Sample records for ultra-fast thomson scattering

  1. Research of Fast DAQ system in KSTAR Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Kim, H. J.; Yamada, I.; Funaba, H.; Kim, Y. G.; Kim, D. Y.

    2017-12-01

    The Thomson scattering diagnostic is one of the most important diagnostic systems in fusion plasma research. It provides reliable electron temperature and density profiles in magnetically confined plasma. A Q-switched Nd:YAG Thomson system was installed several years ago in KSTAR tokamak to measure the electron temperature and density profiles. For the KSTAR Thomson scattering system, a Charge-to-Digital Conversion (QDC) type data acquisition system was used to measure a pulse type Thomson signal. Recently, however, an error was found during the Te, ne calculation, because the QDC system had integrated the pulse Thomson signal that included a signal similar to stray light. To overcome such errors, we introduce a fast data acquisition (F-DAQ) system. To test this, we use CAEN V1742 5 GS/s, a Versa Module Eurocard Bus (VMEbus) type 12-bit switched capacitor digitizer with 32 channels. In this experiment, we compare the calculated Te results of Thomson scattering data measured simultaneously using QDC and F-DAQ. In the F-DAQ system, the shape of the pulse was restored by fitting.

  2. Experimental observation of multiphoton Thomson scattering

    NASA Astrophysics Data System (ADS)

    Yan, Wenchao; Golovin, Grigory; Fruhling, Colton; Haden, Daniel; Zhang, Ping; Zhang, Jun; Zhao, Baozhen; Liu, Cheng; Chen, Shouyuan; Banerjee, Sudeep; Umstadter, Donald

    2016-10-01

    With the advent of high-power lasers, several multiphoton processes have been reported involving electrons in strong fields. For electrons that were initially bound to atoms, both multiphoton ionization and scattering have been reported. However, for free electrons, only low-order harmonic generation has been observed until now. This limitation stems from past difficulty in achieving the required ultra-high-field strengths in scattering experiments. Highly relativistic laser intensities are required to reach the multiphoton regime of Thomson scattering, and generate high harmonics from free electrons. The scaling parameter is the normalized vector potential (a0). Previous experiments have observed phenomena in the weakly relativistic case (a0 >> 1). In ultra-intense fields (a0 >>1), the anomalous electron trajectory is predicted to produce a spectrum characterized by the merging of multiple high-order harmonic generation into a continuum. This may be viewed as the multiphoton Thomson scattering regime analogous to the wiggler of a synchrotron. Thus, the light produced reflects the electrons behavior in an ultra-intense lase field. We discuss the first experiments in the highly relativistic case (a0 15). This material is based upon work supported by NSF No. PHY-153700; US DOE, Office of Science, BES, # DE-FG02-05ER15663; AFOSR # FA9550-11-1-0157; and DHS DNDO # HSHQDC-13-C-B0036.

  3. Thomson Scattering Diagnostic Data Acquisition Systems for Modern Fusion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenko, S.V.; Khilchenko, A.D.; Ovchar, V.K.

    2015-07-01

    Uniquely designed complex data acquisition system for Thomson scattering diagnostic was developed. It allows recording short duration (3-5 ns) scattered pulses with 2 GHz sampling rate and 10-bit total resolution in oscilloscope mode. The system consists up to 48 photo detector modules with 0- 200 MHz bandwidth, 1-48 simultaneously sampling ADC modules and synchronization subsystem. The photo detector modules are based on avalanche photodiodes (APD) and ultra-low noise trans-impedance amplifiers. ADC modules include fast analog to digital converters and digital units based on the FPGA (Field- Programmable Gate Array) for data processing and storage. The synchronization subsystem is used tomore » form triggering pulses and to organize the simultaneously mode of ADC modules operation. (authors)« less

  4. RELATIVISTIC THOMSON SCATTERING EXPERIMENT AT BNL - STATUS REPORT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POGORELSKY,I.V.; BEN ZVI,I.; KUSCHE,K.

    2001-12-03

    1.7 x 10{sup 8} x-ray photons per 3.5 ps pulse have been produced in Thomson scattering by focusing CO{sub 2} laser pulse on counter-propagating relativistic electron beam. We explore a possibility of further enhancement of process efficiency by propagating both beams in a plasma capillary. Conventional synchrotron light sources based on using giga-electron-volt electron synchrotron accelerators and magnetic wigglers generate x-ray radiation for versatile application in multi-disciplinary research. An intense laser beam causes relativistic electron oscillations similar to a wiggler. However, because the laser wavelength is thousand times shorter than a wiggler period, very moderate electron energy is needed tomore » produce hard x-rays via Thomson scattering. This allows using relatively compact mega-electron-volt linear accelerators instead of giga-electron-volt synchrotrons. Another important advantage of Thomson sources is a possibility to generate femtosecond x-ray pulses whereas conventional synchrotron sources have typically {approx}300 ps pulse duration. This promises to revolutionize x-ray research in chemistry, physics, and biology expanding it to ultra-fast processes. Thomson sources do not compete in repetition rate and average intensity with conventional light sources that operate at the megahertz frequency. However, Thomson sources have a potential to produce much higher photon numbers per pulse. This may allow developing a single shot exposure important for structural analysis of live biological objects. The BNL Thomson source is a user's experiment conducted at the Accelerator Test Facility since 1998 by an international collaboration in High Energy Physics. Since inception, the ATF source produces the record peak x-ray yield, intensity and brightness among other similar proof-of-principle demonstrations attempted elsewhere. Note that this result is achieved with a moderate laser power of 15 GW. A key to this achievement is in choosing right

  5. Development of KSTAR Thomson scattering system.

    PubMed

    Lee, J H; Oh, S T; Wi, H M

    2010-10-01

    To measure the electron temperature (T(e)) and electron density (n(e)) profiles in the Korean Superconducting Tokamak Advanced Research (KSTAR) device for the KSTAR third campaign (September 2010), we designed and installed a Thomson scattering system. The KSTAR Thomson scattering system is designed as a tangential Thomson scattering system and utilizes the N-, L-, and B-ports. The N-port is designed for the collection optics with a cassette system, the L-port is the laser input port, and the B-port is the location of the beam dump. In this paper, we will describe the final design of the KSTAR Thomson scattering system.

