Study on creep of fiber reinforced ultra-high strength concrete based on strength
NASA Astrophysics Data System (ADS)
Peng, Wenjun; Wang, Tao
2018-04-01
To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).
Sohn, Seok Su; Song, Hyejin; Jo, Min Chul; Song, Taejin; Kim, Hyoung Seop; Lee, Sunghak
2017-04-28
Needs for steel designs of ultra-high strength and excellent ductility have been an important issue in worldwide automotive industries to achieve energy conservation, improvement of safety, and crashworthiness qualities. Because of various drawbacks in existing 1.5-GPa-grade steels, new development of formable cold-rolled ultra-high-strength steels is essentially needed. Here we show a plausible method to achieve ultra-high strengths of 1.0~1.5 GPa together with excellent ductility above 50% by actively utilizing non-recrystallization region and TRansformation-Induced Plasticity (TRIP) mechanism in a cold-rolled and annealed Fe-Mn-Al-C-based steel. We adopt a duplex microstructure composed of austenite and ultra-fine ferrite in order to overcome low-yield-strength characteristics of austenite. Persistent elongation up to 50% as well as ultra-high yield strength over 1.4 GPa are attributed to well-balanced mechanical stability of non-crystallized austenite with critical strain for TRIP. Our results demonstrate how the non-recrystallized austenite can be a metamorphosis in 1.5-GPa-grade steel sheet design.
DOT National Transportation Integrated Search
2017-08-01
The remarkable features of ultra-high performance concrete (UHPC) have been reported. Its application in bridge construction has been an active research area in recent years, attributed to its higher compressive strength, higher ductility and reduced...
Laser beam welding of new ultra-high strength and supra-ductile steels
NASA Astrophysics Data System (ADS)
Dahmen, Martin
2015-03-01
Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.
DOT National Transportation Integrated Search
2008-10-22
Ultra High Performance Concrete (UHPC) is a class of cementitious materials that share similar characteristics including very large compressive strengths, tensile strength greater than conventional concrete and high durability. The material consists ...
[Methodological aspects of functional neuroimaging at high field strength: a critical review].
Scheef, L; Landsberg, M W; Boecker, H
2007-09-01
The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications.
NASA Astrophysics Data System (ADS)
Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping
2018-05-01
The editors and authors have retracted the article, "Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys" by Yong Liu, Shenghang Xu, Xin Wang, Kaiyang Li, Bin Liu, Hong Wu, and Huiping Tang (https://doi.org/10.1007/s11837-015-1801-1).
NASA Astrophysics Data System (ADS)
Guo, Wei; Li, Lin; Dong, Shiyun; Crowther, Dave; Thompson, Alan
2017-04-01
The microstructural characteristics and mechanical properties, including micro-hardness, tensile properties, three-point bending properties and Charpy impact toughness at different test temperatures of 8 mm thick S960 high strength steel plates were investigated following their joining by multi-pass ultra-narrow gap laser welding (NGLW) and gas metal arc welding (GMAW) techniques. It was found that the microstructure in the fusion zone (FZ) for the ultra-NGLW joint was predominantly martensite mixed with some tempered martensite, while the FZ for the GMAW joint was mainly consisted of ferrite with some martensite. The strength of the ultra-NGLW specimens was comparable to that of the base material (BM), with all welded specimens failed in the BM in the tensile tests. The tensile strength of the GMAW specimens was reduced approximately by 100 MPa when compared with the base material by a broad and soft heat affected zone (HAZ) with failure located in the soft HAZ. Both the ultra-NGLW and GMAW specimens performed well in three-point bending tests. The GMAW joints exhibited better impact toughness than the ultra-NGLW joints.
Improvement of formability of high strength steel sheets in shrink flanging
NASA Astrophysics Data System (ADS)
Hamedon, Z.; Abe, Y.; Mori, K.
2016-02-01
In the shrinkage flanging, the wrinkling tends to occur due to compressive stress. The wrinkling will cause a difficulty in assembling parts, and severe wrinkling may leads to rupture of parts. The shrinkage flange of the ultra-high strength steel sheets not only defects the product by the occurrence of the wrinkling but also causes seizure and wear of the dies and shortens the life of dies. In the present study, a shape of a punch having gradual contact was optimized in order to prevent the wrinkling in shrinkage flanging of ultra-high strength steel sheets. The sheet was gradually bent from the corner of the sheet to reduce the compressive stress. The wrinkling in the shrink flanging of the ultra-high strength steel sheets was prevented by the punch having gradual contact. It was found that the punch having gradual contact is effective in preventing the occurrence of wrinkling in the shrinkage flanging.
Singh, Alok
2014-01-01
The occurrence of a stable icosahedral (i-) phase, which is quasicrystalline with an icosahedral (fivefold) symmetry, on the equilibrium phase diagram of Mg–Zn–RE (RE = Y, Gd, Tb, Dy, Ho or Er) alloys opened up an interesting possibility of developing a new series of magnesium alloys for structural applications. Alloys based on the i-phase have been studied for the past 14 years. Ultra-high strengths combined with good ductility have been shown. Here we show two strategies for tailoring microstructures for very high strengths in Mg–Zn–Y alloys. One of them involves strengthening by a fine distribution of rod-like precipitates, where the matrix grain size is not critical. The alloy is solutionized at a high temperature of 480 °C to dissolve a large part of the i-phase, followed by a high temperature extrusion (∼430 °C) and a low temperature ageing to reprecipitate phases with fine size distribution. At first, phase transformations involved in this procedure are described. The closeness of the structure of the precipitates to the i-phase is brought out. By this procedure, tensile yield strengths of over 370 MPa are obtained in grain sizes of 20 μm. In another strategy, the alloys are chill cast and then extruded at low temperatures of about 250 °C. Ultra-fine grains are produced by enhanced recrystallization due to presence of the i-phase. At the same time nano-sized precipitates are precipitated dynamically during extrusion from the supersaturated matrix. Ultra-high tensile strengths of up to 400 MPa are obtained in combination with ductility of 12 to 16%. Analysis of the microstructure shows that strengthening by the i-phase occurs by enhanced recrystallization during extrusion. It produces ultra-fine grain sizes to give very high strengths, and moderate texture for good ductility. Fine distribution of the i-phase and precipitates contribute to strengthening and provide microstructre stability. Ultra-high strength over a very wide range of grain sizes is thus demonstrated, by utilizing different strengthening effects. PMID:27877701
Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions
NASA Astrophysics Data System (ADS)
Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.
2017-04-01
Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.
Bond behavior of reinforcing steel in ultra-high performance concrete.
DOT National Transportation Integrated Search
2014-10-01
Ultra-High Performance Concrete (UHPC) is a relatively new class of advanced cementitious composite : materials, which exhibits high compressive [above 21.7 ksi (150 MPa)] and tensile [above 0.72 ksi (5 MPa)] : strengths. The discrete steel fiber rei...
Application of ultra-high performance concrete to bridge girders.
DOT National Transportation Integrated Search
2009-02-01
"Ultra-High Performance Concrete (UHPC) is a new class of concrete that has superior performance characteristics : compared to conventional concrete. The enhanced strength and durability properties of UHPC are mainly due to optimized : particle grada...
Simultaneous structural and environmental loading of an ultra-high performance concrete component
DOT National Transportation Integrated Search
2010-07-01
Ultra-high performance concrete (UHPC) is an advanced cementitious composite material which tends to exhibit superior properties such as increased durability, strength, and long-term stability. This experimental investigation focused on the flexural ...
Effect of Nb on Delayed Fracture Resistance of Ultra-High Strength Martensitic Steels
NASA Astrophysics Data System (ADS)
Song, Rongjie; Fonstein, Nina; Pottore, Narayan; Jun, Hyun Jo; Bhattacharya, Debanshu; Jansto, Steve
Ultra-high strength steels are materials of considerable interest for automotive and structural applications and are increasingly being used in those areas. Higher strength, however, makes steels more prone to hydrogen embrittlement (HE). The effects of Nb and other alloying elements on the hydrogen-induced delayed fracture resistance of cold rolled martensitic steels with ultra-high strength 2000 MPa were studied using an acid immersion test, thermal desorption analysis (TDA) and measuring of permeation. The microstructure was characterized by high resolution field emission Scanning Electron Microscopy (SEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). It was shown that the combined addition of Nb significantly improved the delayed fracture resistance of investigated steel. The addition of Nb to alloyed martensitic steels resulted in very apparent grain refinement of the prior austenite grain size. The Nb microalloyed steel contained a lower diffusible hydrogen content during thermal desorption analysis as compared to the base steel and had a higher trapped hydrogen amount after charging. The reason that Nb improved the delayed fracture resistance of steels can be attributed mostly to both hydrogen trapping and grain refinement.
A Novel Method for Electroplating Ultra-High-Strength Glassy Metals
NASA Technical Reports Server (NTRS)
Ramsey, Brian; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)
2002-01-01
A novel method for electroplating ultra-high-strength glassy metals, nickel-phosphorous and nickel-cobalt-phosphorous, has been developed at NASA Marshall Space Flight Center, cooperatively with the University of Alabama in Huntsville. Traditionally, thin coatings of these metals are achieved via electroless deposition. Benefits of the new electrolytic process include thick, low-stress deposits, free standing shapes, lower plating temperature, low maintenance, and safer operation with substantially lower cost.
Development of Non-Proprietary Ultra-High Performance Concrete : Final Report
DOT National Transportation Integrated Search
2017-12-01
Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Particularly, UHPC has compressive and post-cracking tensile strengths of around 20 ksi and 0.72 ksi, respectively. Thus, ...
Development of a Family of Ultra-High Performance Concrete Pi-Girders
DOT National Transportation Integrated Search
2014-01-01
Ultra-high performance concrete (UHPC) is an advanced cementitious composite material, which tends to exhibit superior properties such as exceptional durability, increased strength, and long-term stability. (See references 1-4.) The use of existing s...
Ultra-high performance concrete for Michigan bridges, material performance : phase I.
DOT National Transportation Integrated Search
2008-10-13
One of the latest advancements in concrete technology is Ultra-High Performance Concrete (UHPC). UHPC is : defined as concretes attaining compressive strengths exceeding 25 ksi (175 MPa). It is a fiber-reinforced, denselypacked : concrete material wh...
NASA Astrophysics Data System (ADS)
Smarzewski, Piotr
2017-10-01
This study has investigated the effect of curing period on the mechanical properties of straight polypropylene and hooked-end steel fibre reinforced ultra-high performance concrete (UHPC). Various physical properties are evaluated, i.e. absorbability, apparent density and open porosity. Compressive strength, tensile splitting strength, flexural strength and modulus of elasticity were determined at 28, 56 and 730 days. Comparative strength development of fibre reinforced mixes at 0.5%, 1%, 1.5% and 2% by volume fractions in relation to the mix without fibres was observed. Good correlations between the compressive strength and the modulus of elasticity are established. Steel and polypropylene fibres significantly increased the compressive strength, tensile splitting strength, flexural strength and modulus of elasticity of UHPC after two years curing period when fibre content volume was at least 1%. It seems that steel fibre reinforced UHPC has better properties than the polypropylene fibre reinforced UHPC.
Development of Non-Proprietary Ultra High Performance Concrete : Final Presentation : November, 2017
DOT National Transportation Integrated Search
2017-11-01
Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Particularly, UHPC has compressive and post-cracking tensile strengths of around 20 ksi and 0.72 ksi, respectively. Thus, ...
NASA Astrophysics Data System (ADS)
Sun, Min; Xiao, Kui; Dong, Chaofang; Li, Xiaogang; Zhong, Ping
2013-10-01
Because Cr9Ni5MoCo14 is a new ultra-high-strength corrosion-resistant steel, it is important to study its corrosion behavior in sulfuric acid solution, which is used to simulate the aggressive environment. The effect of pH on the electrochemical and semiconducting properties of passive films formed on ultra-high-strength corrosion-resistant steel in sulfuric acid solution was investigated by means of the potentiodynamic polarization technique, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results indicated that Cr9Ni5MoCo14 steel showed a passive state in acid solutions. The corrosion behavior of this Cr9Ni5MoCo14 alloy was influenced by the passive film formed on the surface, including thickness, stability, and partitioning of elements of the passive film. The passive current density decreases with increasing pH, and the corrosion resistance was enhanced by the increasing thickness and depletion of the defects within the passive film. Moreover, an enrichment of chromium (primarily the oxides of Cr) and depletion of iron in the passive film led to improved corrosion resistance. These results can provide a theoretical basis for use of this alloy and further development of ultra-high-strength corrosion-resistant steel in today's society.
High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T.
Nassirpour, Sahar; Chang, Paul; Henning, Anke
2018-03-01
Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths, MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution and loss of SNR due to T 2 relaxation effects) and presents the first metabolite maps acquired at 9.4T in the healthy human brain at both high (voxel size of 97.6µL) and ultra-high (voxel size of 24.4µL) spatial resolutions in a scan time of 11 and 46min respectively. In comparison to lower field strengths, more anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-aminobutyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the methodology behind these maps is provided. Copyright © 2016 Elsevier Inc. All rights reserved.
Control of Hydrogen Environment Embrittlement of Ultra-High Strength Steel for Naval Application
2005-07-01
load cracking behavior of maraging steels in hydrogen. Corrosion , 29, 1973, 299-304. D.A. Jones, A.F. Jankowski and G.A. Davidson, "Diffusion of...short crack case. This behavior is relevant to small surface cracks in coated UHSS components such as a landing gear. IV.B. Effect of Steel Composition ...PRESSURE (k N /m 2) Figure 26. The effect of H2 pressure on the HEAC growth rate for a ultra-high strength 18Ni Maraging steel stressed in a highly
Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W
2017-11-10
Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Y.; Chiba, M.; Yasuda, O.
2006-07-12
Detection possibility of ultra high-energy (UHE) neutrino (E >1015 eV) in natural huge rock salt formation has been studied. Collision between the UHE neutrino and the rock salt produces electromagnetic (EM) shower. Charge difference (excess electrons) between electrons and positrons in EM shower radiates radio wave coherently (Askar'yan effect). Angular distribution and frequency spectrum of electric field strength of radio wave radiated from 3-dimensional EM shower in rock salt are presented.
DOT National Transportation Integrated Search
2010-07-01
UHPC is an emerging material technology in which concrete develops very high : compressive strengths and exhibits improved tensile strength and toughness. A : comprehensive literature and historical application review was completed to determine the :...
The Bendability of Ultra High strength Steels
NASA Astrophysics Data System (ADS)
Hazra, S. K.; Efthymiadis, P.; Alamoudi, A.; Kumar, R. L. V.; Shollock, B.; Dashwood, R.
2016-08-01
Automotive manufacturers have been reducing the weight of their vehicles to meet increasingly stringent environmental legislation that reflects public demand. A strategy is to use higher strength materials for parts with reduced cross-sections. However, such materials are less formable than traditional grades. The frequent result is increased processing and piece costs. 3D roll forming is a novel and flexible process: it is estimated that a quarter of the structure of a vehicle can be made with a single set of tooling. Unlike stamping, this process requires material with low work hardening rates. In this paper, we present results of ultra high strength steels that have low elongation in a tension but display high formability in bending through the suppression of the necking response.
NASA Astrophysics Data System (ADS)
Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk
The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.
NASA Astrophysics Data System (ADS)
Lande Larsen, Ingrid; Granseth Aasbakken, Ida; O'Born, Reyn; Vertes, Katalin; Terje Thorstensen, Rein
2017-10-01
Ultra High Performance Concrete (UHPC) is a material that is attracting attention in the construction industry due to the high mechanical strength and durability, leading to structures having low maintenance requirements. The production of UHPC, however, has generally higher environmental impact than normal strength concrete due to the increased demand of cement required in the concrete mix. What is still not sufficiently investigated, is if the longer lifetime, slimmer construction and lower maintenance requirements lead to a net environmental benefit compared to standard concrete bridge design. This study utilizes life cycle assessment (LCA) to determine the lifetime impacts of two comparable highway crossing footbridges spanning 40 meters, designed respectively with UHPC and normal strength concrete. The results of the study show that UHPC is an effective material for reducing lifetime emissions from construction and maintenance of long lasting infrastructure, as the UHPC design outperforms the normal strength concrete bridge in most impact categories.
NASA Astrophysics Data System (ADS)
Tahir, Abdul Fattah Mohd; Aqida, Syarifah Nur
2017-07-01
In hot press forming, changes of mechanical properties in boron steel blanks have been a setback in trimming the final shape components. This paper presents investigation of kerf width and heat affected zone (HAZ) of ultra high strength 22MnB5 steel cutting. Sample cutting was conducted using a 4 kW Carbon Dioxide (CO2) laser machine with 10.6 μm wavelength with the laser spot size of 0.2 mm. A response surface methodology (RSM) using three level Box-Behnken design of experiment was developed with three factors of peak power, cutting speed and duty cycle. The parameters were optimised for minimum kerf width and HAZ formation. Optical evaluation using MITUTOYO TM 505 were conducted to measure the kerf width and HAZ region. From the findings, laser duty cycle was crucial to determine cutting quality of ultra-high strength steel; followed by cutting speed and laser power. Meanwhile, low power intensity with continuous wave contributes the narrowest kerf width formation and least HAZ region.
Ultra-low Temperature Curable Conductive Silver Adhesive with different Resin Matrix
NASA Astrophysics Data System (ADS)
Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Li, Xing; Qin, Lei
2018-03-01
The ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conductive treatment of piezoelectric composite material due to the low thermal resistance of composite material and low adhesion strength of adhesive. An ultra-low temperature curable conductive adhesive with high adhesion strength was obtained for the applications of piezoelectric composite material. The microstructure, conductive properties and adhesive properties with different resin matrix were investigated. The conductive adhesive with AG-80 as the resin matrix has the shorter curing time (20min), lower curing temperature (90°C) and higher adhesion strength (7.6MPa). The resistivity of AG-80 sample has the lower value (2.13 × 10-4Ω·cm) than the 618 sample (4.44 × 10-4Ω·cm).
DOT National Transportation Integrated Search
2017-03-01
Joints are often considered as the weak link in a structure and often deterioration of the structure initiates from the : joints. Joints transfer the stresses from super-structure to sub-structure and in this process are subjected to large : transfer...
Wang, Liwei; Huang, Xingyi; Zhu, Yingke; Jiang, Pingkai
2018-02-14
Introducing a high dielectric constant (high-k) nanofiller into a dielectric polymer is the most common way to achieve flexible nanocomposites for electrostatic energy storage devices. However, the significant decrease of breakdown strength and large increase of dielectric loss has long been known as the bottleneck restricting the enhancement of practical energy storage capability of the nanocomposites. In this study, by introducing ultra-small platinum (<2 nm) nanoparticles, high-k polymer nanocomposites with high breakdown strength and low dielectric loss were prepared successfully. Core-shell structured polydopamine@BaTiO 3 (PDA@BT) and core-satellite ultra-small platinum decorated PDA@BT (Pt@PDA@BT) were used as nanofillers. Compared with PDA@BT nanocomposites, the maximum discharged energy density of the Pt@PDA@BT nanocomposites is increased by nearly 70% because of the improved energy storage efficiency. This research provides a simple, promising and unique way to enhance energy storage capability of high-k polymer nanocomposites.
Vanadium Microalloyed High Strength Martensitic Steel Sheet for Hot-Dip Coating
NASA Astrophysics Data System (ADS)
Hutchinson, Bevis; Komenda, Jacek; Martin, David
Cold rolled steels with various vanadium and nitrogen levels have been treated to simulate the application of galvanizing and galvannealing to hardened martensitic microstructures. Strength levels were raised 100-150MPa by alloying with vanadium, which mitigates the effect of tempering. This opens the way for new ultra-high strength steels with corrosion resistant coatings produced by hot dip galvanising.
Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho
2005-08-12
We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Dongyong; Liu, Wenquan; Ying, Liang, E-mail: pinghu@dlut.edu.cn
The hot stamping of boron steels is widely used to produce ultra high strength automobile components without any spring back. The ultra high strength of final products is attributed to the fully martensitic microstructure that is obtained through the simultaneous forming and quenching of the hot blanks after austenization. In the present study, a mathematical model incorporating both heat transfer and the transformation of austenite is presented. A FORTRAN program based on finite element technique has been developed which permits the temperature distribution and microstructure evolution of high strength steel during hot stamping process. Two empirical diffusion-dependent transformation models undermore » isothermal conditions were employed respectively, and the prediction capability on mechanical properties of the models were compared with the hot stamping experiment of an automobile B-pillar part.« less
On Gravitational Radiation: A Nonlinear Wave Theory in a Viscoelastic Kerr-Lambda Spacetime
NASA Astrophysics Data System (ADS)
Gamble, Ronald
This project presents the experimental results concerning the mix design, fresh and hardened properties of an ultra-high strength concrete that has already been developed for high performance construction applications but now needs to be evaluated for a 3D printing process. The concrete is designed to be extruded through a nozzle and pump system, and have layers printed to analyze deformation within printed layers. The key factors for printable concrete are, the ability to be extruded through a pump and nozzle (flowability) and buildability. The flow of mortar will be studied by looking at the rheological properties of the mix and assessing the acceptable range of shear strength. Three different water to cement ratios and varying dosages of superplasticizers were incorporated to optimize a workable mortar/concrete mix to be applied for 3D printing. A Brookfield DV-III Ultra programmable rheometer was used to determine the viscosity and yield strength of the mortar mixes; these values were used to calculate the shear strength of the printable concrete. Compressive strengths of optimal mixtures were taken to assess the feasibility of 3D printed concrete as compared to traditional means. Compression test was conducted on a High Capacity Series Compression Testing Machine with 2" x 2" mortars cubes. The results indicated that the mortars that have shear ranges between of 0.3 - 0.9 kPa could be used in a 3D printer. The compressive strength of the concrete made with a 25% water/cement ratio and 10% superplasticizer dosage reached 62.8 MPa, which qualifies it as ultrahigh strength mortar. An optimum mix will be validated by printing the most filaments until deformation occurs. The end goal of this project is to develop an optimal concrete to produce the strength needed for 3D printed concrete. Using our predesigned ultra-high strength concrete mix ingredients, we will optimize that mix to have the same performance characteristics and be used in 3D printing applications.
Fatigue Properties of the Ultra-High Strength Steel TM210A
Kang, Xia; Zhao, Gui-ping
2017-01-01
This paper presents the results of an experiment to investigate the high cycle fatigue properties of the ultra-high strength steel TM210A. A constant amplitude rotating bending fatigue experiment was performed at room temperature at stress ratio R = −1. In order to evaluate the notch effect, the fatigue experiment was carried out upon two sets of specimens, smooth and notched, respectively. In the experiment, the rotating bending fatigue life was tested using the group method, and the rotating bending fatigue limit was tested using the staircase method at 1 × 107 cycles. A double weighted least square method was then used to fit the stress-life (S–N) curve. The S–N curves of the two sets of specimens were obtained and the morphologies of the fractures of the two sets of specimens were observed with scanning electron microscopy (SEM). The results showed that the fatigue limit of the smooth specimen for rotating bending fatigue was 615 MPa; the ratio of the fatigue limit to tensile strength was 0.29, and the cracks initiated at the surface of the smooth specimen; while the fatigue limit of the notched specimen for rotating bending fatigue was 363 MPa, and the cracks initiated at the edge of the notch. The fatigue notch sensitivity index of the ultra-high strength maraging steel TM210A was 0.69. PMID:28891934
NASA Astrophysics Data System (ADS)
Sumiya, H.; Hamaki, K.; Harano, K.
2018-05-01
Ultra-hard and high-strength spherical indenters with high precision and sphericity were successfully prepared from nanopolycrystalline diamond (NPD) synthesized by direct conversion sintering from graphite under high pressure and high temperature. It was shown that highly accurate and stable microfracture strength tests can be performed on various super-hard diamond materials by using the NPD spherical indenters. It was also verified that this technique enables quantitative evaluation of the strength characteristics of single crystal diamonds and NPDs which have been quite difficult to evaluate.
Kuroda, Yutaka; Akiyama, Haruhiko; Nankaku, Manabu; So, Kazutaka; Matsuda, Shuichi
2015-07-01
A lateral approach is common in total hip arthroplasty because of the good exposure it provides and its low complication rates. However, a drawback of the procedure is that the abductor mechanism is damaged when the tendinous insertion of the abductor muscle is split. Here, we describe a wafer technique using ultra-high-molecular-weight polyethylene tape for promising reattachment of the abductor mechanism. We retrospectively evaluated 120 consecutive primary total hip arthroplasties performed using a modified Mostardi approach, which involved reattaching the trochanter using either a braided polyester suture (polyester suture group, n = 60) or ultra-high-molecular-weight polyethylene tape (UHMWPE tape group, n = 60). The osteotomized fragment was reattached by inducing bone-to-bone contact using 3-mm-wide tapes that were precisely tied with a double-loop sliding knot in conjunction with a cable gun tensioner. The abductor strength and radiographic union rate were postoperatively assessed at 4 weeks and 6 months, respectively. A statistically significant lower incidence of nonunion and cutout was observed in the UHMWPE group (0 and 5.0 %, respectively) compared to the polyester suture group (8.3 and 15 %, respectively). No differences in abductor strength either preoperatively or at 4 weeks postoperatively were observed between the groups. In radiographically healed patients, abductor strength at 4 weeks post-surgery exceeded preoperative strength. The recovery rate of hip abductor strength was 109.9 ± 34.3 % in union patients and 92.9 ± 23.3 % in nonunion patients, which was statistically significant. The mean Japanese Orthopedic Association hip scores improved from 48.6 to 86.8 in union patients and from 50.3 to 85.9 in nonunion patients at 1 year postoperatively; however, this difference was not significant. The modified Mostardi approach using ultra-high molecular weight polyethylene tape can promote successful union of the osteotomized fragment.
A Model for Determining Strength for Embedded Elliptical Crack in Ultra-high-temperature Ceramics
Wang, Ruzhuan; Li, Weiguo
2015-01-01
A fracture strength model applied at room temperature for embedded elliptical crack in brittle solid was obtained. With further research on the effects of various physical mechanisms on material strength, a thermo-damage strength model for ultra-high-temperature ceramics was applied to each temperature phase. Fracture strength of TiC and the changing trends with elliptical crack shape variations under different temperatures were studied. The study showed that under low temperature, the strength is sensitive to the crack shape variation; as the temperature increases, the sensitivities become smaller. The size of ellipse’s minor axes has great effect on the material strength when the ratio of ellipse’s minor and major axes is lower than 0.5, even under relatively high temperatures. The effect of the minor axes of added particle on material properties thus should be considered under this condition. As the crack area is set, the fracture strength decreases firstly and then increases with the increase of ratio of ellipse’s minor and major axes, and the turning point is 0.5. It suggests that for the added particles the ratio of ellipse’s minor and major axes should not be 0.5. All conclusions significantly coincided with the results obtained by using the finite element software ABAQUS. PMID:28793488
A Model for Determining Strength for Embedded Elliptical Crack in Ultra-high-temperature Ceramics.
Wang, Ruzhuan; Li, Weiguo
2015-08-05
A fracture strength model applied at room temperature for embedded elliptical crack in brittle solid was obtained. With further research on the effects of various physical mechanisms on material strength, a thermo-damage strength model for ultra-high-temperature ceramics was applied to each temperature phase. Fracture strength of TiC and the changing trends with elliptical crack shape variations under different temperatures were studied. The study showed that under low temperature, the strength is sensitive to the crack shape variation; as the temperature increases, the sensitivities become smaller. The size of ellipse's minor axes has great effect on the material strength when the ratio of ellipse's minor and major axes is lower than 0.5, even under relatively high temperatures. The effect of the minor axes of added particle on material properties thus should be considered under this condition. As the crack area is set, the fracture strength decreases firstly and then increases with the increase of ratio of ellipse's minor and major axes, and the turning point is 0.5. It suggests that for the added particles the ratio of ellipse's minor and major axes should not be 0.5. All conclusions significantly coincided with the results obtained by using the finite element software ABAQUS.
Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material
NASA Astrophysics Data System (ADS)
Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di
2018-01-01
Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.
NASA Astrophysics Data System (ADS)
Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining
2017-10-01
The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.
76 FR 52379 - Buy America Waiver Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... 0.008 steel fiber with ultimate tensile strength of 290ksi for experimental use in Ultra High... for \\1/2\\'' x 0.008 steel fiber with ultimate tensile strength of 290ksi for experimental use in UHPC... there are no domestic manufacturers of \\1/2\\'' x 0.008 steel fiber with ultimate tensile strength of...
NASA Astrophysics Data System (ADS)
Nokhrin, A. V.; Chuvil'deev, V. N.; Boldin, M. S.; Piskunov, A. V.; Kozlova, N. A.; Chegurov, M. K.; Popov, A. A.; Lantcev, E. A.; Kopylov, V. I.; Tabachkova, N. Yu
2017-07-01
The article provides an example of applying the technology of spark plasma sintering (SPS) to ensure high-rate diffusion welding of high-strength ultra-fine-grained UFG titanium alloys. Weld seams produced from Ti-5Al-2V UFG titanium alloy and obtained through SPS are characterized by high density, hardness and corrosion resistance.
Approaches for springback reduction when forming ultra high-strength sheet metals
NASA Astrophysics Data System (ADS)
Radonjic, R.; Liewald, M.
2016-11-01
Nowadays, the automotive industry is challenged constantly by increasing environmental regulations and the continuous enhancement of standards with regard to passenger's safety (NCAP, Part 1). In order to fulfil the aforementioned requirements, the use of ultra high-strength steels in research and industrial applications is of high interest. When forming such materials, the main problem results from the large amount of springback which occurs after the release of the part. This paper shows the applicability of several approaches for the reduction of springback amount by forming of one hat channel shaped component. A novel approach for springack reduction which is based on forming with an alternating blank draw-in is presented as well. In this investigation an ultra high-strength steel of the grade DP 980 was used. The part's measurements were taken at significant cross-sections in order to provide a qualitative comparison between the reference geometry and the part's released shape. The obtained results were analysed and used in order to quantify the success of particular approaches for springback reduction. When taking a curved hat channel shaped component as an example, the results achieved in the investigations showed that it is possible to reduce part shape deviations significantly when using DP 980 as workpiece material.
78 FR 63563 - Buy America Waiver Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
.... steel fibers with ultimate tensile strength of 290 ksi. in Ultra High Performance Concrete (UHPC) at the... appropriate to use UHPC 0.5 in. x 0.008 in. steel fibers with ultimate tensile strength 290 ksi. on Federal... for the use of non-domestic UHPC 0.5 in. x 0.008 in. steel fibers with ultimate tensile strength of...
Jiao, Z. B.; Luan, J. H.; Guo, W.; ...
2016-09-01
The effects of welding and post-weld heat treatment (PWHT) on nanoscale co-precipitation, grain structure, and mechanical properties of an ultra-high strength steel were studied through a combination of atom probe tomography (APT) and mechanical tests. Our results indicate that the welding process dissolves all pre-existing nanoparticles and causes grain coarsening in the fusion zone, resulting in a soft and ductile weld without any cracks in the as-welded condition. A 550 °C PWHT induces fine-scale re-precipitation of NiAl and Cu co-precipitates with high number densities and ultra-fine sizes, leading to a large recovery of strength but a loss of ductility withmore » intergranular failure, whereas a 600 °C PWHT gives rise to coarse-scale re-precipitation of nanoparticles together with the formation of a small amount of reverted austenite, resulting in a great recovery in both strength and ductility. Our analysis indicates that the degree of strength recovery is dependent mainly upon the re-precipitation microstructure of nanoparticles, together with grain size and reversion of austenite, while the ductility recovery is sensitive to the grain-boundary structure. In conclusion, APT reveals that the grain-boundary segregation of Mn and P may be the main reason for the 550 °C embrittlement, and the enhanced ductility at 600 °C is ascribed to a possible reduction of the segregation and reversion of austenite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Z. B.; Luan, J. H.; Guo, W.
The effects of welding and post-weld heat treatment (PWHT) on nanoscale co-precipitation, grain structure, and mechanical properties of an ultra-high strength steel were studied through a combination of atom probe tomography (APT) and mechanical tests. Our results indicate that the welding process dissolves all pre-existing nanoparticles and causes grain coarsening in the fusion zone, resulting in a soft and ductile weld without any cracks in the as-welded condition. A 550 °C PWHT induces fine-scale re-precipitation of NiAl and Cu co-precipitates with high number densities and ultra-fine sizes, leading to a large recovery of strength but a loss of ductility withmore » intergranular failure, whereas a 600 °C PWHT gives rise to coarse-scale re-precipitation of nanoparticles together with the formation of a small amount of reverted austenite, resulting in a great recovery in both strength and ductility. Our analysis indicates that the degree of strength recovery is dependent mainly upon the re-precipitation microstructure of nanoparticles, together with grain size and reversion of austenite, while the ductility recovery is sensitive to the grain-boundary structure. In conclusion, APT reveals that the grain-boundary segregation of Mn and P may be the main reason for the 550 °C embrittlement, and the enhanced ductility at 600 °C is ascribed to a possible reduction of the segregation and reversion of austenite.« less
Lu, Liulei; Ouyang, Dong
2017-07-20
In this work, the effect of graphene oxide nanosheet (GONS) additives on the properties of cement mortar and ultra-high strength concrete (UHSC) is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0-0.03% by weight of cement). Results indicated that using 0.01% by weight of cement GONSs caused a 7.82% in compressive strength after 28 days of curing. Moreover, adding GONSs improved the flexural strength and deformation ability, with the increase in flexural strength more than that of compressive strength. Furthermore, field-emission scanning electron microscopy (FE-SEM) was used to observe the morphology of the hardened cement paste and UHSC samples. FE-SEM observations showed that the GONSs were well dispersed in the matrix and the bonding of the GONSs and the surrounding cement matrix was strong. Furthermore, FE-SEM observation indicated that the GONSs probably affected the shape of the cement hydration products. However, the growth space for hydrates also had an important effect on the morphology of hydrates. The true hydration mechanism of cement composites with GONSs needs further study.
NASA Astrophysics Data System (ADS)
Arslan Hafeez, Muhammad; Farooq, Ameeq
2018-01-01
The aim of the research was to investigate the variation in microstructural, mechanical and tribological characteristics of 30CrMnSiNi2A ultra-high strength steel as a function of tempering temperatures. Steel was quenched at 880 °C and tempered at five different tempering temperatures ranging from 250 °C to 650 °C. Optical microscopy and pin on disc tribometer was used to evaluate the microstructural and wear properties. Results show that characteristics of 30CrMnSiNi2A are highly sensitive to tempering temperatures. Lathe and plate shaped martensite obtained by quenching transform first into ε-carbide, second cementite, third coarsened and spheroidized cementite and finally into recovered ferrite and austenite. Hardness, tensile and yield strengths decreased while elongation increased with tempering temperatures. On the other hand, wear rate first markedly decreased and then increased. Optimum amalgamation of characteristics was achieved at 350 °C.
NASA Astrophysics Data System (ADS)
Song, Chaoqun; Dong, Shiyun; Yan, Shixing; He, Jiawu; Xu, Binshi; He, Peng
2017-10-01
Ultra-narrow gap laser welding is a novel method for thick high strength aluminum alloy plate for its lower heat input, less deformation and higher efficiency. To obtain a perfect welding quality, it is vital to control the more complex droplet transfer behavior under the influence of ultra-narrow gap groove. This paper reports the effects of gap width of groove on droplet transfer behavior in ultra-narrow gap laser welding of 7A52 aluminum alloy plates by a high speed camera, using an ER 5356 filler wire. The results showed that the gap width had directly effects on droplet transfer mode and droplet shape. The droplet transfer modes were, in order, both-sidewall transfer, single-sidewall transfer, globular droplet transfer and bridging transfer, with different droplet shape and transition period, as the gap width increased from 2 mm to 3.5mm. The effect of gap width on lack of fusion was also studied to analyze the cause for lack of fusion at the bottom and on the sidewall of groove. Finally, with a 2.5 mm U-type parallel groove, a single-pass joint with no lack of fusion and other macro welding defects was successfully obtained in a single-sidewall transfer mode.
Xu, Jing; Mukherjee, Dipaloke; Chang, Sam K C
2018-02-01
This study investigated the effects of the ultrahigh pressure homogenization (pressure, protein concentration, oil phase fraction, pH, temperature, and ionic strength) and storage on the properties of nanoemulsions (100-500nm range), which were stabilized by laboratory-prepared soybean protein isolate (SPI), β-conglycinin (7S) and glycinin (11S). The nanoemulsions made with SPI, 7S and 11S proteins exhibited considerable stability over various ionic strengths (0-500mM NaCl), pH (<4 or >7), thermal treatments (30-60°C) and storage (0-45days). The far-UV spectra of SPI, 7S, 11S dispersions, and SPI-, 7S-, 11S protein-stabilized nanoemulsions were analyzed for the protein structural changes following lipid removal. The ultra-high pressure homogenization changed the secondary structure of SPI, 7S, 11S proteins in the nanoemulsions, and enhanced their stability. This study demonstrated that SPI, 7S, and 11S proteins can be used as effective emulsifiers in nanoemulsions prepared by ultra-high pressure homogenization. Copyright © 2017. Published by Elsevier Ltd.
Demonstration of Ultra High-Strength Nanocrystalline Copper Alloys for Military Applications
2012-01-22
Powder Processing vi Acknowledgements The development of these Cu -Ta alloys was accomplished with assistance from the following...nanostructured Cu -Ta based alloy powders with a unique ability to retain their ultrahigh strength properties to temperatures nearing the melting point of the Cu ...nanostructured Cu -Ta based alloy powders with the unique ability to retain their ultrahigh strength properties to temperatures
Alternatives to steel grid decks - phase II.
DOT National Transportation Integrated Search
2012-09-01
The primary objective of this research project was to investigate alternatives to open grid steel decks for movable bridges. Three alternative deck systems, including aluminum deck, ultra-high performance concrete (UHPC)-high-strength steel (HSS) dec...
Matsumori, Hiroaki; Ueda, Yurito; Koizumi, Munehisa; Miyazaki, Kiyoshi; Shigematsu, Hideki; Satoh, Nobuhisa; Oshima, Takuya; Tanaka, Masato; Tanaka, Yasuhito; Takakura, Yoshinori
2010-02-01
Wires and cables have been used extensively for spinal sublaminar wiring, but damages to the spinal cord due to compression by metal wires have been reported. We have used more flexible ultra-high-molecular-weight polyethylene cable (Tekmilon tape) instead of metal wires since 1999 and have obtained good clinical outcomes. Although the initial strength of Tekmilon tape is equivalent to metal wires, the temporal changes in the strength of Tekmilon tape in the body should be investigated to show that sufficient strength is maintained over time until bone union is complete. Tekmilon tape was embedded into the paravertebral muscle of 10-week-old male Japanese white rabbits. Samples were embedded for 0, 1, 3, 6 or 12 months. At the end of each period, sequential straight tensile strength and sequential knot-pull tensile strength were measured. The initial strength of Tekmilon tape in muscle tissue was maintained over time, with 92% straight tensile strength and 104% knot-pull tensile strength at 6months, and values of 77% and 100% at 12 months, respectively. Since single knot is clinically relevant, it is very important that the knot-pull tensile strength did not decrease over a 12-month period. This suggests that temporal changes in the tensile strength of Tekmilon tape are negligible at 1 year. Tekmilon tape maintains sufficient strength in vivo until bone union has occurred. It is useful for sublaminar wiring instead of metal materials due to its flexibility and strength and may reduce the risk of neurological damage. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets
Ouyang, Dong
2017-01-01
In this work, the effect of graphene oxide nanosheet (GONS) additives on the properties of cement mortar and ultra-high strength concrete (UHSC) is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0–0.03% by weight of cement). Results indicated that using 0.01% by weight of cement GONSs caused a 7.82% in compressive strength after 28 days of curing. Moreover, adding GONSs improved the flexural strength and deformation ability, with the increase in flexural strength more than that of compressive strength. Furthermore, field-emission scanning electron microscopy (FE-SEM) was used to observe the morphology of the hardened cement paste and UHSC samples. FE-SEM observations showed that the GONSs were well dispersed in the matrix and the bonding of the GONSs and the surrounding cement matrix was strong. Furthermore, FE-SEM observation indicated that the GONSs probably affected the shape of the cement hydration products. However, the growth space for hydrates also had an important effect on the morphology of hydrates. The true hydration mechanism of cement composites with GONSs needs further study. PMID:28726750
Ultra-high temperature isothermal furnace liners (IFLS) for copper freeze point cells
NASA Astrophysics Data System (ADS)
Dussinger, P. M.; Tavener, J. P.
2013-09-01
Primary Laboratories use large fixed-point cells in deep calibration furnaces utilizing heat pipes to achieve temperature uniformity. This combination of furnace, heat pipe, and cell gives the smallest of uncertainties. The heat pipe, also known as an isothermal furnace liner (IFL), has typically been manufactured with Alloy 600/601 as the envelope material since the introduction of high temperature IFLs over 40 years ago. Alloy 600/601 is a widely available high temperature material, which is compatible with Cesium, Potassium, and Sodium and has adequate oxidation resistance and reasonable high temperature strength. Advanced Cooling Technologies, Inc. (ACT) Alloy 600/Sodium IFLs are rated to 1100°C for approximately 1000 hours of operation (based on creep strength). Laboratories interested in performing calibrations and studies around the copper freezing point (1084.62°C) were frustrated by the 1000 hours at 1100°C limitation and the fact that expensive freeze-point cells were getting stuck and/or crushed inside the IFL. Because of this growing frustration/need, ACT developed an Ultra High Temperature IFL to take advantage of the exceptional high temperature strength properties of Haynes 230.
Parra-Robles, Juan; Cross, Albert R; Santyr, Giles E
2005-05-01
Hyperpolarized noble gases (HNGs) provide exciting possibilities for MR imaging at ultra-low magnetic field strengths (<0.15 T) due to the extremely high polarizations available from optical pumping. The fringe field of many superconductive magnets used in clinical MR imaging can provide a stable magnetic field for this purpose. In addition to offering the benefit of HNG MR imaging alongside conventional high field proton MRI, this approach offers the other useful advantage of providing different field strengths at different distances from the magnet. However, the extremely strong field gradients associated with the fringe field present a major challenge for imaging since impractically high active shim currents would be required to achieve the necessary homogeneity. In this work, a simple passive shimming method based on the placement of a small number of ferromagnetic pieces is proposed to reduce the fringe field inhomogeneities to a level that can be corrected using standard active shims. The method explicitly takes into account the strong variations of the field over the volume of the ferromagnetic pieces used to shim. The method is used to obtain spectra in the fringe field of a high-field (1.89 T) superconducting magnet from hyperpolarized 129Xe gas samples at two different ultra-low field strengths (8.5 and 17 mT). The linewidths of spectra measured from imaging phantoms (30 Hz) indicate a homogeneity sufficient for MRI of the rat lung.
Henning, Anke
2018-03-01
Magnetic Resonance Spectroscopy (MRS) allows for a non-invasive and non-ionizing determination of in vivo tissue concentrations and metabolic turn-over rates of more than 20 metabolites and compounds in the central nervous system of humans. The aim of this review is to give a comprehensive overview about the advantages, challenges and advances of ultra-high field MRS with regard to methodological development, discoveries and applications from its beginnings around 15 years ago up to the current state. The review is limited to human brain and spinal cord application at field strength of 7T and 9.4T and includes all relevant nuclei ( 1 H, 31 P, 13 C). Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Seo, Joo-Young; Park, Soo-Keun; Kwon, Hoon; Cho, Ki-Sub
2017-10-01
The mechanical properties of ultra-high-strength secondary hardened stainless steels with varying Co, V, and C contents have been studied. A reduced-Co alloy based on the chemical composition of Ferrium S53 was made by increasing the V and C content. This changed the M2C-strengthened microstructure to a MC plus M2C-strengthened microstructure, and no deteriorative effects were observed for peak-aged and over-aged samples despite the large reduction in Co content from 14 to 7 wt pct. The mechanical properties according to alloying modification were associated with carbide precipitation kinetics, which was clearly outlined by combining analytical tools including small-angle neutron scattering (SANS) as well as an analytical TEM with computational simulation.
NASA Astrophysics Data System (ADS)
Romisuhani, A.; AlBakri, M. M.; Kamarudin, H.; Andrei, S. V.
2017-11-01
The influence of sintering method on kaolin-based geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene as binder were studied. Geopolymer were formed at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. 12 M of sodium hydroxide solution were mixed with sodium silicate at a ratio of 0.24 to form alkaline activator. Powder metallurgy technique were used in order to produce kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene. The samples were heated at temperature of 1200 °C with two different sintering method which are conventional method and two-step sintering method. The strength and density were tested.
Critical Issues in Hydrogen Assisted Cracking of Structural Alloys
2006-01-01
does not precipitate ? Does the HEAC mechanism explain environment-assisted (stress corrosion ) crack growth in high strength alloys stressed in moist...superalloys were cracked in high pressure (100-200 M~a) H2, while maraging and tempered-martensitic steels were cracked in low pressure (-100 kPa) H2...of IRAC in ultra-high strength AerMet®l00 steel demonstrates the role of crack tip stress in promoting H accumulation and embrittlement. The cracking
Structure and properties during aging of an ultra-high strength Al-Cu-Li-Ag-Mg alloy
NASA Technical Reports Server (NTRS)
Gayle, Frank W.; Heubaum, Frank H.; Pickens, Joseph R.
1990-01-01
The structure and properties of the strengthening phases formed during aging in an Al-Cu-Li-Ag-Mg alloy (Weldalite 049) were elulcidated, by following the development of the microstructure by means of TEM. The results of observations showed that the Weldalite 049 alloy has a series of unusual and technologically useful combinations of mechanical properties in different aging conditions, such as natural aging without prior cold work to produce high strengths, a reversion temper of lower yield strength and unusually high ductility, a room temperature reaging of the reversion temper eventually leading to the original T4 hardness, and ultrahigh-strength T6 properties.
Fast Spectroscopic Imaging and Field Compensation Using Frequency Modulation at Ultra-High-Field
NASA Astrophysics Data System (ADS)
Jang, Albert Woo Ju
The high energy phosphates (HEP) in the myocardium, which are critical to understanding the cardiac function in both normal and pathophysiologic states, can be assessed non-invasively in vivo using phosphorus-31 (31P) spectroscopy. Compared to proton, for the same volume and magnetic field strength, the available signal-to-noise (SNR) ratio of the HEP metabolites is orders of magnitude lower mainly due to its intrinsically low concentration. Hence, cardiac spectroscopy greatly benefits when performed at ultra-high-fields (UHF, ≥ 7 T), both in terms of increased SNR and increased spectroscopic resolution. However, at ultra-high-field strengths, complications arise from the RF transmit wavelength becoming comparable or smaller than the field-of-view (FOV), thus exhibiting wave-like behavior. Furthermore, even with the spectroscopic resolution afforded at UHF, measuring myocardial inorganic phosphate (Pi) is still a challenge and has been a major barrier in extracting the ATP turnover rate. Recently, an indirect way of extracting the ATP hydrolysis rate forgoing direct measurement of Pi was established. In this work, we combine this method with the T1 nom method to monitor the transmural distribution of forward creatine kinase reaction (kf,CK) and ATP hydrolysis rate (kr,ATPase) of the myocardium, effectively reducing data acquisition time by up to an order of magnitude. In addition, a new class of 2D FM pulses and multidimensional adiabatic pulses are presented, which can compensate for B1 inhomogeneity through its spatiotemporal properties. These pulses should be valuable for spectroscopic applications at ultra-high-fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zemei; Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla 65409, MO; Khayat, Kamal Henri, E-mail: khayatk@mst.edu
Bond properties between fibers and cementitious matrix have significant effect on the mechanical behavior of composite materials. In this study, the development of steel fiber-matrix interfacial bond properties in ultra-high strength concrete (UHSC) proportioned with nano-SiO{sub 2} varying between 0 and 2%, by mass of cementitious materials, was investigated. A statistical model relating either bond strength or pullout energy to curing time and nano-SiO{sub 2} content was proposed by using the response surface methodology. Mercury intrusion porosimetry (MIP) and backscatter scanning electron microscopy (BSEM) were used to characterize the microstructure of the matrix and the fiber-matrix interface, respectively. Micro-hardness aroundmore » the embedded fiber and hydration products of the matrix were evaluated as well. Test results indicated that the optimal nano-SiO{sub 2} dosage was 1% in terms of the bond properties and the microstructure. The proposed quadratic model efficiently predicted the bond strength and pullout energy with consideration of curing time and nano-SiO{sub 2} content. The improvement in bond properties associated with nano-silica was correlated with denser matrix and/or interface and stronger bond and greater strength of hydration products based on microstructural analysis.« less
2008-01-01
strength polymeric fibers such as aramid (e.g. Kevlar ®, Twaron®, etc.) or oriented polyethy- lene fibers (e.g. Spectra®, Dyneema®, etc.) with an... phenolic -poly-vinyl-butyral resin and on 0◦/90◦ cross- plied oriented polyethylene fiber-reinforced vinyl-ester resin are widely used in hard personnel...are: (a) poly-aramids (e.g. Kevlar ®, Twaron®, Technora®); (b) highly oriented ultra-highmolecular-weight polyethylene, UHMWPE (e.g. Spectra®, Dyneema
NASA Astrophysics Data System (ADS)
Sarkar, Jit; Das, D. K.
2018-01-01
Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.
Lu, Liulei; Ouyang, Dong; Xu, Weiting
2016-01-01
In this work, the effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties and durability of ultra high strength concrete (UHSC) is reported. First, the MWCNTs were dispersed by a nano sand-mill in the presence of a surfactant in water. The UHSC specimens were prepared with various amounts of MWCNTs, ranging from 0% to 0.15% by weight of cement (bwoc). Results indicated that use of an optimal percentage of MWCNTs (0.05% bwoc) caused a 4.63% increase in compressive strength and a 24.0% decrease in chloride diffusion coefficient of UHSC at 28 days curing. Moreover, the addition of MWCNTs also improved the flexural strength and deformation ability. Furthermore, a field-emission scanning electron microscopy (FE-SEM) was used to observe the dispersion of MWCNTs in the cement matrix and morphology of the hardened cement paste containing MWCNTs. FE-SEM observation revealed that MWCNTs were well dispersed in the matrix and no agglomerate was found and the reinforcing effect of MWCNTs on UHSC was thought to be pulling out and microcrack bridging of MWCNTs, which transferred the load in tension. PMID:28773541
Lu, Liulei; Ouyang, Dong; Xu, Weiting
2016-05-27
In this work, the effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties and durability of ultra high strength concrete (UHSC) is reported. First, the MWCNTs were dispersed by a nano sand-mill in the presence of a surfactant in water. The UHSC specimens were prepared with various amounts of MWCNTs, ranging from 0% to 0.15% by weight of cement (bwoc). Results indicated that use of an optimal percentage of MWCNTs (0.05% bwoc) caused a 4.63% increase in compressive strength and a 24.0% decrease in chloride diffusion coefficient of UHSC at 28 days curing. Moreover, the addition of MWCNTs also improved the flexural strength and deformation ability. Furthermore, a field-emission scanning electron microscopy (FE-SEM) was used to observe the dispersion of MWCNTs in the cement matrix and morphology of the hardened cement paste containing MWCNTs. FE-SEM observation revealed that MWCNTs were well dispersed in the matrix and no agglomerate was found and the reinforcing effect of MWCNTs on UHSC was thought to be pulling out and microcrack bridging of MWCNTs, which transferred the load in tension.
New-type steel plate with ultra high crack-arrestability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, T.; Nomiyama, Y.; Hagiwara, Y.
1995-12-31
A new-type steel plate has been developed by controlling the microstructure of the surface layers. The surface layer consists of ultra fine grain ferrite microstructure, which provides excellent fracture toughness even at cryogenic temperature. When an unstable brittle crack propagates in the developed steel plate, shear-lips can be easily formed due to the surface layers with ultra fine grain microstructure. Since unstable running crack behavior is strongly affected by side-ligaments (shear-lips), which are associated with extensive plastic deformation, enhanced formation of the shear-lips can improve crack arrestability. This paper describes the developed steel plates of HT500MPa tensile strength class formore » shipbuilding use. Fracture mechanics investigations using large-scale fracture testings (including ultrawide duplex ESSO tests) clarified that the developed steel plates have ultra high crack-arrestability. It was also confirmed that the plates possess sufficient properties, including weldability and workability, for ship building use.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapata-Solvas, E.; Jayaseelan, D.; Lin, Hua-Tay
2013-01-01
Flexural strengths at room temperature, at 1400 C in air and at room temperature after 1 h oxidation at 1400 C were determined for ZrB2- and HfB2-based ultra-high temperature ceramics (UHTCs). Defects caused by electrical discharge machining (EDM) lowered measured strengths significantly and were used to calculate fracture toughness via a fracture mechanics approach. ZrB2 with 20 vol.% SiC had room temperature strength of 700 90 MPa, fracture toughness of 6.4 0.6 MPa, Vickers hardness at 9.8 N load of 21.1 0.6 GPa, 1400 C strength of 400 30 MPa and room temperature strength after 1 h oxidation at 1400more » C of 678 15 MPa with an oxide layer thickness of 45 5 m. HfB2 with 20 vol.% SiC showed room temperature strength of 620 50 MPa, fracture toughness of 5.0 0.4 MPa, Vickers hardness at 9.8 N load of 27.0 0.6 GPa, 1400 C strength of 590 150 MPa and room temperature strength after 1 h oxidation at 1400 C of 660 25 MPa with an oxide layer thickness of 12 1 m. 2 wt.% La2O3 addition to UHTCs slightly reduced mechanical performance while increasing tolerance to property degradation after oxidation and effectively aided internal stress relaxation during spark plasma sintering (SPS) cooling, as quantified by X-ray diffraction (XRD). Slow crack growth was suggested as the failure mechanism at high temperatures as a consequence of sharp cracks formation during oxidation.« less
Effects of Residual Impurities on Hydrogen Assisted Cracking in High Strength Steels. Part II.
1982-06-01
source of hydrogen is the corrosion reaction of steel with aqueous hydrogen sulfide solutions encountered either in the production of crude oil and...autoradiography technique, it has been shown that in Armco iron and in maraging steel of hydrogen is trapped at prior austenite grain boundaries. Tritium...also play a deleterious role in hydrogen-induced cracking. In these ultra-high strength steels , the crack-tip stress level and the concomitant stress
Application technologies for effective utilization of advanced high strength steel sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suehiro, Masayoshi, E-mail: suehiro.kp5.masayoshi@jp.nssmc.com
Recently, application of high strength steel sheets for automobiles has increased in order to meet a demand of light weighting of automobiles to reduce a carbon footprint while satisfying collision safety. The formability of steel sheets generally decreases with the increase in strength. Fracture and wrinkles tend to occur easily during forming. The springback phenomenon is also one of the issues which we should cope with, because it makes it difficult to obtain the desired shape after forming. Advanced high strength steel sheets with high formability have been developed in order to overcome these issues, and at the same timemore » application technologies have been developed for their effective utilization. These sheets are normally used for cold forming. As a different type of forming, hot forming technique has been developed in order to produce parts with ultra high strength. In this report, technologies developed at NSSMC in this field will be introduced.« less
Marek, Ivo; Vojtěch, Dalibor; Michalcová, Alena; Kubatík, Tomáš František
2016-01-01
In this study, bulk ultrafine-grained and micro-crystalline cobalt was prepared using a combination of high-energy ball milling and subsequent spark plasma sintering. The average grain sizes of the ultrafine-grained and micro-crystalline materials were 200 nm and 1 μm, respectively. Mechanical properties such as the compressive yield strength, the ultimate compressive strength, the maximum compressive deformation and the Vickers hardness were studied and compared with those of a coarse-grained as-cast cobalt reference sample. The bulk ultrafine-grained sample showed an ultra-high compressive yield strength that was greater than 1 GPa, which is discussed with respect to the preparation technique and a structural investigation. PMID:28773514
Ultrasonic Monitoring of Setting and Strength Development of Ultra-High-Performance Concrete.
Yoo, Doo-Yeol; Shin, Hyun-Oh; Yoon, Young-Soo
2016-04-19
In this study, the setting and tensile strength development of ultra-high-performance concrete (UHPC) at a very early age was investigated by performing the penetration resistance test (ASTM C403), as well as the direct tensile test using the newly developed test apparatus, and taking ultrasonic pulse velocity (UPV) measurements. In order to determine the optimum surface treatment method for preventing rapid surface drying of UHPC, four different methods were examined: plastic sheet, curing cover, membrane-forming compound, and paraffin oil. Based on the test results, the use of paraffin oil was found to be the best choice for measuring the penetration resistance and the UPV, and attaching the plastic sheet to the exposed surface was considered to be a simple method for preventing the rapid surface drying of UHPC elements. An S-shaped tensile strength development at a very early age (before 24 h) was experimentally obtained, and it was predicted by a power function of UPV. Lastly, the addition of shrinkage-reducing and expansive admixtures resulted in more rapid development of penetration resistance and UPV of UHPC.
Assessment of the State of the Art of Ultra High Temperature Ceramics
NASA Technical Reports Server (NTRS)
Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead
2009-01-01
Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.
NASA Astrophysics Data System (ADS)
Ji, Dong Hwan; Choi, Suji; Kim, Jaeyun; nanobiomaterials lab Team
Integration of high strength and toughness tend to be mutually exclusive and synthesized hybrid films with superior mechanical properties have been difficult to fabricate controllable shapes and various scales. Although diverse synthesized hybrid films consisting of organic matrix and inorganic materials with brick-and-mortar structure, show improved mechanical properties, these films are still limited in toughness and fabrication methods. Herein, we report ultra-tough and strong hybrid thin films with self-assembled uniform microstructures with controllable shapes and various scale based on hydrogel-mediated process. Ca2+-crosslinking in alginate chains and well-aligned alumina platelets in alginate matrix lead to a synergistic enhancement of strength and toughness in the resulting film. Consequentially, Ca2+-crosslinked Alg/Alu films showed outstanding toughness of 29 MJ m-3 and tensile strength of 160 MPa. Furthermore, modifying Alu surface with polyvinylpyrrolidone (PVP), tensile strength was further improved up to 200 MPa. Our results suggest an alternative approach to design and processing of self-assembled hydrogel-mediated hybrid films with outstanding mechanical properties.
