. Green thunderstorms

    NASA Astrophysics Data System (ADS)

    Gallagher, Frank Woolsey, III

    Many people around the world have observed green light apparently emanating from severe thunderstorms, but until recently there has been no scientific study of the phenomenon. Green thunderstorms have been observed from time to time in association with deep convection or severe weather events. Some skeptics who have not personally observed a green thunderstorm suggest that they are some kind of illusion. The existence of green thunderstorms has been objectively demonstrated by recording spectra of light from thunderstorms using a handheld spectrophotometer. During the spring and summer of 1995 and the spring of 1996 numerous storms were observed and spectra of the light emanating from these storms were recorded. Observations were made both at the ground and aboard research aircraft. Furthermore, time series of spectra were recorded as the observed color of some storms changed from dark blue to a bluish-green. Several hypotheses have been advanced to explain the occurrence of green light in connection with severe storms. Fankhauser gave some observational support to the belief that green light from thunderstorms is possible and believed that the source of the light is from the blue sky penetrating thin regions in the clouds. Fraser believes that light from the setting sun, in combination with the process of scattering by atmospheric molecules, creates the green light associated with severe weather and the thunderstorm acts only as a black backdrop. Unfortunately, no cloud illuminated by the sun is black and the green airlight produced by the Fraser theory is in reality overwhelmed by light reflected by the cloud. Often the unusual coloration has been attributed to hail or to reflection of light from foliage on the ground. The quantitative measurements made during the observation period fail to support these assumptions. We have observed thunderstorms to be green over ground that was not green and we have observed blue thunderstorms over ground that was green

  12. NASA Green Flight Challenge: Conceptual Design Approaches and Technologies to Enable 200 Passenger Miles per Gallon

    NASA Technical Reports Server (NTRS)

    Wells, Douglas P.

    2011-01-01

    The Green Flight Challenge is one of the National Aeronautics and Space Administration s Centennial Challenges designed to push technology and make passenger aircraft more efficient. Airliners currently average around 50 passenger-miles per gallon and this competition will push teams to greater than 200 passenger-miles per gallon. The aircraft must also fly at least 100 miles per hour for 200 miles. The total prize money for this competition is $1.65 Million. The Green Flight Challenge will be run by the Comparative Aircraft Flight Efficiency (CAFE) Foundation September 25 October 1, 2011 at Charles M. Schulz Sonoma County Airport in California. Thirteen custom aircraft were developed with electric, bio-diesel, and other bio-fuel engines. The aircraft are using various technologies to improve aerodynamic, propulsion, and structural efficiency. This paper will explore the feasibility of the rule set, competitor vehicles, design approaches, and technologies used.

  13. Composition and Diversity of Avian Communities Using a New Urban Habitat: Green Roofs

    NASA Astrophysics Data System (ADS)

    Washburn, Brian E.; Swearingin, Ryan M.; Pullins, Craig K.; Rice, Matthew E.

    2016-06-01

    Green roofs on buildings are becoming popular and represent a new component of the urban landscape. Public benefits of green roof projects include reduced stormwater runoff, improved air quality, reduced urban heat island effects, and aesthetic values. As part of a city-wide plan, several green roofs have been constructed at Chicago's O'Hare International Airport (ORD). Like some other landscaping features, green roofs on or near an airport might attract wildlife and thus increase the risk of bird-aircraft collisions. During 2007-2011, we conducted a series of studies to evaluate wildlife use of newly constructed green roofs and traditional (gravel) roofs on buildings at ORD. These green roofs were 0.04-1.62 ha in area and consisted of primarily stonecrop species for vegetation. A total of 188 birds were observed using roofs during this research. Of the birds using green roofs, 66, 23, and 4 % were Killdeer, European Starlings, and Mourning Doves, respectively. Killdeer nested on green roofs, whereas the other species perched, foraged, or loafed. Birds used green roofs almost exclusively between May and October. Overall, avian use of the green roofs was minimal and similar to that of buildings with traditional roofs. Although green roofs with other vegetation types might offer forage or cover to birds and thus attract potentially hazardous wildlife, the stonecrop-vegetated green roofs in this study did not increase the risk of bird-aircraft collisions.

  14. Composition and Diversity of Avian Communities Using a New Urban Habitat: Green Roofs.

    PubMed

    Washburn, Brian E; Swearingin, Ryan M; Pullins, Craig K; Rice, Matthew E

    2016-06-01

    Green roofs on buildings are becoming popular and represent a new component of the urban landscape. Public benefits of green roof projects include reduced stormwater runoff, improved air quality, reduced urban heat island effects, and aesthetic values. As part of a city-wide plan, several green roofs have been constructed at Chicago's O'Hare International Airport (ORD). Like some other landscaping features, green roofs on or near an airport might attract wildlife and thus increase the risk of bird-aircraft collisions. During 2007-2011, we conducted a series of studies to evaluate wildlife use of newly constructed green roofs and traditional (gravel) roofs on buildings at ORD. These green roofs were 0.04-1.62 ha in area and consisted of primarily stonecrop species for vegetation. A total of 188 birds were observed using roofs during this research. Of the birds using green roofs, 66, 23, and 4 % were Killdeer, European Starlings, and Mourning Doves, respectively. Killdeer nested on green roofs, whereas the other species perched, foraged, or loafed. Birds used green roofs almost exclusively between May and October. Overall, avian use of the green roofs was minimal and similar to that of buildings with traditional roofs. Although green roofs with other vegetation types might offer forage or cover to birds and thus attract potentially hazardous wildlife, the stonecrop-vegetated green roofs in this study did not increase the risk of bird-aircraft collisions.

  15. Aircraft measurements of aerosol properties during GoAmazon - G1 and HALO inter-comparison

    NASA Astrophysics Data System (ADS)

    Mei, F.; Cecchini, M. A.; Wang, J.; Tomlinson, J. M.; Comstock, J. M.; Hubbe, J. M.; Pekour, M. S.; Machado, L.; Wendisch, M.; Longo, K.; Martin, S. T.; Schmid, B.; Weinzierl, B.; Krüger, M. L.; Zöger, M.

    2015-12-01

    Currently, the indirect effects of atmospheric aerosols remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2013). This large uncertainty is partially a result of our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturations. One objective of the US Department of Energy (DOE) Green Ocean Amazon Project (GoAmazon2014/5) is to understand the influence of the emission from Manaus, a tropical megacity, on aerosol size, concentration, and chemical composition, and their impact on cloud condensation nuclei (CCN) spectrum. The GoAmazon2014/5 study was an international campaign with the collaboration efforts from US, Brazil and Germany. During the intensive operation period, in the dry season (Sep. 1st - Oct. 10th, 2014), aerosol concentration, size distributions, and CCN spectra, both under pristine conditions and inside the Manaus plume, were characterized in-situ from the DOE Gulfstream-1 (G-1) research aircraft and German HALO aircraft during 4 coordinated flights on Sep. 9th, Sep. 16th, Sep 21st and Oct. 1st, 2014. During those four flights, aerosol number concentrations and CCN concentrations at two supersaturations (0.25% and 0.5%) were measured by condensation particle counters (CPCs) and a DMT dual column CCN counter onboard both G-1 and HALO. Aerosol size distribution was also measured by a Fast Integrated Mobility Spectrometer (FIMS) aboard the G-1 and is compared with the size distribution from Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), which were deployed both on the G-1 and the HALO. Good agreement between the aerosol properties measured from the two aircraft has been achieved. The vertical profiles of aerosol size distribution and CCN spectrum will be discussed.

  16. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Tran, B. N.

    1991-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  17. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Astrophysics Data System (ADS)

    Simpson, M. A.; Tran, B. N.

    1991-08-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  18. Dabbling duck behavior and aircraft activity in coastal North Carolina

    USGS Publications Warehouse

    Conomy, J.T.; Collazo, J.A.; Dubovsky, J.A.; Fleming, W.J.

    1998-01-01

    Requests to increase military aircraft activity in some training facilities in the United States have prompted the need to determine if waterfowl and other wildlife are adversely affected by aircraft disturbance. We quantified behavioral responses of wintering American black ducks (Anas rubripes), American wigeon (A. americana), gadwall (A. strepera), and American green-winged teal (A. crecca carolinensis) exposed to low-level flying military aircrafts at Piney and Cedar islands, North Carolina, in 1991 and 1992. Waterfowl spent ???1.4% of their time responding to aircraft, which included flying, swimming, and alert behaviors. Mean duration of responses by species ranged from 10 to 40 sec. Costs to each species were deemed low because disruptions represented a low percentage of their time-activity budgets only a small proportion of birds reacted to disturbance (13/672; 2%); and the likelihood of resuming the activity disrupted by an aircraft disturbance event was high (64%). Recorded levels of aircraft disturbance (i.e., x?? = 85.1 dBA) were not adversely affecting the time-activity budgets of selected waterfowl species wintering at Piney and Cedar islands.

  19. Ultra-widefield fluorescein angiography reveals retinal phlebitis in Susac's syndrome.

    PubMed

    Klufas, Michael A; Dinkin, Marc J; Bhaleeya, Swetangi D; Chapman, Kristin O; Riley, Claire S; Kiss, Szilárd

    2014-01-01

    A 23-year-old woman with history of headaches and auditory changes presented with acute-onset visual field loss in the right eye. The combination of multiple retinal branch artery occlusions of the right eye on funduscopic examination, characteristic white matter lesions in the corpus callosum on magnetic resonance imaging, and hearing loss on audiometric testing led to a diagnosis of Susac's syndrome. Ultra-widefield fluorescein angiography revealed involvement of the retinal veins, which has not been previously reported with this condition. Additionally, ultra-widefield indocyanine green angiography demonstrated changes in the choroidal circulation, which are controversial in this syndrome. Copyright 2014, SLACK Incorporated.

  20. Ultra-Efficient Engine Technology (UEET) Program

    NASA Technical Reports Server (NTRS)

    Manthey, Lori A.

    2001-01-01

    The Ultra-Efficient Engine Technology (UEET) Program includes seven key projects that work with industry to develop and hand off revolutionary propulsion technologies that will enable future-generation vehicles over a wide range of flight speeds. A new program office, the Ultra-Efficient Engine Technology (UEET) Program Office, was formed at the NASA Glenn Research Center to manage an important National propulsion program for NASA. The Glenn-managed UEET Program, which began on October 1, 1999, includes participation from three other NASA centers (Ames, Goddard, and Langley), as well as five engine companies (GE Aircraft Engines, Pratt & Whitney, Honeywell, Allison/Rolls Royce, and Williams International) and two airplane manufacturers (the Boeing Company and Lockheed Martin Corporation). This 6-year, nearly $300 million program will address local air-quality concerns by developing technologies to significantly reduce nitrogen oxide (NOx) emissions. In addition, it will provide critical propulsion technologies to dramatically increase performance as measured in fuel burn reduction that will enable reductions of carbon dioxide (CO2) emissions. This is necessary to address the potential climate impact of long-term aviation growth.

  1. Conceptual design of hybrid-electric transport aircraft

    NASA Astrophysics Data System (ADS)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  2. Rationale and description of a coordinated cockpit display for aircraft flight management

    NASA Technical Reports Server (NTRS)

    Baty, D. L.

    1976-01-01

    The design for aircraft cockpit display systems is discussed in detail. The system consists of a set of three beam penetration color cathode ray tubes (CRT). One of three orthogonal projects of the aircraft's state appears on each CRT which displays different views of the same information. The color feature is included to obtain visual separation of information elements. The colors of red, green and yellow are used to differentiate control, performance and navigation information. Displays are coordinated in information and color.

  3. New potentials for conventional aircraft when powered by hydrogen-enriched gasoline

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Moynihan, P. I.; Rupe, J. H.

    1976-01-01

    Overall system efficiency and performance of a Beech Model 20 Duke aircraft was studied to provide analytical representations of an aircraft piston engine system, including all essential components required for onboard hydrogen generation. Lower emission levels and a 20% reduction in fuel consumption may be obtained by using a catalytic hydrogen generator, incorporated as part of the air induction system, to generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen is then mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The special properties of the hydrogen-enriched gasoline allow the engine to operate at ultra lean fuel/air ratios, resulting in higher efficiencies.

  4. Study on Construction Technology Standardization of Primary Guide Rope Laying by Multi-rotor Aircraft in Stringing Construction of Transmission Line

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Tang, Guang-Rui; Jiang, Ming; Dong, Yu-Ming

    2017-09-01

    According to the practical situation of stringing construction for Ultra High Voltage (UHV) overhead transmission line, construction technology standardization of primary guide rope laying by multi-rotor aircraft is studied. This paper mainly focuses on the construction preparation, test flight and technology of laying primary guide rope. The summary of the construction technology standardization of primary guide rope laying by multi-rotor aircraft in stringing construction are useful in further guiding practical construction of transmission line.

  5. Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Rabe, Douglas; Scribben, Angie

    2015-01-01

    In the study presented, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft engines require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the current study is to advance the understanding of the flow interaction between a modern ultra-compact inlet and a transonic fan for future design applications. Many experimental/ analytical studies have been reported on the aerodynamics of compact inlets in aircraft engines. On the other hand, very few studies have been reported on the effects of flow distortion from these inlets on the performance of the following fan/compressor stages. The primary goal of the study presented is to investigate how flow interaction between an ultra-compact inlet and a transonic compressor influence the operating margin of the compressor. Both Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) approaches are used to calculate the unsteady flow field, and the numerical results are used to study the flow interaction. The present study indicates that stall inception of the following compressor stage is affected directly based on how the distortion pattern evolves before it interacts with the fan/compressor face. For the present compressor, the stall initiates at the tip section with clean inlet flow and distortion pattern away from the casing itself seems to have limited impacts on the stall inception of the compressor. A counter-rotating swirl, which is generated due to flow separation inside the s-shaped compact duct, generates an increased flow angle near the blade tip. This increased flow angle near the rotor tip due to the secondary flow from the counter-rotating vortices is the primary reason for the reduced compressor stall margin.

  6. NASA Dryden technicians (Dave Dennis, Freddy Green and Jeff Doughty) position a support cylinder und

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA Dryden technicians (Dave Dennis, Freddy Green and Jeff Doughty) position a support cylinder under the right wing of the Active Aeroelastic Wing F/A-18 test aircraft prior to ground vibration tests. The cylinder contains an 'air bag' that allows vibrations induced by an electro-mechanical shaker device to propagate through the airframe as they would if the aircraft were flying.

  7. Aerocrane: A hybrid LTA aircraft for aerial crane applications

    NASA Technical Reports Server (NTRS)

    Perkins, R. G., Jr.; Doolittle, D. B.

    1975-01-01

    The Aerocrane, a hybrid aircraft, combines rotor lift with buoyant lift to offer VTOL load capability greatly in excess of helicopter technology while eliminating the airship problem of ballast transfer. In addition, the Aerocrane concept sharply reduces the mooring problem of airships and provides 360 deg vectorable thrust to supply a relatively large force component for control of gust loads. Designed for use in short range, ultra heavy lift missions, the Aerocrane operates in a performance envelope unsuitable for either helicopters or airships. Basic design considerations and potential problem areas of the concept are addressed.

  8. Synthesis, kinetics and photocatalytic study of "ultra-small" Ag-NPs obtained by a green chemistry method using an extract of Rosa 'Andeli' double delight petals.

    PubMed

    Suárez-Cerda, Javier; Alonso-Nuñez, Gabriel; Espinoza-Gómez, Heriberto; Flores-López, Lucía Z

    2015-11-15

    This paper reports the effect of different concentrations of Rosa 'Andeli' double delight petals aqueous extract (PERA) in the synthesis of silver nanoparticles (Ag-NPs), using an easy green chemistry method. Its kinetics study and photocatalytic activity were also evaluated. The Ag-NPs were obtained using an aqueous silver nitrate solution (AgNO3) with 9.66% w/v, 7.25% w/v, and 4.20% w/v PERA as both reducing-stabilizing agent. The formation of the Ag-NPs was demonstrated by analysis of UV-vis spectroscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). TEM analysis shows spherical nanoparticles in shape and size between ∼0.5 and 1.4nm. A comparative study was done to determine which concentration was the best reducing-stabilizing agent, and we found out that "ultra-small" nanoparticles (0.5-1.1nm) were obtained with 9.66% w/v of PERA. The size of the Ag-NPs depends on the concentration of PERA and Ag(I). The reaction of formation of "ultra-small" Ag-NPs, proved to be first order for metallic precursor (silver) and second order for reducing-stabilizing agent (PERA). The Ag-NPs showed photocatalytic activity, in degradation of commercial dye with an efficiency of 95%. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Evaluation of a Hydrogen Fuel Cell Powered Blended-Wing-Body Aircraft Concept for Reduced Noise and Emissions

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Freh, Joshua E.; Olson, Erik D.

    2004-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A blended-wing-body configuration with advanced technology hydrogen fuel cell electric propulsion is considered. Predicted noise and emission characteristics are compared to a current technology conventional configuration designed for the same mission. The significant technology issues which have to be addressed to make this concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program was initiated to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify advanced technology requirements for the concepts.

  10. Toward the bi-modal camber morphing of large aircraft wing flaps: the CleanSky experience

    NASA Astrophysics Data System (ADS)

    Pecora, R.; Amoroso, F.; Magnifico, M.

    2016-04-01

    The Green Regional Aircraft (GRA), one of the six CleanSky platforms, represents the largest European effort toward the greening of next generation air transportation through the implementation of advanced aircraft technologies. In this framework researches were carried out to develop an innovative wing flap enabling airfoil morphing according to two different modes depending on aircraft flight condition and flap setting: - Camber morphing mode. Morphing of the flap camber to enhance high-lift performances during take-off and landing (flap deployed); - Tab-like morphing mode. Upwards and downwards deflection of the flap tip during cruise (flap stowed) for load control at high speed and consequent optimization of aerodynamic efficiency. A true-scale flap segment of a reference aircraft (EASA CS25 category) was selected as investigation domain for the new architecture in order to duly face the challenges posed by real wing installation issues especially with reference to the tapered geometrical layout and 3D aerodynamic loads distributions. The investigation domain covered the flap region spanning 3.6 m from the wing kink and resulted characterized by a taper ratio equal to 0.75 with a root chord of 1.2 m. High TRL solutions for the adaptive structure, actuation and control system were duly analyzed and integrated while assuring overall device compliance with industrial standards and applicable airworthiness requirements.

  11. A measuring stand for a ducted fan aircraft propulsion unit

    NASA Astrophysics Data System (ADS)

    Hlaváček, David

    2014-03-01

    The UL-39 ultra-light aircraft which is being developed by the Department of Aerospace Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, is equipped with an unconventional ducted fan propulsion unit. The unit consists of an axial fan driven by a piston engine and placed inside a duct ended with a nozzle. This article describes the arrangement of a modernised measuring stand for this highly specific propulsion unit which will be able to measure the fan pressure ratio and velocity field in front of and behind the fan and its characteristic curve.

  12. The Cognitive Challenges of Flying a Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan; Cardoza, Colleen; Null, Cynthia

    2016-01-01

    A large variety of Remotely Piloted Aircraft (RPA) designs are currently in production or in development. These aircraft range from small electric quadcopters that are flown close to the ground within visual range of the operator, to larger systems capable of extended flight in airspace shared with conventional aircraft. Before RPA can operate routinely and safely in civilian airspace, we need to understand the unique human factors associated with these aircraft. The task of flying an RPA in civilian airspace involves challenges common to the operation of other highly-automated systems, but also introduces new considerations for pilot perception, decision-making, and action execution. RPA pilots participated in focus groups where they were asked to recall critical incidents that either presented a threat to safety, or highlighted a case where the pilot contributed to system resilience or mission success. Ninety incidents were gathered from focus-groups. Human factor issues included the impact of reduced sensory cues, traffic separation in the absence of an out-the-window view, control latencies, vigilance during monotonous and ultra-long endurance flights, control station design considerations, transfer of control between control stations, the management of lost link procedures, and decision-making during emergencies. Some of these concerns have received significant attention in the literature, or are analogous to human factors of manned aircraft. The presentation will focus on issues that are poorly understood, and have not yet been the subject of extensive human factors study. Although many of the reported incidents were related to pilot error, the participants also provided examples of the positive contribution that humans make to the operation of highly-automated systems.

  13. Ultra-broadband tunable (0.67-2.57 µm) optical vortex parametric oscillator

    NASA Astrophysics Data System (ADS)

    Araki, Shungo; Suzuki, Kensuke; Nishida, Shigeki; Mamuti, Roukuya; Miyamoto, Katsuhiko; Omatsu, Takashige

    2017-10-01

    We demonstrate an ultra-broadband (>2-octave band) tunable optical vortex laser comprising an optical-vortex-pumped optical parametric oscillator by employing a nanosecond pulse (˜10 ns) green laser and cascaded non-critical phase-matching LiB3O5 crystals (45 mm long each). With this system, an optical vortex output was produced over an extremely wide wavelength range of 0.67-2.57 µm.

  14. Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  15. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio

    2011-01-01

    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  16. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water.

    PubMed

    Lin, Kun-Yi Andrew; Chang, Hsuan-Ang

    2015-11-01

    Zeolitic imidazole frameworks (ZIFs), a new class of adsorbents, are proposed to adsorb Malachite Green (MG) in water. Particularly, ZIF-67 was selected owing to its stability in water and straightforward synthesis. The as-synthesized ZIF-67 was characterized and used to adsorb MG from water. Factors affecting the adsorption capacity were investigated including mixing time, temperature, the presence of salts and pH. The kinetics, adsorption isotherm and thermodynamics of the MG adsorption to ZIF-67 were also studied. The adsorption capacity of ZIF-67 for MG could be as high as 2430mgg(-1) at 20°C, which could be improved at the higher temperatures. Such an ultra-high adsorption capacity of ZIF-67 was almost 10-times of those of conventional adsorbents, including activated carbons and biopolymers. A mechanism for the high adsorption capacity was proposed and possibly attributed to the π-π stacking interaction between MG and ZIF-67. ZIF-67 also could be conveniently regenerated by washing with ethanol and the regeneration efficiency could remain 95% up to 4 cycles of the regeneration. ZIF-67 was also able to remove MG from the aquaculture wastewater, in which MG can be typically found. These features enable ZIF-67 to be one of the most effective and promising adsorbent to remove MG from water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. New GREEN Products for the Military Aviation Maintenance Community

    DTIC Science & Technology

    2012-05-01

    Petroleum Base, for Preservation and Operation • MIL -H-19457 - Hydraulic Fluid, Fire-resistant, Non-neurotoxic • MIL -H- 81019 ...ENHANCEMENT STEWARDSHIP EXCELLENCE WORKFORCE DEVELOPMENT 14 New GREEN products (NAVAIR) MIL -PRF-85570...aircraft spot cleaners Mil -C-43616 • 6850-01-578-4978 type I • 6850-01-581-9413 type II • 6850-01-587-3779 type I

  18. Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Rabe, Douglas; Scribben, Angie

    2015-01-01

    In the present study, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the study is to advance the current understanding of the flow interaction between two different ultra-compact inlets and a transonic fan for future design applications. Both URANS and LES approaches are used to calculate the unsteady flow field and are compared with the available measured data. The present study indicates that stall inception is mildly affected by the distortion pattern generated by the inlet with the current test set-up. The numerical study indicates that the inlet distortion pattern decays significantly before it reaches the fan face for the current configuration. Numerical results with a shorter distance between the inlet and fan show that counter-rotating vortices near the rotor tip due to the serpentine diffuser affects fan characteristics significantly.

  19. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    NASA Astrophysics Data System (ADS)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  20. A first-order Green's function approach to supersonic oscillatory flow: A mixed analytic and numeric treatment

    NASA Technical Reports Server (NTRS)

    Freedman, M. I.; Sipcic, S.; Tseng, K.

    1985-01-01

    A frequency domain Green's Function Method for unsteady supersonic potential flow around complex aircraft configurations is presented. The focus is on the supersonic range wherein the linear potential flow assumption is valid. In this range the effects of the nonlinear terms in the unsteady supersonic compressible velocity potential equation are negligible and therefore these terms will be omitted. The Green's function method is employed in order to convert the potential flow differential equation into an integral one. This integral equation is then discretized, through standard finite element technique, to yield a linear algebraic system of equations relating the unknown potential to its prescribed co-normalwash (boundary condition) on the surface of the aircraft. The arbitrary complex aircraft configuration (e.g., finite-thickness wing, wing-body-tail) is discretized into hyperboloidal (twisted quadrilateral) panels. The potential and co-normalwash are assumed to vary linearly within each panel. The long range goal is to develop a comprehensive theory for unsteady supersonic potential aerodynamic which is capable of yielding accurate results even in the low supersonic (i.e., high transonic) range.

  1. A Probabilistic Assessment of NASA Ultra-Efficient Engine Technologies for a Large Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Arcara, Philip C., Jr.; Haller, William J.

    2004-01-01

    NASA's Ultra Efficient Engine Technology (UEET) program features advanced aeropropulsion technologies that include highly loaded turbomachinery, an advanced low-NOx combustor, high-temperature materials, intelligent propulsion controls, aspirated seal technology, and an advanced computational fluid dynamics (CFD) design tool to help reduce airplane drag. A probabilistic system assessment is performed to evaluate the impact of these technologies on aircraft fuel burn and NOx reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-pound) engines is chosen for the study. The results show that a large subsonic aircraft equipped with the UEET technologies has a very high probability of meeting the UEET Program goals for fuel-burn (or equivalent CO2) reduction (15% from the baseline) and LTO (landing and takeoff) NOx reductions (70% relative to the 1996 International Civil Aviation Organization rule). These results are used to provide guidance for developing a robust UEET technology portfolio, and to prioritize the most promising technologies required to achieve UEET program goals for the fuel-burn and NOx reductions.

  2. Solid Oxide Fuel Cell APU Feasibility Study for a Long Range Commercial Aircraft Using UTC ITAPS Approach. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation

    NASA Technical Reports Server (NTRS)

    Srinivasan, Hari; Yamanis, Jean; Welch, Rick; Tulyani, Sonia; Hardin, Larry

    2006-01-01

    The objective of this contract effort was to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future long range commercial aircraft, and to define the technology gaps to enable such a system. The study employed technologies commensurate with Entry into Service (EIS) in 2015. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate system concepts to a conceptual level of fidelity. The technology benefits were captured as reductions of the mission fuel burn and emissions. The baseline aircraft considered was the Boeing 777-200ER airframe with more electric subsystems, Ultra Efficient Engine Technology (UEET) engines, and an advanced APU with ceramics for increased efficiency. In addition to the baseline architecture, four architectures using an SOFC system to replace the conventional APU were investigated. The mission fuel burn savings for Architecture-A, which has minimal system integration, is 0.16 percent. Architecture-B and Architecture-C employ greater system integration and obtain fuel burn benefits of 0.44 and 0.70 percent, respectively. Architecture-D represents the highest level of integration and obtains a benefit of 0.77 percent.

  3. 2011 Green Flight Challenge Highlights Video for Awards Ceremony

    NASA Image and Video Library

    2011-10-03

    On Monday, October 3, 2011, NASA's Centennial Challenges program awarded the largest prize in aviation history, created to inspire the development of more fuel-efficient aircraft and spark the start of a new electric airplane industry. Three teams successfully met all requirements and competed for the $1.65 million purse in the CAFE Green Flight Challenge, sponsored by Google, over the skies of Santa Rosa, California.

  4. Towards green loyalty: the influences of green perceived risk, green image, green trust and green satisfaction

    NASA Astrophysics Data System (ADS)

    Chrisjatmiko, K.

    2018-01-01

    The paper aims to present a comprehensive framework for the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty. The paper also seeks to account explicitly for the differences in green perceived risk, green image, green trust, green satisfaction and green loyalty found among green products customers. Data were obtained from 155 green products customers. Structural equation modeling was used in order to test the proposed hypotheses. The findings show that green image, green trust and green satisfaction has positive effects to green loyalty. But green perceived risk has negative effects to green image, green trust and green satisfaction. However, green perceived risk, green image, green trust and green satisfaction also seems to be a good device to gain green products customers from competitors. The contributions of the paper are, firstly, a more complete framework of the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty analyses simultaneously. Secondly, the study allows a direct comparison of the difference in green perceived risk, green image, green trust, green satisfaction and green loyalty between green products customers.

  5. Rhabdomyolysis and exercise-associated hyponatremia in ultra-bikers and ultra-runners.

    PubMed

    Chlíbková, Daniela; Knechtle, Beat; Rosemann, Thomas; Tomášková, Ivana; Novotný, Jan; Žákovská, Alena; Uher, Tomáš

    2015-01-01

    Exercise-associated hyponatremia (EAH), rhabdomyolysis and renal failure appear to be a unique problem in ultra-endurance racers. We investigated the combined occurrence of EAH and rhabdomyolysis in seven different ultra-endurance races and disciplines (i.e. multi-stage mountain biking, 24-h mountain biking, 24-h ultra-running and 100-km ultra-running). Two (15.4%) ultra-runners (man and woman) from hyponatremic ultra-athletes (n = 13) and four (4%) ultra-runners (four men) from the normonatremic group (n = 100) showed rhabdomyolysis following elevated blood creatine kinase (CK) levels > 10,000 U/L without the development of renal failure and the necessity of a medical treatment. Post-race creatine kinase, plasma and urine creatinine significantly increased, while plasma [Na(+)] and creatine clearance decreased in hyponatremic and normonatremic athletes, respectively. The percentage increase of CK was higher in the hyponatremic compared to the normonatremic group (P < 0.05). Post-race CK levels were higher in ultra-runners compared to mountain bikers (P < 0.01), in faster normonatremic (P < 0.05) and older and more experienced hyponatremic ultra-athletes (P < 0.05). In all finishers, pre-race plasma [K(+)] was related to post-race CK (P < 0.05). Hyponatremic ultra-athletes tended to develop exercise-induced rhabdomyolysis more frequently than normonatremic ultra-athletes. Ultra-runners tended to develop rhabdomyolysis more frequently than mountain bikers. We found no association between post-race plasma [Na(+)] and CK concentration in both hypo- and normonatremic ultra-athletes.

  6. Green coffee seed residue: A sustainable source of antioxidant compounds.

    PubMed

    Castro, A C C M; Oda, F B; Almeida-Cincotto, M G J; Davanço, M G; Chiari-Andréo, B G; Cicarelli, R M B; Peccinini, R G; Zocolo, G J; Ribeiro, P R V; Corrêa, M A; Isaac, V L B; Santos, A G

    2018-04-25

    Oil extraction from green coffee seeds generates residual mass that is discarded by agribusiness and has not been previously studied. Bioactive secondary metabolites in coffee include antioxidant phenolic compounds, such as chlorogenic acids. Coffee seeds also contain caffeine, a pharmaceutically important methylxanthine. Here, we report the chemical profile, antioxidant activity, and cytotoxicity of hydroethanolic extracts of green Coffea arabica L. seed residue. The extracts of the green seeds and the residue have similar chemical profiles, containing the phenolic compounds chlorogenic acid and caffeine. Five monoacyl and three diacyl esters of trans-cinnamic acids and quinic acid were identified by ultra-performance liquid chromatography/electrospray ionization-quadruple time of flight mass spectrometry. The residue extract showed antioxidant potential in DPPH, ABTS, and pyranine assays and low cytotoxicity. Thus, coffee oil residue has great potential for use as a raw material in dietary supplements, cosmetic and pharmaceutical products, or as a source of bioactive compounds. Copyright © 2017. Published by Elsevier Ltd.