  6. BRIEF COMMUNICATION: Fast-ion redistribution due to sawtooth crash in the TEXTOR tokamak measured by collective Thomson scattering

    NASA Astrophysics Data System (ADS)

    Nielsen, S. K.; Bindslev, H.; Salewski, M.; Bürger, A.; Delabie, E.; Furtula, V.; Kantor, M.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Oosterbeek, J. W.; Stejner, M.; Westerhof, E.; Woskov, P.; TEXTOR Team

    2010-09-01

    Here we present collective Thomson scattering measurements of 1D fast-ion velocity distribution functions in neutral beam heated TEXTOR plasmas with sawtooth oscillations. Up to 50% of the fast ions in the centre are redistributed as a consequence of a sawtooth crash. We resolve various directions to the magnetic field. The fast-ion distribution is found to be anisotropic as expected. For a resolved angle of 39° to the magnetic field we find a drop in the fast-ion distribution of 20-40%. For a resolved angle of 83° to the magnetic field the drop is no larger than 20%.

  7. Experimental characterization of an ultra-fast Thomson scattering x-ray source with three-dimensional time and frequency-domain analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuba, J; Slaughter, D R; Fittinghoff, D N

    We present a detailed comparison of the measured characteristics of Thomson backscattered x-rays produced at the PLEIADES (Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures) facility at Lawrence Livermore National Laboratory to predicted results from a newly developed, fully three-dimensional time and frequency-domain code. Based on the relativistic differential cross section, this code has the capability to calculate time and space dependent spectra of the x-ray photons produced from linear Thomson scattering for both bandwidth-limited and chirped incident laser pulses. Spectral broadening of the scattered x-ray pulse resulting from the incident laser bandwidth, perpendicular wave vector components in themore » laser focus, and the transverse and longitudinal phase space of the electron beam are included. Electron beam energy, energy spread, and transverse phase space measurements of the electron beam at the interaction point are presented, and the corresponding predicted x-ray characteristics are determined. In addition, time-integrated measurements of the x-rays produced from the interaction are presented, and shown to agree well with the simulations.« less

  8. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  9. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.

    PubMed

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  10. Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited).

    PubMed

    Mirnov, V V; Brower, D L; Den Hartog, D J; Ding, W X; Duff, J; Parke, E

    2014-11-01

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = Te/mec(2) model may be insufficient; we present a more precise model with τ(2)-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of Te measurement relevant to ITER operational scenarios.

  11. Collective Thomson scattering measurements of fast-ion transport due to sawtooth crashes in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Galdon-Quiroga, J.; Garcia-Munoz, M.; Geiger, B.; Jacobsen, A. S.; Jaulmes, F.; Korsholm, S. B.; Lazanyi, N.; Leipold, F.; Ryter, F.; Salewski, M.; Schubert, M.; Stober, J.; Wagner, D.; the ASDEX Upgrade Team; the EUROFusion MST1 Team

    2016-11-01

    Sawtooth instabilities can modify heating and current-drive profiles and potentially increase fast-ion losses. Understanding how sawteeth redistribute fast ions as a function of sawtooth parameters and of fast-ion energy and pitch is hence a subject of particular interest for future fusion devices. Here we present the first collective Thomson scattering (CTS) measurements of sawtooth-induced redistribution of fast ions at ASDEX Upgrade. These also represent the first localized fast-ion measurements on the high-field side of this device. The results indicate fast-ion losses in the phase-space measurement volume of about 50% across sawtooth crashes, in good agreement with values predicted with the Kadomtsev sawtooth model implemented in TRANSP and with the sawtooth model in the EBdyna_go code. In contrast to the case of sawteeth, we observe no fast-ion redistribution in the presence of fishbone modes. We highlight how CTS measurements can discriminate between different sawtooth models, in particular when aided by multi-diagnostic velocity-space tomography, and briefly discuss our results in light of existing measurements from other fast-ion diagnostics.

  12. Theory of Thomson scattering in inhomogeneous plasmas

    NASA Astrophysics Data System (ADS)

    Belyi, V. V.

    2018-05-01

    A self-consistent kinetic theory of Thomson scattering of an electromagnetic field by a nonuniform plasma is derived. We show that not only the imaginary part, but also the time and space derivatives of the real part of the dielectric susceptibility determine the amplitude and the width of the Thomson scattering spectral lines. As a result of inhomogeneity, these properties become asymmetric with respect to inversion of the sign of the frequency. Our theory provides a method of a remote probing and measurement of electron density gradients in plasma; this is based on the demonstrated asymmetry of the Thomson scattering lines.

  13. Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirnov, V. V.; Hartog, D. J. Den; Duff, J.

    2014-11-15

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused bymore » equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sub e} measurement relevant to ITER operational scenarios.« less

  14. Control and automation of the Pegasus multi-point Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodner, G. M., E-mail: gbodner@wisc.edu; Bongard, M. W.; Fonck, R. J.

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. Additionally, the system has been upgraded with a set of fast (∼1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  15. Control and automation of the Pegasus multi-point Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodner, Grant M.; Bongard, Michael W.; Fonck, Raymond J.

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. In addition, the system has been upgraded with a set of fast (~1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  16. Control and automation of the Pegasus multi-point Thomson scattering system

    DOE PAGES

    Bodner, Grant M.; Bongard, Michael W.; Fonck, Raymond J.; ...

    2016-08-12

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. In addition, the system has been upgraded with a set of fast (~1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  17. Calibrations of the LHD Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, I., E-mail: yamadai@nifs.ac.jp; Funaba, H.; Yasuhara, R.

    2016-11-15

    The Thomson scattering diagnostic systems are widely used for the measurements of absolute local electron temperatures and densities of fusion plasmas. In order to obtain accurate and reliable temperature and density data, careful calibrations of the system are required. We have tried several calibration methods since the second LHD experiment campaign in 1998. We summarize the current status of the calibration methods for the electron temperature and density measurements by the LHD Thomson scattering diagnostic system. Future plans are briefly discussed.