Fu, Yingchun; Callaway, Zachary; Lum, Jacob; Wang, Ronghui; Lin, Jianhan; Li, Yanbin
2014-02-18
Enzyme catalysis is broadly used in various fields but generally applied in media with high ion strength. Here, we propose the exploitation of enzymatic catalysis in ultra-low ion strength media to induce ion strength increase for developing a novel impedance biosensing method. Avian influenza virus H5N1, a serious worldwide threat to poultry and human health, was adopted as the analyte. Magnetic beads were modified with H5N1-specific aptamer to capture the H5N1 virus. This was followed by binding concanavalin A (ConA), glucose oxidase (GOx), and Au nanoparticles (AuNPs) to create bionanocomposites through a ConA-glycan interaction. The yielded sandwich complex was transferred to a glucose solution to trigger an enzymatic reaction to produce gluconic acid, which ionized to increase the ion strength of the solution, thus decreasing the impedance on a screen-printed interdigitated array electrode. This method took advantages of the high efficiency of enzymatic catalysis and the high susceptibility of electrochemical impedance on the ion strength and endowed the biosensor with high sensitivity and a detection limit of 8 × 10(-4) HAU in 200 μL sample, which was magnitudes lower than that of some analogues based on biosensing methods. Furthermore, the proposed method required only a bare electrode for measurements of ion strength change and had negligible change on the surficial properties of the electrode, though some modification of magnetic beads/Au nanoparticles and the construction of a sandwich complex were still needed. This helped to avoid the drawbacks of commonly used electrode immobilization methods. The merit for this method makes it highly useful and promising for applications. The proposed method may create new possibilities in the broad and well-developed enzymatic catalysis fields and find applications in developing sensitive, rapid, low-cost, and easy-to-operate biosensing and biocatalysis devices.
Factors Affecting the Strength and Toughness of Ultra-Low Carbon Steel Weld Metal
1999-12-01
ferrite or martensite due to its strength and toughness, respectively. Ferrite with non-aligned second phase is associated with ferrite completely...with interphase carbides and pearlite. It forms at high temperatures and slow cooling rates than ferrite with secondary phase or martensite . It is...therefore termed a diffusionless transformation . In low carbon steels, the transformation occurs from fccy (austenite) to beta’ ( martensite ),
Liu, Kai; Zhu, Feng; Liu, Liang; Sun, Yinghui; Fan, Shoushan; Jiang, Kaili
2012-06-07
Defects of carbon nanotubes, weak tube-tube interactions, and weak carbon nanotube joints are bottlenecks for obtaining high-strength carbon nanotube yarns. Some solution processes are usually required to overcome these drawbacks. Here we fabricate ultra-long and densely packed pure carbon nanotube yarns by a two-rotator twisting setup with the aid of some tensioning rods. The densely packed structure enhances the tube-tube interactions, thus making high tensile strengths of carbon nanotube yarns up to 1.6 GPa. We further use a sweeping laser to thermally treat as-produced yarns for recovering defects of carbon nanotubes and possibly welding carbon nanotube joints, which improves their Young's modulus by up to ∼70%. The spinning and laser sweeping processes are solution-free and capable of being assembled together to produce high-strength yarns continuously as desired.
Combined Intercritical Annealing and Q&P Processing of Medium Mn Steel
NASA Astrophysics Data System (ADS)
De Cooman, Bruno C.; Lee, Seon Jong; Shin, Sunmi; Seo, Eun Jung; Speer, John G.
2017-01-01
The microstructure and mechanical properties of intercritically annealed medium Mn steel are dependent on the selection of the intercritical annealing (IA) temperature. While the yield strength (YS) decreases with increasing IA temperature, the ultimate tensile strength increases with increasing IA temperature. Strain aging phenomena, both static and dynamic, are also often observed. The present contribution shows that, by combining IA with the quench and partitioning processing of the intercritical austenite, it is possible to obtain non-aging mechanical properties which combine a high YS with an ultra-high tensile strength. These properties are particularly suitable for automotive parts related to passenger safety.
Heidemann, Robin M; Anwander, Alfred; Feiweier, Thorsten; Knösche, Thomas R; Turner, Robert
2012-04-02
There is ongoing debate whether using a higher spatial resolution (sampling k-space) or a higher angular resolution (sampling q-space angles) is the better way to improve diffusion MRI (dMRI) based tractography results in living humans. In both cases, the limiting factor is the signal-to-noise ratio (SNR), due to the restricted acquisition time. One possible way to increase the spatial resolution without sacrificing either SNR or angular resolution is to move to a higher magnetic field strength. Nevertheless, dMRI has not been the preferred application for ultra-high field strength (7 T). This is because single-shot echo-planar imaging (EPI) has been the method of choice for human in vivo dMRI. EPI faces several challenges related to the use of a high resolution at high field strength, for example, distortions and image blurring. These problems can easily compromise the expected SNR gain with field strength. In the current study, we introduce an adapted EPI sequence in conjunction with a combination of ZOOmed imaging and Partially Parallel Acquisition (ZOOPPA). We demonstrate that the method can produce high quality diffusion-weighted images with high spatial and angular resolution at 7 T. We provide examples of in vivo human dMRI with isotropic resolutions of 1 mm and 800 μm. These data sets are particularly suitable for resolving complex and subtle fiber architectures, including fiber crossings in the white matter, anisotropy in the cortex and fibers entering the cortex. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ta, Hang T.; Li, Zhen; Wu, Yuao; Cowin, Gary; Zhang, Shaohua; Yago, Anya; Whittaker, Andrew K.; Xu, Zhi Ping
2017-11-01
This study aims to compare the relaxivities of ultra-small dual positive and negative contrast iron oxide nanoparticles (DCION) at different magnetic field strengths ranging from 4.7 to 16.4 T at physiological temperatures; and to investigate the effect of particle aggregation on relaxivities. Relaxivities of DCIONs were determined by magnetic resonance imaging scanners at 4.7, 7, 9.4, and 16.4 T. Both longitudinal (T 1) and transverse relaxation times (T 2) were measured by appropriate spin-echo sequences. It has been found that both longitudinal and transverse relaxivities are significantly dependent on the magnetic field strength. Particle aggregation also strongly affects the relaxivities. Awareness of the field strength and particle colloid stability is crucial for the comparison and evaluation of relaxivity values of these ultra-small iron oxide nanoparticles, and also for their medical applications as contrast agents.
Ultra-High Temperature Materials Characterization for Space and Missile Applications
NASA Technical Reports Server (NTRS)
Rogers, Jan; Hyers, Robert
2007-01-01
Numerous advanced space and missile technologies including propulsion systems require operations at high temperatures. Some very high-temperature materials are being developed to meet these needs, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available at the desired operating temperatures for many materials of interest. The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic Levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, emissivity, density and thermal expansion. ESL uses electrostatic fields to position samples between electrodes during processing and characterization experiments. Samples float between the electrodes during studies and are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. A system for the determination of total hemispherical emissivity is being developed for the MSFC ESL facility by AZ Technology Inc. The instrument has been designed to provide emissivity measurements for samples during ESL experiments over the temperature range 700-3400K. A novel non-contact technique for the determination of high-temperature creep strength has been developed. Data from selected ESL-based characterization studies will be presented. The ESL technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high-temperature alloys for turbines and structures.
Grochowski, Cezary; Staśkiewicz, Grzegorz
Time-of-flight (TOF) angiography is a technique allowing to visualize the blood flow in vessels. 7T ToF-MRA is able to visualize the whole Circle of Willis including small perforating branches without any known side effects as opposed to usually used DSA and CTA with high exposition to the radiation and high doses of contrast as far as CTA is concerned. The aim of this review is to describe ultra-high field ToF-MRA and present different protocol data depending on the scanner used in the study. PubMed, Embase, Ovid, Google Scholar databases were searched. Selection of studies for this systematic review included 7T magnetic resonance angiography studies. We searched for type of head coil used in various studies, flip angle, echo time, repetition time, field-of-view (FOV), number of slices per slab, matrix, voxel size and acquisition time. Visualization for the small perforating vessels of the Circle of Willis, that are not fully visualized using low-field-strength MRA is improving with increasing magnetic field strength, which has been proved by several studies. Ultra-high filed ToF-MRA has found to be a superior method in depicting cerebral microvasculature. 7T ToF-MRA seems to be a reliable method for visualization of arteries up to the second order cerebral arteries and has a potential to replace DSA. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.
Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C
2016-01-01
We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.
NASA Astrophysics Data System (ADS)
Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Yu. V.; Lashkov, V. A.
2016-05-01
The influence of severe plastic deformation on the material surface is investigated under highspeed erosion conditions. The AD1 aluminum alloy was tested with the structure changed by severe plastic torsional deformation.
Deformation Behavior of Ultra-Strong and Ductile Mg-Gd-Y-Zn-Zr Alloy with Bimodal Microstructure
NASA Astrophysics Data System (ADS)
Xu, C.; Fan, G. H.; Nakata, T.; Liang, X.; Chi, Y. Q.; Qiao, X. G.; Cao, G. J.; Zhang, T. T.; Huang, M.; Miao, K. S.; Zheng, M. Y.; Kamado, S.; Xie, H. L.
2018-02-01
An ultra-strong and ductile Mg-8.2Gd-3.8Y-1Zn-0.4Zr (wt pct) alloy was developed by using hot extrusion to modify the microstructure via forced-air cooling and an artificial aging treatment. A superior strength-ductility balance was obtained that had a tensile yield strength of 466 MPa and an elongation to failure of 14.5 pct. The local strain evolution during the in situ testing of the ultra-strong and ductile alloy was quantitatively analyzed with high-resolution electron backscattered diffraction and digital image correlation. The fracture behavior during the tensile test was characterized by synchrotron X-ray tomography along with SEM and STEM observations. The alloy showed a bimodal microstructure, consisting of dynamically recrystallized (DRXed) grains with random orientations and elongated hot-worked grains with < { 10{\\bar{1}}0} > parallel to the extrusion direction. The DRXed grains were deformed by the basal <;a> slip and the hot-worked grains were deformed by the prismatic slip dominantly. The strain evolution analysis indicated that the multilayered structure relaxed the strain localization via strain transfer from the DRXed to the hot-worked regions, which led to the high ductility of the alloy. Precipitation of the γ' on basal planes and the β' phases on the prismatic planes of the α-Mg generated closed volumes, which enhanced the strength by pinning dislocations effectively, and contributed to the high ductility by impeding the propagation of micro-cracks inside the grains. The deformation incompatibility between the hot-worked grains and the arched block-shaped long-period stacking ordered (LPSO) phases induced the crack initiation and propagation, which fractured the alloy.
Improving UV Resistance of High Strength Fibers Used In Large Scientific Balloons
NASA Technical Reports Server (NTRS)
Said, M.; Gupta, A.; Seyam, A.; Mock, G.; Theyson, T.
2004-01-01
For the last three decades, NASA has been involved in the development of giant balloons that are capable of lifting heavy payloads of equipment (such as large telescopes and scientific instruments) to the upper atmosphere. While the use of such balloons has led to scientific discoveries, the demand for competitive science payloads and observational programs continues to rise. The NASA Balloon Program Office has entered a new phase of research to develop an Ultra Long Duration Balloon (ULDB) that will lift payloads of up to 3,600 kg to altitudes of up to 40 km. The flight duration is targeted to ranges between 30 to 100 days. Attaining these target durations requires the development of a super-pressure balloon design. The use of textile structures have already been established in these missions in the form of high strength tendons essential for the super pressure pumpkin design. Unfortunately, high strength fibers lose significant strength upon exposure to Ultra Violet (UV) radiation. Such UV degradation poses a serious challenge for the development of the ULDB. To improve the mission performance of the ULDB, new methods for protecting the tendons from the environmental effects need to be developed. NASA and NC State University College of Textiles are undertaking a research program to address these issues. Four tracks have been identified to prepare finishes that are believed to enhance the resistance of high strength fibers to UV. These tracks are: (a) self-polymerizing, (b) diffusion application, (c) polymer-filled with 30-40% UV absorber, and (d) combination of dyeing plus surface application. Four high performance fibers have been selected for this research investigation. These are Vectran (trademark), Spectra (trademark), Kevlar (trademark) and, PBO (Zylon (trademark)). This work will address the current progress of evaluating the performance of the UV finishes. This will be accomplished by comparing the tensile properties (strength, breaking elongation, modulus, etc) of untreated, unexposed to UV fibers; untreated exposed to UV fibers; and treated exposed to UV fibers.
Kang, Sung-Hoon; Lee, Ji-Hyung; Hong, Sung-Gul; Moon, Juhyuk
2017-09-20
For optimum production of ultra-high performance concrete (UHPC), the material and microstructural properties of UHPC cured under various heat treatment (HT) conditions are studied. The effects of HT temperature and duration on the hydration reaction, microstructure, and mechanical properties of UHPC are investigated. Increasing HT temperature accelerates both cement hydration and pozzolanic reaction, but the latter is more significantly affected. This accelerated pozzolanic reaction in UHPC clearly enhances compressive strength. However, strength after the HT becomes stable as most of the hydration finishes during the HT period. Particularly, it was concluded that the mechanical benefit of the increased temperature and duration on the 28 day-strength is not noticeable when the HT temperature is above 60 °C (with a 48 h duration) or the HT duration is longer than 12 h (with 90 °C temperature). On the other hand, even with a minimal HT condition such as 1 day at 60 °C or 12 h at 90 °C, outstanding compressive strength of 179 MPa and flexural tensile strength of 49 MPa are achieved at 28 days. Microstructural investigation conducted herein suggests that portlandite content can be a good indicator for the mechanical performance of UHPC regardless of its HT curing conditions. These findings can contribute to reducing manufacturing energy consumption, cost, and environmental impact in the production of UHPC and be helpful for practitioners to better understand the effect of HT on UHPC and optimize its production.
Papermaking properties of aspen ultrahigh-yield mechanical pulps
J. N. McGovern; T. H. Wegner
1991-01-01
Eleven types of aspen ultra-high-yield (90% and above) mechanical pubs were evaluated for their chemical compositions (including sulfur), handsheet strength, and optical properties, fiber length indices, and fiberizing energies. The pulping processes were stone groundwood, pressurized stone groundwood, refiner mechanical, thermomechanical, chemimechanical (alkaline...
Repair of steel beam/girder ends with ultra high-strength concrete - phase II.
DOT National Transportation Integrated Search
2016-01-01
A novel repair method has been developed at the University of Connecticut for corroded steel bridge girder : ends. The repair method consists of encasing the corroded steel area with UHPC. The UHPC panel is bonded : to the steel girder using headed s...
Cui, Guodong; Wei, Xialu; Olevsky, Eugene A.; German, Randall M.; Chen, Junying
2016-01-01
High porosity (>40 vol %) iron specimens with micro- and nanoscale isotropic pores were fabricated by carrying out free pressureless spark plasma sintering (FPSPS) of submicron hollow Fe–N powders at 750 °C. Ultra-fine porous microstructures are obtained by imposing high heating rates during the preparation process. This specially designed approach not only avoids the extra procedures of adding and removing space holders during the formation of porous structures, but also triggers the continued phase transitions of the Fe–N system at relatively lower processing temperatures. The compressive strength and energy absorption characteristics of the FPSPS processed specimens are examined here to be correspondingly improved as a result of the refined microstructure. PMID:28773617
NASA Astrophysics Data System (ADS)
Sung, Hyo Kyung; Shin, Sang Yong; Hwang, Byoungchul; Lee, Chang Gil; Kim, Nack J.; Lee, Sunghak
2011-07-01
Six ultra-low-carbon high-strength bainitic steel plates were fabricated by controlling rolling and cooling conditions, and effects of bainitic microstructure on tensile and Charpy impact properties were investigated. The microstructural evolution was more critically affected by start cooling temperature and cooling rate than by finish rolling temperature. Bainitic microstructures such as granular bainites (GBs) and bainitic ferrites (BFs) were well developed as the start cooling temperature decreased or the cooling rate increased. When the steels cooled from 973 K or 873 K (700 °C or 600 °C) were compared under the same cooling rate of 10 K/s (10 °C/s), the steels cooled from 973 K (700 °C) consisted mainly of coarse GBs, while the steels cooled from 873 K (600 °C) contained a considerable amount of BFs having high strength, thereby resulting in the higher strength but the lower ductility and upper shelf energy (USE). When the steels cooled from 673 K (400 °C) at a cooling rate of 10 K/s (10 °C/s) or 0.1 K/s (0.1 °C/s) were compared under the same start cooling temperature of 873 K (600 °C), the fast cooled specimens were composed mainly of coarse GBs or BFs, while the slowly cooled specimens were composed mainly of acicular ferrites (AFs). Since AFs had small effective grain size and contained secondary phases finely distributed at grain boundaries, the slowly cooled specimens had a good combination of strength, ductility, and USE, together with very low energy transition temperature (ETT).
NASA Astrophysics Data System (ADS)
Vogt, S.; Neumayer, F. F.; Serkyov, I.; Jesner, G.; Kelsch, R.; Geile, M.; Sommer, A.; Golle, R.; Volk, W.
2017-09-01
Steel is the most common material used in vehicles’ chassis, which makes its research an important topic for the automotive industry. Recently developed ultra-high-strength steels (UHSS) provide extreme tensile strength up to 1,500 MPa and combine great crashworthiness with good weight reduction potential. However, in order to reach the final shape of sheet metal parts additional cutting steps such as trimming and piercing are often required. The final trimming of quenched metal sheets presents a huge challenge to a conventional process, mainly because of the required extreme cutting force. The high cutting impact, due to the materials’ brittleness, causes excessive tool wear or even sudden tool failure. Therefore, a laser is commonly used for the cutting process, which is time and energy consuming. The purpose of this paper is to demonstrate the capability of a conventional blanking tool design in a continuous stroke piercing process using boron steel 22MnB5 sheets. Two different types of tool steel were tested for their suitability as active cutting elements: electro-slag remelted (ESR) cold work tool steel Bohler K340 ISODUR and powder-metallurgic (PM) high speed steel Bohler S390 MICROCLEAN. A FEM study provided information about an optimized punch design, which withstands buckling under high cutting forces. The wear behaviour of the process was assessed by the tool wear of the active cutting elements as well as the quality of cut surfaces.
A high-strength silicide phase in a stainless steel alloy designed for wear-resistant applications.
Bowden, D; Krysiak, Y; Palatinus, L; Tsivoulas, D; Plana-Ruiz, S; Sarakinou, E; Kolb, U; Stewart, D; Preuss, M
2018-04-10
Hardfacing alloys provide strong, wear-resistant and corrosion-resistant coatings for extreme environments such as those within nuclear reactors. Here, we report an ultra-high-strength Fe-Cr-Ni silicide phase, named π-ferrosilicide, within a hardfacing Fe-based alloy. Electron diffraction tomography has allowed the determination of the atomic structure of this phase. Nanohardness testing indicates that the π-ferrosilicide phase is up to 2.5 times harder than the surrounding austenite and ferrite phases. The compressive strength of the π-ferrosilicide phase is exceptionally high and does not yield despite loading in excess of 1.6 GPa. Such a high-strength silicide phase could not only provide a new type of strong, wear-resistant and corrosion-resistant Fe-based coating, replacing more costly and hazardous Co-based alloys for nuclear applications, but also lead to the development of a new class of high-performance silicide-strengthened stainless steels, no longer reliant on carbon for strengthening.
Repair of steel beam/girder ends with ultra high strength concrete (phase I) : final report.
DOT National Transportation Integrated Search
2015-06-06
The end corrosion in steel girders at the bearings due to joint leakage is a : significant problem in many of the old bridges around the nation. This critical : damage impairs the shear and bearing capacities of girders. Research has been : conducted...
Vegh, Viktor; Reutens, David C.
2016-01-01
Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886
Developing radiopure copper alloys for high strength low background applications
NASA Astrophysics Data System (ADS)
Suriano, A. M.; Howard, S. M.; Christofferson, C. D.; Arnquist, I. J.; Hoppe, E. W.
2018-01-01
High purity copper continues to play an important role for ultra-low-background detectors. Measurements of rare nuclear decays, e.g. neutrinoless double-beta decay, and searches for dark matter can require construction materials that have high thermal and electrical conductivity with bulk radiopurity less than one micro-Becquerel per kilogram. However, experiments currently using components constructed of radiopure electroformed copper struggle with design of structural and mechanical parts due to the physical properties of pure copper. A higher strength material which possesses many of the favorable attributes of copper yet remains radiopure is desired. A number of copper alloying candidates which may provide improved mechanical performance and adequate radiopurity were considered. Development of an electrodeposited copper-chrome alloy from additive-free electrolyte systems is discussed. The resulting material is shown to possess high strength and meets the aforementioned radiopurity goals.
Observation of the TWIP + TRIP Plasticity-Enhancement Mechanism in Al-Added 6 Wt Pct Medium Mn Steel
NASA Astrophysics Data System (ADS)
Lee, Seawoong; Lee, Kyooyoung; De Cooman, Bruno C.
2015-06-01
The intercritically annealed Fe-0.15 pctC-6.0 pctMn-1.5 pctSi-3.0 pctAl and Fe-0.30 pctC-6.0 pctMn-1.5 pctSi-3.0 pctAl medium Mn steels were found to have improved mechanical properties due to the TWIP and TRIP plasticity-enhancing mechanisms being activated in succession during tensile deformation. The increase of the C content from 0.15 to 0.30 pct resulted in ultra-high strength properties and a strength-ductility balance of approximately 65,000 MPa-pct, i.e., equivalent to the strength-ductility balance of high Mn TWIP steel with a fully austenitic microstructure.
Song, Yonghai; Chen, Jingyi; Liu, Hongyu; Li, Ping; Li, Hongbo; Wang, Li
2015-09-03
A simple, sensitive and effective method to detect glucose in ultra-low ionic strength solution containing citrate-capped silver nanoparticles (CCAgNPs) was developed by monitoring the change of solution conductance. Glucose was catalyzed into gluconic acid firstly by glucose oxidase in an O2-saturated solution accompanied by the reduction of O2 into hydrogen peroxide (H2O2). Then, CCAgNPs was oxidized by H2O2 into Ag(+) and the capping regent of citrate was released at the same time. All these resulted Ag(+), gluconic acid and the released citrate would contribute to the increase of solution ionic strength together, leading to a detectable increase of solution conductance. And a novel conductance glucose biosensor was developed with a routine linear range of 0.06-4.0 mM and a suitable detection limit of 18.0 μM. The novel glucose biosensor was further applied in energy drink sample and proven to be suitable for practical system with low ionic strength. The proposed conductance biosensor achieved a significant breakthrough of glucose detection in ultra-low ionic strength media. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Khatiwada, Suman; Laughman, Jay W.; Armada, Carlos A.; Christiansen, Eric L.; Barrera, Enrique V.
2012-01-01
Advanced composites with multi-functional capabilities are of great interest to the designers of aerospace structures. Polymer matrix composites (PMCs) reinforced with high strength fibers provide a lightweight and high strength alternative to metals and metal alloys conventionally used in aerospace architectures. Novel reinforcements such as nanofillers offer potential to improve the mechanical properties and add multi-functionality such as radiation resistance and sensing capabilities to the PMCs. This paper reports the hypervelocity impact (HVI) test results on ultra-high molecular weight polyethylene (UHMWPE) fiber composites reinforced with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT). Woven UHMWPE fabrics, in addition to providing excellent impact properties and high strength, also offer radiation resistance due to inherent high hydrogen content. SWCNT have exceptional mechanical and electrical properties. BNNT (figure 1) have high neutron cross section and good mechanical properties that add multi-functionality to this system. In this project, epoxy based UHMWPE composites containing SWCNT and BNNT are assessed for their use as bumper shields and as intermediate plates in a Whipple Shield for HVI resistance. Three composite systems are prepared to compare against one another: (I) Epoxy/UHMWPE, (II) Epoxy/UHMWPE/SWCNT and (III) Epoxy/UHMWPE/SWCNT/BNNT. Each composite is a 10.0 by 10.0 by 0.11 cm3 panel, consisting of 4 layers of fabrics arranged in cross-ply orientation. Both SWCNT and BNNT are 0.5 weight % of the fabric preform. Hypervelocity impact tests are performed using a two-stage light gas gun at Rice University
Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.
2015-06-01
Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Guodong; Wei, Xialu; Olevsky, Eugene
2016-06-01
High porosity (>40 vol %) iron specimens with micro- and nanoscale isotropic pores were fabricated by carrying out free pressureless spark plasma sintering (FPSPS) of submicron hollow Fe–N powders at 750 °C. Ultra-fine porous microstructures are obtained by imposing high heating rates during the preparation process. This specially designed approach not only avoids the extra procedures of adding and removing space holders during the formation of porous structures, but also triggers the continued phase transitions of the Fe–N system at relatively lower processing temperatures. In conclusion, the compressive strength and energy absorption characteristics of the FPSPS processed specimens are examinedmore » here to be correspondingly improved as a result of the refined microstructure.« less
Ultra-high Strength Nanostructured Mg
2014-03-31
27709-2211 Nanostructured Mg and Mg alloys, Mg metallic glass, Cryomilling, Powder consolidation, Spark plasma sintering , Deformation mechanisms REPORT...mechanically milled powder and high pressure on spark plasma sintering of Mg-Cu-Gd metallic glasses; (9) microstructure and mechanical behavior of Mg-10Li-3Al...pressure on spark plasma sintering of Mg– Cu–Gd metallic glasses, Acta Materialia , (07 2013): 4414. doi: Baolong Zheng, Ying Li, Weizong Xu
Controlling Hydrogen Embrittlement in Ultra-High Strength Steels
2006-06-01
this tempering temperature, (5) finely distributed, partly coherent M2C (where M = 75 at.% Cr, 13 Fe and 12 Mo) in martensite , averaging 2 nm...states in a complex precipitation hardened martensitic microstructure and is susceptible to severe hydrogen embrittlement (HE) at threshold stress...repartitions to interstitial sites proximate to the highly stressed crack tip and, subsequently, may retrap at martensitic lath interfaces to produce substantial
2011-04-01
forma The prese corrosion coating) w conversio converted not develo before and a : Example un ted Zn-Ni ac : Example s Zn-Ni alkalin nt of scribing...Protection Agency, 1998. Retrieved from web July 30th 2009. Available online at www.epa.gov/ iris /subst/0141.htm. 3 M. Bielawski, Surface and
NASA Astrophysics Data System (ADS)
Li, Hui-yan; Dong, Chao-fang; Xiao, Kui; Li, Xiao-gang; Zhong, Ping
2016-11-01
The effects of Cl- ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel (UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist (approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.
Wear Behavior of an Ultra-High-Strength Eutectoid Steel
NASA Astrophysics Data System (ADS)
Mishra, Alok; Maity, Joydeep
2018-02-01
Wear behavior of an ultra-high-strength AISI 1080 steel developed through incomplete austenitization-based combined cyclic heat treatment is investigated in comparison with annealed and conventional hardened and tempered conditions against an alumina disk (sliding speed = 1 m s-1) using a pin-on-disk tribometer at a load range of 7.35-14.7 N. On a gross scale, the mechanism of surface damage involves adhesive wear coupled with abrasive wear (microcutting effects in particular) at lower loads. At higher loads, mainly the abrasive wear (both microcutting and microploughing mechanisms) and evolution of adherent oxide are observed. Besides, microhardness of matrix increases with load indicating substantial strain hardening during wear test. The rate of overall wear is found to increase with load. As-received annealed steel with the lowest initial hardness suffers from severe abrasive wear, thereby exhibiting the highest wear loss. Such a severe wear loss is not observed in conventional hardened and tempered and combined cyclic heat treatment conditions. Combined cyclic heat-treated steel exhibits the greatest wear resistance (lowest wear loss) due to its initial high hardness and evolution of hard abrasion-resistant tribolayer during wear test at higher load.
NASA Astrophysics Data System (ADS)
Kunieda, Minoru; Shimizu, Kosuke; Eguchi, Teruyuki; Ueda, Naoshi; Nakamura, Hikaru
This paper presents the fundamental properties of Ultra High Performance-Strain Hardening Cementitious Composites (UHP-SHCC), which were depeloped for repair applications. In particular, mechanical properties such as tensile response, shrinkage and bond strength were investigated experimentally. Protective performance of the material such as air permeability, water permeability and penetration of chloride ion was also confirmed comparing to that of ordinary concrete. This paper also introduces the usage of the material in repair of concrete st ructures. Laboratory tests concerining the deterioration induced by corrosion were conducted. The UHP-SHCC that coverd the RC beam resisted not only crack opening along the rebar due to corrosion but also crack opening due to loading tests.
Jet engine applications for materials with nanometer-scale dimensions
NASA Technical Reports Server (NTRS)
Appleby, J. W., Jr.
1995-01-01
The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and materials with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.
Jet engine applications for materials with nanometer-scale dimensions
NASA Technical Reports Server (NTRS)
Appleby, J. W., Jr.
1995-01-01
The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and material with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.
NASA Astrophysics Data System (ADS)
Zhu, C. Z.; Yuan, Y.; Zhang, P.; Yang, Z.; Zhou, Y. L.; Huang, J. Y.; Yin, H. F.; Dang, Y. Y.; Zhao, X. B.; Lu, J. T.; Yan, J. B.; You, C. Y.
2018-02-01
A modified HR3C austenitic steel has been designed by optimizing the chemical composition. Compared with a commercial HR3C alloy, the modified steel has comparable oxidation resistance, yield strength, and plasticity, but higher creep rupture strength and impact toughness after long-term thermal exposure. The results suggest that the modified alloy is a promising candidate for the applications of ultra-supercritical power plants operating beyond 650 °C.
NASA Astrophysics Data System (ADS)
Chu, Yanyan; Chen, Xiaogang; Tian, Lipeng
2017-06-01
Ultra-high molecular weight polyethylene (UHMWPE) yarns are widely used in military applications for protection owing to its high modulus and high strength; however, the friction between UHMWPE yarns is too small, which is a weakness for ballistic applications. The purpose of current research is to increase the friction between UHMWPE yarns by plasma enhanced chemical vapour deposition (PCVD). The changes of morphology and chemical structure were characterised by SEM and FTIR individually. The coefficients of friction between yarns were tested by means of Capstan method. Results from tests showed that the yarn-yarn coefficient of static friction (CSF) has been improved from 0.12 to 0.23 and that of kinetic friction (CSF) increased from 0.11 to 0.19, as the samples exposure from 21 s to 4 min. The more inter-yarn friction can be attributed to more and more particles and more polar groups deposited on the surfaces of yarns, including carboxyl, carbonyl, hydroxyl and amine groups and compounds containing silicon. The tensile strength and modulus of yarns, which are essential to ballistic performance, keep stable and are not affected by the treatments, indicating that PCVD treatment is an effective way to improve the inter-yarn friction without mechanical property degradation.
Generation of forming limit bands for ultra-high-strength steels in car body structures
NASA Astrophysics Data System (ADS)
Bayat, Hamid Reza; Sarkar, Sayantan; Italiano, Francesco; Bach, Aleksandar; Wulfinghoff, Stephan; Reese, Stefanie
2018-05-01
The application of ultra-high-strength steels in safety-related automotive components has led to higher safety levels as well as weight reduction. Nevertheless, this class of advanced high-strength steels (AHSS) show material scatter due to its manufacturing processes. To address this problem in advance, it is of significance not only to model the failure of the sheet metal but also to specify a band for the necking regime. The former is described by a forming limit curve (FLC), whereas a forming limit band (FLB) introduces the upper and lower bounds for the permissible strains. The objective of the present work is to generate a robust prediction of the strain-based failure of the sheet metal during a car crash. The FLCs are generated numerically applying a modified Marciniak-Kuczynski (MK) model, where the existence of an angled groove is mandatory. This assures to obtain the maximum admissible strain. In addition, a zero extension angle is utilized for the left hand side of the FLC (tension-compression). The material scatter is captured in experiments and applied in the hardening relations. Necking strains are recorded experimentally by a digital image correlation based system (ARAMIS). Later, they are fit into the FLC based on an inhomogeneity parameter fi from the MK model. In order to generate a theoretical FLB, first a statistical approach is exploited to take the experimental data into consideration. Eventually, the forming limit band distinguishes between safe, necking and failed regions.
NASA Astrophysics Data System (ADS)
Zhou, Cheng; Ye, Qibin; Yan, Ling
The effect of ultra-fast cooling(UFC) and conventional accelerated cooling(AcC) on the mechanical properties and microstructure of controlled rolled AH32 grade steel plates on industrial scale were compared using tensile test, Charpy impact test, welding thermal simulation, and microscopic analysis. The results show that the properties of the plate produced by UFC are improved considerably comparing to that by AcC. The yield strength is increased with 54 MPa without deterioration in the ductility and the impact energy is improved to more than 260 J at -60 °C with much lower ductile-to-brittle transition temperature(DBTT). The ferrite grain size is refined to ASTM No. 11.5 in the UFC steel with uniform microstructure throughout the thickness direction, while that of the AcC steel is ASTM No. 9.5. The analysis of nucleation kinetics of α-ferrite indicates that the microstructure is refined due to the increased nucleation rate of α-ferrite by much lower γ→α transition temperature through the UFC process. The Hall-Petch effect is quantified for the improvement of the strength and toughness of the UFC steel attributed to the grain refinement.
Zhang, R. F.; Wen, X. D.; Legut, D.; Fu, Z. H.; Veprek, S.; Zurek, E.; Mao, H. K.
2016-01-01
The lattice stability and mechanical strengths of the supposedly superhard transition metal tetraborides (TmB4, Tm = Cr, Mn and Fe) evoked recently much attention from the scientific community due to the potential applications of these materials, as well as because of general scientific interests. In the present study, we show that the surprising stabilization of these compounds from a high symmetry to a low symmetry structure is accomplished by an in-plane rotation of the boron network, which maximizes the in-plane hybridization by crystal field splitting between d orbitals of Tm and p orbitals of B. Studies of mechanical and electronic properties of TmB4 suggest that these tetraborides cannot be intrinsically superhard. The mechanical instability is facilitated by a unique in-plane or out-of-plane weakening of the three-dimensional covalent bond network of boron along different shear deformation paths. These results shed a novel view on the origin of the stability and strength of orthorhombic TmB4, highlighting the importance of combinational analysis of a variety of parameters related to plastic deformation of the crystalline materials when attempting to design new ultra-incompressible, and potentially strong and hard solids. PMID:26976479
Comparison of Finite Element Modeling and Experimental Pressure Distribution in a Diamond Anvil Cell
NASA Astrophysics Data System (ADS)
Kondrat'yev, Andreiy I.; Murphy, Michael J.; Weir, Samuel T.; Vohra, Yogesh K.
2002-10-01
Ultra high pressures can be obtained in a Diamond Anvil Cell (DAC) device by optimizing the geometrical shape of diamond anvil and by use of high strength gasket materials. Radial pressure distribution in a diamond-coated rhenium gasket was measured by the micro-collimated X-ray diffraction techniques at NSLS, Brookhaven National Laboratory up to peak pressure of 220 GPa. The process of DAC compression was described by finite element analysis using NIKE-2D software. The mechanical properties of the diamond-coated gasket material were modeled and radial pressure distribution obtained was in good agreement with the experimental data. The calculated shear stress in diamond in the axial direction was shown to depend strongly on the yield strength of the gasket material and may limit the ultimate pressure that can be obtained with the use of high strength gasket materials. Supported by the National Science Foundation (NSF) Grant No. DMR-0203779.
Burst strength of tubing and casing based on twin shear unified strength theory.
Lin, Yuanhua; Deng, Kuanhai; Sun, Yongxing; Zeng, Dezhi; Liu, Wanying; Kong, Xiangwei; Singh, Ambrish
2014-01-01
The internal pressure strength of tubing and casing often cannot satisfy the design requirements in high pressure, high temperature and high H2S gas wells. Also, the practical safety coefficient of some wells is lower than the design standard according to the current API 5C3 standard, which brings some perplexity to the design. The ISO 10400: 2007 provides the model which can calculate the burst strength of tubing and casing better than API 5C3 standard, but the calculation accuracy is not desirable because about 50 percent predictive values are remarkably higher than real burst values. So, for the sake of improving strength design of tubing and casing, this paper deduces the plastic limit pressure of tubing and casing under internal pressure by applying the twin shear unified strength theory. According to the research of the influence rule of yield-to-tensile strength ratio and mechanical properties on the burst strength of tubing and casing, the more precise calculation model of tubing-casing's burst strength has been established with material hardening and intermediate principal stress. Numerical and experimental comparisons show that the new burst strength model is much closer to the real burst values than that of other models. The research results provide an important reference to optimize the tubing and casing design of deep and ultra-deep wells.
Burst Strength of Tubing and Casing Based on Twin Shear Unified Strength Theory
Lin, Yuanhua; Deng, Kuanhai; Sun, Yongxing; Zeng, Dezhi; Liu, Wanying; Kong, Xiangwei; Singh, Ambrish
2014-01-01
The internal pressure strength of tubing and casing often cannot satisfy the design requirements in high pressure, high temperature and high H2S gas wells. Also, the practical safety coefficient of some wells is lower than the design standard according to the current API 5C3 standard, which brings some perplexity to the design. The ISO 10400: 2007 provides the model which can calculate the burst strength of tubing and casing better than API 5C3 standard, but the calculation accuracy is not desirable because about 50 percent predictive values are remarkably higher than real burst values. So, for the sake of improving strength design of tubing and casing, this paper deduces the plastic limit pressure of tubing and casing under internal pressure by applying the twin shear unified strength theory. According to the research of the influence rule of yield-to-tensile strength ratio and mechanical properties on the burst strength of tubing and casing, the more precise calculation model of tubing-casing's burst strength has been established with material hardening and intermediate principal stress. Numerical and experimental comparisons show that the new burst strength model is much closer to the real burst values than that of other models. The research results provide an important reference to optimize the tubing and casing design of deep and ultra-deep wells. PMID:25397886
3D Porous Graphene by Low-Temperature Plasma Welding for Bone Implants.
Chakravarty, Dibyendu; Tiwary, Chandra Sekhar; Woellner, Cristano F; Radhakrishnan, Sruthi; Vinod, Soumya; Ozden, Sehmus; da Silva Autreto, Pedro Alves; Bhowmick, Sanjit; Asif, Syed; Mani, Sendurai A; Galvao, Douglas S; Ajayan, Pulickel M
2016-10-01
3D scaffolds of graphene, possessing ultra-low density, macroporous microstructure, and high yield strength and stiffness can be developed by a novel plasma welding process. The bonding between adjacent graphene sheets is investigated by molecular dynamics simulations. The high degree of biocompatibility along with high porosity and good mechanical properties makes graphene an ideal material for use as body implants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer
NASA Astrophysics Data System (ADS)
Ma, Hongshi; Li, Tao; Huan, Zhiguang; Zhang, Meng; Yang, Zezheng; Wang, Jinwu; Chang, Jiang; Wu, Chengtie
2018-04-01
The challenges in bone tumor therapy are how to repair the large bone defects induced by surgery and kill all possible residual tumor cells. Compared to cancellous bone defect regeneration, cortical bone defect regeneration has a higher demand for bone substitute materials. To the best of our knowledge, there are currently few bifunctional biomaterials with an ultra-high strength for both tumor therapy and cortical bone regeneration. Here, we designed Fe-CaSiO3 composite scaffolds (30CS) via 3D printing technique. First, the 30CS composite scaffolds possessed a high compressive strength that provided sufficient mechanical support in bone cortical defects; second, synergistic photothermal and ROS therapies achieved an enhanced tumor therapeutic effect in vitro and in vivo. Finally, the presence of CaSiO3 in the composite scaffolds improved the degradation performance, stimulated the proliferation and differentiation of rBMSCs, and further promoted bone formation in vivo. Such 30CS scaffolds with a high compressive strength can function as versatile and efficient biomaterials for the future regeneration of cortical bone defects and the treatment of bone cancer.
Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support.
Lin, Xiaoyang; Liu, Peng; Wei, Yang; Li, Qunqing; Wang, Jiaping; Wu, Yang; Feng, Chen; Zhang, Lina; Fan, Shoushan; Jiang, Kaili
2013-01-01
Graphene, exhibiting superior mechanical, thermal, optical and electronic properties, has attracted great interest. Considering it being one-atom-thick, and the reduced mechanical strength at grain boundaries, the fabrication of large-area suspended chemical vapour deposition graphene remains a challenge. Here we report the fabrication of an ultra-thin free-standing carbon nanotube/graphene hybrid film, inspired by the vein-membrane structure found in nature. Such a square-centimetre-sized hybrid film can realize the overlaying of large-area single-layer chemical vapour deposition graphene on to a porous vein-like carbon nanotube network. The vein-membrane-like hybrid film, with graphene suspended on the carbon nanotube meshes, possesses excellent mechanical performance, optical transparency and good electrical conductivity. The ultra-thin hybrid film features an electron transparency close to 90%, which makes it an ideal gate electrode in vacuum electronics and a high-performance sample support in transmission electron microscopy.
A high-specific-strength and corrosion-resistant magnesium alloy
NASA Astrophysics Data System (ADS)
Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E.; Xiao, Yang; Ferry, Michael
2015-12-01
Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm-3) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.
A high-specific-strength and corrosion-resistant magnesium alloy.
Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E; Xiao, Yang; Ferry, Michael
2015-12-01
Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm(-3)) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.
Experimental observation of multiphoton Thomson scattering
NASA Astrophysics Data System (ADS)
Yan, Wenchao; Golovin, Grigory; Fruhling, Colton; Haden, Daniel; Zhang, Ping; Zhang, Jun; Zhao, Baozhen; Liu, Cheng; Chen, Shouyuan; Banerjee, Sudeep; Umstadter, Donald
2016-10-01
With the advent of high-power lasers, several multiphoton processes have been reported involving electrons in strong fields. For electrons that were initially bound to atoms, both multiphoton ionization and scattering have been reported. However, for free electrons, only low-order harmonic generation has been observed until now. This limitation stems from past difficulty in achieving the required ultra-high-field strengths in scattering experiments. Highly relativistic laser intensities are required to reach the multiphoton regime of Thomson scattering, and generate high harmonics from free electrons. The scaling parameter is the normalized vector potential (a0). Previous experiments have observed phenomena in the weakly relativistic case (a0 >> 1). In ultra-intense fields (a0 >>1), the anomalous electron trajectory is predicted to produce a spectrum characterized by the merging of multiple high-order harmonic generation into a continuum. This may be viewed as the multiphoton Thomson scattering regime analogous to the wiggler of a synchrotron. Thus, the light produced reflects the electrons behavior in an ultra-intense lase field. We discuss the first experiments in the highly relativistic case (a0 15). This material is based upon work supported by NSF No. PHY-153700; US DOE, Office of Science, BES, # DE-FG02-05ER15663; AFOSR # FA9550-11-1-0157; and DHS DNDO # HSHQDC-13-C-B0036.
Simultaneous thermal analysis and thermodilatometry of hybrid fiber reinforced UHPC
NASA Astrophysics Data System (ADS)
Scheinherrová, Lenka; Fořt, Jan; Pavlík, Zbyšek; Černý, Robert
2017-07-01
Development of concrete technology and the availability of variety of materials such as silica fume, mineral microfillers and high-range water-reducing admixtures make possible to produce Ultra-High Performance Concrete (UHPC) with compressive strength higher than 160 MPa. However, UHPC is prone to spall under high temperatures what limits its use for special applications only, such as offshore and marine structures, industrial floors, security barriers etc. The spalling is caused by the thermal stresses due to the temperature gradient during heating, and by the splitting force owing to the release of water vapour. Hybrid fibre reinforcement based on combination of steel and polymer fibres is generally accepted by concrete community as a functional solution preventing spalling. In this way, Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) is produced possessing high mechanical strength, durability and resistance to water and salt ingress. Since UHPFRC find use in construction industry in tunnel linings, precast tunnel segments, and high-rise buildings, its behaviour during the high-temperature exposure and its residual parameters are of the particular importance. On this account, Simultaneous Thermal Analysis (STA) and Thermodilatometry Analysis (TDA) were done in the paper to identify the structural and chemical changes in UHPFRC during its high-temperature load. Based on the experimental results, several physical and chemical processes that studied material underwent at high-temperatures were recognized. The obtained data revealed changes in the composition of the studied material and allowed identification of critical temperatures for material damage.
A Multiscale Meshfree Approach for Modeling Fragment Penetration into Ultra High-Strength Concrete
2011-09-01
velocity history................................................................................ 62 Figure 53. Yield stress versus strain rate for steel ...Spherical steel projectile properties. ....................................................................................... 54 Table 3. J2 material...10000E , Poisson’s ratio 0v , and density 1 . Here the Poisson’s effect is purposely removed for the wave to propagate only in the axial
NASA Astrophysics Data System (ADS)
Mitsomwang, Pusit; Borrisutthekul, Rattana; Klaiw-awoot, Ken; Pattalung, Aran
2017-09-01
This research was carried out aiming to investigate the application of a tip-bottomed tool for bending an advanced ultra-high strength steel sheet. The V-die bending experiment of a dual phase steel (DP980) sheet which had a thickness of 1.6 mm was executed using a conventional bending and a tip-bottomed punches. Experimental results revealed that the springback of the bent worksheet in the case of the tip-bottomed punch was less than that of the conventional punch case. To further discuss bending characteristics, a finite element (FE) model was developed and used to simulate the bending of the worksheet. From the FE analysis, it was found that the application of the tip-bottomed punch contributed the plastic deformation to occur at the bending region. Consequently, the springback of the worksheet reduced. In addition, the width of the punch tip was found to affect the deformation at the bending region and determined the springback of the bent worksheet. Moreover, the use of the tip-bottomed punch resulted in the apparent increase of the surface hardness of the bent worksheet, compared to the bending with the conventional punch.
Experimental Validation for Hot Stamping Process by Using Taguchi Method
NASA Astrophysics Data System (ADS)
Fawzi Zamri, Mohd; Lim, Syh Kai; Razlan Yusoff, Ahmad
2016-02-01
Due to the demand for reduction in gas emissions, energy saving and producing safer vehicles has driven the development of Ultra High Strength Steel (UHSS) material. To strengthen UHSS material such as boron steel, it needed to undergo a process of hot stamping for heating at certain temperature and time. In this paper, Taguchi method is applied to determine the appropriate parameter of thickness, heating temperature and heating time to achieve optimum strength of boron steel. The experiment is conducted by using flat square shape of hot stamping tool with tensile dog bone as a blank product. Then, the value of tensile strength and hardness is measured as response. The results showed that the lower thickness, higher heating temperature and heating time give the higher strength and hardness for the final product. In conclusion, boron steel blank are able to achieve up to 1200 MPa tensile strength and 650 HV of hardness.
Storbeck, Karl-Heinz; Gilligan, Lorna; Jenkinson, Carl; Baranowski, Elizabeth S; Quanson, Jonathan L; Arlt, Wiebke; Taylor, Angela E
2018-05-15
Liquid chromatography tandem mass spectrometry (LC-MS/MS) assays are considered the reference standard for serum steroid hormone analyses, while full urinary steroid profiles are only achievable by gas chromatography (GC-MS). Both LC-MS/MS and GC-MS have well documented strengths and limitations. Recently, commercial ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) systems have been developed. These systems combine the resolution of GC with the high-throughput capabilities of UHPLC. Uptake of this new technology into research and clinical labs has been slow, possibly due to the perceived increase in complexity. Here we therefore present fundamental principles of UHPSFC-MS/MS and the likely applications for this technology in the clinical research setting, while commenting on potential hurdles based on our experience to date. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Fiber-Reinforced Reactive Nano-Epoxy Composites
NASA Technical Reports Server (NTRS)
Zhong, Wei-Hong
2011-01-01
An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).
Evanoff, Kara; Benson, Jim; Schauer, Mark; Kovalenko, Igor; Lashmore, David; Ready, W Jud; Yushin, Gleb
2012-11-27
Materials that can perform simultaneous functions allow for reductions in the total system mass and volume. Developing technologies to produce flexible batteries with good performance in combination with high specific strength is strongly desired for weight- and power-sensitive applications such as unmanned or aerospace vehicles, high-performance ground vehicles, robotics, and smart textiles. State of the art battery electrode fabrication techniques are not conducive to the development of multifunctional materials due to their inherently low strength and conductivities. Here, we present a scalable method utilizing carbon nanotube (CNT) nonwoven fabric-based technology to develop flexible, electrochemically stable (∼494 mAh·g(-1) for 150 cycles) battery anodes that can be produced on an industrial scale and demonstrate specific strength higher than that of titanium, copper, and even a structural steel. Similar methods can be utilized for the formation of various cathode and anode composites with tunable strength and energy and power densities.
Research and Development of Ultra-High Strength X100 Welded Pipe
NASA Astrophysics Data System (ADS)
Chuanguo, Zhang; Lei, Zheng; Ping, Hu; Bei, Zhang; Kougen, Wu; Weifeng, Huang
Ultra-high strength X100 welded pipe can be used in the construction of long distance oil and gas pipeline to improve transmission capacity and reduce operation cost. By using the way of thermo-simulation and pilot rolling, the CCT (Continuous Cooling Transformation) diagram and the relationship between ACC (Accelerated Cooling) parameters, microstructure and mechanical properties were studied for the designed X100 pipeline steel with low carbon, high manganese and niobium micro-alloyed composition in lab. The analysis of CCT diagram indicates that the suitable hardness and microstructure can be obtained in the cooling rate of 20 80°C/sec. The pilot rolling results show that the ACC cooling start temperature below Ar3 phase transformation point is beneficial to increase uniform elongation, and the cooling stop temperature of 150 350°C is helpful to obtain high strength and toughness combination. Based on the research conclusions, the X100 plate and UOE pipe with dimension in O.D.1219×W.T.14.8mm, O.D.1219×W.T.17.8mm, designed for the natural gas transmission pipeline, were trial produced. The manufactured pipe body impact absorbed energy at -10°C is over 250J. The DWTT shear area ratio at 0°C is over 85%. The transverse strength meets the X100 grade requirement, and uniform elongation is over 4%. The X100 plate and UOE pipe with dimension in O.D.711×W.T.20.0mm, O.D.711×W.T.12.5mm, designed for an offshore engineering, were also trial produced. The average impact absorbed energy of pipe body at -30°C is over 200J. The average impact absorbed energy of HAZ (Heat-affected zone) and WM (Welded Seam) at -30°C is over 100J. And the good pipe shapes were obtained
NASA Astrophysics Data System (ADS)
Phaniraj, M. P.; Shin, Young-Min; Jung, Woo-Sang; Kim, Man-Ho; Choi, In-Suk
2017-07-01
Low carbon ferritic steel alloyed with Ti, Mo and Cu was hot rolled and interrupt cooled to produce nano-sized precipitates of copper and (Ti,Mo)C carbides. The steel had a tensile strength of 840 MPa, an increase in yield strength of 380 MPa over that of the plain carbon steel and reasonable ductility. Transmission electron microscopy and small angle neutron scattering were used to characterize size and volume fraction of the precipitates in the steels designed to form only copper precipitates and only (Ti,Mo)C carbides. The individual and combined precipitation strengthening contributions was calculated using the size and volume fraction of precipitates and compared with the measured values.
Ultra-porous titanium oxide scaffold with high compressive strength
Tiainen, Hanna; Lyngstadaas, S. Petter; Ellingsen, Jan Eirik
2010-01-01
Highly porous and well interconnected titanium dioxide (TiO2) scaffolds with compressive strength above 2.5 MPa were fabricated without compromising the desired pore architectural characteristics, such as high porosity, appropriate pore size, surface-to-volume ratio, and interconnectivity. Processing parameters and pore architectural characteristics were investigated in order to identify the key processing steps and morphological properties that contributed to the enhanced strength of the scaffolds. Cleaning of the TiO2 raw powder removed phosphates but introduced sodium into the powder, which was suggested to decrease the slurry stability. Strong correlation was found between compressive strength and both replication times and solid content in the ceramic slurry. Increase in the solid content resulted in more favourable sponge loading, which was achieved due to the more suitable rheological properties of the ceramic slurry. Repeated replication process induced only negligible changes in the pore architectural parameters indicating a reduced flaw size in the scaffold struts. The fabricated TiO2 scaffolds show great promise as load-bearing bone scaffolds for applications where moderate mechanical support is required. PMID:20711636
Ji, Hongjun; Zhou, Junbo; Liang, Meng; Lu, Huajun; Li, Mingyu
2018-03-01
Sintering of low-cost Cu nanoparticles (NPs) for interconnection of chips to substrate at low temperature and in atmosphere conditions is difficult because they are prone to oxidation, but dramatically required in semiconductor industry. In the present work, we successfully synthesized Cu@Ag NPs paste, and they were successfully applied for joining Cu/Cu@Ag NPs paste/Cu firstly in air by the ultrasonic-assisted sintering (UAS) at a temperature of as low as 160 °C. Their sintered microstructures featuring with dense and crystallized cells are completely different from the traditional thermo-compression sintering (TCS). The optimized shear strength of the joints reached to 54.27 MPa, exhibiting one order of magnitude higher than TCS at the same temperature (180 °C) under the UAS. This ultra-low sintering temperature and high performance of the sintered joints were ascribed to ultrasonic effects. The ultrasonic vibrations have distinct effects on the metallurgical reactions of the joints, resulting in the contact and growth of Cu core and the stripping and connection of Ag shell, which contributes to the high shear strength. Thus, the UAS of Cu@Ag NPs paste has a great potential to be applied for high-temperature power device packaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Elegir, G; Bussini, D; Antonsson, S; Lindström, M E; Zoia, L
2007-12-01
In this work, the effect of Trametes pubescens laccase (TpL) used in combination with a low-molecular-weight ultra-filtered lignin (UFL) to improve mechanical properties of kraft liner pulp and chemi-thermo-mechanical pulp was studied. UFL was isolated by ultra-filtration from the kraft cooking black liquor obtained from softwood pulping. This by-product from the pulp industry contains an oligomeric lignin with almost twice the amount of free phenolic moieties than residual kraft pulp lignin. The reactivity of TpL on UFL and kraft pulp was studied by nuclear magnetic resonance spectroscopy and size exclusion chromatography. Laccase was shown to polymerise UFL and residual kraft pulp lignin in the fibres, seen by the increase in their average molecular weight and in the case of UFL as a decrease in the amount of phenolic hydroxyls. The laccase initiated cross-linking of lignin, mediated by UFL, which gives rise to more than a twofold increase in wet strength of kraft liner pulp handsheets without loosing other critical mechanical properties. Hence, this could be an interesting path to decrease mechano-sorptive creep that has been reported to lessen in extent as wet strength is given to papers. The laccase/2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) mediator system showed a greater increase in wet tensile strength of the resulting pulp sheets than the laccase/UFL system. However, other mechanical properties such as dry tensile strength, compression strength and Scott Bond internal strength were negatively affected by the laccase/ABTS system.
Finite element modelling of chain-die forming for ultra-high strength steel
NASA Astrophysics Data System (ADS)
Majji, Raju; Xiang, Yang; Ding, Scott; Yang, Chunhui
2017-10-01
There has been a high demand for weight reduction in automotive vehicles while maintaining passenger safety. A potential steel material to achieve this is Ultra High Strength Steel (UHSS). As a high strength material, it is difficult to be formed with desired profiles using traditional sheet metal forming processes such as Cold Roll Forming. To overcome this problem, a potentially alternative solution is Chain-die Forming (CDF), recently developed. The basic principal of the CDF is to fully combine roll forming and bending processes. The main advantage of this process is the elongated deformation length that significantly increases effective roll radius. This study focuses on identifying issues with the CDF by using CAD modelling, Motion Analysis and Finite Element Analysis (FEA) to devise solutions and construct a more reliable process in an optimal design sense. Some attempts on finite element modelling and simulation of the CDF were conducted using relatively simple models in literature and the research was still not sufficient enough for optimal design of a typical CDF for UHSS. Therefore two numerical models of Chain-die Forming process are developed in this study, including a) one having a set of rolls similar to roll forming but with a large radius, i.e., 20 meters; and b) the other one with dies and punch segments similar to a typical CDF machine. As a case study, to form a 60° channel with single pass was conducted using these two devised models for a comparison. The obtained numerical results clearly show the CDF could generate less residual stress, low strain and small springback of a single pass for the 60° UHSS channel. The design analysis procedure proposed in this study could greatly help the mechanical designers to devise a cost-effective and reliable CDF process for forming UHSS.
NASA Astrophysics Data System (ADS)
Rahimabady, Mojtaba; Qun Xu, Li; Arabnejad, Saeid; Yao, Kui; Lu, Li; Shim, Victor P. W.; Gee Neoh, Koon; Kang, En-Tang
2013-12-01
A nonlinear dielectric poly(vinylidene fluoride-co-hexafluoropropylene)-graft-poly(dopamine methacrylamide) [P(VDF-HFP)-g-PDMA] graft copolymer with ultra-high energy density of 33 J/cm3 was obtained by thermally initiated radical graft polymerization. It was observed that the dielectric constant of the graft copolymer films was 63% higher than that of P(VDF-HFP), with a large dielectric breakdown strength (>850 MV/m). Theoretical analyses and experimental measurements showed that the significant improvement in the electric polarization was attributed to the introduction of the highly polarizable hydroxyl groups in the PDMA side chains, and the large breakdown strength arose from the strong adhesion bonding of the catechol-containing graft copolymer to the metal electrode.
Pfrommer, Andreas; Henning, Anke
2017-05-01
The ultimate intrinsic signal-to-noise ratio (SNR) is a coil independent performance measure to compare different receive coil designs. To evaluate this benchmark in a sample, a complete electromagnetic basis set is required. The basis set can be obtained by curl-free and divergence-free surface current distributions, which excite linearly independent solutions to Maxwell's equations. In this work, we quantitatively investigate the contribution of curl-free current patterns to the ultimate intrinsic SNR in a spherical head-sized model at 9.4 T. Therefore, we compare the ultimate intrinsic SNR obtained with having only curl-free or divergence-free current patterns, with the ultimate intrinsic SNR obtained from a combination of curl-free and divergence-free current patterns. The influence of parallel imaging is studied for various acceleration factors. Moreover results for different field strengths (1.5 T up to 11.7 T) are presented at specific voxel positions and acceleration factors. The full-wave electromagnetic problem is analytically solved using dyadic Green's functions. We show, that at ultra-high field strength (B 0 ⩾7T) a combination of curl-free and divergence-free current patterns is required to achieve the best possible SNR at any position in a spherical head-sized model. On 1.5- and 3T platforms, divergence-free current patterns are sufficient to cover more than 90% of the ultimate intrinsic SNR. Copyright © 2017 John Wiley & Sons, Ltd.
Reactive powder based concretes: Mechanical properties, durability and hybrid use with OPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cwirzen, A.; Penttala, V.; Vornanen, C.