  7. Highly recyclable and ultra-rapid catalytic reduction of organic pollutants on Ag-Cu@ZnO bimetal nanocomposite synthesized via green technology

    NASA Astrophysics Data System (ADS)

    Gangarapu, Manjari; Sarangapany, Saran; Suja, Devipriya P.; Arava, Vijaya Bhaskara Rao

    2018-04-01

    In this study, synthesis of Ag-Cu alloy bimetal nanoparticles anchored on high surface and porous ZnO using a facile, greener and low-cost aqeous bark extract of Aglaia roxburghiana for highly active, ultra-rapid and stable catalyst is performed. The nanocomposite was scrupulously characterized using UV-Vis spectrophotometer, X-ray diffraction, Raman spectrophotometer, high-resolution transmission electron microscope, selected area (electron) diffraction, scanning electron microscope with energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The catalytic activity of the green synthesized Ag-Cu bimetal nanocomposite was evaluated in the reduction of 4-nitrophenol (4-NP), methylene blue (MB) and rhodamine B (Rh B) dyes. The different types of dye exhibited very high and effective catalytic activity within few seconds. The theoretical investigations reveal that the unique synergistic effect of Ag-Cu nanoparticles and immobilization over ZnO assists in the reduction of 4-NP, MB and Rh B. Loading and leaching of metal nanoparticles were obtained using inductively coupled plasma atomic emission spectroscopy. Moreover, the stable and efficient recyclability of nanocomposite by centrifugation after completion of the reaction was demonstrated. The results lead to the design different possible bimetal on ZnO with boosting and an effective catalyst for the environmental applications.

  8. Integrated Experimental and Numerical Research on the Aerodynamics of Unsteady Moving Aircraft

    DTIC Science & Technology

    2007-06-01

    blended wing body configuration were tested in different modes of oscillatory motions roll, pitch and yaw as well as delta wing geometries like X-31...airplane configurations (e.g. wide body, green aircraft, blended wing body) the approach up to now using semi-empirical methods as standard...cross section wing. In order to evaluate the influence of individual components of the tested airplane configuration, such as winglets , vertical or

  9. A green ionic liquid-based vortex-forced MSPD method for the simultaneous determination of 5-HMF and iridoid glycosides from Fructus Corni by ultra-high performance liquid chromatography.

    PubMed

    Du, Kunze; Li, Jin; Bai, Yun; An, Mingrui; Gao, Xiu-Mei; Chang, Yan-Xu

    2018-04-01

    A simple and green ionic liquid-based vortex-forced matrix solid phase dispersion (IL-VFMSPD) method was presented to simultaneously extract 5-hydroxymethyl furfurol (5-HMF) and iridoid glycosides in Fructus Corni by ultra-high performance liquid chromatography. Ionic liquid was used as a green elution reagent in vortex-forced MSPD process. A few parameters such as the type of ionic liquid, the type of sorbent, ratio of sample to sorbent, the concentration and volume of ionic liquid, grinding time and vortex time, were investigated in detail and an orthogonal design experiment was introduced to confirm the best conditions in this procedure. With the final optimized method, the recoveries of the target compounds in Fructus Corni were in the range of 95.2-103% (RSD<5.0%) and the method displayed a good linearity within the range of 0.8-200 μg mL -1 for morroniside, sweroside, loganin, cornuside and 1.2-300 μg mL -1 for 5-HMF. The limits of detection ranged from 0.02 to 0.08 μg mL -1 for all compounds. The results showed that the newly established method was efficiently applied to extract and determine iridoid glycosides and 5-HMF for quality control of Fructus Corni. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Interaction of Aircraft Wakes From Laterally Spaced Aircraft

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    2009-01-01

    Large Eddy Simulations are used to examine wake interactions from aircraft on closely spaced parallel paths. Two sets of experiments are conducted, with the first set examining wake interactions out of ground effect (OGE) and the second set for in ground effect (IGE). The initial wake field for each aircraft represents a rolled-up wake vortex pair generated by a B-747. Parametric sets include wake interactions from aircraft pairs with lateral separations of 400, 500, 600, and 750 ft. The simulation of a wake from a single aircraft is used as baseline. The study shows that wake vortices from either a pair or a formation of B-747 s that fly with very close lateral spacing, last longer than those from an isolated B-747. For OGE, the inner vortices between the pair of aircraft, ascend, link and quickly dissipate, leaving the outer vortices to decay and descend slowly. For the IGE scenario, the inner vortices ascend and last longer, while the outer vortices decay from ground interaction at a rate similar to that expected from an isolated aircraft. Both OGE and IGE scenarios produce longer-lasting wakes for aircraft with separations less than 600 ft. The results are significant because concepts to increase airport capacity have been proposed that assume either aircraft formations and/or aircraft pairs landing on very closely spaced runways.

  11. BOREAS AFM-1 NOAA/ATDD Long-EZ Aircraft Flux data Over the SSA

    NASA Technical Reports Server (NTRS)

    Crawford, Timothy L.; Baldocchi, Dennis; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Gunter, Laureen; Dumas, Ed; Smith, David E. (Technical Monitor)

    2000-01-01

    This data set contains measurements from the Airborne Flux and Meteorology (AFM)-1 National Oceanographic and Atmospheric Administration/Atmospheric Turbulence and Diffusion Division (NOAA/ATDD) Long-EZ Aircraft collected during the 1994 Intensive Field Campaigns (IFCs) at the southern study area (SSA). These measurements were made from various instruments mounted on the aircraft. The data that were collected include aircraft altitude, wind direction, wind speed, air temperature, potential temperature, water mixing ratio, U and V components of wind velocity, static pressure, surface radiative temperature, downwelling and upwelling total radiation, downwelling and upwelling longwave radiation, net radiation, downwelling and upwelling photosynthectically active radiation (PAR), greenness index, CO2 concentration, O3 concentration, and CH4 concentration. There are also various columns that indicate the standard deviation, skewness, kurtosis, and trend of some of these data. The data are stored in tabular ASCII files. The NOAA/ATDD Long-EZ aircraft flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  12. Green Propellant Demonstration with Hydrazine Catalyst of F-16 Emergency Power Unit

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Brechbill, Shawn

    2015-01-01

    Some space vehicle and aircraft Auxiliary Power Units (APUs) use hydrazine propellant for generating power. Hydrazine is a toxic, hazardous fuel which requires special safety equipment and processes for handling and loading. In recent years, there has been development of two green propellants that could enable their use in APU's: the Swedish LMP-103S and the Air Force Research Laboratory (AFRL) AF-M315E. While there has been work on development of these propellants for thruster applications (Prisma and Green Propulsion Infusion Mission, respectively), there has been less focus on the application to power units. Beginning in 2012, an effort was started by the Marshall Space Flight Center (MSFC) on the APU application. The MSFC plan was to demonstrate green propellants with residual Space Shuttle hardware. The principal investigator was able to acquire a Solid Rocket Booster gas generator and an Orbiter APU. Since these test assets were limited in number, an Air Force equivalent asset was identified: the F-16 Emergency Power Unit (EPU). In June 2013, two EPU's were acquired from retired aircraft located at Davis Monthan Air Force Base. A gas generator from one of these EPU's was taken out of an assembly and configured for testing with a version of the USAF propellant with a higher water content (AF-M315EM) to reduce decomposition temperatures. Testing in November 2014 has shown that this green propellant is reactive with the Hydrazine catalyst (Shell 405) generating 300 psi of pressure with the existing F-16 EPU configuration. This paper will highlight the results of MSFC testing in collaboration with AFRL.

  13. Experiment to Characterize Aircraft Volatile Aerosol and Trace-Species Emissions (EXCAVATE)

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Branham, H.-S.; Hudgins, C. H.; Plant, J. V.; Ballenthin, J. O.; Miller, T. M.; Viggiano, A. A.; Blake, D. R.; Boudries, H.; Canagaratna, M.

    2005-01-01

    The Experiment to Characterize Aircraft Volatile and Trace Species Emissions (EXCAVATE) was conducted at Langley Research Center (LaRC) in January 2002 and focused upon assaying the production of aerosols and aerosol precursors by a modern commercial aircraft, the Langley B757, during ground-based operation. Remaining uncertainty in the postcombustion fate of jet fuel sulfur contaminants, the need for data to test new theories of particle formation and growth within engine exhaust plumes, and the need for observations to develop air quality models for predicting pollution levels in airport terminal areas were the primary factors motivating the experiment. NASA's Atmospheric Effects of Aviation Project (AEAP) and the Ultra Effect Engine Technology (UEET) Program sponsored the experiment which had the specific objectives of determining ion densities; the fraction of fuel S converted from S(IV) to S(VI); the concentration and speciation of volatile aerosols and black carbon; and gas-phase concentrations of long-chain hydrocarbon and PAH species, all as functions of engine power, fuel composition, and plume age.

  14. An Analysis of Ball Lightning-Aircraft Incidents

    NASA Astrophysics Data System (ADS)

    Doe, R. K.; Keul, A. G.; Bychkov, V.

    2009-12-01

    Lightning is a rare but regular phenomenon for air traffic. Research and design have created aircraft that withstand average lightning strikes. Ball lightning (BL), a metastable, rare lightning type, is also observed from (and within) aircraft. Science and the media focused on individual BL incidents and did not analyze general patterns. Lacking established incident reporting channels, most BL observations are still passed on as “aviation lore”. To overcome this unsatisfactory condition, the authors collected and analyzed an international data bank of 87 BL-aircraft case histories from 1938 to 2007. 37 Russian military and civil BL reports were provided by the third author. Of the whole sample, 36 (41%) cases occurred over Russia/RF/SU, 24 (28%) over USA/Canada, 23 (26%) over Europe, and 4 (5%) over Asia/Pacific. Various types of military (US: C-54/141, B-52, KC-97/135 Stratotankers, C130, P-3 Orion, RF/SU: PO-2, IL, SU, TU, MIG; Nimrod, Saab-105) and civilian aircraft (US: DC-3/6, Metroliner, B-727/737/757/777, RF/SU: AN, TU; VC-10, Fokker F-28, CRJ-200), as well as general aviation (C-172, Falcon-20), were involved. BL reports show a flat annual April to August maximum. At BL impact, 15 aircraft were climbing, 7 descending; most were at cruising altitude. 42 (48%) reported BL outside the aircraft, 37 (43%) inside, 7 (8%) both in-and outside. No damage was reported in 34 (39%) cases, 39 objects (45%) caused minor damage, 11 major damage (13%), 3 even resulted in military aircraft losses. 3 objects caused minor, 1 major crew injury. 23 damage cases were associated with BL inside the fuselage; all 4 crew injury cases were of that BL type. Mean size is described as 25 cm, sometimes over 1 m, color 30% in the yellow-red, 10% in the blue-green spectral region, 8% white, duration around 10 seconds, sometimes over 1 minute. 33 (38%) incidents ended with an explosion of the object. Thunderstorm conditions were reported by 25 (29%) of the observers, 9 (10%) said there

  15. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  16. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  17. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  18. Pharmacokinetic study of indocyanine Green after intravenous administration by UPLC-MS/MS.

    PubMed

    Chen, Yu; Chen, Dongxin; Hu, Wenhao; Lin, Guanyang; Huang, Shiyong

    2015-01-01

    Indocyanine Green is widely used in medical diagnosis and to evaluate liver function and other regional blood flows in clinical application or animal experiments. In this work, a sensitive and selective ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determination of Indocyanine Green in rat plasma was developed and validated. After addition of rutin as an internal standard (IS), protein precipitation by acetonitrile-methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 μm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reactions monitoring (MRM) mode was used for quantification using target fragment ions m/z 753.4→330.2 for Indocyanine Green, and m/z 611.1→303.1 for IS. Calibration plots were linear throughout the range 20-5000 ng/mL for Indocyanine Green in rat plasma. Mean recoveries of Indocyanine Green in rat plasma ranged from 79.5% to 85.4%. RSD of intra-day and inter-day precision were both < 12%. The accuracy of the method was between 95.9% and 113.9%. The method was successfully applied to pharmacokinetic study of Indocyanine Green after intravenous administration.

  19. Pharmacokinetic study of indocyanine Green after intravenous administration by UPLC-MS/MS

    PubMed Central

    Chen, Yu; Chen, Dongxin; Hu, Wenhao; Lin, Guanyang; Huang, Shiyong

    2015-01-01

    Indocyanine Green is widely used in medical diagnosis and to evaluate liver function and other regional blood flows in clinical application or animal experiments. In this work, a sensitive and selective ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determination of Indocyanine Green in rat plasma was developed and validated. After addition of rutin as an internal standard (IS), protein precipitation by acetonitrile-methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 μm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reactions monitoring (MRM) mode was used for quantification using target fragment ions m/z 753.4→330.2 for Indocyanine Green, and m/z 611.1→303.1 for IS. Calibration plots were linear throughout the range 20-5000 ng/mL for Indocyanine Green in rat plasma. Mean recoveries of Indocyanine Green in rat plasma ranged from 79.5% to 85.4%. RSD of intra-day and inter-day precision were both < 12%. The accuracy of the method was between 95.9% and 113.9%. The method was successfully applied to pharmacokinetic study of Indocyanine Green after intravenous administration. PMID:26629038

  20. SMUVS: Spitzer Matching survey of the UltraVISTA ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Caputi, Karina; Ashby, Matthew; Fazio, Giovanni; Huang, Jiasheng; Dunlop, James; Franx, Marijn; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Muzzin, Adam; Ilbert, Olivier; Somerville, Rachel; Wechsler, Risa; Behroozi, Peter; Lu, Yu

    2014-12-01

    We request 2026.5 hours to homogenize the matching ultra-deep IRAC data of the UltraVISTA ultra-deep stripes, producing a final area of ~0.6 square degrees with the deepest near- and mid-IR coverage existing in any such large area of the sky (H, Ks, [3.6], [4.5] ~ 25.3-26.1 AB mag; 5 sigma). The UltraVISTA ultra-deep stripes are contained within the larger COSMOS field, which has a rich collection of multi-wavelength, ancillary data, making it ideal to study different aspects of galaxy evolution with high statistical significance and excellent redshift accuracy. The UltraVISTA ultra-deep stripes are the region of the COSMOS field where these studies can be pushed to the highest redshifts, but securely identifying high-z galaxies, and determining their stellar masses, will only be possible if ultra-deep mid-IR data are available. Our IRAC observations will allow us to: 1) extend the galaxy stellar mass function at redshifts z=3 to z=5 to the intermediate mass regime (M~5x10^9-10^10 Msun), which is critical to constrain galaxy formation models; 2) gain a factor of six in the area where it is possible to effectively search for z>=6 galaxies and study their properties; 3) measure, for the first time, the large-scale structure traced by an unbiased galaxy sample at z=5 to z=7, and make the link to their host dark matter haloes. This cannot be done in any other field of the sky, as the UltraVISTA ultra-deep stripes form a quasi-contiguous, regular-shape field, which has a unique combination of large area and photometric depth. 4) provide a unique resource for the selection of secure z>5 targets for JWST and ALMA follow up. Our observations will have an enormous legacy value which amply justifies this new observing-time investment in the COSMOS field. Spitzer cannot miss this unique opportunity to open up a large 0.6 square-degree window to the early Universe.

  1. Modeling & Verifying Aircraft Paint Hangar Airflow to Reduce Green House Gas and Energy Usage while Protecting Occupational Health Energy

    DTIC Science & Technology

    2015-05-30

    provides a smnmaty of results from the site visits and discusses areas of potential future research. 1S. SUBJECT TERMS Aircraft Paint Hangar...Airlift Wing ACCPFF ACGIH Aircraft Corrosion Control and Paint Finishing Facility American Conference of Governmental Industrial Hygienists ACS Cross...velocity did not increase exposure resulted in an interest in expanding the project to encompass more sites around the U.S. with support from the

  2. World commercial aircraft accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accidentmore » is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.« less

  3. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.

    2011-01-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

  4. High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers.

    PubMed

    Yang, Kangwen; Li, Wenxue; Yan, Ming; Shen, Xuling; Zhao, Jian; Zeng, Heping

    2012-06-04

    A high-power ultra-broadband frequency comb covering the spectral range from ultraviolet to infrared was generated directly by nonlinear frequency conversion of a multi-stage high-power fiber comb amplifier. The 1030-nm infrared spectral fraction of a broadband Ti:sapphire femtosecond frequency comb was power-scaled up to 100 W average power by using a large-mode-area fiber chirped-pulse amplifier. We obtained a frequency-doubled green comb at 515 nm and frequency-quadrupled ultraviolet pulses at 258 nm with the average power of 12.8 and 1.62 W under the input infrared power of 42.2 W, respectively. The carrier envelope phase stabilization was accomplished with an ultra-narrow line-width of 1.86 mHz and a quite low accumulated phase jitter of 0.41 rad, corresponding to a timing jitter of 143 as.

  5. Raptors and aircraft

    USGS Publications Warehouse

    Smith, D.G.; Ellis, D.H.; Johnson, T.H.; Glinski, Richard L.; Pendleton, Beth Giron; Moss, Mary Beth; LeFranc, Maurice N.=; Millsap, Brian A.; Hoffman, Stephen W.

    1988-01-01

    Less than 5% of all bird strikes of aircraft are by raptor species, but damage to airframe structure or jet engine dysfunction are likely consequences. Beneficial aircraft-raptor interactions include the use of raptor species to frighten unwanted birds from airport areas and the use of aircraft to census raptor species. Many interactions, however, modify the raptor?s immediate behavior and some may decrease reproduction of sensitive species. Raptors may respond to aircraft stimuli by exhibiting alarm, increased heart rate, flushing or fleeing and occasionally by directly attacking intruding aircraft. To date, most studies reveal that raptor responses to aircraft are brief and do not limit reproduction; however, additional study is needed.

  6. Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation

    NASA Technical Reports Server (NTRS)

    Tang, Adrian J.

    2013-01-01

    Aerial refueling technology for both manned and unmanned aircraft is critical for operations where extended aircraft flight time is required. Existing refueling assets are typically manned aircraft, which couple to a second aircraft through the use of a refueling boom. Alignment and mating of the two aircraft continues to rely on human control with use of high-resolution cameras. With the recent advances in unmanned aircraft, it would be highly advantageous to remove/reduce human control from the refueling process, simplifying the amount of remote mission management and enabling new operational scenarios. Existing aerial refueling uses a camera, making it non-autonomous and prone to human error. Existing commercial localizer technology has proven robust and reliable, but not suited for aircraft-to-aircraft approaches like in aerial refueling scenarios since the resolution is too coarse (approximately one meter). A localizer approach system for aircraft-to-aircraft docking can be constructed using the same modulation with a millimeterwave carrier to provide high resolution. One technology used to remotely align commercial aircraft on approach to a runway are ILS (instrument landing systems). ILS have been in service within the U.S. for almost 50 years. In a commercial ILS, two partially overlapping beams of UHF (109 to 126 MHz) are broadcast from an antenna array so that their overlapping region defines the centerline of the runway. This is called a localizer system and is responsible for horizontal alignment of the approach. One beam is modulated with a 150-Hz tone, while the other with a 90-Hz tone. Through comparison of the modulation depths of both tones, an autopilot system aligns the approaching aircraft with the runway centerline. A similar system called a glide-slope (GS) exists in the 320-to-330MHz band for vertical alignment of the approach. While this technology has been proven reliable for millions of commercial flights annually, its UHF nature limits

  7. Lack of pharmacokinetic interaction between fluvastatin and green tea in healthy volunteers.

    PubMed

    Misaka, Shingen; Abe, Osamu; Sato, Hideyuki; Ono, Tomoyuki; Shikama, Yayoi; Onoue, Satomi; Yabe, Hirooki; Kimura, Junko

    2018-05-01

    The objective of this study is to assess the effects of green tea and its major catechin component, (-)-epigallocatechin gallate (EGCG), on CYP2C9-mediated substrate metabolism in vitro, and the pharmacokinetics of fluvastatin in healthy volunteers. The metabolism of diclofenac and fluvastatin in human recombinant CYP2C9 was investigated in the presence of EGCG. In a randomized three-phase crossover study, 11 healthy volunteers ingested a single 20-mg dose of fluvastatin with green tea extract (GTE), containing 150 mg of EGCG, along with water (300 mL), brewed green tea (300 mL), or water (300 mL) after overnight fasting. Plasma concentrations of fluvastatin and EGCG were measured by ultra-performance liquid chromatography with fluorescence detection and a single mass spectrometer. EGCG inhibited diclofenac 4'-hydroxylation and fluvastatin degradation with IC 50 of 2.23 and 48.04 μM, respectively. Brewed green tea used in the clinical study also dose-dependently inhibited the metabolism of diclofenac and fluvastatin in vitro. However, no significant effects of GTE and brewed green tea were observed in plasma concentrations of fluvastatin. The geometric mean ratios with 90% CI for area under the plasma concentration-time curve (AUC 0-∞ ) of fluvastatin were 0.993 (0.963-1.024, vs. brewed green tea) and 0.977 (0.935-1.020, vs. GTE). Although in vitro studies indicated that EGCG and brewed green tea produce significant inhibitory effects on CYP2C9 activity, the concomitant administration of green tea and fluvastatin in healthy volunteers did not influence the pharmacokinetics of fluvastatin.

  8. Specification and testing for power by wire aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Kenney, Barbara H.

    1993-01-01

    A power by wire aircraft is one in which all active functions other than propulsion are implemented electrically. Other nomenclature are 'all electric airplane,' or 'more electric airplane.' What is involved is the task of developing and certifying electrical equipment to replace existing hydraulics and pneumatics. When such functions, however, are primary flight controls which are implemented electrically, new requirements are imposed that were not anticipated by existing power system designs. Standards of particular impact are the requirements of ultra-high reliability, high peak transient bi-directional power flow, and immunity to electromagnetic interference and lightning. Not only must the electromagnetic immunity of the total system be verifiable, but box level tests and meaningful system models must be established to allow system evaluation. This paper discusses some of the problems, the system modifications involved, and early results in establishing wiring harness and interface susceptibility requirements.

  9. Aircraft- and tower-based fluxes of carbon dioxide, latent, and sensible heat

    NASA Technical Reports Server (NTRS)

    Desjardins, R. L.; Hart, R. L.; Macpherson, J. I.; Schuepp, P. H.; Verma, S. B.

    1992-01-01

    Fluxes of carbon dioxide, water vapor, and sensible heat obtained over a grassland ecosystem, during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), using an aircraft- and two tower-based systems are compared for several days in 1987 and in 1989. The tower-based cospectral estimates of CO2, sensible heat, water vapor, and momentum, expressed as a function of wavenumber K times sampling height z, are relatively similar to the aircraft-based estimates for K x z greater than 0.1. A measurable contribution to the fluxes is observed by tower-based systems at K x z less than 0.01 but not by the aircraft-based system operating at an altitude of approximately 100 m over a 15 x 15 km area. Using all available simultaneous aircraft and tower data, flux estimates by both systems were shown to be highly correlated. As expected from the spatial variations of the greenness index, surface extrapolation of airborne flux estimates tended to lie between those of the two tower sites. The average fluxes obtained, on July 11, 1987, and August 4, 1989, by flying a grid pattern over the FIFE site agreed with the two tower data sets for CO2, but sensible and latent heat were smaller than those obtained by the tower-based systems. However, in general, except for a small underestimation due to the long wavelength contributions and due to flux divergence with height, the differences between the aircraft- and tower-based surface estimates of fluxes appear to be mainly attributable to differences in footprint, that is, differences in the area contributing to the surface flux estimates.

  10. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... engines, and propellers. 21.6 Section 21.6 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  11. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... engines, and propellers. 21.6 Section 21.6 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  12. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... engines, and propellers. 21.6 Section 21.6 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  13. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... engines, and propellers. 21.6 Section 21.6 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  14. Hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Alkamhawi, Hani; Greiner, Tom; Fuerst, Gerry; Luich, Shawn; Stonebraker, Bob; Wray, Todd

    1990-01-01

    A hypersonic aircraft is designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and it was decided that the aircraft would use one full scale turbofan-ramjet. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic region. After considering aerodynamics, aircraft design, stability and control, cooling systems, mission profile, and landing systems, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets are also taken into consideration in the final design. A hypersonic aircraft was designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and a full scale turbofan-ramjet was chosen. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic reqion. After the aerodynamics, aircraft design, stability and control, cooling systems, mission profile, landing systems, and their physical interactions were considered, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets were also considered in the designing process.

  15. Recent developments in high altitude aircraft sampling - Mount St. Helens and stratospheric trace gases

    NASA Astrophysics Data System (ADS)

    Leifer, R.; Sommers, K. G.; Guggenheim, S. F.; Fisenne, I.

    1981-02-01

    An ultra-clean, low volume gas sampling system (CLASS), flown aboard a high altitude aircraft (WB-57F), and providing information on stratospheric trace gases is presented. Attention is given to the instrument design and the electronic control design. Since remote operation is mandatory on the WB-57F, a servo pressure transducer, electrical pressure switch for automatic shutdown, and a mechanical safety relief valve were installed on the sampling manifold, indicated on the CLASS flow chart. The electronic control system consists of hermetically sealed solid state timers, relays, and a stepping switch, for controlling the compressor pump and solenoid valves. In designing the automatic control system, vibration, shock, acceleration, extreme low temperature, and aircraft safety were important considerations. CLASS was tested on three separate occasions, and tables of analytical data from these flights are presented. Readiness capability was demonstrated when the Mount St. Helens eruption plume of May 18, 1980, was intercepted, and it was concluded that no large injection of Rn-222 entered the stratosphere or troposphere from the eruption.

  16. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  17. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    PubMed

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  18. Unmanned aircraft systems

    USDA-ARS?s Scientific Manuscript database

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  19. Aircraft remote sensing of phytoplankton spatial patterns during the 1989 Joint Global Ocean Flux Study (JGOFS) North Atlantic bloom experiment

    NASA Technical Reports Server (NTRS)

    Yoder, James A.; Hoge, Frank E.

    1991-01-01

    Mesoscale phytoplankton chlorophyll variability near the Joint Global Ocean Flux study sites along the 20 W meridian at 34 N, 47 N, and 59 N is discussed. The NASA P-3 aircraft and the Airborne Oceanographic Lidar (AOL) system provides remote sensing support for the North Atlantic Bloom Experiment. The principal instrument of the AOL system is the blue-green laser that stimulates fluorescence from photoplankton chlorophyll, the principal photosynthetic pigment. Other instruments on the NASA P-3 aircraft include up- and down-looking spectrometers, PRT-5 for infrared measurements to determine sea surface temperature, and a system to deploy and record AXBTs to measure subsurface temperature structure.

  20. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  1. Greens of the European Green Capitals

    NASA Astrophysics Data System (ADS)

    Cömertler, Seval

    2017-10-01

    Well established and maintained green areas have a key role on reaching the high quality of life and sustainability in urban environments. Therefore, green areas must be carefully accounted and evaluated in the urban planning affairs. In this context, the European Green Capitals, which attach a great importance to the green areas, have a great potential to act as a role model for both small and big cities in all around the world. These leading cities (chronologically, Stockholm, Hamburg, Vitoria-Gasteiz, Nantes, Copenhagen, Bristol, Ljubljana, Essen and Nijmegen) are inspiring for the other cities which seek to achieve more sustainable and environmentally friendly places through green areas. From this point of view, the aim of this paper was to investigate the green areas of the European Green Capitals. The paper covered whole European Green Capitals, and the application form of each Green Capital was used as a primary data source. Consequently, the paper put forwarded that the European Green Capitals have considerably large amount and high proportion of green areas. Further, these cities provide an excellent access to the public green areas. As a result of abundant provision and proper distribution, the almost all citizens in most of the Green Capitals live within a distance of 300 meters to a green area. For further researches, the paper suggested that these green capitals should be investigated in terms of their efforts, measures, goals and plans, policies and implications to administer, to protect, to enhance and to expand the green areas.

  2. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  3. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  4. Theoretical ultra-fast spectroscopy in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Molina-Sanchez, Alejandro; Sangalli, Davide; Marini, Andrea; Wirtz, Ludger

    Semiconducting 2D-materials like the transition metal dichalcogenides (TMDs) MoS2, MoSe2, WS2, WSe2 are promising alternatives to graphene for designing novel opto-electronic devices. The strong spin-orbit interaction along with the breaking of inversion symmetry in single-layer TMDs allow using the valley-index as a new quantum number. The practical use of valley physics depends on the lifetimes of valley-polarized excitons which are affected by scattering at phonons, impurities and by carrier-carrier interactions. The carrier dynamics can be monitored using ultra-fast spectroscopies such as pump-probe experiments. The carrier dynamics is simulated using non-equilibrium Green's function theory in an ab-initio framework. We include carrier relaxation through electron-phonon interaction. We obtain the transient absorption spectra of single-layer TMD and compare our simulations with recent pump-probe experiments

  5. Compliance of Ultra-Orthodox and secular pedestrians with traffic lights in Ultra-Orthodox and secular locations.

    PubMed

    Rosenbloom, Tova; Shahar, Amit; Perlman, Amotz

    2008-11-01

    Following a previous study that revealed the disobedience of Ultra-Orthodox citizens, as compared to secular citizens, of traffic lights at crosswalks, the present study examined the road habits of 995 Ultra-Orthodox and secular pedestrians in neighboring Ultra-Orthodox and secular cities. Using an observation grid designed specially for this study, the pedestrians were observed at two crosswalks--one in an Ultra-Orthodox city and one in a secular city--as far as similar traffic parameters, using a logistic regression. The tendency to cross on a red light was assessed as a function of estimated age, gender, religiosity, location (religious/secular), the duration of the red light, the number of vehicles crossing and the number of pedestrians waiting at the curb. Ultra-Orthodox pedestrians committed more violations than secular pedestrians did, and there were more road violations in the Ultra-Orthodox location than there were in the secular location. Fewer traffic violations were committed by "local" pedestrians (Ultra-Orthodox pedestrians in the Ultra-Orthodox location and secular pedestrians in the secular location) than by "foreigners" (Ultra-Orthodox pedestrians in the secular location and secular pedestrians in the Ultra-Orthodox location). The odds of crossing on a red light decreased as a function of both the number of people waiting at the curb and the number of vehicles. Consistent with previous research, males crossed on red much more than females did, regardless of religiosity and location. Our discussion focuses on theoretical and practical explanations of the findings.

  6. Why aircraft disinsection?

    PubMed

    Gratz, N G; Steffen, R; Cocksedge, W

    2000-01-01

    A serious problem is posed by the inadvertent transport of live mosquitoes aboard aircraft arriving from tropical countries where vector-borne diseases are endemic. Surveys at international airports have found many instances of live insects, particularly mosquitoes, aboard aircraft arriving from countries where malaria and arboviruses are endemic. In some instances mosquito species have been established in countries in which they have not previously been reported. A serious consequence of the transport of infected mosquitoes aboard aircraft has been the numerous cases of "airport malaria" reported from Europe, North America and elsewhere. There is an important on-going need for the disinsection of aircraft coming from airports in tropical disease endemic areas into nonendemic areas. The methods and materials available for use in aircraft disinsection and the WHO recommendations for their use are described.

  7. Aircraft Survivability: UAVs and Manned Aircraft - Increasing Effectiveness and Survivability, Fall 2002

    DTIC Science & Technology

    2002-01-01

    techniques that interface with the composite structure to attach opaque armor(s) to compos- ite aircraft structure. Over a period of four years...2002 2. REPORT TYPE 3. DATES COVERED 00-00-2002 to 00-00-2002 4. TITLE AND SUBTITLE Aircraft Survivability: UAVs and Manned Aircraft ...survivability concepts to UAV program offices and airframe manufacturers. 11 Aircraft Fire Protection Techniques—Application to UAVs by Ms. Ginger Bennett

  8. Aircraft disinsection.

    PubMed

    Rayman, Russell B

    2006-07-01

    Aircraft disinsection has been an international practice since the 1920s, the purpose of which is to protect public health, the environment, agriculture, and livestock by the eradication of disease vectors. Although most nations of the world have discontinued this practice, about 20 continue with this requirement. Aircraft disinsection is sanctioned by international law with the World Health Organization (WHO) publishing general procedural guidelines in the International Health Regulations (IHR). There are currently four acceptable procedures: blocks away, top of descent, on arrival, and residual. A 2% pyrethrum solution, a naturally occurring substance found in the chrysanthemum flower, or several synthetic pyrethroids, are the recommended agents because they are extremely effective insecticides which pose minimal health risks. Although the use of insecticides for aircraft disinsection is controversial, national policies compelling this requirement must be respected. This paper will explore the background of aircraft disinsection, the procedures, the types of agents, and the toxicity. If aircraft disinsection is regulatory policy, it should be done in accordance with WHO procedures. Residual application is probably the most efficacious method. The use of air curtains or plastic strips should be explored as an alternative to the use of chemicals.