  18. Calibrations of the LHD Thomson scattering system.

    PubMed

    Yamada, I; Funaba, H; Yasuhara, R; Hayashi, H; Kenmochi, N; Minami, T; Yoshikawa, M; Ohta, K; Lee, J H; Lee, S H

    2016-11-01

    The Thomson scattering diagnostic systems are widely used for the measurements of absolute local electron temperatures and densities of fusion plasmas. In order to obtain accurate and reliable temperature and density data, careful calibrations of the system are required. We have tried several calibration methods since the second LHD experiment campaign in 1998. We summarize the current status of the calibration methods for the electron temperature and density measurements by the LHD Thomson scattering diagnostic system. Future plans are briefly discussed.

  19. Signal evaluations using singular value decomposition for Thomson scattering diagnostics.

    PubMed

    Tojo, H; Yamada, I; Yasuhara, R; Yatsuka, E; Funaba, H; Hatae, T; Hayashi, H; Itami, K

    2014-11-01

    This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (Te) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.

  20. Signal evaluations using singular value decomposition for Thomson scattering diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tojo, H., E-mail: tojo.hiroshi@jaea.go.jp; Yatsuka, E.; Hatae, T.

    2014-11-15

    This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (T{sub e}) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.

  1. Thomson scattering from a three-component plasma.

    PubMed

    Johnson, W R; Nilsen, J

    2014-02-01

    A model for a three-component plasma consisting of two distinct ionic species and electrons is developed and applied to study x-ray Thomson scattering. Ions of a specific type are assumed to be identical and are treated in the average-atom approximation. Given the plasma temperature and density, the model predicts mass densities, effective ionic charges, and cell volumes for each ionic type, together with the plasma chemical potential and free-electron density. Additionally, the average-atom treatment of individual ions provides a quantum-mechanical description of bound and continuum electrons. The model is used to obtain parameters needed to determine the dynamic structure factors for x-ray Thomson scattering from a three-component plasma. The contribution from inelastic scattering by free electrons is evaluated in the random-phase approximation. The contribution from inelastic scattering by bound electrons is evaluated using the bound-state and scattering wave functions obtained from the average-atom calculations. Finally, the partial static structure factors for elastic scattering by ions are evaluated using a two-component version of the Ornstein-Zernike equations with hypernetted chain closure, in which electron-ion interactions are accounted for using screened ion-ion interaction potentials. The model is used to predict the x-ray Thomson scattering spectrum from a CH plasma and the resulting spectrum is compared with experimental results obtained by Feltcher et al. [Phys. Plasmas 20, 056316 (2013)].

  2. Calibration of Thomson scattering system on VEST

    NASA Astrophysics Data System (ADS)

    Kim, Y.-G.; Lee, J.-H.; Kim, D.; Yoo, M.-G.; Lee, H.; Hwang, Y. S.; Na, Y.-S.

    2017-12-01

    The Thomson scattering system has been recently installed on Versatile Experiment Spherical Torus (VEST) to measure the electron temperature and the density of the core plasmas. Since the calibration of the system is required for the accurate measurement of these parameters, a polychromator and the system efficiency are calibrated. The bias voltage of the detector is optimized and the relative responsivity of the polychromator is measured to analyse the spectral broadening. The tendency of decreasing responsivity because of the ambient temperature change is addressed together. The efficiencies of the alignments using HeNe laser and Nd:YAG laser are compared. After the alignment using Rayleigh scattering, it is improved ~ 7 times while the peak signal of the stray light is decreased. To evaluate the efficiencies of the alignment using HeNe laser, it is compared with the efficiency of the fine alignment by Rayleigh scattering. After absolute calibration is done, the Thomson scattering signal is estimated theoretically. The Bayesian analysis is tried using the synthetic data, and the results show that the input temperature and the density are inside the contour of the 90% confident level. The calibrated Thomson scattering system will provide the meaningful information of the core plasma of the VEST.

  3. Studying Filamentary Currents with Thomson Scattering on MST

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Young, W. C.; Kubala, S. Z.

    2016-10-01

    The MST reversed-field pinch plasma generates bursts of toroidally localized magnetic activity associated with m = 0 modes resonant at the reversal surface near the plasma edge. Previously, using data from an array of edge magnetic probes, these bursts were connected to poloidal current filaments. Now the MST Thomson scattering diagnostic is being used to measure the net drift in the electron distribution due to these currents. An additional long-wavelength spectral bin has been added to several Thomson scattering polychromators, in addition to 5-7 pre-existing short wavelength spectral bins, to improve discrimination between shifted vs. broadened spectra. The bursts are examined in plasma conditions that display spontaneous periods of low tearing-mode activity, with higher confinement and higher temperatures that improve Thomson scattering measurement performance. This work is supported by the U.S. Department of Energy and the National Science Foundation.

  4. Plasma Jet Interaction with Thomson Scattering Probe Laser

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Banasek, Jacob; Potter, William; Kusse, Bruce

    2016-10-01

    Thomson scattering systems can diagnose plasma temperatures and velocities. When probing a plasma jet with the Thomson scattering laser, we observe a laser-plasma interaction that inputs energy into the plasma jet. The absorbed energy causes a bubble of low density ( 5*1017 cm-2) in the jet (unperturbed 1018 cm-2). A pulsed power machine (1 MA peak current, 100 ns rise time) with a radial foil (15 μm thick Al) configuration generates the plasma jet. We compare the effects of using 10 J and 1 J laser energies, for which the 10 J laser is a larger perturbation. We discuss how the interaction affects the Thomson scattering temperature and velocity measurements. Work supported by National Nuclear Security Administration (NNSA) Stewardship Sciences Academic Programs under Department of Energy (DOE) Cooperative Agreement DE-NA0001836 and National Science Foundation (NSF) Grant PHY-1102471.