2008-10-15
The basic mechanical properties, frost durability and the bond strength with normal strength concretes of the ultra high strength (UHS) mortars and concretes were studied. The produced mixes had plastic or fluid-like consistency. The 28-day compressive strength varied between 170 and 202 MPa for the heat-treated specimens and between 130 and 150 MPa for the non-heat-treated specimens. The shrinkage values were two times higher for the UHS mortars in comparison with the UHS concretes. After the initial shrinkage, swelling was noticed in the UHS mortars. The lowest creep values were measured for the non-heat-treated UHS concretes. The frost-deicing salts durabilitymore » of the UHS mortars and concretes appeared to be very good even despite the increased water uptake of the UHS concretes. The study of the hybrid concrete beams indicated the formation of low strength transition zone between the UHS mortar and normal strength concrete.« less
Welding of HSLA-100 steel using ultra low carbon bainitic weld metal to eliminate preheating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devletian, J.H.; Singh, D.; Wood, W.E.
1996-12-31
Advanced high strength steels such as the Navy`s HSLA-100 and HSLA-80 contain sufficiently low carbon levels to be weldable without preheating. Unfortunately, commercial filler metals specifically designed to weld these steels without costly preheating have not yet been developed. The objective of this paper is to show that the Navy`s advanced steels can be welded by gas metal-arc (GMAW) and gas tungsten-arc welding (GTAW) without preheating by using filler metal compositions that produce weld metal with an ultra-low carbon bainitic (ULCB) microstructure. Filler metals were fabricated from vacuum induction melted (VIM) ingots containing ultra-low levels of C, O and N.more » HSLA-100 plate and plate from the VIM ingots were welded by both GMAW and GTAW with Ar-5% CO{sub 2} shielding gas using welding conditions to achieve cooling times from 800 to 500 C (t{sub 8-5}) from 35 to 14 sec. Weld metal tensile, hardness and CVN impact toughness testing as well as microstructural studies using transmission electron microscopy were conducted. The ULCB weld metal was relatively insensitive to cooling rate, resulting in good strength and toughness values over a wide range of t{sub 8-5} cooling times. Filler metal compositions which met the mechanical property requirements for HSLA-100, HSLA-80 and HSLA-65 weld metal were developed.« less
UHPC for Blast and Ballistic Protection, Explosion Testing and Composition Optimization
NASA Astrophysics Data System (ADS)
Bibora, P.; Drdlová, M.; Prachař, V.; Sviták, O.
2017-10-01
The realization of high performance concrete resistant to detonation is the aim and expected outcome of the presented project, which is oriented to development of construction materials for larger objects as protective walls and bunkers. Use of high-strength concrete (HSC / HPC - “high strength / performance concrete”) and high-fiber reinforced concrete (UHPC / UHPFC -“Ultra High Performance Fiber Reinforced Concrete”) seems to be optimal for this purpose of research. The paper describes the research phase of the project, in which we focused on the selection of specific raw materials and chemical additives, including determining the most suitable type and amount of distributed fiber reinforcement. Composition of UHPC was optimized during laboratory manufacture of test specimens to obtain the best desired physical- mechanical properties of developed high performance concretes. In connection with laboratory testing, explosion field tests of UHPC specimens were performed and explosion resistance of laboratory produced UHPC testing boards was investigated.
Tensile strength and failure mechanisms of tantalum at extreme strain rates
NASA Astrophysics Data System (ADS)
Hahn, Eric; Fensin, Saryu; Germann, Timothy; Meyers, Marc
Non-equilibrium molecular dynamics simulations are used to probe the tensile response of monocrystalline, bicrystalline, and nanocrystalline tantalum over six orders of magnitude of strain rate. Our analysis of the strain rate dependence of strength is extended to over nine orders of magnitude by bridging the present simulations to recent laser-driven shock experiments. Tensile strength shows a power-law dependence with strain rate over this wide range, with different relationships depending on the initial microstructure and active deformation mechanism. At high strain rates, multiple spall events occur independently and continue to occur until communication occurs by means of relaxation waves. Temperature plays a significant role in the reduction of spall strength as the initial shock required to achieve such large strain rates also contributes to temperature rise, through pressure-volume work as well as visco-plastic heating, which leads to softening and sometimes melting upon release. At ultra-high strain rates, those approaching or exceeding the atomic vibrational frequency, spall strength saturates at the ultimate cohesive strength of the material. UC Research Laboratories Grant (09-LR-06-118456-MEYM); Department of Energy NNSA/SSAP (DE-NA0002080); DOE ASCR Exascale Co-design Center for Materials in Extreme Environments.
Hu, He; Zhang, Yifan; Shukla, Sourabh; Gu, Yuning; Yu, Xin; Steinmetz, Nicole F
2017-09-26
The increasing prevalence of ultra-high-field magnetic resonance imaging (UHFMRI) in biomedical research and clinical settings will improve the resolution and diagnostic accuracy of MRI scans. However, better contrast agents are needed to achieve a satisfactory signal-to-noise ratio. Here, we report the synthesis of a bimodal contrast agent prepared by loading the internal cavity of tobacco mosaic virus (TMV) nanoparticles with a dysprosium (Dy 3+ ) complex and the near-infrared fluorescence (NIRF) dye Cy7.5. The external surface of TMV was conjugated with an Asp-Gly-Glu-Ala (DGEA) peptide via a polyethylene glycol linker to target integrin α 2 β 1 . The resulting nanoparticle (Dy-Cy7.5-TMV-DGEA) was stable and achieved a high transverse relaxivity in ultra-high-strength magnetic fields (326 and 399 mM -1 s -1 at 7 and 9.4 T, respectively). The contrast agent was also biocompatible (low cytotoxicity) and targeted PC-3 prostate cancer cells and tumors in vitro and in vivo as confirmed by bimodal NIRF imaging and T 2 -mapping UHFMRI. Our results show that Dy-Cy7.5-TMV-DGEA is suitable for multiscale MRI scanning from the cellular level to the whole body, particularly in the context of UHFMRI applications.
Characterization of ultrafine grained Cu-Ni-Si alloys by electron backscatter diffraction
NASA Astrophysics Data System (ADS)
Altenberger, I.; Kuhn, H. A.; Gholami, M.; Mhaede, M.; Wagner, L.
2014-08-01
A combination of rotary swaging and optimized precipitation hardening was applied to generate ultra fine grained (UFG) microstructures in low alloyed high performance Cu-based alloy CuNi3Si1Mg. As a result, ultrafine grained (UFG) microstructures with nanoscopically small Ni2Si-precipitates exhibiting high strength, ductility and electrical conductivity can be obtained. Grain boundary pinning by nano-precipitates enhances the thermal stability. Electron channeling contrast imaging (ECCI) and especially electron backscattering diffraction (EBSD) are predestined to characterize the evolving microstructures due to excellent resolution and vast crystallographic information. The following study summarizes the microstructure after different processing steps and points out the consequences for the most important mechanical and physical properties such as strength, ductility and conductivity.
Unusual plasticity and strength of metals at ultra-short load durations
NASA Astrophysics Data System (ADS)
Kanel, G. I.; Zaretsky, E. B.; Razorenov, S. V.; Ashitkov, S. I.; Fortov, V. E.
2017-08-01
This paper briefly reviews recent experimental results on the temperature-rate dependences of flow and fracture stresses in metals under high strain rate conditions for pulsed shock-wave loads with durations from tens of picoseconds up to microseconds. In the experiments, ultimate (‘ideal’) values of the shear and tensile strengths have been approached and anomalous growth of the yield stress with temperature at high strain rates has been confirmed for some metals. New evidence is obtained for the intense dislocation multiplication immediately originating in the elastic precursor of a compression shock wave. It is found that under these conditions inclusions and other strengthening factors may have a softening effect. Novel and unexpected features are observed in the evolution of elastoplastic compression shock waves.
Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.
Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo
2017-01-09
Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.
76 FR 60582 - Buy America Waiver Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
... 1/ 2'' x 0.008 steel fiber with ultimate tensile strength of 290ksi for experimental use in Ultra... 0.008 steel fiber with ultimate tensile strength of 290ksi for experimental use in UHPC in Iowa. In... potential domestic manufacturers for 1/2'' x 0.008 steel fiber with ultimate tensile strength of 290ksi for...
NASA Astrophysics Data System (ADS)
Yin, Jiang; Tao, Anxiang; Xu, Pingguang; Ping, Dehai
The present paper involves a fundamental research on microdomain yield behavior of an ultrahigh strength low alloy steel with high temperature tempered bainite. The smooth cylinder specimen was took from deep water mooring chain links from the steel with the chemical composition of 0.23C-0.25Si -0.70Mn-3.55 (Cr+Ni+Mo) -0.13 (V+Nb+Ti) (mass %) ,which was quenched from 1253K and then tempered at 873K Its macroscopic yield strength is 1120MPa and the tensile strength is 1250MPa In-situ neutron diffraction measurements of loading tension have suggested that a good linear elastic deformation can be kept up to 500MPa stress, and then (200) priority non-linear elastic strain, that is the yield of crystal lattice occur at 700MPa and the (110) non-linear elastic strain was found at 800MPa. The (200) and (110) nonlinear elastic strain increases gradually when the stress was further increased, however, the (211) kept its linear elastic deformation stage as before. The sub-microstructural analysis carried out using TEM and additional determine the nature and quantitative analysis has revealed that there are three kinds of alloy carbides: (1) θ-M3C cementites with an average particle size of less than 50 nm which inside laths and lath boundaries; (2) ɛ-M2C formed uniformly within the ferrites with a length of less than 200 nm and width of less than 20 nm; (3) ultra-fine high density MC cohered with matrix α-Fe and its particle size is about 2 nm. The whole microdomain yield behaviour of the material was possibly influenced by the fcc-MC with high density. The results of CLT (constant load), SSRT (slow strain rate) and KIscc test of the present chain in seawater solution indicate, that threshold value of SCC (stress corrosion cracking) stress exceed 0.8 tensile strength and the chain's KIscc value is double of KIscc value of 4340 steel type parts. MC not only form strong hydrogen trap, but also slow down microdomain yield likely by means of increasing yield strength of crystal lattice, thus reduce SCC sensibility of the steel.
Effect of Diluent on Ultra-low Temperature Curable Conductive Silver Adhesive
NASA Astrophysics Data System (ADS)
Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Du, Haibo; Qin, Lei
2018-03-01
The ultra-low temperature curable conductive silver adhesive needed urgently for the surface conductive treatment of piezoelectric composite material. The effect of diluent acetone on ultra-low temperature curable conductive silver adhesive were investigated for surface conductive treatment of piezoelectric composite material. In order to improve the operability and extend the life of the conductive adhesive, the diluent was added to dissolve and disperse conductive adhesive. With the increase of the content of diluent, the volume resistivity of conductive adhesive decreased at first and then increased, and the shear strength increased at first and then decreased. When the acetone content is 10%, the silver flaky bonded together, arranged the neatest, the smallest gap, the most closely connected, the surface can form a complete conductive network, and the volume resistivity is 2.37 × 10-4Ω · cm, the shear strength is 5.13MPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Lizhi
Advanced Ultra Supercritical Boiler (AUSC) requires materials that can operate in corrosive environment at temperature and pressure as high as 760°C (or 1400°F) and 5000psi, respectively, while at the same time maintain good ductility at low temperature. We develop automated simulation software tools to enable fast large scale screening studies of candidate designs. While direct evaluation of creep rupture strength and ductility are currently not feasible, properties such as energy, elastic constants, surface energy, interface energy, and stack fault energy can be used to assess their relative ductility and creeping strength. We implemented software to automate the complex calculations tomore » minimize human inputs in the tedious screening studies which involve model structures generation, settings for first principles calculations, results analysis and reporting. The software developed in the project and library of computed mechanical properties of phases found in ferritic steels, many are complex solid solutions estimated for the first time, will certainly help the development of low cost ferritic steel for AUSC.« less
Dynamic contrast-enhanced breast MRI at 7 Tesla utilizing a single-loop coil: a feasibility trial.
Umutlu, Lale; Maderwald, Stefan; Kraff, Oliver; Theysohn, Jens M; Kuemmel, Sherko; Hauth, Elke A; Forsting, Michael; Antoch, Gerald; Ladd, Mark E; Quick, Harald H; Lauenstein, Thomas C
2010-08-01
The aim of this study was to assess the feasibility of dynamic contrast-enhanced ultra-high-field breast imaging at 7 Tesla. A total of 15 subjects, including 5 patients with histologically proven breast cancer, were examined on a 7 Tesla whole-body magnetic resonance imaging system using a unilateral linearly polarized single-loop coil. Subjects were placed in prone position on a biopsy support system, with the coil placed directly below the region of interest. The examination protocol included the following sequences: 1) T2-weighted turbo spin echo sequence; 2) six dynamic T1-weighted spoiled gradient-echo sequences; and 3) subtraction imaging. Contrast-enhanced T1-weighted imaging at 7 Tesla could be obtained at high spatial resolution with short acquisition times, providing good image accuracy and a conclusively good delineation of small anatomical and pathological structures. T2-weighted imaging could be obtained with high spatial resolution at adequate acquisition times. Because of coil limitations, four high-field magnetic resonance examinations showed decreased diagnostic value. This first scientific approach of dynamic contrast-enhanced breast magnetic resonance imaging at 7 Tesla demonstrates the complexity of ultra-high-field breast magnetic resonance imaging and countenances the implementation of further advanced bilateral coil concepts to circumvent current limitations from the coil and ultra-high-field magnetic strength. 2010 AUR. Published by Elsevier Inc. All rights reserved.
Turner, Joshua J.; Dakovski, Georgi L.; Hoffmann, Matthias C.; ...
2015-04-11
This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm⁻¹ electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.
NASA Astrophysics Data System (ADS)
Zhao, Jun; Quan, Guo-Zheng; Pan, Jia; Wang, Xuan; Wu, Dong-Sen; Xia, Yu-Feng
2018-01-01
Constitutive model of materials is one of the most requisite mathematical model in the finite element analysis, which describes the relationships of flow behaviors with strain, strain rate and temperature. In order to construct such constitutive relationships of ultra-high-strength BR1500HS steel at medium and low temperature regions, the true stress-strain data over a wide temperature range of 293-873 K and strain rate range of 0.01-10 s-1 were collected from a series of isothermal uniaxial tensile tests. The experimental results show that stress-strain relationships are highly non-linear and susceptible to three parameters involving temperature, strain and strain rate. By considering the impacts of strain rate and temperature on strain hardening, a modified constitutive model based on Johnson-Cook model was proposed to characterize flow behaviors in medium and low temperature ranges. The predictability of the improved model was also evaluated by the relative error (W(%)), correlation coefficient (R) and average absolute relative error (AARE). The R-value and AARE-value for modified constitutive model at medium and low temperature regions are 0.9915 & 1.56 % and 0.9570 & 5.39 %, respectively, which indicates that the modified constitutive model can precisely estimate the flow behaviors for BR1500HS steel in the medium and low temperature regions.
Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures
NASA Technical Reports Server (NTRS)
Wright, Matthew J.; Ramachandran, Gautham; Williams, Brian E.
2011-01-01
Carbon/carbon (C/C) is an established engineering material used extensively in aerospace. The beneficial properties of C/C include high strength, low density, and toughness. Its shortcoming is its limited usability at temperatures higher than the oxidation temperature of carbon . approximately 400 C. Ceramic matrix composites (CMCs) are used instead, but carry a weight penalty. Combining a thin laminate of CMC to a bulk structure of C/C retains all of the benefits of C/C with the high temperature oxidizing environment usability of CMCs. Ultramet demonstrated the feasibility of combining the light weight of C/C composites with the oxidation resistance of zirconium carbide (ZrC) and zirconium- silicon carbide (Zr-Si-C) CMCs in a unique system composed of a C/C primary structure with an integral CMC liner with temperature capability up to 4,200 F (.2,315 C). The system effectively bridged the gap in weight and performance between coated C/C and bulk CMCs. Fabrication was demonstrated through an innovative variant of Ultramet fs rapid, pressureless melt infiltration processing technology. The fully developed material system has strength that is comparable with that of C/C, lower density than Cf/SiC, and ultra-high-temperature oxidation stability. Application of the reinforced ceramic casing to a predominantly C/C structure creates a highly innovative material with the potential to achieve the long-sought goal of long-term, cyclic high-temperature use of C/C in an oxidizing environment. The C/C substructure provided most of the mechanical integrity, and the CMC strengths achieved appeared to be sufficient to allow the CMC to perform its primary function of protecting the C/C. Nozzle extension components were fabricated and successfully hot-fire tested. Test results showed good thermochemical and thermomechanical stability of the CMC, as well as excellent interfacial bonding between the CMC liner and the underlying C/C structure. In particular, hafnium-containing CMCs on C/C were shown to perform well at temperatures exceeding 3,500 F (.1,925 C). The melt-infiltrated CMC-lined C/C composites offered a lower density than Cf/SiC. The melt-infiltrated composites offer greater use temperature than Cf/SiC because of the more refractory ceramic matrices and the C/C substructure provides greater high-temperature strength. The progress made in this work will allow multiple high-temperature components used in oxidizing environments to take advantage of the low density and high strength of C/C combined with the high-temperature oxidation resistance of melt-infiltrated CMCs.
2007-01-01
producers still have a reservoir of intellectual property , product capabilities and process know-how built over several decades. These historical...remarkable properties superior to conventional materials (ultra lightweight, high strength and stiffness). Characteristics of these materials important to...with enforcement of trade agreements and intellectual property (IP) rights. Accordingly, the report recommends more federal support for S&T and
2008-10-01
advanced materials, US producers still have a reservoir of intellectual property , product capabilities and process know-how built over several...while providing remarkable properties superior to conventional materials (ultra lightweight, high strength and stiffness). Characteristics of these...investor and tax environment; and • A level playing field, with enforcement of trade agreements and intellectual property (IP) rights. Accordingly, the
Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook
2017-01-28
In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths ( l f ) of 13, 19.5, and 30 mm and four different volume fractions ( v f ) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers ( l f of 13 mm) with longer fibers ( l f of 19.5 mm and 30 mm).
Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook
2017-01-01
In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths (lf) of 13, 19.5, and 30 mm and four different volume fractions (vf) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers (lf of 13 mm) with longer fibers (lf of 19.5 mm and 30 mm). PMID:28772477
Ultra-High-Field Magnetic Resonance Spectroscopy in Psychiatry.
Godlewska, Beata R; Clare, Stuart; Cowen, Philip J; Emir, Uzay E
2017-01-01
The advantages of ultra-high-field (UHF ≥ 7T) MR have been demonstrated in a variety of MR acquisition modalities. Magnetic resonance spectroscopy (MRS) can particularly benefit from substantial gains in signal-to-noise ratio (SNR) and spectral resolution at UHF, enabling the quantification of numerous metabolites, including glutamate, glutamine, glutathione, and γ-aminobutyric acid that are relevant to psychiatric disorders. The aim of this review is to give an overview about the advantages and advances of UHF MRS and its application to psychiatric disorders. In order to provide a practical guide for potential applications of MRS at UHF, a literature review is given, surveying advantages and disadvantages of MRS at UHF. Key concepts, emerging technologies, practical considerations, and applications of UHF MRS are provided. Second, the strength of UHF MRS is demonstrated using some examples of its application in psychiatric disorders.
Ultra-High-Field Magnetic Resonance Spectroscopy in Psychiatry
Godlewska, Beata R.; Clare, Stuart; Cowen, Philip J.; Emir, Uzay E.
2017-01-01
The advantages of ultra-high-field (UHF ≥ 7T) MR have been demonstrated in a variety of MR acquisition modalities. Magnetic resonance spectroscopy (MRS) can particularly benefit from substantial gains in signal-to-noise ratio (SNR) and spectral resolution at UHF, enabling the quantification of numerous metabolites, including glutamate, glutamine, glutathione, and γ-aminobutyric acid that are relevant to psychiatric disorders. The aim of this review is to give an overview about the advantages and advances of UHF MRS and its application to psychiatric disorders. In order to provide a practical guide for potential applications of MRS at UHF, a literature review is given, surveying advantages and disadvantages of MRS at UHF. Key concepts, emerging technologies, practical considerations, and applications of UHF MRS are provided. Second, the strength of UHF MRS is demonstrated using some examples of its application in psychiatric disorders. PMID:28744229
Remote Respiration Monitoring Using Ultra-wideband Microwave Sensor
NASA Astrophysics Data System (ADS)
Higashikatsuragi, Kenji; Nakahata, Youichiro; Matsunami, Isamu; Kajiwara, Akihiro
Impulse based ultra-wideband radio has lately attracted considerable attention as medical monitoring sensor since it is expected to measure bio-signals of a patient on a bed such as respiration rate and heartbeat with a remote non-contact approach. It is also friendly to the environment including the human body due to the very low electromagnetic energy emission. Using conventional ranging scheme, however, high speed A/D device should be required in order to detect the small respiratory displacement. This paper suggests a respiratory monitoring scheme where the respiration rate is measured by observing the variation of the path strength from the patient. Therefore, it does not require high speed A/D. It also makes possible to design the simultaneous monitoring of multiple patients in hospital beds, for example. In this paper the measurements were conducted for various scenarios and the feasibility is discussed.
Atomistic modeling of mechanical properties of polycrystalline graphene.
Mortazavi, Bohayra; Cuniberti, Gianaurelio
2014-05-30
We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1-10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets.
From brittle to ductile: a structure dependent ductility of diamond nanothread.
Zhan, Haifei; Zhang, Gang; Tan, Vincent B C; Cheng, Yuan; Bell, John M; Zhang, Yong-Wei; Gu, Yuantong
2016-06-07
As a potential building block for the next generation of devices/multifunctional materials that are spreading in almost every technology sector, one-dimensional (1D) carbon nanomaterial has received intensive research interests. Recently, a new ultra-thin diamond nanothread (DNT) has joined this palette, which is a 1D structure with poly-benzene sections connected by Stone-Wales (SW) transformation defects. Using large-scale molecular dynamics simulations, we found that this sp(3) bonded DNT can transition from brittle to ductile behaviour by varying the length of the poly-benzene sections, suggesting that DNT possesses entirely different mechanical responses than other 1D carbon allotropes. Analogously, the SW defects behave like a grain boundary that interrupts the consistency of the poly-benzene sections. For a DNT with a fixed length, the yield strength fluctuates in the vicinity of a certain value and is independent of the "grain size". On the other hand, both yield strength and yield strain show a clear dependence on the total length of DNT, which is due to the fact that the failure of the DNT is dominated by the SW defects. Its highly tunable ductility together with its ultra-light density and high Young's modulus makes diamond nanothread ideal for the creation of extremely strong three-dimensional nano-architectures.
Refractivity variations and propagation at Ultra High Frequency
NASA Astrophysics Data System (ADS)
Alam, I.; Najam-Ul-Islam, M.; Mujahid, U.; Shah, S. A. A.; Ul Haq, Rizwan
Present framework is established to deal with the refractivity variations normally affected the radio waves propagation at different frequencies, ranges and different environments. To deal such kind of effects, many researchers proposed several methodologies. One method is to use the parameters from meteorology to investigate these effects of variations in refractivity on propagation. These variations are region specific and we have selected a region of one kilometer height over the English Channel. We have constructed different modified refractivity profiles based on the local meteorological data. We have recorded more than 48 million received signal strength from a communication links of 50 km operating at 2015 MHz in the Ultra High Frequency band giving path loss between transmitting and receiving stations of the experimental setup. We have used parabolic wave equation method to simulate an hourly value of signal strength and compared the obtained simulated loss to the experimental loss. The analysis is made to compute refractivity distribution of standard (STD) and ITU (International Telecommunication Union) refractivity profiles for various evaporation ducts. It is found that a standard refractivity profile is better than the ITU refractivity profiles for the region at 2015 MHz. Further, it is inferred from the analysis of results that 10 m evaporation duct height is the dominant among all evaporation duct heights considered in the research.
NASA Astrophysics Data System (ADS)
Quan, Guo-zheng; Zhan, Zong-yang; Wang, Tong; Xia, Yu-feng
2017-01-01
The response of true stress to strain rate, temperature and strain is a complex three-dimensional (3D) issue, and the accurate description of such constitutive relationships significantly contributes to the optimum process design. To obtain the true stress-strain data of ultra-high-strength steel, BR1500HS, a series of isothermal hot tensile tests were conducted in a wide temperature range of 973-1,123 K and a strain rate range of 0.01-10 s-1 on a Gleeble 3800 testing machine. Then the constitutive relationships were modeled by an optimally constructed and well-trained backpropagation artificial neural network (BP-ANN). The evaluation of BP-ANN model revealed that it has admirable performance in characterizing and predicting the flow behaviors of BR1500HS. A comparison on improved Arrhenius-type constitutive equation and BP-ANN model shows that the latter has higher accuracy. Consequently, the developed BP-ANN model was used to predict abundant stress-strain data beyond the limited experimental conditions. Then a 3D continuous interaction space for temperature, strain rate, strain and stress was constructed based on these predicted data. The developed 3D continuous interaction space for hot working parameters contributes to fully revealing the intrinsic relationships of BR1500HS steel.
Fukuda, Daisuke; Nara, Yoshitaka; Hayashi, Daisuke; Ogawa, Hideo; Kaneko, Katsuhiko
2013-06-25
For cementitious composites and materials, the sealing of fractures can occur in water by the precipitation of calcium compounds. In this study, the sealing behavior in a macro-fractured high-strength and ultra-low-permeability concrete (HSULPC) specimen was investigated in simulated seawater using micro-focus X-ray computed tomography (CT). In particular, the influence of fracture width (0.10 and 0.25 mm) on fracture sealing was investigated. Precipitation occurred mainly at the outermost parts of the fractured surface of the specimen for both fracture widths. While significant sealing was observed for the fracture width of 0.10 mm, sealing was not attained for the fracture width of 0.25 mm within the observation period (49 days). Examination of the sealed regions on the macro-fracture was performed using a three-dimensional image registration technique and applying image subtraction between the CT images of the HSULPC specimen before and after maintaining the specimen in simulated seawater. The temporal change of the sealing deposits for the fracture width of 0.10 mm was much larger than that for the fracture width of 0.25 mm. Therefore, it is concluded that the sealability of the fracture in the HSULPC is affected by the fracture width.
Characterization of welded HP 9-4-30 steel for the advanced solid rocket motor
NASA Technical Reports Server (NTRS)
Watt, George William
1990-01-01
Solid rocket motor case materials must be high-strength, high-toughness, weldable alloys. The Advanced Solid Rocket Motor (ASRM) cases currently being developed will be made from a 9Ni-4Co quench and temper steel called HP 9-4-30. These ultra high-strength steels must be carefully processed to give a very clean material and a fine grained microstructure, which insures excellent ductility and toughness. The HP 9-4-30 steels are vacuum arc remelted and carbon deoxidized to give the cleanliness required. The ASRM case material will be formed into rings and then welded together to form the case segments. Welding is the desired joining technique because it results in a lower weight than other joining techniques. The mechanical and corrosion properties of the weld region material were fully studied.
Pfrommer, Andreas; Henning, Anke
2018-03-13
The ultimate intrinsic signal-to-noise ratio (UISNR) represents an upper bound for the achievable SNR of any receive coil. To reach this threshold a complete basis set of equivalent surface currents is required. This study systematically investigated to what extent either loop- or dipole-like current patterns are able to reach the UISNR threshold in a realistic human head model between 1.5 T and 11.7 T. Based on this analysis, we derived guidelines for coil designers to choose the best array element at a given field strength. Moreover, we present ideal current patterns yielding the UISNR in a realistic body model. We distributed generic current patterns on a cylindrical and helmet-shaped surface around a realistic human head model. We excited electromagnetic fields in the human head by using eigenfunctions of the spherical and cylindrical Helmholtz operator. The electromagnetic field problem was solved by a fast volume integral equation solver. At 7 T and above, adding curl-free current patterns to divergence-free current patterns substantially increased the SNR in the human head (locally >20%). This was true for the helmet-shaped and the cylindrical surface. On the cylindrical surface, dipole-like current patterns had high SNR performance in central regions at ultra-high field strength. The UISNR increased superlinearly with B0 in most parts of the cerebrum but only sublinearly in the periphery of the human head. The combination of loop and dipole elements could enhance the SNR performance in the human head at ultra-high field strength. © 2018 International Society for Magnetic Resonance in Medicine.
Microstructural evolution during aging of an Al-Cu-Li-Ag-Mg-Zr alloy
NASA Technical Reports Server (NTRS)
Kumar, K. S.; Brown, S. A.; Pickens, Joseph R.
1991-01-01
Alloys in the Al-Cu-Li Ag-Mg subsystem were developed that exhibit desirable combinations of strength and ductility. These Weldalite (trademark) alloys, are unique for Al-Cu-Li alloys in that with or without a prior cold stretching operation, they obtain excellent strength-ductility combinations upon natural and artificial aging. This is significant because it enables complex, near-net shape products such as forgings and super plastically formed parts to be heat treated to ultra-high strengths. On the other hand, commercial extrusions, rolled plates and sheets of other Al-Cu-Li alloys are typically subjected to a cold stretching operation before artificial aging to the highest strength tempers to introduce dislocations that provide low-energy nucleation sites for strengthening precipitates such as the T(sub 1) phase. The variation in yield strength (YS) with Li content in the near-peak aged condition for these Weldalite (trademark) alloys and the associated microstructures were examined, and the results are discussed.
NASA Astrophysics Data System (ADS)
Jung, H.; Park, M.
2017-12-01
Large-scale emplaced peridotite bodies may provide insights into plastic deformation process and tectonic evolution in the mantle shear zone. Due to the complexity of deformation microstructures and processes in natural mantle rocks, the evolution of pre-existing olivine fabrics is still not well understood. In this study, we examine well-preserved transitional characteristics of microstructures and olivine fabrics developed in a mantle shear zone from the Yugu peridotite body, the Gyeonggi Massif, Korean Peninsula. The Yugu peridotite body predominantly comprises spinel harzburgite together with minor lherzolite, dunite, and clinopyroxenite. We classified highly deformed peridotites into four textural types based on their microstructural characteristics: proto-mylonite; proto-mylonite to mylonite transition; mylonite; and ultra-mylonite. Olivine fabrics changed from A-type (proto-mylonite) via D-type (mylonite) to E-type (ultra-mylonite). Olivine fabric transition is interpreted as occurring under hydrous conditions at low temperature and high strain, because of characteristics such as Ti-clinohumite defects (and serpentine) and fluid inclusion trails in olivine, and a hydrous mineral (pargasite) in the matrix, especially in the ultra-mylonitic peridotites. Even though the ultra-mylonitic peridotites contained extremely small (24-30 μm) olivine neoblasts, the olivine fabrics showed a distinct (E-type) pattern rather than a random one. Analysis of the lattice preferred orientation strength, dislocation microstructures, recrystallized grain-size, and deformation mechanism maps of olivine suggest that the proto-mylonitic, mylonitic, and ultra-mylonitic peridotites were deformed by dislocation creep (A-type), DisGBS (D-type), and combination of dislocation and diffusion creep (E-type), respectively.
Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect
Hao, Shijie; Cui, Lishan; Guo, Fangmin; ...
2015-03-09
Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires-orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm 3 that is almost one order ofmore » larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This research provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.« less
Ballistic Analysis of New Military Grade Magnesium Alloys for Armor Applications
NASA Astrophysics Data System (ADS)
Jones, Tyrone L.; Kondoh, Katsuyoshi
Since 2006, the U.S. Army has been evaluating magnesium (Mg) alloys for ballistic structural applications. While Mg-alloys have been used in military structural applications since WWII, very little research has been done to improve its mediocre ballistic performance. The Army's need for ultra-lightweight armor systems has led to research and development of high strength, high ductility Mg-alloys. The U.S. Army Research Laboratory contracted through International Technology Center-Pacific Contract Number FA-5209-09-P-0158 with the Joining and Welding Research Instituteof Osaka University to develop the next generation of high strength, high ductility Mg-alloys using a novel Spinning Water Atomization Process for rapid solidification. New alloys AMX602 and ZAXE1711 in extruded bar form were characterized for microstructure, mechanical, and ballistic response. Significant increases in ballistic performance were evident when compared to the baseline alloy AZ31B.
Zhang, Xuan; Yao, Jiahao; Liu, Bin; Yan, Jun; Lu, Lei; Li, Yi; Gao, Huajian; Li, Xiaoyan
2018-06-14
Mechanical metamaterials with three-dimensional micro- and nano-architectures exhibit unique mechanical properties, such as high specific modulus, specific strength and energy absorption. However, a conflict exists between strength and recoverability in nearly all the mechanical metamaterials reported recently, in particular the architected micro-/nanolattices, which restricts the applications of these materials in energy storage/absorption and mechanical actuation. Here, we demonstrated the fabrication of three-dimensional architected composite nanolattices that overcome the strength-recoverability trade-off. The nanolattices under study are made up of a high entropy alloy coated (14.2-126.1 nm in thickness) polymer strut (approximately 260 nm in the characteristic size) fabricated via two-photon lithography and magnetron sputtering deposition. In situ uniaxial compression inside a scanning electron microscope showed that these composite nanolattices exhibit a high specific strength of 0.027 MPa/kg m3, an ultra-high energy absorption per unit volume of 4.0 MJ/m3, and nearly complete recovery after compression under strains exceeding 50%, thus overcoming the traditional strength-recoverability trade-off. During multiple compression cycles, the composite nanolattices exhibit a high energy loss coefficient (converged value after multiple cycles) of 0.5-0.6 at a compressive strain beyond 50%, surpassing the coefficients of all the micro-/nanolattices fabricated recently. Our experiments also revealed that for a given unit cell size, the composite nanolattices coated with a high entropy alloy with thickness in the range of 14-50 nm have the optimal specific modulus, specific strength and energy absorption per unit volume, which is related to a transition of the dominant deformation mechanism from local buckling to brittle fracture of the struts.
Microstructure of ultra high performance concrete containing lithium slag.
He, Zhi-Hai; Du, Shi-Gui; Chen, Deng
2018-04-03
Lithium slag (LS) is discharged as a byproduct in the process of the lithium carbonate, and it is very urgent to explore an efficient way to recycle LS in order to protect the environments and save resources. Many available supplementary cementitious materials for partial replacement of cement and/or silica fume (SF) can be used to prepare ultra high performance concrete (UHPC). The effect of LS to replace SF partially by weight used as a supplementary cementitious material (0%, 5%, 10% and 15% of binder) on the compressive strengths and microstructure evolution of UHPC has experimentally been studied by multi-techniques including mercury intrusion porosimetry, scanning electron microscope and nanoindentation technique. The results show that the use of LS degrades the microstructure of UHPC at early ages, and however, the use of LS with the appropriate content improves microstructure of UHPC at later ages. The hydration products of UHPC are mainly dominated by ultra-high density calcium-silicate-hydrate (UHD C-S-H) and interfacial transition zone (ITZ) in UHPC has similar compact microstructure with the matrix. The use of LS improves the hydration degree of UHPC and increases the elastic modulus of ITZ in UHPC. LS is a promising substitute for SF for preparation UHPC. Copyright © 2018 Elsevier B.V. All rights reserved.
Super-strong materials for temperatures exceeding 2000 °C.
Silvestroni, Laura; Kleebe, Hans-Joachim; Fahrenholtz, William G; Watts, Jeremy
2017-01-19
Ceramics based on group IV-V transition metal borides and carbides possess melting points above 3000 °C, are ablation resistant and are, therefore, candidates for the design of components of next generation space vehicles, rocket nozzle inserts, and nose cones or leading edges for hypersonic aerospace vehicles. As such, they will have to bear high thermo-mechanical loads, which makes strength at high temperature of great importance. While testing of these materials above 2000 °C is necessary to prove their capabilities at anticipated operating temperatures, literature reports are quite limited. Reported strength values for zirconium diboride (ZrB 2 ) ceramics can exceed 1 GPa at room temperature, but these values rapidly decrease, with all previously reported strengths being less than 340 MPa at 1500 °C or above. Here, we show how the strength of ZrB 2 ceramics can be increased to more than 800 MPa at temperatures in the range of 1500-2100 °C. These exceptional strengths are due to a core-shell microstructure, which leads to in-situ toughening and sub-grain refinement at elevated temperatures. Our findings promise to open a new avenue to designing materials that are super-strong at ultra-high temperatures.
Super-strong materials for temperatures exceeding 2000 °C
NASA Astrophysics Data System (ADS)
Silvestroni, Laura; Kleebe, Hans-Joachim; Fahrenholtz, William G.; Watts, Jeremy
2017-01-01
Ceramics based on group IV-V transition metal borides and carbides possess melting points above 3000 °C, are ablation resistant and are, therefore, candidates for the design of components of next generation space vehicles, rocket nozzle inserts, and nose cones or leading edges for hypersonic aerospace vehicles. As such, they will have to bear high thermo-mechanical loads, which makes strength at high temperature of great importance. While testing of these materials above 2000 °C is necessary to prove their capabilities at anticipated operating temperatures, literature reports are quite limited. Reported strength values for zirconium diboride (ZrB2) ceramics can exceed 1 GPa at room temperature, but these values rapidly decrease, with all previously reported strengths being less than 340 MPa at 1500 °C or above. Here, we show how the strength of ZrB2 ceramics can be increased to more than 800 MPa at temperatures in the range of 1500-2100 °C. These exceptional strengths are due to a core-shell microstructure, which leads to in-situ toughening and sub-grain refinement at elevated temperatures. Our findings promise to open a new avenue to designing materials that are super-strong at ultra-high temperatures.
Super-strong materials for temperatures exceeding 2000 °C
Silvestroni, Laura; Kleebe, Hans-Joachim; Fahrenholtz, William G.; Watts, Jeremy
2017-01-01
Ceramics based on group IV-V transition metal borides and carbides possess melting points above 3000 °C, are ablation resistant and are, therefore, candidates for the design of components of next generation space vehicles, rocket nozzle inserts, and nose cones or leading edges for hypersonic aerospace vehicles. As such, they will have to bear high thermo-mechanical loads, which makes strength at high temperature of great importance. While testing of these materials above 2000 °C is necessary to prove their capabilities at anticipated operating temperatures, literature reports are quite limited. Reported strength values for zirconium diboride (ZrB2) ceramics can exceed 1 GPa at room temperature, but these values rapidly decrease, with all previously reported strengths being less than 340 MPa at 1500 °C or above. Here, we show how the strength of ZrB2 ceramics can be increased to more than 800 MPa at temperatures in the range of 1500–2100 °C. These exceptional strengths are due to a core-shell microstructure, which leads to in-situ toughening and sub-grain refinement at elevated temperatures. Our findings promise to open a new avenue to designing materials that are super-strong at ultra-high temperatures. PMID:28102327
NASA Astrophysics Data System (ADS)
Kaneko, Masanao; Tsujita, Hoshio; Hirano, Toshiyuki
2013-04-01
A single stage ultra micro centrifugal compressor constituting ultra micro gas turbine is required to operate at high rotational speed in order to achieve the pressure ratio which establishes the gas turbine cycle. As a consequence, the aerodynamic losses can be increased by the interaction of a shock wave with the boundary layer on the blade surface. Moreover, the centrifugal force which exceeds the allowable stress of the impeller material can act on the root of blades. On the other hand, the restrictions of processing technology for the downsizing of impeller not only relatively enlarge the size of tip clearance but also make it difficult to shape the impeller with the three-dimensional blade. Therefore, it is important to establish the design technology for the impeller with the two-dimensional blade which possesses the sufficient aerodynamic performance and enough strength to bear the centrifugal force caused by the high rotational speed. In this study, the flow in two types of impeller with the two-dimensional blade which have different meridional configuration was analyzed numerically. The computed results clarified the influence of the meridional configuration on the loss generations in the impeller passage.
Impact resistance and fractography in ultra high molecular weight polyethylenes.
Puértolas, J A; Pascual, F J; Martínez-Morlanes, M J
2014-02-01
Highly crosslinked ultra high molecular weight polyethylenes (UHMWPE) stabilized by a remelting process or by the addition of an antioxidant are highly wear resistant and chemically stable. However, these polyethylenes currently used in total joint replacements suffer a loss of mechanical properties, especially in terms of fracture toughness. In this study we analyze the impact behavior of different polyethylenes using an instrumented double notch Izod test. The materials studied are three resins: GUR1050, GUR1020 with 0.1wt% of vitamin E, and MG003 with 0.1wt% of vitamin E. These resins were gamma irradiated at 90kGy, and pre and post-irradiation remelting processes were applied to GUR1050 for two different time periods. Microstructural data were determined by means of differential scanning calorimetry and transmission electron microscopy. Fractography carried out on the impact fracture surfaces and images obtained by scanning electron microscopy after etching indicated the existence of a fringe structure formed by consecutive ductile-brittle and brittle-ductile transitions, which is related to the appearance of discontinuities in the load-deflection curves. A correlation has been made of the macroscopic impact strength results and the molecular chain and microstructural characteristics of these aforementioned materials, with a view to designing future resins with improved impact resistance. The use of UHMWPE resins with low molecular weight or the application of a remelting treatment could contribute to obtain a better impact strength behavior. © 2013 Published by Elsevier Ltd.
Structural studies with the use of XRD and Mössbauer spectroscopy of new high Manganese steels
NASA Astrophysics Data System (ADS)
Jablonska, Magdalena Barbara
2014-04-01
New high-strength austenitic and austenitic-ferritic manganese steels represent a significant potential in applications for structural components in the automotive and railway industry due to the excellent combination of high mechanical properties and good plasticity. They belong to the group of steels called AHSS (Advanced High Strength Steels) and UHSS (Ultra High Strength Steels). Application of this combination of properties allows a reduction in the weight of vehicles by the use of reduced cross-section components, and thus to reduce fuel consumption. The development and implementation of industrial production of such interesting and promising steel and its use as construction material requires an improvement of their casting properties and susceptibility to deformation in plastic working conditions. In this work, XRD, Transmission Mössbauer Spectroscopy and Conversion Electron Mössbauer Spectroscopy were employed in a study of the new high-manganese steels with a austenite and austenite-ferrite structure. The influence of the plastic deformation parameters on the changes in the structure, distribution of ferrite and disclosure of the presence of carbides was determined. The analysis of phase transformations in various times using CEMS method made possible to reveal their fine details.
NASA Astrophysics Data System (ADS)
Zhang, Lin; Xia, Ming-sheng; Xiong, Zi-liu; Du, Yan-bing; Qiao, Zhi-ming; Zhang, Hong-bo
In the study a low carbon niobium bearing high strength F-B dual phase automobile steel with high hole expansion property has been investigated. Steels of different chemical composition have been investigated by simulation experiments of controlled rolling and cooling process to study the influences of chemical elements, especially for C,Nb and Ti, and cooling pattern on the mechanical properties, flangeability and microstructure of strips. So-called 3-stages cooling pattern was adopted in simulation experiments, combining ultra fast cooling in first stage, air cooling in middle stage and fast cooling in the last stage, and at the end of run-out table the temperature of rolled pieces drop to below Bs point. Optical microstructure and SEM morphology have been observed. Results indicate that it is possible to obtain dual phase microstructure of polygonal ferrite plus bainite in adopting 3-stages cooling pattern. The low temperature coiling method using 3-step controlled cooling pattern after hot rolling is effective to produce low carbon Nb bearing steel with high balance of strength-ductility-flangeability, in addition, higher carbon content of steel tend to be detrimental to flangeability of steel, due to much carbide precipitation at ferrite boundary. Based on the results of simulation experiments mill trial has been carried out and hot rolled high strength steel with tensile strength higher as 600Mpa and hole expansion ratio higher as 100% has been developed successfully.
NASA Astrophysics Data System (ADS)
Ginghtong, Thatchanok; Nakpathomkun, Natthapon; Pechyen, Chiravoot
2018-06-01
The parameters of the plastic injection molding process have been investigated for the manufacture of a 64 oz. ultra-thin polypropylene bucket. The 3 main parameters, such as injection speed, melting temperature, holding pressure, were investigated to study their effect on the physical appearance and compressive strength. The orthogonal array of Taguchi's L9 (33) was used to carry out the experimental plan. The physical properties were measured and the compressive strength was determined using linear regression analysis. The differential scanning calorimeter (DSC) was used to analyze the crystalline structure of the product. The optimization results show that the proposed approach can help engineers identify optimal process parameters and achieve competitive advantages of energy consumption and product quality. In addition, the injection molding of the product includes 24 mm of shot stroke, 1.47 mm position transfer, 268 rpm screw speed, injection speed 100 mm/s, 172 ton clamping force, 800 kgf holding pressure, 0.9 s holding time and 1.4 s cooling time, make the products in the shape and proportion of the product satisfactory. The parameters of influence are injection speed 71.07%, melting temperature 23.31% and holding pressure 5.62%, respectively. The compressive strength of the product was able to withstand a pressure of up to 839 N before the product became plastic. The low melting temperature was caused by the superior crystalline structure of the super-ultra-thin wall product which leads to a lower compressive strength.
Low temperature physical properties of Co-35Ni-20Cr-10Mo alloy MP35N®
NASA Astrophysics Data System (ADS)
Lu, J.; Toplosky, V. J.; Goddard, R. E.; Han, K.
2017-09-01
Multiphase Co-35Ni-20Cr-10Mo alloy MP35N® is a high strength alloy with excellent corrosion resistance. Its applications span chemical, medical, and food processing industries. Thanks to its high modulus and high strength, it found applications in reinforcement of ultra-high field pulsed magnets. Recently, it has also been considered for reinforcement in superconducting wires used in ultra-high field superconducting magnets. For these applications, accurate measurement of its physical properties at cryogenic temperatures is very important. In this paper, physical properties including electrical resistivity, specific heat, thermal conductivity, and magnetization of as-received and aged samples are measured from 2 to 300 K. The electrical resistivity of the aged sample is slightly higher than the as-received sample, both showing a weak linear temperature dependence in the entire range of 2-300 K. The measured specific heat Cp of 430 J/kg-K at 295 K agrees with a theoretical prediction, but is significantly smaller than the values in the literature. The thermal conductivity between 2 and 300 K is in good agreement with the literature which is only available above 77 K. Magnetic property of MP35N® changes significantly with aging. The as-received sample exhibits Curie paramagnetism with a Curie constant C = 0.175 K. While the aged sample contains small amounts of a ferromagnetic phase even at room temperature. The measured MP35N® properties will be useful for the engineering design of pulsed magnets and superconducting magnets using MP35N® as reinforcement.
Creep Response and Deformation Processes in Nanocluster Strengthened Ferritic Steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Taisuke; Sarosi, P. M.; Schneibel, Joachim H
2008-01-01
There is increasing demand for oxide-dispersion-strengthened ferritic alloys that possess both high-temperature strength and irradiation resistance. Improvement of the high-temperature properties requires an understanding of the operative deformation mechanisms. In this study, the microstructures and creep properties of the oxide-dispersion-strengthened alloy 14YWT have been evaluated as a function of annealing at 1000 C for 1 hour up to 32 days. The ultra-fine initial grain size (approx. 100nm) is stable after the shortest annealing time, and even after subsequent creep at 800 C. Longer annealing periods lead to anomalous grain growth that is further enhanced following creep. Remarkably, the minimum creepmore » rate is relatively insensitive to this dramatic grain-coarsening. The creep strength is attributed to highly stable, Ti-rich nanoclusters that appear to pin the initial primary grains, and present strong obstacles to dislocation motion in the large, anomalously grown grains.« less
ERIC Educational Resources Information Center
Perry-Hazan, Lotem
2015-01-01
This paper offers a model for evaluating the strengths and weaknesses of judicial involvement in educational reforms. It uses the model to analyze two case studies of court-led educational reforms in the third rail of Israeli politics--the curricula and the admission policies of ultra-Othodox (Haredi) schools. These case studies are located at the…
NASA Astrophysics Data System (ADS)
Tang, Bingtao; Wang, Qiaoling; Wei, Zhaohui; Meng, Xianju; Yuan, Zhengjun
2016-05-01
Ultra-high-strength in sheet metal parts can be achieved with hot stamping process. To improve the crash performance and save vehicle weight, it is necessary to produce components with tailored properties. The use of tailor-welded high-strength steel is a relatively new hot stamping process for saving weight and obtaining desired local stiffness and crash performance. The simulation of hot stamping boron steel, especially tailor-welded blanks (TWBs) stamping, is more complex and challenging. Information about thermal/mechanical properties of tools and sheet materials, heat transfer, and friction between the deforming material and the tools is required in detail. In this study, the boron-manganese steel B1500HS and high-strength low-alloy steel B340LA are tailor welded and hot stamped. In order to precisely simulate the hot stamping process, modeling and simulation of hot stamping tailor-welded high-strength steels, including phase transformation modeling, thermal modeling, and thermal-mechanical modeling, is investigated. Meanwhile, the welding zone of tailor-welded blanks should be sufficiently accurate to describe thermal, mechanical, and metallurgical parameters. FE simulation model using TWBs with the thickness combination of 1.6 mm boron steel and 1.2 mm low-alloy steel is established. In order to evaluate the mechanical properties of the hot stamped automotive component (mini b-pillar), hardness and microstructure at each region are investigated. The comparisons between simulated results and experimental observations show the reliability of thermo-mechanical and metallurgical modeling strategies of TWBs hot stamping process.
Ren, Xiuyan; Huang, Chang; Duan, Lijie; Liu, Baijun; Bu, Lvjun; Guan, Shuang; Hou, Jiliang; Zhang, Huixuan; Gao, Guanghui
2017-05-14
Toughness, strechability and compressibility for hydrogels were ordinarily balanced for their use as mechanically responsive materials. For example, macromolecular microsphere composite hydrogels with chemical crosslinking exhibited excellent compression strength and strechability, but poor tensile stress. Here, a novel strategy for the preparation of a super-tough, ultra-stretchable and strongly compressive hydrogel was proposed by introducing core-shell latex particles (LPs) as crosslinking centers for inducing efficient aggregation of hydrophobic chains. The core-shell LPs always maintained a spherical shape due to the presence of a hard core even by an external force and the soft shell could interact with hydrophobic chains due to hydrophobic interactions. As a result, the hydrogels reinforced by core-shell LPs exhibited not only a high tensile strength of 1.8 MPa and dramatic elongation of over 20 times, but also an excellent compressive performance of 13.5 MPa at a strain of 90%. The Mullins effect was verified for the validity of core-shell LP-reinforced hydrogels by inducing aggregation of hydrophobic chains. The novel strategy strives to provide a better avenue for designing and developing a new generation of hydrophobic association tough hydrogels with excellent mechanical properties.
Intraday and Interday Reliability of Ultra-Short-Term Heart Rate Variability in Rugby Union Players.
Nakamura, Fábio Y; Pereira, Lucas A; Esco, Michael R; Flatt, Andrew A; Moraes, José E; Cal Abad, Cesar C; Loturco, Irineu
2017-02-01
Nakamura, FY, Pereira, LA, Esco, MR, Flatt, AA, Moraes, JE, Cal Abad, CC, and Loturco, I. Intraday and interday reliability of ultra-short-term heart rate variability in rugby union players. J Strength Cond Res 31(2): 548-551, 2017-The aim of this study was to examine the intraday and interday reliability of ultra-short-term vagal-related heart rate variability (HRV) in elite rugby union players. Forty players from the Brazilian National Rugby Team volunteered to participate in this study. The natural log of the root mean square of successive RR interval differences (lnRMSSD) assessments were performed on 4 different days. The HRV was assessed twice (intraday reliability) on the first day and once per day on the following 3 days (interday reliability). The RR interval recordings were obtained from 2-minute recordings using a portable heart rate monitor. The relative reliability of intraday and interday lnRMSSD measures was analyzed using the intraclass correlation coefficient (ICC). The typical error of measurement (absolute reliability) of intraday and interday lnRMSSD assessments was analyzed using the coefficient of variation (CV). Both intraday (ICC = 0.96; CV = 3.99%) and interday (ICC = 0.90; CV = 7.65%) measures were highly reliable. The ultra-short-term lnRMSSD is a consistent measure for evaluating elite rugby union players, in both intraday and interday settings. This study provides further validity to using this shortened method in practical field conditions with highly trained team sports athletes.
Ultra-Slow Dielectric Relaxation Process in Polyols
NASA Astrophysics Data System (ADS)
Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke
2004-04-01
Dielectric relaxation processes with relaxation times larger than that for the structural α process are reported for glycerol, xylitol, sorbitol and their mixtures for the first time. Appearance of this ultra-slow process depends on cooling rate. More rapid cooling gives larger dielectric relaxation strength. However, relaxation time is not affected by cooling rate and shows non-Arrhenius temperature dependence with correlation to the α process. It can be considered that non-equilibrium dynamic structure causes the ultra-slow process. Scale of such structure would be much larger than that of the region for the cooperative molecular orientations for the α process.
Effect of Heat-Affected Zone on Spot Weldability in Automotive Ultra High Strength Steel Sheet
NASA Astrophysics Data System (ADS)
Nagasaka, Akihiko; Naito, Junya; Chinzei, Shota; Hojo, Tomohiko; Horiguchi, Katsumi; Shimizu, Yuki; Furusawa, Takuro; Kitahara, Yu
Effect of heat-affected zone (HAZ) on spot weldability in automotive hot stamping (HS) steel sheet was investigated for automotive applications. Tensile test was performed on a tensile testing machine at a crosshead speed of 3 mm/min, using spot welded test specimen (Parallel length: 60 mm, Width: 20 mm, Thickness: 1.4 mm, Tab: 20×20 mm). The spot welding test was carried out using spot welded test specimen with welding current (I) of 6.3 kA to 9.5 kA. Hardness was measured with the dynamic ultra micro Vickers hardness tester. In HS steel, has very high strength of 1 500 MPa, tensile strength (TS) and total elongation (TEl) of the spot welded test specimen of HS steel were lower than those of base metal test specimen. The spot welded test specimen broke in the weld. The Vickers hardnesses (HVs) of base metal and fusion zone of hot stamping steel were around HV500. In addition, the hardness of HAZ was under HV300. The difference of hardness between fusion zone and HAZ was around HV200. The hardness distribution acted as a notch. On the other hand, in dual phase (DP) steel, has low strength of 590 MPa, the TS of spot welded test specimen of DP steel was the same as the base metal test specimen because of the breaking of base metal. The TEl of the spot welded test specimen of DP steel was smaller than that of base metal test specimen. In the spot welded test specimen of DP steel, the hardness of base metal was around HV200 and the fusion zone was around HV500. The hardness distribution did not act as a notch. The difference in hardness between base metal and HAZ acted on a crack initiation at HAZ softening.
Hydrogen Environment Assisted Cracking of Modern Ultra-High Strength Martensitic Steels
NASA Astrophysics Data System (ADS)
Pioszak, Greger L.; Gangloff, Richard P.
2017-09-01
Martensitic steels (Aermet®100, Ferrium®M54™, Ferrium®S53®, and experimental CrNiMoWV at ultra-high yield strength of 1550 to 1725 MPa) similarly resist hydrogen environment assisted cracking (HEAC) in aqueous NaCl. Cracking is transgranular, ascribed to increased steel purity and rare earth addition compared to intergranular HEAC in highly susceptible 300M. Nano-scale precipitates ((Mo,Cr)2C and (W,V)C) reduce H diffusivity and the K-independent Stage II growth rate by 2 to 3 orders of magnitude compared to 300M. However, threshold K TH is similarly low (8 to 15 MPa√m) for each steel at highly cathodic and open circuit potentials. Transgranular HEAC likely occurs along martensite packet and {110}α'-block interfaces, speculatively governed by localized plasticity and H decohesion. Martensitic transformation produces coincident site lattice interfaces; however, a connected random boundary network persists in 3D to negate interface engineering. The modern steels are near-immune to HEAC when mildly cathodically polarized, attributed to minimal crack tip H production and uptake. Neither reduced Co and Ni in M54 and CrNiMoWV nor increased Cr in S53 broadly degrade HEAC resistance compared to baseline AM100. The latter suggests that crack passivity dominates acidification to widen the polarization window for HEAC resistance. Decohesion models predict the applied potential dependencies of K TH and d a/d t II with a single-adjustable parameter, affirming the importance of steel purity and trap sensitive H diffusivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuo, T.; Kawasaki, T.; Sakamoto, H.
2003-02-27
We have been developing a radioactive waste package made of high-strength and ultra low-permeability concrete (HSULPC) for geological disposal of TRU wastes, which is expected to be much more impervious to water than conventional concrete. In this study, basic data for the HSULPC regarding its the impervious character and the thermodynamics during cement hydration were obtained through water permeability measurements using cold isostatic pressing (CIP) and adiabatic concrete hydration experiments, respectively. Then, a prediction tool to find concrete package construction conditions to avoid thermal cracking was developed, which could deal with coupled calculations of cement hydration, heat transfer, stress, andmore » cracking. The developed tool was applied to HSULPC hydration on a small-scale cylindrical model to examine whether there was any effect on cracking which depended on the ratio of concrete cylinder thickness to its inner diameter. The results were compared to experiments. For concrete with a compressive strength of 200MPa, the water permeability coefficient was 4 x 10{sup 19} m/s. Dependences of activation energy and frequency factor on degree of cement hydration had a sharp peaking due to the nucleation rate-determining step, and a gradual increase region due to the diffusion rate-determining step. From analyses of the small-scale cylindrical model, dependences of the maximum principal stress on the radius were obtained. When the ratio of the concrete thickness to the heater diameter was around 1, the risk of cracking was predicted to be minimized. These numerical predictions from the developed tool were verified by experiments.« less
Ultra-high modulus organic fiber hybrid composites
NASA Technical Reports Server (NTRS)
Champion, A. R.
1981-01-01
An experimental organic fiber, designated Fiber D, was characterized, and its performance as a reinforcement for composites was investigated. The fiber has a modulus of 172 GPa, tensile strength of 3.14 GPa, and density of 1.46 gm/cu cm. Unidirectional Fiber D/epoxy laminates containing 60 percent fiber by volume were evaluated in flexure, shear, and compression, at room temperature and 121 C in both the as fabricated condition and after humidity aging for 14 days at 95 percent RH and 82 C. A modulus of 94.1 GPa, flexure strength of 700 MPa, shear strength of 54 MPa, and compressive strength of 232 MPa were observed at room temperature. The as-fabricated composites at elevated temperature and humidity aged material at room temperature had properties 1 to 20 percent below these values. Combined humidity aging plus evaluated temperature testing resulted in even lower mechanical properties. Hybrid composite laminates of Fiber D with Fiber FP alumina or Thornel 300 graphite fiber were also evaluated and significant increases in modulus, flexure, and compressive strengths were observed.
Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear
Chhowalla; Amaratunga
2000-09-14
The tribological properties of solid lubricants such as graphite and the metal dichalcogenides MX2 (where M is molybdenum or tungsten and X is sulphur or selenium) are of technological interest for reducing wear in circumstances where liquid lubricants are impractical, such as in space technology, ultra-high vacuum or automotive transport. These materials are characterized by weak interatomic interactions (van der Waals forces) between their layered structures, allowing easy, low-strength shearing. Although these materials exhibit excellent friction and wear resistance and extended lifetime in vacuum, their tribological properties remain poor in the presence of humidity or oxygen, thereby limiting their technological applications in the Earth's atmosphere. But using MX2 in the form of isolated inorganic fullerene-like hollow nanoparticles similar to carbon fullerenes and nanotubes can improve its performance. Here we show that thin films of hollow MoS2 nanoparticles, deposited by a localized high-pressure arc discharge method, exhibit ultra-low friction (an order of magnitude lower than for sputtered MoS2 thin films) and wear in nitrogen and 45% humidity. We attribute this 'dry' behaviour in humid environments to the presence of curved S-Mo-S planes that prevent oxidation and preserve the layered structure.
Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear
NASA Astrophysics Data System (ADS)
Chhowalla, Manish; Amaratunga, Gehan A. J.
2000-09-01
The tribological properties of solid lubricants such as graphite and the metal dichalcogenides MX2 (where M is molybdenum or tungsten and X is sulphur or selenium) are of technological interest for reducing wear in circumstances where liquid lubricants are impractical, such as in space technology, ultra-high vacuum or automotive transport. These materials are characterized by weak interatomic interactions (van der Waals forces) between their layered structures, allowing easy, low-strength shearing. Although these materials exhibit excellent friction and wear resistance and extended lifetime in vacuum, their tribological properties remain poor in the presence of humidity or oxygen, thereby limiting their technological applications in the Earth's atmosphere. But using MX2 in the form of isolated inorganic fullerene-like hollow nanoparticles similar to carbon fullerenes and nanotubes can improve its performance. Here we show that thin films of hollow MoS2 nanoparticles, deposited by a localized high-pressure arc discharge method, exhibit ultra-low friction (an order of magnitude lower than for sputtered MoS2 thin films) and wear in nitrogen and 45% humidity. We attribute this `dry' behaviour in humid environments to the presence of curved S-Mo-S planes that prevent oxidation and preserve the layered structure.
Advancements in non-contact metrology of asphere and diffractive optics
NASA Astrophysics Data System (ADS)
DeFisher, Scott
2017-11-01
Advancements in optical manufacturing technology allow optical designers to implement steep aspheric or high departure surfaces into their systems. Measuring these surfaces with profilometers or CMMs can be difficult due to large surface slopes or sharp steps in the surface. OptiPro has developed UltraSurf to qualify the form and figure of steep aspheric and diffractive optics. UltraSurf is a computer controlled, non-contact coordinate measuring machine. It incorporates five air-bearing axes, linear motors, high-resolution feedback, and a non-contact probe. The measuring probe is scanned over the optical surface while maintaining perpendicularity and a constant focal offset. Multiple probe technologies are available on UltraSurf. Each probe has strengths and weaknesses relative to the material properties, surface finish, and figure error of an optical component. The measuring probes utilize absolute distance to resolve step heights and diffractive surface patterns. The non-contact scanning method avoids common pitfalls with stylus contact instruments. Advancements in measuring speed and precision has enabled fast and accurate non-contact metrology of diffractive and steep aspheric surfaces. The benefits of data sampling with twodimensional profiles and three-dimensional topography maps will be presented. In addition, accuracy, repeatability, and machine qualification will be discussed with regards to aspheres and diffractive surfaces.
Statistical power comparisons at 3T and 7T with a GO / NOGO task.
Torrisi, Salvatore; Chen, Gang; Glen, Daniel; Bandettini, Peter A; Baker, Chris I; Reynolds, Richard; Yen-Ting Liu, Jeffrey; Leshin, Joseph; Balderston, Nicholas; Grillon, Christian; Ernst, Monique
2018-07-15
The field of cognitive neuroscience is weighing evidence about whether to move from standard field strength to ultra-high field (UHF). The present study contributes to the evidence by comparing a cognitive neuroscience paradigm at 3 Tesla (3T) and 7 Tesla (7T). The goal was to test and demonstrate the practical effects of field strength on a standard GO/NOGO task using accessible preprocessing and analysis tools. Two independent matched healthy samples (N = 31 each) were analyzed at 3T and 7T. Results show gains at 7T in statistical strength, the detection of smaller effects and group-level power. With an increased availability of UHF scanners, these gains may be exploited by cognitive neuroscientists and other neuroimaging researchers to develop more efficient or comprehensive experimental designs and, given the same sample size, achieve greater statistical power at 7T. Published by Elsevier Inc.
Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures
NASA Astrophysics Data System (ADS)
Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.
2018-03-01
Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.
NASA Astrophysics Data System (ADS)
Ellis, Brett; Zhou, Min; McDowell, David
2011-06-01
As part of a hierarchy-based computational materials design program, a fully dynamic 3D mesoscale model is developed to quantify the effects of energy storage and dissipation mechanisms in Fiber-Reinforced Ultra-High Performance Concretes (FRUHPCs) subjected to blast loading. This model accounts for three constituent components: reinforcement fibers, cementitious matrix, and fiber-matrix interfaces. Microstructure instantiations encompass a range of fiber volume fraction (0-2%), fiber length (10-15 mm), and interfacial bonding strength (1-100 MPa). Blast loading with scaled distances between 5 and 10 m/kg1/3 are considered. Calculations have allowed the delineation and characterization of the evolutions of kinetic energy, strain energy, work expended on interfacial damage and failure, frictional dissipation along interfaces, and bulk dissipation through granular flow as functions of microstructure, loading and constituent attributes. The relations obtained point out avenues for designing FRUHPCs with properties tailored for specific load environments and reveal trade-offs between various design scenarios.
Wang, Ming; Huang, Lanping; Chen, Kanghua; Liu, Wensheng
2018-01-01
This work focuses on controlling grain boundary structure in an ultra-high strength Al-8.6Zn-2.5Mg-2.2Cu-0.16Zr (wt.%) alloy by the combined addition of trace Cr (0.1wt.%) and Pr (0.14wt.%), and evaluating mechanical properties and localized corrosion behaviors of the alloy in the peak aged condition. The introduction of trace Cr and Pr leads to the formation of nanoscale Cr, Pr-containing Al 3 Zr and Zr-containing PrCr 2 Al 20 dispersoids which can obviously inhibit the recrystallization and sub-grain growth of the super-high strength Al-Zn-Mg-Cu alloys, and retain the deformation-recovery microstructure dominated by low-angle grain boundaries. The nearly ellipsoidal dispersoids with a size of 10-35nm are discretely distributed and precipitate free zones are hardly formed in low-angle grain boundaries. This new alloy composition exhibits better combined properties, higher resistance to stress corrosion, exfoliation corrosion and inter-granular corrosion with the undamaged strength, ductility and fracture toughness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Novel hybrid columns made of ultra-high performance concrete and fiber reinforced polymers
NASA Astrophysics Data System (ADS)
Zohrevand, Pedram
The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column parameters on the cyclic behavior of UHPCFFT columns. Strong correlations were noted between the initial stiffness and the stiffness index, and between the moment capacity and the reinforcement index. Finally, a thorough analytical study was carried out to investigate the seismic response of the proposed steel-free UHPCFFT columns, which showed their superior earthquake resistance, as compared to their RC counterparts.
Lightweight Ceramics for Aeroacoustic Applications
NASA Technical Reports Server (NTRS)
Kwan, H. W.; Spamer, G. T.; Yu, J.; Yasukawa, B.
1997-01-01
The use of a HTP (High Temperature Performance) ceramic foam for aeroacoustic applications is investigated. HTP ceramic foam is a composition of silica and alumina fibers developed by LMMS. This foam is a lightweight high-temperature fibrous bulk material with small pore size, ultra high porosity, and good strength. It can be used as a broadband noise absorber at both room and high temperature (up to 1800 F). The investigation included an acoustic assessment as well as material development, and environmental and structural evaluations. The results show that the HTP ceramic foam provides good broadband noise absorbing capability and adequate strength when incorporating the HTP ceramic foam system into a honeycomb sandwich structure. On the other hand, the material is sensitive to Skydrol and requires further improvements. Good progress has been made in the impedance model development. A relationship between HTP foam density, flow resistance, and tortuosity will be established in the near future. Additional effort is needed to investigate the coupling effects between face sheet and HTP foam material.
Vacuum Strength of Two Candidate Glasses for a Space Observatory
NASA Technical Reports Server (NTRS)
Manning, Timothy Andrew; Tucker, Dennis S.; Herren, Kenneth A.; Gregory, Don A.
2007-01-01
The strengths of two candidate glass types for use in a space observatory were measured. Samples of ultra-low expansion glass (ULE) and borosilicate (Pyrex) were tested in air and in vacuum at room temperature (20 degrees C) and in vacuum after being heated to 200 degrees C. Both glasses tested in vacuum showed a significant increase in strength over those tested in air. However, there was no statistical difference between the strength of samples tested in vacuum at room temperature and those tested in vacuum after heating to 200 degrees C.
Vacuum Strength of Two Candidate Glasses for a Space Observatory
NASA Technical Reports Server (NTRS)
Manning, T. a.; Tucker, D. S.; Herren, K. A.; Gregory, D. A.
2007-01-01
The strengths of two candidate glass types for use in a space observatory were measured. Samples of ultra-low expansion glass (ULE) and borosilicate (Pyrex) were tested in air and in vacuum at room temperature (20 C) and in vacuum after being heated to 200 C. Both glasses tested in vacuum showed an increase in strength over those tested in air. However, there was no statistical difference between the strength of samples tested in vacuum at room temperature and those tested in vacuum after heating to 200 C.
Raven, Erika P.; Duyn, Jeff H.
2016-01-01
Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain–heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain–heart interactions. PMID:27044994
Chang, Catie; Raven, Erika P; Duyn, Jeff H
2016-05-13
Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain-heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain-heart interactions. © 2016 The Author(s).
NASA Technical Reports Server (NTRS)
Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
Hydrogen Environment Assisted Cracking of Ultra-High Strength AetMet(Trademark) 100 Steel
2006-01-01
landing gear. LV.B. Effect of Steel Composition on Intergranular HEAC Instances of intergranular HEAC and IiHAC in AerMetTm 100 were rarely observed in the...fit the H concentration effect with that of the other elements. While the Maraging and Custom 465TM steels are relatively pure, the H concentration...to -0.9 VsCE and increased cracking at more anodic and more cathodic potentials 471 . Similar effects were noted for HEAC of 18Ni Maraging steel , with
Numerical Modeling of Ultra Wideband Combined Antennas
NASA Astrophysics Data System (ADS)
Zorkal'tseva, M. Yu.; Koshelev, V. I.; Petkun, A. A.
2017-12-01
With the help of a program we developed, based on the finite difference method in the time domain, we have investigated the characteristics of ultra wideband combined antennas in detail. The antennas were developed to radiate bipolar pulses with durations in the range 0.5-3 ns. Data obtained by numerical modeling are compared with the data of experimental studies on antennas and have been used in the synthesis of electromagnetic pulses with maximum field strength.
Target surface area effects on hot electron dynamics from high intensity laser–plasma interactions
Zulick, C.; Raymond, A.; McKelvey, A.; ...
2016-06-15
Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron sheath field confinement on electron dynamics. X-ray emission due to energetic electrons was imaged using a K α imaging crystal. Electrons were observed to travel along the surface of wire targets, and were slowed mainly by the induced fields. Targets with reduced surface areas were correlated with increased hot electron densities and proton energies. Furthermore, Hybrid Vlasov–Fokker–Planck simulations demonstrated increased electric sheath field strength in reduced surface area targets.
Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed
NASA Technical Reports Server (NTRS)
Gayda, John
2002-01-01
Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the photomicrographs. The fine grain size in the bore can be contrasted with the coarse grain size in the rim. Testing (at NASA Glenn) of coupons machined from these disks showed that the DMHT approach did indeed produce a high-strength, fatigue resistant bore and a creep-resistant rim. This combination of properties was previously unobtainable using conventional heat treatments, which produced disks with a uniform grain size. Future plans are in place to spin test a DMHT disk under the Ultra Safe Propulsion Project to assess the viability of this technology at the component level. This testing will include measurements of disk growth at a high temperature as well as the determination of burst speed at an intermediate temperature.
The effect of tooling design parameters on web-warping in the flexible roll forming of UHSS
NASA Astrophysics Data System (ADS)
Jiao, Jingsi; Rolfe, Bernard; Mendiguren, Joseba; Galdos, Lander; Weiss, Matthias
2013-12-01
To reduce weight and improve passenger safety there is an increased need in the automotive industry to use Ultra High Strength Steels (UHSS) for structural and crash components. However, the application of UHSS is restricted by their limited formability and the difficulty of forming them in conventional processes. An alternative method of manufacturing structural auto body parts from UHSS is the flexible roll forming process which can accommodate materials with high strength and limited ductility in the production of complex and weight-optimised components. However, one major concern in the flexible roll forming is web-warping, which is the height deviation of the profile web area. This paper investigates, using a numerical model, the effect on web-warping with respect to various forming methods. The results demonstrate that different forming methods lead to different amount of web-warping in terms of forming the product with identical geometry.
Okazaki, Narihiro; Burghardt, Andrew J; Chiba, Ko; Schafer, Anne L; Majumdar, Sharmila
2016-12-01
The primary objective of this study was to analyze the relationships between bone microstructure and strength, and male osteoporosis risk factors including age, body mass index, serum 25-hydroxyvitamin D level, and testosterone level. A secondary objective was to compare microstructural and strength parameters between men with normal, low, and osteoporosis-range areal bone mineral density (aBMD). Seventy-eight healthy male volunteers (mean age 62.4 ± 7.8 years, range 50-84 years) were recruited. The participants underwent dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT) of the ultra-distal radius and tibia. From the HR-pQCT images, volumetric bone mineral density (BMD) and cortical and trabecular bone microstructure were evaluated, and bone strength and cortical load fraction (Ct.LF) were estimated using micro-finite element analysis (μFEA). Age was more strongly correlated with bone microstructure than other risk factors. Age had significant positive correlations with cortical porosity at both ultra-distal radius and tibia ( r = 0.36, p = 0.001, and r = 0.47, p < 0.001, respectively). At the tibia, age was negatively correlated with cortical BMD, whereas it was positively correlated with trabecular BMD. In μFEA, age was negatively correlated with Ct.LF, although not with bone strength. Compared with men with normal aBMD, men with low or osteoporosis-range aBMD had significantly poor trabecular bone microstructure and lower bone strength at the both sites, while there was no significant difference in cortical bone. Cortical bone microstructure was negatively affected by aging, and there was a suggestion that the influence of aging may be particularly important at the weight-bearing sites.
Dispersed SiC nanoparticles in Ni observed by ultra-small-angle X-ray scattering
Xie, R.; Ilavsky, J.; Huang, H. F.; ...
2016-11-24
In this paper, a metal-ceramic composite, nickel reinforced with SiC nanoparticles, was synthesized and characterized for its potential application in next-generation molten salt nuclear reactors. Synchrotron ultra-small-angle X-ray scattering (USAXS) measurements were conducted on the composite. The size distribution and number density of the SiC nanoparticles in the material were obtained through data modelling. Scanning and transmission electron microscopy characterization were performed to substantiate the results of the USAXS measurements. Tensile tests were performed on the samples to measure the change in their yield strength after doping with the nanoparticles. Finally, the average interparticle distance was calculated from the USAXSmore » results and is related to the increased yield strength of the composite.« less
Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors.
Fluegel, Brian; Mialitsin, Aleksej V; Beaton, Daniel A; Reno, John L; Mascarenhas, Angelo
2015-05-28
Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10(-4). Comparing our strain sensitivity and signal strength in Al(x)Ga(1-x)As with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 10(3), thus obviating key constraints in semiconductor strain metrology.
Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors
Fluegel, Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; Reno, John L.; Mascarenhas, Angelo
2015-01-01
Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10−4. Comparing our strain sensitivity and signal strength in AlxGa1−xAs with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology. PMID:26017853
Wang, Yuhui; Shi, Baodong; He, Yanming; Zhang, Hongwang; Peng, Yan
2018-01-01
A Fe-34.5 wt % Mn-0.04 wt % C ultra-high Mn steel with a fully recrystallised fine-grained structure was produced by cold rolling and subsequent annealing. The steel exhibited excellent cryogenic temperature properties with enhanced work hardening rate, high tensile strength, and high uniform elongation. In order to capture the unique mechanical behaviour, a constitutive model within finite strain plasticity framework based on Hill-type yield function was established with standard Armstrong-Frederick type isotropic hardening. In particular, the evolution of isotropic hardening was determined by the content of martensite; thus, a relationship between model parameters and martensite content is built explicitly. PMID:29414840
Ultra-High Temperature Materials Characterization for Propulsion Applications
NASA Technical Reports Server (NTRS)
Rogers, Jan; Hyers, Robert
2007-01-01
Propulsion system efficiency increases as operating temperatures are increased. Some very high-temperature materials are being developed, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available for many materials of interest at the desired operating temperatures (up to approx. 3000 K). The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, density and thermal expansion for materials being developed for propulsion applications. The ESL facility uses electrostatic fields to position samples between electrodes during processing and characterization studies. Because the samples float between the electrodes during studies, they are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. The MSFC ESL has provided non-contact measurements of properties of materials up to 3400 C. Density and thermal expansion are measured by analyzing digital images of the sample at different temperatures. Our novel, non-contact method for measuring creep uses rapid rotation to deform the sample. Digital images of the deformed samples are analyzed to obtain the creep properties, which match those obtained using ASTM Standard E-139 for Nb at 1985 C. Data from selected ESL-based characterization studies will be presented. The ESL technique could support numerous propulsion technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high-temperature alloys for turbines and structures.
Sánchez-Sánchez, Xavier; Elias-Zuñiga, Alex; Hernández-Avila, Marcelo
2018-06-01
Ultrasonic injection moulding was confirmed as an efficient processing technique for manufacturing ultra-high molecular weight polyethylene (UHMWPE)/graphite composites. Graphite contents of 1 wt%, 5 wt%, and 7 wt% were mechanically pre-mixed with UHMWPE powder, and each mixture was pressed at 135 °C. A precise quantity of the pre-composites mixtures cut into irregularly shaped small pieces were subjected to ultrasonic injection moulding to fabricate small tensile specimens. The Taguchi method was applied to achieve the optimal level of ultrasonic moulding parameters and to maximize the tensile strength of the composites; the results showed that mould temperature was the most significant parameter, followed by the graphite content and the plunger profile. The observed improvement in tensile strength in the specimen with 1 wt% graphite was of 8.8% and all composites showed an increase in the tensile modulus. Even though the presence of graphite produced a decrease in the crystallinity of all the samples, their thermal stability was considerably higher than that of pure UHMWPE. X-ray diffraction and scanning electron microscopy confirmed the exfoliation and dispersion of the graphite as a function of the ultrasonic processing. Fourier transform infrared spectra showed that the addition of graphite did not influence the molecular structure of the polymer matrix. Further, the ultrasonic energy led oxidative degradation and chain scission in the polymer. Copyright © 2018 Elsevier B.V. All rights reserved.
Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene.
Crosse, J A; Xu, Xiaodong; Sherwin, Mark S; Liu, R B
2014-09-24
In a semiconductor illuminated by a strong terahertz (THz) field, optically excited electron-hole pairs can recombine to emit light in a broad frequency comb evenly spaced by twice the THz frequency. Such high-order THz sideband generation is of interest both as an example of extreme nonlinear optics and also as a method for ultrafast electro-optical modulation. So far, this phenomenon has only been observed with large field strengths (~10 kV cm(-1)), an obstacle for technological applications. Here we predict that bi-layer graphene generates high-order sidebands at much weaker THz fields. We find that a THz field of strength 1 kV cm(-1) can produce a high-sideband spectrum of about 30 THz, 100 times broader than in GaAs. The sidebands are generated despite the absence of classical collisions, with the quantum coherence of the electron-hole pairs enabling recombination. These remarkable features lower the barrier to desktop electro-optical modulation at THz frequencies, facilitating ultrafast optical communications.
Ngwa, Hilary Afeseh; Ay, Muhammet; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G
2017-01-01
Vanadium (V) is a transition metal that presents in multiple oxidation states and numerous inorganic compounds and is also an ultra-trace element considered to be essential for most living organisms. Despite being one of the lightest metals, V offers high structural strength and good corrosion resistance and thus has been widely adopted for high-strength steel manufacturing. High doses of V exposure are toxic, and inhalation exposure to V adversely affects the respiratory system. The neurotoxicological properties of V are just beginning to be identified. Recent studies by our group and others demonstrate the neurotoxic potential of this metal in the nigrostriatal system and other parts of the central nervous system (CNS). The neurotoxic effects of V have been mainly attributed to its ability to induce the generation of reactive oxygen species (ROS). It is noteworthy that the neurotoxicity induced by occupational V exposure commonly occurs with co-exposure to other metals, especially manganese (Mn). This review focuses on the chemistry, pharmacology, toxicology, and neurotoxicity of V.
Synthetic Spin-Orbit and Light Field Coupling in Ultra-cold Quantum Gases
NASA Astrophysics Data System (ADS)
Dong, Lin
Ultra-cold quantum gases subjected to light-induced synthetic gauge potentials have become an emergent field of theoretical and experimental studies. Because of the novel application of two-photon Raman transitions, ultra-cold neutral atoms behave like charged particles in magnetic field. The Raman coupling naturally gives rise to an effective spin-orbit interaction which couples the atoms center-of-mass motion to its selected pseudo-spin degrees of freedom. Combined with unprecedented controllability of interactions, geometry, disorder strength, spectroscopy, and high resolution measurement of momentum distribution, etc., we are truly in an exciting era of fulfilling and going beyond Richard Feynman's vision. of realizing quantum simulators to better understand the quantum mechanical nature of the universe, manifested immensely in the ultra-cold regimes. In this dissertation, we present a collection of theoretical progresses made by the doctoral candidate and his colleagues and collaborators. From the past few years of work, we mainly address three aspects of the synthetic spin-orbit and light field induced coupling in ultracold quantum gases: a) The ground-state physics of singleparticle system, two-body bound states, and many-body systems, all of which are subjected to spin-orbit coupling originated from synthetic gauge potentials; b) The symmetry breaking, topological phase transition and quench dynamics, which are conveniently offered by the realized experimental setup; c) The proposal and implications of light field induced dynamical spin-orbit coupling for atoms inside optical cavity. Our work represents an important advancement of theoretical understanding to the active research frontier of ultra-cold atom physics with spin-orbit coupling.
Equal channel angular pressing (ECAP) and forging of commercially pure titanium (CP-Ti)
NASA Astrophysics Data System (ADS)
Krystian, Maciej; Huber, Daniel; Horky, Jelena
2017-10-01
Pure titanium with ultra-fine grained (UFG) microstructure is an exceptionally interesting material for biomedical and dental applications due to its very good biocompatibility and high strength. Such bulk, high-strength UFG materials are commonly produced by different Severe Plastic Deformation (SPD) techniques, whereof Equal Channel Angular Pressing (ECAP) is the most commonly used one. In this investigation commercially pure (CP) titanium (grade 2) was processed by ECAP using a die with a channel diameter of 20mm and an intersection angle of 105°. Six passes using route B120 (in which the billet is rotated between subsequent passes by 120°) at a temperature of 400°C were performed leading to a substantial grain refinement and an increase of strength and hardness. Subsequently, a thermal treatment study on ECAP-processed samples at different temperatures and for different time periods was carried out revealing the stability limit for ECAP CP-Ti as well as the best conditions leading to an improvement in both, strength and ductility. Furthermore, room temperature forging of the as-received (AR; hot-rolled and annealed) as well as ECAP-processed material was conducted. Tensile tests and hardness mappings revealed that forging is capable to further increase the strength of ECAP CP-Ti by more than 20%. Moreover, the mechanical properties are significantly more homogenous than after forging only.
Abe, Fujio
2008-01-01
It is crucial for the carbon concentration of 9% Cr steel to be reduced to a very low level, so as to promote the formation of MX nitrides rich in vanadium as very fine and thermally stable particles to enable prolonged periods of exposure at elevated temperatures and also to eliminate Cr-rich carbides M23C6. Sub-boundary hardening, which is inversely proportional to the width of laths and blocks, is shown to be the most important strengthening mechanism for creep and is enhanced by the fine dispersion of precipitates along boundaries. The suppression of particle coarsening during creep and the maintenance of a homogeneous distribution of M23C6 carbides near prior austenite grain boundaries, which precipitate during tempering and are less fine, are effective for preventing the long-term degradation of creep strength and for improving long-term creep strength. This can be achieved by the addition of boron. The steels considered in this paper exhibit higher creep strength at 650 °C than existing high-strength steels used for thick section boiler components. PMID:27877920
NASA Astrophysics Data System (ADS)
Sutherland, Michael Stephen
2010-12-01
The Galactic magnetic field is poorly understood. Essentially the only reliable measurements of its properties are the local orientation and field strength. Its behavior at galactic scales is unknown. Historically, magnetic field measurements have been performed using radio astronomy techniques which are sensitive to certain regions of the Galaxy and rely upon models of the distribution of gas and dust within the disk. However, the deflection of trajectories of ultra high energy cosmic rays arriving from extragalactic sources depends only on the properties of the magnetic field. In this work, a method is developed for determining acceptable global models of the Galactic magnetic field by backtracking cosmic rays through the field model. This method constrains the parameter space of magnetic field models by comparing a test statistic between backtracked cosmic rays and isotropic expectations for assumed cosmic ray source and composition hypotheses. Constraints on Galactic magnetic field models are established using data from the southern site of the Pierre Auger Observatory under various source distribution and cosmic ray composition hypotheses. Field models possessing structure similar to the stellar spiral arms are found to be inconsistent with hypotheses of an iron cosmic ray composition and sources selected from catalogs tracing the local matter distribution in the universe. These field models are consistent with hypothesis combinations of proton composition and sources tracing the local matter distribution. In particular, strong constraints are found on the parameter space of bisymmetric magnetic field models scanned under hypotheses of proton composition and sources selected from the 2MRS-VS, Swift 39-month, and VCV catalogs. Assuming that the Galactic magnetic field is well-described by a bisymmetric model under these hypotheses, the magnetic field strength near the Sun is less than 3-4 muG and magnetic pitch angle is less than -8°. These results comprise the first measurements of the Galactic magnetic field using ultra-high energy cosmic rays and supplement existing radio astronomical measurements of the Galactic magnetic field.
1992-09-01
Optical macrograph of flat-etched sample 75B3-8 ........................ 30 Figure 4.15 Constitutional supercooling in alloy solidification ... alloying elements such as Mn, Mo, Ni and Cr are added to increase the strength and hardenability of the steel. However, substantial limitations on...0.9 Carbon Equivalent CE = C + Mn + Si + Ni + Cu + Cr + Mo + V 6 15 5 Figure 2.1 Graville Diagram (Blicharski et al, 1989, p.318) 3 B. ULTRA LOW
Taylor, Douglas; Dyer, David; Lew, Valerie; Khine, Michelle
2010-09-21
This paper presents a rapid, ultra-low-cost approach to fabricate microfluidic devices using a polyolefin shrink film and a digital craft cutter. The shrinking process (with a 95% reduction in area) results in relatively uniform and consistent microfluidic channels with smooth surfaces, vertical sidewalls, and high aspect ratio channels with lateral resolutions well beyond the tool used to cut them. The thermal bonding of the layers results in strongly bonded devices. Complex microfluidic designs are easily designed on the fly and protein assays are also readily integrated into the device. Full device characterization including channel consistency, optical properties, and bonding strength are assessed in this technical note.
Cracking of Beams Strengthened with Externally Bonded SRP Tapes
NASA Astrophysics Data System (ADS)
Krzywoń, Rafał
2017-10-01
Paper discusses strengthening efficiency of relatively new kind of SRP composite based on high strength steel wires. They are made of ultra-high strength steel primarily used in cords of car tires. Through advanced treatment, the mechanical properties of SRP steel are similar to other high carbon cold drawn steels used in construction industry. Strength significantly exceed 2000 MPa, there is no perfect plasticity at yield stress level. Almost linear stress-strain relationship makes SRP steel mechanical properties similar to carbon fibers. Also flexibility and weight ratio of the composite overlay is slightly worse than CFRP strip. Despite these advantages SRP is not as popular as other composites reinforced with fibers of high strength. This is due to the small number of studies of SRP behavior and applicability. Paper shows selected results of the laboratory test of beams strengthened with use of SRP and CFRP externally bonded overlays. Attention has been focused primarily on the phenomenon of cracking. Comparison include the cracking moment, crack width and spacing, coverage of crack zone. Despite the somewhat lower rigidity of SRP tapes, they have a much better adhesion to concrete, so that the crack width is comparable in almost the whole load range. The paper also includes an assessment of the common methods of checking the condition of cracking in relation to the tested SRP strengthening. The paper presents actual calculation procedures to determine the crack spacing and crack width. The discussed formulas are verified with results of provided laboratory tests.
Overview of SBIR Phase II Work on Hollow Graphite Fibers
NASA Technical Reports Server (NTRS)
Stallcup, Michael; Brantley, Lott W. (Technical Monitor)
2001-01-01
Ultra-Lightweight materials are enabling for producing space based optical components and support structures. Heretofore, innovative designs using existing materials has been the approach to produce lighter-weight optical systems. Graphite fiber reinforced composites, because of their light weight, have been a material of frequent choice to produce space based optical components. Hollow graphite fibers would be lighter than standard solid graphite fibers and, thus, would save weight in optical components. The Phase I SBIR program demonstrated it is possible to produce hollow carbon fibers that have strengths up to 4.2 GPa which are equivalent to commercial fibers, and composites made from the hollow fibers had substantially equivalent composite strengths as commercial fiber composites at a 46% weight savings. The Phase II SBIR program will optimize processing and properties of the hollow carbon fiber and scale-up processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA. Information presented here includes an overview of the strength of some preliminary hollow fibers, photographs of those fibers, and a short discussion of future plans.
Yu, Sang-Hui; Lee, Yoon; Oh, Seunghan; Cho, Hye-Won; Oda, Yutaka; Bae, Ji-Myung
2012-01-01
The aim of this study was to evaluate the reinforcing effects of three types of fibers at various concentrations and in different combinations on flexural properties of denture base resin. Glass (GL), polyaromatic polyamide (PA) and ultra-high molecular weight polyethylene (PE) fibers were added to heat-polymerized denture base resin with volume concentrations of 2.6%, 5.3%, and 7.9%, respectively. In addition, hybrid fiber-reinforced composite (FRC) combined with either two or three types of fibers were fabricated. The flexural strength, modulus and toughness of each group were measured with a universal testing machine at a crosshead speed of 5 mm/min. In the single fiber-reinforced composite groups, the 5.3% GL and 7.9% GL had the highest flexural strength and modulus; 5.3% PE was had the highest toughness. Hybrid FRC such as GL/PE, which showed the highest toughness and the flexural strength, was considered to be useful in preventing denture fractures clinically.
Preparation and Mechanical Properties of Graphene Oxide: Cement Nanocomposites
Babak, Fakhim; Abolfazl, Hassani; Alimorad, Rashidi; Parviz, Ghodousi
2014-01-01
We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar. PMID:24574878
NASA Astrophysics Data System (ADS)
Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon
2014-08-01
The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.
Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon
2014-08-01
The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.
Lv, Peng; Wang, Yaru; Ji, Chenglong; Yuan, Jiajiao
2017-01-01
Ultra-compressible electrodes with high electrochemical performance, reversible compressibility and extreme durability are in high demand in compression-tolerant energy storage devices. Herein, an ultra-compressible ternary composite was synthesized by successively electrodepositing poly(3,4-ethylenedioxythiophene) (PEDOT) and MnO2 into the superelastic graphene aerogel (SEGA). In SEGA/PEDOT/MnO2 ternary composite, SEGA provides the compressible backbone and conductive network; MnO2 is mainly responsible for pseudo reactions; the middle PEDOT not only reduces the interface resistance between MnO2 and graphene, but also further reinforces the strength of graphene cellar walls. The synergistic effect of the three components in the ternary composite electrode leads to high electrochemical performances and good compression-tolerant ability. The gravimetric capacitance of the compressible ternary composite electrodes reaches 343 F g−1 and can retain 97% even at 95% compressive strain. And a volumetric capacitance of 147.4 F cm−3 is achieved, which is much higher than that of other graphene-based compressible electrodes. This value of volumetric capacitance can be preserved by 80% after 3500 charge/discharge cycles under various compression strains, indicating an extreme durability.
Fabrication of ultra-fine grained aluminium tubes by RTES technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafarzadeh, H., E-mail: h.jafarzadeh@ut.ac.ir; Abrinia, K.
Recently, repetitive tube expansion and shrinking have been exploited as a means for producing ultra-fine grained and nano-crystalline microstructures for magnesium alloy tubes. This method includes two different half-cycles and was based on pressing a tubular part through an angular channel die with two shear zones. Since the aluminium alloys are the most widely used materials in industries, in this study, repetitive tube expansion and shrinking as a new severe plastic deformation technique was applied to commercially pure aluminium for fabricating ultra-fine grained aluminium tubes for the first time and the ability of this process in significant grain refinement ismore » determined even after single cycle. Transmission electron microscopy and X-ray diffraction were used to evaluate the microstructure of the repetitive tube expansion and shrinking processed materials and the examinations showed ultra-fine grains with the average grain size of 320 nm after one cycle of repetitive tube expansion and shrinking. The yield strength, ultimate tensile strength increased notably by the factor of 2.17 and 1.27 respectively, after one cycle of repetitive tube expansion and shrinking, whereas the elongation to failure as well as the uniform elongation decreased. Furthermore, micro-hardness distribution through the part's section proposed the hardness increasing to ~ 55 HV from the initial value of ~ 28 HV after one cycle of repetitive tube expansion and shrinking. - Highlights: • RTES was introduced for fabricating the UFGed AA1050 tubes for the first time. • Nano-grained AA1050 tube was obtained by RTES process. • Grain size of ~ 320 nm was obtained after two half-cycles of RTES process. • Yield and ultimate strength increased by the factor of 2.17 and 1.27 respectively. • The microhardness increased to ~ 55 HV from the initial value of ~ 28 HV.« less
A practice of ultra-fine tailings disposal as filling material in a gold mine.
Deng, D Q; Liu, L; Yao, Z L; Song, K I-I L; Lao, D Z
2017-07-01
A practice of cemented backfill technology with ultra-fine tailings in a gold mine was comprehensively presented, and a series of tests were conducted in accordance with the peculiar properties of ultra-fine tailings and the mining technology conditions. The test results show that, the tailings from Shuiyindong Gold Mine have a great grinding fineness, with the average particle diameter 22.03 μm, in which the ultra-fine particles with the diameter below 20 μm occupying 66.13%. The analysis results of chemical components of tailings indicate that the content of SiO 2 is relatively low, i.e., 33.08%, but the total content of CaO, MgO and Al 2 O 3 is relatively high i.e., 36.5%. After the settlement of 4-6 h, the tailing slurry with the initial concentration of 40% has the maximum settling concentration of 54.692%, and the corresponding maximum settling unit weight is 1.497 g/cm 3 . During the field application, the ultra-fine tailings and PC32.5 cement were mixed with the cement-tailings ratios of 1:3-1:8, and the slurry concentration of 50 wt% was prepared. Using the slurry pump, the prepared cemented backfill slurries flowed into the goaf, and then the strength of the cemented backfill body met the mining technique requirements in Shuiyindong Gold Mine, where the ore body has a smooth occurrence, with the average thickness of approximately 2 m and the inclination angle ranging from 5 to 10°. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Ziomek-Moroz; J.A. Hawk; R. Thodla
2012-05-06
The Unites States predicted 60% growth in energy demand by 2030 makes oil and natural gas primary target fuels for energy generation. The fact that the peak of oil production from shallow wells (< 5000 m) is about to be reached, thereby pushing the oil and natural gas industry into deeper wells. However, drilling to depths greater than 5000 m requires increasing the strength-to weight ratio of the drill pipe materials. Grade UD-165 is one of the ultra- high yield strength carbon steels developed for ultra deep drilling (UDD) activities. Drilling UDD wells exposes the drill pipes to Cl{sup -},more » HCO{sub 3}{sup -}/CO{sub 3}{sup 2-}, and H{sub 2}S-containig corrosive environments (i.e., sour environments) at higher pressures and temperatures compared to those found in conventional wells. Because of the lack of synergism within the service environment, operational stresses can result in catastrophic brittle failures characteristic for environmentally assisted cracking (EAC). Approximately 75% of all drill string failures are caused by fatigue or corrosion fatigue. Since there is no literature data on the corrosion fatigue performance of UD-165 in sour environments, research was initiated to better clarify the fatigue crack growth (FCGR) behavior of this alloy in UDD environments. The FCGR behavior of ultra-strength carbon steel, grade UD-165, was investigated by monitoring crack growth rate in deaerated 5%NaCl solution buffered with NaHCO{sub 3}/Na{sub 2}CO{sub 3} and in contact with H{sub 2}S. The partial pressure of H{sub 2}S (p{sub H2S}) was 0.83 kPa and pH of the solution was adjusted by NaOH to 12. The fatigue experiments were performed at 20 and 85 C in an autoclave with surface investigations augmented by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. In this study, research focused on surface analyses supported by the fatigue crack growth rate measurements. Fig. 1 shows an SEM micrograph of the crack that propagated from the notch in the solution at 20 C. Accumulation of the corrosion products is visible along the crack. The EDX chemical analysis near the crack tip found iron, sulfur and oxygen in the passive layer. The surface of the sample after the fatigue test in the sour environment at 85{sup o}, Fig. 2, C looks different from that fatigued surface at 20 C. The crack propagates across the passive film that covers the surface fairly uniformly. Some spallation of the passive film is observed near the notch. The EDX chemical analysis of the passive film near the crack tip identified mainly iron, carbon and oxygen. It appears that temperature plays a very important role in formation of the passive film. This may be associated with different solubility of H{sub 2}S in the solution, which will be further studied.« less
A Metallurgical Evaluation of the Powder-Bed Laser Additive Manufactured 4140 Steel Material
NASA Astrophysics Data System (ADS)
Wang, Wesley; Kelly, Shawn
2016-03-01
Using laser powder bed fusion (PBF-L) additive manufacturing (AM) process for steel or iron powder has been attempted for decades. This work used a medium carbon steel (AISI 4140) powder to explore the feasibility of AM. The high carbon equivalent of 4140 steel (CEIIW ≈ 0.83) has a strong tendency toward cold cracking. As such, the process parameters must be carefully controlled to ensure the AM build quality. Through an orthogonally designed experimental matrix, a laser-welding procedure was successfully developed to produce 4140 steel AM builds with no welding defects. In addition, the microstructure and micro-cleanliness of the as-welded PBF-L AM builds were also examined. The results showed an ultra-fine martensite lath structure and an ultra-clean internal quality with minimal oxide inclusion distribution. After optimizing the PBF-L AM process parameters, including the laser power and scan speed, the as-welded AM builds yielded an average tensile strength higher than 1482 MPa and an average 33 J Charpy V-notch impact toughness at -18°C. The surface quality, tensile strength, and Charpy V-notch impact toughness of AM builds were comparable to the wrought 4140 steel. The excellent mechanical properties of 4140 steel builds created by the PBF-L AM AM process make industrial production more feasible, which shows great potential for application in the aerospace, automobile, and machinery industries.
Wafer-level hermetic vacuum packaging by bonding with a copper-tin thin film sealing ring
NASA Astrophysics Data System (ADS)
Akashi, Teruhisa; Funabashi, Hirofumi; Takagi, Hideki; Omura, Yoshiteru; Hata, Yoshiyuki
2018-04-01
A wafer-level hermetic vacuum packaging technology intended for use with MEMS devices was developed based on a copper-tin (CuSn) thin film sealing ring. To allow hermetic packaging, the shear strength of the CuSn thin film bond was improved by optimizing the pretreatment conditions. As a result, an average shear strength of 72.3 MPa was obtained and a cavity that had been hermetically sealed using wafer-level packaging (WLP) maintained its vacuum for 1.84 years. The total pressures in the cavities and the partial pressures of residual gases were directly determined with an ultra-low outgassing residual gas analyzer (RGA) system. Hermeticity was evaluated based on helium leak rates, which were calculated from helium pressures determined with the RGA system. The resulting data showed that a vacuum cavity following 1.84 years storage had a total pressure of 83.1 Pa, contained argon as the main residual gas and exhibited a helium leak rate as low as 1.67 × 10-17 Pa · m3 s-1, corresponding to an air leak rate of 6.19 × 10-18 Pa · m3 s-1. The RGA data demonstrate that WLP using a CuSn thin film sealing ring permits ultra-high hermeticity in conjunction with long-term vacuum packaging that is applicable to MEMS devices.
The effect of tooling design parameters on web-warping in the flexible roll forming of UHSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Jingsi; Weiss, Matthias; Rolfe, Bernard
To reduce weight and improve passenger safety there is an increased need in the automotive industry to use Ultra High Strength Steels (UHSS) for structural and crash components. However, the application of UHSS is restricted by their limited formability and the difficulty of forming them in conventional processes. An alternative method of manufacturing structural auto body parts from UHSS is the flexible roll forming process which can accommodate materials with high strength and limited ductility in the production of complex and weight-optimised components. However, one major concern in the flexible roll forming is web-warping, which is the height deviation ofmore » the profile web area. This paper investigates, using a numerical model, the effect on web-warping with respect to various forming methods. The results demonstrate that different forming methods lead to different amount of web-warping in terms of forming the product with identical geometry.« less
Dietrich, Susanne; Hertrich, Ingo; Ackermann, Hermann
2015-01-01
In many functional magnetic resonance imaging (fMRI) studies blind humans were found to show cross-modal reorganization engaging the visual system in non-visual tasks. For example, blind people can manage to understand (synthetic) spoken language at very high speaking rates up to ca. 20 syllables/s (syl/s). FMRI data showed that hemodynamic activation within right-hemispheric primary visual cortex (V1), bilateral pulvinar (Pv), and left-hemispheric supplementary motor area (pre-SMA) covaried with their capability of ultra-fast speech (16 syllables/s) comprehension. It has been suggested that right V1 plays an important role with respect to the perception of ultra-fast speech features, particularly the detection of syllable onsets. Furthermore, left pre-SMA seems to be an interface between these syllabic representations and the frontal speech processing and working memory network. So far, little is known about the networks linking V1 to Pv, auditory cortex (A1), and (mesio-) frontal areas. Dynamic causal modeling (DCM) was applied to investigate (i) the input structure from A1 and Pv toward right V1 and (ii) output from right V1 and A1 to left pre-SMA. As concerns the input Pv was significantly connected to V1, in addition to A1, in blind participants, but not in sighted controls. Regarding the output V1 was significantly connected to pre-SMA in blind individuals, and the strength of V1-SMA connectivity correlated with the performance of ultra-fast speech comprehension. By contrast, in sighted controls, not understanding ultra-fast speech, pre-SMA did neither receive input from A1 nor V1. Taken together, right V1 might facilitate the “parsing” of the ultra-fast speech stream in blind subjects by receiving subcortical auditory input via the Pv (= secondary visual pathway) and transmitting this information toward contralateral pre-SMA. PMID:26148062
Dietrich, Susanne; Hertrich, Ingo; Ackermann, Hermann
2015-01-01
In many functional magnetic resonance imaging (fMRI) studies blind humans were found to show cross-modal reorganization engaging the visual system in non-visual tasks. For example, blind people can manage to understand (synthetic) spoken language at very high speaking rates up to ca. 20 syllables/s (syl/s). FMRI data showed that hemodynamic activation within right-hemispheric primary visual cortex (V1), bilateral pulvinar (Pv), and left-hemispheric supplementary motor area (pre-SMA) covaried with their capability of ultra-fast speech (16 syllables/s) comprehension. It has been suggested that right V1 plays an important role with respect to the perception of ultra-fast speech features, particularly the detection of syllable onsets. Furthermore, left pre-SMA seems to be an interface between these syllabic representations and the frontal speech processing and working memory network. So far, little is known about the networks linking V1 to Pv, auditory cortex (A1), and (mesio-) frontal areas. Dynamic causal modeling (DCM) was applied to investigate (i) the input structure from A1 and Pv toward right V1 and (ii) output from right V1 and A1 to left pre-SMA. As concerns the input Pv was significantly connected to V1, in addition to A1, in blind participants, but not in sighted controls. Regarding the output V1 was significantly connected to pre-SMA in blind individuals, and the strength of V1-SMA connectivity correlated with the performance of ultra-fast speech comprehension. By contrast, in sighted controls, not understanding ultra-fast speech, pre-SMA did neither receive input from A1 nor V1. Taken together, right V1 might facilitate the "parsing" of the ultra-fast speech stream in blind subjects by receiving subcortical auditory input via the Pv (= secondary visual pathway) and transmitting this information toward contralateral pre-SMA.
Production of High Harmonic X-ray Radiation from Non-linear Thomson Scattering at LLNL PLEIADES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, J; Doyuran, A; Frigola, P
2005-05-17
We describe an experiment for production of high harmonic x-ray radiation from Thomson backscattering of an ultra-short high power density laser by a relativistic electron beam at the PLEIADES facility at LLNL. In this scenario, electrons execute a ''figure-8'' motion under the influence of the high-intensity laser field, where the constant characterizing the field strength is expected to exceed unity: a{sub L} = eE{sub L}/m{sub e}cw{sub L} {ge} 1. With large a{sub L} this motion produces high harmonic x-ray radiation and significant broadening of the spectral peaks. This paper is intended to give a layout of the PLEIADES experiment, alongmore » with progress towards experimental goals.« less
Structure and properties during aging of an Al-Cu-Li-Ag-Mg alloy, Weldalite (tm) 049
NASA Technical Reports Server (NTRS)
Gayle, Frank W.; Heubaum, Frank H.; Pickens, Joseph R.
1991-01-01
An Al-Cu-Li-Ag-Mg alloy, Weldalite (trademark) 049, was recently introduced as an ultra-high strength alloy (7000 MPa yield strength in artificially aged tempers) with good weldability. In addition, the alloy exhibits an extraordinary natural aging response (440 MPa yield strength (YS) in the unstretch condition) and a high ductility reversion condition which may be useful as a cold-forming temper. In contrast to other Al-Li alloys, these properties can essentially be obtained with or without a stretch or other coldworking operation prior to aging. Preliminary studies have revealed that the T4 temper (no stretch, natural age) is strengthened by a combination of GP zones and delta prime (Al3Li). The T6 temper (no stretch, aged at 180 C to peak strength) was reported to be strengthened primarily by T(sub 1) phase (Al2CuLi) with a minor presence of a theta prime like (Al2Cu) phase. On the other hand, a similar but lower solute containing alloy was reported to contain omega, (stoichiometry unknown), theta prime, and S prime in the peak strength condition. The purpose of this study is to further elucidate the strengthening phases in Weldalite (trademark) 049 in the unstretched tempers, and to follow the development of the microstructure from the T4 temper through reversion (180 C for 5 to 45 minutes) to the T6 temper.
Jones, D K; Alexander, D C; Bowtell, R; Cercignani, M; Dell'Acqua, F; McHugh, D J; Miller, K L; Palombo, M; Parker, G J M; Rudrapatna, U S; Tax, C M W
2018-05-22
The key component of a microstructural diffusion MRI 'super-scanner' is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically shorten the time needed for diffusion encoding, increase the signal-to-noise ratio, and facilitate measurements at shorter diffusion times. This review, written from the perspective of the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure, an initiative to establish a shared 300 mT/m-gradient facility amongst the microstructural imaging community, describes ten advantages of ultra-strong gradients for microstructural imaging. Specifically, we will discuss how the increase of the accessible measurement space compared to a lower-gradient systems (in terms of Δ, b-value, and TE) can accelerate developments in the areas of 1) axon diameter distribution mapping; 2) microstructural parameter estimation; 3) mapping micro-vs macroscopic anisotropy features with gradient waveforms beyond a single pair of pulsed-gradients; 4) multi-contrast experiments, e.g. diffusion-relaxometry; 5) tractography and high-resolution imaging in vivo and 6) post mortem; 7) diffusion-weighted spectroscopy of metabolites other than water; 8) tumour characterisation; 9) functional diffusion MRI; and 10) quality enhancement of images acquired on lower-gradient systems. We finally discuss practical barriers in the use of ultra-strong gradients, and provide an outlook on the next generation of 'super-scanners'. Copyright © 2018. Published by Elsevier Inc.
Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors
Fluegel., Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; ...
2015-05-28
In this study, the semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10 –4. Comparing our strain sensitivity andmore » signal strength in Al xGa 1–xAs with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 10 3, thus obviating key constraints in semiconductor strain metrology.« less
A large volume 2000 MPA air source for the radiatively driven hypersonic wind tunnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantino, M
1999-07-14
An ultra-high pressure air source for a hypersonic wind tunnel for fluid dynamics and combustion physics and chemistry research and development must provide a 10 kg/s pure air flow for more than 1 s at a specific enthalpy of more than 3000 kJ/kg. The nominal operating pressure and temperature condition for the air source is 2000 MPa and 900 K. A radial array of variable radial support intensifiers connected to an axial manifold provides an arbitrarily large total high pressure volume. This configuration also provides solutions to cross bore stress concentrations and the decrease in material strength with temperature. [hypersonic,more » high pressure, air, wind tunnel, ground testing]« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Alexander E., E-mail: mayer@csu.ru, E-mail: mayer.al.evg@gmail.com; Mayer, Polina N.
2015-07-21
A continuum model of the metal melt fracture is formulated on the basis of the continuum mechanics and theory of metastable liquid. A character of temperature and strain rate dependences of the tensile strength that is predicted by the continuum model is verified, and parameters of the model are fitted with the use of the results of the molecular dynamics simulations for ultra-high strain rates (≥1–10/ns). A comparison with experimental data from literature is also presented for Al and Ni melts. Using the continuum model, the dynamic tensile strength of initially uniform melts of Al, Cu, Ni, Fe, Ti, andmore » Pb within a wide range of strain rates (from 1–10/ms to 100/ns) and temperatures (from melting temperature up to 70–80% of critical temperature) is calculated. The model is applied to numerical investigation of a problem of the high-current electron irradiation of Al, Cu, and Fe targets.« less
Ahmad, Mazatusziha; Wahit, Mat Uzir; Abdul Kadir, Mohammed Rafiq; Mohd Dahlan, Khairul Zaman
2012-01-01
Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA) as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P) precipitates on the composite surface as proven from SEM and XRD analysis. PMID:22666129
Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene
Crosse, J. A.; Xu, Xiaodong; Sherwin, Mark S.; Liu, R. B.
2014-01-01
In a semiconductor illuminated by a strong terahertz (THz) field, optically excited electron–hole pairs can recombine to emit light in a broad frequency comb evenly spaced by twice the THz frequency. Such high-order THz sideband generation is of interest both as an example of extreme nonlinear optics and also as a method for ultrafast electro-optical modulation. So far, this phenomenon has only been observed with large field strengths (~10 kV cm−1), an obstacle for technological applications. Here we predict that bi-layer graphene generates high-order sidebands at much weaker THz fields. We find that a THz field of strength 1 kV cm−1 can produce a high-sideband spectrum of about 30 THz, 100 times broader than in GaAs. The sidebands are generated despite the absence of classical collisions, with the quantum coherence of the electron–hole pairs enabling recombination. These remarkable features lower the barrier to desktop electro-optical modulation at THz frequencies, facilitating ultrafast optical communications. PMID:25249245
Dynamic Ring-on-Ring Equibiaxial Flexural Strength of Borosilicate Glass
2010-01-01
Flexure Strength and Dynamic Fatigue of Soda – Lime – Silica Float Glass ,’’ J. Am. Ceram. Soc., 85 [7] 1777–1782 (2002). 9. A. Borger, R. Danzer, and P...on the Strength and Fatigue Behavior of Indented Soda – Lime Glass ,’’ Glass Technol., 32 [2] 51– 54 (1991). 16. J. J. Jr. Mecholsky, S. W. Freiman, and... Soda – Lime Glass Rods by a Statistical Approach,’’ J. Eur. Ceram. Soc., 11 341–346 (1993). 28. S. R. Choi and J. A. Salem, ‘‘Ultra-fast Fracture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opachich, Y. P., E-mail: opachiyp@nv.doe.gov; Koch, J. A.; Haugh, M. J.
2016-07-15
A multi-wavelength, high contrast contact radiography system has been developed to characterize density variations in ultra-low density aerogel foams. These foams are used to generate a ramped pressure drive in materials strength experiments at the National Ignition Facility and require precision characterization in order to reduce errors in measurements. The system was used to characterize density variations in carbon and silicon based aerogels to ∼10.3% accuracy with ∼30 μm spatial resolution. The system description, performance, and measurement results collected using a 17.8 mg/cc carbon based JX–6 (C{sub 20}H{sub 30}) aerogel are discussed in this manuscript.
Opachich, Y.P.; Koch, J.A.; Haugh, M. J.; ...
2017-07-01
A multi wavelength, high contrast contact radiography system has been developed to characterize density variations in ultra-low density aerogel foams. These foams are used to generate a ramped pressure drive in materials strength experiments at the National Ignition Facility (NIF) and require precision characterization in order to reduce errors in measurements. The system was used to characterize density variations in carbon and silicon based aerogels to ~10.3% accuracy with ~30 μm spatial resolution. The system description, performance and measurement results collected using a 17.8 mg/cc carbon based JX–6 (C 20H 30) aerogel are discussed in this manuscript.
Ultra-High-Performance Concrete And Advanced Manufacturing Methods For Modular Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawab, Jamshaid; Lim, Ing; Mo, Yi-Lung
Small modular reactors (SMR) allow for less onsite construction, increase nuclear material security, and provide a flexible and cost-effective energy alternative. SMR can be factory-built as modular components, and shipped to desired locations for fast assembly. This project successfully developed a new class of ultra-high performance concrete (UHPC), which features a compressive strength greater than 22 ksi (150 MPa) without special treatment and self-consolidating characteristics desired for SMR modular construction. With an ultra-high strength and dense microstructure, it will facilitate rapid construction of steel plate-concrete (SC) beams and walls with thinner and lighter modules, and can withstand harsh environments andmore » mechanical loads anticipated during the service life of nuclear power plants. In addition, the self-consolidating characteristics are crucial for the fast construction and assembly of SC modules with reduced labor costs and improved quality. Following the UHPC material development, the capacity of producing self-consolidating UHPC in mass quantities was investigated and compared to accepted self-consolidating concrete standards. With slightly adjusted mixing procedure using large-scale gravity-based mixers (compared with small-scale force-based mixer), the self-consolidating UHPC has been successfully processed at six cubic yards; the product met both minimum compressive strength requirements and self-consolidating concrete standards. Steel plate-UHPC beams (15 ft. long, 12 in. wide and 16 in. deep) and wall panels (40 in. X 40 in. X 3 in.) were then constructed using the self-consolidating UHPC without any external vibration. Quality control guidelines for producing UHPC in large scale were developed. When the concrete is replaced by UHPC in a steel plate concrete (SC) beam, it is critical to evaluate its structural behavior with both flexure and shear-governed failure modes. In recent years, SC has been widely used for buildings and nuclear containment structures to resist lateral forces induced by severe earthquakes and heavy winds. SC modules have good potential for SMR because of their cost-effectiveness and reduced construction time. However, the minimum shear reinforcement (i.e. cross tie) ratio needs to be determined for the steel plate-UHPC (S-UHPC) beams to exhibit a ductile failure mode. In this project, S-UHPC beams were designed and constructed. The beams were tested to evaluate structural capacity and identify the minimum cross ties ratios. In addition, as the bond between UHPC and steel plate is essential for ensuring structural integrity under shear and flexure, it was measured and examined in this project through digital image correlation system and smart piezoelectric aggregate sensors. Large-scale testing and finite element simulation were also performed on S-UHPC wall panels. New bond slip-based constitutive models of steel plate were developed for S-UHPC, which were used in finite element analysis program to predict S-UHPC behavior under shear. The results were well validated through experimental data. The long-term durability of UHPC were established in this project. UHPC specimens were tested under free shrinkage, restrained shrinkage, elevated temperature, water permeation, chloride diffusion, corrosion, and alkali silica reaction. UHPC has demonstrated significantly improved durability compared with control concrete specimens. This research led to a new generation of steel plate-UHPC modules for SMR that can provide large benefits to the electric power industry. Taking advantage of the high strength and durability of UHPC, their modularity and ease of assembly can address the high cost barriers of typical nuclear power plants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opachich, Y.P.; Koch, J.A.; Haugh, M. J.
A multi wavelength, high contrast contact radiography system has been developed to characterize density variations in ultra-low density aerogel foams. These foams are used to generate a ramped pressure drive in materials strength experiments at the National Ignition Facility (NIF) and require precision characterization in order to reduce errors in measurements. The system was used to characterize density variations in carbon and silicon based aerogels to ~10.3% accuracy with ~30 μm spatial resolution. The system description, performance and measurement results collected using a 17.8 mg/cc carbon based JX–6 (C 20H 30) aerogel are discussed in this manuscript.
Brandt, William Cunha; Silva, Cristina Gomes; Frollini, Elisabete; Souza-Junior, Eduardo Jose Carvalho; Sinhoreti, Mário Alexandre Coelho
2013-08-01
The aim of this study was to evaluate the thermal and mechanical properties of the composite resins containing the photo-initiators camphorquinone (CQ) and/or phenyl-propanodione (PPD) when photoactivated with halogen lamp (XL2500/3M-ESPE), monowave (UltraBlueIS/DMC) and polywave (UltraLume5/Ultradent) LED units. A blend of BisGMA, UDMA, BisEMA and TEGDMA was prepared with the same wt% of photo-initiators CQ and/or PPD and 65wt% of silaneted filler particles. Compression strength (CS), diametral tensile strength (DTS) and diametral modulus (DM) were tested. Thermogravimetric analysis (TGA) was made and the lost residual monomer were verified. Dynamic mechanical thermal analysis (DMTA) was used for to analyze the glass transition temperature (Tg) and the storage modulus in 37°C. Degree of conversion (DC) was accomplished in the same samples of DMA using middle-infrared spectroscopy (mid-IR). CQ, CQ/PPD and PPD obtained the same results for all mechanical properties (CS, DTS and DM), lost residual monomer and storage modulus in 37°C, regardless LCU used. The results of Tg showed that the combination PPD-UltraLume5 produced the highest values. DC showed that the combination CQ-UltraLume5 resulted in the highest values and PPD-XL2500 in the lowest DC values. The study shows that PPD is not only effective photosensitizers, but also photocrosslinking agents for dental composite resins with a similar efficiency to CQ. Copyright © 2013 Elsevier Ltd. All rights reserved.