  9. Ultra-clean Layers (UCLs) and Low Albedo Clouds ("gray clouds") in the Marine Boundary Layer - CSET aircraft data, 2-D bin spectral cloud parcel model, large eddy simulation and satellite observations from CALIPSO, MODIS and COSMIC

    NASA Astrophysics Data System (ADS)

    O, K. T.; Wood, R.; Bretherton, C. S.; Eastman, R. M.; Tseng, H. H.

    2016-12-01

    During the 2015 Cloud System Evolution in the Trades (CSET) field program (CSET, Jul-Aug 2015, subtropical NE Pacific), the NSF/NCAR G-V aircraft frequently encountered ultra clean layers (hereafter UCLs) with extremely low accumulation mode aerosol (i.e. diameter da> 100nm) concentration (hereafter Na), and low albedo ( 0.2) warm clouds (termed "gray clouds" in our study) with low droplet concentration (hereafter Nd). The analysis of CSET aircraft data shows that (1) UCLs and gray clouds are mostly commonly found at a height of 1.5-2km, typically close to the top of the MBL, (2) UCLs and gray cloud coverage as high as 40-60% between 135W and 155W (i.e. Sc-Cu transition region) but occur very infrequently east of 130W (i.e. shallow, near-coastal stratocumulus region), and (3) UCLs and gray clouds exhibit remarkably low turbulence compared with non-UCL clear sky and clouds. It should be noted that most previous aircraft sampling of low clouds occurred close to the Californian coast, so the prevalence of UCLs and gray clouds has not been previously noted. Based on the analysis of aircraft data, we hypothesize that gray clouds result from detrainment of cloud close to the top of precipitating trade cumuli, and UCLs are remnants of these layers when gray clouds evaporates. The simulations in our study are performed using 2-D bin spectral cloud parcel model and version 6.9 of the System for Atmospheric Modeling (SAM). Our idealized simulations suggest that collision-coalescence plays a crucial role in reducing Nd such that gray clouds can easily form via collision-coalescence in layers detrained from the cloud top at trade cumulus regime, but can not form at stratocumulus regime. Upon evaporation of gray clouds, only few accumulation mode aerosols are returned to the clear sky, leaving horizontally-extensive UCLs (i.e. clean clear sky). Analysis of CSET flight data and idealized model simulations both suggest cloud top/PBL height may play an important role in the

  10. Rating aircraft on energy

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1974-01-01

    Questions concerning the energy efficiency of aircraft compared to ground transport are considered, taking into account as energy intensity the energy consumed per passenger statute mile. It is found that today's transport aircraft have an energy intensity potential comparable to that of ground modes. Possibilities for improving the energy density are also much better in the case of aircraft than in the case of ground transportation. Approaches for potential reductions in aircraft energy consumption are examined, giving attention to steps for increasing the efficiency of present aircraft and to reductions in energy intensity obtainable by the introduction of new aircraft utilizing an advanced technology. The use of supercritical aerodynamics is discussed along with the employment of composite structures, advances in propulsion systems, and the introduction of very large aircraft. Other improvements in fuel economy can be obtained by a reduction of skin-friction drag and a use of hydrogen fuel.

  11. Aircraft Inspection for the General Aviation Aircraft Owner.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    Presented is useful information for owners, pilots, student mechanics, and others with aviation interests. Part I of this booklet outlines aircraft inspection requirements, owner responsibilities, inspection time intervals, and sources of basic information. Part II is concerned with the general techniques used to inspect an aircraft. (Author/JN)

  12. Determination of pesticide residues in samples of green minor crops by gas chromatography and ultra performance liquid chromatography coupled to tandem quadrupole mass spectrometry.

    PubMed

    Walorczyk, Stanisław; Drożdżyński, Dariusz; Kierzek, Roman

    2015-01-01

    A method was developed for pesticide analysis in samples of high chlorophyll content belonging to the group of minor crops. A new type of sorbent, known as ChloroFiltr, was employed for dispersive-solid phase extraction cleanup (dispersive-SPE) to reduce the unwanted matrix background prior to concurrent analysis by gas chromatography and ultra-performance liquid chromatography coupled to tandem quadrupole mass spectrometry (GC-MS/MS and UPLC-MS/MS). Validation experiments were carried out on green, unripe plants of lupin, white mustard and sorghum. The overall recoveries at the three spiking levels of 0.01, 0.05 and 0.5 mg kg(-1) fell in the range between 68 and 120% (98% on average) and 72-104% (93% on average) with relative standard deviation (RSD) values between 2 and 19% (7% on average) and 3-16% (6% on average) by GC-MS/MS and UPLC-MS/MS technique, respectively. Because of strong enhancement or suppression matrix effects (absolute values >20%) which were exhibited by about 80% of the pesticide and matrix combinations, acceptably accurate quantification was achieved by using matrix-matched standards. Up to now, the proposed method has been successfully used to study the dissipation patterns of pesticides after application on lupin, white mustard, soya bean, sunflower and field bean in experimental plot trials conducted in Poland. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Age-related changes in ultra-triathlon performances

    PubMed Central

    2012-01-01

    Background The age-related decline in performance has been investigated in swimmers, runners and triathletes. No study has investigated the age-related performance decline in ultra-triathletes. The purpose of this study was to analyse the age-related declines in swimming, cycling, running and overall race time for both Triple Iron ultra-triathlon (11.4-km swimming, 540-km cycling and 126.6-km running) and Deca Iron ultra-triathlon (38-km swimming, 1,800-km cycling and 420-km running). Methods The age and performances of 423 male Triple Iron ultra-triathletes and 119 male Deca Iron ultra-triathletes were analysed from 1992 to 2010 using regression analyses and ANOVA. Results The mean age of the finishers was significantly higher for Deca Iron ultra-triathletes (41.3 ± 3.1 years) compared to a Triple Iron ultra-triathletes (38.5 ± 3.3 years) (P < 0.05). For both ultra-distances, the fastest overall race times were achieved between the ages of 25 and 44 years. Deca Iron ultra-triathletes achieved the same level of performance in swimming and cycling between 25 and 54 years of age. Conclusions The magnitudes of age-related declines in performance in the three disciplines of ultra-triathlon differ slightly between Triple and Deca Iron ultra-triathlon. Although the ages of Triple Iron ultra-triathletes were on average younger compared to Deca Iron ultra-triathletes, the fastest race times were achieved between 25 and 44 years for both distances. Further studies should investigate the motivation and training of ultra-triathletes to gain better insights in ultra-triathlon performance. PMID:23849327

  14. Why aircraft disinsection?

    PubMed Central

    Gratz, N. G.; Steffen, R.; Cocksedge, W.

    2000-01-01

    A serious problem is posed by the inadvertent transport of live mosquitoes aboard aircraft arriving from tropical countries where vector-borne diseases are endemic. Surveys at international airports have found many instances of live insects, particularly mosquitoes, aboard aircraft arriving from countries where malaria and arboviruses are endemic. In some instances mosquito species have been established in countries in which they have not previously been reported. A serious consequence of the transport of infected mosquitoes aboard aircraft has been the numerous cases of "airport malaria" reported from Europe, North America and elsewhere. There is an important on-going need for the disinsection of aircraft coming from airports in tropical disease endemic areas into nonendemic areas. The methods and materials available for use in aircraft disinsection and the WHO recommendations for their use are described. PMID:10994283

  15. Aerial applications of ultra-low-volume insecticides to control the vector of Japanese encephalitis in Korea

    PubMed Central

    Self, L. S.; Ree, H. I.; Lofgren, C. S.; Shim, J. C.; Chow, C. Y.; Shin, H. K.; Kim, K. H.

    1973-01-01

    As a suitable emergency measure to arrest epidemics of Japanese encephalitis in Korea, the ultra-low-volume method of spraying insecticide to control the mosquito vector Culex tritaeniorhynchus has been tested in 2 successive years over a 16-km 2 area, utilizing a large fixed-wing aircraft. Malathion concentrate applied at 0.36 litres/ha gave insufficient control of the parous (infective) females, and no reduction in total numbers of this species. Fenitrothion concentrate applied at 0.45 litres/ha resulted in a 77-87% reduction in total numbers and an 87-98% reduction in parous females over a 4-day period. PMID:4368385

  16. Predicting Visibility of Aircraft

    PubMed Central

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  17. Turboprop aircraft against terrorism: a SWOT analysis of turboprop aircraft in CAS operations

    NASA Astrophysics Data System (ADS)

    Yavuz, Murat; Akkas, Ali; Aslan, Yavuz

    2012-06-01

    Today, the threat perception is changing. Not only for countries but also for defence organisations like NATO, new threat perception is pointing terrorism. Many countries' air forces become responsible of fighting against terorism or Counter-Insurgency (COIN) Operations. Different from conventional warfare, alternative weapon or weapon systems are required for such operatioins. In counter-terrorism operations modern fighter jets are used as well as helicopters, subsonic jets, Unmanned Aircraft Systems (UAS), turboprop aircraft, baloons and similar platforms. Succes and efficiency of the use of these platforms can be determined by evaluating the conditions, the threats and the area together. Obviously, each platform has advantages and disadvantages for different cases. In this research, examples of turboprop aircraft usage against terrorism and with a more general approach, turboprop aircraft for Close Air Support (CAS) missions from all around the world are reviewed. In this effort, a closer look is taken at the countries using turboprop aircraft in CAS missions while observing the fields these aircraft are used in, type of operations, specifications of the aircraft, cost and the maintenance factors. Thus, an idea about the convenience of using these aircraft in such operations can be obtained. A SWOT analysis of turboprop aircraft in CAS operations is performed. This study shows that turboprop aircraft are suitable to be used in counter-terrorism and COIN operations in low threat environment and is cost benefical compared to jets.

  18. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Uden, Edward (Inventor); Bowers, Albion H. (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  19. 32 CFR 855.6 - Aircraft exempt from the requirement for a civil aircraft landing permit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Aircraft exempt from the requirement for a civil aircraft landing permit. 855.6 Section 855.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft...

  20. 32 CFR 855.6 - Aircraft exempt from the requirement for a civil aircraft landing permit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Aircraft exempt from the requirement for a civil aircraft landing permit. 855.6 Section 855.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft...

  1. What predicts performance in ultra-triathlon races? – a comparison between Ironman distance triathlon and ultra-triathlon

    PubMed Central

    Knechtle, Beat; Zingg, Matthias Alexander; Rosemann, Thomas; Stiefel, Michael; Rüst, Christoph Alexander

    2015-01-01

    Objective This narrative review summarizes recent intentions to find potential predictor variables for ultra-triathlon race performance (ie, triathlon races longer than the Ironman distance covering 3.8 km swimming, 180 km cycling, and 42.195 km running). Results from studies on ultra-triathletes were compared to results on studies on Ironman triathletes. Methods A literature search was performed in PubMed using the terms “ultra”, “triathlon”, and “performance” for the aspects of “ultra-triathlon”, and “Ironman”, “triathlon”, and “performance” for the aspects of “Ironman triathlon”. All resulting papers were searched for related citations. Results for ultra-triathlons were compared to results for Ironman-distance triathlons to find potential differences. Results Athletes competing in Ironman and ultra-triathlon differed in anthropometric and training characteristics, where both Ironmen and ultra-triathletes profited from low body fat, but ultra-triathletes relied more on training volume, whereas speed during training was related to Ironman race time. The most important predictive variables for a fast race time in an ultra-triathlon from Double Iron (ie, 7.6 km swimming, 360 km cycling, and 84.4 km running) and longer were male sex, low body fat, age of 35–40 years, extensive previous experience, a fast time in cycling and running but not in swimming, and origins in Central Europe. Conclusion Any athlete intending to compete in an ultra-triathlon should be aware that low body fat and high training volumes are highly predictive for overall race time. Little is known about the physiological characteristics of these athletes and about female ultra-triathletes. Future studies need to investigate anthropometric and training characteristics of female ultra-triathletes and what motivates women to compete in these races. Future studies need to correlate physiological characteristics such as maximum oxygen uptake (VO2max) with ultra

  2. Aircraft to aircraft intercomparison during SEMAPHORE

    NASA Astrophysics Data System (ADS)

    Lambert, Dominique; Durand, Pierre

    1998-10-01

    During the Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE) experiment, performed in the Azores region in 1993, two French research aircraft were simultaneously used for in situ measurements in the atmospheric boundary layer. We present the results obtained from one intercomparison flight between the two aircraft. The mean parameters generally agree well, although the temperature has to be slightly shifted in order to be in agreement for the two aircraft. A detailed comparison of the turbulence parameters revealed no bias. The agreement is good for variances and is satisfactory for fluxes and skewness. A thorough study of the errors involved in flux computation revealed that the greatest accuracy is obtained for latent heat flux. Errors in sensible heat flux are considerably greater, and the worst results are obtained for momentum flux. The latter parameter, however, is more accurate than expected from previous parameterizations.

  3. General Aviation Aircraft Reliability Study

    NASA Technical Reports Server (NTRS)

    Pettit, Duane; Turnbull, Andrew; Roelant, Henk A. (Technical Monitor)

    2001-01-01

    This reliability study was performed in order to provide the aviation community with an estimate of Complex General Aviation (GA) Aircraft System reliability. To successfully improve the safety and reliability for the next generation of GA aircraft, a study of current GA aircraft attributes was prudent. This was accomplished by benchmarking the reliability of operational Complex GA Aircraft Systems. Specifically, Complex GA Aircraft System reliability was estimated using data obtained from the logbooks of a random sample of the Complex GA Aircraft population.

  4. Physiology and Pathophysiology in Ultra-Marathon Running

    PubMed Central

    Knechtle, Beat; Nikolaidis, Pantelis T.

    2018-01-01

    In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time) is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat) and training (e.g., high volume and running speed during training) characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10–20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35–45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold) or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In longer ultra

  5. Physiology and Pathophysiology in Ultra-Marathon Running.

    PubMed

    Knechtle, Beat; Nikolaidis, Pantelis T

    2018-01-01

    In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time) is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat) and training (e.g., high volume and running speed during training) characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10-20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35-45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold) or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In longer ultra

  6. Optical communications for transport aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, Robert

    1994-01-01

    Optical communications for transport aircraft are discussed. The problem involves: increasing demand for radio-frequency bands from an enlarging pool of users (aircraft, ground and sea vehicles, fleet operators, traffic control centers, and commercial radio and television); desirability of providing high-bandwidth dedicated communications to and from every aircraft in the National Airspace System; need to support communications, navigation, and surveillance for a growing number of aircraft; and improved meteorological observations by use of probe aircraft. The solution involves: optical signal transmission support very high data rates; optical transmission of signals between aircraft, orbiting satellites, and ground stations, where unobstructed line-of-sight is available; conventional radio transmissions of signals between aircraft and ground stations, where optical line-of-sight is unavailable; and radio priority given to aircraft in weather.

  7. Comparison of RNA extraction kits for the purification and detection of an enteric virus surrogate on green onions via RT-PCR.

    PubMed

    Xu, Ruoyang; Shieh, Y Carol; Stewart, Diana S

    2017-01-01

    Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) offers a rapid and sensitive molecular method for detection of enteric viruses. Unfortunately, these assays are often hampered by the low virus titre found in foods and PCR inhibition due to matrix carryover during RNA extraction. Four commercial RNA extraction kits (Qiagen's QIAamp Viral RNA Mini and UltraSens Virus kits, MoBio UltraClean Tissue & Cells RNA Isolation kit, and Ambion MagMAX Viral RNA Isolation kit) were evaluated for their ability to extract and purify MS2 bacteriophage RNA, an enteric virus surrogate, from inoculated green onions, a food which has been associated with viral gastroenteritis outbreaks. Inoculated green onion wash concentrates and green onion pieces with and without Qiagen QIAshredder homogenization were assayed in the kit comparison. MS2 detection and PCR inhibition were evaluated using a duplex real-time RT-PCR for MS2 and an exogenous internal amplification control (IAC) assay. Without homogenization, MS2 inoculated at 40pfu/g was detected in at least 4 lots of green onion wash concentrates using the silica-membrane spin-column kits. Inhibition was a factor for the magnetic silica-based MagMAX kit, which resulted in detection of MS2 in 1 of 5. Addition of QIAshredder homogenization prior to extraction did not adversely affect the silica-membrane kit results but improved the MS2 detection by MagMAX to 5 of 5 lots. Use of a 1:10 dilution of primary RNA extracts also improved detection. The QIAamp Viral RNA Mini and MagMAX kits were further compared for detection of MS2 from green onion pieces inoculated at 20 and 5pfu/g. Using homogenization, the MagMAX kit detected 20pfu/g in only 1 of 2 green onion lots, whereas the QIAamp Viral RNA kit detected 2 of 2 lots at 5 pfu/g without homogenization. Published by Elsevier B.V.

  8. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun, E-mail: wenjunwang@mail.xjtu.edu.cn

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloymore » were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.« less

  9. Analysis of ultra-triathlon performances

    PubMed Central

    Lepers, Romuald; Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas

    2011-01-01

    Despite increased interest in ultra-endurance events, little research has examined ultra-triathlon performance. The aims of this study were: (i) to compare swimming, cycling, running, and overall performances in three ultra-distance triathlons, double Ironman distance triathlon (2IMT) (7.6 km swimming, 360 km cycling, and 84.4 km running), triple Ironman distance triathlon (3IMT) (11.4 km, 540 km, and 126.6 km), and deca Ironman distance triathlon (10IMT) (38 km, 1800 km, and 420 km) and (ii) to examine the relationships between the 2IMT, 3IMT, and 10IMT performances to create predicted equations of the 10IMT performances. Race results from 1985 through 2009 were examined to identify triathletes who performed the three considered ultra-distances. In total, 73 triathletes (68 men and 5 women) were identified. The contribution of swimming to overall ultra-triathlon performance was lower than for cycling and running. Running performance was more important to overall performance for 2IMT and 3IMT compared with 10IMT The 2IMT and 3IMT performances were significantly correlated with 10IMT performances for swimming and cycling, but not for running. 10IMT total time performance might be predicted by the following equation: 10IMT race time (minutes) = 5885 + 3.69 × 3IMT race time (minutes). This analysis of human performance during ultra-distance triathlons represents a unique data set in the field of ultra-endurance events. Additional studies are required to determine the physiological and psychological factors associated with ultra-triathlon performance. PMID:24198579

  10. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...

  11. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...

  12. Update on wide- and ultra-widefield retinal imaging

    PubMed Central

    Shoughy, Samir S; Arevalo, J Fernando; Kozak, Igor

    2015-01-01

    The peripheral retina is the site of pathology in many ocular diseases and ultra-widefield (UWF) imaging is one of the new technologies available to ophthalmologists to manage some of these diseases. Currently, there are several imaging systems used in practice for the purpose of diagnostic, monitoring disease progression or response to therapy, and telemedicine. These include modalities for both adults and pediatric patients. The current systems are capable of producing wide- and UWF color fundus photographs, fluorescein and indocyanine green angiograms, and autofluorescence images. Using this technology, important clinical observations have been made in diseases such as diabetic retinopathy, uveitides, retinal vascular occlusions and tumors, intraocular tumors, retinopathy of prematurity, and age-related macular degeneration. Widefield imaging offers excellent postoperative documentation of retinal detachment surgery. New applications will soon be available to integrate this technology into large volume routine clinical practice. PMID:26458474

  13. Control strategy of an electrically actuated morphing flap for the next generation green regional aircraft

    NASA Astrophysics Data System (ADS)

    Arena, Maurizio; Noviello, Maria Chiara; Rea, Francesco; Amoroso, Francesco; Pecora, Rosario

    2018-03-01

    The design and application of adaptive devices are currently ambitious targets in the field of aviation research addressed at new generation aircraft. The development of intelligent structures involves aspects of multidisciplinary nature: the combination of compact architectures, embedded electrical systems and smart materials, allows for developing a highly innovative device. The paper aims to present the control system design of an innovative morphing flap tailored for the next generation regional aircraft, within Clean Sky 2 - Airgreen 2 European Research Scenario. A distributed system of electromechanical actuators (EMAs) has been sized to enable up to three operating modes of a structure arranged in four blocks along the chord-wise direction: •overall camber-morphing; •upwards/downwards deflection and twisting of the final tip segment. A state-of-art feedback logic based on a decentralized control strategy for shape control is outlined, including the results of dynamic stability analysis based on the blocks rational schematization within Matlab/Simulink® environment. Such study has been performed implementing a state-space model, considering also design parameters as the torsional stiffness and damping of the actuation chain. The design process is flowing towards an increasingly "robotized" system, which can be externally controlled to perform certain operations. Future developments will be the control laws implementation as well as the functionality test on a real flap prototype.

  14. V/STOL tilt rotor aircraft study. Volume 5: Definition of stowed rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Soule, V. A.

    1973-01-01

    The results of a study of folding tilt rotor (stowed rotor) aircraft are presented. The effects of design cruise speed on the gross weight of a conceptual design stowed rotor aircraft are shown and a comparison is made with a conventional (non-folding) tilt rotor aircraft. A flight research stowed rotor design is presented. The program plans, including costs and schedules, are shown for the research aircraft development and a wind tunnel plan is presented for a full scale test of the aircraft.

  15. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  16. Boundaries of ERTS and aircraft data within which useful water quality information can be obtained

    NASA Technical Reports Server (NTRS)

    Egan, W. G.

    1974-01-01

    Calibration procedures have been devised and applied to ERTS-1, multispectral, true color, and false color imagery. The results indicate that the ERTS and multispectral imagery are correlated with optical in situ measurements of the harbor water. Correlation is extended to true and false color imagery through in situ optical measurements of the harbor water. The best photometric accuracy is achieved with multispectral aerial imagery and the use of bulk MSS tape. The aircraft green photographic and ERTS-1 MSS-4 bands have been found most suitable for monitoring the scattered light levels under the conditions of this investigation. The application of satellite or aircraft for optical remote sensing depends upon the physical scale and frequency of sensing since both sensor systems generally have sufficient photometric sensitivity. The chemical parameters of the harbor water were found to be correlated to the optical properties for two stations investigated in detail.

  17. Assessing the Performance of Large Scale Green Roofs and Their Impact on the Urban Microclimate

    NASA Astrophysics Data System (ADS)

    Smalls-Mantey, L.; Foti, R.; Montalto, F. A.

    2015-12-01

    In ultra-urban environments green roofs offer a feasible solution to add green infrastructure (GI) in neighborhoods where space is limited. Green roofs offer the typical advantages of urban GI such as stormwater reduction and management while providing direct benefits to the buildings on which they are installed through thermal protection and mitigation of temperature fluctuations. At 6.8 acres, the Jacob K. Javits Convention Center (JJCC) in New York City, hosts the second largest green roof in the United States. Since its installation in August 2013, the Sustainable Water Resource (SWRE) Laboratory at Drexel University has monitored the climate on and around the green roof by means of four weather stations situated on various roof and ground locations. Using two years of fine scale climatic data collected at the JJCC, this study explores the energy balance of a large scale green roof system. Temperature, radiation, evapotranspiration and wind profiles pre- and post- installation of the JJCC green roof were analyzed and compared across monitored locations, with the goal of identifying the impact of the green roof on the building and urban micro-climate. Our findings indicate that the presence of the green roof, not only altered the climatic conditions above the JJCC, but also had a measurable impact on the climatic profile of the areas immediately surrounding it. Furthermore, as a result of the mitigation of roof temperature fluctuations and of the cooling provided during warmer months, an improvement of the building thermal efficiency was contextually observed. Such findings support the installation of GI as an effective practice in urban settings and important in the discussion of key issues including energy conservation measures, carbon emission reductions and the mitigation of urban heat islands.

  18. Determination of Organic Impurities in Anthraquinone Color Additives D&C Violet No. 2 and D&C Green No. 6 by Ultra-High Performance Liquid Chromatography.

    PubMed

    Yang, H H Wendy

    2017-01-01

    A new practical and time-saving ultra-high performance liquid chromatography (UHPLC) method has been developed for determining the organic impurities in the anthraquinone color additives D&C Violet No. 2 and D&C Green No. 6. The impurities determined are p-toluidine, 1-hydroxyanthraquinone, 1,4-dihydroxyanthraquinone, and two subsidiary colors. The newly developed UHPLC method uses a 1.7-μ particle size C-18 column, 0.1 M ammonium acetate and acetonitrile as eluents, and photodiode array detection. For the quantification of the impurities, six-point calibration curves were used with correlation coefficients that ranged from 0.9974 to 0.9998. Recoveries of impurities ranged from 99 to 104%. Relative standard deviations ranged from 0.81 to 4.29%. The limits of detection for the impurities ranged from 0.0067% to 0.216%. Samples from sixteen batches of each color additive were analyzed, and the results favorably compared with the results obtained by gravity-elution column chromatography, thin-layer chromatography, and isooctane extraction. Unlike with those other methods, use of the UHPLC method permits all of the impurities to be determined in a single analysis, while also reducing the amount of organic waste and saving time and labor. The method is expected to be implemented by the U.S. Food and Drug Administration for analysis of color additive samples submitted for batch certification.

  19. Personal Flying Accident Rates of Selected Light Sport Aircraft Compared with General Aviation Aircraft.

    PubMed

    Mills, William D; DeJohn, Charles A

    2016-07-01

    The issue of expanding flight privileges that do not require medical oversight is currently an important topic, especially in the United States. We compared personal flying accident rates in aircraft with special light sport aircraft (SLSA) and experimental light sport aircraft (ELSA) airworthiness certificates to accident rates for personal flying in other general aviation (GA) aircraft. To calculate accident rates, personal flying hours were obtained from the annual FAA General Aviation and Part 135 Activity Surveys, and numbers of personal flying accidents were obtained from the NTSB accident database. Overall and fatal personal flying accident rates for the SLSA and ELSA groups and other GA aircraft were calculated and accident rates were compared. The overall personal flying accident rate for SLSA and ELSA was found to be 29.8 per 100,000 flight hours and the fatal accident rate was 5.2 per 100,000 flying hours. These are both significantly greater than the overall personal flying rate of 12.7 per 100,000 h and fatal rate of 2.6 per 100,000 h for other GA aircraft. Although this study has several limitations, the significantly higher accident rates in the sport pilot aircraft suggests caution when expanding sport pilot privileges to include larger, more complex aircraft. Mills WD, DeJohn CA. Personal flying accident rates of selected light sport aircraft compared with general aviation aircraft. Aerosp Med Hum Perform. 2016; 87(7):652-654.

  20. Soft-Ground Aircraft Arresting Systems.

    DTIC Science & Technology

    1987-08-01

    19 Rut Depth in Foam Arrestor Bed for Aircraft A. .. .... 30 20 Aircraft B Deceleration in Gravel Arrestor. ... .... 32 21Arrf u ephPoiei rvl retr...Bed Arrestment ....... ... ... ... ... .... 43 30 Aircraft D Deceleration in Gravel Bed .... ......... 44 31 Aircraft D Rut Depth Obtained in Gravel...The deceleration of Aircraft D is shown in Figure 30 . The peak deceleration was about 0.43 g’s. The initial part of the deceleration curve shows a

  1. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part for..., airframe, aircraft engine, propeller, appliance, or component part for return to service as provided in...

  2. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part for..., airframe, aircraft engine, propeller, appliance, or component part for return to service as provided in...

  3. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part for..., airframe, aircraft engine, propeller, appliance, or component part for return to service as provided in...

  4. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part for..., airframe, aircraft engine, propeller, appliance, or component part for return to service as provided in...

  5. Dynamic Tsunami Data Assimilation (DTDA) Based on Green's Function: Theory and Application

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Satake, K.; Gusman, A. R.; Maeda, T.

    2017-12-01

    Tsunami data assimilation estimates the tsunami arrival time and height at Points of Interest (PoIs) by assimilating tsunami data observed offshore into a numerical simulation, without the need of calculating initial sea surface height at the source (Maeda et al., 2015). The previous tsunami data assimilation has two main problems: one is that it requires quite large calculating time because the tsunami wavefield of the whole interested region is computed continuously; another is that it relies on dense observation network such as Dense Oceanfloor Network system for Earthquakes and Tsunamis (DONET) in Japan or Cascadia Initiative (CI) in North America (Gusman et al., 2016), which is not practical for some area. Here we propose a new approach based on Green's function to speed up the tsunami data assimilation process and to solve the problem of sparse observation: Dynamic Tsunami Data Assimilation (DTDA). If the residual between the observed and calculated tsunami height is not zero, there will be an assimilation response around the station, usually a Gaussian-distributed sea surface displacement. The Green's function Gi,j is defined as the tsunami waveform at j-th grid caused by the propagation of assimilation response at i-th station. Hence, the forecasted waveforms at PoIs are calculated as the superposition of the Green's functions. In case of sparse observation, we could use the aircraft and satellite observations. The previous assimilation approach is not practical because it costs much time to assimilate moving observation, and to compute the tsunami wavefield of the interested region. In contrast, DTDA synthesizes the waveforms quickly as long as the Green's functions are calculated in advance. We apply our method to a hypothetic earthquake off the west coast of Sumatra Island similar to the 2004 Indian Ocean earthquake. Currently there is no dense observation network in that area, making it difficult for the previous assimilation approach. We used DTDA with

  6. 75 FR 51953 - Notification and Reporting of Aircraft Accidents or Incidents and Overdue Aircraft, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... Accidents or Incidents and Overdue Aircraft, and Preservation of Aircraft Wreckage, Mail, Cargo, and Records... its regulations on the notification and reporting of aircraft accidents or incidents by adding a definition of ``unmanned aircraft accident'' and requiring that operators notify the NTSB of accidents...

  7. The Typical General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Turnbull, Andrew

    1999-01-01

    The reliability of General Aviation aircraft is unknown. In order to "assist the development of future GA reliability and safety requirements", a reliability study needs to be performed. Before any studies on General Aviation aircraft reliability begins, a definition of a typical aircraft that encompasses most of the general aviation characteristics needs to be defined. In this report, not only is the typical general aviation aircraft defined for the purpose of the follow-on reliability study, but it is also separated, or "sifted" into several different categories where individual analysis can be performed on the reasonably independent systems. In this study, the typical General Aviation aircraft is a four-place, single engine piston, all aluminum fixed-wing certified aircraft with a fixed tricycle landing gear and a cable operated flight control system. The system breakdown of a GA aircraft "sifts" the aircraft systems and components into five categories: Powerplant, Airframe, Aircraft Control Systems, Cockpit Instrumentation Systems, and the Electrical Systems. This breakdown was performed along the lines of a failure of the system. Any component that caused a system to fail was considered a part of that system.

  8. Consumers' conceptualization of ultra-processed foods.

    PubMed

    Ares, Gastón; Vidal, Leticia; Allegue, Gimena; Giménez, Ana; Bandeira, Elisa; Moratorio, Ximena; Molina, Verónika; Curutchet, María Rosa

    2016-10-01

    Consumption of ultra-processed foods has been associated with low diet quality, obesity and other non-communicable diseases. This situation makes it necessary to develop educational campaigns to discourage consumers from substituting meals based on unprocessed or minimally processed foods by ultra-processed foods. In this context, the aim of the present work was to investigate how consumers conceptualize the term ultra-processed foods and to evaluate if the foods they perceive as ultra-processed are in concordance with the products included in the NOVA classification system. An online study was carried out with 2381 participants. They were asked to explain what they understood by ultra-processed foods and to list foods that can be considered ultra-processed. Responses were analysed using inductive coding. The great majority of the participants was able to provide an explanation of what ultra-processed foods are, which was similar to the definition described in the literature. Most of the participants described ultra-processed foods as highly processed products that usually contain additives and other artificial ingredients, stressing that they have low nutritional quality and are unhealthful. The most relevant products for consumers' conceptualization of the term were in agreement with the NOVA classification system and included processed meats, soft drinks, snacks, burgers, powdered and packaged soups and noodles. However, some of the participants perceived processed foods, culinary ingredients and even some minimally processed foods as ultra-processed. This suggests that in order to accurately convey their message, educational campaigns aimed at discouraging consumers from consuming ultra-processed foods should include a clear definition of the term and describe some of their specific characteristics, such as the type of ingredients included in their formulation and their nutritional composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Pathfinder aircraft in flight

    NASA Image and Video Library

    1995-07-27

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  10. Intelligent aircraft/airspace systems

    NASA Technical Reports Server (NTRS)

    Wangermann, John P.