  5. Thomson scattering in high-intensity chirped laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holkundkar, Amol R., E-mail: amol.holkundkar@pilani.bits-pilani.ac.in; Harvey, Chris, E-mail: christopher.harvey@chalmers.se; Marklund, Mattias, E-mail: mattias.marklund@chalmers.se

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion ofmore » its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.« less

  6. Advanced Thomson scattering system for high-flux linear plasma generator.

    PubMed

    van der Meiden, H J; Lof, A R; van den Berg, M A; Brons, S; Donné, A J H; van Eck, H J N; Koelman, P M J; Koppers, W R; Kruijt, O G; Naumenko, N N; Oyevaar, T; Prins, P R; Rapp, J; Scholten, J; Schram, D C; Smeets, P H M; van der Star, G; Tugarinov, S N; Zeijlmans van Emmichoven, P A

    2012-12-01

    An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f/3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n(e)) and temperature (T(e)) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels of about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in n(e) and 6% in T(e) (at n(e) = 9.4 × 10(18) m(-3)) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n(e) > 2.8 × 10(20) m(-3). The minimum measurable density and temperature are n(e) < 1 × 10(17) m(-3) and T(e) < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n(0)) of the plasma can be measured with an accuracy of 25% (at n(0) = 1 × 10(20) m(-3)). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background.

  7. Electron-exchange and quantum screening effects on the Thomson scattering process in quantum Fermi plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gyeong Won; Jung, Young-Dae; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590

    2013-06-15

    The influence of the electron-exchange and quantum screening on the Thomson scattering process is investigated in degenerate quantum Fermi plasmas. The Thomson scattering cross section in quantum plasmas is obtained by the plasma dielectric function and fluctuation-dissipation theorem as a function of the electron-exchange parameter, Fermi energy, plasmon energy, and wave number. It is shown that the electron-exchange effect enhances the Thomson scattering cross section in quantum plasmas. It is also shown that the differential Thomson scattering cross section has a minimum at the scattering angle Θ=π/2. It is also found that the Thomson scattering cross section increases with anmore » increase of the Fermi energy. In addition, the Thomson scattering cross section is found to be decreased with increasing plasmon energy.« less

  8. First results from the Thomson scattering diagnostic on Proto-MPEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biewer, Theodore M; Meitner, Steven J; Rapp, Juergen

    2016-01-01

    A Thomson scattering diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. Thomson scattering is a technique used on many devices to measure the electron temperature (Te) and electron density (ne) of the plasma. A challenging aspect of the technique is to discriminate themore » small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from Argon plasmas in Proto-MPEX, indicating Te ~ 2 eV and ne ~ 1x1019 m-3. The configuration of the Proto-MPEX Thomson scattering diagnostic will be described and plans for improvement will be given.« less

  9. Advanced Thomson scattering system for high-flux linear plasma generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meiden, H. J. van der; Lof, A. R.; Berg, M. A. van den

    2012-12-15

    An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n{sub e}) and temperature (T{sub e}) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels ofmore » about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in n{sub e} and 6% in T{sub e} (at n{sub e}= 9.4 Multiplication-Sign 10{sup 18} m{sup -3}) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n{sub e} > 2.8 Multiplication-Sign 10{sup 20} m{sup -3}. The minimum measurable density and temperature are n{sub e} < 1 Multiplication-Sign 10{sup 17} m{sup -3} and T{sub e} < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n{sub 0}) of the plasma can be measured with an accuracy of 25% (at n{sub 0}= 1 Multiplication-Sign 10{sup 20} m{sup -3}). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background.« less

  10. Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light.

    PubMed

    Taira, Yoshitaka; Hayakawa, Takehito; Katoh, Masahiro

    2017-07-10

    Inverse Thomson scattering is a well-known radiation process that produces high-energy photons both in nature and in the laboratory. Nonlinear inverse Thomson scattering occurring inside an intense light field is a process which generates higher harmonic photons. In this paper, we theoretically show that the higher harmonic gamma-ray produced by nonlinear inverse Thomson scattering of circularly polarized light is a gamma-ray vortex, which means that it possesses a helical wave front and carries orbital angular momentum. Our work explains a recent experimental result regarding nonlinear inverse Thomson scattering that clearly shows an annular intensity distribution as a remarkable feature of a vortex beam. Our work implies that gamma-ray vortices should be produced in various situations in astrophysics in which high-energy electrons and intense circularly polarized light fields coexist. Nonlinear inverse Thomson scattering is a promising radiation process for realizing a gamma-ray vortex source based on currently available laser and accelerator technologies, which would be an indispensable tool for exploring gamma-ray vortex science.

  11. Fully relativistic form factor for Thomson scattering.

    PubMed

    Palastro, J P; Ross, J S; Pollock, B; Divol, L; Froula, D H; Glenzer, S H

    2010-03-01

    We derive a fully relativistic form factor for Thomson scattering in unmagnetized plasmas valid to all orders in the normalized electron velocity, beta[over ]=v[over ]/c. The form factor is compared to a previously derived expression where the lowest order electron velocity, beta[over], corrections are included [J. Sheffield, (Academic Press, New York, 1975)]. The beta[over ] expansion approach is sufficient for electrostatic waves with small phase velocities such as ion-acoustic waves, but for electron-plasma waves the phase velocities can be near luminal. At high phase velocities, the electron motion acquires relativistic corrections including effective electron mass, relative motion of the electrons and electromagnetic wave, and polarization rotation. These relativistic corrections alter the scattered emission of thermal plasma waves, which manifest as changes in both the peak power and width of the observed Thomson-scattered spectra.

  12. Thomson scattering in inhomogeneous plasmas: The Role of the Fluctuation-Dissipation Theorem.

    PubMed

    Belyi, V V

    2018-05-21

    A self-consistent kinetic theory of Thomson scattering of an electromagnetic field by a non-uniform plasma is derived. We draw the readers' attention to the inconsistency in recent results on the Thomson scattering in inhomogeneous plasma, which leads to violation of the Fluctuation-Dissipation Theorem. We show, that not only the imaginary part, but also the derivatives of the real part of the dielectric susceptibility determine the amplitude and the width of the Thomson scattering spectral lines. As a result of inhomogeneity, these properties become asymmetric with respect to inversion of the sign of the frequency. A method is proposed for measuring local gradients of the electron density with the aid of Thomson scattering.Arising from: P. Kozlowski, et al. Sci. Rep. 6, 24283 (2016); https://doi.org/10.1038/srep24283 .