Optimization of Root Section for Ultra-long Steam Turbine Rotor Blade
NASA Astrophysics Data System (ADS)
Hála, Jindřich; Luxa, Martin; Šimurda, David; Bobčík, Marek; Novák, Ondřej; Rudas, Bartoloměj; Synáč, Jaroslav
2018-04-01
This study presents the comparison of aerodynamic performances of two successive designs of the root profiles for the ultra-long rotor blade equipped with a straight fir-tree dovetail. Since aerodynamic and strength requirements laid upon the root section design are contradictory, it is necessary to aerodynamically optimize the design within the limits given by the foremost strength requirements. The most limiting criterion of the static strength is the size of the blade cross-section, which is determined by the number of blades in a rotor and also by the shape and size of a blade dovetail. The aerodynamic design requires mainly the zero incidence angle at the inlet of a profile and in the ideal case ensures that the load does not exceed a limit load condition. Moreover, the typical root profile cascades are transonic with supersonic exit Mach number, therefore, the shape of a suction side and a trailing edge has to respect transonic expansion of a working gas. In this paper, the two variants of root section profile cascades are compared and the aerodynamic qualities of both variants are verified using CFD simulation and two mutually independent experimental methods of measurements (optical and pneumatic).
Recent developments in novel freezing and thawing technologies applied to foods.
Wu, Xiao-Fei; Zhang, Min; Adhikari, Benu; Sun, Jincai
2017-11-22
This article reviews the recent developments in novel freezing and thawing technologies applied to foods. These novel technologies improve the quality of frozen and thawed foods and are energy efficient. The novel technologies applied to freezing include pulsed electric field pre-treatment, ultra-low temperature, ultra-rapid freezing, ultra-high pressure and ultrasound. The novel technologies applied to thawing include ultra-high pressure, ultrasound, high voltage electrostatic field (HVEF), and radio frequency. Ultra-low temperature and ultra-rapid freezing promote the formation and uniform distribution of small ice crystals throughout frozen foods. Ultra-high pressure and ultrasound assisted freezing are non-thermal methods and shorten the freezing time and improve product quality. Ultra-high pressure and HVEF thawing generate high heat transfer rates and accelerate the thawing process. Ultrasound and radio frequency thawing can facilitate thawing process by volumetrically generating heat within frozen foods. It is anticipated that these novel technologies will be increasingly used in food industries in the future.
NASA Astrophysics Data System (ADS)
Ghasemi-Nanesa, H.; Nili-Ahmadabadi, M.; Shirazi, H.
2010-07-01
Fe-Ni-Mn martensitic steels are one of the major groups of ultra-high strength steels that have good mechanical properties and ductility in as annealed condition but they suffer from severe inter-granular embitterment after aging. In this paper, the effect of heavy shaped cold rolling and wire drawing on the mechanical properties of Fe-Ni-Mn steel was investigated. This process could provide a large strain deformation in this alloy. The total strain was epsilon ~7. Aging behavior and tensile properties of Fe-10Ni-7Mn were studied after aging at 753 K. The results showed that the ultimate tensile strength and ductility after cold rolling, wire drawing and aging increased up to 2540 MPa and 7.1 %, respectively, while the conventional steels show a premature fracture stress of 830 MPa with about zero ductility after aging.
Achievable space elevators for space transportation and starship acceleration
NASA Technical Reports Server (NTRS)
Pearson, Jerome
1990-01-01
Space elevator concepts for low-cost space launches are reviewed. Previous concepts suffered from requirements for ultra-high-strength materials, dynamically unstable systems, or from danger of collision with space debris. The use of magnetic grain streams solves these problems. Magnetic grain streams can support short space elevators for lifting payloads cheaply into Earth orbit, overcoming the material strength problem in building space elevators. Alternatively, the stream could support an international spaceport circling the Earth daily tens of miles above the equator, accessible to advanced aircraft. Mars could be equipped with a similar grain stream, using material from its moons Phobos and Deimos. Grain-stream arcs about the sun could be used for fast launches to the outer planets and for accelerating starships to near lightspeed for interstellar reconnaisance. Grain streams are essentially impervious to collisions, and could reduce the cost of space transportation by an order of magnitude.
Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure
NASA Astrophysics Data System (ADS)
Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer
A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.
Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures
NASA Astrophysics Data System (ADS)
Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.
2017-12-01
Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.
The Composition and Temperature Effects on the Ultra High Strength Stainless Steel Design
NASA Astrophysics Data System (ADS)
Xu, W.; Del Castillo, P. E. J. Rivera Díaz; van der Zwaag, S.
Alloy composition and heat treatment are of paramount importance to determining alloy properties. Their control is of great importance for new alloy design and industrial fabrication control. A base alloy utilizing MX carbide is designed through a theory guided computational approach coupling a genetic algorithm with optimization criteria based on thermodynamic, kinetic and mechanical principles. The combined effects of 11 alloying elements (Al, C, Co, Cr, Cu, Mo, Nb, Ni, Si, Ti and V) are investigated in terms of the composition optimization criteria: the martensite start (Ms) temperature, the suppression of undesirable phases, the Cr concentration in the matrix and the potency of the precipitation strengthening contribution. The results show the concentration sensitivities of each component and also point out new potential composition domains for further strength increase. The aging temperature effect is studied and the aging temperature industrially followed is recovered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Moor, Emmanuel
The present project investigated Quenching and Partitioning (Q&P) to process cold rolled steels to develop high strength sheet steels that exhibit superior ductility compared to available grades with the intent to allow forming of high strength parts at room temperature to provide an alternative to hot stamping of parts. Hot stamping of boron alloyed steel is the current technology to manufacture thinner gauge sections in automotive structures to guarantee anti-intrusion during collisions whilst improving fuel efficiency by decreasing vehicle weight. Hot stamping involves reheating steel to 900 °C or higher followed by deformation and quenching in the die to producemore » ultra-high strength materials. Hot stamping requires significant energy to reheat the steel and is less productive than traditional room temperature stamping operations. Stamping at elevated temperature was developed due to the lack of available steels with strength levels of interest possessing sufficient ductility enabling traditional room temperature forming. This process is seeing growing demand within the automotive industry and, given the reheating step in this operation, increased energy consumption during part manufacturing results. The present research program focused on the development of steel grades via Q&P processing that exhibit high strength and formability enabling room temperature forming to replace hot stamping. The main project objective consisted of developing sheet steels exhibiting minimum ultimate tensile strength levels of 1200 MPa in combination with minimum tensile elongation levels of 15 pct using Q&P processing through judicious alloy design and heat treating parameter definition. In addition, detailed microstructural characterization and study of properties, processing and microstructure interrelationships were pursued to develop strategies to further enhance tensile properties. In order to accomplish these objectives, alloy design was conducted towards achieving the target properties. Twelve alloys were designed and laboratory produced involving melting, alloying, casting, hot rolling, and cold rolling to obtain sheet steels of approximately 1 mm thickness. Q&P processing of the samples was then conducted. Target properties were achieved and substantially exceeded demonstrating success in the developed and employed alloy design approaches. The best combinations of tensile properties were found at approximately 1550 MPa with a total elongation in excess of 20 pct clearly showing the potential for replacement of hot stamping to produce advanced high strength steels.« less
Fouré, Alexandre; Ogier, Augustin C; Le Troter, Arnaud; Vilmen, Christophe; Feiweier, Thorsten; Guye, Maxime; Gondin, Julien; Besson, Pierre; Bendahan, David
2018-05-01
Purpose To demonstrate the reproducibility of the diffusion properties and three-dimensional structural organization measurements of the lower leg muscles by using diffusion-tensor imaging (DTI) assessed with ultra-high-field-strength (7.0-T) magnetic resonance (MR) imaging and tractography of skeletal muscle fibers. On the basis of robust statistical mapping analyses, this study also aimed at determining the sensitivity of the measurements to sex difference and intramuscular variability. Materials and Methods All examinations were performed with ethical review board approval; written informed consent was obtained from all volunteers. Reproducibility of diffusion tensor indexes assessment including eigenvalues, mean diffusivity, and fractional anisotropy (FA) as well as muscle volume and architecture (ie, fiber length and pennation angle) were characterized in lower leg muscles (n = 8). Intramuscular variability and sex differences were characterized in young healthy men and women (n = 10 in each group). Student t test, statistical parametric mapping, correlation coefficients (Spearman rho and Pearson product-moment) and coefficient of variation (CV) were used for statistical data analysis. Results High reproducibility of measurements (mean CV ± standard deviation, 4.6% ± 3.8) was determined in diffusion properties and architectural parameters. Significant sex differences were detected in FA (4.2% in women for the entire lower leg; P = .001) and muscle volume (21.7% in men for the entire lower leg; P = .008), whereas architecture parameters were almost identical across sex. Additional differences were found independently of sex in diffusion properties and architecture along several muscles of the lower leg. Conclusion The high-spatial-resolution DTI assessed with 7.0-T MR imaging allows a reproducible assessment of structural organization of superficial and deep muscles, giving indirect information on muscle function. © RSNA, 2018 Online supplemental material is available for this article.
NASA Astrophysics Data System (ADS)
Huang, Hongbin; Li, Jingzhen; Gong, Xiangdong; Sun, Fengshan; He, Tiefeng
2007-01-01
The methods of numerical analysis for the strength and vibration modals of rotating mirrors were presented based respectively on the three-dimensional elastic mechanics and dynamics. On strength computation, the finite element models of rotating mirror were established according to the real structure of mirror, and the rotating three-faced aluminous and beryllium mirrors were analysed contrastively. Results display that the surface deformation quantity of the aluminous mirror is approximately 20 times as large as beryllium one, and the maximum stress is 1.6 times against the latter. Then, the three-faced aluminous mirrors were analyzed at variedly fit between shaft and axle hole. One conclusion is gotten out that the mirror strength is foreign to fits, but it is weaken by the axle hole obviously. On the modal analysis of vibration, this method can simulates accurately the natural frequencies and corresponding modalities of mirror. And the results from three-face aluminous mirror indicate that the resonance points of a new mirror may be guaranteed existing in selected speed range.
Pavithra, Chokkakula L. P.; Sarada, Bulusu V.; Rajulapati, Koteswararao V.; Rao, Tata N.; Sundararajan, G.
2014-01-01
Graphene has proved its significant role as a reinforcement material in improving the strength of polymers as well as metal matrix composites due to its excellent mechanical properties. In addition, graphene is also shown to block dislocation motion in a nanolayered metal-graphene composites resulting in ultra high strength. In the present paper, we demonstrate the synthesis of very hard Cu-Graphene composite foils by a simple, scalable and economical pulse reverse electrodeposition method with a well designed pulse profile. Optimization of pulse parameters and current density resulted in composite foils with well dispersed graphene, exhibiting a high hardness of ~2.5 GPa and an increased elastic modulus of ~137 GPa while exhibiting an electrical conductivity comparable to that of pure Cu. The pulse parameters are designed in such a way to have finer grain size of Cu matrix as well as uniform dispersion of graphene throughout the matrix, contributing to high hardness and modulus. Annealing of these nanocomposite foils at 300°C, neither causes grain growth of the Cu matrix nor deteriorates the mechanical properties, indicating the role of graphene as an excellent reinforcement material as well as a grain growth inhibitor. PMID:24514043
Pino, M; Stingelin, N; Tanner, K E
2008-11-01
The skirt of an artificial cornea must integrate the implant to the host sclera, a major failure of present devices. Thus, it is highly desirable to encourage the metabolic activity of the cornea by using more bioactive, flexible skirt materials. Here we describe attempts to increase the bioactivity of polyether ether ketone (PEEK), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE) films. The effectiveness of different strength NaOH pre-treatments to initiate apatite deposition on PEEK, HDPE and UHMWPE is investigated. We find that exposure of PEEK, HDPE and UHMWPE films to NaOH solutions induces the formation of potential nuclei for apatite (calcium phosphate), from which the growth of an apatite coating is stimulated when subsequently immersing the polymer films in 1.5 strength Simulated Body Fluid (SBF). As immersion time in SBF increases, further nucleation and growth produces a thicker and more compact apatite coating that can be expected to be highly bioactive. Interestingly, the apatite growth is found to also be dependent on both the concentration of NaOH solution and the structure of the polymer surface.
Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S
2017-09-01
A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integration of ultra-high field MRI and histology for connectome based research of brain disorders
Yang, Shan; Yang, Zhengyi; Fischer, Karin; Zhong, Kai; Stadler, Jörg; Godenschweger, Frank; Steiner, Johann; Heinze, Hans-Jochen; Bernstein, Hans-Gert; Bogerts, Bernhard; Mawrin, Christian; Reutens, David C.; Speck, Oliver; Walter, Martin
2013-01-01
Ultra-high field magnetic resonance imaging (MRI) became increasingly relevant for in vivo neuroscientific research because of improved spatial resolutions. However, this is still the unchallenged domain of histological studies, which long played an important role in the investigation of neuropsychiatric disorders. While the field of biological psychiatry strongly advanced on macroscopic levels, current developments are rediscovering the richness of immunohistological information when attempting a multi-level systematic approach to brain function and dysfunction. For most studies, histology sections lost information on three-dimensional reconstructions. Translating histological sections to 3D-volumes would thus not only allow for multi-stain and multi-subject alignment in post mortem data, but also provide a crucial step in big data initiatives involving the network analyses currently performed with in vivo MRI. We therefore investigated potential pitfalls during integration of MR and histological information where no additional blockface information is available. We demonstrated that strengths and requirements from both methods can be effectively combined at a spatial resolution of 200 μm. However, the success of this approach is heavily dependent on choices of hardware, sequence and reconstruction. We provide a fully automated pipeline that optimizes histological 3D reconstructions, providing a potentially powerful solution not only for primary human post mortem research institutions in neuropsychiatric research, but also to help alleviate the massive workloads in neuroanatomical atlas initiatives. We further demonstrate (for the first time) the feasibility and quality of ultra-high spatial resolution (150 μm isotopic) imaging of the entire human brain MRI at 7T, offering new opportunities for analyses on MR-derived information. PMID:24098272
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasalloti, H., E-mail: hamed.tasalloti.kashani@stu
The effect of heat input on the microstructure and compositional heterogeneity of welds of direct-quenched ultra high strength steel (Optim 960 QC) and duplex stainless steel (UNS S32205) was studied. The dissimilar welds were made using GMAW with a fully austenitic filler wire. In addition to grain coarsening in the heat affected zone (HAZ) of the ferritic side, it was found that an increase in heat input correlatively increased the proportional volume of bainitic to martensitic phases. Coarse ferritic grains were observed in the duplex HAZ. Higher heat input, however, had a beneficial effect on the nucleation of austenite inmore » the HAZ. Heat input had a regulatory effect on grain growth within the austenitic weld and more favorable equiaxed austenite was obtained with higher heat input. On the ferritic side of the welds, macrosegregation in the form of a martensitic intermediate zone was observed for all the cooling rates studied. However, on the duplex side, macrosegregation in the fusion boundary was only noticed with higher cooling rates. Microstructural observations and compositional analysis suggest that higher heat input could be beneficial for the structural integrity of the weld despite higher heat input increasing the extent of adverse coarse grains in the HAZ, especially on the ferritic side. - Highlights: •The effect of heat input on dissimilar welds of UHSS and DSS was studied. •Transmutation of the microstructure was discussed in detail. •The influence of heat input on compositional heterogeneity of welds was described. •Higher heat input enhanced bainitic transformation on the ferritic side. •Macrosegregation was affected by the amount of heat input on the DSS side.« less
NASA Astrophysics Data System (ADS)
Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.
2017-10-01
Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing without surface machining.
Mechanical Testing of IN718 Lattice Block Structures
NASA Technical Reports Server (NTRS)
Krause, David L.; Whittenberger, John D.; Kantzos, Pete T.; Hebsur, Mohan G.
2002-01-01
Lattice block construction produces a flat, structurally rigid panel composed of thin ligaments of material arranged in a three-dimensional triangulated truss-like structure. Low-cost methods of producing cast metallic lattice block panels are now available that greatly expand opportunities for using this unique material system in today's high-performance structures. Additional advances are being made in NASA's Ultra Efficient Engine Technology (UEET) program to extend the lattice block concept to superalloy materials. Advantages offered by this combination include high strength, light weight, high stiffness, and elevated temperature capabilities. Recently under UEET, the nickel-based superalloy Inconel 718 (IN718) was investment cast into lattice block panels with great success. To evaluate casting quality and lattice block architecture merit, individual ligaments, and structural subelement specimens were extracted from the panels. Tensile tests, structural compression, and bending strength tests were performed on these specimens. Fatigue testing was also completed for several bend test specimens. This paper first presents metallurgical and optical microscopy analysis of the castings. This is followed by mechanical test results for the tensile ligament tests and the subelement compression and bending strength tests, as well as for the fatigue tests that were performed. These tests generally showed comparable properties to base IN718 with the same heat treatment, and they underscored the benefits offered by lattice block materials. These benefits might be extended with improved architecture such as face sheets.
Tensile behavior of porous scaffolds made from poly(para phenylene) - biomed 2013.
Dirienzo, Amy L; Yakacki, Christopher M; Safranski, David L; Frick, Carl P
2013-01-01
The goal of this study was to fabricate and mechanically characterize a high-strength porous polymer scaffold for potential use as an orthopedic device. Poly(para-phenylene) (PPP) is an excellent candidate due to its exceptional strength and stiffness and relative inertness, but has never been explicitly investigated for use as a biomedical device. PPP has strength values 3 to 10 times higher and an elastic modulus nearly an order of magnitude higher than traditional polymers such as poly(methyl methacrylate) (PMMA), polycaprolactone (PCL), ultra-high molecular weight polyethylene (UHMWPE), and polyurethane (PU) and is significantly stronger and stiffer than polyetheretherketone (PEEK). By utilizing PPP we can overcome the mechanical limitations of traditional porous polymeric scaffolds since the outstanding stiffness of PPP allows for a highly porous structure appropriate for osteointegration that can match the stiffness of bone (100-250 MPa), while maintaining suitable mechanical properties for soft-tissue fixation. Porous samples were manufactured by powder sintering followed by particle leaching. The pore volume fraction was systematically varied from 5080 vol% for a pore sizes from150-500 µm, as indicated by previous studies for optimal osteointegration. The tensile modulus of the porous samples was compared to the rule of mixtures, and closely matches foam theory up to 70 vol%. The experimental modulus for 70 vol% porous samples matches the stiffness of bone and contains pore sizes optimal for osteointegration.
NASA Astrophysics Data System (ADS)
Wilkins, Richard; Gersey, Brad; Baburaj, Abhijit; Barnett, Milan; Zhou, Xianren
2012-07-01
In preparation for long duration missions to the moon, Mars or, even near earth asteroids, one challenge, amongst many others, that the space program faces is shielding against space radiation. It is difficult to effectively shield all sources of space radiation because of the broad range of types and high energies found in space, so the most important goal is to minimize the damaging effects that may occur to humans and electronics during long duration space flight. For a long duration planetary habitat, a shielding option is to use in situ resources such as the native regolith. A possible way to utilize regolith on a planet is to combine it with a binder to form a structural material that also exhibits desirable shielding properties. In our studies, we explore Martian regolith and ultra-high molecular weight polyethylene (UHMWPE) composites. We selected UHMWPE as the binder in our composites due to its high hydrogen content; a desirable characteristic for shielding materials in a space environment. Our initial work has focused on the process of developing the right ratio of simulated Martian regolith and UHMWPE to yield the best results in material endurance and strength, while retaining good shielding characteristics. Another factor in our optimization process is to determine the composite ratio that minimizes the amount of ex situ UHMWPE while retaining desirable structural and shielding properties. This consideration seeks to minimize mission weight and costs. Mechanical properties such as tensile strength of the Martian regolith/UHMWPE composite as a function of its grain size, processing parameters, and different temperature variations used are discussed. The radiation shielding effectiveness of loose mixtures of Martian regolith/ UHMWPE is evaluated using a 200 MeV proton beam and a tissue equivalent proportional counter. Preliminary results show that composites with an 80/20 ratio percent weight of regolith to UHMWPE can be fabricated with potentially useful structural strength. I n addition, Martian regolith, while not as efficient as polyethylene at reducing proton energy as a function of shield thickness, compares well with polyethylene at shielding the 200 MeV protons. These preliminary results indicate that native Martian regolith has promising properties as a habitat material for future human missions. Future work studying the shielding effectiveness and radiation tolerance will also be discussed.
Grain size effect on yield strength of titanium alloy implanted with aluminum ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popova, Natalya, E-mail: natalya-popova-44@mail.ru; Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk; Nikonenko, Elena, E-mail: vilatomsk@mail.ru
2016-01-15
The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a differentmore » effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.« less
A molecular scale perspective: Monte Carlo simulation for rupturing of ultra thin polymer film melts
NASA Astrophysics Data System (ADS)
Singh, Satya Pal
2017-04-01
Monte Carlo simulation has been performed to study the rupturing process of thin polymer film under strong confinement. The change in mean square displacement; pair correlation function; density distribution; average bond length and microscopic viscosity are sampled by varying the molecular interaction parameters such as the strength and the equilibrium positions of the bonding, non-bonding potentials and the sizes of the beads. The variation in mean square angular displacement χθ = [ < Δθ2 > - < Δθ>2 ] fits very well to a function of type y (t) = A + B *e-t/τ. This may help to study the viscous properties of the films and its dependence on different parameters. The ultra thin film annealed at high temperature gets ruptured and holes are created in the film mimicking spinodal dewetting. The pair correlation function and density profile reveal rich information about the equilibrium structure of the film. The strength and equilibrium bond length of finite extensible non-linear elastic potential (FENE) and non-bonding Morse potential have clear impact on microscopic rupturing of the film. The beads show Rouse or repetition motion forming rim like structures near the holes created inside the film. The higher order interaction as dipole-quadrupole may get prominence under strong confinement. The enhanced excluded volume interaction under strong confinement may overlap with the molecular dispersion forces. It can work to reorganize the molecules at the bottom of the scale and can imprint its signature in complex patterns evolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohde, Brian J.; Le, Kim Mai; Krishnamoorti, Ramanan
The mechanical properties of two chemically distinct and complementary thermoset polymers were manipulated through development of thermoset blends. The thermoset blend system was composed of an anhydride-cured diglycidyl ether of bisphenol A (DGEBA)-based epoxy resin, contributing high tensile strength and modulus, and polydicyclopentadiene (PDCPD), which has a higher toughness and impact strength as compared to other thermoset polymers. Ultra-small-angle and small-angle X-ray scattering analysis explored the morphology of concurrently cured thermoset blends, revealing a macroscopically phase separated system with a surface fractal structure across blended systems of varying composition. The epoxy resin rich and PDCPD rich phases exhibited distinct glassmore » transitions (Tg’s): the Tg observed at higher temperature was associated with the epoxy resin rich phase and was largely unaffected by the presence of PDCPD, whereas the PDCPD rich phase Tg systematically decreased with increasing epoxy resin content due to inhibition of dicyclopentadiene ring-opening metathesis polymerization. The mechanical properties of these phase-separated blends were in reasonable agreement with predictions by the rule of mixtures for the blend tensile strength, modulus, and fracture toughness. Scanning electron microscopy analysis of the tensile and fracture specimen fracture surfaces showed an increase in energy dissipation mechanisms, such as crazing, shear banding, and surface roughness, as the fraction of the more ductile component, PDPCD, increased. These results present a facile method to tune the mechanical properties of a toughened thermoset network, in which the high modulus and tensile strength of the epoxy resin can be largely retained at high epoxy resin content in the blend, while increasing the fracture toughness.« less
NASA Astrophysics Data System (ADS)
Zhu, M.; Wang, F. G.; Wang, F. Z.; Liu, Y. P.
2017-02-01
The plastic viscosity of mortar and concrete with different binder content, sand ratio, water-binder ratio, microbead dosage and different class and dosage of fly ash were tested and calculated according tomicromechanics model proposed by A. Ghanbari and B.L. Karihaloo, The correlations between these parameters and fresh concrete workability were also investigated, which showed i. high consistence with the objective reality. When binder content, microbead dosage, fly ash dosage or the water-binder ratio was increased or sand ratio was reduced, the fresh concrete viscosity would decrease correspondingly. However their effects were not that same. The relationships between T50 a, V-funnel and inverted slump time with fresh concrete viscosity were established, respectively.
Electrospun ultra-fine cellulose acetate fibrous mats containing tannic acid-Fe+++ complexes
USDA-ARS?s Scientific Manuscript database
Cellulose acetate (CA) fibrous mats with improved mechanical and antioxidant properties were produced by a simple, scalable and cost-effective electrospinning method. Fibers loaded with small amounts of TA-Fe+++ complexes showed an increase in tensile strength of approximately 117% when compared to ...
Running from Paris to Beijing: biomechanical and physiological consequences.
Millet, Guillaume Y; Morin, Jean-Benoît; Degache, Francis; Edouard, Pascal; Feasson, Léonard; Verney, Julien; Oullion, Roger
2009-12-01
The purpose of this study was to examine the physiological and biomechanical changes occurring in a subject after running 8,500 km in 161 days (i.e. 52.8 km daily). Three weeks before, 3 weeks after (POST) and 5 months after (POST+5) running from Paris to Beijing, energy cost of running (Cr), knee flexor and extensor isokinetic strength and biomechanical parameters (using a treadmill dynamometer) at different velocities were assessed in an experienced ultra-runner. At POST, there was a tendency toward a 'smoother' running pattern, as shown by (a) a higher stride frequency and duty factor, and a reduced aerial time without a change in contact time, (b) a lower maximal vertical force and loading rate at impact and (c) a decrease in both potential and kinetic energy changes at each step. This was associated with a detrimental effect on Cr (+6.2%) and a loss of strength at all angular velocities for both knee flexors and extensors. At POST+5, the subject returned to his original running patterns at low but not at high speeds and maximal strength remained reduced at low angular velocities (i.e. at high levels of force). It is suggested that the running pattern changes observed in the present study were a strategy adopted by the subject to reduce the deleterious effects of long distance running. However, the running pattern changes could partly be linked to the decrease in maximal strength.
Sensitization of Laser-beam Welded Martensitic Stainless Steels
NASA Astrophysics Data System (ADS)
Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan
Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.
Mechanical Behavior of Fabric-Film Laminates
NASA Technical Reports Server (NTRS)
Said, Magdi S.
1999-01-01
Inflatable structures are gaining wide support in planetary scientific missions as well as commercial applications. For such applications a new class of materials made of laminating thin homogenous films to lightweight fabrics are being considered us structura1 gas envelops. The emerging composite materials are a result of recent advances in the manufacturing cf 1ightweight, high strength fibers, fabrics and scrims. The lamination of these load-carrying members with the proper gas barrier film results in wide range of materials suitable for various loading and environmental conditions. Polyester - based woven fabrics laminated to thin homogeneus film of polyester (Maylar) is an example of this class. This fabric/ film laminate is being considered for the development a material suitable for building large gas envelopes for use in the NASA Ultra Long Duration Balloon Program (ULDB). Compared to commercial homogeneus films, the material provides relatively high strength to weight ratio as well as better resistance to crack and tear propagation. The purpose of this papers is to introduce the mechanical behavior of this class of multi-layers composite and to highlight some of the concerns observed during the characterization of these laminate composites.
Sensitivity enhancement in optical micro-tube resonator sensors via mode coupling
NASA Astrophysics Data System (ADS)
Ling, Tao; Guo, L. Jay
2013-07-01
A liquid filled, silica micro-tube with a low refractive index material inner-coating has been proposed and theoretically studied as a coupled micro-resonator sensor to greatly enhance biochemical sensor sensitivity. Its unique coupling phenomenon has been analyzed and utilized to boost the device's refractive index sensitivity to 967 nm/Refractive Index Unit (RIU). Through optimization of the coupling strength between the two micro-resonators, further improvement in refractive index sensitivity up to 1100 nm/RIU has been predicted. This mode coupling strategy allows us to design robust, thick-walled micro-tube sensors with ultra-high sensitivity which is useful in practical biochemical sensing applications.
Advancements in tailored hot stamping simulations: Cooling channel and distortion analyses
NASA Astrophysics Data System (ADS)
Billur, Eren; Wang, Chao; Bloor, Colin; Holecek, Martin; Porzner, Harald; Altan, Taylan
2013-12-01
Hot stamped components have been widely used in the automotive industry in the last decade where ultra high strength is required. These parts, however, may not provide sufficient toughness to absorb crash energy. Therefore, these components are "tailored" by controlling the microstructure at various locations. Simulation of tailored hot stamped components requires more detailed analysis of microstructural changes. Furthermore, since the part is not uniformly quenched, severe distortion can be observed. CPF, together with ESI have developed a number of techniques to predict the final properties of a tailored part. This paper discusses the recent improvements in modeling distortion and die design with cooling channels.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir A.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.; Vaganova, Irina K.
A model for predicting mechanical properties of ultra-high temperature ceramics and composites manufactured by selective laser sintering (SLS) and spark plasma sintering (SPS) under shock loading is presented. The model takes into account the porous structure, the specific volume and average sizes of phases, and the temperature of sintering. Residual stresses in ceramic composites reinforced with particles of refractory borides, carbides and nitrides after SLS or SPS were calculated. It is shown that the spall strength of diboride-zirconium matrix composites can be increased by the decreasing of porosity and the introduction of inclusions of specially selected refractory strengthening phases.
NASA Astrophysics Data System (ADS)
Thirolf, P. G.; Habs, D.; Homma, K.; Hörlein, R.; Karsch, S.; Krausz, F.; Maia, C.; Osterhoff, J.; Popp, A.; Schmid, K.; Schreiber, J.; Schützhold, R.; Tajima, T.; Veisz, L.; Wulz, J.; Yamazaki, T.
2010-04-01
The ultra-high fields of high-power short-pulse lasers are expected to contribute to understanding fundamental properties of the quantum vacuum and quantum theory in very strong fields. For example, the neutral QED vacuum breaks down at the Schwinger field strength of 1.3 1018V/m, where a virtual e+e- pair gains its rest mass energy over a Compton wavelength and materializes as a real pair. At such an ultra-high field strength, an electron experiences an acceleration of as = 2 1028 g and hence fundamental phenomena such as the long predicted Unruh effect start to play a role. The Unruh effect implies that the accelerated electron experiences the vacuum as a thermal bath with the Unruh temperature. In its accelerated frame the electron scatters photons off the thermal bath, corresponding to the emission of an entangled pair of photons in the laboratory frame. In upcoming experiments with intense accelerating fields, we will encounter a set of opportunities to experimentally study the radiation from electrons under extreme fields. Even before the Unruh radiation detection, we should run into the copious Larmor radiation. The detection of Larmor radiation and its characterization themselves have never been experimentally carried out to the best of our knowledge, and thus this amounts to a first serious study of physics at extreme acceleration. For example, we can study radiation damping effects like the Landau-Lifshitz radiation. Furthermore, the experiment should be able to confirm or disprove whether the Larmor and Landau-Lifshitz radiation components may be enhanced by a collective (N2) radiation, if a tightly clumped cluster of electrons is accelerated. The technique of laser driven dense electron sheet formation by irradiating a thin DLC foil target should provide such a coherent electron cluster with a very high density. If and when such mildly relativistic electron sheets are realized, a counterpropagating second laser can interact with them coherently. Under these conditions enhanced Larmor and Unruh radiation signals may be observed. Detection of the Unruh photons (together with its competing radiation components) is envisaged via Compton polarimetry in a novel highly granular 2D-segmented position-sensitive germanium detector.
Selective laser melting of hypereutectic Al-Si40-powder using ultra-short laser pulses
NASA Astrophysics Data System (ADS)
Ullsperger, T.; Matthäus, G.; Kaden, L.; Engelhardt, H.; Rettenmayr, M.; Risse, S.; Tünnermann, A.; Nolte, S.
2017-12-01
We investigate the use of ultra-short laser pulses for the selective melting of Al-Si40-powder to fabricate complex light-weight structures with wall sizes below 100 μ {m} combined with higher tensile strength and lower thermal expansion coefficient in comparison to standard Al-Si alloys. During the cooling process using conventional techniques, large primary silicon particles are formed which impairs the mechanical and thermal properties. We demonstrate that these limitations can be overcome using ultra-short laser pulses enabling the rapid heating and cooling in a non-thermal equilibrium process. We analyze the morphology characteristics and micro-structures of single tracks and thin-walled structures depending on pulse energy, repetition rate and scanning velocity utilizing pulses with a duration of 500 {fs} at a wavelength of 1030 {nm}. The possibility to specifically change and optimize the microstructure is shown.
Development of High Heat Input Welding Offshore Steel as Normalized Condition
NASA Astrophysics Data System (ADS)
Deng, Wei; Qin, Xiaomei
The heavy plate used for offshore structure is one of the important strategic products. In recent years, there is an increasing demand for heavy shipbuilding steel plate with excellent weldability in high heat input welding. During the thermal cycle, the microstructure of the heat affected zone (HAZ) of plates was damaged, and this markedly reduced toughness of HAZ. So, how to improve the toughness of HAZ has been a key subject in the fields of steel research. Oxide metallurgy is considered as an effective way to improve toughness of HAZ, because it could be used to retard grain growth by fine particles, which are stable at the high temperature.The high strength steel plate, which satisfies the low temperature specification, has been applied to offshore structure. Excellent properties of the plates and welded joints were obtained by oxide metallurgy technology, latest controlled rolling and accelerated cooling technology using Ultra-Fast Cooling (an on-line accelerated cooling system). The 355MPa-grade high strength steel plates with normalizing condition were obtained, and the steels have excellent weldability with heat input energy of 79 287kJ/cm, and the nil ductility transition (NDT) temperature was -70°C, which can satisfy the construction of offshore structure in cold regions.
The Effect of Niobium Microalloying on Processing and Application Properties of Dual Phase Steel
NASA Astrophysics Data System (ADS)
Mohrbacher, Hardy
Dual phase steel is widely used in today's car body manufacturing. Its characteristics of high n-value and good elongation (A80) are the basis of good press formability. However, practical experience has shown unexpected failure in forming operations where tight bending, stretch flanging or hole expansion are predominant. The inhomogeneous microstructure of soft ferrite and hard martensite in combination with highly localized straining is the origin of these problems. Furthermore, weldability and delayed cracking have been experienced to cause problems in ultra-high strength DP steel. Refinement and homogenization of the two-phase microstructure as well as lowering of the carbon content have been identified as remedies to the mentioned problems. However, mill processing of DP steel with reduced carbon content is more difficult especially for the higher strength levels. Niobium microalloying proved to be very effective in increasing the processing window of low-carbon DP steels besides of its natural effect of refining the microstructure. Meanwhile the production of niobium microalloyed DP steel has been established in several markets including China. The paper details the fundamentals, demonstrates respective production concepts and presents examples of application of Nb-microalloyed DP steels.
Special Considerations in Selection of Fabric Film Laminates for Use in Inflatable Structures
NASA Technical Reports Server (NTRS)
Said, Magdi A.
1999-01-01
Inflatable structures are gaining wide support in planetary scientific missions as well as commercial applications. For such applications a new class of fabric/film laminates is being considered for use as a structural gas envelope. The emerging composite materials are a result of recent advances in the manufacturing of lightweight, high strength fibers, fabrics and scrims. The lamination of these load-carrying members with the proper gas barriers results in a wide range of materials suitable for various loading and environmental conditions. Polyester-based woven fabrics laminated to thin homogenous film of polyester are an example of this class. This fabric/film laminate is being considered for the development of a material suitable for building large gas envelopes for use in the NASA ultra long duration balloon program (ULDB). Compared to commercial homogenous films, the material provides relatively high strength to weight ratio as well as better resistance to crack and tear propagation, The mechanical, creep and viscoelastic properties of these fabric film laminates have been studied to form a material model. Preliminary analysis indicates that the material is highly viscoelastic. The mechanical properties of this class of materials will be discussed in some details.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir; Skripnyak, Evgeniya; Skripnyak, Vladimir; Vaganova, Irina; Skripnyak, Nataliya
2013-06-01
Results of researches testify that a grain size have a strong influence on the mechanical behavior of metals and alloys. Ultrafine grained HCP and FCC metal alloys present higher values of the spall strength than a corresponding coarse grained counterparts. In the present study we investigate the effect of grain size distribution on the flow stress and strength under dynamic compression and tension of aluminium and magnesium alloys. Microstructure and grain size distribution in alloys were varied by carrying out severe plastic deformation during the multiple-pass equal channel angular pressing, cyclic constrained groove pressing, and surface mechanical attrition treatment. Tests were performed using a VHS-Instron servo-hydraulic machine. Ultra high speed camera Phantom V710 was used for photo registration of deformation and fracture of specimens in range of strain rates from 0,01 to 1000 1/s. In dynamic regime UFG alloys exhibit a stronger decrease in ductility compared to the coarse grained material. The plastic flow of UFG alloys with a bimodal grain size distribution was highly localized. Shear bands and shear crack nucleation and growth were recorded using high speed photography.
Ingham, Eileen; Fisher, John; Tipper, Joanne L
2014-01-01
It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies. PMID:24658586
Liu, Aiqin; Ingham, Eileen; Fisher, John; Tipper, Joanne L
2014-04-01
It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies.
Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston
2014-01-01
Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system. PMID:25072190
NASA Astrophysics Data System (ADS)
Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston
2014-09-01
Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight-rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system.
An ultra-relativistic outflow from a neutron star accreting gas from a companion.
Fender, Rob; Wu, Kinwah; Johnston, Helen; Tzioumis, Tasso; Jonker, Peter; Spencer, Ralph; Van Der Klis, Michiel
2004-01-15
Collimated relativistic outflows-also known as jets-are amongst the most energetic phenomena in the Universe. They are associated with supermassive black holes in distant active galactic nuclei, accreting stellar-mass black holes and neutron stars in binary systems and are believed to be responsible for gamma-ray bursts. The physics of these jets, however, remains something of a mystery in that their bulk velocities, compositions and energetics remain poorly determined. Here we report the discovery of an ultra-relativistic outflow from a neutron star accreting gas within a binary stellar system. The velocity of the outflow is comparable to the fastest-moving flows observed from active galactic nuclei, and its strength is modulated by the rate of accretion of material onto the neutron star. Shocks are energized further downstream in the flow, which are themselves moving at mildly relativistic bulk velocities and are the sites of the observed synchrotron emission from the jet. We conclude that the generation of highly relativistic outflows does not require properties that are unique to black holes, such as an event horizon.
Rise of the New Right: Human and Civil Rights in Jeopardy.
ERIC Educational Resources Information Center
Park, J. Charles
1980-01-01
The author warns that ultra-conservatism is growing in strength and sophistication as a political force. He cites literature from various right-wing groups attacking the public schools and suggests that educators must learn to cope with social stress and the political extremism it generates. (SJL)
Method of forming biaxially textured alloy substrates and devices thereon
Goyal, Amit; Specht, Eliot D.; Kroeger, Donald M.; Paranthaman, Mariappan
2000-01-01
Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.
Dynamic tensile fracture of mortar at ultra-high strain-rates
NASA Astrophysics Data System (ADS)
Erzar, B.; Buzaud, E.; Chanal, P.-Y.
2013-12-01
During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 104 to 4 × 104 s-1. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.
Physical Conditions in Ultra-fast Outflows in AGN
NASA Astrophysics Data System (ADS)
Kraemer, S. B.; Tombesi, F.; Bottorff, M. C.
2018-01-01
XMM-Newton and Suzaku spectra of Active Galactic Nuclei (AGN) have revealed highly ionized gas, in the form of absorption lines from H-like and He-like Fe. Some of these absorbers, ultra-fast outflows (UFOs), have radial velocities of up to 0.25c. We have undertaken a detailed photoionization study of high-ionization Fe absorbers, both UFOs and non-UFOs, in a sample of AGN observed by XMM-Newton. We find that the heating and cooling processes in UFOs are Compton-dominated, unlike the non-UFOs. Both types are characterized by force multipliers on the order of unity, which suggest that they cannot be radiatively accelerated in sub-Eddington AGN, unless they were much less ionized at their point of origin. However, such highly ionized gas can be accelerated via a magneto-hydrodynamic (MHD) wind. We explore this possibility by applying a cold MHD flow model to the UFO in the well-studied Seyfert galaxy, NGC 4151. We find that the UFO can be accelerated along magnetic streamlines anchored in the accretion disk. In the process, we have been able to constrain the magnetic field strength and the magnetic pressure in the UFO and have determined that the system is not in magnetic/gravitational equipartition. Open questions include the variability of the UFOs and the apparent lack of non-UFOs in UFO sources.
Montesdeoca-Esponda, Sarah; Mahugo-Santana, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan
2015-03-01
A dispersive liquid-liquid micellar microextraction (DLLMME) method coupled with ultra-high-performance liquid chromatography (UHPLC) using Diode Array Detector (DAD) detector was developed for the analysis of five pharmaceutical compounds of different nature in wastewaters. A micellar solution of a surfactant, polidocanol, as extraction solvent (100 μL) and chloroform as dispersive solvent (200 μL) were used to extract and preconcentrate the target analytes. Samples were heated above critical temperature and the cloudy solution was centrifuged. After removing the chloroform, the reduced volume of surfactant was then injected in the UHPLC system. In order to obtain high extraction efficiency, the parameters affecting the liquid-phase microextraction, such as time and temperature extraction, ionic strength and surfactant and organic solvent volume, were optimized using an experimental design. Under the optimized conditions, this procedure allows enrichment factors of up to 47-fold. The detection limit of the method ranged from 0.1 to 2.0 µg/L for the different pharmaceuticals. Relative standard deviations were <26% for all compounds. The procedure was applied to samples from final effluent collected from wastewater treatment plants in Las Palmas de Gran Canaria (Spain), and two compounds were measured at 67 and 113 µg/L in one of them. Copyright © 2014 John Wiley & Sons, Ltd.
2014-07-17
frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experimentsa) Ultra-intense laser -matter...interaction experiments (>1018 W/cm2) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the...interferometry technique for probing pre- plasma expansion in ultra-intense laser experimentsa) Report Title Ultra-intense laser -matter interaction
Optical and optomechanical ultralightweight C/SiC components
NASA Astrophysics Data System (ADS)
Papenburg, Ulrich; Pfrang, Wilhelm; Kutter, G. S.; Mueller, Claus E.; Kunkel, Bernd P.; Deyerler, Michael; Bauereisen, Stefan
1999-11-01
Optical and optomechanical structures based on silicon carbide (SiC) ceramics are becoming increasingly important for ultra- lightweight optical systems that must work in adverse environments. At IABG and Dornier Satellite Systems (DSS) in Munich, a special form of SiC ceramics carbon fiber reinforced silicon carbide (C/SiCR) has been developed partly under ESA and NASA contracts. C/SiCR is a light-weight, high- strength engineering material that features tunable mechanical and thermal properties. It offers exceptional design freedom due to its reduced brittleness and negligible volume shrinkage during processing in comparison to traditional, powder-based ceramics. Furthermore, its rapid fabrication process produces near-net-shape components using conventional NC machining/milling equipment and, thus, provides substantial schedule, cost, and risk savings. These characteristics allow C/SiCR to overcome many of the problems associated with more traditional optical materials. To date, C/SiCR has been used to produce ultra-lightweight mirrors and reflectors, antennas, optical benches, and monolithic and integrated reference structures for a variety of space and terrestrial applications. This paper describes the material properties, optical system and structural design aspects, the forming and manufacturing process including high-temperature joining technology, precision grinding and cladding techniques, and the performance results of a number of C/SiCR optical components we have built.
NASA Astrophysics Data System (ADS)
Václavová, K.; Stráský, J.; Zháňal, P.; Veselý, J.; Polyakova, V.; Semenova, I.; Janeček, M.
2017-05-01
Processing of metastable titanium alloys by severe plastic deformation provides an opportunity to achieve exceptional grain refinement, to enhance the strength and to affect phase transformations occurring during thermal treatment. The main aim of this study is to investigate the microstructure of ultra-fine grained (UFG) material and effect of microstructural changes on phase transformations in metastable β-Ti alloy Ti-15Mo. Metastable β-Ti alloys are currently the most studied Ti-based materials with prospective use in medicine. Ti-15Mo alloy after solution treatment contains metastable β-phase. Metastable ω-phase and stable α-phase particles are formed upon annealing,. Solution treated Ti-15Mo alloy was deformed by high pressure torsion (HPT) at room temperature. Severely deformed structure after HPT with grain size of ~200 nm was studied by transmission electron microscopy. In-situ electrical resistance measurements showed significant changes in undergoing phase transformations when compared to coarse-grained (CG) material. Scanning electron microscopy revealed heterogeneous precipitation of α-particles at grain boundaries (GB). Due to the high density of GBs in UFG structure, these precipitates are very fine and equiaxed. The study demonstrates that SPD is capable of enhancing mechanical properties due to grain refinement and via affecting precipitation processes in metastable β-Ti alloys.
NASA Astrophysics Data System (ADS)
Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer
A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.
Ribbond for treatment of complicated crown fractures: report of 3 cases.
Akgun, Ozlem Marti; Altun, Ceyhan; Guven, Gunseli; Basak, Feridun
2012-01-01
Dental trauma is relatively common and can occur secondary to sporting injuries, falls, fights, or accidents. According to the International Association of Dental Traumatology, 50% of children experience dental trauma between the ages of 8 to 12. There are many options for endodontic and restorative treatments of traumatized teeth. Ribbond, which was introduced in the market in 1992, consists of bondable, reinforced ultra-high strength polyethylene fibers. Ribbond may be an option for the treatment of traumatized teeth because of its aesthetic properties; absence of additional tooth preparation; and its high resistance to traction, which allows it to easily adapt to tooth morphology. In this report, we describe endodontic and restorative treatments using Ribbond for 3 female patients with horizontal complicated crown fractures of the maxillary incisors.
On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part II
NASA Astrophysics Data System (ADS)
Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.
2012-01-01
The conventional continuous hot-dip galvanizing (GI) and galvannealing (GA) processes can be applied to untransformed austenite to produce Zn and Zn-alloy coated low-carbon ultra-high-strength martensitic steel provided specific alloying additions are made. The most suitable austenite decomposition behavior results from the combined addition of boron, Cr, and Mo, which results in a pronounced transformation bay during isothermal transformation. The occurrence of this transformation bay implies a considerable retardation of the austenite decomposition in the temperature range below the bay, which is close to the stages in the continuous galvanizing line (CGL) thermal cycle related to the GI and GA processes. After the GI and GA processes, a small amount of granular bainite, which consists of bainitic ferrite and discrete islands of martensite/austenite (M/A) constituents embedded in martensite matrix, is present in the microstructure. The ultimate tensile strength (UTS) of the steel after the GI and GA cycle was over 1300 MPa, and the stress-strain curve was continuous without any yielding phenomena.
NASA Astrophysics Data System (ADS)
Arel, Hasan Şahan
The effects of silica fume fineness and fiber aspect ratio on the compressive strength and impact resistance of ultra high-performance fiber-reinforced concrete (UHPFRC) are investigated experimentally. To this end, UHPFRC mixtures are manufactured by combining silica fumes with different fineness (specific surface areas: 17,200, 20,000, and 27,600 m2/kg) and hooked-end steel fibers with various aspect ratios (lengths: 8, 13, and 16 mm). The samples are subjected to standard curing, steam curing, and hot-water curing. Compressive strength tests are conducted after 7-, 28-, 56-, and 90-day curing periods, and an impact resistance experiment is performed after the 90th day. A steam-cured mixture of silica fumes with a specific surface area of 27,600 m2/kg and 16-mm-long fibers produce better results than the other mixtures in terms of mechanical properties. Moreover, impact resistance increases with the fiber aspect ratio.
First demonstration of the fast-to-slow corrector current shift in the NSLS-II storage ring
NASA Astrophysics Data System (ADS)
Yang, Xi; Tian, Yuke; Yu, Li Hua; Smaluk, Victor
2018-04-01
To realize the full benefits of the high brightness and ultra-small beam sizes of NSLS-II, it is essential that the photon beams are exceedingly stable. In the circumstances of implementing local bumps, changing ID gaps, and long term drifting, the fast orbit feedback (FOFB) requires shifting the fast corrector strengths to the slow correctors to prevent the fast corrector saturation and to make the beam orbit stable in the sub-micron level. As the result, a reliable and precise technique of fast-to-slow corrector strength shift has been developed and tested at NSLS-II. This technique is based on the fast corrector response to the slow corrector change when the FOFB is on. In this article, the shift technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented. The maximum fast corrector current was reduced from greater than 0.45 A to less than 0.04 A with the orbit perturbation within ±1 μm.
HP9-4-.30 weld properties and microstructure
NASA Technical Reports Server (NTRS)
Watt, George W.
1991-01-01
HP9-4-.30, ultra high strength steel, the case material for the Advanced Solid Rocket Motor (ASRM), must exhibit acceptable strength, ductility, toughness, and stress corrosion cracking (SCC) resistance after welding and a local post weld heat treatment (PWHT). Testing, to date, shows that the base metal (BM) properties are more than adequate for the anticipated launch loads. Tensile tests of test specimens taken transverse to the weld show that the weld metal overmatches the BM even in the PWHT condition. However, that is still some question about the toughness and SCC resistance of the weld metal in the as welded and post weld heat treated condition. To help clarify the as welded and post weld heat treated mechanical behavior of the alloy, subsize tensile specimens from the BM, the fusion zone (FZ) with and without PWHT, and the heat affected zone (HAZ) with and without PWHT were tested to failure and the fracture surfaces subsequently examined with a scanning electron microscope. Results are given and briefly discussed.
Infiltration Kinetics and Interfacial Bond Strength of Metal Matrix Composites
1992-07-01
and M. Kohyama [29] used X-ray and ultra violet photoelectron spectroscopy to monitor the in situ electronic structure changes of the alumina surface...in terms of Gibbs excess energy, G". Therefore, AGUa A- A GR Gx- (3) The procedure established to estimate GX" involves the use of the experimentally
NASA Astrophysics Data System (ADS)
Forquin, P.; Lukić, B.
2017-11-01
The spalling technique based on the use of a single Hopkinson bar put in contact with the tested sample has been widely adopted as a reliable method for obtaining the tensile response of concrete and rock-like materials at strain rates up-to 200 s- 1. However, the traditional processing method, based on the use of Novikov acoustic approach and the rear face velocity measurement, remains quite questionable due to strong approximations of this data processing method. Recently a new technique for deriving cross-sectional stress fields of a spalling sample filmed with an ultra-high speed camera and based on using the full field measurements and the virtual fields method (VFM) was proposed. In the present work, this topic is perused by performing several spalling tests on ordinary concrete at high acquisition speed of 1Mfps to accurately measure the tensile strength, Young's modulus, strain-rate at failure and stress-strain response of concrete at high strain-rate. The stress-strain curves contain more measurement points for a more reliable identification. The observed tensile stiffness is up-to 50% lower than the initial compressive stiffness and the obtained peak stress was about 20% lower than the one obtained by applying the Novikov method. In order to support this claim, numerical simulations were performed to show that the change of stiffness between compression and tension highly affects the rear-face velocity profile. This further suggests that the processing based only on the velocity "pullback" is quite sensitive and can produce an overestimate of the tensile strength in concrete and rock-like materials.
Femtosecond fiber laser additive manufacturing and welding for 3D manufacturing
NASA Astrophysics Data System (ADS)
Huang, Huan; Nie, Bai; Wan, Peng; Yang, Lih-Mei; Bai, Shuang; Liu, Jian
2015-03-01
Due to the unique ultra-short pulse duration and high peak power, femtosecond (fs) laser has emerged as a powerful tool for many applications but has rarely been studied for 3D printing. In this paper, welding of both bulk and powder materials is demonstrated for the first time by using high energy and high repetition rate fs fiber lasers. It opens up new scenarios and opportunities for 3D printing with the following advantages - greater range of materials especially with high melting temperature, greater-than-ever level of precision (sub-micron) and less heat-affected-zone (HAZ). Mechanical properties (strength and hardness) and micro-structures (grain size) of the fabricated parts are investigated. For dissimilar materials bulk welding, good welding quality with over 210 MPa tensile strength is obtained. Also full melting of the micron-sized refractory powders with high melting temperature (above 3000 degree C) is achieved for the first time. 3D parts with shapes like ring and cube are fabricated. Not only does this study explore the feasibility of melting dissimilar and high melting temperature materials using fs lasers, but it also lays out a solid foundation for 3D printing of complex structure with designed compositions, microstructures and properties. This can greatly benefit the applications in automobile, aerospace and biomedical industries, by producing parts like nozzles, engines and miniaturized biomedical devices.
NASA Astrophysics Data System (ADS)
Jafari, Rahim; Kheirandish, Shahram; Mirdamadi, Shamsoddin
2018-01-01
The current research investigates the effect of ultrafine microstructure resulted from Quench and Partitioning (Q&P) process on obtaining ultra-high strengths in a low-alloy steel with 4wt.% carbon. The purpose of Q&P heat treatment is to enrich the austenite with carbon by partitioning of carbon from supersaturated martensite to austenite, in order to stabilize it to the room temperature. The microstructure, consequently, is consists of martensite, retained austenite and in some conditions bainite. Two-step Q&P heat treatment with quench and partitioning temperatures equal to 120°C and 300°C respectively were applied to the samples at different times. Mechanical behavior was studied by tensile test. The microstructure of the samples was observed using SEM, and TEM and to quantify the amount of retained austenite X-ray diffraction was used. The retained austenite grain size was estimated to be about 0.5 µm and the highest amount of retained austenite obtained was 10 vol%. All samples showed a yield strength and a tensile strength of above 900MPa and 1500MP respectively. The yield strength increased with increase in partitioning time, whereas tensile strength showed an inverse behavior. The elongation in samples varied from 5% to 9% which seemed to not have a direct connection with the amount of retained austenite, but instead it was related to the ferritic structures formed during partitioning such as coalesced martensite, bainite and tempered martensite.
Production of Ultra-Light Normal Incidence Mirrors
NASA Technical Reports Server (NTRS)
Jones, Ruth; Muntele, Iulia; Muntele, Claudiu; Zimmerman, Robert L.; Ila, Daryush; Burdine, Robert V. (Technical Monitor)
2002-01-01
Mirrors fabrication for large aperture telescopes is an important aspect in space exploration programs. One of the cost effective techniques to obtain such mirrors is electroplating of Ni-Co alloys from sulfamate solution. The Center for Irradiation of Materials at Alabama A&M University - Research Institute has been involved in a NASA-MSFC project for producing ultra-light Ni-Co alloy mirrors since the summer of year 2000. The goal of this project is to obtain ultra-light, high strength electroformed large aperture normal incidence replicated mirrors, (weighting less than 5 kg/m2), free of stress, with a good figure and reproducible thickness variation. In order to simplify the control of parameters such as temperature gradient, concentration gradient, distribution of the electric field lines and flow control, the proposed geometry involves a cylindrical main tank contained in another cylindrical tank, which plays the role of a weir. Designs were created to accommodate the new horizontal position of the mandrel and the pipes fitting through the outer tank's lid. The inner tank contains the working electrodes and a series of sensors for monitoring temperature, flow, stress and pH. The outer tank holds the electric heaters, the filters and a part of the piping system. Another two tanks complete the setup and serve for rinsing/preheating and equilibrating the electroplating bath. This paper will describe advantages of the new experimental setup and the parameters achieved in the electroplating bath for the proposed geometry.
Fabrication of mesoporous silica for ultra-low-k interlayer dielectrics
NASA Astrophysics Data System (ADS)
Fujii, Nobutoshi; Kohmura, Kazuo; Nakayama, Takahiro; Tanaka, Hirofumi; Hata, Nobuhiro; Seino, Yutaka; Kikkawa, Takamaro
2005-11-01
We have developed sol-gel self-assembly techniques to control the pore structure and diameter of ultra-low-k interlayer dielectric (ILD) films. Porous silica films have been fabricated using cationic and nonionic surfactants as templates, resulting in 2D-hexagonal and disordered pore structures, respectively. The disordered mesoporous silica film has a worm-hole like network of pore channels having a uniform diameter. Precursors of the mesoporous silica films were synthesized by use of tetraethyl-orthosilicate (TEOS), inorganic acid, water, ethanol and various surfactants. The surfactants used were cationic alkyltrimethyl-ammonium (ATMA) chloride surfactants for 2D-hexagonal pores and nonionic tri-block copolymer for disordered structures. Dimethyldiethoxysilane (DMDEOS) was added for forming the disordered mesoporous silica. The disordered cylindrical pore structure with a uniform pore size was fabricated by controlling the static electrical interaction between the surfactant and the silica oligomer with methyl group of DMDEOS. Tetramethylcycrotetrasiloxane (TMCTS) vapor treatment was developed, which improved the mechanical strength of mesoporous silica films. The TMCTS polymer covered the pore wall surface and cross-linked to passivate the mechanical defects in the silica wall. Significant enhancement of mechanical strength was demonstrated by TMCTS vapor treatment. The porous silica film modified with a catalyst and a plasma treatment achieved higher mechanical strength and lower dielectric constant than conventional porous silica films because the TMCTS vapor treatment was more effective for mechanical reinforcement and hydrophobicity.