    1995-01-01

    Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.

  11. Aircraft operations management manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  12. Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes

    PubMed Central

    Prasad, Ankush; Pospíšil, Pavel

    2011-01-01

    Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the

  13. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    NASA Astrophysics Data System (ADS)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  14. Ultra-high resolution and high-brightness AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave

    2012-06-01

    As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.

  15. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... be met within the specified time without creating a hazard to aircraft safety. [77 FR 36381, June 18...

  16. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... be met within the specified time without creating a hazard to aircraft safety. [77 FR 36381, June 18...

  17. Ultra-efficient Engine Diameter Study

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Brown, Stephen T.; Kawai, Ron T.

    2003-01-01

    Engine fan diameter and Bypass Ratio (BPR) optimization studies have been conducted since the beginning of the turbofan age with the recognition that reducing the engine core jet velocity and increasing fan mass flow rate generally increases propulsive efficiency. However, performance tradeoffs limit the amount of fan flow achievable without reducing airplane efficiency. This study identifies the optimum engine fan diameter and BPR, given the advanced Ultra-Efficient Engine Technology (UEET) powerplant efficiencies, for use on an advanced subsonic airframe. Engine diameter studies have historically focused on specific engine size options, and were limited by existing technology and transportation infrastructure (e.g., ability to fit bare engines through aircraft doors and into cargo holds). This study is unique in defining the optimum fan diameter and drivers for future 2015 (UEET) powerplants while not limiting engine fan diameter by external constraints. This report follows on to a study identifying the system integration issues of UEET engines. This Engine Diameter study was managed by Boeing Phantom Works, Seattle, Washington through the NASA Glenn Revolutionary Aero Space Engine Research (RASER) contract under task order 10. Boeing Phantom Works, Huntington Beach, completed the engine/airplane sizing optimization, while the Boeing Commercial Airplane group (BCA) provided design oversight. A separate subcontract to support the overall project was issued to Tuskegee University.

  18. Detectability of high power aircraft

    NASA Astrophysics Data System (ADS)

    Dettmar, Klaus Uwe; Kruse, Juergen; Loebert, Gerhard

    1992-05-01

    In addition to the measures aiming at improving the probability of survival for an aircraft, including aircraft performance, flight profile selection, efficient electronic warfare equipment, and self protection weapons, it is shown that an efficient measure consists of reducing aircraft signature (radar, infrared, acoustic, visual) in connection with the use of signature avionics. The American 'stealth' aircrafts are described as examples.

  19. Mission management aircraft operations manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This manual prescribes the NASA mission management aircraft program and provides policies and criteria for the safe and economical operation, maintenance, and inspection of NASA mission management aircraft. The operation of NASA mission management aircraft is based on the concept that safety has the highest priority. Operations involving unwarranted risks will not be tolerated. NASA mission management aircraft will be designated by the Associate Administrator for Management Systems and Facilities. NASA mission management aircraft are public aircraft as defined by the Federal Aviation Act of 1958. Maintenance standards, as a minimum, will meet those required for retention of Federal Aviation Administration (FAA) airworthiness certification. Federal Aviation Regulation Part 91, Subparts A and B, will apply except when requirements of this manual are more restrictive.

  20. Aircraft crashworthiness studies : findings in accidents involving an aerial application aircraft.

    DOT National Transportation Integrated Search

    1980-04-01

    Aircraft crashworthiness features are presented, as others have done, in terms of packaging principles. Modern aerial application aircraft are recognized as being the most crashworthy in the civil aviation fleet. Eighteen accidents involving an aeria...

  1. Sex Difference in Draft-Legal Ultra-Distance Events - A Comparison between Ultra-Swimming and Ultra-Cycling.

    PubMed

    Salihu, Lejla; Rüst, Christoph Alexander; Rosemann, Thomas; Knechtle, Beat

    2016-04-30

    Recent studies reported that the sex difference in performance in ultra-endurance sports such as swimming and cycling changed over the years. However, the aspect of drafting in draft-legal ultra-endurance races has not yet been investigated. This study investigates the sex difference in ultra-swimming and ultra-cycling draft-legal races where drafting - swimming or cycling behind other participants to save energy and have more power at the end of the race to overtake them, is allowed. The change in performance of the annual best and the annual three best in an ultra-endurance swimming race (16-km 'Faros Swim Marathon') over 38 years and in a 24-h ultra-cycling race ('World Cycling Race') over 13 years were compared and analysed with respect to sex difference. Furthermore, performances of the fastest female and male finishers ever were compared. In the swimming event, the sex difference of the annual best male and female decreased non-significantly (P = 0.262) from 5.3% (1976) to 1.0% (2013). The sex gap of speed in the annual three fastest swimmers decreased significantly (P = 0.043) from 5.9 ± 1.6% (1979) to 4.7 ± 3.1% (2013). In the cycling event, the difference in cycling speed between the annual best male and female decreased significantly (P = 0.026) from 33.31% (1999) to 10.89% (2011). The sex gap of speed in the annual three fastest decreased significantly (P = 0.001) from 32.9 ± 0.6% (1999) to 16.4 ± 5.9% (2011). The fastest male swimmer ever (swimming speed 5.3 km/h, race time: 03:01:55 h:min:s) was 1.5% faster than the fastest female swimmer (swimming speed 5.2 km/h, race time: 03:04:09 h:min:s). The three fastest male swimmers ever (mean 5.27 ± 0.13 km/h) were 4.4% faster than the three fastest female swimmers (mean 5.05 ± 0.20 km/h) (P < 0.05). In the cycling event, the best male ever (cycling speed 45.8 km/h) was 26.4% faster than the best female (cycling speed 36.1 km/h). The three fastest male cyclists ever (45.9 km/h) (mean 45.85 ± 0.05 km

  2. Aircraft fire safety research

    NASA Technical Reports Server (NTRS)

    Botteri, Benito P.

    1987-01-01

    During the past 15 years, very significant progress has been made toward enhancing aircraft fire safety in both normal and hostile (combat) operational environments. Most of the major aspects of the aircraft fire safety problem are touched upon here. The technology of aircraft fire protection, although not directly applicable in all cases to spacecraft fire scenarios, nevertheless does provide a solid foundation to build upon. This is particularly true of the extensive research and testing pertaining to aircraft interior fire safety and to onboard inert gas generation systems, both of which are still active areas of investigation.

  3. Solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  4. UHPLC determination of catechins for the quality control of green tea.

    PubMed

    Naldi, Marina; Fiori, Jessica; Gotti, Roberto; Périat, Aurélie; Veuthey, Jean-Luc; Guillarme, Davy; Andrisano, Vincenza

    2014-01-01

    An ultra-high performance liquid chromatography (UHPLC) with UV detection method was developed for the fast quantitation of the most represented and biologically important green tea catechins and caffeine. UHPLC system was equipped with C18 analytical column (50mm×2.1mm, 1.8μm), utilizing a mobile phase composed of pH 2.5 triethanolamine phosphate buffer (0.1M) and acetonitrile in a gradient elution mode; under these conditions six major catechins and caffeine were separated in a 3min run. The method was fully validated in terms of precision, detection and quantification limits, linearity, accuracy, and it was applied to the identification and quantification of catechins and caffeine present in green tea infusions. In particular, commercially available green tea leaves samples of different geographical origin (Sencha, Ceylon Green and Lung Ching) were used for infusion preparations (water at 85°C for 15min). The selectivity of the developed UHPLC method was confirmed by comparison with UHPLC-MS/MS analysis. The recovery of the main six catechins and caffeine on the three analyzed commercial tea samples ranged from 94 to 108% (n=3). Limits of detection (LOD) were comprised in the range 0.1-0.4μgmL(-1). An orthogonal micellar electrokinetic (MEKC) method was applied for comparative purposes on selectivity and quantitative data. The combined use of the results obtained by the two techniques allowed for a fast confirmation on quantitative characterization of commercial samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets

    NASA Technical Reports Server (NTRS)

    Moore, Mark D.; Fredericks, Bill

    2014-01-01

    Over the past several years there have been aircraft conceptual design and system studies that have reached conflicting conclusions relating to the feasibility of full and hybrid electric aircraft. Some studies and propulsion discipline experts have claimed that battery technologies will need to improve by 10 to 20 times before electric aircraft can effectively compete with reciprocating or turbine engines. However, such studies have approached comparative assessments without understanding the compelling differences that electric propulsion offers, how these technologies will fundamentally alter the way propulsion integration is approached, or how these new technologies can not only compete but far exceed existing propulsion solutions in many ways at battery specific energy densities of only 400 watt hours per kilogram. Electric propulsion characteristics offer the opportunity to achieve 4 to 8 time improvements in energy costs with dramatically lower total operating costs, while dramatically improving efficiency, community noise, propulsion system reliability and safety through redundancy, as well as life cycle Green House Gas emissions. Integration of electric propulsion will involve far greater degrees of distribution than existing propulsion solutions due to their compact and scale-free nature to achieve multi-disciplinary coupling and synergistic integration with the aerodynamics, highlift system, acoustics, vehicle control, balance, and aeroelasticity. Appropriate metrics of comparison and differences in analysis/design tools are discussed while comparing electric propulsion to other disruptive technologies. For several initial applications, battery energy density is already sufficient for competitive products, and for many additional markets energy densities will likely be adequate within the next 7 years for vibrant introduction. Market evolution and early adopter markets are discussed, along with the investment areas that will fill technology gaps and

  6. Turboprop cargo aircraft systems study

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, R. G., Jr.

    1981-01-01

    The effects of using advanced turboprop propulsion systems to reduce the fuel consumption and direct operating costs of cargo aircraft were studied, and the impact of these systems on aircraft noise and noise prints around a terminal area was determined. Parametric variations of aircraft and propeller characteristics were investigated to determine their effects on noiseprint areas, fuel consumption, and direct operating costs. From these results, three aircraft designs were selected and subjected to design refinements and sensitivity analyses. Three competitive turbofan aircraft were also defined from parametric studies to provide a basis for comparing the two types of propulsion.

  7. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 2: Aircraft

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study of the quiet turbofan STOL aircraft for short haul transportation was conducted. The objectives of the study were as follows: (1) to determine the relationships between STOL characteristics and economic and social viability of short haul air transportation, (2) to identify critical technology problems involving introduction of STOL short haul systems, (3) to define representative aircraft configurations, characteristics, and costs, and (4) to identify high payoff technology areas to improve STOL systems. The analyses of the aircraft designs which were generated to fulfill the objectives are summarized. The baseline aircraft characteristics are documented and significant trade studies are presented.

  8. ANALYSIS OF AIRCRAFT MOTIONS

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1994-01-01

    This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.

  9. High-altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdi, Renee Anna

    1991-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000+ ft, which is beyond the capabilities of the ER-2, NASA's current high-altitude reconnaissance aircraft. This project is geared to designing an aircraft that can study the ozone layer. The aircraft must be able to satisfy four mission profiles. The first is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.m. at 100,000 ft with a 2500-lb payload. The second mission is also a polar mission with a decreased altitude and an increased payload. For the third mission, the aircraft will take off at NASA Ames, cruise at 100,000 ft, and land in Chile. The final mission requires the aircraft to make an excursion to 120,000 ft. All four missions require that a subsonic Mach number be maintained because of constraints imposed by the air sampling equipment. Three aircraft configurations were determined to be the most suitable for meeting the requirements. The performance of each is analyzed to investigate the feasibility of the mission requirements.

  10. Aircraft as Research Tools

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Aeronautical research usually begins with computers, wind tunnels, and flight simulators, but eventually the theories must fly. This is when flight research begins, and aircraft are the primary tools of the trade. Flight research involves doing precision maneuvers in either a specially built experimental aircraft or an existing production airplane that has been modified. For example, the AD-1 was a unique airplane made only for flight research, while the NASA F-18 High Alpha Research Vehicle (HARV) was a standard fighter aircraft that was transformed into a one-of-a-kind aircraft as it was fitted with new propulsion systems, flight controls, and scientific equipment. All research aircraft are able to perform scientific experiments because of the onboard instruments that record data about its systems, aerodynamics, and the outside environment. Since the 1970's, NASA flight research has become more comprehensive, with flights involving everything form Space Shuttles to ultralights. NASA now flies not only the fastest airplanes, but some of the slowest. Flying machines continue to evolve with new wing designs, propulsion systems, and flight controls. As always, a look at today's experimental research aircraft is a preview of the future.

  11. Multibody aircraft study, volume 2

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Craven, E. P.; Farmer, B. T.; Honrath, J. F.; Stephens, R. E.; Bronson, C. E., Jr.; Meyer, R. T.; Hogue, J. G.

    1981-01-01

    The potential benefits of a multibody aircraft when compared to a single body aircraft are presented. The analyses consist principally of a detailed point design analysis of three multibody and one single body aircraft, based on a selected payload of 350,000 kg (771,618 lb), for final aircraft definitions; sensitivity studies to evaluate the effects of variations in payload, wing semispan body locations, and fuel price; recommendations as to the research and technology requirements needed to validate the multibody concept. Two, two body, one, three body, and one single body aircraft were finalized for the selected payload, with DOC being the prime figure of merit. When compared to the single body, the multibody aircraft showed a reduction in DOC by as much as 11.3 percent. Operating weight was reduced up to 14 percent, and fly away cost reductions ranged from 8.6 to 13.4 percent. Weight reduction, hence cost, of the multibody aircraft resulted primarily from the wing bending relief afforded by the bodies being located outboard on the wing.

  12. Multibody aircraft study, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Craven, E. P.; Farmer, B. T.; Honrath, J. F.; Stephens, R. E.; Bronson, C. E., Jr.; Meyer, R. T.; Hogue, J. H.

    1982-01-01

    The potential benefits of a multibody aircraft when compared to a single body aircraft are presented. The analyses consist principally of a detailed point design analysis of three multibody and one single body aircraft, based on a selected payload of 350,000 kg (771,618 lb), for final aircraft definitions; sensitivity studies to evaluate the effects of variations in payload, wing semispan body locations, and fuel price; recommendations as to the research and technology requirements needed to validate the multibody concept. Two, two body, one, three body, and one single body aircraft were finalized for the selected payload, with DOC being the prime figure of merit. When compared to the single body, the multibody aircraft showed a reduction in DOC by as much as 11.3 percent. Operating weight was reduced up to 14 percent, and fly away cost reductions ranged from 8.6 to 13.4 percent. Weight reduction, hence cost, of the multibody aircraft resulted primarily from the wing bending relief afforded by the bodies being located outboard on the wing.

  13. Autonomous Flight Safety System September 27, 2005, Aircraft Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.

    2005-01-01

    This report describes the first aircraft test of the Autonomous Flight Safety System (AFSS). The test was conducted on September 27, 2005, near Kennedy Space Center (KSC) using a privately-owned single-engine plane and evaluated the performance of several basic flight safety rules using real-time data onboard a moving aerial vehicle. This test follows the first road test of AFSS conducted in February 2005 at KSC. AFSS is a joint KSC and Wallops Flight Facility (WEF) project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations. The mission rules are configured for each operation by the responsible Range Safety authorities and can be loosely categorized in four major categories: Parameter Threshold Violations, Physical Boundary Violations present position and instantaneous impact point (TIP), Gate Rules static and dynamic, and a Green-Time Rule. Examples of each of these rules were evaluated during this aircraft test.

  14. Stability-Augmentation Devices for Miniature Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, RIchard M.

    2005-01-01

    Non-aerodynamic mechanical devices are under consideration as means to augment the stability of miniature autonomous and remotely controlled aircraft. Such aircraft can be used for diverse purposes, including military reconnaissance, radio communications, and safety-related monitoring of wide areas. The need for stability-augmentation devices arises because adverse meteorological conditions generally affect smaller aircraft more strongly than they affect larger aircraft: Miniature aircraft often become uncontrollable under conditions that would not be considered severe enough to warrant grounding of larger aircraft. The need for the stability-augmentation devices to be non-aerodynamic arises because there is no known way to create controlled aerodynamic forces sufficient to counteract the uncontrollable meteorological forces on miniature aircraft. A stability-augmentation device of the type under consideration includes a mass pod (a counterweight) at the outer end of a telescoping shaft, plus associated equipment to support the operation of the aircraft. The telescoping shaft and mass pod are stowed in the rear of the aircraft. When deployed, they extend below the aircraft. Optionally, an antenna for radio communication can be integrated into the shaft. At the time of writing this article, the deployment of the telescoping shaft and mass pod was characterized as passive and automatic, but information about the deployment mechanism(s) was not available. The feasibility of this stability-augmentation concept was demonstrated in flights of hand-launched prototype aircraft.

  15. Aircraft Photovoltaic Power-Generating System.

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.

  16. Aircraft operations classification system : technical summary.

    DOT National Transportation Integrated Search

    1999-07-01

    In this project, we consider the development and deployment of systems for measuring aircraft activity at airports. This would include determining the type of aircraft and the type of aircraft activity. The type of aircraft is a basic type such as he...

  17. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...

  18. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...

  19. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...

  20. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... met within the specified time without creating a safety hazard. ...

  1. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... met within the specified time without creating a safety hazard. ...

  2. High altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdo, Renee Anna; Moller, David

    1990-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000 plus feet, which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 feet for six hours at Mach 0.7, while carrying 3,000 lbs. of payload. In addition, the aircraft must have a minimum range of 6,000 miles. In consideration of the novel nature of this project, the pilot must be able to take control in the event of unforeseen difficulties. Three aircraft configurations were determined to be the most suitable - a joined-wing, a biplane, and a twin-boom conventional airplane. The performance of each configuration was analyzed to investigate the feasibility of the project.

  3. Aircraft control position indicator

    NASA Technical Reports Server (NTRS)

    Dennis, Dale V. (Inventor)

    1987-01-01

    An aircraft control position indicator was provided that displayed the degree of deflection of the primary flight control surfaces and the manner in which the aircraft responded. The display included a vertical elevator dot/bar graph meter display for indication whether the aircraft will pitch up or down, a horizontal aileron dot/bar graph meter display for indicating whether the aircraft will roll to the left or to the right, and a horizontal dot/bar graph meter display for indicating whether the aircraft will turn left or right. The vertical and horizontal display or displays intersect to form an up/down, left/right type display. Internal electronic display driver means received signals from transducers measuring the control surface deflections and determined the position of the meter indicators on each dot/bar graph meter display. The device allows readability at a glance, easy visual perception in sunlight or shade, near-zero lag in displaying flight control position, and is not affected by gravitational or centrifugal forces.

  4. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  5. Ultra-Large Solar Sail

    NASA Technical Reports Server (NTRS)

    Burton, Rodney; Coverstone, Victoria

    2009-01-01

    UltraSail is a next-generation ultra-large (km2 class) sail system. Analysis of the launch, deployment, stabilization, and control of these sails shows that high-payload-mass fractions for interplanetary and deep-space missions are possible. UltraSail combines propulsion and control systems developed for formation-flying microsatellites with a solar sail architecture to achieve controllable sail areas approaching 1 km2. Electrically conductive CP-1 polyimide film results in sail subsystem area densities as low as 5 g/m2. UltraSail produces thrust levels many times those of ion thrusters used for comparable deep-space missions. The primary innovation involves the near-elimination of sail-supporting structures by attaching each blade tip to a formation- flying microsatellite, which deploys the sail and then articulates the sail to provide attitude control, including spin stabilization and precession of the spin axis. These microsatellite tips are controlled by microthrusters for sail-film deployment and mission operations. UltraSail also avoids the problems inherent in folded sail film, namely stressing, yielding, or perforating, by storing the film in a roll for launch and deployment. A 5-km long by 2 micrometer thick film roll on a mandrel with a 1 m circumference (32 cm diameter) has a stored thickness of 5 cm. A 5 m-long mandrel can store a film area of 25,000 m2, and a four-blade system has an area of 0.1 sq km.

  6. Aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.

    1987-01-01

    The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.

  7. Light aircraft sound transmission study

    NASA Technical Reports Server (NTRS)

    Atwal, M.; David, J.; Heitman, K.; Crocker, M. J.

    1983-01-01

    The revived interest in the design of propeller driven aircraft is based on increasing fuel prices as well as on the need for bigger short haul and commuter aircraft. A major problem encountered with propeller driven aircraft is propeller and exhaust noise that is transmitted through the fuselage sidewall structure. Part of the work which was conducted during the period April 1 to August 31, 1983, on the studies of sound transmission through light aircraft walls is presented.

  8. Examining the Relationship Between Passenger Airline Aircraft Maintenance Outsourcing and Aircraft Safety

    NASA Astrophysics Data System (ADS)

    Monaghan, Kari L.

    The problem addressed was the concern for aircraft safety rates as they relate to the rate of maintenance outsourcing. Data gathered from 14 passenger airlines: AirTran, Alaska, America West, American, Continental, Delta, Frontier, Hawaiian, JetBlue, Midwest, Northwest, Southwest, United, and USAir covered the years 1996 through 2008. A quantitative correlational design, utilizing Pearson's correlation coefficient, and the coefficient of determination were used in the present study to measure the correlation between variables. Elements of passenger airline aircraft maintenance outsourcing and aircraft accidents, incidents, and pilot deviations within domestic passenger airline operations were analyzed, examined, and evaluated. Rates of maintenance outsourcing were analyzed to determine the association with accident, incident, and pilot deviation rates. Maintenance outsourcing rates used in the evaluation were the yearly dollar expenditure of passenger airlines for aircraft maintenance outsourcing as they relate to the total airline aircraft maintenance expenditures. Aircraft accident, incident, and pilot deviation rates used in the evaluation were the yearly number of accidents, incidents, and pilot deviations per miles flown. The Pearson r-values were calculated to measure the linear relationship strength between the variables. There were no statistically significant correlation findings for accidents, r(174)=0.065, p=0.393, and incidents, r(174)=0.020, p=0.793. However, there was a statistically significant correlation for pilot deviation rates, r(174)=0.204, p=0.007 thus indicating a statistically significant correlation between maintenance outsourcing rates and pilot deviation rates. The calculated R square value of 0.042 represents the variance that can be accounted for in aircraft pilot deviation rates by examining the variance in aircraft maintenance outsourcing rates; accordingly, 95.8% of the variance is unexplained. Suggestions for future research include

  9. Ensuring Interoperability Between Unmanned Aircraft Detect-and-Avoid and Manned Aircraft Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Lee, Seungman

    2017-01-01

    The Unmanned Aircraft Systems (UAS) community in the United States has identified the need for a collision avoidance region in which UAS Detect-and-Avoid (DAA) vertical guidance is restricted to preclude interoperability issues with manned aircraft collision avoidance system vertical resolution advisories (RAs). This paper documents the process by which the collision avoidance region was defined. Three candidate definitions were evaluated on 1.3 million simulated pairwise encounters between UAS and manned aircraft covering a wide range of horizontal and vertical closure rates, angles, and miss distances. Each definition was evaluated with regard to UAS DAA interoperability with manned aircraft collision avoidance in terms of how well it achieved: 1) the primary objective of restricting DAA vertical guidance prior to RAs when the aircraft are close, and 2) the secondary objective of avoiding unnecessary restrictions of DAA vertical guidance at DAA alerts when the aircraft are further apart. The collision avoidance region definition that fully achieves the primary objective and best achieves the secondary objective was recommended to and accepted by the UAS community in the United States. By this definition, UAS and manned aircraft are in the collision avoidance region where DAA vertical guidance is restricted when the time to closest point of approach (CPA) is less than 50 seconds and either the time to co-altitude is less than 50 seconds or the current vertical separation is less than 800 feet.

  10. FAA Registry - Aircraft - N-Number Inquiry

    Science.gov Websites

    Skip to page content Federal Aviation Administration Aircraft Inquiries N-number Serial Number -Number Online In Writing Reserved N-Number Renewal Online Request for Aircraft Records Online Help Main Menu Aircraft Registration Aircraft Downloadable Database Definitions N-Number Format Registrations at

  11. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on aircraft...

  12. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on aircraft...

  13. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on aircraft...

  14. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on aircraft...

  15. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on aircraft...

  16. 77 FR 59182 - Ultra-Deepwater Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... DEPARTMENT OF ENERGY Ultra-Deepwater Advisory Committee AGENCY: Office of Fossil Energy... of the Ultra-Deepwater Advisory Committee is to provide advice on development and implementation of programs related to ultra-deepwater architecture and technology to the Secretary of Energy and provide...

  17. Turboprop Cargo Aircraft Systems study, phase 1

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, F. R., Jr.

    1980-01-01

    The effects of advanced propellers (propfan) on aircraft direct operating costs, fuel consumption, and noiseprints were determined. A comparison of three aircraft selected from the results with competitive turbofan aircraft shows that advanced turboprop aircraft offer these potential benefits, relative to advanced turbofan aircraft: 21 percent fuel saving, 26 percent higher fuel efficiency, 15 percent lower DOCs, and 25 percent shorter field lengths. Fuel consumption for the turboprop is nearly 40 percent less than for current commercial turbofan aircraft. Aircraft with both types of propulsion satisfy current federal noise regulations. Advanced turboprop aircraft have smaller noiseprints at 90 EPNdB than advanced turbofan aircraft, but large noiseprints at 70 and 80 EPNdB levels, which are usually suggested as quietness goals. Accelerated development of advanced turboprops is strongly recommended to permit early attainment of the potential fuel saving. Several areas of work are identified which may produce quieter turboprop aircraft.

  18. System for indicating fuel-efficient aircraft altitude

    NASA Technical Reports Server (NTRS)

    Gary, B. L. (Inventor)

    1984-01-01

    A method and apparatus are provided for indicating the altitude at which an aircraft should fly so the W/d ratio (weight of the aircraft divided by the density of air) more closely approaches the optimum W/d for the aircraft. A passive microwave radiometer on the aircraft is directed at different angles with respect to the horizon to determine the air temperature, and therefore the density of the air, at different altitudes. The weight of the aircraft is known. The altitude of the aircraft is changed to fly the aircraft at an altitude at which is W/d ratio more closely approaches the optimum W/d ratio for that aircraft.

  19. 150 Passenger Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  20. Aircraft Mechanics Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in aircraft mechanics. The guide outlines the tasks entailed in 24 different duties typically required of employees in the following occupations: airframe mechanic, power plant mechanic, aircraft mechanic, aircraft sheet metal worker, aircraft electrician,…

  1. Cholera: possible infection from aircraft effluent.

    PubMed Central

    Rondle, C. J.; Ramesh, B.; Krahn, J. B.; Sherriff, R.

    1978-01-01

    This paper presents the hypothesis that some cases of cholera might be due to effluent discharge from aircraft. The theoretical case is borne out by inspection of data on the physical conditions pertaining between high altitudes and ground level. A study of the distribution of isolated outbreaks and single cases of disease and their relation to major airline routes showed a reasonable correspondence. Sporadic outbreaks of cholera in Europe between 1970 and 1975 were found to lie within the flight paths of regular airline services from Calcutta, where cholera is endemic, to the Northern Hemisphere. Laboratory studies on the stability of Vibrio cholerae to conditions likely to be encountered in droplets falling from high altitude to the ground suggested that significant numbers of organisms might survive. It should be noted that in this study no account was taken of the effect of ultra-violet light on viability and it is known that at high altitides the ultraviolet light component of solar radiation is much higher than at ground level. Results of experiments where small numbers of organisms were inoculated into relatively poor media showed that rapid growth ensued and that sufficient organisms were produced to give an infective dose of Vibrio cholerae in 1-10 ml/fluid. It could be concluded that human infection could easily occur by ingestion of fluids such as milk or soup which had some time earlier received a fortuitous but slight contamination from the air. Investigation of one disinfectant (chloramine T) showed that it reacted rapidly and in a complex manner with peptone. One effect of this reaction was the elimination of bactericidal activity and it seems likely that, as at present employed, chloramine T is of doubtful value in aeroplane hygiene. One important conclusion that arises from this work is that if cholera can be spread, even only occasionally, by effluent from aircraft then close investigation should be made of the possibility of other bacteria and

  2. Unified Theory for Aircraft Handling Qualities and Adverse Aircraft-Pilot Coupling

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1997-01-01

    A unified theory for aircraft handling qualities and adverse aircraft-pilot coupling or pilot-induced oscillations is introduced. The theory is based on a structural model of the human pilot. A methodology is presented for the prediction of (1) handling qualities levels; (2) pilot-induced oscillation rating levels; and (3) a frequency range in which pilot-induced oscillations are likely to occur. Although the dynamics of the force-feel system of the cockpit inceptor is included, the methodology will not account for effects attributable to control sensitivity and is limited to single-axis tasks and, at present, to linear vehicle models. The theory is derived from the feedback topology of the structural model and an examination of flight test results for 32 aircraft configurations simulated by the U.S. Air Force/CALSPAN NT-33A and Total In-Flight Simulator variable stability aircraft. An extension to nonlinear vehicle dynamics such as that encountered with actuator saturation is discussed.

  3. Survival in Emergency Escape from Passenger Aircraft,

    DTIC Science & Technology

    ESCAPE SYSTEMS, *TRANSPORT AIRCRAFT, ESCAPE SYSTEMS, CIVIL AVIATION, STATISTICAL DATA, AIRCRAFT DOORS, EVACUATION, MORTALITY RATE, ADULTS , CHILDREN, SEX, AIRCRAFT FIRES, AIRCRAFT CABINS, FEMALES, BEHAVIOR.

  4. 75 FR 48319 - Ultra-Deepwater Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... DEPARTMENT OF ENERGY Ultra-Deepwater Advisory Committee AGENCY: Department of Energy, Office of...: Purpose of the Committee: The purpose of the Ultra-Deepwater Advisory Committee is to provide advice on development and implementation of programs related to ultra-deepwater architecture and technology to the...

  5. 76 FR 77990 - Ultra-Deepwater Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... DEPARTMENT OF ENERGY Ultra-Deepwater Advisory Committee AGENCY: Office of Fossil Energy... Committee: The purpose of the Ultra-Deepwater Advisory Committee is to provide advice to the Secretary of Energy on development and implementation of programs related to ultra-deepwater natural gas and other...

  6. 76 FR 6775 - Ultra-Deepwater Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... DEPARTMENT OF ENERGY Ultra-Deepwater Advisory Committee AGENCY: Department of Energy, Office of... Committee: The purpose of the Ultra-Deepwater Advisory Committee is to provide advice on development and implementation of programs related to ultra-deepwater architecture and technology to the Secretary of Energy and...

  7. 75 FR 54860 - Ultra Deepwater Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... DEPARTMENT OF ENERGY Ultra Deepwater Advisory Committee AGENCY: Department of Energy, Office of... of an open meeting of the Ultra Deepwater Advisory Committee. The Committee was organized pursuant to.../advisorycommittees/UltraDeepwater.html . Issued in Washington, DC, on September 3, 2010. Carol A. Matthews, Committee...

  8. Aircraft compass characteristics

    NASA Technical Reports Server (NTRS)

    Peterson, John B; Smith, Clyde W

    1937-01-01

    A description of the test methods used at the National Bureau of Standards for determining the characteristics of aircraft compasses is given. The methods described are particularly applicable to compasses in which mineral oil is used as the damping liquid. Data on the viscosity and density of certain mineral oils used in United States Navy aircraft compasses are presented. Characteristics of Navy aircraft compasses IV to IX and some other compasses are shown for the range of temperatures experienced in flight. Results of flight tests are presented. These results indicate that the characteristic most desired in a steering compass is a short period and, in a check compass, a low overswing.

  9. Advanced aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, P.; Wegener, S.; Langford, J.; Anderson, J.; Lux, D.; Hall, D. W.