  13. A compact multichannel spectrometer for Thomson scattering.

    PubMed

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) < 100 eV are achieved by a 2971 l∕mm VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  14. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited).

    PubMed

    Follett, R K; Delettrez, J A; Edgell, D H; Henchen, R J; Katz, J; Myatt, J F; Froula, D H

    2016-11-01

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10 21 cm -3 , which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  15. Polarimetric Thomson scattering for high Te fusion plasmas

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.

    2017-11-01

    Polarimetric Thomson scattering (TS) is a technique for the analysis of TS spectra in which the electron temperature Te is determined from the depolarization of the scattered radiation, a relativistic effect noticeable only in very hot (Te >= 10 keV) fusion plasmas. It has been proposed as a complementary technique to supplement the conventional spectral analysis in the ITER CPTS (Core Plasma Thomson Scattering) system for measurements in high Te, low ne plasma conditions. In this paper we review the characteristics of the depolarized TS radiation with special emphasis to the conditions of the ITER CPTS system and we describe a possible implementation of this diagnostic method suitable to significantly improve the performances of the conventional TS spectral analysis in the high Te range.

  16. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra tomore » show the improvements in plasma characterization.« less

  17. Pulse-burst laser systems for fast Thomson scattering (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den Hartog, D. J.; Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706; Ambuel, J. R.

    2010-10-15

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinchmore » to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.« less

  18. New Thomson scattering diagnostic on RFX-mod.

    PubMed

    Alfier, A; Pasqualotto, R

    2007-01-01

    This article describes the completely renovated Thomson scattering (TS) diagnostic employed in the modified Reversed Field eXperiment (RFX-mod) since it restarted operation in 2005. The system measures plasma electron temperature and density profiles along an equatorial diameter, measuring in 84 positions with 7 mm spatial resolution. The custom built Nd:YLF laser produces a burst of 10 pulses at 50 Hz with energy of 3 J, providing ten profile measurements in a plasma discharge of about 300 ms duration. An optical delay system accommodates three scattering volumes in each of the 28 interference filter spectrometers. Avalanche photodiodes detect the Thomson scattering signals and allow them to be recorded by means of waveform digitizers. Electron temperature is obtained using an alternative relative calibration method, based on the use of a supercontinuum light source. Rotational Raman scattering in nitrogen has supplied the absolute calibration for the electron density measurements. During RFX-mod experimental campaigns in 2005, the TS diagnostic has demonstrated its performance, routinely providing reliable high resolution profiles.

  19. Thomson scattering density calibration by Rayleigh and rotational Raman scattering on NSTX.

    PubMed

    LeBlanc, B P

    2008-10-01

    The multipoint Thomson scattering diagnostic measures the profiles of the electron temperature T(e)(R) and density n(e)(R) on the horizontal midplane of NSTX. Normal operation makes use of Rayleigh scattering in nitrogen or argon to derive the density profile. While the Rayleigh scattering n(e)(R) calibration has been validated by comparison to other density measurements and through its correlation with plasma phenomena, it does require dedicated detectors at the laser wavelength in this filter polychromator based diagnostic. The presence of dust and/or stray laser light precludes routine use of these dedicated spectral channels for Thomson scattering measurement. Hence it is of interest to investigate the use of Raman scattering in nitrogen for the purpose of density calibration since it could free up detection equipment, which could then be used for the instrumentation of additional radial channels. In this paper the viewing optics "geometrical factor" profiles obtained from Rayleigh and Raman scattering are compared. While both techniques agree nominally, residual effects on the order of 10% remain and will be discussed.

  20. Upgraded divertor Thomson scattering system on DIII-D

    NASA Astrophysics Data System (ADS)

    Glass, F.; Carlstrom, T. N.; Du, D.; McLean, A. G.; Taussig, D. A.; Boivin, R. L.

    2016-11-01

    A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (Te in the range of 0.5 eV-2 keV, ne in the range of 5 × 1018-1 × 1021 m3) for both low Te in detachment and high Te measurement up beyond the separatrix.

  1. Upgraded divertor Thomson scattering system on DIII-D.

    PubMed

    Glass, F; Carlstrom, T N; Du, D; McLean, A G; Taussig, D A; Boivin, R L

    2016-11-01

    A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard - beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror - and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (T e in the range of 0.5 eV-2 keV, n e in the range of 5 × 10 18 -1 × 10 21 m 3 ) for both low T e in detachment and high T e measurement up beyond the separatrix.

  2. Scattering volume in the collective Thomson scattering measurement using high power gyrotron in the LHD

    NASA Astrophysics Data System (ADS)

    Kubo, S.; Nishiura, M.; Tanaka, K.; Moseev, D.; Ogasawara, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Tsujimura, T. I.; Makino, R.

    2016-06-01

    High-power gyrotrons prepared for the electron cyclotron heating at 77 GHz has been used for a collective Thomson scattering (CTS) study in LHD. Due to the difficulty in removing fundamental and/or second harmonic resonance in the viewing line of sight, the subtraction of the background ECE from measured signal was performed by modulating the probe beam power from a gyrotron. The separation of the scattering component from the background has been performed successfully taking into account the response time difference between both high-energy and bulk components. The other separation was attempted by fast scanning the viewing beam across the probing beam. It is found that the intensity of the scattered spectrum corresponding to the bulk and high energy components were almost proportional to the calculated scattering volume in the relatively low density region, while appreciable background scattered component remains even in the off volume in some high density cases. The ray-trace code TRAVIS is used to estimate the change in the scattering volume due to probing and receiving beam deflection effect.

  3. Upgraded divertor Thomson scattering system on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, F., E-mail: glassf@fusion.gat.com; Carlstrom, T. N.; Du, D.