Formal thought disorder in people at ultra-high risk of psychosis
Weinstein, Sara; Stahl, Daniel; Day, Fern; Valmaggia, Lucia; Rutigliano, Grazia; De Micheli, Andrea; Fusar-Poli, Paolo; McGuire, Philip
2017-01-01
Background Formal thought disorder is a cardinal feature of psychosis. However, the extent to which formal thought disorder is evident in ultra-high-risk individuals and whether it is linked to the progression to psychosis remains unclear. Aims Examine the severity of formal thought disorder in ultra-high-risk participants and its association with future psychosis. Method The Thought and Language Index (TLI) was used to assess 24 ultra-high-risk participants, 16 people with first-episode psychosis and 13 healthy controls. Ultra-high-risk individuals were followed up for a mean duration of 7 years (s.d.=1.5) to determine the relationship between formal thought disorder at baseline and transition to psychosis. Results TLI scores were significantly greater in the ultra-high-risk group compared with the healthy control group (effect size (ES)=1.2), but lower than in people with first-episode psychosis (ES=0.8). Total and negative TLI scores were higher in ultra-high-risk individuals who developed psychosis, but this was not significant. Combining negative TLI scores with attenuated psychotic symptoms and basic symptoms predicted transition to psychosis (P=0.04; ES=1.04). Conclusions TLI is beneficial in evaluating formal thought disorder in ultra-high-risk participants, and complements existing instruments for the evaluation of psychopathology in this group. Declaration of interests None. Copyright and usage © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license. PMID:28713586
Morey, Rajendra A; Inan, Seniha; Mitchell, Teresa V; Perkins, Diana O; Lieberman, Jeffrey A; Belger, Aysenil
2005-03-01
Individuals experiencing prodromal symptoms of schizophrenia (ultra-high-risk group) demonstrate impaired performance on tasks of executive function, attention, and working memory. The neurobiological underpinnings of such executive deficits in ultra-high-risk individuals remains unclear. We assessed frontal and striatal functions during a visual oddball continuous performance task, in ultra-high-risk, early, and chronic schizophrenic patients with the use of functional magnetic resonance imaging. Cross-sectional case-control design. Community; outpatient clinic. Patients Fifty-two individuals (control, n = 16; ultra-high risk, n = 10; early, n = 15; chronic, n = 11) from a referred clinical sample and age- and sex-matched control volunteers underwent scanning. Percentage of active voxels and percentage signal change calculated for the anterior cingulate gyrus (ACG), middle frontal gyrus (MFG), inferior frontal gyrus (IFG), basal ganglia, and thalamus. Performance on the visual oddball task was measured with percentage of hits and d' (a measure based on the hit rate and the false-alarm rate). The ultra-high-risk group showed significantly smaller differential activation between task-relevant and task-irrelevant stimuli in the frontal regions (ACG, IFG, MFG) than the control group. Frontostriatal activation associated with target stimuli in the early and chronic groups was significantly lower than the control group, while the ultra-high-risk group showed a trend toward the early group. Our findings suggest that prefrontal function begins to decline before the onset of syndromally defined illness and hence may represent a vulnerability marker in assessing the risk of developing psychotic disorders among ultra-high-risk individuals.
Quantile Regression for Analyzing Heterogeneity in Ultra-high Dimension
Wang, Lan; Wu, Yichao
2012-01-01
Ultra-high dimensional data often display heterogeneity due to either heteroscedastic variance or other forms of non-location-scale covariate effects. To accommodate heterogeneity, we advocate a more general interpretation of sparsity which assumes that only a small number of covariates influence the conditional distribution of the response variable given all candidate covariates; however, the sets of relevant covariates may differ when we consider different segments of the conditional distribution. In this framework, we investigate the methodology and theory of nonconvex penalized quantile regression in ultra-high dimension. The proposed approach has two distinctive features: (1) it enables us to explore the entire conditional distribution of the response variable given the ultra-high dimensional covariates and provides a more realistic picture of the sparsity pattern; (2) it requires substantially weaker conditions compared with alternative methods in the literature; thus, it greatly alleviates the difficulty of model checking in the ultra-high dimension. In theoretic development, it is challenging to deal with both the nonsmooth loss function and the nonconvex penalty function in ultra-high dimensional parameter space. We introduce a novel sufficient optimality condition which relies on a convex differencing representation of the penalized loss function and the subdifferential calculus. Exploring this optimality condition enables us to establish the oracle property for sparse quantile regression in the ultra-high dimension under relaxed conditions. The proposed method greatly enhances existing tools for ultra-high dimensional data analysis. Monte Carlo simulations demonstrate the usefulness of the proposed procedure. The real data example we analyzed demonstrates that the new approach reveals substantially more information compared with alternative methods. PMID:23082036
Hofmann, Douglas C.; Polit-Casillas, Raul; Roberts, Scott N.; Borgonia, John-Paul; Dillon, Robert P.; Hilgemann, Evan; Kolodziejska, Joanna; Montemayor, Lauren; Suh, Jong-ook; Hoff, Andrew; Carpenter, Kalind; Parness, Aaron; Johnson, William L.; Kennett, Andrew; Wilcox, Brian
2016-01-01
The use of bulk metallic glasses (BMGs) as the flexspline in strain wave gears (SWGs), also known as harmonic drives, is presented. SWGs are unique, ultra-precision gearboxes that function through the elastic flexing of a thin-walled cup, called a flexspline. The current research demonstrates that BMGs can be cast at extremely low cost relative to machining and can be implemented into SWGs as an alternative to steel. This approach may significantly reduce the cost of SWGs, enabling lower-cost robotics. The attractive properties of BMGs, such as hardness, elastic limit and yield strength, may also be suitable for extreme environment applications in spacecraft. PMID:27883054
Method of preparing copper-dendritic composite alloys for mechanical reduction
Verhoeven, John D.; Gibson, Edwin D.; Schmidt, Frederick A.; Spitzig, William A.
1988-01-01
Copper-dendritic composite alloys are prepared for mechanical reduction to increase tensile strength by dispersing molten droplets of the composite alloy into an inert gas; solidifying the droplets in the form of minute spheres or platelets; and compacting a mass of the spheres or platelets into an integrated body. The spheres preferably have diameters of from 50 to 2000 .mu.m, and the platelets thicknesses of 100 to 2000 .mu.m. The resulting spheres or platelets will contain ultra-fine dendrites which produce higher strengths on mechanical reduction of the bodies formed therefrom, or comparable strengths at lower reduction values. The method is applicable to alloys of copper with vanadium, niobium, tantalum, chromium, molybdenum, tungsten, iron and cobalt.
Method of preparing copper-dendritic composite alloys for mechanical reduction
Verhoeven, J.D.; Gibson, E.D.; Schmidt, F.A.; Spitzig, W.A.
1988-09-13
Copper-dendritic composite alloys are prepared for mechanical reduction to increase tensile strength by dispersing molten droplets of the composite alloy into an inert gas; solidifying the droplets in the form of minute spheres or platelets; and compacting a mass of the spheres or platelets into an integrated body. The spheres preferably have diameters of from 50 to 2,000 [mu]m, and the platelets thicknesses of 100 to 2,000 [mu]m. The resulting spheres or platelets will contain ultra-fine dendrites which produce higher strengths on mechanical reduction of the bodies formed therefrom, or comparable strengths at lower reduction values. The method is applicable to alloys of copper with vanadium, niobium, tantalum, chromium, molybdenum, tungsten, iron and cobalt. 3 figs.
Method of forming biaxially textured alloy substrates and devices thereon
Goyal, Amit; Specht, Eliot D.; Kroeger, Donald M.; Paranthaman, Mariappan
1999-01-01
Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be fabricated in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.
Yanagisawa, Y; Piao, R; Iguchi, S; Nakagome, H; Takao, T; Kominato, K; Hamada, M; Matsumoto, S; Suematsu, H; Jin, X; Takahashi, M; Yamazaki, T; Maeda, H
2014-12-01
High-temperature superconductors (HTS) are the key technology to achieve super-high magnetic field nuclear magnetic resonance (NMR) spectrometers with an operating frequency far beyond 1GHz (23.5T). (RE)Ba 2 Cu 3 O 7- x (REBCO, RE: rare earth) conductors have an advantage over Bi 2 Sr 2 Ca 2 Cu 3 O 10- x (Bi-2223) and Bi 2 Sr 2 CaCu 2 O 8- x (Bi-2212) conductors in that they have very high tensile strengths and tolerate strong electromagnetic hoop stress, thereby having the potential to act as an ultra-compact super-high field NMR magnet. As a first step, we developed the world's first NMR magnet comprising an inner REBCO coil and outer low-temperature superconducting (LTS) coils. The magnet was successfully charged without degradation and mainly operated at 400MHz (9.39T). Technical problems for the NMR magnet due to screening current in the REBCO coil were clarified and solved as follows: (i) A remarkable temporal drift of the central magnetic field was suppressed by a current sweep reversal method utilizing ∼10% of the peak current. (ii) A Z2 field error harmonic of the main coil cannot be compensated by an outer correction coil and therefore an additional ferromagnetic shim was used. (iii) Large tesseral harmonics emerged that could not be corrected by cryoshim coils. Due to those harmonics, the resolution and sensitivity of NMR spectra are ten-fold lower than those for a conventional LTS NMR magnet. As a result, a HSQC spectrum could be achieved for a protein sample, while a NOESY spectrum could not be obtained. An ultra-compact 1.2GHz NMR magnet could be realized if we effectively take advantage of REBCO conductors, although this will require further research to suppress the effect of the screening current. Copyright © 2014 Elsevier Inc. All rights reserved.
Callera, Glaucia E.; Antunes, Tayze T.; Correa, Jose W.; Moorman, Danielle; Gutsol, Alexey; He, Ying; Cat, Aurelie Nguyen Dinh; Briones, Ana M.; Montezano, Augusto C.; Burns, Kevin D.; Touyz, Rhian M.
2016-01-01
High doses of Ang II receptor (AT1R) blockers (ARBs) are renoprotective in diabetes. Underlying mechanisms remain unclear. We evaluated whether high/ultra-high doses of candesartan (ARB) up-regulate angiotensin-converting enzyme 2 (ACE2)/Ang II type 2 receptor (AT2R)/Mas receptor [protective axis of the of the renin–angiotensin system (RAS)] in diabetic mice. Systolic blood pressure (SBP), albuminuria and expression/activity of RAS components were assessed in diabetic db/db and control db/+ mice treated with increasing candesartan doses (intermediate, 1 mg/kg/d; high, 5 mg/kg/d; ultra-high, 25 and 75 mg/kg/d; 4 weeks). Lower doses candesartan did not influence SBP, but ultra-high doses reduced SBP in both groups. Plasma glucose and albuminuria were increased in db/db compared with db/+ mice. In diabetic mice treated with intermediate dose candesartan, renal tubular damage and albuminuria were ameliorated and expression of ACE2, AT2R and Mas and activity of ACE2 were increased, effects associated with reduced ERK1/2 phosphorylation, decreased fibrosis and renal protection. Ultra-high doses did not influence the ACE2/AT2R/Mas axis and promoted renal injury with increased renal ERK1/2 activation and exaggerated fibronectin expression in db/db mice. Our study demonstrates dose-related effects of candesartan in diabetic nephropathy: intermediate–high dose candesartan is renoprotective, whereas ultra-high dose candesartan induces renal damage. Molecular processes associated with these effects involve differential modulation of the ACE2/AT2R/Mas axis: intermediate–high dose candesartan up-regulating RAS protective components and attenuating pro-fibrotic processes, and ultra-high doses having opposite effects. These findings suggest novel mechanisms through the protective RAS axis, whereby candesartan may ameliorate diabetic nephropathy. Our findings also highlight potential injurious renal effects of ultra-high dose candesartan in diabetes. PMID:27612496
NASA Astrophysics Data System (ADS)
Powell, James; Maise, George; Paniagua, John; Rather, John
2007-01-01
MIC (Magnetically Inflated Cables) is a new approach for robotically erecting very large, strong, rigid, and ultra-lightweight structures in space. MIC structures use a network of high current (SC) cables with attached high tensile strength Kevlar or Spectra tethers. MIC is launched as a compact package of coiled SC cables and tethers on a conventional launch vehicle. Once in space the SC cables are electrically energized. The resultant strong outwards magnetic forces expand them and the restraining tethers into a large structure, which can be 100's of meters in size. MIC structures can be configured for many different applications, including solar electric generation, solar thermal propulsion, energy storage, large space telescopes, magnetic shielding for astronauts, etc. The MIC technology components, including high temperature superconductors (HTS), thermal insulation, high strength tethers, and cryogenic refrigerators all exist commercially. Refrigeration requirements are very modest, on the order of 100 watts thermal per kilometer of MIC cable, with an input electric power to the refrigeration system of ~5 kW(e) per km. baseline MIC designs are described for a manned lunar base, including: 1) a 1 MW(e) solar electric system, 2) a high Isp (~900 seconds) solar thermal tug to transport 30 ton payloads between the Earth and the Moon, 3) a 2000 Megajoule electric energy storage system for peaking and emergency power, and 4) a large (~1 km) space telescope.
Magnetic Resonance Relaxometry at Low and Ultra low Fields.
Volegov, P; Flynn, M; Kraus, R; Magnelind, P; Matlashov, A; Nath, P; Owens, T; Sandin, H; Savukov, I; Schultz, L; Urbaitis, A; Zotev, V; Espy, M
2010-01-01
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are ubiquitous tools in science and medicine. NMR provides powerful probes of local and macromolecular chemical structure and dynamics. Recently it has become possible and practical to perform MR at very low fields (from 1 μT to 1 mT), the so-called ultra-low field (ULF) regime. Pulsed pre-polarizing fields greatly enhance the signal strength and allow flexibility in signal acquisition sequences. Improvements in SQUID sensor technology allow ultra-sensitive detection in a pulsed field environment.In this regime the proton Larmor frequencies (1 Hz - 100 kHz) of ULF MR overlap (on a time scale of 10 μs to 100 ms) with "slow" molecular dynamic processes such as diffusion, intra-molecular motion, chemical reactions, and biological processes such as protein folding, catalysis and ligand binding. The frequency dependence of relaxation at ultra-low fields may provide a probe for biomolecular dynamics on the millisecond timescale (protein folding and aggregation, conformational motions of enzymes, binding and structural fluctuations of coupled domains in allosteric mechanisms) relevant to host-pathogen interactions, biofuels, and biomediation. Also this resonance-enhanced coupling at ULF can greatly enhance contrast in medical applications of ULF-MRI resulting in better diagnostic techniques.We have developed a number of instruments and techniques to study relaxation vs. frequency at the ULF regime. Details of the techniques and results are presented.Ultra-low field methods are already being applied at LANL in brain imaging, and detection of liquid explosives at airports. However, the potential power of ultra-low field MR remains to be fully exploited.
Novel THz radiation from relativistic laser-plasmas
NASA Astrophysics Data System (ADS)
Sheng, Z. M.; Wu, H. C.; Wang, W. M.; Dong, X. G.; Chen, M.; Zhang, J.
2009-05-01
The interaction of ultrashort intense laser pulses with plasma can produce electromagnetic radiation of ultra-broad spectra ranging from terahertz (THz) radiation to keV x-rays and beyond. Here we present a review of our recent theoretical and numerical investigation on high power THz generation from tenuous plasma or gas targets irradiated by ultrashort intense laser pulses. Three mechanisms of THz emission are addressed, which include the linear mode conversion from laser wakefields in inhomogeneous plasma, transient current emission at the plasma-vacuum boundaries, and the emission from residual transverse currents produced by temporally-asymmetric laser pulses passing through gas or plasma targets. Since there is no breakdown limit for plasma under the irradiation of high power lasers, in principle, all these mechanisms can lead to terahertz pulse emission at the power of beyond megawatt with the field strength of MV/cm, suitable for the study of high THz field physics and other applications.
Effects of (Oxy-)Fluorination on Various High-Performance Yarns.
Kruppke, Iris; Bartusch, Matthias; Hickmann, Rico; Hund, Rolf-Dieter; Cherif, Chokri
2016-08-26
In this work, typical high-performance yarns are oxy-fluorinated, such as carbon fibers, ultra-high-molecular-weight polyethylene, poly(p-phenylene sulfide) and poly(p-phenylene terephthalamide). The focus is on the property changes of the fiber surface, especially the wetting behavior, structure and chemical composition. Therefore, contact angle, XPS and tensile strength measurements are performed on treated and untreated fibers, while SEM is utilized to evaluate the surface structure. Different results for the fiber materials are observed. While polyethylene exhibits a relevant impact on both surface and bulk properties, polyphenylene terephthalamide and polyphenylene sulfide are only affected slightly by (oxy-)fluorination. The wetting of carbon fiber needs higher treatment intensities, but in contrast to the organic fibers, even its textile-physical properties are enhanced by the treatment. Based on these findings, the capability of (oxy-)fluorination to improve the adhesion of textiles in fiber-reinforced composite materials can be derived.
Carmichael, J R; Diallo, S O
2013-01-01
We present our new development of a high pressure cell for inelastic neutron scattering measurements of helium at ultra-low temperatures. The cell has a large sample volume of ~140 cm(3) and a working pressure of ~7 MPa, with a relatively thin wall-thickness (1.1 mm)--thanks to the high yield strength aluminum used in the design. Two variants of this cell have been developed. The first cell is permanently joined components using electron-beam welding and explosion welding, methods that have little or no impact on the global heat treatment of the cell. The second cell discussed has modular and interchangeable components, which includes a capacitance pressure gauge, that can be sealed using the traditional indium wire technique. The performance of the cells have been tested in recent measurements on superfluid liquid helium near the solidification line.
NASA Astrophysics Data System (ADS)
Carmichael, J. R.; Diallo, S. O.
2013-01-01
We present our new development of a high pressure cell for inelastic neutron scattering measurements of helium at ultra-low temperatures. The cell has a large sample volume of ˜140 cm3 and a working pressure of ˜7 MPa, with a relatively thin wall-thickness (1.1 mm)—thanks to the high yield strength aluminum used in the design. Two variants of this cell have been developed. The first cell is permanently joined components using electron-beam welding and explosion welding, methods that have little or no impact on the global heat treatment of the cell. The second cell discussed has modular and interchangeable components, which includes a capacitance pressure gauge, that can be sealed using the traditional indium wire technique. The performance of the cells have been tested in recent measurements on superfluid liquid helium near the solidification line.
Dynamic tensile fracture of mortar at ultra-high strain-rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y.
2013-12-28
During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4} s{sup −1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of thismore » cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.« less
NASA Technical Reports Server (NTRS)
Prasad, Narasimha; Trivedi, Sudhir; Chen, Henry; Kutcher, Susan; Zhang, Dajie; Singh, Jogender
2017-01-01
Advances in radiation shielding technologies are needed to protect humans and electronic components from all threats of space radiation over long durations. In this paper, we report on the use of the innovative and novel fabrication technology known as Field Assisted Sintering Technology (FAST) to fabricate lightweight material with enhanced radiation shielding strength to safeguard humans and electronics suitable for next generation space exploration missions. The base materials we investigated were aluminum (Al), the current standard material for space hardware, and Ultra-High Molecular Weight Polyethylene (UHMWPE), which has high hydrogen content and resistance to nuclear reaction from neutrons, making it a good shielding material for both gamma radiation and particles. UHMWPE also has high resistance to corrosive chemicals, extremely low moisture sensitivity, very low coefficient of friction, and high resistance to abrasion. We reinforced the base materials by adding high density (ie, high atomic weight) metallic material into the composite. These filler materials included: boron carbide (B4C), tungsten (W), tungsten carbide (WC) and gadolinium (Gd).
In vivo oxidation in remelted highly cross-linked retrievals.
Currier, B H; Van Citters, D W; Currier, J H; Collier, J P
2010-10-20
Elimination of free radicals to prevent oxidation has played a major role in the development and product differentiation of the latest generation of highly cross-linked ultra-high molecular weight polyethylene bearing materials. In the current study, we (1) examined oxidation in a series of retrieved remelted highly cross-linked ultra-high molecular weight polyethylene bearings from a number of device manufacturers and (2) compared the retrieval results with findings for shelf-stored control specimens. The hypothesis was that radiation-cross-linked remelted ultra-high molecular weight polyethylene would maintain oxidative stability in vivo comparable with the stability during shelf storage and in published laboratory aging tests. Fifty remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners and nineteen remelted highly cross-linked ultra-high molecular weight polyethylene tibial inserts were received after retrieval from twenty-one surgeons from across the U.S. Thirty-two of the retrievals had been in vivo for two years or more. Each was measured for oxidation with use of Fourier transform infrared spectroscopy. A control series of remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners from three manufacturers was analyzed with electron paramagnetic resonance spectroscopy to measure free radical content and with Fourier transform infrared spectroscopy to measure oxidation initially and after eight to nine years of shelf storage in air. The never-implanted, shelf-aged controls had no measurable free-radical content initially or after eight to nine years of shelf storage. The never-implanted controls showed no increase in oxidation during shelf storage. Oxidation measurements showed measurable oxidation in 22% of the retrieved remelted highly cross-linked liners and inserts after an average of two years in vivo. Because never-implanted remelted highly cross-linked ultra-high molecular weight polyethylene materials had no measurable free-radical concentration and no increase in oxidation during shelf storage, these materials were expected to be oxidation-resistant in vivo. However, some remelted highly cross-linked ultra-high molecular weight polyethylene retrievals showed measurable oxidation after an average of more than two years in vivo. This apparent departure from widely expected behavior requires continued study of the process of in vivo oxidation of ultra-high molecular weight polyethylene materials.
Creep Strength of Dissimilar Welded Joints Using High B-9Cr Steel for Advanced USC Boiler
NASA Astrophysics Data System (ADS)
Tabuchi, Masaaki; Hongo, Hiromichi; Abe, Fujio
2014-10-01
The commercialization of a 973 K (700 °C) class pulverized coal power system, advanced ultra-supercritical (A-USC) pressure power generation, is the target of an ongoing research project initiated in Japan in 2008. In the A-USC boiler, Ni or Ni-Fe base alloys are used for high-temperature parts at 923 K to 973 K (650 °C to 700 °C), and advanced high-Cr ferritic steels are planned to be used at temperatures lower than 923 K (650 °C). In the dissimilar welds between Ni base alloys and high-Cr ferritic steels, Type IV failure in the heat-affected zone (HAZ) is a concern. Thus, the high B-9Cr steel developed at the National Institute for Materials Science, which has improved creep strength in weldments, is a candidate material for the Japanese A-USC boiler. In the present study, creep tests were conducted on the dissimilar welded joints between Ni base alloys and high B-9Cr steels. Microstructures and creep damage in the dissimilar welded joints were investigated. In the HAZ of the high B-9Cr steels, fine-grained microstructures were not formed and the grain size of the base metal was retained. Consequently, the creep rupture life of the dissimilar welded joints using high B-9Cr steel was 5 to 10 times longer than that of the conventional 9Cr steel welded joints at 923 K (650 °C).
NASA Astrophysics Data System (ADS)
Phan, Hoang-Phuong; Nguyen, Tuan-Khoa; Dinh, Toan; Ina, Ginnosuke; Kermany, Atieh Ranjbar; Qamar, Afzaal; Han, Jisheng; Namazu, Takahiro; Maeda, Ryutaro; Dao, Dzung Viet; Nguyen, Nam-Trung
2017-04-01
Strain engineering has attracted great attention, particularly for epitaxial films grown on a different substrate. Residual strains of SiC have been widely employed to form ultra-high frequency and high Q factor resonators. However, to date, the highest residual strain of SiC was reported to be limited to approximately 0.6%. Large strains induced into SiC could lead to several interesting physical phenomena, as well as significant improvement of resonant frequencies. We report an unprecedented nanostrain-amplifier structure with an ultra-high residual strain up to 8% utilizing the natural residual stress between epitaxial 3C-SiC and Si. In addition, the applied strain can be tuned by changing the dimensions of the amplifier structure. The possibility of introducing such a controllable and ultra-high strain will open the door to investigating the physics of SiC in large strain regimes and the development of ultra sensitive mechanical sensors.
Afra, Elyas; Yousefi, Hossein; Hadilam, Mohamad Mahdi; Nishino, Takashi
2013-09-12
Cellulose fibers were fibrillated using mechanical beating (shearing refiner) and ultra-fine friction grinder, respectively. The fibrillated fibers were then used to make paper. Mechanical beating process created a partial skin fibrillation, while grinding turned fiber from micro to nanoscale through nanofibrillation mechanism. The partially fibrillated and nano fibrillated fibers had significant effects on paper density, tear strength, tensile strength and water drainage time. The effect of nanofibrillation on paper properties was quantitatively higher than that of mechanical beating. Paper sheets from nanofibrillated cellulose have a higher density, higher tensile strength and lower tear strength compared to those subjected to mechanical beating. Mechanical beating and nanofibrillation were both found to be promising fiber structural modifications. Long water drainage time was an important drawback of both fibrillation methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shibasaki, S; Takamizawa, T; Nojiri, K; Imai, A; Tsujimoto, A; Endo, H; Suzuki, S; Suda, S; Barkmeier, W W; Latta, M A; Miyazaki, M
The present study determined the mechanical properties and volumetric polymerization shrinkage of different categories of resin composite. Three high viscosity bulk fill resin composites were tested: Tetric EvoCeram Bulk Fill (TB, Ivoclar Vivadent), Filtek Bulk Fill posterior restorative (FB, 3M ESPE), and Sonic Fill (SF, Kerr Corp). Two low-shrinkage resin composites, Kalore (KL, GC Corp) and Filtek LS Posterior (LS, 3M ESPE), were used. Three conventional resin composites, Herculite Ultra (HU, Kerr Corp), Estelite ∑ Quick (EQ, Tokuyama Dental), and Filtek Supreme Ultra (SU, 3M ESPE), were used as comparison materials. Following ISO Specification 4049, six specimens for each resin composite were used to determine flexural strength, elastic modulus, and resilience. Volumetric polymerization shrinkage was determined using a water-filled dilatometer. Data were evaluated using analysis of variance followed by Tukey's honestly significant difference test (α=0.05). The flexural strength of the resin composites ranged from 115.4 to 148.1 MPa, the elastic modulus ranged from 5.6 to 13.4 GPa, and the resilience ranged from 0.70 to 1.0 MJ/m 3 . There were significant differences in flexural properties between the materials but no clear outliers. Volumetric changes as a function of time over a duration of 180 seconds depended on the type of resin composite. However, for all the resin composites, apart from LS, volumetric shrinkage began soon after the start of light irradiation, and a rapid decrease in volume during light irradiation followed by a slower decrease was observed. The low shrinkage resin composites KL and LS showed significantly lower volumetric shrinkage than the other tested materials at the measuring point of 180 seconds. In contrast, the three bulk fill resin composites showed higher volumetric change than the other resin composites. The findings from this study provide clinicians with valuable information regarding the mechanical properties and polymerization kinetics of these categories of current resin composite.
Electronic Raman Scattering as an Ultra-Sensitive Probe of Strain Effects in Semiconductors
NASA Astrophysics Data System (ADS)
Mascarenhas, Angelo; Fluegel, Brian; Beaton, Dan
Semiconductor strain engineering has become a critical feature of high-performance electronics due to the significant device performance enhancements it enables. These improvements that emerge from strain induced modifications to the electronic band structure necessitate new ultra-sensitive tools for probing strain in semiconductors. Using electronic Raman scattering, we recently showed that it is possible to measure minute amounts of strain in thin semiconductor epilayers. We applied this strain measurement technique to two different semiconductor alloy systems, using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Comparing our strain sensitivity and signal strength in AlxGa1-xAs with those obtained using the industry-standard technique of phonon Raman scattering we found a sensitivity improvement of ×200, and a signal enhancement of 4 ×103 thus obviating key constraints in semiconductor strain metrology. The sensitivity of this approach rivals that of contemporary techniques and opens up a new realm for optically probing strain effects on electronic band structure. We acknowledge the financial support of the DOE Office of Science, BES under DE-AC36-80GO28308.
DOE Office of Scientific and Technical Information (OSTI.GOV)
X Li; Y Mao; H Ma
An ionic liquid (IL) 1-docosanyl-3-methylimidazolium bromide was incorporated into ultra-high molecular weight polyethylene (UHMWPE) and formed IL/UHMWPE blends by solution mixing. The structure evolution of these blends during uniaxial stretching was followed by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. During deformation at room temperature, deformation-induced phase transformation from orthorhombic to monoclinic phase was observed in both IL/UHMWPE blends and neat UHMWPE. The elongation-to-break ratios of IL/UHMWPE blends were found to increase by 2-3 times compared with that of pure UHMWPE, while the tensile strength remained about the same. In contrast, during deformation at highmore » temperature (120 C), no phase transformation was observed. However, the blend samples showed much better toughness, higher crystal orientation and higher tilting extent of lamellar structure at high strains.« less
Ultra High Bypass Integrated System Test
2015-09-14
NASA’s Environmentally Responsible Aviation Project, in collaboration with the Federal Aviation Administration (FAA) and Pratt & Whitney, completed testing of an Ultra High Bypass Ratio Turbofan Model in the 9’ x 15’ Low Speed Wind Tunnel at NASA Glenn Research Center. The fan model is representative of the next generation of efficient and quiet Ultra High Bypass Ratio Turbofan Engine designs.
Ultra-high Temperature Emittance Measurements for Space and Missile Applications
NASA Technical Reports Server (NTRS)
Rogers, Jan; Crandall, David
2009-01-01
Advanced modeling and design efforts for many aerospace components require high temperature emittance data. Applications requiring emittance data include propulsion systems, radiators, aeroshells, heatshields/thermal protection systems, and leading edge surfaces. The objective of this work is to provide emittance data at ultra-high temperatures. MSFC has a new instrument for the measurement of emittance at ultra-high temperatures, the Ultra-High Temperature Emissometer System (Ultra-HITEMS). AZ Technology Inc. developed the instrument, designed to provide emittance measurements over the temperature range 700-3500K. The Ultra-HITEMS instrument measures the emittance of samples, heated by lasers, in vacuum, using a blackbody source and a Fourier Transform Spectrometer. Detectors in a Nicolet 6700 FT-IR spectrometer measure emittance over the spectral range of 0.4-25 microns. Emitted energy from the specimen and output from a Mikron M390S blackbody source at the same temperature with matched collection geometry are measured. Integrating emittance over the spectral range yields the total emittance. The ratio provides a direct measure of total hemispherical emittance. Samples are heated using lasers. Optical pyrometry provides temperature data. Optical filters prevent interference from the heating lasers. Data for Inconel 718 show excellent agreement with results from literature and ASTM 835. Measurements taken from levitated spherical specimens provide total hemispherical emittance data; measurements taken from flat specimens mounted in the chamber provide near-normal emittance data. Data from selected characterization studies will be presented. The Ultra-HITEMS technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials.
MGH-USC Human Connectome Project Datasets with Ultra-High b-Value Diffusion MRI
Fan, Qiuyun; Witzel, Thomas; Nummenmaa, Aapo; Van Dijk, Koene R.A.; Van Horn, John D.; Drews, Michelle K.; Somerville, Leah H.; Sheridan, Margaret A.; Santillana, Rosario M.; Snyder, Jenna; Hedden, Trey; Shaw, Emily E.; Hollinshead, Marisa O.; Renvall, Ville; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R.; Tisdall, Dylan; Buckner, Randy L.; Wedeen, Van J.; Wald, Lawrence L.; Toga, Arthur W.; Rosen, Bruce R.
2015-01-01
The MGH-USC CONNECTOM MRI scanner housed at the Massachusetts General Hospital (MGH) is a major hardware innovation of the Human Connectome Project (HCP). The 3T CONNECTOM scanner is capable of producing magnetic field gradient of up to 300 mT/m strength for in vivo human brain imaging, which greatly shortens the time spent on diffusion encoding, and decreases the signal loss due to T2 decay. To demonstrate the capability of the novel gradient system, data of healthy adult participants were acquired for this MGH-USC Adult Diffusion Dataset (N=35), minimally preprocessed, and shared through the Laboratory of Neuro Imaging Image Data Archive (LONI IDA) and the WU-Minn Connectome Database (ConnecomeDB). Another purpose of sharing the data is to facilitate methodological studies of diffusion MRI (dMRI) analyses utilizing high diffusion contrast, which perhaps is not easily feasible with standard MR gradient system. In addition, acquisition of the MGH-Harvard-USC Lifespan Dataset is currently underway to include 120 healthy participants ranging from 8 to 90 years old, which will also be shared through LONI IDA and ConnectomeDB. Here we describe the efforts of the MGH-USC HCP consortium in acquiring and sharing the ultra-high b-value diffusion MRI data and provide a report on data preprocessing and access. We conclude with a demonstration of the example data, along with results of standard diffusion analyses, including q-ball Orientation Distribution Function (ODF) reconstruction and tractography. PMID:26364861
Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials
NASA Astrophysics Data System (ADS)
Lecaplain, C.; Javerzac-Galy, C.; Gorodetsky, M. L.; Kippenberg, T. J.
2016-11-01
The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.
Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials
Lecaplain, C.; Javerzac-Galy, C.; Gorodetsky, M. L.; Kippenberg, T. J.
2016-01-01
The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date. PMID:27869119
Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials.
Lecaplain, C; Javerzac-Galy, C; Gorodetsky, M L; Kippenberg, T J
2016-11-21
The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF 2 , CaF 2 , MgF 2 and SrF 2 microresonators. We show that MgF 2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF 2 and BaF 2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.
Zhao, Lijia; Park, Nokeun; Tian, Yanzhong; Shibata, Akinobu; Tsuji, Nobuhiro
2016-01-01
Dynamic recrystallization (DRX) is an important grain refinement mechanism to fabricate steels with high strength and high ductility (toughness). The conventional DRX mechanism has reached the limitation of refining grains to several microns even though employing high-strain deformation. Here we show a DRX phenomenon occurring in the dynamically transformed (DT) ferrite, by which the required strain for the operation of DRX and the formation of ultrafine grains is significantly reduced. The DRX of DT ferrite shows an unconventional temperature dependence, which suggests an optimal condition for grain refinement. We further show that new strategies for ultra grain refinement can be evoked by combining DT and DRX mechanisms, based on which fully ultrafine microstructures having a mean grain size down to 0.35 microns can be obtained without high-strain deformation and exhibit superior mechanical properties. This study will open the door to achieving optimal grain refinement to nanoscale in a variety of steels requiring no high-strain deformation in practical industrial application. PMID:27966603
Sandblasting may damage the surface of composite CAD-CAM blocks.
Yoshihara, Kumiko; Nagaoka, Noriyuki; Maruo, Yukinori; Nishigawa, Goro; Irie, Masao; Yoshida, Yasuhiro; Van Meerbeek, Bart
2017-03-01
CAD-CAM blocks to fabricate semi-direct and indirect restorations are available in different sorts of ceramics as well as composite. In order to bond restorations prepared out of composite blocks into tooth cavities, it is recommended to gently sandblast the surface prior to the application of a primer/adhesive. Today, the effect of sandblasting composite block surfaces has not thoroughly been investigated. In this study, the ultra-structure of composite CAD-CAM blocks was investigated with special attention to the effect of sandblasting on the surface topography and of silanization on the bonding performance. Five different composite CAD-CAM blocks were involved. We correlatively investigated their structural and chemical composition using X-ray diffraction (XRD), energy dispersion spectroscopy (EDS), scanning electron microscopy (SEM) and (scanning) transmission electron microscopy ((S)TEM). The effect of sandblasting was also imaged in cross-section and at the interface with composite cement. Finally, we measured the shear bond strength to the sandblasted block surface with and without silanization. All composite blocks revealed a different ultra-structure. Sandblasting increased surface roughness and resulted in an irregular surface with some filler exposure. Sandblasting also damaged the surface. When the sandblasted composite blocks were silanized, superior bonding receptiveness in terms of higher bond strength was achieved except for Shofu Block HC. Sandblasting followed by silanization improved the bond strength to composite CAD-CAM blocks. However, sandblasting may also damage the composite CAD-CAM block surface. For the composite CAD-CAM block Shofu Block HC, the damage was so severe that silanization did not improve bond strength. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Ibrahim, Ihab M; Elkassas, Dina W; Yousry, Mai M
2010-10-01
This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9-1.0), intermediary strong AdheSE (pH=1.6-1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel.
Ibrahim, Ihab M.; Elkassas, Dina W.; Yousry, Mai M.
2010-01-01
Objectives: This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Methods: Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9–1.0), intermediary strong AdheSE (pH=1.6–1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Results: Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Conclusions: Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel. PMID:20922162
The diagnostics of ultra-short pulse laser-produced plasma
NASA Astrophysics Data System (ADS)
Roth, Markus
2011-09-01
Since the invention of the laser, coherent light has been used to break down solid or gaseous material and transform it into a plasma. Over the last three decades two things have changed. Due to multiple advancements and design of high power lasers it is now possible to increase the electric and magnetic field strength that pushed the electron motion towards the regime of relativistic plasma physics. Moreover, due to the short pulse duration of the driving laser the underlying physics has become so transient that concepts like thermal equilibrium (even a local one) or spatial isotropy start to fail. Consequently short pulse laser-driven plasmas have become a rich source of new phenomena that we are just about beginning to explore. Such phenomena, like particle acceleration, nuclear laser-induced reactions, the generation of coherent secondary radiation ranging from THz to high harmonics and the production of attosecond pulses have excited an enormous interest in the study of short pulse laser plasmas. The diagnostics of such ultra-short pulse laser plasmas is a challenging task that involves many and different techniques compared to conventional laser-produced plasmas. While this review cannot cover the entire field of diagnostics that has been developed over the last years, we will try to give a summarizing description of the most important techniques that are currently being used.
A Project to Design and Build the Magnets for a New Test Beamline, the ATF2, at KEK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Cherrill M.; /slac; Sugahara, Ryuhei
2011-02-07
In order to achieve the high luminosity required at the proposed International Linear Collider (ILC), it is critical to focus the beams to nanometer size with the ILC Beam Delivery System, and to maintain the beams collisions with a nanometer-scale stability. To establish the technologies associated with this ultra-high precision beam handling, a special beamline has been designed and built as an extension of the existing extraction beamline of the Accelerator Test Facility at KEK, Japan. The ATF provides an adequate ultra-low emittance electron beam that is comparable to the ILC requirements; the ATF2 mimics the ILC final focus systemmore » to create a tightly focused, stable beam. There are 37 magnets in the ATF2, 29 quadrupoles, 5 sextupoles and 3 bends. These magnets had to be acquired in a short time and at minimum cost, which led to various acquisition strategies; but nevertheless they had to meet strict requirements on integrated strength, physical dimensions, compatibility with existing magnet movers and beam position monitors, mechanical stability and field stability and quality. This paper will describe how 2 styles of quadrupoles, 2 styles of sextupoles, one dipole style and their supports were designed, fabricated, refurbished or modified, measured and aligned by a small team of engineers from 3 continents.« less
Zhang, Shichao; Liu, Hui; Yin, Xia; Li, Zhaoling; Yu, Jianyong; Ding, Bin
2017-01-01
Effective promotion of air filtration applications proposed for fibers requires their real nanoscale diameter, optimized pore structure, and high service strength; however, creating such filter medium has proved to be a tremendous challenge. This study first establishes a strategy to design and fabricate novel poly(m-phenylene isophthalamide) nanofiber/nets (PMIA NF/N) air filter via electrospinning/netting. Our strategy results in generation of a bimodal structure including a scaffold of nanofibers and abundant two-dimensional ultrathin (~20 nm) nanonets to synchronously construct PMIA filters by combining solution optimization, humidity regulation, and additive inspiration. Benefiting from the structural features including the true nanoscale diameter, small pore size, high porosity, and nets bonding contributed by the widely distributed nanonets, our PMIA NF/N filter exhibits the integrated properties of superlight weight (0.365 g m−2), ultrathin thickness (~0.5 μm), and high tensile strength (72.8 MPa) for effective air filtration, achieving the ultra-low penetration air filter level of 99.999% and low pressure drop of 92 Pa for 300–500 nm particles by sieving mechanism. The successful synthesis of PMIA NF/N would not only provide a promising medium for particle filtration, but also develop a versatile platform for exploring the application of nanonets in structural enhancement, separation and purification. PMID:28074880
NASA Astrophysics Data System (ADS)
Zhang, Shichao; Liu, Hui; Yin, Xia; Li, Zhaoling; Yu, Jianyong; Ding, Bin
2017-01-01
Effective promotion of air filtration applications proposed for fibers requires their real nanoscale diameter, optimized pore structure, and high service strength; however, creating such filter medium has proved to be a tremendous challenge. This study first establishes a strategy to design and fabricate novel poly(m-phenylene isophthalamide) nanofiber/nets (PMIA NF/N) air filter via electrospinning/netting. Our strategy results in generation of a bimodal structure including a scaffold of nanofibers and abundant two-dimensional ultrathin (~20 nm) nanonets to synchronously construct PMIA filters by combining solution optimization, humidity regulation, and additive inspiration. Benefiting from the structural features including the true nanoscale diameter, small pore size, high porosity, and nets bonding contributed by the widely distributed nanonets, our PMIA NF/N filter exhibits the integrated properties of superlight weight (0.365 g m-2), ultrathin thickness (~0.5 μm), and high tensile strength (72.8 MPa) for effective air filtration, achieving the ultra-low penetration air filter level of 99.999% and low pressure drop of 92 Pa for 300-500 nm particles by sieving mechanism. The successful synthesis of PMIA NF/N would not only provide a promising medium for particle filtration, but also develop a versatile platform for exploring the application of nanonets in structural enhancement, separation and purification.
Blazar Jet Physics in the Age of Fermi
2010-11-23
in colliding shells, and whether blazars are sources of ultra-high energy cosmic rays . Keywords. galaxies: jets, gamma rays : observations, gamma rays ...colliding shells ejected from the central supermassive black hole are made. The likelihood that blazars accelerate ultra-high energy cosmic rays is...colliding shells, and whether blazars are sources of ultra-high energy cosmic rays . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Analysis of trace halocarbon contaminants in ultra high purity helium
NASA Technical Reports Server (NTRS)
Fewell, Larry L.
1994-01-01
This study describes the analysis of ultra high purity helium. Purification studies were conducted and containment removal was effected by the utilization of solid adsorbent purge-trap systems at cryogenic temperatures. Volatile organic compounds in ultra high purity helium were adsorbed on a solid adsorbent-cryogenic trap, and thermally desorbed trace halocarbon and other contaminants were analyzed by combined gas chromatography-mass spectrometry.
Surface modification for enhanced silanation of zirconia ceramics.
Piascik, J R; Swift, E J; Thompson, J Y; Grego, S; Stoner, B R
2009-09-01
The overall goal of this research was to develop a practical method to chemically modify the surface of high strength dental ceramics (i.e. zirconia) to facilitate viable, robust adhesive bonding using commercially available silanes and resin cements. Investigation focused on a novel approach to surface functionalize zirconia with a Si(x)O(y) "seed" layer that would promote chemical bonding with traditional silanes. ProCAD and ZirCAD blocks were bonded to a dimensionally similar composite block using standard techniques designed for silica-containing materials (silane and resin cement). ZirCAD blocks were treated with SiCl4 by vapor deposition under two different conditions prior to bonding. Microtensile bars were prepared and subjected to tensile forces at a crosshead speed of 1 mm/min scanning electron microscopy was used to analyze fracture surfaces and determine failure mode; either composite cohesive failure (partial or complete cohesive failure within composite) or adhesive failure (partial or complete adhesive failure). Peak stress values were analyzed using single-factor ANOVA (p<0.05). Microtensile testing results revealed that zirconia with a surface treatment of 2.6 nm Si(x)O(y) thick "seed" layer was similar in strength to the porcelain group (control). Analysis of failure modes indicated the above groups displayed higher percentages of in-composite failures. Other groups tested had lower strength values and displayed adhesive failure characteristics. Mechanical data support that utilizing a gas-phase chloro-silane pretreatment to deposit ultra-thin silica-like seed layers can improve adhesion to zirconia using traditional silanation and bonding techniques. This technology could have clinical impact on how high strength dental materials are used today.
Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.
Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V
2017-10-03
The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.
NASA Astrophysics Data System (ADS)
Yu, Jiahong; Wang, Guixiang; Tang, Di; Qiu, Ya; Sun, Nali; Liu, Wenqiao
2018-01-01
The design of super thermal insulation and high-temperature resistant materials for high temperature furnaces is crucial due to the energy crisis and the huge wasting. Although it is told that numerous studies have been reported about various of thermal insulation materials prepared by different methods, the applications of yttria-stabilized zirconia (YSZ) ceramic foams fabricated through tert-butyl alcohol (TBA)-based gel-casting process in bulk thermal isolators were barely to seen. In this paper, highly porous yttria-stabilized zirconia (YSZ) ceramic foams were fabricated by a novel gel-casting method using tert-butyl alcohol (TBA) as solvent and pore-forming agent. Different raw material ratio, sintering temperature and soaking time were all investigated to achieve optimal thermal insulation and mechanical properties. We can conclude that porosity drops gradually while compressive strength increases significantly with the rising temperature from 1000-1500°C. With prolonged soaking time, there is no obvious change in porosity but compressive strength increases gradually. All specimens have uniformly distributed pores with average size of 0.5-2μm and show good structural stability at high temperature. The final obtained ceramic foams displayed an outstanding ultra-low thermal conductivity property with only 200.6 °C in cold surface while the hot side was 1000 °C (hold 60 min to keep thermal balance before testing) at the thickness of 10 mm.
Early somatosensory processing in individuals at risk for developing psychoses.
Hagenmuller, Florence; Heekeren, Karsten; Theodoridou, Anastasia; Walitza, Susanne; Haker, Helene; Rössler, Wulf; Kawohl, Wolfram
2014-01-01
Human cortical somatosensory evoked potentials (SEPs) allow an accurate investigation of thalamocortical and early cortical processing. SEPs reveal a burst of superimposed early (N20) high-frequency oscillations around 600 Hz. Previous studies reported alterations of SEPs in patients with schizophrenia. This study addresses the question whether those alterations are also observable in populations at risk for developing schizophrenia or bipolar disorders. To our knowledge to date, this is the first study investigating SEPs in a population at risk for developing psychoses. Median nerve SEPs were investigated using multichannel EEG in individuals at risk for developing bipolar disorders (n = 25), individuals with high-risk status (n = 59) and ultra-high-risk status for schizophrenia (n = 73) and a gender and age-matched control group (n = 45). Strengths and latencies of low- and high-frequency components as estimated by dipole source analysis were compared between groups. Low- and high-frequency source activity was reduced in both groups at risk for schizophrenia, in comparison to the group at risk for bipolar disorders. HFO amplitudes were also significant reduced in subjects with high-risk status for schizophrenia compared to healthy controls. These differences were accentuated among cannabis non-users. Reduced N20 source strengths were related to higher positive symptom load. These results suggest that the risk for schizophrenia, in contrast to bipolar disorders, may involve an impairment of early cerebral somatosensory processing. Neurophysiologic alterations in schizophrenia precede the onset of initial psychotic episode and may serve as indicator of vulnerability for developing schizophrenia.
Early somatosensory processing in individuals at risk for developing psychoses
Hagenmuller, Florence; Heekeren, Karsten; Theodoridou, Anastasia; Walitza, Susanne; Haker, Helene; Rössler, Wulf; Kawohl, Wolfram
2014-01-01
Human cortical somatosensory evoked potentials (SEPs) allow an accurate investigation of thalamocortical and early cortical processing. SEPs reveal a burst of superimposed early (N20) high-frequency oscillations around 600 Hz. Previous studies reported alterations of SEPs in patients with schizophrenia. This study addresses the question whether those alterations are also observable in populations at risk for developing schizophrenia or bipolar disorders. To our knowledge to date, this is the first study investigating SEPs in a population at risk for developing psychoses. Median nerve SEPs were investigated using multichannel EEG in individuals at risk for developing bipolar disorders (n = 25), individuals with high-risk status (n = 59) and ultra-high-risk status for schizophrenia (n = 73) and a gender and age-matched control group (n = 45). Strengths and latencies of low- and high-frequency components as estimated by dipole source analysis were compared between groups. Low- and high-frequency source activity was reduced in both groups at risk for schizophrenia, in comparison to the group at risk for bipolar disorders. HFO amplitudes were also significant reduced in subjects with high-risk status for schizophrenia compared to healthy controls. These differences were accentuated among cannabis non-users. Reduced N20 source strengths were related to higher positive symptom load. These results suggest that the risk for schizophrenia, in contrast to bipolar disorders, may involve an impairment of early cerebral somatosensory processing. Neurophysiologic alterations in schizophrenia precede the onset of initial psychotic episode and may serve as indicator of vulnerability for developing schizophrenia. PMID:25309363
NASA Astrophysics Data System (ADS)
Luo, Ningqi; Tian, Xiumei; Xiao, Jun; Hu, Wenyong; Yang, Chuan; Li, Li; Chen, Dihu
2013-04-01
Ultra-small gadolinium oxide (Gd2O3) can be used as T1-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r1) and has attracted intensive attention in these years. In this paper, ultra-small Gd2O3 nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd2O3 by laser ablation in DEG. The r1 value and T1-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r1 value of 9.76 s-1 mM-1 to be good MRI contrast agents. We propose an explanation for the high r1 value of ultra-small Gd2O3 by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd3+ on Gd2O3 surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd2O3 of high r1 value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd2O3 MRI contrast agents.
Evaluation of ultrasound in assessing body composition of high school wrestlers.
Utter, Alan C; Hager, Marion E
2008-05-01
To evaluate the accuracy of ultrasound (ULTRA) in assessing fat-free mass (FFM) in comparison with hydrostatic weighing (HW) and skinfolds (SK) in high school wrestlers in a hydrated state. Body composition was determined by ULTRA, HW, and three-site SK in 70 high school wrestlers (mean +/- SD: age, 15.5 +/- 1.5; height, 1.60 +/- 0.08 m; body mass, 65.8 +/- 12.7 kg). For all methods, body density (Db) was converted to percent body fat (%BF) using the Brozek equation. Hydration state was quantified by evaluating urine specific gravity. There were no significant differences for estimated FFM between ULTRA (57.2 +/- 9.7 kg) and HW (57.0 +/- 9.9 kg); however, SK (54.9 +/- 8.8 kg) were significantly different from HW. The standard errors of estimate for FFM with HW as the reference method were 2.40 kg for ULTRA and 2.74 kg for SK. Significant correlations were found for FFM between HW and ULTRA (r = 0.97, P < 0.001) and between HW and SK (r = 0.96, P < 0.001). A systematic bias was found for SK, as the difference between SK and HW significantly correlated with the FFM average of the two methods (r = -0.38, P < 0.001). This systematic bias was not found for ULTRA (r = - 0.07). This study demonstrates that ULTRA provides similar estimates of FFM when compared with HW in a heterogeneous high school wrestling population during a hydrated state. ULTRA should be considered as an alternative field-based method of estimating the FFM of high school wrestlers.
Li, Han-Zhen; Yu, Tong-Pu; Hu, Li-Xiang; Yin, Yan; Zou, De-Bin; Liu, Jian-Xun; Wang, Wei-Quan; Hu, Shun; Shao, Fu-Qiu
2017-09-04
We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 10 23 W/cm 2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 10 24 photons s -1 mm -2 mrad -2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e - e + pair bunches are produced with the positron energy density as high as 10 17 J/m 3 and number of 10 9 . Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.
2017-09-14
e.g. 000111) may be emitted along an ultra- high frequency (UHF) communications path as a possible waveform state generated by some circuit...Positive Rate TN True Negative TNR True Negative Rate TVR True Verification Rate Tx Transmitter UHF Ultra High Frequency 21 BIOLOGICALLY...otherwise healthy RF networks. More specifically, a representative miniaturized ultra- high frequency (UHF) CubeSat uplink access boundary, protected
Disrupted latent inhibition in individuals at ultra high-risk for developing psychosis.
Kraus, Michael; Rapisarda, Attilio; Lam, Max; Thong, Jamie Y J; Lee, Jimmy; Subramaniam, Mythily; Collinson, Simon L; Chong, Siow Ann; Keefe, Richard S E
2016-12-01
The addition of off-the-shelf cognitive measures to established prodromal criteria has resulted in limited improvement in the prediction of conversion to psychosis. Tests that assess cognitive processes central to schizophrenia might better identify those at highest risk. The latent inhibition paradigm assesses a subject's tendency to ignore irrelevant stimuli, a process integral to healthy perceptual and cognitive function that has been hypothesized to be a key deficit underlying the development of schizophrenia. In this study, 142 young people at ultra high-risk for developing psychosis and 105 controls were tested on a within-subject latent inhibition paradigm. Additionally, we later inquired about the strategy that each subject employed to complete the test, and further investigated the relationship between reported strategy and the extent of latent inhibition exhibited. Unlike controls, ultra high-risk subjects did not demonstrate a significant latent inhibition effect. This difference between groups became greater when controlling for strategy. The lack of latent inhibition effect in our ultra high-risk sample suggests that individuals at ultra high-risk for psychosis are impaired in their allocation of attentional resources based on past predictive value of repeated stimuli. This fundamental deficit in the allocation of attention may contribute to the broader array of cognitive impairments and clinical symptoms displayed by individuals at ultra high-risk for psychosis.
Glenthøj, Louise Birkedal; Hjorthøj, Carsten; Kristensen, Tina Dam; Davidson, Charlie Andrew; Nordentoft, Merete
2017-01-01
Cognitive deficits are prominent features of the ultra-high risk state for psychosis that are known to impact functioning and course of illness. Cognitive remediation appears to be the most promising treatment approach to alleviate the cognitive deficits, which may translate into functional improvements. This study systematically reviewed the evidence on the effectiveness of cognitive remediation in the ultra-high risk population. The electronic databases MEDLINE, PsycINFO, and Embase were searched using keywords related to cognitive remediation and the UHR state. Studies were included if they were peer-reviewed, written in English, and included a population meeting standardized ultra-high risk criteria. Six original research articles were identified. All the studies provided computerized, bottom-up-based cognitive remediation, predominantly targeting neurocognitive function. Four out of five studies that reported a cognitive outcome found cognitive remediation to improve cognition in the domains of verbal memory, attention, and processing speed. Two out of four studies that reported on functional outcome found cognitive remediation to improve the functional outcome in the domains of social functioning and social adjustment. Zero out of the five studies that reported such an outcome found cognitive remediation to affect the magnitude of clinical symptoms. Research on the effect of cognitive remediation in the ultra-high risk state is still scarce. The current state of evidence indicates an effect of cognitive remediation on cognition and functioning in ultra-high risk individuals. More research on cognitive remediation in ultra-high risk is needed, notably in large-scale trials assessing the effect of neurocognitive and/or social cognitive remediation on multiple outcomes.
Ultra high temperature ceramics for hypersonic vehicle applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandon, Rajan; Dumm, Hans Peter; Corral, Erica L.
2006-01-01
HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2}more » ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.« less
Microstructural evolution of bainitic steel severely deformed by equal channel angular pressing.
Nili-Ahmadabadi, M; Haji Akbari, F; Rad, F; Karimi, Z; Iranpour, M; Poorganji, B; Furuhara, T
2010-09-01
High Si bainitic steel has been received much of interest because of combined ultra high strength, good ductility along with high wear resistance. In this study a high Si bainitic steel (Fe-0.22C-2.0Si-3.0Mn) was used with a proper microstructure which could endure severe plastic deformation. In order to study the effect of severe plastic deformation on the microstructure and properties of bainitic steel, Equal Channel Angular Pressing was performed in two passes at room temperature. Optical, SEM and TEM microscopies were used to examine the microstructure of specimens before and after Equal Channel Angular Pressing processing. X-ray diffraction was used to measure retained austenite after austempering and Equal Channel Angular Pressing processing. It can be seen that retained austenite picks had removed after Equal Channel Angular Pressing which could attributed to the transformation of austenite to martensite during severe plastic deformation. Enhancement of hardness values by number of Equal Channel Angular Pressing confirms this idea.
Space Shuttle Underside Astronaut Communications Performance Evaluation
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.
2005-01-01
The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.
Mechanical properties evaluation of extruded wood polymer composites
NASA Astrophysics Data System (ADS)
Zaini, A. S. Syah M.; Rus, Anika Zafiah M.; Rahman, Norherman Abdul; Jais, Farhana Hazwanee M.; Fauzan, M. Zarif; Sufian, N. Afiqah
2017-09-01
The rapidly expanding of interest in the manufacture of composite materials from waste industrial and agricultural materials is due to high demand for environmentally friendly materials. Wood polymer composite (WPC) are being used in many type of applications such as in the automobile, electronic, aerospace industry and construction. Therefore, this research study is to determine the mechanical properties behaviour of WPC after an extended Ultra Violet (UV) irradiation exposure. The fabricated sample has been used and to be compared in this research is consists of rice husk, waste fibre and polypropylene (PP) with 4 different types of WPC which are wood block waste (WBW), wood block virgin (WBV), wood sheet (WS) and wood sheet waste (WSW). The extruded specimens were tested for mechanical properties such as strength under compression, puncture strength and impact resistance, and density. In addition, the specimen has been irradiated with the UV exposure at 5000 hours, 10000 hours and 15000 hours. Generally, the mechanical properties the WPC which made from the recycled material were lower than the WPC from virgin material but the density was comparable between the two products after UV irradiation exposure.
Ma, Rui; Tang, Songchao; Tan, Honglue; Lin, Wentao; Wang, Yugang; Wei, Jie; Zhao, Liming; Tang, Tingting
2014-01-01
A bioactive composite was prepared by incorporating 40 wt% nano-hydroxyapatite (nHA) into polyetheretherketone (PEEK) through a process of compounding, injection, and molding. The mechanical and surface properties of the nHA/PEEK composite were characterized, and the in vitro osteoblast functions in the composite were investigated. The mechanical properties (elastic modulus and compressive strength) of the nHA/PEEK composite increased significantly, while the tensile strength decreased slightly as compared with PEEK. Further, the addition of nHA into PEEK increased the surface roughness and hydrophilicity of the nHA/PEEK composite. In cell tests, compared with PEEK and ultra-high-molecular-weight polyethylene, it was found that the nHA/PEEK composite could promote the functions of MC3T3-E1 cells, including cell attachment, spreading, proliferation, alkaline phosphatase activity, calcium nodule formation, and expression of osteogenic differentiation-related genes. Incorporation of nHA into PEEK greatly improved the bioperformance of PEEK. The nHA/PEEK composite might be a promising orthopedic implant material. PMID:25170265
Fang, Jiancheng; Qin, Jie
2012-10-01
The spin-exchange-relaxation-free (SERF) atomic magnetometer is an ultra-high sensitivity magnetometer, but it must be operated in a magnetic field with strength less than about 10 nT. Magnetic field compensation is an effective way to shield the magnetic field, and this paper demonstrates an in situ triaxial magnetic field compensation system for operating the SERF atomic magnetometer. The proposed hardware is based on optical pumping, which uses some part of the SERF atomic magnetometer itself, and the compensation method is implemented by analyzing the dynamics of the atomic spin. The experimental setup for this compensation system is described, and with this configuration, a residual magnetic field of strength less than 2 nT (±0.38 nT in the x axis, ±0.43 nT in the y axis, and ±1.62 nT in the z axis) has been achieved after compensation. The SERF atomic magnetometer was then used to verify that the residual triaxial magnetic fields were coincident with what were achieved by the compensation system.
First demonstration of the fast-to-slow corrector current shift in the NSLS-II storage ring
Yang, Xi; Tian, Yuke; Yu, Li Hua; ...