    1991-01-01

    The development of aircraft for high-altitude research is described in terms of program objectives and environmental, technological limitations, and the work on the Perseus A aircraft. The need for these advanced aircraft is proposed in relation to atmospheric science issues such as greenhouse trapping, the dynamics of tropical cyclones, and stratospheric ozone. The implications of the study on aircraft design requirements is addressed with attention given to the basic categories of high-altitude, long-range, long-duration, and nap-of-the-earth aircraft. A strategy is delineated for a platform that permits unique stratospheric measurements and is a step toward a more advanced aircraft. The goal of Perseus A is to carry scientific air sampling payloads weighing at least 50 kg to altitudes of more than 25 km. The airfoils are designed for low Reynolds numbers, the structural weight is very low, and the closed-cycle power plant runs on liquid oxygen.

  10. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent.

    PubMed

    Li, Ying; Fabiano-Tixier, Anne Sylvie; Tomao, Valérie; Cravotto, Giancarlo; Chemat, Farid

    2013-01-01

    A green, inexpensive and easy-to-use method for carotenoids extraction from fresh carrots assisted by ultrasound was designed in this work. Sunflower oil was applied as a substitute to organic solvents in this green ultrasound-assisted extraction (UAE): a process which is in line with green extraction and bio-refinery concepts. The processing procedure of this original UAE was first compared with conventional solvent extraction (CSE) using hexane as solvent. Moreover, the UAE optimal conditions for the subsequent comparison were optimized using response surface methodology (RSM) and ultra performance liquid chromatography--diode array detector--mass spectroscopy (UPLC-DAD-MS). The results showed that the UAE using sunflower as solvent has obtained its highest β-carotene yield (334.75 mg/l) in 20 min only, while CSE using hexane as solvent obtained a similar yield (321.35 mg/l) in 60 min. The green UAE performed under optimal extraction conditions (carrot to oil ratio of 2:10, ultrasonic intensity of 22.5 W cm(-2), temperature of 40 °C and sonication time of 20 min) gave the best yield of β-carotene. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Can advanced technology improve future commuter aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Snow, D. B.

    1981-01-01

    The short-haul service abandoned by the trunk and local airlines is being picked up by the commuter airlines using small turboprop-powered aircraft. Most of the existing small transport aircraft currently available represent a relatively old technology level. However, several manufacturers have initiated the development of new or improved commuter transport aircraft. These aircraft are relatively conservative in terms of technology. An examination is conducted of advanced technology to identify those technologies that, if developed, would provide the largest improvements for future generations of these aircraft. Attention is given to commuter aircraft operating cost, aerodynamics, structures and materials, propulsion, aircraft systems, and technology integration. It is found that advanced technology can improve future commuter aircraft and that the largest of these improvements will come from the synergistic combination of technological advances in all of the aircraft disciplines. The most important goals are related to improved fuel efficiency and increased aircraft productivity.

  12. Progress in aircraft design since 1903

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Significant developments in aviation history are documented to show the advancements in aircraft design which have taken place since 1903. Each aircraft is identified according to the manufacturer, powerplant, dimensions, normal weight, and typical performance. A narrative summary of the major accomplishments of the aircraft is provided. Photographs of each aircraft are included.

  13. UltraNet Target Parameters. Chapter 1

    NASA Technical Reports Server (NTRS)

    Kislitzin, Katherine T.; Blaylock, Bruce T. (Technical Monitor)

    1992-01-01

    The UltraNet is a high speed network capable of rates up to one gigabit per second. It is a hub based network with four optical fiber links connecting each hub. Each link can carry up to 256 megabits of data, and the hub backplane is capable of one gigabit aggregate throughput. Host connections to the hub may be fiber, coax, or channel based. Bus based machines have adapter boards that connect to transceivers in the hub, while channel based machines use a personality module in the hub. One way that the UltraNet achieves its high transfer rates is by off-loading the protocol processing from the hosts to special purpose protocol engines in the UltraNet hubs. In addition, every hub has a PC connected to it by StarLAN for network management purposes. Although there is hub resident and PC resident UltraNet software, this document treats only the host resident UltraNet software.

  14. Aircraft Rollout Iterative Energy Simulation

    NASA Technical Reports Server (NTRS)

    Kinoshita, L.

    1986-01-01

    Aircraft Rollout Iterative Energy Simulation (ARIES) program analyzes aircraft-brake performance during rollout. Simulates threedegree-of-freedom rollout after nose-gear touchdown. Amount of brake energy dissipated during aircraft landing determines life expectancy of brake pads. ARIES incorporates brake pressure, actual flight data, crosswinds, and runway characteristics to calculate following: brake energy during rollout for up to four independent brake systems; time profiles of rollout distance, velocity, deceleration, and lateral runway position; and all aerodynamic moments on aircraft. ARIES written in FORTRAN 77 for batch execution.

  15. 14 CFR 121.153 - Aircraft requirements: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft requirements: General. 121.153... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.153 Aircraft requirements... aircraft unless that aircraft— (1) Is registered as a civil aircraft of the United States and carries an...

  16. 14 CFR 121.153 - Aircraft requirements: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft requirements: General. 121.153... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.153 Aircraft requirements... aircraft unless that aircraft— (1) Is registered as a civil aircraft of the United States and carries an...

  17. 14 CFR 121.153 - Aircraft requirements: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft requirements: General. 121.153... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.153 Aircraft requirements... aircraft unless that aircraft— (1) Is registered as a civil aircraft of the United States and carries an...

  18. 14 CFR 121.153 - Aircraft requirements: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft requirements: General. 121.153... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.153 Aircraft requirements... aircraft unless that aircraft— (1) Is registered as a civil aircraft of the United States and carries an...

  19. Aircraft of the future

    NASA Technical Reports Server (NTRS)

    Yeger, S.

    1985-01-01

    Some basic problems connected with attempts to increase the size and capacity of transport aircraft are discussed. According to the square-cubic law, the increase in structural weight is proportional to the third power of the increase in the linear dimensions of the aircraft when geomettric similarity is maintained, while the surface area of the aircraft increases according to the second power. A consequence is that the fraction of useful weight will decrease as aircraft increase in size. However, in flying-wing designs in which the whole load on the wing is proportional to the distribution of lifting forces, the total bending moment on the wing will be sharply reduced, enabling lighter construction. Flying wings may have an ultimate capacity of 3000 passengers.

  20. Scanner imaging systems, aircraft

    NASA Technical Reports Server (NTRS)

    Ungar, S. G.

    1982-01-01

    The causes and effects of distortion in aircraft scanner data are reviewed and an approach to reduce distortions by modelling the effect of aircraft motion on the scanner scene is discussed. With the advent of advanced satellite borne scanner systems, the geometric and radiometric correction of aircraft scanner data has become increasingly important. Corrections are needed to reliably simulate observations obtained by such systems for purposes of evaluation. It is found that if sufficient navigational information is available, aircraft scanner coordinates may be related very precisely to planimetric ground coordinates. However, the potential for a multivalue remapping transformation (i.e., scan lines crossing each other), adds an inherent uncertainty, to any radiometric resampling scheme, which is dependent on the precise geometry of the scan and ground pattern.

  1. Fungal Microbiomes Associated with Green and Non-Green Building Materials

    PubMed Central

    Coombs, Kanistha; Vesper, Stephen; Green, Brett J.; Yermakov, Mikhail; Reponen, Tiina

    2018-01-01

    Water-damaged buildings can lead to fungal growth and occupant health problems. Green building materials, derived from renewable sources, are increasingly utilized in construction and renovations. However, the question as to what fungi will grow on these green compared to non-green materials, after they get wet, has not been adequately studied. By determining what fungi grow on each type of material, the potential health risks can be more adequately assessed. In this study, we inoculated green and non-green pieces of ceiling tile, composite board, drywall, and flooring with indoor dust containing a complex mixture of naturally occurring fungi. The materials were saturated with water and incubated for two months in a controlled environment. The resulting fungal microbiomes were evaluated using ITS amplicon sequencing. Overall, the richness and diversity of the mycobiomes on each pair of green and non-green pieces were not significantly different. However, different genera dominated on each type of material. For example, Aspergillus spp. had the highest relative abundance on green and non-green ceiling tiles and green composite boards, but Peniophora spp. dominated the non-green composite board. In contrast, Penicillium spp. dominated green and non-green flooring samples. Green gypsum board was dominated by Phialophora spp. and Stachybotrys spp., but non-green gypsum board by Myrothecium spp. These data suggest that water-damaged green and non-green building materials can result in mycobiomes that are dominated by fungal genera whose member species pose different potentials for health risks. PMID:29681691

  2. Fungal Microbiomes Associated with Green and Non-Green Building Materials.

    PubMed

    Coombs, Kanistha; Vesper, Stephen; Green, Brett J; Yermakov, Mikhail; Reponen, Tiina

    2017-01-01

    Water-damaged buildings can lead to fungal growth and occupant health problems. Green building materials, derived from renewable sources, are increasingly utilized in construction and renovations. However, the question as to what fungi will grow on these green compared to non-green materials, after they get wet, has not been adequately studied. By determining what fungi grow on each type of material, the potential health risks can be more adequately assessed. In this study, we inoculated green and non-green pieces of ceiling tile, composite board, drywall, and flooring with indoor dust containing a complex mixture of naturally occurring fungi. The materials were saturated with water and incubated for two months in a controlled environment. The resulting fungal microbiomes were evaluated using ITS amplicon sequencing. Overall, the richness and diversity of the mycobiomes on each pair of green and non-green pieces were not significantly different. However, different genera dominated on each type of material. For example, Aspergillus spp. had the highest relative abundance on green and non-green ceiling tiles and green composite boards, but Peniophora spp. dominated the non-green composite board. In contrast, Penicillium spp. dominated green and non-green flooring samples. Green gypsum board was dominated by Phialophora spp. and Stachybotrys spp., but non-green gypsum board by Myrothecium spp. These data suggest that water-damaged green and non-green building materials can result in mycobiomes that are dominated by fungal genera whose member species pose different potentials for health risks.

  3. 32 CFR 855.15 - Detaining an aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Detaining an aircraft. 855.15 Section 855.15 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.15 Detaining an aircraft...

  4. 32 CFR 855.15 - Detaining an aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Detaining an aircraft. 855.15 Section 855.15 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.15 Detaining an aircraft...

  5. Aircraft Operations Classification System

    NASA Technical Reports Server (NTRS)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  6. Program to compute the positions of the aircraft and of the aircraft sensor footprints

    NASA Technical Reports Server (NTRS)

    Paris, J. F. (Principal Investigator)

    1982-01-01

    The positions of the ground track of the aircraft and of the aircraft sensor footprints, in particular the metric camera and the radar scatterometer on the C-130 aircraft, are estimated by a program called ACTRK. The program uses the altitude, speed, and attitude informaton contained in the radar scatterometer data files to calculate the positions. The ACTRK program is documented.

  7. 14 CFR 47.61 - Dealer's Aircraft Registration Certificates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Dealer's Aircraft Registration Certificates... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Dealers' Aircraft Registration Certificate § 47.61 Dealer's Aircraft Registration Certificates. (a) The FAA issues a Dealer's Aircraft Registration Certificate, AC...

  8. 14 CFR 47.61 - Dealer's Aircraft Registration Certificates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Dealer's Aircraft Registration Certificates... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Dealers' Aircraft Registration Certificate § 47.61 Dealer's Aircraft Registration Certificates. (a) The FAA issues a Dealer's Aircraft Registration Certificate, AC...

  9. 14 CFR 47.61 - Dealer's Aircraft Registration Certificates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Dealer's Aircraft Registration Certificates... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Dealers' Aircraft Registration Certificate § 47.61 Dealer's Aircraft Registration Certificates. (a) The FAA issues a Dealer's Aircraft Registration Certificate, AC...

  10. 14 CFR 47.61 - Dealer's Aircraft Registration Certificates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Dealer's Aircraft Registration Certificates... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Dealers' Aircraft Registration Certificate § 47.61 Dealer's Aircraft Registration Certificates. (a) The FAA issues a Dealer's Aircraft Registration Certificate, AC...

  11. 14 CFR 47.61 - Dealers' Aircraft Registration Certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Dealers' Aircraft Registration Certificates... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Dealers' Aircraft Registration Certificate § 47.61 Dealers' Aircraft Registration Certificates. (a) The FAA issues a Dealers' Aircraft Registration Certificate, AC...

  12. Effect of ultra-high pressure on small animals, tardigrades and Artemia

    NASA Astrophysics Data System (ADS)

    Ono, Fumihisa; Mori, Yoshihisa; Takarabe, Kenichi; Fujii, Akiko; Saigusa, Masayuki; Matsushima, Yasushi; Yamazaki, Daisuke; Ito, Eiji; Galas, Simon; Saini, Naurang L.

    2016-12-01

    This research shows that small animals, tardigrades (Milnesium tardigradum) in tun (dehydrated) state and Artemia salina cists (dried eggs) can tolerate the very high hydrostatic pressure of 7.5 GPa. It was really surprising that living organisms can survive after exposure to such a high pressure. We extended these studies to the extremely high pressure of 20 GPa by using a Kawai-type octahedral anvil press. After exposure to this pressure for 30 min, the tardigrades were soaked in pure water and investigated under a microscope. Their bodies regained metabolic state and no serious injury could be seen. But they were not alive. A few of Artemia eggs went part of the way to hatching after soaked in sea water, but they never grew any further. Comparing with the case of blue-green alga, these animals are weaker under ultra-high pressure.

  13. Aircraft Capability Management

    NASA Technical Reports Server (NTRS)

    Mumaw, Randy; Feary, Mike

    2018-01-01

    This presentation presents an overview of work performed at NASA Ames Research Center in 2017. The work concerns the analysis of current aircraft system management displays, and the initial development of an interface for providing information about aircraft system status. The new interface proposes a shift away from current aircraft system alerting interfaces that report the status of physical components, and towards displaying the implications of degradations on mission capability. The proposed interface describes these component failures in terms of operational consequences of aircraft system degradations. The research activity was an effort to examine the utility of different representations of complex systems and operating environments to support real-time decision making of off-nominal situations. A specific focus was to develop representations that provide better integrated information to allow pilots to more easily reason about the operational consequences of the off-nominal situations. The work is also seen as a pathway to autonomy, as information is integrated and understood in a form that automated responses could be developed for the off-nominal situations in the future.

  14. Factors influencing aircraft ground handling performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  15. OVRhyp, Scramjet Test Aircraft

    NASA Technical Reports Server (NTRS)

    Aslan, J.; Bisard, T.; Dallinga, S.; Draper, K.; Hufford, G.; Peters, W.; Rogers, J.

    1990-01-01

    A preliminary design for an unmanned hypersonic research vehicle to test scramjet engines is presented. The aircraft will be launched from a carrier aircraft at an altitude of 40,000 feet at Mach 0.8. The vehicle will then accelerate to Mach 6 at an altitude of 100,000 feet. At this stage the prototype scramjet will be employed to accelerate the vehicle to Mach 10 and maintain Mach 10 flight for 2 minutes. The aircraft will then decelerate and safely land.

  16. 75 FR 35329 - Notification and Reporting of Aircraft Accidents or Incidents and Overdue Aircraft, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ...-driven fixed-wing aircraft heavier than air, that is supported in flight by the dynamic reaction of the... reporting of runway incursions: ``Any event in which an aircraft operated by an air carrier: (i) Lands or... during normal operations, such as those involving seaplanes, hot-air balloons, unmanned aircraft systems...

  17. New Acoustic Treatment For Aircraft Sidewalls

    NASA Technical Reports Server (NTRS)

    Vaicaitis, Rimas

    1988-01-01

    New aircraft-sidewall acoustic treatment reduces interior noise to acceptable levels and minimizes addition of weight to aircraft. Transmission of noise through aircraft sidewall reduced by stiffening device attached to interior side of aircraft skin, constrained-layer damping tape attached to stiffening device, porous acoustic materials of high resistivity, and relatively-soft trim panel isolated from vibrations of main fuselage structure.

  18. Bibliography for aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Maine, Richard E.

    1986-01-01

    An extensive bibliography in the field of aircraft parameter estimation has been compiled. This list contains definitive works related to most aircraft parameter estimation approaches. Theoretical studies as well as practical applications are included. Many of these publications are pertinent to subjects peripherally related to parameter estimation, such as aircraft maneuver design or instrumentation considerations.

  19. 14 CFR 47.51 - Triennial aircraft registration report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Triennial aircraft registration report. 47... AIRCRAFT AIRCRAFT REGISTRATION Certificates of Aircraft Registration § 47.51 Triennial aircraft... occurred within the preceding 36 calendar months, the holder of each Certificate of Aircraft Registration...

  20. Optimization in fractional aircraft ownership

    NASA Astrophysics Data System (ADS)

    Septiani, R. D.; Pasaribu, H. M.; Soewono, E.; Fayalita, R. A.

    2012-05-01

    Fractional Aircraft Ownership is a new concept in flight ownership management system where each individual or corporation may own a fraction of an aircraft. In this system, the owners have privilege to schedule their flight according to their needs. Fractional management companies (FMC) manages all aspects of aircraft operations, including utilization of FMC's aircraft in combination of outsourced aircrafts. This gives the owners the right to enjoy the benefits of private aviations. However, FMC may have complicated business requirements that neither commercial airlines nor charter airlines faces. Here, optimization models are constructed to minimize the number of aircrafts in order to maximize the profit and to minimize the daily operating cost. In this paper, three kinds of demand scenarios are made to represent different flight operations from different types of fractional owners. The problems are formulated as an optimization of profit and a daily operational cost to find the optimum flight assignments satisfying the weekly and daily demand respectively from the owners. Numerical results are obtained by Genetic Algorithm method.

  1. Aircraft-type dependency of contrail evolution

    NASA Astrophysics Data System (ADS)

    Unterstrasser, S.; Görsch, N.

    2014-12-01

    The impact of aircraft type on contrail evolution is assessed using a large eddy simulation model with Lagrangian ice microphysics. Six different aircraft ranging from the small regional airliner Bombardier CRJ to the largest aircraft Airbus A380 are taken into account. Differences in wake vortex properties and fuel flow lead to considerable variations in the early contrail geometric depth and ice crystal number. Larger aircraft produce contrails with more ice crystals (assuming that the number of initially generated ice crystals per kilogram fuel is constant). These initial differences are reduced in the first minutes, as the ice crystal loss during the vortex phase is stronger for larger aircraft. In supersaturated air, contrails of large aircraft are much deeper after 5 min than those of small aircraft. A parameterization for the final vertical displacement of the wake vortex system is provided, depending only on the initial vortex circulation and stratification. Cloud resolving simulations are used to examine whether the aircraft-induced initial differences have a long-lasting mark. These simulations suggest that the synoptic scenario controls the contrail cirrus evolution qualitatively. However, quantitative differences between the contrail cirrus properties of the various aircraft remain over the total simulation period of 6 h. The total extinctions of A380-produced contrails are about 1.5 to 2.5 times higher than those from contrails of a Bombardier CRJ.

  2. The UltraLightweight Technology for Research in Astronomy (ULTRA) Project

    NASA Astrophysics Data System (ADS)

    Twarog, B. A.; Anthony-Twarog, B. J.; Shawl, S. J.; Hale, R.; Taghavi, R.; Fesen, R.; Etzel, P. B.; Martin, R.; Romeo, R.

    2004-12-01

    The collaborative focus of four academic departments (Univ. of Kansas Aerospace Engineering, Univ. of Kansas Physics & Astronomy, San Diego State University Astronomy and Dartmouth College Astronomy) and a private industry partner (Composite Mirror Applications, Inc.-CMA, Inc.) is a three-year plan to develop and test UltraLightweight Technology for Research in Astronomy (ULTRA). The ULTRA technology, using graphite fiber composites to fabricate mirrors and telescope structures, offers a versatile and cost-effective tool for optical astronomy, including the economical fabrication and operation of telescopes ranging from small (1m or smaller) aperture for education and research to extremely large (30m+) segmented telescopes (ELTs). The specific goal of this NSF-funded three-year Major Research Instrumentation project is to design, build, and test a 1m-class optical tube assembly (OTA) and mirrors constructed entirely from composites. In the first year of the project, the team has built and is field-testing two 0.4m prototypes to validate the optical surfaces and figures of the mirrors and to test and refine the structural dynamics of the OTA. Preparation for design and construction of the 1m telescope is underway. When completed in late 2005, the ULTRA telescope will be operated remotely from Mt. Laguna Observatory east of San Diego, where it will undergo a period of intensive optical and imaging tests. A 0.4m prototype OTA with mirrors (12 kg total weight) will be on display at the meeting. Support of this work by NSF through grants AST-0320784 and AST-0321247, NASA grant NCC5-600, the University of Kansas, and San Diego State University is gratefully acknowledged.

  3. Future Carrier-Based Tactical Aircraft Study

    DOT National Transportation Integrated Search

    1996-03-01

    This report describes an aircraft database which was developed to identify technology trends for several classes of tactical naval aircraft, including subsonic attack, supersonic fighter, and supersonic multimission aircraft classes. This study used ...

  4. The NASA Aircraft Energy Efficiency program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1979-01-01

    A review is provided of the goals, objectives, and recent progress in each of six aircraft energy efficiency programs aimed at improved propulsive, aerodynamic and structural efficiency for future transport aircraft. Attention is given to engine component improvement, an energy efficient turbofan engine, advanced turboprops, revolutionary gains in aerodynamic efficiency for aircraft of the late 1990s, laminar flow control, and composite primary aircraft structures.

  5. Aircraft type influence on contrail properties

    NASA Astrophysics Data System (ADS)

    Jeßberger, P.; Voigt, C.; Schumann, U.; Sölch, I.; Schlager, H.; Kaufmann, S.; Petzold, A.; Schäuble, D.; Gayet, J.-F.

    2013-05-01

    The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of type A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in-situ instruments on board the DLR research aircraft Falcon. Within the 2 min old contrails detected near ice saturation, we find similar effective diameters Deff (5.2-5.9 μm), but differences in particle number densities nice (162-235 cm-3) and in vertical contrail extensions (120-290 m), resulting in large differences in contrail optical depths τ (0.25-0.94). Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and in addition the Contrail and Cirrus Prediction model CoCiP to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. An aircraft dependence of climate relevant contrail properties persists during contrail lifetime, adding importance to aircraft dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with fuel flow rate as confirmed by observations. For higher saturation ratios approximations from theory suggest a non-linear increase in the form (RHI-1)2/3. Summarized our combined results could help to more accurately assess the climate impact from aviation using an aircraft dependent contrail parameterization.

  6. Aircraft type influence on contrail properties

    NASA Astrophysics Data System (ADS)

    Jeßberger, P.; Voigt, C.; Schumann, U.; Sölch, I.; Schlager, H.; Kaufmann, S.; Petzold, A.; Schäuble, D.; Gayet, J.-F.

    2013-12-01

    The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of types A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in situ instruments on board DLR research aircraft Falcon. Within the 2 min-old contrails detected near ice saturation, we find similar effective diameters Deff (5.2-5.9 μm), but differences in particle number densities nice (162-235 cm-3) and in vertical contrail extensions (120-290 m), resulting in large differences in contrail optical depths τ at 550 nm (0.25-0.94). Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and, in addition, the Contrail and Cirrus Prediction (CoCiP) model to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. CoCiP model results suggest that the aircraft dependence of climate-relevant contrail properties persists during contrail lifetime, adding importance to aircraft-dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with the fuel flow rate, as confirmed by observations. For higher relative humidity with respect to ice (RHI), the analytical relationship suggests a non-linear increase in the form (RHI-12/3. Summarized, our combined results could help to more accurately assess the climate impact from aviation using an aircraft-dependent contrail parameterization.

  7. Scheduling of an aircraft fleet

    NASA Technical Reports Server (NTRS)

    Paltrinieri, Massimo; Momigliano, Alberto; Torquati, Franco

    1992-01-01

    Scheduling is the task of assigning resources to operations. When the resources are mobile vehicles, they describe routes through the served stations. To emphasize such aspect, this problem is usually referred to as the routing problem. In particular, if vehicles are aircraft and stations are airports, the problem is known as aircraft routing. This paper describes the solution to such a problem developed in OMAR (Operative Management of Aircraft Routing), a system implemented by Bull HN for Alitalia. In our approach, aircraft routing is viewed as a Constraint Satisfaction Problem. The solving strategy combines network consistency and tree search techniques.

  8. Effects of Ultra-Clean and centrifugal filtration on rolling-element bearing life

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.; Needelman, W. M.

    1981-01-01

    Fatigue tests were conducted on groups of 65-millimeter bore diameter deep-groove ball bearings in a MIL-L-23699 lubricant under two levels of filtration. In one test series, the oil cleanliness was maintained at an exceptionally high level (better than a class "000" per NAS 1638) with a 3 micron absolute barrier filter. These tests were intended to determine the "upper limit" in bearing life under the strictest possible lubricant cleanliness conditions. In the tests using a centrifugal oil filter, contaminants of the type found in aircraft engine filters were injected into the filters' supply line at 125 milligrams per bearing-hour. "Ultra-clean" lubrication produced bearing fatigue lives that were approximately twice that obtained in previous tests with contaminated oil using 3 micron absolute filtration and approximately three times that obtained with 49 micron filtration. It was also observed that the centrifugal oil filter had approximately the same effectiveness as a 30 micron absolute filter in preventing bearing surface damage.

  9. World commercial aircraft accidents. Second edition, 1946--1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accidentmore » is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.« less

  10. Structural modeling of aircraft tires

    NASA Technical Reports Server (NTRS)

    Clark, S. K.; Dodge, R. N.; Lackey, J. I.; Nybakken, G. H.

    1973-01-01

    A theoretical and experimental investigation of the feasibility of determining the mechanical properties of aircraft tires from small-scale model tires was accomplished. The theoretical results indicate that the macroscopic static and dynamic mechanical properties of aircraft tires can be accurately determined from the scale model tires although the microscopic and thermal properties of aircraft tires can not. The experimental investigation was conducted on a scale model of a 40 x 12, 14 ply rated, type 7 aircraft tire with a scaling factor of 8.65. The experimental results indicate that the scale model tire exhibited the same static mechanical properties as the prototype tire when compared on a dimensionless basis. The structural modeling concept discussed in this report is believed to be exact for mechanical properties of aircraft tires under static, rolling, and transient conditions.

  11. Impact of Advanced Propeller Technology on Aircraft/Mission Characteristics of Several General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Keiter, I. D.

    1982-01-01

    Studies of several General Aviation aircraft indicated that the application of advanced technologies to General Aviation propellers can reduce fuel consumption in future aircraft by a significant amount. Propeller blade weight reductions achieved through the use of composites, propeller efficiency and noise improvements achieved through the use of advanced concepts and improved propeller analytical design methods result in aircraft with lower operating cost, acquisition cost and gross weight.

  12. Ignition characteristics of some aircraft interior fabrics

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brandt, D. L.

    1978-01-01

    Six samples of aircraft interior fabrics were evaluated with regard to resistance to ignition by radiant heat. Five samples were aircraft seat upholstery fabrics and one sample was an aircraft curtain fabric. The aircraft seat fabrics were 100% wool (2 samples), 83% wool/17% nylon, 49% wool/51% polyvinyl chloride, and 100% rayon. The aircraft curtain fabric was 92% modacrylic/8% polyester. The five samples of aircraft seat upholstery fabrics were also evaluated with regard to resistance to ignition by a smoldering cigarette. The four samples of wool-containing aircraft seat fabrics appeared to be superior to the sample of rayon seat fabric in resistance to ignition, both by radiant heat and by a smoldering cigarette.

  13. National plans for aircraft icing and improved aircraft icing forecasts and associated warning services

    NASA Technical Reports Server (NTRS)

    Pass, Ralph P.

    1988-01-01

    Recently, the United States has increased its activities related to aircraft icing in numerous fields: ice phobics, revised characterization of icing conditions, instrument development/evaluation, de-ice/anti-ice devices, simulated supercooled clouds, computer simulation and flight tests. The Federal Coordinator for Meteorology is involved in two efforts, one a National Plan on Aircraft Icing and the other a plan for Improved Aircraft Icing Forecasts and Associated Warning Services. These two plans will provide an approved structure for future U.S. activities related to aircraft icing. The recommended activities will significantly improve the position of government agencies to perform mandated activities and to enable U.S. manufacturers to be competitive in the world market.

  14. One-pot green synthesis of luminescent gold nanoparticles using imidazole derivative of chitosan.

    PubMed

    Nazirov, Alexander; Pestov, Alexander; Privar, Yuliya; Ustinov, Alexander; Modin, Evgeny; Bratskaya, Svetlana

    2016-10-20

    Water soluble luminescent gold nanoparticles with average size 2.3nm were for the first time synthesized by completely green method of Au(III) reduction using chitosan derivative-biocompatible nontoxic N-(4-imidazolyl)methylchitosan (IMC) as both reducing and stabilizing agent. Reduction of Au(III) to gold nanoparticles in IMC solution is a slow process, in which coordination power of biopolymer controls both reducing species concentration and gold crystal growth rate. Gold nanoparticles formed in IMC solution do not manifest surface plasmon resonance, but exhibit luminescence at 375nm under UV light excitation at 230nm. Due to biological activity of imidazolyl-containing polymers and their ability to bind proteins and drugs, the obtained ultra-small gold nanoparticles can find an application for biomolecules detection, bio-imaging, drug delivery, and catalysis. Very high catalytic activity (as compared to gold nanoparticles obtained by other green methods) was found for Au/IMC nanoparticles in the model reaction of p-nitrophenol reduction providing complete conversion of p-nitrophenol to p-aminophenol within 180-190s under mild conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Quiet aircraft design and operational characteristics

    NASA Technical Reports Server (NTRS)

    Hodge, Charles G.

    1991-01-01

    The application of aircraft noise technology to the design and operation of aircraft is discussed. Areas of discussion include the setting of target airplane noise levels, operational considerations and their effect on noise, and the sequencing and timing of the design and development process. Primary emphasis is placed on commercial transport aircraft of the type operated by major airlines. Additionally, noise control engineering of other types of aircraft is briefly discussed.

  16. Topology Optimization of an Aircraft Wing

    DTIC Science & Technology

    2015-06-11

    Fraction VWT Virtual Wind Tunnel xvi TOPOLOGY OPTIMIZATION OF AN AIRCRAFT WING I. Introduction 1.1 Background Current aircraft wing design , which...ware in order to optimize the design of individual spars and wing-box structures for large commercial aircraft . They considered a hybrid global/local...weight in an aircraft by eliminating unnecessary material. An optimized approach has the potential to streamline the design process by allowing a

  17. Ultra Reliability Workshop Introduction

    NASA Technical Reports Server (NTRS)

    Shapiro, Andrew A.

    2006-01-01

    This plan is the accumulation of substantial work by a large number of individuals. The Ultra-Reliability team consists of representatives from each center who have agreed to champion the program and be the focal point for their center. A number of individuals from NASA, government agencies (including the military), universities, industry and non-governmental organizations also contributed significantly to this effort. Most of their names may be found on the Ultra-Reliability PBMA website.

  18. The outlook for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Leavens, J. M., Jr.; Schaufele, R. D.; Jones, R. T.; Steiner, J. E.; Beteille, R.; Titcomb, G. A.; Coplin, J. F.; Rowe, B. H.; Lloyd-Jones, D. J.; Overend, W. J.

    1982-01-01

    The technological advances most likely to contribute to advanced aircraft designs and the efficiency, performance, and financial considerations driving the development directions for new aircraft are reviewed. Fuel-efficiency is perceived as the most critical factor for any new aircraft or component design, with most gains expected to come in areas of propulsion, aerodynamics, configurations, structural designs and materials, active controls, digital avionics, laminar flow control, and air-traffic control improvements. Any component area offers an efficiency improvement of 3-12%, with a maximum of 50% possible with a 4000 m range aircraft. Advanced turboprops have potential applications in short and medium haul subsonic aircraft, while a fuel efficient SST may be possible by the year 2000. Further discussion is devoted to the pivoted oblique wing aircraft, lightweight structures, and the necessity for short payback times.

  19. Aircraft noise prediction

    NASA Astrophysics Data System (ADS)

    Filippone, Antonio

    2014-07-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  20. Hydrogen Storage for Aircraft Applications Overview

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  1. 14 CFR 47.19 - FAA Aircraft Registry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false FAA Aircraft Registry. 47.19 Section 47.19 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION General § 47.19 FAA Aircraft Registry. Each application, request, notification, or other...