    2016-11-15

    A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, beforemore » being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (T{sub e} in the range of 0.5 eV–2 keV, n{sub e} in the range of 5 × 10{sup 18}–1 × 10{sup 21} m{sup 3}) for both low T{sub e} in detachment and high T{sub e} measurement up beyond the separatrix.« less

  4. Modeling experimental plasma diagnostics in the FLASH code: Thomson scattering

    NASA Astrophysics Data System (ADS)

    Weide, Klaus; Flocke, Norbert; Feister, Scott; Tzeferacos, Petros; Lamb, Donald

    2017-10-01

    Spectral analysis of the Thomson scattering of laser light sent into a plasma provides an experimental method to quantify plasma properties in laser-driven plasma experiments. We have implemented such a synthetic Thomson scattering diagnostic unit in the FLASH code, to emulate the probe-laser propagation, scattering and spectral detection. User-defined laser rays propagate into the FLASH simulation region and experience scattering (change in direction and frequency) based on plasma parameters. After scattering, the rays propagate out of the interaction region and are spectrally characterized. The diagnostic unit can be used either during a physics simulation or in post-processing of simulation results. FLASH is publicly available at flash.uchicago.edu. U.S. DOE NNSA, U.S. DOE NNSA ASC, U.S. DOE Office of Science and NSF.

  5. Analysis method for Thomson scattering diagnostics in GAMMA 10/PDX.

    PubMed

    Ohta, K; Yoshikawa, M; Yasuhara, R; Chikatsu, M; Shima, Y; Kohagura, J; Sakamoto, M; Nakasima, Y; Imai, T; Ichimura, M; Yamada, I; Funaba, H; Minami, T

    2016-11-01

    We have developed an analysis method to improve the accuracies of electron temperature measurement by employing a fitting technique for the raw Thomson scattering (TS) signals. Least square fitting of the raw TS signals enabled reduction of the error in the electron temperature measurement. We applied the analysis method to a multi-pass (MP) TS system. Because the interval between the MPTS signals is very short, it is difficult to separately analyze each Thomson scattering signal intensity by using the raw signals. We used the fitting method to obtain the original TS scattering signals from the measured raw MPTS signals to obtain the electron temperatures in each pass.

  6. Synoptic maps constructed from brightness observations of Thomson scattering by heliospheric electrons

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B.; Schwenn, R.

    1991-01-01

    Observations of the Thomson scattering brightness by electrons in the inner heliosphere provide a means of probing the heliospheric electron distributions. An extensive data base of Thomson scattering observations, stretching over many years, is available from the zodiacal light photometers on board the two Helios spacecraft. A survey of these data is in progress, presenting these scattering intensities in the form of synoptic maps for successive Carrington rotations. The Thomson scattering maps reflect conditions at typically several tenths of an astronomical unit from the sun. Some representative examples from the survey in comparison with other solar/heliospheric data, such as in situ observations of the Helios plasma experiment and synoptic maps constructed from magnetic field, H alpha and K-coronameter data are presented. The comparison will provide some information about the extension of solar surface features into the inner heliosphere.

  7. Heat-Flux Measurements in Laser-Produced Plasmas Using Thomson Scattering from Electron Plasma Waves

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Goncharov, V. N.; Cao, D.; Katz, J.; Froula, D. H.; Rozmus, W.

    2017-10-01

    An experiment was designed to measure heat flux in coronal plasmas using collective Thomson scattering. Adjustments to the electron distribution function resulting from heat flux affect the shape of the collective Thomson scattering features through wave-particle resonance. The amplitude of the Spitzer-Härm electron distribution function correction term (f1) was varied to match the data and determines the value of the heat flux. Independent measurements of temperature and density obtained from Thomson scattering were used to infer the classical heat flux (q = - κ∇Te) . Time-resolved Thomson-scattering data were obtained at five locations in the corona along the target normal in a blowoff plasma formed from a planar Al target with 1.5 kJ of 351-nm laser light in a 2-ns square pulse. The flux measured through the Thomson-scattering spectra is a factor of 5 less than the κ∇Te measurements. The lack of collisions of heat-carrying electrons suggests a nonlocal model is needed to accurately describe the heat flux. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility

    DOE PAGES

    Ross, J. S.; Datte, P.; Divol, L.; ...

    2016-07-28

    An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. Here, we report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ 0 = 210 nm) will be used to Thomson scatter from electron plasma densities of ~5 × 10 20more » cm -3 while a 3ω probe will be used for plasma densities of ~1 × 10 19 cm -3. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).« less

  9. Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility.

    PubMed

    Ross, J S; Datte, P; Divol, L; Galbraith, J; Froula, D H; Glenzer, S H; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manuel, A M; Molander, W; Montgomery, D S; Moody, J D; Swadling, G; Weaver, J

    2016-11-01

    An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ 0 = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10 20 cm -3 while a 3ω probe will be used for plasma densities of ∼1 × 10 19 cm -3 . The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).

  10. Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, J. S., E-mail: ross36@llnl.gov; Datte, P.; Divol, L.

    2016-11-15

    An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ{sub 0} = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10{sup 20} cm{supmore » −3} while a 3ω probe will be used for plasma densities of ∼1 × 10{sup 19} cm{sup −3}. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).« less

  11. T-REX: Thomson-Radiated Extreme X-rays Moving X-Ray Science into the ''Nuclear'' Applications Space with Thompson Scattered Photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, C P; Hartemann, F V

    2004-09-21

    The scattering of laser photons from relativistic electrons (Thomson scattering) has been demonstrated to be a viable method for the production of ultrashort-duration pulses of tunable radiation in the 10-keV to 100-keV range. Photons in this range are capable of exciting or ionizing even the most tightly bound of atomic electrons. A wide variety of atomistic scale applications are possible. For example, Thomson x-ray sources have been constructed at LLNL (PLEIADES) and LBL as picosecond, stroboscopic probes of atomic-scale dynamics and at Vanderbilt University as element-specific tools for medical radiography and radiology. While these sources have demonstrated an attractive abilitymore » to simultaneously probe on an atomic spatial and temporal scale, they do not necessarily exploit the full potential of the Thomson scattering process to produce high-brightness, high-energy photons. In this white paper, we suggest that the peak brightness of Thomson sources can scale as fast as the 4th power of electron beam energy and that production via Thomson scattering of quasi-monochromatic, tunable radiation in the ''nuclear-range'' between 100-keV and several MeV is potentially a much more attractive application space for this process. Traditional sources in this regime are inherently ultra-broadband and decline rapidly in brightness as a function of photon energy. The output from dedicated, national-laboratory-scale, synchrotron facilities, e.g. APS, SPring8, ESRF etc., declines by more than 10 orders from 100 keV to 1 MeV. At 1 MeV, we conservatively estimate that Thomson-source, peak brightness can exceed that of APS (the best machine in the DOE complex) by more than 15 orders of magnitude. In much the same way that tunable lasers revolutionized atomic spectroscopy, this ''Peta-step'' advance in tunable, narrow-bandwidth, capability should enable entirely new fields of study and new, programmatically-interesting, applications such as: micrometer

  12. Ion charge state distribution effects on elastic X-ray Thomson scattering

    NASA Astrophysics Data System (ADS)

    Iglesias, Carlos A.