2018-04-01
In order to realize the full benefits of the high brightness and ultra-small beam sizes of NSLS-II, it is essential that the photon beams are exceedingly stable. In the circumstances of implementing local bumps, changing ID gaps, and long term drifting, the fast orbit feedback (FOFB) requires shifting the fast corrector strengths to the slow correctors to prevent the fast corrector saturation and to make the beam orbit stable in the sub-micron level. As the result, a reliable and precise technique of fast-to-slow corrector strength shift has been developed and tested at NSLS-II. This technique is based on the fastmore » corrector response to the slow corrector change when the FOFB is on. In this article, the shift technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented. The maximum fast corrector current was reduced from greater than 0.45 A to less than 0.04 A with the orbit perturbation within ±1 μm.« less
First demonstration of the fast-to-slow corrector current shift in the NSLS-II storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xi; Tian, Yuke; Yu, Li Hua
In order to realize the full benefits of the high brightness and ultra-small beam sizes of NSLS-II, it is essential that the photon beams are exceedingly stable. In the circumstances of implementing local bumps, changing ID gaps, and long term drifting, the fast orbit feedback (FOFB) requires shifting the fast corrector strengths to the slow correctors to prevent the fast corrector saturation and to make the beam orbit stable in the sub-micron level. As the result, a reliable and precise technique of fast-to-slow corrector strength shift has been developed and tested at NSLS-II. This technique is based on the fastmore » corrector response to the slow corrector change when the FOFB is on. In this article, the shift technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented. The maximum fast corrector current was reduced from greater than 0.45 A to less than 0.04 A with the orbit perturbation within ±1 μm.« less
NASA Astrophysics Data System (ADS)
Eidelsberg, M.; Lemaire, J. L.; Federman, S. R.; Heays, A. N.; Stark, G.; Lyons, J. R.; Gavilan, L.; de Oliveira, N.
2017-06-01
We carried out experiments at the SOLEIL synchrotron facility to acquire data for modelling CO photochemistry in the vacuum ultraviolet. We report oscillator strengths and predissociation rates for four vibrational bands associated with transitions from the v = 0 level of the X1Σ+ ground state to the v = 0-3 vibrational levels of the core excited W1Π Rydberg state, and for three overlapping bands associated with the 4pπ, 5pπ, and 5pσ Rydberg states between 92.9 and 93.4 nm in 13C18O. These results complete those obtained in the same conditions for 12C16O, 13C16O, and 12C18O recently published by us, and extend the development of a comprehensive database of line positions, oscillator strengths, and linewidths of photodissociating transitions for CO isotopologues. Absorption spectra were recorded using the Vacuum UltraViolet Fourier Transform Spectrometer (VUV-FTS) installed on the Dichroïsme Et Spectroscopie par Interaction avec le Rayonnement Synchrotron (DESIRS) beamline at SOLEIL. The resolving power of the measurements, R = 300 000 to 400 000, allows the analysis of individual line strengths and widths within the bands. Gas column densities in the differentially pumped system were calibrated using the B-X (0-0) band at 115.1 nm in 13C18O.
Effect of a prior stretch on the aging response of an Al-Cu-Li-Ag-Mg-Zr alloy
NASA Technical Reports Server (NTRS)
Kumar, K. S.; Brown, S. A.; Pickens, Joseph R.
1991-01-01
Recently, a family of Al-Cu-Li alloys containing minor amounts of Ag, Mg, and Zr and having desirable combinations of strength and toughness were developed. The Weldalite (trademark) alloys exhibit a unique characteristic in that with or without a prior stretch, they obtain significant strength-ductility combinations upon natural and artificial aging. The ultra-high strength (approximately 690 MPa yield strength) in the peak-aged tempers (T6 and T8) were primarily attributed to the extremely fine T(sub 1) (Al2CuLi) or T(sub 1)-type precipitates that occur in these alloys during artificial aging, whereas the significant natural aging response observed is attributed to strengthening from delta prime (Al3Li) and GP zones. In recent work, the aging behavior of an Al-Cu-Li-Ag-Mg alloy without a prior stretch was followed microstructurally from the T4 to the T6 condition. Commercial extrusions, rolled plates, and sheets of Al-Cu-Li alloys are typically subjected to a stretching operation before artificial aging to straighten the extrusions and, more importantly, introduce dislocations to simulate precipitation of strengthening phases such as T(sub 1) by providing relatively low-energy nucleation sites. The goals of this study are to examine the microstructure that evolves during aging of an alloy that was stretch after solution treatment and to compare the observations with those for the unstretched alloy.
Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines.
Peng, Fei; Wu, Han; Jia, Xin-Hong; Rao, Yun-Jiang; Wang, Zi-Nan; Peng, Zheng-Pu
2014-06-02
An ultra-long phase-sensitive optical time domain reflectometry (Φ-OTDR) that can achieve high-sensitivity intrusion detection over 131.5km fiber with high spatial resolution of 8m is presented, which is the longest Φ-OTDR reported to date, to the best of our knowledge. It is found that the combination of distributed Raman amplification with heterodyne detection can extend the sensing distance and enhances the sensitivity substantially, leading to the realization of ultra-long Φ-OTDR with high sensitivity and spatial resolution. Furthermore, the feasibility of applying such an ultra-long Φ-OTDR to pipeline security monitoring is demonstrated and the features of intrusion signal can be extracted with improved SNR by using the wavelet detrending/denoising method proposed.
High Scalability Video ISR Exploitation
2012-10-01
Surveillance, ARGUS) on the National Image Interpretability Rating Scale (NIIRS) at level 6. Ultra-high quality cameras like the Digital Cinema 4K (DC-4K...Scale (NIIRS) at level 6. Ultra-high quality cameras like the Digital Cinema 4K (DC-4K), which recognizes objects smaller than people, will be available...purchase ultra-high quality cameras like the Digital Cinema 4K (DC-4K) for use in the field. However, even if such a UAV sensor with a DC-4K was flown
2018-03-01
ER D C/ CR RE L TR -1 8- 3 ERDC 6.1 Basic Research Measuring the Non-Line-of-Sight Ultra- High - Frequency Channel in Mountainous Terrain... High - Frequency Channel in Mountainous Terrain A Spread-Spectrum, Portable Channel Sounder Samuel S. Streeter and Daniel J. Breton U.S. Army...spread-spectrum, portable channel sounder specifically designed to meas- ure the non-line-of-sight, ultra- high -frequency channel in mountainous terrain
2013-04-01
Concretes G eo te ch n ic al a n d S tr u ct u re s La b or at or y Robert D. Moser, Paul G. Allison, and Mei Q. Chandler April 2013 Approved...Impact Damage in Ultra-High Performance Concretes Robert D. Moser, Paul G. Allison, and Mei Q. Chandler Geotechnical and Structures Laboratory US...Portland Cement concrete (OPC) and Ultra-High Performance Concretes (UHPCs) under high-strain impact and penetration loads at lower length scales
Maiti, Raman; Cowie, Raelene M; Fisher, John; Jennings, Louise M
2017-01-01
Complications of patellofemoral arthroplasty often occur soon after implantation and, as well as other factors, can be due to the design of the implant or its surgical positioning. A number of studies have previously considered the wear of ultra-high-molecular-weight polyethylene patellae following suboptimal implantation; however, studies have primarily been carried out under a limited number of degrees of freedom. The aim of this study was to develop a protocol to assess the wear of patellae under a malaligned condition in a six-axis patellofemoral joint simulator. The malalignment protocol hindered the tracking of the patella centrally in the trochlear groove and imparted a constant 5° external rotation (tilt) on the patella button. Following 3 million cycles of wear simulation, this condition had no influence on the wear of ultra-high-molecular-weight polyethylene patellae aged for 4 years compared to well-positioned non-aged implants (p > 0.05). However, under the malaligned condition, ultra-high-molecular-weight polyethylene patellae aged 8–10 years after unpacking (following sterilisation by gamma irradiation in an inert atmosphere) and worn ultra-high-molecular-weight polyethylene components also aged 4 years after unpacking (following the same sterilisation process) exhibited a high rate of wear. Fatigue failure due to elevated contact stress led to delamination of the ultra-high-molecular-weight polyethylene and in some cases complete failure of the patellae. The results suggest that suboptimal tracking of the patella in the trochlear groove and tilt of the patella button could have a significant effect on the wear of ultra-high-molecular-weight polyethylene and could lead to implant failure. PMID:28661229
Maiti, Raman; Cowie, Raelene M; Fisher, John; Jennings, Louise M
2017-07-01
Complications of patellofemoral arthroplasty often occur soon after implantation and, as well as other factors, can be due to the design of the implant or its surgical positioning. A number of studies have previously considered the wear of ultra-high-molecular-weight polyethylene patellae following suboptimal implantation; however, studies have primarily been carried out under a limited number of degrees of freedom. The aim of this study was to develop a protocol to assess the wear of patellae under a malaligned condition in a six-axis patellofemoral joint simulator. The malalignment protocol hindered the tracking of the patella centrally in the trochlear groove and imparted a constant 5° external rotation (tilt) on the patella button. Following 3 million cycles of wear simulation, this condition had no influence on the wear of ultra-high-molecular-weight polyethylene patellae aged for 4 years compared to well-positioned non-aged implants (p > 0.05). However, under the malaligned condition, ultra-high-molecular-weight polyethylene patellae aged 8-10 years after unpacking (following sterilisation by gamma irradiation in an inert atmosphere) and worn ultra-high-molecular-weight polyethylene components also aged 4 years after unpacking (following the same sterilisation process) exhibited a high rate of wear. Fatigue failure due to elevated contact stress led to delamination of the ultra-high-molecular-weight polyethylene and in some cases complete failure of the patellae. The results suggest that suboptimal tracking of the patella in the trochlear groove and tilt of the patella button could have a significant effect on the wear of ultra-high-molecular-weight polyethylene and could lead to implant failure.
Self-Pierce Riveting Through 3 Sheet Metal Combinations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Roger; Jonason, Paul; Pettersson, Tommy
2011-05-04
One way to reduce the CO{sub 2} emissions in automotives is to reduce the weight of the Body-In-White. One easy to achieve the weight reduction is to replace steel sheet materials with Al alloys, which is 3 times lighter. One issue is the joining process, especially with combinations between steel grades and AL alloys. Example of combination of mixed material combinations (Al-steel) might be found in the door structure. The reason is because of the AL alloys worthier crash performance so the automotive manufacturer might want to use crash impact beams made by high strength steels in a AL intensivemore » door structure. The joining process between aluminum and steel are problematic due it's not possible to use traditional spot-welding technologies due to the materials total difference in microstructure characteristics as well thermal properties. To overcome this issue then mechanical as well adhesion joining are frequently used. This paper describes a development process and subsequently analysis of a self-pierce rivet (SPR) process between 3 sheet metal combinations. The multi-material combinations in this study were a combination of ultra high strength steels sheets (DP1000) and a Al-alloy (AA 6014). The analysis of the SPR process, in sense of mechanical strengths, has been done by peel- and shear tests. To reduce the amount of future physical tests a virtual FE-model has been developed for the process. This FE model of the process has been subsequently used to analyze the mechanical strength during plastic deformation. By using inverse analysis a correct contact algorithm has been evaluated that would predict the binding force between the rivet and sheet under a deformation process. With this new virtual model it will not only possible to analyze and develop the SPR process but also to achieve the final strength of the joint.« less
NASA Astrophysics Data System (ADS)
Balaraman Yadhukulakrishnan, Govindaraajan
Scope and Method of Study: Space vehicles re-entering the earth's atmosphere experience very high temperatures due to aerodynamic heating. Ultra-high temperature ceramics (UHTC) with melting point higher than 3200°C are promising materials for thermal protection systems of such space vehicles re-entering the earth's atmosphere. Among several UHTC systems ZrB2 based ceramic composites are particularly important for thermal protection systems due to their better mechanical and thermoelectric properties and high oxidation resistance. In this study spark plasma sintering of SiC, carbon nanotubes (CNT) and graphene nano platelets (GNP) reinforced ZrB2 ultra-high temperature ceramic matrix composites is reported. Findings and Conclusions: Systematic investigations on the effect of reinforcement type (SiC, CNTs and GNP) and content (10-40 vol.% SiC, 2-6 vol.% CNTs and 2-6 vol.% GNP) on densification behavior, microstructure development, and mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness) are reported. With the similar SPS parameters near-full densification (>99% relative density) was achieved with 10-40 vol.% SiC, 4-6 vol.% CNT reinforced composites. Highly dense composites were obtained in 4-6 vol.% GNP reinforced composites. The SiC, CNT and GNP reinforcement improved the indentation fracture toughness of the composites through a range of toughening mechanisms, including particle shearing, crack deflection at the particle-matrix interface, and grain pull-outs for ZrB2-SiC composites, CNT pull-outs and crack deflection in ZrB2-CNT composites and crack deflection, crack bridging and GNP sheet pull-out for ZrB2 -GNP composites.
Fast-responding bio-based shape memory thermoplastic polyurethanes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovic, Zoran S.; Milic, Jelena; Zhang, Fan
Fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate ofmore » the soft segment gives these polyurethanes unique properties suitable for shapememory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. In conclusion, these materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.« less
What We Have Learned About Clusters From a Decade of Arcsecond Resolution X-ray Observations
NASA Technical Reports Server (NTRS)
Markevitch, Maxim
2012-01-01
This talk will briefly review the main findings from Chandra high angular resolution observations of galaxy clusters, emphasizing results on cluster astrophysics. Chandra has discovered shock fronts in merging systems, providing information on the shock Mach number and velocity, and for best-observed shocks, constraining the microphysical properties of the intracluster medium (ICM). Cold fronts, a Chandra discovery, are ubiquitous both in merging clusters and in the cool ccres of relaxed systems. They reveal the structure and strength of the intracluster magnetic fields and constrain the ICM viscosity a combined with radio data, these observations also shed light on the production of ultra-relativistic particles that are known to coexist with thermal plasma. Finally, in nearly all cool cores, Chandra observes cavities in the ICM that are produced by the central AGN. All these phenomena will be extremely interesting for high-resolution SZ studies.
Fast-responding bio-based shape memory thermoplastic polyurethanes
Petrovic, Zoran S.; Milic, Jelena; Zhang, Fan; ...
2017-05-31
Fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate ofmore » the soft segment gives these polyurethanes unique properties suitable for shapememory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. In conclusion, these materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.« less
Characteristics of Friction Stir Processed UHMW Polyethylene Based Composite
NASA Astrophysics Data System (ADS)
Hussain, G.; Khan, I.
2018-01-01
Ultra-high molecular weight polyethylene (UHMWPE) based composites are widely used in biomedical and food industries because of their biocompatibility and enhanced properties. The aim of this study was to fabricate UHMWPE / nHA composite through heat assisted Friction Stir Processing. The rotational speed (ω), feed rate (f), volume fraction of nHA (v) and shoulder temperature (T) were selected as the process parameters. Macroscopic and microscopic analysis revealed that these parameters have significant effects on the distribution of reinforcing material, defects formation and material mixing. Defects were observed especially at low levels of (ω, T) and high levels of (f, v). Low level of v with medium levels of other parameters resulted in better mixing and minimum defects. A 10% increase in strength with only 1% reduction in Percent Elongation was observed at the above set of conditions. Moreover, the resulted hardness of the composite was higher than that of the parent material.
Fast-Responding Bio-Based Shape Memory Thermoplastic Polyurethanes.
Petrović, Zoran S; Milić, Jelena; Zhang, Fan; Ilavsky, Jan
2017-07-14
Novel fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol for the first time. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate of the soft segment gives these polyurethanes unique properties suitable for shape-memory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. These materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.
Cotter, Jack; Bartholomeusz, Cali; Papas, Alicia; Allott, Kelly; Nelson, Barnaby; Yung, Alison R; Thompson, Andrew
2017-01-01
Social and role functioning are compromised for the majority of individuals at ultra-high risk of psychosis, and it is important to identify factors that contribute to this functional decline. This study aimed to investigate social cognitive abilities, which have previously been linked to functioning in schizophrenia, as potential factors that impact social, role and global functioning in ultra-high risk patients. A total of 30 ultra-high risk patients were recruited from an established at-risk clinical service in Melbourne, Australia, and completed a battery of social cognitive, neurocognitive, clinical and functioning measures. We examined the relationships between all four core domains of social cognition (emotion recognition, theory of mind, social perception and attributional style), neurocognitive, clinical and demographic variables with three measures of functioning (the Global Functioning Social and Role scales and the Social and Occupational Functioning Assessment Scale) using correlational and multiple regression analyses. Performance on a visual theory of mind task (visual jokes task) was significantly correlated with both concurrent role ( r = 0.425, p = 0.019) and global functioning ( r = 0.540, p = 0.002). In multivariate analyses, it also accounted for unique variance in global, but not role functioning after adjusting for negative symptoms and stress. Social functioning was not associated with performance on any of the social cognition tasks. Among specific social cognitive abilities, only a test of theory of mind was associated with functioning in our ultra-high risk sample. Further longitudinal research is needed to examine the impact of social cognitive deficits on long-term functional outcome in the ultra-high risk group. Identifying social cognitive abilities that significantly impact functioning is important to inform the development of targeted intervention programmes for ultra-high risk individuals.
Organic field effect transistor with ultra high amplification
NASA Astrophysics Data System (ADS)
Torricelli, Fabrizio
2016-09-01
High-gain transistors are essential for the large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show organic transistors fabricated on plastic foils enabling unipolar amplifiers with ultra-gain. The proposed approach is general and opens up new opportunities for ultra-large signal amplification in organic circuits and sensors.
Link and Network Layers Design for Ultra-High-Speed Terahertz-Band Communications Networks
2017-01-01
throughput, and identify the optimal parameter values for their design (Sec. 6.2.3). Moreover, we validate and test the scheme with experimental data obtained...LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH- SPEED TERAHERTZ-BAND COMMUNICATIONS NETWORKS STATE UNIVERSITY OF NEW YORK (SUNY) AT BUFFALO JANUARY...TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) FEB 2015 – SEP 2016 4. TITLE AND SUBTITLE LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH
NASA Astrophysics Data System (ADS)
Parekh, Devang; Nguyen, Nguyen X.
2018-02-01
The recent advent of Ultra-high-definition television (also known as Ultra HD television, Ultra HD, UHDTV, UHD and Super Hi-Vision) has accelerated a demand for a Fiber-in-the-Premises video communication (VCOM) solution that converges toward 100Gbps and Beyond. Hybrid Active-Optical-Cables (AOC) is a holistic connectivity platform well suited for this "The Last Yard" connectivity; as it combines both copper and fiber optics to deliver a high data-rate and power transmission needed. While technically feasible yet challenging to manufacture, hybrid-AOC could be a holygrail fiber-optics solution that dwarfs the volume of both telecom and datacom connection in the foreseeable future.
UltraNet Target Parameters. Chapter 1
NASA Technical Reports Server (NTRS)
Kislitzin, Katherine T.; Blaylock, Bruce T. (Technical Monitor)
1992-01-01
The UltraNet is a high speed network capable of rates up to one gigabit per second. It is a hub based network with four optical fiber links connecting each hub. Each link can carry up to 256 megabits of data, and the hub backplane is capable of one gigabit aggregate throughput. Host connections to the hub may be fiber, coax, or channel based. Bus based machines have adapter boards that connect to transceivers in the hub, while channel based machines use a personality module in the hub. One way that the UltraNet achieves its high transfer rates is by off-loading the protocol processing from the hosts to special purpose protocol engines in the UltraNet hubs. In addition, every hub has a PC connected to it by StarLAN for network management purposes. Although there is hub resident and PC resident UltraNet software, this document treats only the host resident UltraNet software.
Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump
Jostlein, Hans
2006-04-04
An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.
Numerical analysis of the flexible roll forming of an automotive component from high strength steel
NASA Astrophysics Data System (ADS)
Abeyrathna, B.; Abvabi, A.; Rolfe, B.; Taube, R.; Weiss, M.
2016-11-01
Conventional roll forming is limited to components with uniform cross-section; the recently developed flexible roll forming (FRF) process can be used to form components which vary in both width and depth. It has been suggested that this process can be used to manufacture automotive components from Ultra High Strength Steel (UHSS) which has limited tensile elongation. In the flexible roll forming process, the pre-cut blank is fed through a set of rolls; some rolls are computer-numerically controlled (CNC) to follow the 3D contours of the part and hence parts with a variable cross-section can be produced. This paper introduces a new flexible roll forming technique which can be used to form a complex shape with the minimum tooling requirements. In this method, the pre-cut blank is held between two dies and the whole system moves back and forth past CNC forming rolls. The forming roll changes its angle and position in each pass to incrementally form the part. In this work, the process is simulated using the commercial software package Copra FEA. The distribution of total strain and final part quality are investigated as well as related shape defects observed in the process. Different tooling concepts are used to improve the strain distribution and hence the part quality.
Knechtle, Beat; Zingg, Matthias Alexander; Rosemann, Thomas; Stiefel, Michael; Rüst, Christoph Alexander
2015-01-01
Objective This narrative review summarizes recent intentions to find potential predictor variables for ultra-triathlon race performance (ie, triathlon races longer than the Ironman distance covering 3.8 km swimming, 180 km cycling, and 42.195 km running). Results from studies on ultra-triathletes were compared to results on studies on Ironman triathletes. Methods A literature search was performed in PubMed using the terms “ultra”, “triathlon”, and “performance” for the aspects of “ultra-triathlon”, and “Ironman”, “triathlon”, and “performance” for the aspects of “Ironman triathlon”. All resulting papers were searched for related citations. Results for ultra-triathlons were compared to results for Ironman-distance triathlons to find potential differences. Results Athletes competing in Ironman and ultra-triathlon differed in anthropometric and training characteristics, where both Ironmen and ultra-triathletes profited from low body fat, but ultra-triathletes relied more on training volume, whereas speed during training was related to Ironman race time. The most important predictive variables for a fast race time in an ultra-triathlon from Double Iron (ie, 7.6 km swimming, 360 km cycling, and 84.4 km running) and longer were male sex, low body fat, age of 35–40 years, extensive previous experience, a fast time in cycling and running but not in swimming, and origins in Central Europe. Conclusion Any athlete intending to compete in an ultra-triathlon should be aware that low body fat and high training volumes are highly predictive for overall race time. Little is known about the physiological characteristics of these athletes and about female ultra-triathletes. Future studies need to investigate anthropometric and training characteristics of female ultra-triathletes and what motivates women to compete in these races. Future studies need to correlate physiological characteristics such as maximum oxygen uptake (VO2max) with ultra-triathlon race performance in order to investigate whether these characteristics are also predictive for ultra-triathlon race performance. PMID:26056498
Advanced Gear Alloys for Ultra High Strength Applications
NASA Technical Reports Server (NTRS)
Shen, Tony; Krantz, Timothy; Sebastian, Jason
2011-01-01
Single tooth bending fatigue (STBF) test data of UHS Ferrium C61 and C64 alloys are presented in comparison with historical test data of conventional gear steels (9310 and Pyrowear 53) with comparable statistical analysis methods. Pitting and scoring tests of C61 and C64 are works in progress. Boeing statistical analysis of STBF test data for the four gear steels (C61, C64, 9310 and Pyrowear 53) indicates that the UHS grades exhibit increases in fatigue strength in the low cycle fatigue (LCF) regime. In the high cycle fatigue (HCF) regime, the UHS steels exhibit better mean fatigue strength endurance limit behavior (particularly as compared to Pyrowear 53). However, due to considerable scatter in the UHS test data, the anticipated overall benefits of the UHS grades in bending fatigue have not been fully demonstrated. Based on all the test data and on Boeing s analysis, C61 has been selected by Boeing as the gear steel for the final ERDS demonstrator test gearboxes. In terms of potential follow-up work, detailed physics-based, micromechanical analysis and modeling of the fatigue data would allow for a better understanding of the causes of the experimental scatter, and of the transition from high-stress LCF (surface-dominated) to low-stress HCF (subsurface-dominated) fatigue failure. Additional STBF test data and failure analysis work, particularly in the HCF regime and around the endurance limit stress, could allow for better statistical confidence and could reduce the observed effects of experimental test scatter. Finally, the need for further optimization of the residual compressive stress profiles of the UHS steels (resulting from carburization and peening) is noted, particularly for the case of the higher hardness C64 material.
NASA Astrophysics Data System (ADS)
Wong, Dillon
Graphene, a two-dimensional (2D) honeycomb lattice of sp 2-bonded carbon atoms, is renowned for its many extraordinary properties. Not only does it have an extremely high carrier mobility, exceptional mechanical strength, and fascinating optical behavior, graphene additionally has an interesting energy-momentum relationship that is emergent from its space group symmetry. Graphene's low-energy electronic excitations consist of quasiparticles whose energies disperse linearly with wavevector and obey a 2D massless Dirac equation with a modified speed of light. This fortuitous circumstance allows for the exploration of ultra-relativistic phenomena using conventional tabletop techniques common to solid state physics and material science. Here I discuss experiments that probe these ultra-relativistic effects via application of scanning tunneling microscopy (STM) and spectroscopy (STS) to graphene field-effect transistors (FETs) in proximity with charged impurities. The first part of this dissertation focuses on the ultra-relativistic Coulomb problem. Depending on the strength of the potential, the Coulomb problem for massless Dirac particles is divided into two regimes: the subcritical and the supercritical. The subcritical regime is characterized by an electron-hole asymmetry in the local density of states (LDOS) and, unlike in nonrelativistic quantum mechanics, does not support bound states. In contrast, the supercritical regime hosts quasi-bound states that are analogous to "atomic collapse" orbits predicted to occur in atoms with nuclear charge Z > 170. By using an STM tip to directly position calcium (Ca) impurities on a graphene surface, we assembled "artificial nuclei" and observed a transition between the subcritical and supercritical regimes with increasing nuclear charge. We also investigated the screening of these charged impurities by massless Dirac fermions while varying the graphene carrier concentration with an electrostatic gate. The second part of this dissertation focuses on the ultra-relativistic harmonic oscillator. We developed a method for manipulating charged defects inside the boron nitride (BN) substrate underneath graphene to construct circular graphene p-n junctions. These p-n junctions were effectively quantum dots that electrostatically trapped graphene's relativistic charge carriers, and we imaged the interference patterns corresponding to this quantum confinement. The observed energy-level spectra in our p-n junctions closely matched a theoretical spectrum obtained by solving the 2D massless Dirac equation with a quadratic potential, allowing us to identify each observed state with principal and angular momentum quantum numbers. The results discussed here provide insight into fundamental aspects of relativistic quantum mechanics and into graphene properties pertinent to technological applications. In particular, graphene's response to electrostatic potentials determines the scope in which its charge carriers can be directed and harnessed for useful purposes. Furthermore, many of the results contained in this dissertation are expected to generalize to other Dirac materials.
MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI.
Fan, Qiuyun; Witzel, Thomas; Nummenmaa, Aapo; Van Dijk, Koene R A; Van Horn, John D; Drews, Michelle K; Somerville, Leah H; Sheridan, Margaret A; Santillana, Rosario M; Snyder, Jenna; Hedden, Trey; Shaw, Emily E; Hollinshead, Marisa O; Renvall, Ville; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R; Tisdall, Dylan; Buckner, Randy L; Wedeen, Van J; Wald, Lawrence L; Toga, Arthur W; Rosen, Bruce R
2016-01-01
The MGH-USC CONNECTOM MRI scanner housed at the Massachusetts General Hospital (MGH) is a major hardware innovation of the Human Connectome Project (HCP). The 3T CONNECTOM scanner is capable of producing a magnetic field gradient of up to 300 mT/m strength for in vivo human brain imaging, which greatly shortens the time spent on diffusion encoding, and decreases the signal loss due to T2 decay. To demonstrate the capability of the novel gradient system, data of healthy adult participants were acquired for this MGH-USC Adult Diffusion Dataset (N=35), minimally preprocessed, and shared through the Laboratory of Neuro Imaging Image Data Archive (LONI IDA) and the WU-Minn Connectome Database (ConnectomeDB). Another purpose of sharing the data is to facilitate methodological studies of diffusion MRI (dMRI) analyses utilizing high diffusion contrast, which perhaps is not easily feasible with standard MR gradient system. In addition, acquisition of the MGH-Harvard-USC Lifespan Dataset is currently underway to include 120 healthy participants ranging from 8 to 90 years old, which will also be shared through LONI IDA and ConnectomeDB. Here we describe the efforts of the MGH-USC HCP consortium in acquiring and sharing the ultra-high b-value diffusion MRI data and provide a report on data preprocessing and access. We conclude with a demonstration of the example data, along with results of standard diffusion analyses, including q-ball Orientation Distribution Function (ODF) reconstruction and tractography. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Qu, Sheng; Zhang, Jihua; Wu, Kaituo; Wang, Lei; Chen, Hongwei
2018-03-01
In this study, ultra-low-fire ceramic composites of Zn2Te3O8-30 wt.%TiTe3O8 (ZTT) were prepared by a solid-state reaction method. Densified at 600°C, the best microwave dielectric properties at 8.5 GHz were measured with the ɛ r , tan δ, Q × f, and τ f as 25.6, 1.5 × 10-4, 56191 GHz and 1.66 ppm/°C, respectively. Thin films of ultra-low-fire ZTT were prepared by a radio-frequency magnetron sputtering method. ZTT films which deposited on Au/NiCr/SiO2/Si (100) substrates at 200°C showed good adhesion. From ultra-low-fire ceramic to ultra-low-fire ZTT thin films, the latter maintained all the good high-frequency dielectric properties of the former: high dielectric constant ( ɛ r ˜ 25) and low dissipation factor (tan δ < 5×10-3), low leakage current density (˜ 10-9 A/cm2) and ultra low processing temperature. These excellent properties of the ultra-low-fire ZTT thin film make it possible to be integrated in MMIC and be applied in the research of GaN and GaAs MOSFET devices.
Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal
2014-04-01
ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...collaboration with Applied Research Associates, Inc. (ARA). Several types of commercial UHPW water blasting systems were tested on an ungrooved portland cement
Ultra-High Surface Speed for Metal Removal, Artillery Shell
1981-07-01
TECHNICAL LIBRARY "y/a^^cr^ AD-E400 660 CONTRACTOR REPORT ARLCD-CR- 81019 ULTRA-HIGH SURFACE SPEED FOR METAL REMOVAL, ARTILLERY SHELL RICHARD F...Report ARLCD-CR- 81019 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) ULTRA-HIGH SURFACE SPEED FOR METAL...UNIT* tuiPPtO 1 MIL -STD-43CA i, ASTM A-274-64 EF A1SI~1340 SEHI FIN FORGING STEEL 6 RC SQ ■ IP 120093* a LIFTS 38 PCS
NASA Astrophysics Data System (ADS)
Hannula, Jaakko; Kömi, Jukka; Porter, David A.; Somani, Mahesh C.; Kaijalainen, Antti; Suikkanen, Pasi; Yang, Jer-Ren; Tsai, Shao-Pu
2017-11-01
The effect of boron on the microstructures and mechanical properties of laboratory-control-rolled and direct-quenched 6-mm-thick steels containing 0.08 wt pct C and 0.02 wt pct Nb were studied. The boron contents were 24 ppm and a residual amount of 4 ppm. Two different finish rolling temperatures (FRTs) of 1093 K and 1193 K (820 °C and 920 °C) were used in the hot rolling trials to obtain different levels of pancaked austenite prior to DQ. Continuous cooling transformation (CCT) diagrams were constructed to reveal the effect of boron on the transformation behavior of these steels. Microstructural characterization was carried out using various microscopy techniques, such as light optical microscopy (LOM) and scanning electron microscopy-electron backscatter diffraction (SEM-EBSD). The resultant microstructures after hot rolling were mixtures of autotempered martensite and lower bainite (LB), having yield strengths in the range 918 to 1067 MPa with total elongations to fracture higher than 10 pct. The lower FRT of 1093 K (820 °C) produced better combinations of strength and toughness as a consequence of a higher degree of pancaking in the austenite. Removal of boron lowered the 34 J/cm2 Charpy-V impact toughness transition temperature from 206 K to 158 K (-67 °C to -115 °C) when the finishing rolling temperature of 1093 K (820 °C) was used without any loss in the strength values compared to the boron-bearing steel. This was due to the finer and more uniform grain structure in the boron-free steel. Contrary to expectations, the difference was not caused by the formation of borocarbide precipitates, as verified by transmission electron microscopy (TEM) investigations, but through the grain coarsening effect of boron.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hong; Du, Yuchen; Ye, Peide D., E-mail: yep@purdue.edu
2016-05-16
Herein, we report on achieving ultra-high electron density (exceeding 10{sup 14 }cm{sup −2}) in a GaN bulk material device by ionic liquid gating, through the application of atomic layer deposition (ALD) of Al{sub 2}O{sub 3} to passivate the GaN surface. Output characteristics demonstrate a maximum drain current of 1.47 A/mm, the highest reported among all bulk GaN field-effect transistors, with an on/off ratio of 10{sup 5} at room temperature. An ultra-high electron density exceeding 10{sup 14 }cm{sup −2} accumulated at the surface is confirmed via Hall-effect measurement and transfer length measurement. In addition to the ultra-high electron density, we also observe a reductionmore » of the contact resistance due to the narrowing of the Schottky barrier width on the contacts. Taking advantage of the ALD surface passivation and ionic liquid gating technique, this work provides a route to study the field-effect and carrier transport properties of conventional semiconductors in unprecedented ultra-high charge density regions.« less
NASA Astrophysics Data System (ADS)
Homburg, Oliver; Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan
2017-02-01
In the last decade much improvement has been achieved for ultra-short pulse lasers with high repetition rates. This laser technology has vastly matured so that it entered a manifold of industrial applications recently compared to mainly scientific use in the past. Compared to ns-pulse ablation ultra-short pulses in the ps- or even fs regime lead to still colder ablation and further reduced heat-affected zones. This is crucial for micro patterning when structure sizes are getting smaller and requirements are getting stronger at the same time. An additional advantage of ultra-fast processing is its applicability to a large variety of materials, e.g. metals and several high bandgap materials like glass and ceramics. One challenge for ultra-fast micro machining is throughput. The operational capacity of these processes can be maximized by increasing the scan rate or the number of beams - parallel processing. This contribution focuses on process parallelism of ultra-short pulsed lasers with high repetition rate and individually addressable acousto-optical beam modulation. The core of the multi-beam generation is a smooth diffractive beam splitter component with high uniform spots and negligible loss, and a prismatic array compressor to match beam size and pitch. The optical design and the practical realization of an 8 beam processing head in combination with a high average power single mode ultra-short pulsed laser source are presented as well as the currently on-going and promising laboratory research and micro machining results. Finally, an outlook of scaling the processing head to several tens of beams is given.
Omichi, Masaaki; Asano, Atsushi; Tsukuda, Satoshi; Takano, Katsuyoshi; Sugimoto, Masaki; Saeki, Akinori; Sakamaki, Daisuke; Onoda, Akira; Hayashi, Takashi; Seki, Shu
2014-01-01
Protein nanowires exhibiting specific biological activities hold promise for interacting with living cells and controlling and predicting biological responses such as apoptosis, endocytosis and cell adhesion. Here we report the result of the interaction of a single high-energy charged particle with protein molecules, giving size-controlled protein nanowires with an ultra-high aspect ratio of over 1,000. Degradation of the human serum albumin nanowires was examined using trypsin. The biotinylated human serum albumin nanowires bound avidin, demonstrating the high affinity of the nanowires. Human serum albumin–avidin hybrid nanowires were also fabricated from a solid state mixture and exhibited good mechanical strength in phosphate-buffered saline. The biotinylated human serum albumin nanowires can be transformed into nanowires exhibiting a biological function such as avidin–biotinyl interactions and peroxidase activity. The present technique is a versatile platform for functionalizing the surface of any protein molecule with an extremely large surface area. PMID:24770668
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggert, J H; Wark, J
2012-02-15
The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics andmore » techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.« less
Laser Welding of Coated Press-hardened Steel 22MnB5
NASA Astrophysics Data System (ADS)
Siltanen, Jukka; Minkkinen, Ari; Järn, Sanna
The press-hardening process is widely used for steels that are used in the automotive industry. Using ultra-high-strength steels enables car manufacturers to build lighter, stronger, and safer vehicles at a reduced cost and generating lower CO2 emissions. In the study, laser welding properties of the coated hot stamped steel 22BMn5 were studied. A constant 900 °C temperature was used to heat the steel plates, and two different furnace times were used in the press-hardening, being 300 and 740 seconds. Some of the plates were shot blasted to see the influence of the partly removed oxide layer on the laser welding and quality. The welding set-up, welding, and testing of the weld specimens complied with the automotive testing code SEP 1220.
NASA Astrophysics Data System (ADS)
Panin, S. V.; Alexenko, V. O.; Buslovich, D. G.; Anh, Nguyen Duc; Qitao, Huang
2018-01-01
Mechanical and tribotechnical characteristics of solid-lubricant and polymer-polymeric composites of UHMWPE were studied for the sake of design extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). Tribotechnical properties of UHMWPE blends with the optimized content of solid lubricant fillers (polytetrafluoroethylene, calcium stearate, molybdenum disulphide, colloidal graphite, boron nitride) were studied under dry sliding friction at different velocities (V = 0.3 and 0.5 m/s) and loads (P = 60 and 140 N). Also, in order to increase strength and wear-resistance of UHMWPE composites they were reinforced with wollastonite microfibers and aluminum metahydroxide AlO (OH) microparticles preliminary treated (functionalized) in polyorganosiloxane. The comparison on measured mechanical and tribotechnical properties are given with interpretation of the mechanisms of observed phenomenon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyama, I., E-mail: ippei@dali.nuac.nagoya-u.ac.jp; Teramoto, A.
Ultra-high-strength concrete with a large unit cement content undergoes considerable temperature increase inside members due to hydration heat, leading to a higher risk of internal cracking. Hence, the temperature dependence of autogenous shrinkage of cement pastes made with silica fume premixed cement with a water–binder ratio of 0.15 was studied extensively. Development of autogenous shrinkage showed different behaviors before and after the inflection point, and dependence on the temperature after mixing and subsequent temperature histories. The difference in autogenous shrinkage behavior poses problems for winter construction because autogenous shrinkage may increase with decrease in temperature after mixing before the inflectionmore » point and with increase in temperature inside concrete members with large cross sections.« less
Exploring structure and function of sensory cortex with 7T MRI.
Schluppeck, Denis; Sanchez-Panchuelo, Rosa-Maria; Francis, Susan T
2018-01-01
In this paper, we present an overview of 7T magnetic resonance imaging (MRI) studies of the detailed function and anatomy of sensory areas of the human brain. We discuss the motivation for the studies, with particular emphasis on increasing the spatial resolution of functional MRI (fMRI) using reduced field-of-view (FOV) data acquisitions. MRI at ultra-high-field (UHF) - defined here as 7T and above - has several advantages over lower field strengths. The intrinsic signal-to-noise ratio (SNR) of images is higher at UHF, and coupled with the increased blood-oxygen-level-dependent (BOLD) signal change, this results in increased BOLD contrast-to-noise ratio (CNR), which can be exploited to improve spatial resolution or detect weaker signals. Additionally, the BOLD signal from the intra-vascular (IV) compartment is relatively diminished compared to lower field strengths. Together, these properties make 7T functional MRI an attractive proposition for high spatial specificity measures. But with the advantages come some challenges. For example, increased vulnerability to susceptibility-induced geometric distortions and signal loss in EPI acquisitions tend to be much larger. Some of these technical issues can be addressed with currently available tools and will be discussed. We highlight the key methodological considerations for high resolution functional and structural imaging at 7 T. We then present recent data using the high spatial resolution available at UHF in studies of the visual and somatosensory cortex to highlight promising developments in this area. Copyright © 2017 Elsevier Inc. All rights reserved.
Beaujoin, Justine; Palomero-Gallagher, Nicola; Boumezbeur, Fawzi; Axer, Markus; Bernard, Jeremy; Poupon, Fabrice; Schmitz, Daniel; Mangin, Jean-François; Poupon, Cyril
2018-06-01
The human hippocampus plays a key role in memory management and is one of the first structures affected by Alzheimer's disease. Ultra-high magnetic resonance imaging provides access to its inner structure in vivo. However, gradient limitations on clinical systems hinder access to its inner connectivity and microstructure. A major target of this paper is the demonstration of diffusion MRI potential, using ultra-high field (11.7 T) and strong gradients (750 mT/m), to reveal the extra- and intra-hippocampal connectivity in addition to its microstructure. To this purpose, a multiple-shell diffusion-weighted acquisition protocol was developed to reach an ultra-high spatio-angular resolution with a good signal-to-noise ratio. The MRI data set was analyzed using analytical Q-Ball Imaging, Diffusion Tensor Imaging (DTI), and Neurite Orientation Dispersion and Density Imaging models. High Angular Resolution Diffusion Imaging estimates allowed us to obtain an accurate tractography resolving more complex fiber architecture than DTI models, and subsequently provided a map of the cross-regional connectivity. The neurite density was akin to that found in the histological literature, revealing the three hippocampal layers. Moreover, a gradient of connectivity and neurite density was observed between the anterior and the posterior part of the hippocampus. These results demonstrate that ex vivo ultra-high field/ultra-high gradients diffusion-weighted MRI allows the mapping of the inner connectivity of the human hippocampus, its microstructure, and to accurately reconstruct elements of the polysynaptic intra-hippocampal pathway using fiber tractography techniques at very high spatial/angular resolutions.
NASA Astrophysics Data System (ADS)
Ozden, Burcu; Yang, Chungman; Tong, Fei; Khanal, Min P.; Mirkhani, Vahid; Sk, Mobbassar Hassan; Ahyi, Ayayi Claude; Park, Minseo
2014-10-01
We have demonstrated that the depth-dependent defect distribution of the deep level traps in the AlGaN/GaN high electron mobility transistor (HEMT) epi-structures can be analyzed by using the depth-resolved ultra-violet (UV) spectroscopic photo current-voltage (IV) (DR-UV-SPIV). It is of great importance to analyze deep level defects in the AlGaN/GaN HEMT structure, since it is recognized that deep level defects are the main source for causing current collapse phenomena leading to reduced device reliability. The AlGaN/GaN HEMT epi-layers were grown on a 6 in. Si wafer by metal-organic chemical vapor deposition. The DR-UV-SPIV measurement was performed using a monochromatized UV light illumination from a Xe lamp. The key strength of the DR-UV-SPIV is its ability to provide information on the depth-dependent electrically active defect distribution along the epi-layer growth direction. The DR-UV-SPIV data showed variations in the depth-dependent defect distribution across the wafer. As a result, rapid feedback on the depth-dependent electrical homogeneity of the electrically active defect distribution in the AlGaN/GaN HEMT epi-structure grown on a Si wafer with minimal sample preparation can be elucidated from the DR-UV-SPIV in combination with our previously demonstrated spectroscopic photo-IV measurement with the sub-bandgap excitation.
Computational Modeling Develops Ultra-Hard Steel
NASA Technical Reports Server (NTRS)
2007-01-01
Glenn Research Center's Mechanical Components Branch developed a spiral bevel or face gear test rig for testing thermal behavior, surface fatigue, strain, vibration, and noise; a full-scale, 500-horsepower helicopter main-rotor transmission testing stand; a gear rig that allows fundamental studies of the dynamic behavior of gear systems and gear noise; and a high-speed helical gear test for analyzing thermal behavior for rotorcraft. The test rig provides accelerated fatigue life testing for standard spur gears at speeds of up to 10,000 rotations per minute. The test rig enables engineers to investigate the effects of materials, heat treat, shot peen, lubricants, and other factors on the gear's performance. QuesTek Innovations LLC, based in Evanston, Illinois, recently developed a carburized, martensitic gear steel with an ultra-hard case using its computational design methodology, but needed to verify surface fatigue, lifecycle performance, and overall reliability. The Battelle Memorial Institute introduced the company to researchers at Glenn's Mechanical Components Branch and facilitated a partnership allowing researchers at the NASA Center to conduct spur gear fatigue testing for the company. Testing revealed that QuesTek's gear steel outperforms the current state-of-the-art alloys used for aviation gears in contact fatigue by almost 300 percent. With the confidence and credibility provided by the NASA testing, QuesTek is commercializing two new steel alloys. Uses for this new class of steel are limitless in areas that demand exceptional strength for high throughput applications.
Zhu, Zhen-Yuan; Luo, You; Dong, Guo-Ling; Ren, Yuan-Yuan; Chen, Li-Jing; Guo, Ming-Zhu; Wang, Xiao-Ting; Yang, Xue-Ying; Zhang, Yongmin
2016-06-01
A novel homogeneous polysaccharide fraction (APS) was extracted from Astragalus by hot water and purified by Sephadex G-100 and G-75 column. Its molecular weight was 693kDa. APS and APS with ultra-high pressure treatment exhibited significant inhibitory abilities on a-glucosidase, inhibition rate from high to low in order was 400MPa-APS, 300MPa-APS, 500MPa-APS and APS. The inhibition percentage of 400MPa-APS (1.5mg/mL) was 49% (max.). This suggested that the inhibitory activity of APS on a-glucosidase was improved by ultra-high pressure treatment. FT-IR, SEM, CD spectra, atomic force microscope and Congo red test analysis of APS and 400MPa-APS showed ultra-high pressure treatment didn't change the preliminary structure but had an effect on its advanced structure. Copyright © 2016 Elsevier B.V. All rights reserved.
Analyzing Water's Optical Absorption
NASA Technical Reports Server (NTRS)
2002-01-01
A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.
NASA Astrophysics Data System (ADS)
Rachen, J. P.; Biermann, P. L.
1993-05-01
The hot spots of Fanaroff-Riley class II radio galaxies, considered as working surfaces of highly collimated plasma jets, are proposed to be the dominant sources of the cosmic rays at energies above 1 EeV^a^. We apply the model of first order Fermi acceleration at strong, nonrelativistic shock waves to the hot spot region. The strength of the model has been demonstrated by Biermann & Strittmatter (1987) and by Meisenheimer et al. (1989), who explain their radio-to optical spectra and infer the physical conditions of the radiating plasma. Using synchrotron radiating electrons as a trace, we can calculate the spectrum and the maximum energy of protons accelerated under the same conditions. For simplicity, we disregard heavy nuclei, but their probable role is discussed. The normalization of proton flux injected in extragalactic space is performed by using estimates from Rawlings & Saunders (1991) for the total energy stored in relativistic particles inside the jets and radio galaxy evolution models given by Peacock (1985). We calculate the spectral modifications due to interactions of the protons with the microwave background photons in an evolving universe, following Berezinsky & Grigor'eva (1988). Constraints on the extragalactic magnetic field can be imposed, since it must permit an almost homogeneous filling of the universe with energetic protons. The observed ultra-high energy cosmic ray spectrum is reproduced in slope and flux, limited at high energies by the Greisen-cutoff at about 80 EeV. The requirements on the content of relativistic protons in jets and the constraints to the extragalactic magnetic field are consistent with common estimates. The data beyond the Greisen cutoff for protons may be explained by including heavy nuclei in our model, since they can propagate over cosmological distances up to more than 100 EeV.
Su, Guanyong; Letcher, Robert J; Yu, Hongxia
2015-12-24
Organophosphate (OP) diesters in urine samples have potential use as biomarkers of organism exposure to environmentally relevant OP triester precursors and in particular OP triester flame retardants. This present study developed a quantitatively sensitive ultra high pressure liquid chromatography (UHPLC-MS) based method for urine and the determination of OP diesters (i.e. diphenyl phosphate (DPHP), bis(2-chloroethyl) phosphate (BCEP), bis(2-chloroisopropyl) phosphate (BDCIPP), di-n-butyl phosphate (DNBP), di(2-ethylhexyl) phosphate (DEHP), bis(1-chloro-2-propyl) phosphate (BCIPP), and bis(2-butoxyethyl) phosphate (BBOEP)). Fortified with the 7 OP diesters, 1mL of human urine sample was cleaned up using weak anion exchange solid phase extraction and eluted with high ionic strength ammonium acetate buffer. Subsequently, 4 non-chlorinated OP diesters were directly determined using UHPLC-electrospray(-)-triple quadrupole-MS (UHPLC-ESI(-)-QqQ-MS), and UHPLC-ESI(+)-QqQ-MS was used for determination of 3 chlorinated OP diesters after methylation using diazomethane. Recovery efficiencies of OP diesters ranged from 88 to 160% at three spiking levels (0.4, 2 and 10ng/mL urine). Matrix effects (MEs) and method limits of quantification (MLOQs) were 15-134% and 0.10-0.32ng/mL urine, respectively. Concentrations of OP diesters in n=12 urine samples (from 4 Canadian residents, 2014) varied as follows, nd-<0.28 (DNBP), nd-1.29 (DPHP), nd-<0.28 (DEHP), <0.16-12.33 (BCEP), nd-1.17 (BCDIPP) and nd-0.68ng/mL (BCIPP). Copyright © 2015. Published by Elsevier B.V.
Mayur, Prashanth; Byth, Karen; Harris, Anthony
2013-07-01
Shortening the pulse width to 0.3 ms holds neurophysiological and clinical promise of making ECT safer by limiting cognitive side effects. However, the antidepressant effects of right ultra-brief unilateral ECT are under contention. In an acute ECT course, antidepressant equivalence of ultra-brief right unilateral ECT to the high-dose brief pulse right unilateral ECT was investigated. Severely depressed patients were randomised to 1 ms-brief pulse (n=18) or 0.3 ms ultra-brief pulse (n=17) right unilateral ECT, both at high-dose (6 times threshold stimulus dose) given thrice weekly. Depression severity was measured using the Montgomery Asberg Depression Rating Scale at baseline, after 8 treatments and after the acute course of ECT. Depression severity declined equally in both groups: F (1.27,41.97)=0.31, p=0.63. Median time in days to remission (95%CI) was in brief pulse ECT: 26 (18.6-33.4) and ultra-brief pulse ECT:28 (17.9-38.0). The small sample study in the study increases the likelihood of type 2 error. In severe depression, high-dose ultra-brief right unilateral ECT appears to show matching acute antidepressant response to an equally high-dose brief pulse right unilateral ECT. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Thangavel, Ranjith; Kannan, Aravindaraj G.; Ponraj, Rubha; Thangavel, Vigneysh; Kim, Dong-Won; Lee, Yun-Sung
2018-04-01
Development of supercapacitors with high energy density and long cycle life using sustainable materials for next-generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 °C) with maximum energy densities of ∼174 Wh kg-1 (25 °C), and 177 Wh kg-1 (60 °C) - based on active mass of both electrodes. Furthermore, an ultra-high specific power of ∼20 kW kg-1 along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 °C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.
Boakye, Cedar H A; Patel, Ketan; Doddapaneni, Ravi; Bagde, Arvind; Behl, Gautam; Chowdhury, Nusrat; Safe, Stephen; Singh, Mandip
2016-07-01
In this study, we developed cationic ultra-flexible nanocarriers (UltraFLEX-Nano) to surmount the skin barrier structure and to potentiate the topical delivery of a highly lipophilic antioxidative diindolylmethane derivative (DIM-D) for the inhibition of UV-induced DNA damage and skin carcinogenesis. UltraFLEX-Nano was prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-3-trimethylammonium-propane, cholesterol and tween-80 by ethanolic injection method; was characterized by Differential Scanning Calorimetric (DSC), Fourier Transform Infrared (FT-IR) and Atomic Force Microscopic (phase-imaging) analyses and permeation studies were performed in dermatomed human skin. The efficacy of DIM-D-UltraFLEX-Nano for skin cancer chemoprevention was evaluated in UVB-induced skin cancer model in vivo. DIM-D-UltraFLEX-Nano formed a stable mono-dispersion (110.50±0.71nm) with >90% encapsulation of DIM-D that was supported by HPLC, DSC, FT-IR and AFM phase imaging. The blank formulation was non-toxic to human embryonic kidney cells. UltraFLEX-Nano was vastly deformable and highly permeable across the stratum corneum; there was significant (p<0.01) skin deposition of DIM-D for UltraFLEX-Nano that was superior to PEG solution (13.83-fold). DIM-D-UltraFLEX-Nano pretreatment delayed the onset of UVB-induced tumorigenesis (2 weeks) and reduced (p<0.05) the number of tumors observed in SKH-1 mice (3.33-fold), which was comparable to pretreatment with sunscreen (SPF30). Also, DIM-D-UltraFLEX-Nano caused decrease (p<0.05) in UV-induced DNA damage (8-hydroxydeoxyguanosine), skin inflammation (PCNA), epidermal hyperplasia (c-myc, CyclinD1), immunosuppression (IL10), cell survival (AKT), metastasis (Vimentin, MMP-9, TIMP1) but increase in apoptosis (p53 and p21). UltraFLEX-Nano was efficient in enhancing the topical delivery of DIM-D. DIM-D-UltraFLEX-Nano was efficacious in delaying skin tumor incidence and multiplicity in SKH mice comparable to sunscreen (SPF30). Copyright © 2016 Elsevier B.V. All rights reserved.
Electrically controlled pinning of Dzyaloshinskii-Moriya domain walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Koji; Tretiakov, Oleg A., E-mail: olegt@imr.tohoku.ac.jp; School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950
We propose a method to all-electrically control a domain-wall position in a ferromagnetic nanowire with Dzyaloshinskii-Moriya interaction. The strength of this interaction can be controlled by an external electric field, which in turn allows a fine tuning of the pinning potential of a spin-spiral domain wall. It allows to create more mobile pinning sites and can also be advantageous for ultra-low power electronics.
Ultra-weak photon emission of hands in aging prediction.
Zhao, Xin; van Wijk, Eduard; Yan, Yu; van Wijk, Roeland; Yang, Huanming; Zhang, Yan; Wang, Jian
2016-09-01
Aging has been one of the several topics intensely investigated during recent decades. More scientists have been scrutinizing mechanisms behind the human aging process. Ultra-weak photon emission is known as one type of spontaneous photon emission that can be detected with a highly sensitive single photon counting photomultiplier tube (PMT) from the surface of human bodies. It may reflect the body's oxidative damage. Our aim was to examine whether ultra-weak photon emission from a human hand is able to predict one's chronological age. Sixty subjects were recruited and grouped by age. We examined four areas of each hand: palm side of fingers, palm side of hand, dorsum side of fingers, and dorsum side of hand. Left and right hand were measured synchronously with two independent PMTs. Mean strength and Fano factor values of photon counts were utilized to compare the UPE patterns of males and females of different age groups. Subsequently, we utilized UPE data from the most sensitive PMT to develop an age prediction model. We randomly picked 49 subjects to construct the model, whereas the remaining 11 subjects were utilized for validation. The results demonstrated that the model was a good regression compared to the observed values (Pearson's r=0.6, adjusted R square=0.4, p=9.4E-7, accuracy=49/60). Further analysis revealed that the average difference between the chronological age and predicted age was only 7.6±0.8years. It was concluded that this fast and non-invasive photon technology is sufficiently promising to be developed for the estimation of biological aging. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Lei; Xiao, Huijuan; Qi, Yumei; Liu, Shuye; Qian, Baoxin; Wang, Fengmei; Han, Tao
2017-01-01
The liver is essential for the regulation of energy, protein and amino acids, as well as in other aspects of metabolism. To identify efficient indexes for evaluation of nutritional status and metabolic characteristics during different Child-Pugh stages of hepatitis B cirrhosis, 83 patients and 35 healthy individuals were enrolled in our study. We found that grip strength, triceps skinfold thickness (TSF), body fat and skeletal muscle of the patients were reduced compared to the control group (P<0.05). Ultra-high-performance liquid chromatography data combined with mass spectrometry (UPLC-MS) showed that levels of a variety of metabolites, including lysophosphatidylcholines (LysoPCs), glycerophosphocholine, ornithine and glucuronic acid were reduced in the serum of patients with hepatitis B cirrhosis (P<0.001). However, glycerophosphoserine and taurocholic acid levels were higher than in the control group (P<0.001). Moreover, grip strength was correlated with the Child-Pugh score (P<0.05). Serum albumin, total cholesterol, LDL, LysoPCs, glycerophosphocholine, ornithine, glucuronic acid, glycerophosphoserine and taurocholic acid were correlated with the Child-Pugh score (P<0.01). These findings suggested that grip strength and the above small molecular substances might be considered as sensitive and important indexes for evaluating nutritional status and metabolic characteristics of patients with hepatitis B cirrhosis, which may help assess prognosis and adjust nutritional treatment. PMID:28384211
Self-powered, ultra-sensitive, flexible tactile sensors based on contact electrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhong Lin; Zhu, Guang
A tactile sensor for sensing touch from a human finger includes a triboelectric layer and includes a material that becomes electrically charged after being in contact with the finger. The first side of a first conductive layer is in contact with the second side of triboelectric layer. The first side of a dielectric layer is in contact with the first conductive layer and the second side of the dielectric layer is in contact with a second conductive layer. When the triboelectric layer becomes electrically charged after being in contact with the finger, the first conductive layer and the second conductivemore » layer are subjected to an electric field, which has a first field strength at the first conductive layer and a second field strength, different from the first field strength, at the second conductive layer. A plurality of tactile sensors can be arranged as a keyboard.« less
Spall behaviour of single crystal aluminium at three principal orientations
NASA Astrophysics Data System (ADS)
Owen, G. D.; Chapman, D. J.; Whiteman, G.; Stirk, S. M.; Millett, J. C. F.; Johnson, S.
2017-10-01
A series of plate impact experiments have been conducted to study the spall strength of the three principal crystallographic orientations of single crystal aluminium ([100], [110] and, [111]) and ultra-pure polycrystalline aluminium. The samples have been shock loaded at two impact stresses (4 GPa and 10 GPa). Significant differences have been observed in the elastic behaviour, the pullback velocities, and the general shape of the wave profiles, which can be accounted for by considerations of the microscale homogeneity, the dislocation density, and the absence of grain boundaries in the single crystal materials. The data have shown that there is a consistent order of spall strength measured for the four sample materials. The [111] orientation has the largest spall strength and elastic limit, followed closely by [110], [100], and then the polycrystalline material. This order is consistent with both quasi-static data and geometrical consideration of Schmid factors.
Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Li; Sansoz, Frederic; He, Yang
2016-11-28
Atom diffusion assisted by surfaces or interfaces (e.g. Coble creep) has been known to be the origin of large creep rates and superplastic softening in nanosized crystals at low temperature. By contrast, source-limited crystal slip in defect-free nanostructures engenders important strengths, but also premature plastic instability and low ductility. Here, using in-situ transmission electron microscopy, we report a slip-activated surface creep mechanism that suppresses the tendency towards plastic instability without compromising the strength, resulting in ultra-large room-temperature plasticity in face-centered-cubic silver nanocrystals. This phenomenon is shown experimentally and theoretically to prevail over a material-dependent range of diameters where surface dislocationmore » nucleation becomes a stimulus to diffusional creep. This work provides new fundamental insight into coupled diffusive-displacive deformation mechanisms maximizing ductility and strength simultaneously in nanoscale materials.« less
NETL- High-Pressure Combustion Research Facility
None
2018-02-14
NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.