  2. NASA research in aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.

    1982-01-01

    A broad overview of the scope of research presently being supported by NASA in aircraft propulsion is presented with emphasis on Lewis Research Center activities related to civil air transports, CTOL and V/STOL systems. Aircraft systems work is performed to identify the requirements for the propulsion system that enhance the mission capabilities of the aircraft. This important source of innovation and creativity drives the direction of propulsion research. In a companion effort, component research of a generic nature is performed to provide a better basis for design and provides an evolutionary process for technological growth that increases the capabilities of all types of aircraft. Both are important.

  3. Update of Aircraft Profile Data for the Integrated Noise Model Computer Program. Volume 2. Appendix A: Aircraft Takeoff and Landing Profiles

    DTIC Science & Technology

    1992-03-01

    8 KT) 02- 10 -1992 09: 48 :32 AIRCRAFT ID AIRCRAFT AND ENGINE AIRCRAFT NUMBER NAMES CATEGORY ------------------- ------------------- -------- 003...MAX CLIMB 8 CLIMB ZErO MAX CLIMB 9 CLIMB ZERO MAX CLIMB A-21 TAKEOFF PROFILE DATA (HEADWIND = 8 KT) 02- 10 -1992 09: 48 :36 AIRCRAFT AIRCRAFT AND ENGINE...CLIMB ZERO USR SUPPL 34033 LB 10 CLIMB ZERO USR SUPPL 34798 LB A-194 TAKEOFF PROFILE DATA (HEADWIND = 8 KT) 06-24-1991 10 :33: 48 AIRCRAFT AIRCRAFT

  4. Aircraft production technology

    NASA Astrophysics Data System (ADS)

    Horne, Douglas Favel

    Current aircraft-production techniques are surveyed and illustrated with extensive drawings, diagrams, and photographs. The history of the British aircraft industry is reviewed, and individual chapters are devoted to Al alloys; steels, Ni alloys, and Ti alloys; metal-cutting machinery; welding and brazing; surface treatments; protective treatments; sheet-metal working; nonmetallic materials; assembly; inspection and testing; and production estimates, production planning, and CAD/CAM.

  5. Meet your Aircraft Quiz

    DOT National Transportation Integrated Search

    1995-01-01

    This quiz is designed to help a pilot meet his or her aircraft. Although no attempt is made to cover in depth all of the information contained in the typical Pilot's Operating Handbook (POH), Owner's Manual (OM), or Aircraft Flight Manual (AFM), the ...

  6. Advanced hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Utzinger, Rob; Blank, Hans-Joachim; Cox, Craig; Harvey, Greg; Mckee, Mike; Molnar, Dave; Nagy, Greg; Petersen, Steve

    1992-01-01

    The objective of this design project is to develop the hypersonic reconnaissance aircraft to replace the SR-71 and to complement existing intelligence gathering devices. The initial design considerations were to create a manned vehicle which could complete its mission with at least two airborne refuelings. The aircraft must travel between Mach 4 and Mach 7 at an altitude of 80,000 feet for a maximum range of 12,000 nautical miles. The vehicle should have an air breathing propulsion system at cruise. With a crew of two, the aircraft should be able to take off and land on a 10,000 foot runway, and the yearly operational costs were not to exceed $300 million. Finally, the aircraft should exhibit stealth characteristics, including a minimized radar cross-section (RCS) and a reduced sonic boom. The technology used in this vehicle should allow for production between the years 1993 and 1995.

  7. 14 CFR 47.33 - Aircraft not previously registered anywhere.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Certificates of Aircraft Registration § 47.33 Aircraft not... applicable; and (2) Submits with his Aircraft Registration Application, AC Form 8050-1, an Aircraft Bill of...-built aircraft who applies for registration under paragraphs (a) and (b) of this section must describe...

  8. 14 CFR 47.33 - Aircraft not previously registered anywhere.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Certificates of Aircraft Registration § 47.33 Aircraft not... applicable; and (2) Submits with his Aircraft Registration Application, AC Form 8050-1, an Aircraft Bill of...-built aircraft who applies for registration under paragraphs (a) and (b) of this section must describe...

  9. Foliar anthocyanin content - Sensitivity of vegetation indices using green reflectance

    NASA Astrophysics Data System (ADS)

    Vina, A.; Gitelson, A. A.

    2009-12-01

    The amount and composition of photosynthetic and non-photosynthetic foliar pigments varies primarily as a function of species, developmental and phenological stages, and environmental stresses. Information on the absolute and relative amounts of these pigments thus provides insights onto the physiological conditions of plants and their responses to stress, and has the potential to be used for evaluating plant species composition and diversity across broad geographic regions. Anthocyanins in particular, are non-photosynthetic pigments associated with the resistance of plants to environmental stresses (e.g., drought, low soil nutrients, high radiation, herbivores, and pathogens). As they absorb radiation primarily in the green region of the electromagnetic spectrum (around 540-560 nm), broad-band vegetation indices that use this region in their formulation will respond to their presence. We evaluated the sensitivity of three vegetation indices using reflectance in the green spectral region (the green Normalized Difference Vegetation Index, gNDVI, the green Chlorophyll Index, CIg, and the Visible Atmospherically Resistant Vegetation Index, VARI) to foliar anthocyanins in five different species. For comparison purposes the widely used Normalized Difference Vegetation Index, NDVI was also evaluated. Among the four indices tested, the VARI, which uses only spectral bands in the visible region of the electromagnetic spectrum, was found to be inversely and linearly related to the relative amount of foliar anthocyanins. While this result was obtained at leaf level, it opens new possibilities for analyzing anthocyanin content across multiple scales, by means of currently operational aircraft- and spacecraft-mounted broad-band sensor systems. Further studies that evaluate the sensitivity of the VARI to the relative content of anthocyanins across space (e.g., at canopy and regional scales) and time, and its relationship with plant biodiversity and vegetation stresses, are

  10. Instrument for Aircraft-Icing and Cloud-Physics Measurements

    NASA Technical Reports Server (NTRS)

    Lilie, Lyle; Bouley, Dan; Sivo, Chris

    2006-01-01

    The figure shows a compact, rugged, simple sensor head that is part of an instrumentation system for making measurements to characterize the severity of aircraft-icing conditions and/or to perform research on cloud physics. The quantities that are calculated from measurement data acquired by this system and that are used to quantify the severity of icing conditions include sizes of cloud water drops, cloud liquid water content (LWC), cloud ice water content (IWC), and cloud total water content (TWC). The sensor head is mounted on the outside of an aircraft, positioned and oriented to intercept the ambient airflow. The sensor head consists of an open housing that is heated in a controlled manner to keep it free of ice and that contains four hot-wire elements. The hot-wire sensing elements have different shapes and sizes and, therefore, exhibit different measurement efficiencies with respect to droplet size and water phase (liquid, frozen, or mixed). Three of the hot-wire sensing elements are oriented across the airflow so as to intercept incoming cloud water. For each of these elements, the LWC or TWC affects the power required to maintain a constant temperature in the presence of cloud water.

  11. Characterisation of baroreflex sensitivity of recreational ultra-endurance athletes.

    PubMed

    Foulds, Heather J A; Cote, Anita T; Phillips, Aaron A; Charlesworth, Sarah A; Bredin, Shannon S D; Burr, Jamie F; Drury, Chipman Taylor; Ngai, Shirley; Fougere, Renee J; Ivey, Adam C; Warburton, Darren E R

    2014-01-01

    Altered autonomic function has been identified following ultra-endurance event participation among elite world-class athletes. Despite dramatic increases in recreational athlete participation in these ultra-endurance events, the physiological effects on these athletes are less known. This investigation sought to characterise changes in surrogate measures of autonomic function: heart rate variability (HRV), blood pressure variability (BPV) and baroreceptor sensitivity (BRS) following ultra-endurance race participation. Further, we sought to compare baseline measures among ultra-endurance athletes and recreationally active controls not participating in the ultra-endurance race. Recreational ultra-endurance athletes (n = 25, 44.6 ± 8.2 years, 8 females) and recreationally active age, sex and body mass index matched controls (n = 25) were evaluated. Measurements of HRV, BPV and BRS were collected pre- and post-race for recreational ultra-endurance athletes and at baseline, for recreationally active controls. Post-race, ultra-endurance athletes demonstrated significantly greater sympathetic modulation [low frequency (LF) power HRV: 50.3 ± 21.6 normalised units (n.u.) to 65.9 ± 20.4 n.u., p = 0.01] and significantly lower parasympathetic modulation [high frequency (HF) power HRV: 45.0 ± 22.4 n.u. to 23.9 ± 13.1 n.u., p < 0.001] and BRS. Baseline measurements BRS (spectral: 13.96 ± 10.82 ms·mmHg(-1) vs. 11.39 ± 5.33 ms·mmHg(-1)) were similar among recreational ultra-endurance athletes and recreationally active controls, though recreational ultra-endurance athletes demonstrated greater parasympathetic modulation of some HRV and BPV measures. Recreational ultra-endurance athletes experienced increased sympathetic tone and declines in BRS post-race, similar to previously reported elite world-class ultra-endurance athletes, though still within normal population ranges.

  12. Chemical hazards in aeromedical aircraft.

    PubMed

    Tupper, C R

    1989-01-01

    Several potentially hazardous chemicals are required to make modern military aircraft fly. With each airevac mission, the possibility exists for structural failure of a fluid system, resulting in contamination to flight/medical crews, patients, and passengers. Aeromedical Evacuation Crewmembers (AECMs) need to be aware of the hazardous chemicals used in aircraft and areas where there is an increased risk to those in and around the aircraft. This study identified potential areas for chemical leakage, such as refuel receptacles, hydraulic reservoirs, hydraulic motors, doors, ramps, engines, and more. Further, it identified the basic first aid procedures to perform on people contaminated with jet fuel, hydraulic fluid, engine oil, fire extinguisher agents, LOX and other fluids. First aid procedures are basic and can be performed with supplies and equipment on a routine aeromedical evacuation mission, AECMs trained in a basic awareness of hazardous aircraft chemicals will result in crews better prepared to cope with the unique risks of transporting patients in a complicated military aircraft.

  13. Aircraft cockpit vision: Math model

    NASA Technical Reports Server (NTRS)

    Bashir, J.; Singh, R. P.

    1975-01-01

    A mathematical model was developed to describe the field of vision of a pilot seated in an aircraft. Given the position and orientation of the aircraft, along with the geometrical configuration of its windows, and the location of an object, the model determines whether the object would be within the pilot's external vision envelope provided by the aircraft's windows. The computer program using this model was implemented and is described.

  14. Characterization of metabolite profiles from the leaves of green perilla (Perilla frutescens) by ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry and screening for their antioxidant properties.

    PubMed

    Lee, Yeon Hee; Kim, Bokyeong; Kim, Soyoung; Kim, Min-Sun; Kim, Hyunji; Hwang, Seung-Ryul; Kim, Kyun; Lee, Jin Hwan

    2017-10-01

    The objective of this research was to access the determination of metabolite profiles and antioxidant properties in the leaves of green perilla (Perilla frutescens), where these are considered functional and nutraceutical substances in Korea. A total of 25 compositions were confirmed as six phenolic acids, two triterpenoids, eight flavonoids, seven fatty acids, and two glucosides using an ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) technique from the methanol extract of this species. The individual and total compositions exhibited significant differences, especially rosmarinic acid (10), and linolenic acids (22 and 23) were detected as the predominant metabolites. Interestingly, rosmarinic acid (10) was observed to have considerable differences with various concentrations in three samples (Doryong, 6.38 μg/g; Sinseong, 317.60 μg/g; Bongmyeong, 903.53 μg/g) by UPLC analysis at 330 nm. The scavenging properties against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radicals also showed potent effects with remarkable differences at a concentration of 100 μg/mL, and their abilities were as follows: Sinseong (DPPH, 86%; ABTS, 90%) > Bongmyeong (71% and 84%, respectively) > Doryong (63% and 73%, respectively). Our results suggest that the antioxidant activities of green perilla leaves are correlated with metabolite contents, especially the five major compositions 10 and 22-25. Moreover, this study may be useful in evaluating the relationship between metabolite composition and antioxidant activity. Copyright © 2016. Published by Elsevier B.V.

  15. Aircraft icing research at NASA

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.

    1982-01-01

    Research activity is described for: ice protection systems, icing instrumentation, experimental methods, analytical modeling for the above, and in flight research. The renewed interest in aircraft icing has come about because of the new need for All-Weather Helicopters and General Aviation aircraft. Because of increased fuel costs, tomorrow's Commercial Transport aircraft will also require new types of ice protection systems and better estimates of the aeropenalties caused by ice on unprotected surfaces. The physics of aircraft icing is very similar to the icing that occurs on ground structures and structures at sea; all involve droplets that freeze on the surfaces because of the cold air. Therefore all icing research groups will benefit greatly by sharing their research information.

  16. FE-SEM, FIB and TEM Study of Surface Deposits of Apollo 15 Green Glass Volcanic Spherules

    NASA Technical Reports Server (NTRS)

    Ross, Daniel K.; Thomas-Keprta, K. L.; Rahman, Z.; Wentworth, S. J.; McKay, D. S.

    2011-01-01

    Surface deposits on lunar pyroclastic green (Apollo 15) and orange (Apollo 17) glass spherules have been attributed to condensation from the gas clouds that accompanied fire-fountain eruptions. The fire fountains cast molten lava high above the lunar surface and the silicate melt droplets quenched before landing producing the glass beads. Early investigations showed that these deposits are rich in sulfur and zinc. The deposits are extremely fine-grained and thin, so that it was never possible to determine their chemical compositions cleanly by SEM/EDX or electron probe x-ray analysis because most of the excited volume was in the under-lying silicate glass. We are investigating the surface deposits by TEM, using focused ion beam (FIB) microscopy to extract and thin the surface deposits. Here we report on chemical mapping of a FIB section of surface deposits of an Apollo green glass bead 15401using the ultra-high resolution JEOL 2500 STEM located at NASA Johnson Space Center.

  17. Nitrogen oxides at the UTLS: Combining observations from research aircraft and in-service aircraft

    NASA Astrophysics Data System (ADS)

    Ziereis, Helmut; Stratmann, Greta; Schlager, Hans; Gottschaldt, Klaus-Dirk; Rauthe-Schöch, Armin; Zahn, Andreas; Hoor, Peter; van, Peter

    2016-04-01

    Nitrogen oxides have a decisive influence on the chemistry of the upper troposphere and lower stratosphere. They are key constituents of several reaction chains influencing the production of ozone. They also play an essential role in the cycling of hydroxyl radicals and therefore influence the lifetime of methane. Due to their short lifetime and their variety of sources there is still a high uncertainty about the abundance of nitrogen oxides in the UTLS. Dedicated aircraft campaigns aim to study specific atmospheric questions like lightning, long range transport or aircraft emissions. Usually, within a short time period comprehensive measurements are performed within a more or less restricted region. Therefore, especially trace constituents like nitrogen oxides with short lifetime and a variety of different sources are not represented adequately. On the other hand, routine measurements from in-service aircraft allow observations over longer time periods and larger regions. However, it is nearly impossible to influence the scheduling of in-service aircraft and thereby time and space of the observations. Therefore, the combination of dedicated aircraft campaigns and routine observations might supplement each other. For this study we combine nitrogen oxides data sets obtained with the IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) flying laboratory and with the German research aircraft HALO (High altitude and long range research aircraft). Data have been acquired within the IAGOS-CARIBIC project on a monthly base using a Lufthansa Airbus A340-600 since December 2004. About four flights are performed each month covering predominantly northern mid-latitudes. Additional flights have been conducted to destinations in South America and South Africa. Since 2012 HALO has been operational. Nitrogen oxides measurements have been performed during six missions covering mid latitudes, tropical as well as Polar

  18. MicroCub Subscale Aircraft

    NASA Image and Video Library

    2018-01-18

    The MicroCub is the newest addition to NASA Armstrong's fleet of subscale research aircraft. The aircraft is a modified a Bill Hempel 60-percent-scale super cub, designed with a 21-foot wingspan, a Piccolo Autopilot guidance system and a JetCat SPT-15 Turboprop.

  19. Annoyance by aircraft noise and fear of overflying aircraft in relation to attitudes toward the environment and community

    NASA Technical Reports Server (NTRS)

    Loeb, M.; Moran, S. V.

    1977-01-01

    It has been suggested that expressions of annoyance attributable to aircraft noise may reflect in part fear of aircraft overflights and possible crashes. If this is true, then residents of areas where crashes have occurred should express more annoyance. To test this hypothesis, 50 residents of an Albany, New York area where an aircraft crash producing fatalities recently occurred and 50 residents of a comparable nearby area without such a history, were asked to respond to a 'Quality of Life Questionnaire.' Among the items were some designed to test annoyance by noise and fear of aircraft overflights. It was predicted that those in the crash area would express more fear and would more often identify aircraft as a noise source. These hypotheses were sustained. A near-replication was carried out in Louisville, Kentucky; results were much the same. Analyses indicated that for the crash-area groups, there was associating of aircraft fear and noise annoyance responses; this was true to an apparently lesser extent for non-crash groups. The greater annoyance of crash groups by aircraft community noise apparently does not carry over to situations in which aircraft noise is assessed in the laboratory.

  20. 14 CFR 34.6 - Aircraft safety.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Aircraft safety. 34.6 Section 34.6 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES General Provisions § 34.6 Aircraft...

  1. 14 CFR 34.6 - Aircraft safety.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Aircraft safety. 34.6 Section 34.6 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES General Provisions § 34.6 Aircraft...

  2. 14 CFR 34.6 - Aircraft safety.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Aircraft safety. 34.6 Section 34.6 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES General Provisions § 34.6 Aircraft...

  3. The Aircraft Morphing Program

    NASA Technical Reports Server (NTRS)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  4. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  5. Q-FANSTM for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Worobel, R.; Mayo, M. G.

    1973-01-01

    Continued growth of general aviation over the next 10 to 15 years is dependent on continuing improvement in aircraft safety, utility, performance and cost. Moreover, these advanced aircraft will need to conform to expected government regulations controlling propulsion system emissions and noise levels. An attractive compact low noise propulsor concept, the Q-FANTM when matched to piston, rotary combustion, or gas turbine engines opens up the exciting prospect of new, cleaner airframe designs for the next generation of general aviation aircraft which will provide these improvements and meet the expected noise and pollution restriction of the 1980 time period. New Q-FAN methodology which was derived to predict Q-FAN noise, weight and cost is presented. Based on this methodology Q-FAN propulsion system performance, weight, noise, and cost trends are discussed. Then the impact of this propulsion system type on the complete aircraft is investigated for several representative aircraft size categories. Finally, example conceptual designs for Q-FAN/engine integration and aircraft installations are presented.

  6. Baseline monitoring using aircraft laser ranging. [spaceborne laser simulation and aircraft laser tracking

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Hoge, F. E.; Martin, C. F.

    1982-01-01

    The use of aircraft laser ranging for the determination of baselines between ground based retroreflectors was investigated via simulations and with tests at Wallops Flight Center using the Airborne Oceanographic Lidar (AOL) on the Wallops C-54 aircraft ranging to a reflector array deployed around one of the Wallops runways. The aircraft altitude and reflector spacing were chosen on the basis of scaled down modeling of spacecraft tracking from 1000 km of reflectors separated by some 52 km, or of high altitude (10 km) aircraft tracking of reflectors separated by some 500 m. Aircraft altitudes flown for different passes across the runway reflector array varied from 800 m to 1350 m, with 32 reflectors deployed over an approximtely 300 m x 500 m ground pattern. The AOL transmitted 400 pulses/sec with a scan rate of 5/sec in a near circular pattern, so that the majority of the pulses were reflected by the runway surface or its environs rather than by retroreflectors. The return pulse characteristics clearly showed the high reflectivity of portions of the runway, with several returns indistinguishable in amplitude from reflector returns. For each pass across the reflector field, typically six to ten reflector hits were identified, consistent with that predicted by simulations and the observed transmitted elliptical pulse size.

  7. 7 CFR 58.144 - Pasteurization or ultra-pasteurization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pasteurization or ultra-pasteurization. 58.144 Section... Service 1 Operations and Operating Procedures § 58.144 Pasteurization or ultra-pasteurization. When pasteurization or ultra-pasteurization is intended or required, or when a product is designated “pasteurized” or...

  8. Aircraft Cabin Environmental Quality Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Resultsmore » from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.« less

  9. Impact analysis of composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Pifko, Allan B.; Kushner, Alan S.

    1993-01-01

    The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.

  10. 14 CFR 135.25 - Aircraft requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... registration and meets the registration and identification requirements of that country; (2) The aircraft is of... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft requirements. 135.25 Section 135... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT General...

  11. 14 CFR 135.25 - Aircraft requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... registration and meets the registration and identification requirements of that country; (2) The aircraft is of... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft requirements. 135.25 Section 135... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT General...

  12. 14 CFR 135.25 - Aircraft requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... registration and meets the registration and identification requirements of that country; (2) The aircraft is of... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft requirements. 135.25 Section 135... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT General...

  13. 14 CFR 135.25 - Aircraft requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... registration and meets the registration and identification requirements of that country; (2) The aircraft is of... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft requirements. 135.25 Section 135... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT General...

  14. 14 CFR 135.25 - Aircraft requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... registration and meets the registration and identification requirements of that country; (2) The aircraft is of... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft requirements. 135.25 Section 135... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT General...

  15. Structural analysis of light aircraft using NASTRAN

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. T.; Bruce, A. C.

    1973-01-01

    An application of NASTRAN to the structural analysis of light aircraft was conducted to determine the cost effectiveness. A model of the Baby Ace D model homebuilt aircraft was used. The NASTRAN model of the aircraft consists of 193 grid points connected by 352 structural members. All members are either rod or beam elements, including bending of unsymmetrical cross sections and torsion of noncircular cross sections. The aerodynamic loads applied to the aircraft were in accordance with FAA regulations governing the utility category aircraft.

  16. Dynamics of the aircraft in a vortex wake

    NASA Astrophysics Data System (ADS)

    Gaifullin, A. M.; Sviridenko, Yu N.

    2018-03-01

    This paper considers the aerodynamics and the dynamics of an aircraft on various modes when the aircraft enters a strongly swirling flow. This is the case when an aircraft purposefully enters the jet-vortex wake of another aircraft in the course of in-flight refuelling, when an aircraft is flying in the trail of an aircraft carrier during landing, or when an aircraft accidentally enters other aircrafts’ vortex wakes. These situations, according to pilots’ evaluation, are the most dangerous and the most difficult modes for piloting. That is why their real time modelling on flight simulators has taken on particular importance. This article provides the algorithms and methodology of mathematical modelling of aerodynamic forces and moments which act upon an aircraft in vortex wakes.

  17. Lightning protection for aircraft

    NASA Technical Reports Server (NTRS)

    Fisher, F. A.; Plumer, J. A.

    1980-01-01

    Reference book summarizes current knowledge concerning potential lightning effects on aircraft and means available to designers and operators to protect against effects. Book is available because of increasing use of nonmetallic materials in aircraft structural components and use of electronic equipment for control of critical flight operations and navigation.

  18. Computer simulation of aircraft motions and propulsion system dynamics for the YF-12 aircraft at supersonic cruise conditions

    NASA Technical Reports Server (NTRS)

    Brown, S. C.

    1973-01-01

    A computer simulation of the YF-12 aircraft motions and propulsion system dynamics is presented. The propulsion system was represented in sufficient detail so that interactions between aircraft motions and the propulsion system dynamics could be investigated. Six degree-of-freedom aircraft motions together with the three-axis stability augmentation system were represented. The mixed compression inlets and their controls were represented in the started mode for a range of flow conditions up to the inlet unstart boundary. Effects of inlet moving geometry on aircraft forces and movements as well as effects of aircraft motions on the inlet behavior were simulated. The engines, which are straight subjects, were represented in the afterburning mode, with effects of changes in aircraft flight conditions included. The simulation was capable of operating in real time.

  19. Small Aircraft RF Interference Path Loss

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to better interference risk assessment.

  20. GaAs/Ge Solar Powered Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Brinker, David J.

    1998-01-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration aircraft. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to air-breathing engines for certain missions. Development of such an aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) has built a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office.

  1. 8 CFR 280.21 - Seizure of aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 280.21 Section 280.21... OF FINES § 280.21 Seizure of aircraft. Seizure of an aircraft under the authority of section 239 of... than the amount of the fine which may be imposed. If seizure of an aircraft for violation of section...

  2. 8 CFR 1280.21 - Seizure of aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 1280.21 Section 1280... REGULATIONS IMPOSITION AND COLLECTION OF FINES § 1280.21 Seizure of aircraft. Seizure of an aircraft under the... that its value is less than the amount of the fine which may be imposed. If seizure of an aircraft for...

  3. 75 FR 41986 - Certification of Aircraft and Airmen for the Operation of Light-Sport Aircraft; Modifications to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ...- Sport Aircraft; Modifications to Rules for Sport Pilots and Flight Instructors With a Sport Pilot Rating... rule, ``Certification of Aircraft and Airmen for the Operation of Light-Sport Aircraft; Modifications to Rules for Sport Pilots and Flight Instructors With a Sport Pilot Rating,'' which was published on...

  4. Dual-Mission Large Aircraft Feasibility Study and Aerodynamic Investigation

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri

    1997-01-01

    A Dual-Mission Large Aircraft, or DMLA, represents the possibility of a single aircraft capable of fulfilling both a Global Reach Aircraft (GRA) and Very Large Transport (VLT) roles. The DMLA, by combining the GRA and VLT into a single new aircraft, could possibly lower the aircraft manufacturer's production costs through the resulting increase in production quantity. This translates into lower aircraft acquisition costs, a primary concern for both the Air Force and commercial airlines. This report outlines the first steps taken in this study, namely the assessment of technical and economic feasibility of the DMLA concept. In the course of this project, specialized GRA and VLT aircraft were sized for their respective missions, using baseline conventional (i.e., lacking advanced enabling technologies) aircraft models from previous work for the Air Force's Wright Laboratory and NASA-Langley. DMLA baseline aircraft were then also developed, by first sizing the aircraft for the more critical of the two missions and then analyzing the aircraft's performance over the other mission. The resulting aircraft performance values were then compared to assess technical feasibility. Finally, the life-cycle costs of each aircraft (GRA, VLT, and DMLA) were analyzed to quantify economic feasibility. These steps were applied to both a two-engine aircraft set, and a four-engine aircraft set.

  5. Multi-class methodology to determine pesticides and mycotoxins in green tea and royal jelly supplements by liquid chromatography coupled to Orbitrap high resolution mass spectrometry.

    PubMed

    Martínez-Domínguez, Gerardo; Romero-González, Roberto; Garrido Frenich, Antonia

    2016-04-15

    A multi-class methodology was developed to determine pesticides and mycotoxins in food supplements. The extraction was performed using acetonitrile acidified with formic acid (1%, v/v). Different clean-up sorbents were tested, and the best results were obtained using C18 and zirconium oxide for green tea and royal jelly, respectively. The compounds were determined using ultra high performance liquid chromatography (UHPLC) coupled to Exactive-Orbitrap high resolution mass spectrometry (HRMS). The recovery rates obtained were between 70% and 120% for most of the compounds studied with a relative standard deviation <25%, at three different concentration levels. The calculated limits of quantification (LOQ) were <10 μg/kg. The method was applied to green tea (10) and royal jelly (8) samples. Nine (eight of green tea and one of royal jelly) samples were found to be positive for pesticides at concentrations ranging from 10.6 (cinosulfuron) to 47.9 μg/kg (paclobutrazol). The aflatoxin B1 (5.4 μg/kg) was also found in one of the green tea samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 14 CFR 21.127 - Tests: aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Tests: aircraft. 21.127 Section 21.127... PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.127 Tests: aircraft. (a) Each person manufacturing aircraft under a type certificate must establish an approved production flight test procedure and...

  7. 14 CFR 21.127 - Tests: aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Tests: aircraft. 21.127 Section 21.127... PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.127 Tests: aircraft. (a) Each person manufacturing aircraft under a type certificate must establish an approved production flight test procedure and...

  8. Energy Index For Aircraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R. (Inventor); Lynch, Robert E. (Inventor); Lawrence, Robert E. (Inventor); Amidan, Brett G. (Inventor); Ferryman, Thomas A. (Inventor); Drew, Douglas A. (Inventor); Ainsworth, Robert J. (Inventor); Prothero, Gary L. (Inventor); Romanowski, Tomothy P. (Inventor); Bloch, Laurent (Inventor)

    2006-01-01

    Method and system for analyzing, separately or in combination, kinetic energy and potential energy and/or their time derivatives, measured or estimated or computed, for an aircraft in approach phase or in takeoff phase, to determine if the aircraft is or will be put in an anomalous configuration in order to join a stable approach path or takeoff path. A 3 reference value of kinetic energy andor potential energy (or time derivatives thereof) is provided, and a comparison index .for the estimated energy and reference energy is computed and compared with a normal range of index values for a corresponding aircraft maneuver. If the computed energy index lies outside the normal index range, this phase of the aircraft is identified as anomalous, non-normal or potentially unstable.

  9. Composite components on commercial aircraft

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.

    1980-01-01

    Commercial aircraft manufacturers are making production commitments to composite structure for future aircraft and modifications to current production aircraft. Flight service programs with advanced composites sponsored by NASA during the past 10 years are described. Approximately 2.5 million total composite component flight hours have been accumulated since 1970 on both commercial transports and helicopters. Design concepts with significant mass savings were developed, appropriate inspection and maintenance procedures were established, and satisfactory service was achieved for the various composite components. A major NASA/U.S. industry technology program to reduce fuel consumption of commercial transport aircraft through the use of advanced composites was undertaken. Ground and flight environmental effects on the composite materials used in the flight service programs supplement the flight service evaluation.

  10. 14 CFR 47.33 - Aircraft not previously registered anywhere.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Certificates of Aircraft Registration § 47.33 Aircraft not....15, and 47.17, as applicable; and (2) Submits with his Aircraft Registration Application, AC Form.... (c) The owner of an amateur-built aircraft who applies for registration under paragraphs (a) and (b...

  11. 14 CFR 47.33 - Aircraft not previously registered anywhere.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Certificates of Aircraft Registration § 47.33 Aircraft not....15, and 47.17, as applicable; and (2) Submits with his Aircraft Registration Application, AC Form.... (c) The owner of an amateur-built aircraft who applies for registration under paragraphs (a) and (b...

  12. 14 CFR 47.33 - Aircraft not previously registered anywhere.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Certificates of Aircraft Registration § 47.33 Aircraft not... registration under paragraphs (a) and (b) of this section must describe the aircraft by class (airplane... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Aircraft not previously registered anywhere...

  13. Aircraft landing control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor); Hansen, Rolf (Inventor)

    1982-01-01

    Upon aircraft landing approach, flare path command signals of altitude, vertical velocity and vertical acceleration are generated as functions of aircraft position and velocity with respect to the ground. The command signals are compared with corresponding actual values to generate error signals which are used to control the flight path.

  14. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  15. ERTS-1 Virgin Islands experiment 589: Determine boundaries of ERTS and aircraft data within which useful water quality information can be obtained. [water pollution in St. Thomas harbor, Virgin Islands

    NASA Technical Reports Server (NTRS)

    Coulbourn, W. C.; Egan, W. G.; Olsen, D. A. (Principal Investigator); Heaslip, G. B.

    1973-01-01

    The author has identified the following significant results. The boundaries of application of ERTS-1 and aircraft data are established for St. Thomas harbor within which useful water quality information can be obtained. In situ physical, chemical, and biological water quality and benthic data were collected. Moored current meters were employed. Optical measurements of solar irradiance, color test panel radiance and water absorption were taken. Procedures for correlating in situ optical, biological, and chemical data with underflight aircraft I2S data and ERTS-1 MSS scanner data are presented. Comparison of bulk and precision CCT computer printout data for this application is made, and a simple method for geometrically locating bulk data individual pixels based on land-water interface is described. ERTS spacecraft data and I2S aircraft imagery are correlated with optical in situ measurements of the harbor water, with the aircraft green photographic and ERTS-1 MSS-4 bands being the most useful. The biological pigments correlate inversely with the optical data for inshore areas and directly further seaward. Automated computer data processing facilitated analysis.