    2018-03-01

    Analytic models commonly applied in elastic X-ray Thomson scattering cross-section calculations are used to generate results from a discrete ion charge distribution and an average charge description. Comparisons show that interchanging the order of the averaging procedure can appreciably alter the cross-section, especially for plasmas with partially filled K-shell bound electrons. In addition, two common approximations to describe the free electron density around an ion are shown to yield significantly different elastic X-ray Thomson scattering cross-sections.

  13. Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering.

    PubMed

    Follett, R K; Edgell, D H; Henchen, R J; Hu, S X; Katz, J; Michel, D T; Myatt, J F; Shaw, J; Froula, D H

    2015-03-01

    A 263-nm Thomson-scattering beam was used to directly probe two-plasmon-decay (TPD) excited electron plasma waves (EPWs) driven by between two and five 351-nm beams on the OMEGA Laser System. The amplitude of these waves was nearly independent of the number of drive beams at constant overlapped intensity, showing that the observed EPWs are common to the multiple beams. In an experimental configuration where the Thomson-scattering diagnostic was not wave matched to the common TPD EPWs, a broad spectrum of TPD-driven EPWs was observed, indicative of nonlinear effects associated with TPD saturation. Electron plasma waves corresponding to Langmuir decay of TPD EPWs were observed in both Thomson-scattering spectra, suggesting the Langmuir decay instability as a TPD saturation mechanism. Simulated Thomson-scattering spectra from three-dimensional numerical solutions of the extended Zakharov equations of TPD are in excellent agreement with the experimental spectra and verify the presence of the Langmuir decay instability.

  14. Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, R. K.; Edgell, D. H.; Henchen, R. J.

    2015-03-26

    A 263-nm Thomson-scattering beam was used to directly probe two-plasmon-decay (TPD) excited electron plasma waves (EPWs) driven by between two and five 351-nm beams on the OMEGA Laser System. The amplitude of these waves was nearly independent of the number of drive beams at constant overlapped intensity, showing that the observed EPWs are common to the multiple beams. In an experimental configuration where the Thomson-scattering diagnostic was not wave matched to the common TPD EPWs, a broad spectrum of TPD-driven EPWs was observed, indicative of nonlinear effects associated with TPD saturation. Electron plasma waves corresponding to Langmuir decay of TPDmore » EPWs were observed in both Thomson-scattering spectra, suggesting the Langmuir decay instability as a TPD saturation mechanism. Simulated Thomson-scattering spectra from three-dimensional numerical solutions of the extended Zakharov equations of TPD are in excellent agreement with the experimental spectra and verify the presence of the Langmuir decay instability.« less

  15. Thomson scattering in the average-atom approximation.

    PubMed

    Johnson, W R; Nilsen, J; Cheng, K T

    2012-09-01

    The average-atom model is applied to study Thomson scattering of x-rays from warm dense matter with emphasis on scattering by bound electrons. Parameters needed to evaluate the dynamic structure function (chemical potential, average ionic charge, free electron density, bound and continuum wave functions, and occupation numbers) are obtained from the average-atom model. The resulting analysis provides a relatively simple diagnostic for use in connection with x-ray scattering measurements. Applications are given to dense hydrogen, beryllium, aluminum, and titanium plasmas. In the case of titanium, bound states are predicted to modify the spectrum significantly.

  16. Calculation of Thomson scattering spectral fits for interpenetrating flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F., E-mail: george.swadling@imperial.ac.uk; Lebedev, S. V., E-mail: george.swadling@imperial.ac.uk; Burdiak, G. C.

    2014-12-15

    Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accruedmore » around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.« less

  17. Heat-Flux Measurements from Collective Thomson-Scattering Spectra

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2015-11-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude is used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer -Härm flux qSH = - κ∇Te and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  18. Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faussurier, Gérald, E-mail: gerald.faussurier@cea.fr; Blancard, Christophe

    2016-01-15

    Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.

  19. A pulse-burst laser system for Thomson scattering on NSTX-U

    NASA Astrophysics Data System (ADS)

    Den Hartog, D. J.; Borchardt, M. T.; Holly, D. J.; Diallo, A.; LeBlanc, B.

    2017-10-01

    A pulse-burst laser system has been built for Thomson scattering on NSTX-U, and is currently being integrated into the NSTX-U Thomson scattering diagnostic system. The laser will be operated in three distinct modes. The base mode is continuous 30 Hz rep rate, and is the standard operating mode of the laser. The base mode will be interrupted to produce a "slow burst" (specified 1 kHz rep rate for 50 ms) or a "fast burst" (specified 10 kHz rep rate for 5 ms). The combination of base mode→ interruption→ burst mode is new and has not been implemented on any previous pulse-burst laser system. Laser pulsing is halted for a set period (~ 1 minute) following a burst to allow the YAG rods to cool; this type of operation is called a heat-capacity laser. The laser is Nd:YAG operated at 1064 nm, q-switched to produce >= 1.5 J pulses with ~ 20 ns FWHM. It is flashlamp pumped, with dual-rod oscillator (9 mm) and dual-rod amplifier (12 mm). Variable pulsewidth drive of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction. The laser system has demonstrated compliance with all specifications, and is capable of exceeding design specifications by significant margins, e.g., higher rep rates for longer burst periods. Burst operation of this laser system will be used to capture fast time evolution of the electron temperature and density profiles during events such as ELMs, the L-H transition, and various MHD modes.