Propagation of Ion Solitary Pulses in Dense Astrophysical Electron-Positron-Ion Magnetoplasmas
NASA Astrophysics Data System (ADS)
Ata-Ur-Rahman; A. Khan, S.; Qamar, A.
2015-12-01
In this paper, we theoretically investigate the existence and propagation of low amplitude nonlinear ion waves in a dense plasma under the influence of a strong magnetic field. The plasma consists of ultra-relativistic and degenerate electrons and positrons and non-degenerate cold ions. Firstly, the appearance of two distinct linear modes and their evolution is studied by deriving a dispersion equation with the aid of Fourier analysis. Secondly, the dynamics of low amplitude ion solitary structures is investigated via a Korteweg-de Vries equation derived by employing a reductive perturbation method. The effects of various plasma parameters like positron concentration, strength of magnetic field, obliqueness of field, etc., are discussed in detail. At the end, analytical results are supplemented through numerical analysis by using typical representative parameters consistent with degenerate and ultra-relativistic magnetoplasmas of astrophysical regimes.
Djupegot, Ingrid Laukeland; Nenseth, Camilla Bengtson; Bere, Elling; Bjørnarå, Helga Birgit Torgeirsdotter; Helland, Sissel Heidi; Øverby, Nina Cecilie; Torstveit, Monica Klungland; Stea, Tonje Holte
2017-05-15
Use of ultra-processed foods has expanded rapidly over the last decades and high consumption has been positively associated with risk of e.g. overweight, obesity and type 2 diabetes. Ultra-processed foods offer convenience as they require minimal time for preparation. It is therefore reasonable to assume that such foods are consumed more often among people who experience time scarcity. The main aim of this study was to investigate the association between time scarcity and consumption of ultra-processed foods among parents of 2-year olds in Norway. A secondary aim was to investigate the association between sociodemographic correlates, weight status and consumption of ultra-processed foods. This cross-sectional study included 497 participants. Chi-square and cross tabulations were used to calculate proportions of high vs. low consumption of ultra-processed foods in relation to time scarcity, sociodemographic correlates and weight status. Binary logistic regression analyses were performed to test the relationship between independent variables and consumption of ultra-processed foods. Participants reporting medium and high time scarcity were more likely to have a high consumption of ultra-processed dinner products (OR = 3. 68, 95% CI = 2. 32-5.84 and OR = 3.10, 1.80-5.35, respectively) and fast foods (OR = 2.60, 1.62-4.18 and OR = 1.90, 1.08-3.32, respectively) compared to those with low time scarcity. Further, participants with medium time scarcity were more likely to have a high consumption of snacks and soft drinks compared to participants with low time scarcity (OR = 1.63, 1.06-2.49). Finally, gender, ethnicity, educational level, number of children in the household and weight status were identified as important factors associated with the consumption of certain types of ultra-processed foods. Results from the present study showed that time scarcity, various sociodemographic factors and weight status was associated with consumption of processed foods. Future studies with a longitudinal design are needed to further explore these patterns over a longer period of time.
MDOT aims for lower-cost ultra-high performance concrete : research spotlight.
DOT National Transportation Integrated Search
2016-08-01
In recent years, several vendors have developed ultra-high performance : concrete (UHPC) that surpasses traditional concrete mixes by offering : exceptional freeze-thaw resistance, reduced susceptibility to cracking : and far less reinforcement corro...
Space Shuttle UHF Communications Performance Evaluation
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.
2004-01-01
An extension boom is to be installed on the starboard side of the Space Shuttle Orbiter (SSO) payload bay for thermal tile inspection and repairing. As a result, the Space Shuttle payload bay Ultra High Frequency (UHF) antenna will be under the boom. This study is to evaluate the Space Shuttle UHF communication performance for antenna at a suitable new location. To insure the RF coverage performance at proposed new locations, the link margin between the UHF payload bay antenna and Extravehicular Activity (EVA) Astronauts at a range distance of 160 meters from the payload bay antenna was analyzed. The communication performance between Space Shuttle Orbiter and International Space Station (SSO-ISS) during rendezvous was also investigated. The multipath effects from payload bay structures surrounding the payload bay antenna were analyzed. The computer simulation tool based on the Geometrical Theory of Diffraction method (GTD) was used to compute the signal strengths. The total field strength was obtained by summing the direct fields from the antennas and the reflected and diffracted fields from the surrounding structures. The computed signal strengths were compared to the signal strength corresponding to the 0 dB link margin. Based on the results obtained in this study, RF coverage for SSO-EVA and SSO- ISS communication links was determined for the proposed payload bay antenna UHF locations. The RF radiation to the Orbiter Docking System (ODS) pyros, the payload bay avionics, and the Shuttle Remote Manipulator System (SRMS) from the new proposed UHF antenna location was also investigated to ensure the EMC/EMI compliances.
Pereira, Gabriel K R; Guilardi, Luís F; Dapieve, Kiara S; Kleverlaan, Cornelis J; Rippe, Marília P; Valandro, Luiz Felipe
2018-05-23
This study characterized the mechanical properties (static and under fatigue), the crystalline microstructure (monoclinic - m, tetragonal - t and cubic - c phase contents) and the surface topography of three yttrium-stabilized zirconia (YSZ) materials with different translucent properties, before and after aging in an autoclave (low temperature degradation). Disc-shaped specimens were produced from second generation (Katana ML/HT - high-translucent) and third generations (Katana STML - super-translucent and UTML - ultra-translucent) YSZ ceramics (Kuraray Noritake Dental Inc.), following ISO 6872-2015 guidelines for biaxial flexural strength testing (final dimensions: 15 mm in diameter and 1.2 ± 0.2 mm in thickness), and then subjected to the respective tests and analyses. ML was mainly composed of tetragonal crystals, while STML and UTML presented cubic content. Aging increased the monoclinic content for ML and did not affect STML and UTML. Topographical analysis highlights different grain sizes on the ceramic surface (UTML > STML > ML) and aging had no effect on this outcome. Weibull analysis showed the highest characteristic strength for ML both before and after aging, and statistically similar Weibull moduli for all groups. ML material also obtained the highest survival rates (ML > STML > UTML) for both fatigue strength and number of cycles to failure. All fractures originated from surface defects on the tensile side. Third generation zirconia (Katana STML and UTML) are fully stabilized materials (with tetragonal and cubic crystals), being totally inert to the autoclave aging, and presented lower mechanical properties than the second-generation zirconia (Katana ML - metastable zirconia). Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaacs, Sivan, E-mail: sivan.isaacs@gmail.com; Abdulhalim, Ibrahim; NEW CREATE Programme, School of Materials Science and Engineering, 1 CREATE Way, Research Wing, #02-06/08, Singapore 138602
2015-05-11
Using an insulator-metal-insulator structure with dielectric having refractive index (RI) larger than the analyte, long range surface plasmon (SP) resonance exhibiting ultra-high penetration depth is demonstrated for sensing applications of large bioentities at wavelengths in the visible range. Based on the diverging beam approach in Kretschmann-Raether configuration, one of the SP resonances is shown to shift in response to changes in the analyte RI while the other is fixed; thus, it can be used as a built in reference. The combination of the high sensitivity, high penetration depth and self-reference using the diverging beam approach in which a dark linemore » is detected of the high sensitivity, high penetration depth, self-reference, and the diverging beam approach in which a dark line is detected using large number of camera pixels with a smart algorithm for sub-pixel resolution, a sensor with ultra-low detection limit is demonstrated suitable for large bioentities.« less
NASA Technical Reports Server (NTRS)
Hughes, Christopher
2008-01-01
A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to present is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are addressed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program to meet the goals. Ultra High Bypass cycle research collaboration successes with Pratt & Whitney are presented.
Brain MR imaging at ultra-low radiofrequency power.
Sarkar, Subhendra N; Alsop, David C; Madhuranthakam, Ananth J; Busse, Reed F; Robson, Philip M; Rofsky, Neil M; Hackney, David B
2011-05-01
To explore the lower limits for radiofrequency (RF) power-induced specific absorption rate (SAR) achievable at 1.5 T for brain magnetic resonance (MR) imaging without loss of tissue signal or contrast present in high-SAR clinical imaging in order to create a potentially viable MR method at ultra-low RF power to image tissues containing implanted devices. An institutional review board-approved HIPAA-compliant prospective MR study design was used, with written informed consent from all subjects prior to MR sessions. Seven healthy subjects were imaged prospectively at 1.5 T with ultra-low-SAR optimized three-dimensional (3D) fast spin-echo (FSE) and fluid-attenuated inversion-recovery (FLAIR) T2-weighted sequences and an ultra-low-SAR 3D spoiled gradient-recalled acquisition in the steady state T1-weighted sequence. Corresponding high-SAR two-dimensional (2D) clinical sequences were also performed. In addition to qualitative comparisons, absolute signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) for multicoil, parallel imaging acquisitions were generated by using a Monte Carlo method for quantitative comparison between ultra-low-SAR and high-SAR results. There were minor to moderate differences in the absolute tissue SNR and CNR values and in qualitative appearance of brain images obtained by using ultra-low-SAR and high-SAR techniques. High-SAR 2D T2-weighted imaging produced slightly higher SNR, while ultra-low-SAR 3D technique not only produced higher SNR for T1-weighted and FLAIR images but also higher CNRs for all three sequences for most of the brain tissues. The 3D techniques adopted here led to a decrease in the absorbed RF power by two orders of magnitude at 1.5 T, and still the image quality was preserved within clinically acceptable imaging times. RSNA, 2011
Bond Behavior of Reinforcing Steel in Ultra-High Performance Concrete
DOT National Transportation Integrated Search
2014-11-01
Ultra-high performance concrete (UHPC) has garnered interest from the highway infrastructure community for its greatly enhanced mechanical and durability properties. The objective of this research is to extensively evaluate the factors that affect bo...
Tomková, Jana; Ondra, Peter; Kocianová, Eva; Václavík, Jan
2017-07-01
This paper presents a method for the determination of acebutolol, betaxolol, bisoprolol, metoprolol, nebivolol and sotalol in human serum by liquid-liquid extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. After liquid-liquid extraction, beta blockers were separated on a reverse-phase analytical column (Acclaim RS 120; 100 × 2.1 mm, 2.2 μm). The total run time was 6 min for each sample. Linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery and sample stability were evaluated. The method was successfully applied to the therapeutic drug monitoring of 108 patients with hypertension. This method was also used for determination of beta blockers in 33 intoxicated patients. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Hughes, Chris; Lord, Wed
2008-01-01
Current collaborative research with Pratt & Whitney on Ultra High Bypass Engine Cycle noise, performance and emissions improvements as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. Progress toward achieving the Subsonic Fixed Wing Project goals over the 2008 fiscal year by the UHB Partnership in this area of research are reviewed. The current research activity in Ultra High Bypass Engine Cycle technology, specifically the Pratt & Whitney Geared Turbofan, at NASA and Pratt & Whitney are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. Pratt & Whitney Geared Turbofan current and future technology and business plans are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.
NASA Astrophysics Data System (ADS)
Gerngross, M.-D.; Carstensen, J.; Föll, H.; Adelung, R.
2016-01-01
This paper reports on the characterization of the electrochemical growth process of magnetic nanowires in ultra-high-aspect ratio InP membranes via in situ fast Fourier transform impedance spectroscopy in a typical frequency range from 75 Hz to 18.5 kHz. The measured impedance data from the Ni, Co, and FeCo can be very well fitted using the same electric equivalent circuit consisting of a series resistance in serial connection to an RC-element and a Maxwell element. The impedance data clearly indicate the similarities in the growth behavior of Ni, Co and FeCo nanowires in ultra-high aspect ratio InP membranes—the beneficial impact of boric acid on the metal deposition in ultra-high aspect ratio membranes and the diffusion limitation of boric acid, as well as differences such as passivation or side reactions.
Sun, Fujun; Fu, Zhongyuan; Wang, Chunhong; Ding, Zhaoxiang; Wang, Chao; Tian, Huiping
2017-05-20
We propose and investigate an ultra-compact air-mode photonic crystal nanobeam cavity (PCNC) with an ultra-high quality factor-to-mode volume ratio (Q/V) by quadratically tapering the lattice space of the rectangular holes from the center to both ends while other parameters remain unchanged. By using the three-dimensional finite-difference time-domain method, an optimized geometry yields a Q of 7.2×10 6 and a V∼1.095(λ/n Si ) 3 in simulations, resulting in an ultra-high Q/V ratio of about 6.5×10 6 (λ/n Si ) -3 . When the number of holes on either side is 8, the cavity possesses a high sensitivity of 252 nm/RIU (refractive index unit), a high calculated Q-factor of 1.27×10 5 , and an ultra-small effective V of ∼0.758(λ/n Si ) 3 at the fundamental resonant wavelength of 1521.74 nm. Particularly, the footprint is only about 8×0.7 μm 2 . However, inevitably our proposed PCNC has several higher-order resonant modes in the transmission spectrum, which makes the PCNC difficult to be used for multiplexed sensing. Thus, a well-designed bandstop filter with weak sidelobes and broad bandwidth based on a photonic crystal nanobeam waveguide is created to connect with the PCNC to filter out the high-order modes. Therefore, the integrated structure presented in this work is promising for building ultra-compact lab-on-chip sensor arrays with high density and parallel-multiplexing capability.
New Ultra-Low Permittivity Composites for Use in Ceramic Packaging of Ga:As Integrated Circuits
1986-08-11
200 400 600 800 1000 SOAK TEMPERATURE (-C) Figure 8. Effect of leaching and heat treatment on relative permittivity of porous vycor glass. measured by...thermal treatment in strength, shrinkage and dielectric properties. 22 - The feasibility of tape casting calcium aluminate cement into thin substrates...materials. (3) Vibro-compaction and calandering of cements containing microspheres. (4) Heat treatment of the polymer-containing materials. 23 V
Development of Non-Proprietary Ultra-High Performance Concrete : Project Summary Report
DOT National Transportation Integrated Search
2017-12-01
Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Thus, elements made with UHPC can be thinner/lighter than elements made with conventional concrete. The enhanced durabilit...
Maeda, Kojiro; Kaneko, Masayuki; Narukawa, Mamoru; Arato, Teruyo
2017-08-23
The unmet medical needs of individuals with very rare diseases are high. The clinical trial designs and evaluation methods used for 'regular' drugs are not applicable in the clinical development of ultra-orphan drugs (<1000 patients) in many cases. In order to improve the clinical development of ultra-orphan drugs, we examined several points regarding the efficient evaluations of drug efficacy and safety that could be conducted even with very small sample sizes, based on the review reports of orphan drugs approved in Japan. The clinical data packages of 43 ultra-orphan drugs approved in Japan from January 2001 to December 2014 were investigated. Japanese clinical trial data were not included in the clinical data package for eight ultra-orphan drugs, and non-Japanese clinical trial data were included for six of these eight drug. Japanese supportive data that included retrospective studies, published literature, clinical research and Japanese survey results were clinical data package attachments in 22 of the 43 ultra-orphan drugs. Multinational trials were conducted for three ultra-orphan drugs. More than two randomized controlled trials (RCTs) were conducted for only 11 of the 43 ultra-orphan drugs. The smaller the number of patients, the greater the proportion of forced titration and optional titration trials were conducted. Extension trials were carried out for enzyme preparations and monoclonal antibodies with high ratio. Post-marketing surveillance of all patients was required in 36 of the 43 ultra-orphan drugs. For ultra-orphan drugs, clinical endpoints were used as the primary efficacy endpoint of the pivotal trial only for two drugs. The control groups in RCTs were classified as follows: placebo groups different dosage groups, and active controls groups. Sample sizes have been determined on the basis of feasibility for some ultra-orphan drugs. We provide "Draft Guidance on the Clinical Development of Ultra-Orphan Drugs" based on this research. The development of ultra-orphan drugs requires various arrangements regarding evidence collection, data sources and the clinical trial design. We expect that this draft guidance is useful for ultra-orphan drugs developments in future.
Case study: dairies utilizing ultra-high stock density grazing in the Northeast
USDA-ARS?s Scientific Manuscript database
Ultra-high stock density (UHSD) grazing has gained interest in the forage industry. However, little credible research exists to support anecdotal claims that forage and soil improvement occur through trampling high proportions (75+%) of mature forage into the soil by grazing dense groups of cattle o...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M.G.; et al.
2015-11-06
We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube `high-energy starting events' sample and the other with 16 high-energy `track events'. The angular separation between the arrival directions of neutrinos and UHECRs is scanned over. The same events are also used in a separate search using a maximum likelihood approach, after the neutrino arrival directions are stacked. To estimate the significance we assume UHECR magnetic deflections to be inversely proportional to their energy, with valuesmore » $$3^\\circ$$, $$6^\\circ$$ and $$9^\\circ$$ at 100 EeV to allow for the uncertainties on the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube sample of through-going muon track events which were optimized for neutrino point-source searches.« less
Microstructural and mechanical challenges in biomedical NiTi
NASA Astrophysics Data System (ADS)
Franz-Xaver Wagner, Martin
2010-07-01
The mechanical behaviour of NiTi shape memory alloys superficially resembles that of certain biomaterials, such as bones or tissues: By virtue of a reversible martensitic phase transformation, NiTi alloys can recover relatively large strains; uniaxial stress-strain curves exhibit constant stress-plateaus (at several hundreds of MPa, depending on alloy composition and testing temperature) associated with the phase transition. These novel functional properties, in combination with high mechanical strength in ultra-fine grained NiTi and good biocompatibility, are utilized in various implants and medical devices. Yet - and quite similar to hierarchically structured biomaterials - the deformation behaviour of NiTi is intricately linked to distinct deformation processes on several length scales, and there remain significant gaps in our understanding of the microstructure-property relations. In the present paper, recent experimental and theoretical results from first-principles calculations, micromechanical modelling and nanoindentation are discussed with a focus on the role of inelastic deformation processes, twin boundaries and the interaction of plastic deformation and stress-induced phase transformations. These novel findings challenge our understanding of the fundamental mechanical properties of NiTi. They highlight the importance of inelastic deformation mechanisms for the overall mechanical properties and strength of NiTi.
Space Shuttle Communications Coverage Analysis for Thermal Tile Inspection
NASA Technical Reports Server (NTRS)
Kroll, Quin D.; Hwu, Shian U.; Upanavage, Matthew; Boster, John P.; Chavez, Mark A.
2009-01-01
The space shuttle ultra-high frequency Space-to-Space Communication System has to provide adequate communication coverage for astronauts who are performing thermal tile inspection and repair on the underside of the space shuttle orbiter (SSO). Careful planning and quantitative assessment are necessary to ensure successful system operations and mission safety in this work environment. This study assesses communication systems performance for astronauts who are working in the underside, non-line-of-sight shadow region on the space shuttle. All of the space shuttle and International Space Station (ISS) transmitting antennas are blocked by the SSO structure. To ensure communication coverage at planned inspection worksites, the signal strength and link margin between the SSO/ISS antennas and the extravehicular activity astronauts, whose line-of-sight is blocked by vehicle structure, was analyzed. Investigations were performed using rigorous computational electromagnetic modeling techniques. Signal strength was obtained by computing the reflected and diffracted fields along the signal propagation paths between transmitting and receiving antennas. Radio frequency (RF) coverage was determined for thermal tile inspection and repair missions using the results of this computation. Analysis results from this paper are important in formulating the limits on reliable communication range and RF coverage at planned underside inspection and repair worksites.
Design and mechanical analysis of a 3D-printed biodegradable biomimetic micro air vehicle wing
NASA Astrophysics Data System (ADS)
Salami, E.; Ganesan, P. B.; Ward, T. A.; Viyapuri, R.; Romli, F. I.
2016-10-01
The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. There are still many technological challenges involved with designing the BMAV. One of these is designing the ultra-lightweight materials and structures for the wings that have enough mechanical strength to withstand continuous flapping at high frequencies. Insects achieve this by having chitin-based, wing frame structures that encompass a thin, film membrane. The main objectives of this study are to design a biodegradable BMAV wing (inspired from the dragonfly) and analyze its mechanical properties. The dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. A chitosan nanocomposite film membrane was applied to the BMAV wing frames through casting method. Its mechanical performance was analyzed using universal testing machine (UTM). This analysis indicates that the tensile strength and Young's modulus of the wing with a membrane is nearly double that of the wing without a membrane, which allow higher wing beat frequencies and deflections that in turn enable a greater lifting performance.
Research of UHPC properties prepared with industrial mixer
NASA Astrophysics Data System (ADS)
Šerelis, E.; Vaitkevičius, V.; Kerševičius, V.
2017-09-01
Ultra-high performance concrete (UHPC) mixture with advanced mechanical and durability properties was created using decent Zyklos ZZ50HE mixer. Zyklos ZZ50HE rotating pan mixer is similar to mixer which has common concrete plants. In experiment UHPC was prepared with Zyklos ZZ50HE mixer and thereafter best composition was selected and prepared with industrial HPGM 1125 mixer. Experiment results revealed that UHPC with W/C=0.29 and advanced mechanical and durability properties can be prepared. In experiment tremendous amount of micro steel fibres (up to 147 kg/m3) were incorporated in UHPC. Concrete with excellent salt scaling resistance and great mechanical properties was obtained. Compressive strength was increased about 30 % from 116 MPa to 150 MPa and flexural strength was increased about 5 times from 6.7 to 36.2 MPa. Salt-scaling resistance at 40 cycles in 3 % NaCl solution varied from 0.006 kg/m2 to 0.197 kg/m2. There were a few attempts to create UHPC and UHPFRC with decent technology, however, unsuccessfully till now. In the world practice this new material is currently used in the construction of bridges and viaducts.
Ultra-toughened nylon 12 nanocomposites reinforced with IF-WS2.
Xu, Fang; Yan, Chunze; Shyng, Yat-Tarng; Chang, Hong; Xia, Yongde; Zhu, Yanqiu
2014-08-15
Inorganic fullerene-like WS2 nanoparticle- (IF-WS2) reinforced nylon 12 nanocomposites have been prepared through effective ultrasonic mixing without using any surfactant, followed by molding at 220 °C. Morphological characterizations using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and microcomputed tomography (micro-CT) have revealed the excellent dispersion of IF-WS2 nanoparticles in the nylon 12 matrix. X-ray diffraction (XRD) analyses have confirmed that a phase transition from α'-phase to a more stable γ-phase took place during the sintering of nylon 12, regardless of the amount of IF-WS2 added to the matrix. At a very low IF-WS2 content of 2 wt%, the tensile strength and bending strength of the composites increased slightly by 27% and 28%, respectively. However, the toughness dramatically improved by 185% and 148% at IF-WS2 additions of 0.25 and 0.5 wt%, respectively, when compared to the neat nylon 12. It is believed that such improvements should mainly be attributed to the well-dispersed IF-WS2 within the matrix. The vastly improved toughness suggests that the resulting polymer nanocomposites could be promising for structural and high-performance impact applications.
Ultra-toughened nylon 12 nanocomposites reinforced with IF-WS2
NASA Astrophysics Data System (ADS)
Xu, Fang; Yan, Chunze; Shyng, Yat-Tarng; Chang, Hong; Xia, Yongde; Zhu, Yanqiu
2014-08-01
Inorganic fullerene-like WS2 nanoparticle- (IF-WS2) reinforced nylon 12 nanocomposites have been prepared through effective ultrasonic mixing without using any surfactant, followed by molding at 220 °C. Morphological characterizations using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and microcomputed tomography (micro-CT) have revealed the excellent dispersion of IF-WS2 nanoparticles in the nylon 12 matrix. X-ray diffraction (XRD) analyses have confirmed that a phase transition from α‧-phase to a more stable γ-phase took place during the sintering of nylon 12, regardless of the amount of IF-WS2 added to the matrix. At a very low IF-WS2 content of 2 wt%, the tensile strength and bending strength of the composites increased slightly by 27% and 28%, respectively. However, the toughness dramatically improved by 185% and 148% at IF-WS2 additions of 0.25 and 0.5 wt%, respectively, when compared to the neat nylon 12. It is believed that such improvements should mainly be attributed to the well-dispersed IF-WS2 within the matrix. The vastly improved toughness suggests that the resulting polymer nanocomposites could be promising for structural and high-performance impact applications.
Chen, Ying-Chuan; Li, Jun-Ju; Zhu, Guan-Yu; Shi, Lin; Yang, An-Chao; Jiang, Yin; Zhang, Xin; Zhang, Jian-Guo
2017-03-01
Nowadays, the patients with deep brain stimulation (DBS) devices are restricted to undertake 1.5T magnetic resonance imaging (MRI) according to the guideline. Nevertheless, we conducted an experiment to test pathological change near the leads in different field-strength MRI. Twenty-four male New Zealand rabbits were assigned to Group 1 (G1, n = 6, 7.0T, DBS), Group 2 (G2, n = 6, 3.0T, DBS), Group 3 (G3, n = 6, 1.5T, DBS), and Group 4 (G4, n = 6, 1.5T, paracentesis). DBS leads were implanted in G1, G2 and G3, targeting left nucleus ventralis posterior thalami. Paracentesis was performed in G4. 24 h after MRI scan, all animals were killed for examining pathological alternation (at different distance from lead) via transmission electron microscopy. Our results suggest that the severity of tissue injury correlates with the distance to electrode instead of field strength of MRI. Up to now, the reason for the restriction of MRI indicated no significantly different pathological change.
NASA Astrophysics Data System (ADS)
Youn, Jeong Il; Shin, Yong Kwan; Kang, Byung Il; Kim, Young Jig; Suk, Jhin Ik; Ryu, Seok Hyeon
The alloys required for fossil power plants are altered from stainless steel that has been used below 600 °C to Ni-based alloy that can operate over 700 °C for advanced ultra super critical (A-USC) steam turbine. The IN 740 alloy is proposed for improved rupture strength and corrosion resistance at high temperature. However, previous studies with experiments and simulations on stable phases at over 700 °C have indicated the formation of the eta phase with the wasting of the gamma prime phase, which is the most important reinforced phase in precipitation hardened Ni alloys. This results in the formation of precipitation free zones to decrease the strength. LESS 1 alloy designed through some modifications of IN 740 was suggested in this study. LESS 1 showed the phase stability more than IN 740 due to the optimum composition of Cr, Mo, Ti and Al. The experimental results established that a needle-shaped eta phase was formed in the grain boundary and it grew to intra-grain, and a precipitation free zone was also observed in IN 740, but these defects were entirely controlled in LESS 1.
High Temperature Strengthening in 12Cr-W-Mo Steels by Controlling the Formation of Delta Ferrite
NASA Astrophysics Data System (ADS)
Wang, Shushen; Chang, Li; Lin, Deye; Chen, Xiaohua; Hui, Xidong
2014-09-01
Novel 12Cr-W-Mo-Co heat resistance steels (HRSs) with excellent mechanical properties have been developed for ultra-supercritical (USC) applications above 923 K (650 °C). The thermal analysis of the present steels indicates that the remelting temperature of secondary phases is increased by Co alloying, resulting in the improvement of microstructural stability. Delta ferrite in these HRSs is completely suppressed as the content of Co is increased up to 5 pct. The room temperature tensile strength (TS), yield strength (YS), and the elongation (EL) of the HRS with 5 pct Co reach 887.9, 652.6 MPa, and 21.07 pct, respectively. At 948 K (675 °C), the TS and YS of the HRS with 5 pct Co attain 360 and 290 MPa, respectively, which are higher than those of T/P122 steel by 27.4 and 22.1 pct, respectively. TEM study of the microstructure confirmed that the strengthening effects for these 12Cr-W-Mo-Co HRSs are attributed to the suppression of delta ferrite, the formation of fine martensitic laths with substructure, dislocation networks and walls, and the precipitation of second nanoscale phases.
NASA Astrophysics Data System (ADS)
Ishimoto, Jun; Oh, U.; Tan, Daisuke
2012-10-01
A new type of ultra-high heat flux cooling system using the atomized spray of cryogenic micro-solid nitrogen (SN2) particles produced by a superadiabatic two-fluid nozzle was developed and numerically investigated for application to next generation super computer processor thermal management. The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed Computational Fluid Dynamics (CFD) analysis based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultra-high heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles. When micro-SN2 spraying cooling was used, an ultra-high cooling heat flux level was achieved during operation, a better cooling performance than that with liquid nitrogen (LN2) spray cooling. As micro-SN2 cooling has the advantage of direct latent heat transport which avoids the film boiling state, the ultra-short time scale heat transfer in a thin boundary layer is more possible than in LN2 spray. The present numerical prediction of the micro-SN2 spray cooling heat flux profile can reasonably reproduce the measurement results of cooling wall heat flux profiles. The application of micro-solid spray as a refrigerant for next generation computer processors is anticipated, and its ultra-high heat flux technology is expected to result in an extensive improvement in the effective cooling performance of large scale supercomputer systems.
Advanced Lithium-Ion Cell Development for NASA's Constellation Missions
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.; Mercer, Carolyn R.
2008-01-01
The Energy Storage Project of NASA s Exploration Technology Development Program is developing advanced lithium-ion batteries to meet the requirements for specific Constellation missions. NASA GRC, in conjunction with JPL and JSC, is leading efforts to develop High Energy and Ultra High Energy cells for three primary Constellation customers: Altair, Extravehicular Activities (EVA), and Lunar Surface Systems. The objective of the High Energy cell development is to enable a battery system that can operationally deliver approximately 150 Wh/kg for 2000 cycles. The Ultra High Energy cell development will enable a battery system that can operationally deliver 220 Wh/kg for 200 cycles. To accomplish these goals, cathode, electrolyte, separator, and safety components are being developed for High Energy Cells. The Ultra High Energy cell development adds lithium alloy anodes to the component development portfolio to enable much higher cell-level specific energy. The Ultra High Energy cell development is targeted for the ascent stage of Altair, which is the Lunar Lander, and for power for the Portable Life support System of the EVA Lunar spacesuit. For these missions, mass is highly critical, but only a limited number of cycles are required. The High Energy cell development is primarily targeted for Mobility Systems (rovers) for Lunar Surface Systems, however, due to the high risk nature of the Ultra High Energy cell development, the High Energy cell will also serve as a backup technology for Altair and EVA. This paper will discuss mission requirements and the goals of the material, component, and cell development efforts in further detail.
Ultra-high performance concrete : a state-of-the-art report for the bridge community.
DOT National Transportation Integrated Search
2013-06-01
"The term Ultra-High Performance Concrete (UHPC) refers to a relatively new class of advanced cementitious : composite materials whose mechanical and durability properties far surpass those of conventional concrete. This : class of concrete has been ...
[Extreme (complicated, ultra-high) refractive errors: terminological misconceptions!?
Avetisov, S E
2018-01-01
The article reviews development mechanisms of different refractive errors accompanied by marked defocus of light rays reaching the retina. Terminology used for such ametropias includes terms extreme, ultra-high and complicated. Justification of their usage for primary ametropias, whose symptom complex is based on changes in axial eye length, is an ongoing discussion. To comply with thesaurus definitions of 'diagnosis' and 'pathogenesis', to characterize refractive and anatomical-functional disorders in patients with primary ametropias it is proposed to use the terms 'hyperaxial and hypoaxial syndromes' with elaboration of specific symptoms instead of such expressions as extreme (ultra-high) myopia and hypermetropia.
Wintertime slope winds and its turbulent characteristics in the Yeongdong region of Korea
NASA Astrophysics Data System (ADS)
Jeon, H. R.; Eun, S. H.; Kim, B. G.; Lee, Y. H.
2015-12-01
The Yeongdong region has various meteorological phenomenons by virtue of complicated geographical characteristics with high Taebaek Mountains running from the north to the south and an adjacent East Sea to the east. There are few studies on the slope winds and its turbulent characteristics over the complex terrain, which are critical information in mountain climbing, hiking, paragliding, even winter sports such as alpine skiing and ski jump etc. For the understanding of diverse mountain winds in the complex terrain in Yeongdong, hot-wire anemometers (Campbell Scientific) have been installed at a couple of sites since October 2014 and several automatic weather stations at several sites around the mountainous region in Yeongdong since November 2012.WRF model simulations have been also done with an ultra-fine horizontal resolution of 300 m for 10 years. Generally, model and observation show that the dominant wind is westerly, approximately more than 75%. It is quite consistent that wind fields from both model and observation agree with each other in the valley region and at the top of the mountain, but there is a significant disagreement in wind direction specifically in the slide slope. Probably this implies model's performance with even an ultra-fine resolution is still not enough for the slide slope domain of complex terrains. Despite that, the observation clearly showed up- and down slope winds for the weak synoptic conditions carefully selected such as strong insolation and a synoptic wind less than 5m/s in the 850 hPa. The up- and down slope flows are also demonstrated in the snow-covered condition as well as grass ground. Further, planar fit transformation algorithm against the coordinate tilt has been applied to raw wind data (10Hz) of the slope site for the analysis of turbulence properties. Turbulence also increases with synoptic wind strength. Detailed analysis of mechanical turbulence and buoyance will be discussed for different surface properties (grass or snow), and wind strength (weak and strong).
Kesler, Michael S.; Goyel, Sonalika; Ebrahimi, Fereshteh; ...
2016-11-15
The mechanical properties of novel alloys with two-phase γ-TiAl + σ-Nb 2Al microstructures were evaluated under compression at room temperature. Microstructures of varying scales were developed through solutionizing and aging heat treatments and the volume fraction of phases were varied with changes in composition. Ultra-fine, aged γ+σ microstructures were achieved for the alloys which affectively retained high volume fractions of the parent β-phase upon quenching from the solutionizing temperature. The yield strength and compressive strain to failure of these alloys show a strong dependence on the relative scale and volume fraction of phases. Surprisingly, the hard brittle σ-phase particles weremore » not found to control fracture in the refined microstructures.« less
A Review on Potential Issues and Challenges in MR Imaging
Kanakaraj, Jagannathan
2013-01-01
Magnetic resonance imaging is a noninvasive technique that has been developed for its excellent depiction of soft tissue contrasts. Instruments capable of ultra-high field strengths, ≥7 Tesla, were recently engineered and have resulted in higher signal-to-noise and higher resolution images. This paper presents various subsystems of the MR imaging systems like the magnet subsystem, gradient subsystem, and also various issues which arise due to the magnet. Further, it also portrays finer details about the RF coils and transceiver and also various limitations of the RF coils and transceiver. Moreover, the concept behind the data processing system and the challenges related to it were also depicted. Finally, the various artifacts associated with the MR imaging were clearly pointed out. It also presents a brief overview about all the challenges related to MR imaging systems. PMID:24381523
Montesdeoca-Esponda, Sarah; Sosa-Ferrera, Zoraida; Kabir, Abuzar; Furton, Kenneth G; Santana-Rodríguez, José Juan
2015-10-01
A fast and sensitive sample preparation strategy using fabric phase sorptive extraction followed by ultra-high-performance liquid chromatography and tandem mass spectrometry detection has been developed to analyse benzotriazole UV stabilizer compounds in aqueous samples. Benzotriazole UV stabilizer compounds are a group of compounds added to sunscreens and other personal care products which may present detrimental effects to aquatic ecosystems. Fabric phase sorptive extraction is a novel solvent minimized sample preparation approach that integrates the advantages of sol-gel derived hybrid inorganic-organic nanocomposite sorbents and the flexible, permeable and hydrophobic surface chemistry of polyester fabric. It is a highly sensitive, fast, efficient and inexpensive device that can be reused and does not suffer from coating damage, unlike SPME fibres or stir bars. In this paper, we optimized the extraction of seven benzotriazole UV filters evaluating the majority of the parameters involved in the extraction process, such as sorbent chemistry selection, extraction time, back-extraction solvent, back-extraction time and the impact of ionic strength. Under the optimized conditions, fabric phase sorptive extraction allows enrichment factors of 10 times with detection limits ranging from 6.01 to 60.7 ng L(-1) and intra- and inter-day % RSDs lower than 11 and 30 % for all compounds, respectively. The optimized sample preparation technique followed by ultra-high-performance liquid chromatography and tandem mass spectrometry detection was applied to determine the target analytes in sewage samples from wastewater treatment plants with different purification processes of Gran Canaria Island (Spain). Two UV stabilizer compounds were measured in ranges 17.0-60.5 ng mL(-1) (UV 328) and 69.3-99.2 ng mL(-1) (UV 360) in the three sewage water samples analysed.
Review on the progress of ultra-precision machining technologies
NASA Astrophysics Data System (ADS)
Yuan, Julong; Lyu, Binghai; Hang, Wei; Deng, Qianfa
2017-06-01
Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the developments of ultra-precision machining technologies, especially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.
High-Resolution 7T MR Imaging of the Motor Cortex in Amyotrophic Lateral Sclerosis.
Cosottini, M; Donatelli, G; Costagli, M; Caldarazzo Ienco, E; Frosini, D; Pesaresi, I; Biagi, L; Siciliano, G; Tosetti, M
2016-03-01
Amyotrophic lateral sclerosis is a progressive motor neuron disorder that involves degeneration of both upper and lower motor neurons. In patients with amyotrophic lateral sclerosis, pathologic studies and ex vivo high-resolution MR imaging at ultra-high field strength revealed the co-localization of iron and activated microglia distributed in the deep layers of the primary motor cortex. The aims of the study were to measure the cortical thickness and evaluate the distribution of iron-related signal changes in the primary motor cortex of patients with amyotrophic lateral sclerosis as possible in vivo biomarkers of upper motor neuron impairment. Twenty-two patients with definite amyotrophic lateral sclerosis and 14 healthy subjects underwent a high-resolution 2D multiecho gradient-recalled sequence targeted on the primary motor cortex by using a 7T scanner. Image analysis consisted of the visual evaluation and quantitative measurement of signal intensity and cortical thickness of the primary motor cortex in patients and controls. Qualitative and quantitative MR imaging parameters were correlated with electrophysiologic and laboratory data and with clinical scores. Ultra-high field MR imaging revealed atrophy and signal hypointensity in the deep layers of the primary motor cortex of patients with amyotrophic lateral sclerosis with a diagnostic accuracy of 71%. Signal hypointensity of the deep layers of the primary motor cortex correlated with upper motor neuron impairment (r = -0.47; P < .001) and with disease progression rate (r = -0.60; P = .009). The combined high spatial resolution and sensitivity to paramagnetic substances of 7T MR imaging demonstrate in vivo signal changes of the cerebral motor cortex that resemble the distribution of activated microglia within the cortex of patients with amyotrophic lateral sclerosis. Cortical thinning and signal hypointensity of the deep layers of the primary motor cortex could constitute a marker of upper motor neuron impairment in patients with amyotrophic lateral sclerosis. © 2016 by American Journal of Neuroradiology.
NASA Astrophysics Data System (ADS)
Zizka, J.; King, S.; Every, A.; Sooryakumar, R.
2018-04-01
To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low-k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low-k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low-k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.
Exploiting Concurrent Wake-Up Transmissions Using Beat Frequencies.
Kumberg, Timo; Schindelhauer, Christian; Reindl, Leonhard
2017-07-26
Wake-up receivers are the natural choice for wireless sensor networks because of their ultra-low power consumption and their ability to provide communications on demand. A downside of ultra-low power wake-up receivers is their low sensitivity caused by the passive demodulation of the carrier signal. In this article, we present a novel communication scheme by exploiting purposefully-interfering out-of-tune signals of two or more wireless sensor nodes, which produce the wake-up signal as the beat frequency of superposed carriers. Additionally, we introduce a communication algorithm and a flooding protocol based on this approach. Our experiments show that our approach increases the received signal strength up to 3 dB, improving communication robustness and reliability. Furthermore, we demonstrate the feasibility of our newly-developed protocols by means of an outdoor experiment and an indoor setup consisting of several nodes. The flooding algorithm achieves almost a 100% wake-up rate in less than 20 ms.
NASA Astrophysics Data System (ADS)
Zizka, J.; King, S.; Every, A.; Sooryakumar, R.
2018-07-01
To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low- k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low- k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low- k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Xiao-Dong; Xu, Yun-Bo, E-mail: yunbo_xu@126.com; Yang, Xiao-Long
Microstructures composed of lath martensite and retained austenite with volume fraction between 8.0 vol.% and 12.0 vol.% were obtained in a low-C low-Si Al-free steel through hot-rolling direct quenching and dynamical partitioning (HDQ&DP) processes. The austenite stabilization mechanism in the low-C low-Si Al-free steel under the special dynamical partitioning processes is investigated by analyzing the carbon partition behavior from martensite to austenite and the carbide precipitation-coarsening behavior in martensite laths combining with the possible hot rolling deformation inheritance. Results show that the satisfying retained austenite amount in currently studied low-Si Al-free HDQ&DP steel is caused by the high-efficiency carbon enrichmentmore » in the 30–80 nm thick regions of austenite near the interfaces in the hot-rolled ultra-fast cooled structure and the avoidance of serious carbides coarsening during the continuous cooling procedures. The excellent strength-elongation product reaching up to 26,000 MPa% shows that the involved HDQ&DP process is a promising method to develop a new generation of advanced high strength steel. - Highlights: • HDQ&DP processes were applied to a low-C low-Si Al-free steel. • Effective partitioning time during the continuous cooling processes is 1–220 s. • Retained austenite with volume fraction between 8.0 vol. % and 12.0 vol. % has been obtained. • The special austenite stabilization mechanism has been expounded.« less
Development of Press Hardening Steel with High Resistance to Hydrogen Embrittlement
NASA Astrophysics Data System (ADS)
Bian, Jian; Mohrbacher, Hardy; Lu, Hongzhou; Wang, Wenjun
Press hardening has become the state-of-art technology in the car body manufacturing to enhance safety standard and to reduce CO2 emission of new vehicles. However the delayed cracking due to hydrogen embrittlement remains to be a critical issue. Generally press hardening steel is susceptible to hydrogen embrittlement due to ultra-high strength and martensitic microstructure. The hydrogen charging tests clearly demonstrate that only a few ppm of diffusible hydrogen is sufficient to cause such embrittlement. Currently the hydrogen embrittlement cannot be detected in the press hardened components and the embitteled components could collapse in the crash situation with fatal consequences arisen through dramatic loss in both strength and ductility. This paper introduces a new metallurgical solution to increase the resistance to hydrogen embrittlement of conventional press hardening steel based on 22MnB5 by Nb microalloying. In the hydrogen embrittlement and permeation tests the impact of Nb microalloying on the hydrogen embrittlement behavior was investigated under different hydrogen charging conditions and constant load. The test results revealed that Nb addition increases the resistance to hydrogen embrittlement due to reduced hydrogen diffusivity. The focus of this paper is to investigate the precipitation behavior of microalloying elements by using TEM and STEM and to find out the mechanisms leading to higher performance against hydrogen embrittlement of Nb alloyed steels.
Design and evaluation of a single-span bridge using ultra-high performance concrete.
DOT National Transportation Integrated Search
2009-09-01
"Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possib...
Design and evaluation of a single-span bridge using ultra-high performance concrete.
DOT National Transportation Integrated Search
2009-09-01
Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possibl...
Durability and smart condition assessment of ultra-high performance concrete in cold climates.
DOT National Transportation Integrated Search
2016-12-31
The goals of this study were to develop ecological ultra-high performance concrete (UHPC) with local materials and supplementary cementitious materials and to evaluate the long-term performance of UHPC in cold climates using effective mechanical test...
DOT National Transportation Integrated Search
2016-03-14
Ultra-high performance concrete (UHPC) is a new class of cementitious materials that have : exceptional mechanical and durability characteristics. UHPC is commercially available. : However, its cost for construction of highway structures is prohibiti...
Structural Analysis of Titan's Tholins by Ultra-High Resolution Mass Spectrometry
NASA Astrophysics Data System (ADS)
Vuitton, V.; Frisari, M.; Thissen, R.; Dutuit, O.; Bonnet, J.-Y.; Quirico, E.; Sciamma O'Brien, E.; Szopa, C.; Carrasco, N.; Somogyi, A.; Smith, M.; Hörst, S. M.; Yelle, R.
2010-04-01
We propose here a systematic ultra-high resolution mass spectrometry and MS/MS study in order to provide a more coherent and complete characterization of the structure of the molecules making up the soluble fraction of the Titan tholins.
Characterization of the punching shear capacity of thin ultra-high performance concrete slabs.
DOT National Transportation Integrated Search
2005-01-01
Ultra-high performance concrete (UHPC) is a relatively new type of concrete that exhibits mechanical properties that are far superior to those of conventional concrete and in some cases rival those of steel. The main characteristics that distinguish ...
Joyce, T J; Unsworth, A
1996-01-01
Wear tests were carried out on reciprocating pin-on-plate machines which had pins loaded at 10 N and 40 N. The materials tested were irradiated cross-linked polyethylene sliding against itself, irradiated ultra-high molecular weight polyethylene sliding against itself and non-irradiated ultra-high molecular weight polyethylene sliding against itself. After 153.5 km of sliding, the non-irradiated ultra-high molecular weight polyethylene plates and pins showed mean wear factors under 10 N loads, or a nominal contact stress of 0.51 MPa, of 84.0 x 10(-6) mm3/N m for the plates and 81.3 x 10(-6) mm3/N m for the pins. Under 40 N loads, or a nominal contact stress of 2.04 MPa, the non-irradiated ultra-high molecular weight polyethylene pins sheared at 22.3 km. At the last measurement point prior to this failure, 19.1 km, wear factors of 158 x 10(-6) mm3/N m for the plates and 85.0 x 10(-6) mm3/N m for the pins had been measured. After 152.8 km. the irradiated ultra-high molecular weight polyethylene plates and pins showed mean wear factors under 10 N loads of 59.8 x 10(-6) mm3/N m for the plates and 31.1 x 10(-6) mm3/N m for the pins. In contrast, after 150.2 km, a mean wear factor of 0.72 x 10(-6) mm3/N m was found for the irradiated cross-linked polyethylene plates compared with 0.053 x 10(-6) mm3/N m for the irradiated cross-linked polyethylene pins.
Reyes-Madrigal, Francisco; Mao, Xiangling; León-Ortiz, Pablo; Rodríguez-Mayoral, Oscar; Solís-Vivanco, Rodolfo; Favila, Rafael; Graff-Guerrero, Ariel; Shungu, Dikoma C.
2016-01-01
Background: Dysregulations of the major inhibitory and excitatory amino neurotransmitter systems of γ-aminobutyric acid and glutamate, respectively, have been described in patients with schizophrenia. However, it is unclear whether these abnormalities are present in subjects at ultra-high risk for psychosis. Methods: Twenty-three antipsychotic naïve subjects at ultra-high risk and 24 healthy control subjects, matched for age, sex, handedness, cigarette smoking, and parental education, underwent proton magnetic resonance spectroscopy scans in the dorsal caudate bilaterally and the medial prefrontal cortex at 3T. Levels of γ-aminobutyric acid and of the combined resonance of glutamate and glutamine (Glx) were obtained using the standard J-editing technique and expressed as peak area ratios relative to the synchronously acquired unsuppressed voxel water signal. Results: Higher levels of γ-aminobutyric acid (P<.001) and Glx (P=.007) were found in the dorsal caudate of the subjects at ultra-high risk than in the healthy controls. In the medial prefrontal cortex, likewise, both γ-aminobutyric acid (P=.03) and Glx (P=.006) levels were higher in the ultra-high risk group than in the healthy controls. No group differences were found for any of the other metabolites (N-acetylaspartate, total choline, or total creatine) in the 2 regions of interest. Conclusions: This study presents the first evidence of abnormal elevations, in subjects at ultra-high risk, of γ-aminobutyric acid and Glx in 2 brain regions that have been implicated in the pathophysiology of psychosis, warranting longitudinal studies to assess whether these neurotransmitter abnormalities can serve as noninvasive biomarkers of conversion risk to psychosis as well as of illness progression and treatment response. PMID:26364273
NASA Astrophysics Data System (ADS)
Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.
2018-02-01
Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.
Simões, Bárbara Dos Santos; Cardoso, Letícia de Oliveira; Benseñor, Isabela Judith Martins; Schmidt, Maria Inês; Duncan, Bruce Bartholow; Luft, Vivian Cristine; Molina, Maria Del Carmen Bisi; Barreto, Sandhi Maria; Levy, Renata Bertazzi; Giatti, Luana
2018-03-05
The objective of the study was to estimate the contribution of ultra-processed foods to total caloric intake and investigate whether it differs according to socioeconomic position. We analyzed baseline data from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil 2008-2010; N = 14.378) and data on dietary intake using a food frequency questionnaire, assigning it into three categories: unprocessed or minimally processed foods and processed culinary ingredients, processed foods, and ultra-processed foods. We measured the associations between socioeconomic position (education, per capita household income, and occupational social class) and the percentage of caloric contribution of ultra-processed foods, using generalized linear regression models adjusted for age and sex. Unprocessed or minimally processed foods and processed culinary ingredients contributed to 65.7% of the total caloric intake, followed by ultra-processed foods (22.7%). After adjustments, the percentage of caloric contribution of ultra-processed foods was 20% lower among participants with incomplete elementary school when compared to postgraduates. Compared to individuals from upper income classes, the caloric contribution of ultra-processed foods was 10%, 15% and 20% lower among the ones from the three lowest income, respectively. The caloric contribution of ultra-processed foods was also 7%, 12%, 12%, and 17% lower among participants in the lowest occupational social class compared to those from high social classes. Results suggest that the caloric contribution of ultra-processed foods is higher among individuals from high socioeconomic positions with a dose-response relationship for the associations.
106 17 Telemetry Standards Chapter 2
2017-07-31
high frequency STC space -time code SOQPSK shaped offset quadrature phase shift keying UHF ultra- high frequency US&P United States...and Possessions VCO voltage-controlled oscillator VHF very- high frequency WCS Wireless Communication Service Telemetry Standards, RCC Standard...get interference. a. Telemetry Bands Air and space -to-ground telemetering is allocated in the ultra- high frequency (UHF) bands 1435 to 1535, 2200
Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.
2004-01-01
The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.
NASA Astrophysics Data System (ADS)
Brosda, Maximilian; Olowinsky, Alexander; Pelzer, Alexander
Flexible organic electronics such as OLPV and OLED modules are highly sensitive against water and oxygen. To protect them against the environment and to ensure a long lifetime visual transparent ultra high barrier films are used for the encapsulation process. These multilayer films usually consist of a polymer substrate on which, depending on the requirements, various functional layers are applied. The organic device is then fully packed in this films. Instead of conventional joining these film with adhesive, a flexible laser based process can be an interesting alternative especially for roll2roll applications. According to a precise spectral analysis and a consideration of the interaction between the laser radiation and the individual layers of the film a suitable laser beam source is selected. With this laser beam source the weldability of the films is investigated. For analysis of the weldseam and the melted volume cross sections and scanning-electron-microscopy-images are prepared. The strength of the weld is determined by T-Peel tensile tests.
Multiple component codes based generalized LDPC codes for high-speed optical transport.
Djordjevic, Ivan B; Wang, Ting
2014-07-14
A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.
Multiscale Modeling of UHTC: Thermal Conductivity
NASA Technical Reports Server (NTRS)
Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
NASA Astrophysics Data System (ADS)
Techarang, Jiranat; Apichartsrangkoon, Arunee; Phanchaisri, Boonrak; Pathomrungsiyoungkul, Pattavara; Sriwattana, Sujinda
2017-07-01
Swai-fish emulsions containing fermented soybeans (thua nao and rice-koji miso) were pressurized at 600 MPa for 20 min or heated at 72°C for 30 min. The fish batters were blended with soy protein isolate (SPI) or whey protein concentrate (WPC) to stabilize the emulsions. The processed fish emulsions were then subjected to physical, chemical and microbiological examinations. The results of gel strength and water-holding potential showed that SPI addition yielded higher impact on these properties than WPC addition, which was also confirmed by the interactions between SPI and native fish proteins depicted by electrophoregrams. The frequency profiles suggested that the heated gels had a greater storage and loss moduli than pressurized gels, while pressurized WPC set-gel displayed larger loss tangent (the predominance of viscous moiety) than those pressurized SPI set-gel. High bacteria and spore counts of B. subtilis (residual of the thua nao) were observed in both pressurized and heated fish-based emulsions.
Wettability of nano-epoxies to UHMWPE fibers.
Neema, S; Salehi-Khojin, A; Zhamu, A; Zhong, W H; Jana, S; Gan, Y X
2006-07-01
Ultra high molecular weight polyethylene (UHMWPE) fibers have a unique combination of outstanding mechanical, physical, and chemical properties. However, as reinforcements for manufacturing high performance composite materials, UHMWPE fibers have poor wettability with most polymers. As a result, the interfacial bonding strength between the fibers and polymer matrices is very low. Recently, developing so-called nano-matrices containing reactive graphitic nanofibers (r-GNFs) has been proposed to promote the wetting of such matrices to certain types of fiber reinforcements. In this work, the wettability of UHMWPE fibers with different epoxy matrices including a nano-epoxy, and a pure epoxy was investigated. Systematic experimental work was conducted to determine the viscosity of the epoxies, the contact angle between the epoxies and the fibers. Also obtained are the surface energy of the fibers and the epoxies. The experimental results show that the wettability of the UHMWPE fibers with the nano-epoxy is much better than that of the UHMWPE fibers with the pure epoxy.
NASA Astrophysics Data System (ADS)
Jones, T. R.; Roberts, W. H. G.; Steig, E. J.; Cuffey, K. M.; Markle, B. R.; White, J. W. C.
2017-12-01
The behavior of the Indo-Pacific climate system across the last deglaciation is widely debated. Resolving these debates requires long term and continuous climate proxy records. Here, we use an ultra-high resolution and continuous water isotope record from an ice core in the Pacific sector of West Antarctica. In conjunction with the HadCM3 coupled ocean-atmosphere GCM, we demonstrate that the climate of both West Antarctica and the Indo-Pacific were substantially altered during the last deglaciation by the same forcing mechanism. Critically, these changes are not dependent on ENSO strength, but rather the location of deep tropical convection, which shifts at 16 ka in response to climate perturbations induced by the Laurentide Ice Sheet. The changed rainfall patterns in the tropics explain the deglacial shift from expanded-grasslands to rainforest-dominated ecosystems in Indonesia. High-frequency climate variability in the Southern Hemisphere is also changed, through a tropical Pacific teleconnection link dependent on the propogration of Rossby Waves.
Pascaud, R S; Evans, W T; McCullagh, P J; FitzPatrick, D P
1997-05-01
Surface damage of the tibial plateau components of knee prostheses made from medical grade ultra-high-molecular-weight polyethylene (UHMW-PE) has been attributed to delamination wear caused by a fatigue fracture mechanism. It has been proposed that factors such as component design and method of sterilization contribute to such failure mechanisms. Understanding the fracture behaviour of UHMW-PE is therefore critical in optimizing the in vivo life-span of total joint components. The elastic-plastic fracture toughness parameter J was consequently determined for a commercial UHMW-PE at ambient and body temperatures, before and after gamma-irradiation sterilization in air at a minimum dose of 29 kGy. Both ductile stability theory and experimental data suggest that cracks propagate in a stable manner, although stability is affected by the sterilization process. Sterilization with gamma-irradiation results in a loss in fracture toughness JIc of 50% and a decrease in tearing modulus (Tm) of 30%. This dramatic reduction could result in a 50% decrease in the residual strength of the components, maximum permissible crack size under service loading and service life (assuming flaws such as fusion defects exist). The time required for a crack to grow from its original size to the maximum permissible size could be decreased by 30%, resulting in earlier failure. In terms of the design of joint replacement components the critical factor to envisage is the design stress level, which should be halved to account for the irradiation process. A scanning electron microscope study reveals that the material fails in layers parallel to the fracture surface.
Static beam-based alignment for the Ring-To-Main-Linac of the Compact Linear Collider
NASA Astrophysics Data System (ADS)
Han, Y.; Latina, A.; Ma, L.; Schulte, D.
2017-06-01
The Compact Linear Collider (CLIC) is a future multi-TeV collider for the post-Large Hadron Collider era. It features high-gradient acceleration and ultra-low emittance to achieve its ambitious goals of high collision energy and peak luminosity. Beam-based alignment (BBA) techniques are mandatory for CLIC to preserve the ultra-low emittances from the damping rings to the interaction point. In this paper, a detailed study of BBA techniques has been carried out for the entire 27 km long ``Ring-To-Main-Linac'' (RTML) section of the CLIC, to correct realistic static errors such as element position offsets, angle, magnetic strength and dynamic magnetic centre shifts. The correction strategy is proved to be very effective and leads to a relaxation of the pre-alignment tolerances for the component installation in the tunnel. This is the first time such a large scale and complex lattice has been corrected to match the design budgets. The techniques proposed could be applied to similarly sized facilities, such as the International Linear Collider, where a similar RTML section is used, or free-electron lasers, which, being equipped with linacs and bunch compressors, present challenges similar to those of the CLIC RTML. Moreover, a new technique is investigated for the emittance tuning procedure: the direct measurement of the interactions between the beams and a set of a few consecutive laser wires. The speed of this technique can be faster comparing to the traditional techniques based on emittance reconstructed from beam size measurements at several positions.
NASA Astrophysics Data System (ADS)
Yuan, Y.; Zhong, Z. H.; Yu, Z. S.; Yin, H. F.; Dang, Y. Y.; Zhao, X. B.; Yang, Z.; Lu, J. T.; Yan, J. B.; Gu, Y.
2015-07-01
A new Ni-Fe-based superalloy, HT-X, has been developed for applications in 700 °C advanced ultra-supercritical (A-USC) boilers. The HT-X alloy is subjected to various heat treatments. Tensile tests are conducted at room temperature (RT), 700 °C and 750 °C. Creep tests are carried out under conditions of 700 °C/300 MPa and 750 °C/150 MPa. After aging treatment, the yield strength of the HT-X alloy at RT and 750 °C is 787 MPa and 624 MPa, respectively. When additional thermal exposure at 750 °C for 5400 h is applied, the yield strength is decreased to 656 MPa at RT and 480 MPa at 700 °C. For an aged specimen, the a/2<110>dislocation shearing process occurs when tensile testing is conducted at RT and 750 °C. As the γ' precipitate size increases in the specimen that is thermally exposed at 750 °C for 5400 h, Orowan bowing is the dominant dislocation process, and stacking faults develop in the γ' precipitates at both RT and 700 °C. Dislocation slip combined with climb is the dominant mechanism under the creep testing conditions. The factors that affect the mechanical properties and deformation mechanisms are discussed.