  16. Wet runways. [aircraft landing and directional control

    NASA Technical Reports Server (NTRS)

    Horne, W. B.

    1975-01-01

    Aircraft stopping and directional control performance on wet runways is discussed. The major elements affecting tire/ground traction developed by jet transport aircraft are identified and described in terms of atmospheric, pavement, tire, aircraft system and pilot performance factors or parameters. Research results are summarized, and means for improving or restoring tire traction/aircraft performance on wet runways are discussed.

  17. 31 CFR 560.528 - Aircraft safety.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Aircraft safety. 560.528 Section 560..., Authorizations and Statements of Licensing Policy § 560.528 Aircraft safety. Specific licenses may be issued on a... the safety of civil aviation and safe operation of U.S.-origin commercial passenger aircraft. ...

  18. 31 CFR 560.528 - Aircraft safety.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Aircraft safety. 560.528 Section 560..., Authorizations and Statements of Licensing Policy § 560.528 Aircraft safety. Specific licenses may be issued on a... the safety of civil aviation and safe operation of U.S.-origin commercial passenger aircraft. ...

  19. 14 CFR 21.127 - Tests: aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft. 21.127 Section 21.127... PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate Only § 21.127 Tests: aircraft. (a) Each... test procedure and flight check-off form, and in accordance with that form, flight test each aircraft...

  20. 14 CFR 91.117 - Aircraft speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aircraft speed. 91.117 Section 91.117... speed. (a) Unless otherwise authorized by the Administrator, no person may operate an aircraft below 10... than the maximum speed prescribed in this section, the aircraft may be operated at that minimum speed...

  1. 14 CFR 91.117 - Aircraft speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft speed. 91.117 Section 91.117... speed. (a) Unless otherwise authorized by the Administrator, no person may operate an aircraft below 10... than the maximum speed prescribed in this section, the aircraft may be operated at that minimum speed...

  2. Ultra-wide-field imaging in diabetic retinopathy; an overview.

    PubMed

    Ghasemi Falavarjani, Khalil; Wang, Kang; Khadamy, Joobin; Sadda, Srinivas R

    2016-06-01

    To present an overview on ultra-wide-field imaging in diabetic retinopathy. A comprehensive search of the pubmed database was performed using the search terms of "ultra-wide-field imaging", "ultra-wide-field fluorescein angiography" and "diabetic retinopathy". The relevant original articles were reviewed. New advances in ultra-wide-field imaging allow for precise measurements of the peripheral retinal lesions. A consistent finding amongst these articles was that ultra-wide-field imaging improved detection of peripheral lesion. There was discordance among the studies, however, on the correlation between peripheral diabetic lesions and diabetic macular edema. Visualization of the peripheral retina using ultra-wide-field imaging improves diagnosis and classification of diabetic retinopathy. Additional studies are needed to better define the association of peripheral diabetic lesions with diabetic macular edema.

  3. Aircraft Configuration Study for Experimental 2-Place Aircraft and RPVs

    DTIC Science & Technology

    1990-03-01

    area (sq. ft.) 84.24 82.86 Wing airfoil section Eppler Wing aspect ratio 8.09 Wing loading (GW) (lb./sq. ft.: 7.30 7.24 Canard span (ft.) 11.70 11.60...ESTIMATION FOR THE CANARD DRAG POLAR BUILDUP Aircraft Canard FG Input italicized data Wing for Eppler airfoil Cdmin = .0080 S = 82.9 Canard from Eppler ...DRAG POLAR BUILDUP Aircraft Canard FG Input italicized data Wing for Eppler airfoil Cdmin = .0080 S = 82.9 Canard from Eppler for GA(A)-1 airfoil Cdmin

  4. Scorpion: Close Air Support (CAS) aircraft

    NASA Technical Reports Server (NTRS)

    Allen, Chris; Cheng, Rendy; Koehler, Grant; Lyon, Sean; Paguio, Cecilia

    1991-01-01

    The objective is to outline the results of the preliminary design of the Scorpion, a proposed close air support aircraft. The results obtained include complete preliminary analysis of the aircraft in the areas of aerodynamics, structures, avionics and electronics, stability and control, weight and balance, propulsion systems, and costs. A conventional wing, twin jet, twin-tail aircraft was chosen to maximize the desirable characteristics. The Scorpion will feature low speed maneuverability, high survivability, low cost, and low maintenance. The life cycle cost per aircraft will be 17.5 million dollars. The maximum takeoff weight will be 52,760 pounds. Wing loading will be 90 psf. The thrust to weight will be 0.6 lbs/lb. This aircraft meets the specified mission requirements. Some modifications have been suggested to further optimize the design.

  5. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Illuminated by early-morning sunlight, a quarter-scale model of the Solar-powered, remotely piloted Centurion ultra-high-altitude flying wing demonstrates its abilities during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar

  6. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Illuminated by early-morning sunlight, a quarter-scale model of the solar-powered, remotely piloted Centurion ultra-high-altitude flying wing soars over California's Mojave Desert on a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for

  7. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  8. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  9. Aircraft Data of the Rodeo/Chediski Fire

    NASA Technical Reports Server (NTRS)

    2002-01-01

    New images of Arizona's Rodeo-Chediski wildfire, which according to news reports is the largest in the state's history, have been acquired by NASA's MODIS Airborne Simulator flying aboard the space agency's ER-2 aircraft. The images show the extent of the burn area-now more than 450,000 acres-and pinpoint areas of active burning as of the morning of July 1. The images below include both true-color images and false-color images designed to highlight the burned areas. They were acquired during a transit of the ER-2 aircraft from NASA's Dryden Flight Research Center, Edwards, Calif. to Key West Naval Air Facility, Fla. in preparation for an upcoming field experiment. The newly acquired wildfire images will be used to validate rapid response wildfire maps produced by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft. They will also be provided to the U.S. Forest Service for potential use in post-fire damage assessments. The false-color image (top) shows the southern portion of the fire, and reveals that not all the terrain within the fire's perimeter burned to the same degree. Burned areas are red and remaining vegetation is green. In the center of the image, the bright orange pixels are actively burning fire, and the smoke drifting southward from the blaze appears blue. Burned area at the top of the true-color image (bottom) appears charcoal, and a smoke plume drifting southwest from the center of the image reveals the location of actively burning fire. See more images at MODIS Airborne Simulator Images of the Rodeo/Chediski Fire, Arizona and the Earth Observatory's Natural Hazards section. Images courtesy of MODIS Airborne Simulator ER-2 team, NASA GSFC and NASA Dryden Flight Research Center

  10. Ultra-short ion and neutron pulse production

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.

    2006-01-10

    An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.

  11. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 1: Navy operational aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Aircraft were designed and sized to meet Navy mission requirements. Five missions were established for evaluation: anti-submarine warfare (ASW), surface attack (SA), combat search and rescue (CSAR), surveillance (SURV), and vertical on-board delivery (VOD). All missions were performed with a short takeoff and a vertical landing. The aircraft were defined using existing J97-GE gas generators or reasonable growth derivatives in conjunction with turbotip fans reflecting LF460 type technology. The multipurpose aircraft configuration established for U.S. Navy missions utilizes the turbotip driven lift/cruise fan concept for V/STOL aircraft.

  12. Shuttle Carrier Aircraft

    NASA Image and Video Library

    2014-04-23

    It has been called the world's greatest piggyback ride: a space shuttle, atop a Boeing 747 jet aircraft. But this is no ordinary 747, this is the Shuttle Carrier Aircraft...the SCA. This specially modified jumbo jet was not only a taxi service for the shuttle, but also helped in the development of the shuttle itself. In 30 years of flying, the majestic image of a spacecraft joined to the SCA, became a symbol of American invention and ingenuity.

  13. 19 CFR 351.522 - Green light and green box subsidies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Green light and green box subsidies. 351.522... COUNTERVAILING DUTIES Identification and Measurement of Countervailable Subsidies § 351.522 Green light and green... domestic support measures that are provided to certain agricultural products (i.e., products listed in...

  14. Accelerating the Kill Chain via Future Unmanned Aircraft

    DTIC Science & Technology

    2007-04-01

    Controller JTRS Joint Tactical Radio System Lasercom Laser communications LDHD Low Density High Demand LEO Low Earth Orbit LGB Laser Guided Bomb...published the Unmanned Aircraft Systems Roadmap 2005 that included the terms Unmanned Aircraft System (UAS) and Unmanned Aircraft (UA). This...comprehensive publication used the term Unmanned Aircraft Systems when referring to the entire system and the term Unmanned Aircraft when referring only to the

  15. Perspectives on Highly Adaptive or Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Vicroy, Dan D.; Busan, Ronald C.; Hahn, Andrew S.

    2009-01-01

    The ability to adapt to different flight conditions has been fundamental to aircraft design since the Wright Brothers first flight. Over a hundred years later, unconventional aircraft adaptability, often called aircraft morphing has become a topic of considerable renewed interest. In the past two decades, this interest has been largely fuelled by advancements in multi-functional or smart materials and structures. However, highly adaptive or morphing aircraft is certainly a cross-discipline challenge that stimulates a wide range of design possibilities. This paper will review some of the history of morphing aircraft including recent research programs and discuss some perspectives on this work.

  16. Cyanoborohydride-based ionic liquids as green aerospace bipropellant fuels.

    PubMed

    Zhang, Qinghua; Yin, Ping; Zhang, Jiaheng; Shreeve, Jean'ne M

    2014-06-02

    In propellant systems, the most common bipropellants are composed of two chemicals, a fuel (or reducer) and an oxidizer. Currently, the choices for propellant fuels rely mainly on hydrazine and its methylated derivatives, even though they are extremely toxic, highly volatile, sensitive to adiabatic compression (risk of detonation), and, therefore, difficult to handle. With this background, the search for alternative green propellant fuels has been an urgent goal of space science. In this study, a new family of cyanoborohydride-based ionic liquids (ILs) with properties and performances comparable to hydrazine derivatives were designed and synthesized. These new ILs as bipropellant fuels, have some unique advantages including negligible vapor pressure, ultra-short ignition delay (ID) time, and reduced synthetic and storage costs, thereby showing great application potential as environmentally friendly fuels in bipropellant formulations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Progress in supersonic cruise aircraft technology

    NASA Technical Reports Server (NTRS)

    Driver, C.

    1978-01-01

    The supersonic cruise aircraft research program identified significant improvements in the technology areas of propulsion, aerodynamics, structures, takeoff and landing procedures, and advanced configuration concepts. Application of these technology areas to a commercial aircraft is discussed. An advanced SST family of aircraft which may be environmentally acceptable, have flexible range-payload capability, and be economically viable is projected.

  18. 14 CFR 91.209 - Aircraft lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft lights. 91.209 Section 91.209... Requirements § 91.209 Aircraft lights. No person may: (a) During the period from sunset to sunrise (or, in... position lights; (2) Park or move an aircraft in, or in dangerous proximity to, a night flight operations...

  19. 14 CFR 91.209 - Aircraft lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aircraft lights. 91.209 Section 91.209... Requirements § 91.209 Aircraft lights. No person may: (a) During the period from sunset to sunrise (or, in... position lights; (2) Park or move an aircraft in, or in dangerous proximity to, a night flight operations...

  20. 14 CFR 91.209 - Aircraft lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aircraft lights. 91.209 Section 91.209... Requirements § 91.209 Aircraft lights. No person may: (a) During the period from sunset to sunrise (or, in... position lights; (2) Park or move an aircraft in, or in dangerous proximity to, a night flight operations...

  1. 14 CFR 91.209 - Aircraft lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aircraft lights. 91.209 Section 91.209... Requirements § 91.209 Aircraft lights. No person may: (a) During the period from sunset to sunrise (or, in... position lights; (2) Park or move an aircraft in, or in dangerous proximity to, a night flight operations...

  2. 14 CFR 91.209 - Aircraft lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aircraft lights. 91.209 Section 91.209... Requirements § 91.209 Aircraft lights. No person may: (a) During the period from sunset to sunrise (or, in... position lights; (2) Park or move an aircraft in, or in dangerous proximity to, a night flight operations...

  3. Mitigating and monitoring flight crew fatigue on a westward ultra-long-range flight.

    PubMed

    Signal, T Leigh; Mulrine, Hannah M; van den Berg, Margo J; Smith, Alexander A T; Gander, Philippa H; Serfontein, Wynand

    2014-12-01

    This study examined the uptake and effectiveness of fatigue mitigation guidance material including sleep recommendations for a trip with a westward ultra-long-range flight and return long-range flight. There were 52 flight crew (4-pilot crews, mean age 55 yr) who completed a sleep/duty diary and wore an actigraph prior to, during, and after the trip. Primary crew flew the takeoff and landing, while relief crew flew the aircraft during the Primary crew's breaks. At key times in flight, crewmembers rated their fatigue (Samn-Perelli fatigue scale) and sleepiness (Karolinska Sleepiness Scale) and completed a 5-min Psychomotor Vigilance Task. Napping was common prior to the outbound flight (54%) and did not affect the quantity or quality of in-flight sleep (mean 4.3 h). Primary crew obtained a similar amount on the inbound flight (mean 4.0 h), but Secondary crew had less sleep (mean 2.9 h). Subjective fatigue and sleepiness increased and performance slowed across flights. Performance was faster on the outbound than inbound flight. On both flights, Primary crew were less fatigued and sleepy than Secondary crew, particularly at top of descent and after landing. Crewmembers slept more frequently and had more sleep in the first 24 h of the layover than the last, and had shifted their main sleep to the local night by the second night. The suggested sleep mitigations were employed by the majority of crewmembers. Fatigue levels were no worse on the outbound ultra-long-range flight than on the return long-range flight.

  4. Aircraft vulnerability analysis by modeling and simulation

    NASA Astrophysics Data System (ADS)

    Willers, Cornelius J.; Willers, Maria S.; de Waal, Alta

    2014-10-01

    Infrared missiles pose a significant threat to civilian and military aviation. ManPADS missiles are especially dangerous in the hands of rogue and undisciplined forces. Yet, not all the launched missiles hit their targets; the miss being either attributable to misuse of the weapon or to missile performance restrictions. This paper analyses some of the factors affecting aircraft vulnerability and demonstrates a structured analysis of the risk and aircraft vulnerability problem. The aircraft-missile engagement is a complex series of events, many of which are only partially understood. Aircraft and missile designers focus on the optimal design and performance of their respective systems, often testing only in a limited set of scenarios. Most missiles react to the contrast intensity, but the variability of the background is rarely considered. Finally, the vulnerability of the aircraft depends jointly on the missile's performance and the doctrine governing the missile's launch. These factors are considered in a holistic investigation. The view direction, altitude, time of day, sun position, latitude/longitude and terrain determine the background against which the aircraft is observed. Especially high gradients in sky radiance occur around the sun and on the horizon. This paper considers uncluttered background scenes (uniform terrain and clear sky) and presents examples of background radiance at all view angles across a sphere around the sensor. A detailed geometrical and spatially distributed radiometric model is used to model the aircraft. This model provides the signature at all possible view angles across the sphere around the aircraft. The signature is determined in absolute terms (no background) and in contrast terms (with background). It is shown that the background significantly affects the contrast signature as observed by the missile sensor. A simplified missile model is constructed by defining the thrust and mass profiles, maximum seeker tracking rate, maximum

  5. Daedalus Project's Light Eagle - Human powered aircraft

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Michelob Light Eagle is seen here in flight over Rogers Dry Lake at the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  6. Robots for Aircraft Maintenance

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  7. Aircraft Wake RCS Measurement

    NASA Technical Reports Server (NTRS)

    Gilson, William H.

    1994-01-01

    A series of multi-frequency radar measurements of aircraft wakes at altitudes of 5,000 to 25,00 ft. were performed at Kwajalein, R.M.I., in May and June of 1990. Two aircraft were tested, a Learjet 35 and a Lockheed C-5A. The cross-section of the wake of the Learjet was too small for detection at Kwajalein. The wake of the C-5A, although also very small, was detected and measured at VHF, UHF, L-, S-, and C-bands, at distances behind the aircraft ranging from about one hundred meters to tens of kilometers. The data suggest that the mechanism by which aircraft wakes have detectable radar signatures is, contrary to previous expectations, unrelated to engine exhaust but instead due to turbulent mixing by the wake vortices of pre-existing index of refraction gradients in the ambient atmosphere. These measurements were of necessity performed with extremely powerful and sensitive instrumentation radars, and the wake cross-section is too small for most practical applications.

  8. Aircraft wake RCS measurement

    NASA Astrophysics Data System (ADS)

    Gilson, William H.

    1994-07-01

    A series of multi-frequency radar measurements of aircraft wakes at altitudes of 5,000 to 25,00 ft. were performed at Kwajalein, R.M.I., in May and June of 1990. Two aircraft were tested, a Learjet 35 and a Lockheed C-5A. The cross-section of the wake of the Learjet was too small for detection at Kwajalein. The wake of the C-5A, although also very small, was detected and measured at VHF, UHF, L-, S-, and C-bands, at distances behind the aircraft ranging from about one hundred meters to tens of kilometers. The data suggest that the mechanism by which aircraft wakes have detectable radar signatures is, contrary to previous expectations, unrelated to engine exhaust but instead due to turbulent mixing by the wake vortices of pre-existing index of refraction gradients in the ambient atmosphere. These measurements were of necessity performed with extremely powerful and sensitive instrumentation radars, and the wake cross-section is too small for most practical applications.

  9. Update of aircraft profile data for the Integrated Noise Model computer program, vol. 3 : appendix B aircraft performance coefficients

    DOT National Transportation Integrated Search

    1992-03-01

    This report provides aircraft takeoff and landing profiles, : aircraft aerodynamic performance coefficients and engine : performance coefficients for the aircraft data base : (Database 9) in the Integrated Noise Model (INM) computer : program. Flight...

  10. Prohibition of Oxidizers Aboard Aircraft

    DOT National Transportation Integrated Search

    1996-12-30

    RSPA proposes to amend the Hazardous Material Regulations to prohibit the carriage of oxidizers, including compressed oxygen, in passenger carrying aircraft and in Class D compartments on cargo aircraft. This proposal specifically analyzes the prohib...

  11. The lift-fan aircraft: Lessons learned

    NASA Technical Reports Server (NTRS)

    Deckert, Wallace H.

    1995-01-01

    This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned.

  12. Method and apparatus for monitoring aircraft components

    DOEpatents

    Dickens, Larry M.; Haynes, Howard D.; Ayers, Curtis W.

    1996-01-01

    Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components.

  13. Method and apparatus for monitoring aircraft components

    DOEpatents

    Dickens, L.M.; Haynes, H.D.; Ayers, C.W.

    1996-01-16

    Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components. 14 figs.

  14. Geodynamic environments of ultra-slow spreading

    NASA Astrophysics Data System (ADS)

    Kokhan, Andrey; Dubinin, Evgeny

    2015-04-01

    Ultra-slow spreading is clearly distinguished as an outstanding type of crustal accretion by recent studies. Spreading ridges with ultra-slow velocities of extension are studied rather well. But ultra-slow spreading is characteristic feature of not only spreading ridges, it can be observed also on convergent and transform plate boundaries. Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on divergent plate boundaries: 1. On spreading ridges with ultra-slow spreading, both modern (f.e. Gakkel, South-West Indian, Aden spreading center) and ceased (Labrador spreading center, Aegir ridge); 2. During transition from continental rifting to early stages of oceanic spreading (all spreading ridges during incipient stages of their formation); 3. During incipient stages of formation of spreading ridges on oceanic crust as a result of ridge jumps and reorganization of plate boundaries (f.e. Mathematicians rise and East Pacific rise); 4. During propagation of spreading ridge into the continental crust under influence of hotspot (Aden spreading center and Afar triple junction), under presence of strike-slip faults preceding propagation (possibly, rift zone of California Bay). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on transform plate boundaries: 1. In transit zones between two "typical" spreading ridges (f.e. Knipovich ridge); 2. In semi strike-slip/extension zones on the oceanic crust (f.e. American-Antarctic ridge); 3. In the zones of local extension in regional strike-slip areas in pull-apart basins along transform boundaries (Cayman trough, pull-apart basins of the southern border of Scotia plate). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on convergent plate boundaries: 1. During back-arc rifting on the stage of transition into back-arc spreading (central

  15. Novel methods for aircraft corrosion monitoring

    NASA Astrophysics Data System (ADS)

    Bossi, Richard H.; Criswell, Thomas L.; Ikegami, Roy; Nelson, James; Normand, Eugene; Rutherford, Paul S.; Shrader, John E.

    1995-07-01

    Monitoring aging aircraft for hidden corrosion is a significant problem for both military and civilian aircraft. Under a Wright Laboratory sponsored program, Boeing Defense & Space Group is investigating three novel methods for detecting and monitoring hidden corrosion: (1) atmospheric neutron radiography, (2) 14 MeV neutron activation analysis and (3) fiber optic corrosion sensors. Atmospheric neutron radiography utilizes the presence of neutrons in the upper atmosphere as a source for interrogation of the aircraft structure. Passive track-etch neutron detectors, which have been previously placed on the aircraft, are evaluated during maintenance checks to assess the presence of corrosion. Neutrons generated by an accelerator are used via activation analysis to assess the presence of distinctive elements in corrosion products, particularly oxygen. By using fast (14 MeV) neutrons for the activation, portable, high intensity sources can be employed for field testing of aircraft. The third novel method uses fiber optics as part of a smart structure technology for corrosion detection and monitoring. Fiber optic corrosion sensors are placed in the aircraft at locations known to be susceptible to corrosion. Periodic monitoring of the sensors is used to alert maintenance personnel to the presence and degree of corrosion at specific locations on the aircraft. During the atmospheric neutron experimentation, we identified a fourth method referred to as secondary emission radiography (SER). This paper discusses the development of these methods.

  16. A Grounded Theory Study of Aircraft Maintenance Technician Decision-Making

    NASA Astrophysics Data System (ADS)

    Norcross, Robert

    Aircraft maintenance technician decision-making and actions have resulted in aircraft system errors causing aircraft incidents and accidents. Aircraft accident investigators and researchers examined the factors that influence aircraft maintenance technician errors and categorized the types of errors in an attempt to prevent similar occurrences. New aircraft technology introduced to improve aviation safety and efficiency incur failures that have no information contained in the aircraft maintenance manuals. According to the Federal Aviation Administration, aircraft maintenance technicians must use only approved aircraft maintenance documents to repair, modify, and service aircraft. This qualitative research used a grounded theory approach to explore the decision-making processes and actions taken by aircraft maintenance technicians when confronted with an aircraft problem not contained in the aircraft maintenance manuals. The target population for the research was Federal Aviation Administration licensed aircraft and power plant mechanics from across the United States. Nonprobability purposeful sampling was used to obtain aircraft maintenance technicians with the experience sought in the study problem. The sample population recruitment yielded 19 participants for eight focus group sessions to obtain opinions, perceptions, and experiences related to the study problem. All data collected was entered into the Atlas ti qualitative analysis software. The emergence of Aircraft Maintenance Technician decision-making themes regarding Aircraft Maintenance Manual content, Aircraft Maintenance Technician experience, and legal implications of not following Aircraft Maintenance Manuals surfaced. Conclusions from this study suggest Aircraft Maintenance Technician decision-making were influenced by experience, gaps in the Aircraft Maintenance Manuals, reliance on others, realizing the impact of decisions concerning aircraft airworthiness, management pressures, and legal concerns

  17. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    NASA Technical Reports Server (NTRS)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  18. 14 CFR 141.39 - Aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... training and solo flights: (1) Is a civil aircraft of the United States; (2) Is certificated with a... show that each aircraft used by the school for flight training and solo flights: (1) Is either a civil...

  19. A review of advanced turboprop transport aircraft

    NASA Astrophysics Data System (ADS)

    Lange, Roy H.

    The application of advanced technologies shows the potential for significant improvement in the fuel efficiency and operating costs of future transport aircraft envisioned for operation in the 1990s time period. One of the more promising advanced technologies is embodied in an advanced turboprop concept originated by Hamilton Standard and NASA and known as the propfan. The propfan concept features a highly loaded multibladed, variable pitch propeller geared to a high pressure ratio gas turbine engine. The blades have high sweepback and advanced airfoil sections to achieve 80 percent propulsive efficiency at M=0.80 cruise speed. Aircraft system studies have shown improvements in fuel efficiency of 15-20 percent for propfan advanced transport aircraft as compared to equivalent turbofan transports. Beginning with the Lockheed C-130 and Electra turboprop aircraft, this paper presents an overview of the evolution of propfan aircraft design concepts and system studies. These system studies include possible civil and military transport applications and data on the performance, community and far-field noise characteristics and operating costs of propfan aircraft design concepts. NASA Aircraft Energy Efficiency (ACEE) program propfan projects with industry are reviewed with respect to system studies of propfan aircraft and recommended flight development programs.

  20. Performance Evaluation Method for Dissimilar Aircraft Designs

    NASA Technical Reports Server (NTRS)

    Walker, H. J.

    1979-01-01

    A rationale is presented for using the square of the wingspan rather than the wing reference area as a basis for nondimensional comparisons of the aerodynamic and performance characteristics of aircraft that differ substantially in planform and loading. Working relationships are developed and illustrated through application to several categories of aircraft covering a range of Mach numbers from 0.60 to 2.00. For each application, direct comparisons of drag polars, lift-to-drag ratios, and maneuverability are shown for both nondimensional systems. The inaccuracies that may arise in the determination of aerodynamic efficiency based on reference area are noted. Span loading is introduced independently in comparing the combined effects of loading and aerodynamic efficiency on overall performance. Performance comparisons are made for the NACA research aircraft, lifting bodies, century-series fighter aircraft, F-111A aircraft with conventional and supercritical wings, and a group of supersonic aircraft including the B-58 and XB-70 bomber aircraft. An idealized configuration is included in each category to serve as a standard for comparing overall efficiency.

  1. Aircraft modifications: Assessing the current state of Air Force aircraft modifications and the implications for future military capability

    NASA Astrophysics Data System (ADS)

    Hill, Owen Jacob

    How prepared is the U.S. Air Force to modify its aircraft fleet in upcoming years? Aircraft modernization is a complex interaction of new and legacy aircraft, organizational structure, and planning policy. This research will take one component of modernization: aircraft modification, and apply a new method of analysis in order to help formulate policy to promote modernization. Departing from previous small-sample studies dependent upon weight as a chief explanatory variable, this dissertation incorporates a comprehensive dataset that was constructed for this research of all aircraft modifications from 1996 through 2005. With over 700 modification programs, this dataset is used to examine changes to the current modification policy using policy-response regression models. These changes include separating a codependent procurement and installation schedule, reducing the documentation requirements for safety modifications, and budgeting for aging aircraft modifications. The research then concludes with predictive models for the F-15 and F-16 along with their replacements: the F-22 and F-35 Joint Strike Fighter.

  2. Green's formula and variational principles for cosmic-ray transport with application to rotating and shearing flows

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Jokipii, J. R.; Morfill, G. E.

    1994-01-01

    Green's theorem and Green's formula for the diffusive cosmic-ray transport equation in relativistic flows are derived. Green's formula gives the solution of the transport equation in terms of the Green's function of the adjoint transport equation, and in terms of distributed sources throughout the region R of interest, plus terms involving the particle intensity and streaming on the boundary. The adjoint transport equation describes the time-reversed particle transport. An Euler-Lagrange variational principle is then obtained for both the mean scattering frame distribution function f, and its adjoint f(dagger). Variations of the variational functional with respect to f(dagger) yield the transport equation, whereas variations of f yield the adjoint transport equation. The variational principle, when combined with Noether's theorem, yields the conservation law associated with Green's theorem. An investigation of the transport equation for steady, azimuthal, rotating flows suggests the introduction of a new independent variable H to replace the comoving frame momentum variable p'. For the case of rigid rotating flows, H is conserved and is shown to be analogous to the Hamiltonian for a bead on a rigidly rotating wire. The variable H corresponds to a balance between the centrifugal force and the particle inertia in the rotating frame. The physical interpretation of H includes a discussion of nonrelativistic and special relativistic rotating flows as well as the cases of aziuthal, differentially rotating flows about Schwarzs-child and Kerr black holes. Green's formula is then applied to the problem of the acceleration of ultra-high-energy cosmic rays by galactic rotation. The model for galactic rotation assumes an angular velocity law Omega = Omega(sub 0)(omega(sub 0)/omega), where omega denotes radial distance from the axis of rotation. Green's functions for the galactic rotation problem are used to investigate the spectrum of accelerated particles arising from

  3. Aircraft accidents : method of analysis

    NASA Technical Reports Server (NTRS)

    1929-01-01

    This report on a method of analysis of aircraft accidents has been prepared by a special committee on the nomenclature, subdivision, and classification of aircraft accidents organized by the National Advisory Committee for Aeronautics in response to a request dated February 18, 1928, from the Air Coordination Committee consisting of the Assistant Secretaries for Aeronautics in the Departments of War, Navy, and Commerce. The work was undertaken in recognition of the difficulty of drawing correct conclusions from efforts to analyze and compare reports of aircraft accidents prepared by different organizations using different classifications and definitions. The air coordination committee's request was made "in order that practices used may henceforth conform to a standard and be universally comparable." the purpose of the special committee therefore was to prepare a basis for the classification and comparison of aircraft accidents, both civil and military. (author)

  4. Ultra-small (r<2 nm), stable (>1 year) copper oxide quantum dots with wide band gap

    NASA Astrophysics Data System (ADS)

    Talluri, Bhusankar; Prasad, Edamana; Thomas, Tiju

    2018-01-01

    Practical use of quantum dots (QDs) will rely on processes that enable (i) monodispersity, (ii) scalability, (iii) green approaches to manufacturing them. We demonstrate, a green, rapid, soft chemical, and industrial viable approach for obtaining quasi-spherical, ultra-small (size ∼2.4 ± 0.5 nm), stable (>1 yr), and monodispersed copper oxide QDs (r < 2 nm) based on digestive ripening (DR). These QDs show wide band gap (Eg∼5.3 eV), this substantial band gap increase is currently inexplicable using Brus' equation, and is likely due to surface chemistry of these strongly confined QDs. Capping with triethanolamine (TEA) results in reduction in the average particle diameter from 9 ± 4 nm to 2.4 ± 0.5 nm and an increase of zeta potential (ξ) from +12 ± 2 mV to +31 ± 2 mV. XPS and electron diffraction studies indicate that capped copper oxide QDs which have TEA chemisorbed on its surface are expected to partly stabilize Cu (I) resulting in mixed phase in these QDs. This result is likely to inform efforts that involve achieving monodisperse microstructures and nano-structures, of oxides with a tendency for multivalency.

  5. 49 CFR 175.9 - Special aircraft operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY AIRCRAFT General...) Exceptions. This subchapter does not apply to the following materials used for special aircraft operations... aircraft. (4) Hazardous materials are carried and used during dedicated air ambulance, fire fighting, or...

  6. 49 CFR 175.9 - Special aircraft operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY AIRCRAFT General...) Exceptions. This subchapter does not apply to the following materials used for special aircraft operations... aircraft. (4) Hazardous materials are carried and used during dedicated air ambulance, fire fighting, or...

  7. 49 CFR 175.9 - Special aircraft operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY AIRCRAFT General...) Exceptions. This subchapter does not apply to the following materials used for special aircraft operations... aircraft. (4) Hazardous materials are carried and used during dedicated air ambulance, fire fighting, or...

  8. 47 CFR 87.191 - Foreign aircraft stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....191 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES Aircraft Stations § 87.191 Foreign aircraft stations. (a) Aircraft of member States of the International Civil Aviation Organization may carry and operate radio transmitters in the United...

  9. The Influence of Atmospheric Stability on Wind Drift from Ultra-Low-volume Aerial Forest Spray Applications.

    NASA Astrophysics Data System (ADS)

    Crabbe, R. S.; McCooeye, M.; Mickle, R. E.

    1994-04-01

    Measurements of drift cloud mass from 11 cases selected from a study of wind-borne droplet drift from ultra low-volume aerial spray applications over northern Ontario forests are presented as a function of atmospheric stability. Six swaths were overlaid onto a flight line in 30 min to obtain ensemble-averaged data from rotary atomizer emissions from an agricultural spray plane flying at about 21 and 26 m above ground level. The estimated volume median diameters of the spray were 100 µm for the 21-m height and 70 µm for the 26-m height. The mass of spray material in the drift cloud was measured at 400, 1200, and 2200 m downwind of the (crosswind) flight line using Rotorods' suspended from tethered blimps. Wind speed at aircraft height varied from 2 to 5 m s1 and meteorological conditions varied from moderately stable to moderately unstable.Analysis of the data revealed that 35% more drift occurred in stable than in unstable conditions. The lowest drift was measured when the aircraft was flown in the morning mixing layer beneath a low capping inversion. Under thee conditions, only 18% of the emission drifted put 400 m downwind and 10% past 1200 m. The highest drift occurred in moderately stable flow, 71% past 400 m and 50% past 2200 m in 3 m s1 wind speeds and, in slightly stable flow, 77% past 400 m and 27% past 2200 m in 5 m s1 wind speeds.Within experimental error, little difference was observed between wind drift of the 100-µm-diameter droplets and the 70-µm-diameter droplets past 400 m downwind although farther downwind, drift from the larger-droplet emission was less. This difference is discussed in terms of the descent rate of the aircraft vortex wake in stable conditions.

  10. A look at V/STOL for business aircraft.

    NASA Technical Reports Server (NTRS)

    Feistel, T. W.; Stewart, E. C.; Gerdes, R. M.; Smith, K. R., Jr.

    1972-01-01

    Attempt to ascertain the economic viability of the V/STOL capability for business aircraft and the manner in which this viability depends on the aircraft concept. A cost-benefit analysis is presented which indicates that a VTOL business aircraft would be more viable economically than a contemporary turbine-powered business aircraft. The combination of traveler's time value and trip distance for which each aircraft dominates is shown. The significance of disk loading in V/STOL concept application is discussed, and preliminary design configuration studies for three different business-aircraft-sized V/STOLs, using three concepts covering a range of disk loading, are presented as examples. Finally, a discussion of operational aspects of interest to future users of V/STOL business aircraft is presented which centers around the requirements for routine IFR terminal-area operations.

  11. Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds

    NASA Astrophysics Data System (ADS)

    Fang, Hao; Wen, Ming; Chen, Hanxing; Wu, Qingsheng; Li, Weiying

    2015-12-01

    Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (~2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s-1, with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime because it could be recycled over 25 times without obvious performance decay or even a morphology change. This work showed the promise and great potential of noble-metal-free catalysts in green chemistry.Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (~2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s-1, with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime

  12. Is it a bird? Is it a plane? Ultra-rapid visual categorisation of natural and artifactual objects.

    PubMed

    VanRullen, R; Thorpe, S J

    2001-01-01

    Visual processing is known to be very fast in ultra-rapid categorisation tasks where the subject has to decide whether a briefly flashed image belongs to a target category or not. Human subjects can respond in under 400 ms, and event-related-potential studies have shown that the underlying processing can be done in less than 150 ms. Monkeys trained to perform the same task have proved even faster. However, most of these experiments have only been done with biologically relevant target categories such as animals or food. Here we performed the same study on human subjects, alternating between a task in which the target category was 'animal', and a task in which the target category was 'means of transport'. These natural images of clearly artificial objects contained targets as varied as cars, trucks, trains, boats, aircraft, and hot-air balloons. However, the subjects performed almost identically in both tasks, with reaction times not significantly longer in the 'means of transport' task. These reaction times were much shorter than in any previous study on natural-image processing. We conclude that, at least for these two superordinate categories, the speed of ultra-rapid visual categorisation of natural scenes does not depend on the target category, and that this processing could rely primarily on feed-forward, automatic mechanisms.

  13. Lightning protection of aircraft

    NASA Technical Reports Server (NTRS)

    Fisher, F. A.; Plumer, J. A.

    1977-01-01

    The current knowledge concerning potential lightning effects on aircraft and the means that are available to designers and operators to protect against these effects are summarized. The increased use of nonmetallic materials in the structure of aircraft and the constant trend toward using electronic equipment to handle flight-critical control and navigation functions have served as impetus for this study.

  14. Cable Tensiometer for Aircraft

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  15. 47 CFR 32.2113 - Aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aircraft. 32.2113 Section 32.2113 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2113 Aircraft. This...

  16. Aircraft accidents.method of analysis

    NASA Technical Reports Server (NTRS)

    1937-01-01

    This report is a revision of NACA-TR-357. It was prepared by the Committee on Aircraft Accidents. The purpose of this report is to provide a basis for the classification and comparison of aircraft accidents, both civil and military.

  17. Trajectory Control for Very Flexible Aircraft

    DTIC Science & Technology

    2006-10-30

    aircraft are coupled with the aeroelastic equations that govern the geometrically nonlinear structural response of the vehicle. A low -order strain...nonlinear structural formulation, the finite state aerodynamic model, and the nonlinear rigid body equations together provide a low -order complete...nonlinear aircraft analysis tool. Due to the inherent flexibility of the aircraft modeling, the low order structural fre- quencies are of the same order

  18. Flexible manufacturing of aircraft engine parts

    NASA Astrophysics Data System (ADS)

    Hassan, Ossama M.; Jenkins, Douglas M.

    1992-06-01

    GE Aircraft Engines, a major supplier of jet engines for commercial and military aircraft, has developed a fully integrated manufacturing facility to produce aircraft engine components in flexible manufacturing cells. This paper discusses many aspects of the implementation including process technologies, material handling, software control system architecture, socio-technical systems and lessons learned. Emphasis is placed on the appropriate use of automation in a flexible manufacturing system.

  19. Solar powered aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, W. H. (Inventor)

    1983-01-01

    A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the Sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils.

  20. 14 CFR 375.11 - Other foreign civil aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Other foreign civil aircraft. 375.11... PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorization § 375.11 Other foreign civil aircraft. A foreign civil aircraft other than those referred to in § 375.10...

  1. 14 CFR 252.11 - Aircraft on the ground.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.11 Aircraft on the ground. (a) Air carriers shall prohibit smoking whenever the aircraft is on the ground. (b) With respect to the restrictions on smoking described in § 252.5, foreign air carriers shall prohibit smoking from the time an aircraft begins enplaning...

  2. 14 CFR 252.11 - Aircraft on the ground.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.11 Aircraft on the ground. (a) Air carriers shall prohibit smoking whenever the aircraft is on the ground. (b) With respect to the restrictions on smoking described in § 252.5, foreign air carriers shall prohibit smoking from the time an aircraft begins enplaning...

  3. 14 CFR 252.11 - Aircraft on the ground.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.11 Aircraft on the ground. (a) Air carriers shall prohibit smoking whenever the aircraft is on the ground. (b) With respect to the restrictions on smoking described in § 252.5, foreign air carriers shall prohibit smoking from the time an aircraft begins enplaning...

  4. 14 CFR 252.11 - Aircraft on the ground.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.11 Aircraft on the ground. (a) Air carriers shall prohibit smoking whenever the aircraft is on the ground. (b) With respect to the restrictions on smoking described in § 252.5, foreign air carriers shall prohibit smoking from the time an aircraft begins enplaning...

  5. 14 CFR 252.11 - Aircraft on the ground.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.11 Aircraft on the ground. (a) Air carriers shall prohibit smoking whenever the aircraft is on the ground. (b) With respect to the restrictions on smoking described in § 252.5, foreign air carriers shall prohibit smoking from the time an aircraft begins enplaning...

  6. Review article: the use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management

    NASA Astrophysics Data System (ADS)

    Giordan, Daniele; Hayakawa, Yuichi; Nex, Francesco; Remondino, Fabio; Tarolli, Paolo

    2018-04-01

    The number of scientific studies that consider possible applications of remotely piloted aircraft systems (RPASs) for the management of natural hazards effects and the identification of occurred damages strongly increased in the last decade. Nowadays, in the scientific community, the use of these systems is not a novelty, but a deeper analysis of the literature shows a lack of codified complex methodologies that can be used not only for scientific experiments but also for normal codified emergency operations. RPASs can acquire on-demand ultra-high-resolution images that can be used for the identification of active processes such as landslides or volcanic activities but can also define the effects of earthquakes, wildfires and floods. In this paper, we present a review of published literature that describes experimental methodologies developed for the study and monitoring of natural hazards.

  7. Design Methods and Optimization for Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    Crossley, William A.

    2005-01-01

    This report provides a summary of accomplishments made during this research effort. The major accomplishments are in three areas. The first is the use of a multiobjective optimization strategy to help identify potential morphing features that uses an existing aircraft sizing code to predict the weight, size and performance of several fixed-geometry aircraft that are Pareto-optimal based upon on two competing aircraft performance objectives. The second area has been titled morphing as an independent variable and formulates the sizing of a morphing aircraft as an optimization problem in which the amount of geometric morphing for various aircraft parameters are included as design variables. This second effort consumed most of the overall effort on the project. The third area involved a more detailed sizing study of a commercial transport aircraft that would incorporate a morphing wing to possibly enable transatlantic point-to-point passenger service.

  8. Advanced technology for future regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  9. Identification, analysis and monitoring of risks of freezing affecting aircraft flying over the Guadarrama Mountains (Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-González, Sergio; Sánchez, José Luis; Gascón, Estíbaliz; Merino, Andrés; Hermida, Lucía; López, Laura; Marcos, José Luis; García-Ortega, Eduardo

    2014-05-01

    Freezing is one of the main causes of aircraft accidents registered over the last few decades. This means it is very important to be able to predict this situation so that aircraft can change their routes to avoid freezing risk areas. Also, by using satellites it is possible to observe changes in the horizontal and vertical extension of cloud cover likely to cause freezing in real time as well as microphysical changes in the clouds. The METEOSAT Second Generation (MSG) makes it possible to create different red-green-blue (RGB) compositions that provide a large amount of information associated with the microphysics of clouds, in order to identify super-cooled water clouds that pose a high risk of freezing to aircraft. During the winter of 2011/12 in the Guadarrama Mountains, in the centre of the Iberian Peninsula, a series of scientific flights (conducted by INTA) were organised in order to study the cloud systems that affected this region during the winter. On the flight of the 1st of February 2012, the aircraft was affected by freezing after crossing over a mountain ridge with supercooled large drops (SLD). Although freezing was not expected during that day's flight, the orography caused a series of mesoscale factors that led to the appearance of localised freezing conditions. By analysing this case, we have been able to conclude that the use of satellite images makes it possible to monitor the risk of freezing, especially under specific mesoscale circumstances. Acknowledgements S. Fernández-González acknowledges the grant supported from the FPU program (AP 2010-2093). This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22). The authors would like to thank the INTA for its scientific flights.

  10. The ACRIDICON-CHUVA observational study of tropical convective clouds and precipitation using the new German research aircraft HALO

    NASA Astrophysics Data System (ADS)

    Wendisch, Manfred; Pöschl, Ulrich; Andreae, Meinrat O.; Machado, Luiz A. T.; Albrecht, Rachel; Schlager, Hans; Rosenfeld, Daniel; Krämer, Martina

    2015-04-01

    An extensive airborne/ground-based measurement campaign to study tropical convective clouds is introduced. It was performed in Brazil with focus on the Amazon rainforest from 1 September to 4 October 2014. The project combined the joint German-Brazilian ACRIDICON (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) and CHUVA (Machado et al.2014) projects. ACRIDICON aimed at the quantification of aerosol-cloud-precipitation interactions and their thermodynamic, dynamic and radiative effects in convective cloud systems by in-situ aircraft observations and indirect measurements (aircraft, satellite, and ground-based). The ACRIDICON-CHUVA campaign was conducted in cooperation with the second Intensive Operational Phase (IOP) of the GOAmazon (Green Ocean Amazon) program. The focus in this presentation is on the airborne observations within ACRIDICON-CHUVA. The German HALO (High Altitude and Long-Range Research Aircraft) was based in Manaus (Amazonas State); it carried out 14 research flights (96 flight hours in total). HALO was equipped with remote sensing and in-situ instrumentation for meteorological, trace gas, aerosol, cloud, and precipitation measurements. Five mission objectives were pursued: (1) cloud vertical evolution (cloud profiling), (2) aerosol processing (inflow and outflow), (3) satellite validation, (4) vertical transport and mixing (tracer experiment), and (5) clouds over forested and deforested areas. The five cloud missions collected data in clean atmospheric conditions and in contrasting polluted (urban and biomass burning) environments.

  11. Ultra-Deep Drilling Cost Reduction; Design and Fabrication of an Ultra-Deep Drilling Simulator (UDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindstrom, Jason

    2010-01-31

    Ultra-deep drilling, below about 20,000 ft (6,096 m), is extremely expensive and limits the recovery of hydrocarbons at these depths. Unfortunately, rock breakage and cuttings removal under these conditions is not understood. To better understand and thus reduce cost at these conditions an ultra-deep single cutter drilling simulator (UDS) capable of drill cutter and mud tests to sustained pressure and temperature of 30,000 psi (207 MPa) and 482 °F (250 °C), respectively, was designed and manufactured at TerraTek, a Schlumberger company, in cooperation with the Department of Energy’s National Energy Technology Laboratory. UDS testing under ultra-deep drilling conditions offers anmore » economical alternative to high day rates and can prove or disprove the viability of a particular drilling technique or fluid to provide opportunity for future domestic energy needs.« less

  12. Development and ultra-structure of an ultra-thin silicone epidermis of bioengineered alternative tissue.

    PubMed

    Wessels, Quenton; Pretorius, Etheresia

    2015-08-01

    Burn wound care today has a primary objective of temporary or permanent wound closure. Commercially available engineered alternative tissues have become a valuable adjunct to the treatment of burn injuries. Their constituents can be biological, alloplastic or a combination of both. Here the authors describe the aspects of the development of a siloxane epidermis for a collagen-glycosaminoglycan and for nylon-based artificial skin replacement products. A method to fabricate an ultra-thin epidermal equivalent is described. Pores, to allow the escape of wound exudate, were punched and a tri-filament nylon mesh or collagen scaffold was imbedded and silicone polymerisation followed at 120°C for 5 minutes. The ultra-structure of these bilaminates was assessed through scanning electron microscopy. An ultra-thin biomedical grade siloxane film was reliably created through precision coating on a pre-treated polyethylene terephthalate carrier. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  13. A low-cost, ultra-fast and ultra-low noise preamplifier for silicon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Gasmi, Khaled

    2018-02-01

    An ultra-fast and ultra-low noise preamplifier for amplifying the fast and weak electrical signals generated by silicon avalanche photodiodes has been designed and developed. It is characterized by its simplicity, compactness, reliability and low cost of construction. A very wide bandwidth of 300 MHz, a very good linearity from 1 kHz to 280 MHz, an ultra-low noise level at the input of only 1.7 nV Hz-1/2 and a very good stability are its key features. The compact size (70 mm  ×  90 mm) and light weight (45 g), as well as its excellent characteristics, make this preamplifier very competitive compared to any commercial preamplifier. The preamplifier, which is a main part of the detection system of a homemade laser remote sensing system, has been successfully tested. In addition, it is versatile and can be used in any optical detection system requiring high speed and very low noise electronics.

  14. Detection flying aircraft from Landsat 8 OLI data

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Xia, L.; Kylling, A.; Li, R. Q.; Shang, H.; Xu, Ming

    2018-07-01

    Monitoring flying aircraft from satellite data is important for evaluating the climate impact caused by the global aviation industry. However, due to the small size of aircraft and the complex surface types, it is almost impossible to identify aircraft from satellite data with moderate resolution, e.g. 30 m. In this study, the 1.38 μm water vapor absorption channel, often used for cirrus cloud or ash detection, is for the first time used to monitor flying aircraft from Landsat 8 data. The basic theory behind the detection of flying aircraft is that in the 1.38 μm channel most of the background reflectance between the ground and the aircraft is masked due to the strong water vapor absorption, while the signal of the flying aircraft will be attenuated less due to the low water vapor content between the satellite and the aircraft. A new composition of the Laplacian and Sobel operators for segmenting aircraft and other features were used to identify the flying aircraft. The Landsat 8 Operational Land Imager (OLI) 2.1 μm channel was used to make the method succeed under low vapor content. The accuracy assessment based on 65 Landsat 8 images indicated that the percentage of leakage is 3.18% and the percentage of false alarm is 0.532%.

  15. 19 CFR 122.132 - Sealing of aircraft liquor kits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Sealing of aircraft liquor kits. 122.132 Section... OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.132 Sealing of aircraft liquor kits. (a) Sealing required. Aircraft liquor kits shall be sealed on board the aircraft by crewmembers...

  16. 19 CFR 122.132 - Sealing of aircraft liquor kits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Sealing of aircraft liquor kits. 122.132 Section... OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.132 Sealing of aircraft liquor kits. (a) Sealing required. Aircraft liquor kits shall be sealed on board the aircraft by crewmembers...

  17. 19 CFR 122.132 - Sealing of aircraft liquor kits.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Sealing of aircraft liquor kits. 122.132 Section... OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.132 Sealing of aircraft liquor kits. (a) Sealing required. Aircraft liquor kits shall be sealed on board the aircraft by crewmembers...

  18. 19 CFR 122.132 - Sealing of aircraft liquor kits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Sealing of aircraft liquor kits. 122.132 Section... OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.132 Sealing of aircraft liquor kits. (a) Sealing required. Aircraft liquor kits shall be sealed on board the aircraft by crewmembers...

  19. 19 CFR 122.132 - Sealing of aircraft liquor kits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Sealing of aircraft liquor kits. 122.132 Section... OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.132 Sealing of aircraft liquor kits. (a) Sealing required. Aircraft liquor kits shall be sealed on board the aircraft by crewmembers...

  20. Aircraft Accident Prevention: Loss-of-Control Analysis

    NASA Technical Reports Server (NTRS)

    Kwatny, Harry G.; Dongmo, Jean-Etienne T.; Chang, Bor-Chin; Bajpai, Guarav; Yasar, Murat; Belcastro, Christine M.

    2009-01-01

    The majority of fatal aircraft accidents are associated with loss-of-control . Yet the notion of loss-of-control is not well-defined in terms suitable for rigorous control systems analysis. Loss-of-control is generally associated with flight outside of the normal flight envelope, with nonlinear influences, and with an inability of the pilot to control the aircraft. The two primary sources of nonlinearity are the intrinsic nonlinear dynamics of the aircraft and the state and control constraints within which the aircraft must operate. In this paper we examine how these nonlinearities affect the ability to control the aircraft and how they may contribute to loss-of-control. Examples are provided using NASA s Generic Transport Model.

  1. Control of Next Generation Aircraft and Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  2. Review of Available L-Band and VHF Aircraft Antennas for an Aircraft-Satellite Communications Link

    DOT National Transportation Integrated Search

    1971-05-01

    One of the problmes encountered in designing an aircraft to use a satellite system for communications (and for surveillance and navigation) is that of finding a suitable aircraft antenna. There is, at present, no antenna which will satisfy all requir...

  3. Propulsion integration for military aircraft

    NASA Technical Reports Server (NTRS)

    Henderson, William P.

    1989-01-01

    The transonic aerodynamic characteristics for high-performance aircraft are significantly affected by shock-induced flow interactions as well as other local flow interference effects which usually occur at transonic speeds. These adverse interactions can not only cause high drag, but can cause unusual aerodynamic loadings and/or severe stability and control problems. Many new programs are underway to develop methods for reducing the adverse effects, as well as to develop an understanding of the basic flow conditions which are the primary contributors. It is anticipated that these new programs will result in technologies which can reduce the aircraft cruise drag through improved integration as well as increased aircraft maneuverability throughh the application of thrust vectoring. This paper will identify some of the primary propulsion integration problems for high performance aircraft at transonic speeds, and demonstrate several methods for reducing or eliminating the undesirable characteristics, while enhancing configuration effectiveness.

  4. Design of a spanloader cargo aircraft

    NASA Technical Reports Server (NTRS)

    1989-01-01

    With a growing demand for fast international freight service, the slow-moving cargo ships currently in use will soon find a substantial portion of their clients looking elsewhere. One candidate for filling this expected gap in the freight market is a span-loading aircraft (or 'flying wing') capable of long-range operation with extremely large payloads. This report summarizes the design features of an aircraft capable of fulfilling a long-haul, high-capacity cargo mission. The spanloader seeks to gain advantage over conventional aircraft by eliminating the aircraft fuselage and thus reducing empty weight. The primary disadvantage of this configuration is that the cargo-containing wing tends to be thick, thus posing a challenge to the airfoil designer. It also suffers from stability and control problems not encountered by conventional aircraft. The result is an interesting, challenging exercise in unconventional design. The report that follows is a student written synopsis of an effort judged to be the best of eight designs developed during the year 1988-1989.

  5. NASA progress in aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Raney, J. P.; Padula, S. L.; Zorumski, W. E.

    1981-01-01

    Langley Research Center efforts to develop a methodology for predicting the effective perceived noise level (EPNL) produced by jet-powered CTOL aircraft to an accuracy of + or - 1.5 dB are summarized with emphasis on the aircraft noise prediction program (ANOPP) which contains a complete set of prediction methods for CTOL aircraft including propulsion system noise sources, aerodynamic or airframe noise sources, forward speed effects, a layered atmospheric model with molecular absorption, ground impedance effects including excess ground attenuation, and a received noise contouring capability. The present state of ANOPP is described and its accuracy and applicability to the preliminary aircraft design process is assessed. Areas are indicated where further theoretical and experimental research on noise prediction are needed. Topics covered include the elements of the noise prediction problem which are incorporated in ANOPP, results of comparisons of ANOPP calculations with measured noise levels, and progress toward treating noise as a design constraint in aircraft system studies.

  6. Aircraft Energy Conservation during Airport Ground Operations

    DTIC Science & Technology

    1982-03-01

    minimized. The model can be run in a non -optimizing mode to simulate movements along pre-assigned taxi paths. 8-6 The model is also designed ...5.5 5.6 5.7 Engine Designation by Airline and Aircraft Type IAD 2-6 Engine Designation by Airline and Aircraft Type DCA 2-7 Fuel Flow Rates...B.2 CY 1979 Aircraft Operations at IAD and DCA Airports . . 3-5 B.3 1979 Scheduled and Non -Scheduled Departures from IAD by Aircraft Type and

  7. Review on the progress of ultra-precision machining technologies

    NASA Astrophysics Data System (ADS)

    Yuan, Julong; Lyu, Binghai; Hang, Wei; Deng, Qianfa

    2017-06-01

    Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the developments of ultra-precision machining technologies, especially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.

  8. Combat aircraft noise

    NASA Astrophysics Data System (ADS)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  9. Experimental validation of a true-scale morphing flap for large civil aircraft applications

    NASA Astrophysics Data System (ADS)

    Pecora, R.; Amoroso, F.; Arena, M.; Noviello, M. C.; Rea, F.

    2017-04-01

    Within the framework of the JTI-Clean Sky (CS) project, and during the first phase of the Low Noise Configuration Domain of the Green Regional Aircraft - Integrated Technological Demonstration (GRA-ITD, the preliminary design and technological demonstration of a novel wing flap architecture were addressed. Research activities were carried out to substantiate the feasibility of morphing concepts enabling flap camber variation in compliance with the demanding safety requirements applicable to the next generation green regional aircraft, 130- seats with open rotor configuration. The driving motivation for the investigation on such a technology was found in the opportunity to replace a conventional double slotted flap with a single slotted camber-morphing flap assuring similar high lift performances -in terms of maximum attainable lift coefficient and stall angle- while lowering emitted noise and system complexity. Studies and tests were limited to a portion of the flap element obtained by slicing the actual flap geometry with two cutting planes distant 0.8 meters along the wing span. Further activities were then addressed in order to increase the TRL of the validated architecture within the second phase of the CS-GRA. Relying upon the already assessed concept, an innovative and more advanced flap device was designed in order to enable two different morphing modes on the basis of the A/C flight condition / flap setting: Mode1, Overall camber morphing to enhance high-lift performances during take-off and landing (flap deployed); Mode2, Tab-like morphing mode. Upwards and downwards deflection of the flap tip during cruise (flap stowed) for load control at high speed. A true-scale segment of the outer wing flap (4 meters span with a mean chord of 0.9 meters) was selected as investigation domain for the new architecture in order to duly face the challenges posed by real wing installation. Advanced and innovative solutions for the adaptive structure, actuation and control

  10. Green Power Partnership 100 Green Power Users

    EPA Pesticide Factsheets

    EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. Partners on this list use green power to meet 100 of their U.S. organization-wide electricity use.

  11. Computationally-Efficient Minimum-Time Aircraft Routes in the Presence of Winds

    NASA Technical Reports Server (NTRS)

    Jardin, Matthew R.

    2004-01-01

    A computationally efficient algorithm for minimizing the flight time of an aircraft in a variable wind field has been invented. The algorithm, referred to as Neighboring Optimal Wind Routing (NOWR), is based upon neighboring-optimal-control (NOC) concepts and achieves minimum-time paths by adjusting aircraft heading according to wind conditions at an arbitrary number of wind measurement points along the flight route. The NOWR algorithm may either be used in a fast-time mode to compute minimum- time routes prior to flight, or may be used in a feedback mode to adjust aircraft heading in real-time. By traveling minimum-time routes instead of direct great-circle (direct) routes, flights across the United States can save an average of about 7 minutes, and as much as one hour of flight time during periods of strong jet-stream winds. The neighboring optimal routes computed via the NOWR technique have been shown to be within 1.5 percent of the absolute minimum-time routes for flights across the continental United States. On a typical 450-MHz Sun Ultra workstation, the NOWR algorithm produces complete minimum-time routes in less than 40 milliseconds. This corresponds to a rate of 25 optimal routes per second. The closest comparable optimization technique runs approximately 10 times slower. Airlines currently use various trial-and-error search techniques to determine which of a set of commonly traveled routes will minimize flight time. These algorithms are too computationally expensive for use in real-time systems, or in systems where many optimal routes need to be computed in a short amount of time. Instead of operating in real-time, airlines will typically plan a trajectory several hours in advance using wind forecasts. If winds change significantly from forecasts, the resulting flights will no longer be minimum-time. The need for a computationally efficient wind-optimal routing algorithm is even greater in the case of new air-traffic-control automation concepts. For air

  12. 48 CFR 908.7102 - Aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Aircraft. 908.7102 Section 908.7102 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7102 Aircraft. Acquisition of...

  13. Design definition study of NASA/Navy lift/cruise fan V/STOL aircraft. Volume 1: Summary report of Navy multimission aircraft

    NASA Technical Reports Server (NTRS)

    Cavage, R. L.

    1975-01-01

    Results are presented of a study of lift-cruise fan V/STOL aircraft for the 1980-1985 time period. Technical and operating characteristics and technology requirements for the ultimate development of this type aircraft are identified. Aircraft individually optimized to perform the antisubmarine warfare, carrier onboard delivery, combat search and rescue, and surveillance and surface attack missions are considered along with a multi-purpose aircraft concept capable of performing all five missions at minimum total program cost. It is shown that lighter and smaller aircraft could be obtained by optimizing the design and fan selection for specific missions.

  14. Aircraft photovoltaic power-generating system

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet-engine design modifications incorporating this concept not only save weight (and thus fuel), but are - in themselves - favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project.

  15. NASA Aircraft Controls Research, 1983

    NASA Technical Reports Server (NTRS)

    Beasley, G. P. (Compiler)

    1984-01-01

    The workshop consisted of 24 technical presentations on various aspects of aircraft controls, ranging from the theoretical development of control laws to the evaluation of new controls technology in flight test vehicles. A special report on the status of foreign aircraft technology and a panel session with seven representatives from organizations which use aircraft controls technology were also included. The controls research needs and opportunities for the future as well as the role envisioned for NASA in that research were addressed. Input from the panel and response to the workshop presentations will be used by NASA in developing future programs.

  16. Aircraft radial-belted tire evaluation

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Stubbs, Sandy M.; Davis, Pamela A.

    1990-01-01

    An overview is given of the ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program being conducted at NASA Langley's Aircraft Landing Dynamics Facility (ALDF). The START Program involves tests using three different tire sizes to evaluate tire rolling resistance, braking, and cornering performance throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Preliminary results from recent 40 x 14 size bias-ply, radial-belted, and H-type aircraft tire tests are discussed. The paper concludes with a summary of the current program status and planned ALDF test schedule.

  17. Consumption of ultra-processed foods predicts diet quality in Canada.

    PubMed

    Moubarac, Jean-Claude; Batal, M; Louzada, M L; Martinez Steele, E; Monteiro, C A

    2017-01-01

    This study describes food consumption patterns in Canada according to the types of food processing using the Nova classification and investigates the association between consumption of ultra-processed foods and the nutrient profile of the diet. Dietary intakes of 33,694 individuals from the 2004 Canadian Community Health Survey aged 2 years and above were analyzed. Food and drinks were classified using Nova into unprocessed or minimally processed foods, processed culinary ingredients, processed foods and ultra-processed foods. Average consumption (total daily energy intake) and relative consumption (% of total energy intake) provided by each of the food groups were calculated. Consumption of ultra-processed foods according to sex, age, education, residential location and relative family revenue was assessed. Mean nutrient content of ultra-processed foods and non-ultra-processed foods were compared, and the average nutrient content of the overall diet across quintiles of dietary share of ultra-processed foods was measured. In 2004, 48% of calories consumed by Canadians came from ultra-processed foods. Consumption of such foods was high amongst all socioeconomic groups, and particularly in children and adolescents. As a group, ultra-processed foods were grossly nutritionally inferior to non-ultra-processed foods. After adjusting for covariates, a significant and positive relationship was found between the dietary share of ultra-processed foods and the content in carbohydrates, free sugars, total and saturated fats and energy density, while an inverse relationship was observed with the dietary content in protein, fiber, vitamins A, C, D, B6 and B12, niacin, thiamine, riboflavin, as well as zinc, iron, magnesium, calcium, phosphorus and potassium. Lowering the dietary share of ultra-processed foods and raising consumption of hand-made meals from unprocessed or minimally processed foods would substantially improve the diet quality of Canadian. Copyright © 2016

  18. Human-centered aircraft automation: A concept and guidelines

    NASA Technical Reports Server (NTRS)

    Billings, Charles E.

    1991-01-01

    Aircraft automation is examined and its effects on flight crews. Generic guidelines are proposed for the design and use of automation in transport aircraft, in the hope of stimulating increased and more effective dialogue among designers of automated cockpits, purchasers of automated aircraft, and the pilots who must fly those aircraft in line operations. The goal is to explore the means whereby automation may be a maximally effective tool or resource for pilots without compromising human authority and with an increase in system safety. After definition of the domain of the aircraft pilot and brief discussion of the history of aircraft automation, a concept of human centered automation is presented and discussed. Automated devices are categorized as a control automation, information automation, and management automation. The environment and context of aircraft automation are then considered, followed by thoughts on the likely future of automation of that category.

  19. Transport aircraft accident dynamics

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1982-01-01

    A study was carried out of 112 impact survivable jet transport aircraft accidents (world wide) of 27,700 kg (60,000 lb.) aircraft and up extending over the last 20 years. This study centered on the effect of impact and the follow-on events on aircraft structures and was confined to the approach, landing and takeoff segments of the flight. The significant characteristics, frequency of occurrence and the effect on the occupants of the above data base were studied and categorized with a view to establishing typical impact scenarios for use as a basis of verifying the effectiveness of potential safety concepts. Studies were also carried out of related subjects such as: (1) assessment of advanced materials; (2) human tolerance to impact; (3) merit functions for safety concepts; and (4) impact analysis and test methods.

  20. Small Aircraft RF Interference Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to more meaningful interference risk assessment.