  20. Conceptual design of new polychromator on Thomson scattering system to measure Zeff.

    PubMed

    Lee, Jongha; Oh, Seungtae; Wi, Hanmin; Oh, Youngkook; Yamada, I; Narihara, K; Kawahata, K; Jeon, Jongsu

    2012-10-01

    To measure the Z(eff) with electron temperature (T(e)) and electron density (n(e)) profiles at the same time and the same position in the KSTAR tokamak, we design a new polychromator for Thomson scattering system that has additional function. The additional function is measuring bremsstrahlung intensity to calculate Z(eff) independent of Thomson signals. For this new polychromator, we design and fabricate a collimation lens set, and interference filter that has center wavelength of 523 nm and 2 nm FWHM. Finally, we change the lenses, detector diodes, and add the bremsstrahlung filter on the KSTAR edge Thomson scattering polychromator. Then this new polychromator was tested by Tungsten light and monochromator.

  1. A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA.

    PubMed

    Katz, J; Boni, R; Sorce, C; Follett, R; Shoup, M J; Froula, D H

    2012-10-01

    A reflective optical transport system has been designed for the OMEGA Thomson-scattering diagnostic. A Schwarzschild objective that uses two concentric spherical mirrors coupled to a Pfund objective provides diffraction-limited imaging across all reflected wavelengths. This enables the operator to perform Thomson-scattering measurements of ultraviolet (0.263 μm) light scattered from electron plasma waves.

  2. 154 GHz collective Thomson scattering in LHD

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Nishiura, M.; Kubo, S.; Shimozuma, T.; Saito, T.; Moseev, D.; Abramovic, I.

    2018-01-01

    Collective Thomson scattering (CTS) was developed by using a 154 GHz gyrotron, and the first data has been obtained. Already, 77 GHz CTS has worked successfully. However, in order to access higher density region, 154 GHz option enhances the usability that reduces the refraction effect, which deteriorates in the local measurements. The system in the down converted frequency was almost identical to the system for 77 GHz. Probing beam, a notch filter, a mixer, and a local oscillator in the receiver system for 77 GHz option were replaced to those for the 154 GHz option. 154 GHz gyrotron was originally prepared for the second harmonic electron cyclotron heating (ECRH) at 2.75 T. However, scattering signal was masked by the second harmonic electron cyclotron emission (ECE) at 2.75 T. Therefore, 154 GHz CTS was operated at 1.375 T with fourth harmonic ECE, and an acceptable signal to noise ratio was obtained. There is a signature of fast ion components with neutral beam (NB) injection. In addition, the CTS spectrum became broader in hydrogen discharge than in deuterium discharge, as the theoretical CTS spectrum expects. This observation indicates a possibility to identify ion species ratio by the 154 GHz CTS diagnostic.

  3. A Concept for Measuring Electron Distribution Functions Using Collective Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Milder, A. L.; Froula, D. H.

    2017-10-01

    A.B. Langdon proposed that stable non-Maxwellian distribution functions are realized in coronal inertial confinement fusion plasmas via inverse bremsstrahlung heating. For Zvosc2 Zvosc2 vth2 > 1 , vth2 > 1 , the inverse bremsstrahlung heating rate is sufficiently fast to compete with electron-electron collisions. This process preferentially heats the subthermal electrons leading to super-Gaussian distribution functions. A method to identify the super-Gaussian order of the distribution functions in these plasmas using collective Thomson scattering will be proposed. By measuring the collective Thomson spectra over a range of angles the density, temperature and super-Gaussian order can be determined. This is accomplished by fitting non-Maxwellian distribution data with a super-Gaussian model; in order to match the density and electron temperature to within 10%, the super-Gaussian order must be varied. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  4. Advances in the FTU collective Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bin, W., E-mail: wbin@ifp.cnr.it; Bruschi, A.; Grosso, G.

    The new collective Thomson scattering diagnostic installed on the Frascati Tokamak Upgrade device started its first operations in 2014. The ongoing experiments investigate the presence of signals synchronous with rotating tearing mode islands, possibly due to parametric decay processes, and phenomena affecting electron cyclotron beam absorption or scattering measurements. The radiometric system, diagnostic layout, and data acquisition system were improved accordingly. The present status and near-term developments of the diagnostic are presented.

  5. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak.

    PubMed

    Berni, L A; Albuquerque, B F C

    2010-12-01

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esférico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.

  6. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berni, L. A.; Albuquerque, B. F. C.

    2010-12-15

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esferico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contributemore » to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.« less

  7. Comparative electron temperature measurements of Thomson scattering and electron cyclotron emission diagnostics in TCABR plasmas.

    PubMed

    Alonso, M P; Figueiredo, A C A; Borges, F O; Elizondo, J I; Galvão, R M O; Severo, J H F; Usuriaga, O C; Berni, L A; Machida, M

    2010-10-01

    We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfvén wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfvén wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values.

  8. Feasibility study of direct spectra measurements for Thomson scattered signals for KSTAR fusion-grade plasmas

    NASA Astrophysics Data System (ADS)

    Park, K.-R.; Kim, K.-h.; Kwak, S.; Svensson, J.; Lee, J.; Ghim, Y.-c.

    2017-11-01

    Feasibility study of direct spectra measurements of Thomson scattered photons for fusion-grade plasmas is performed based on a forward model of the KSTAR Thomson scattering system. Expected spectra in the forward model are calculated based on Selden function including the relativistic polarization correction. Noise in the signal is modeled with photon noise and Gaussian electrical noise. Electron temperature and density are inferred using Bayesian probability theory. Based on bias error, full width at half maximum and entropy of posterior distributions, spectral measurements are found to be feasible. Comparisons between spectrometer-based and polychromator-based Thomson scattering systems are performed with varying quantum efficiency and electrical noise levels.

  9. Probing Photoinduced Structural Phase Transitions by Fast or Ultra-Fast Time-Resolved X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Cailleau, Hervé Collet, Eric; Buron-Le Cointe, Marylise; Lemée-Cailleau, Marie-Hélène Koshihara, Shin-Ya

    A new frontier in the field of structural science is the emergence of the fast and ultra-fast X-ray science. Recent developments in time-resolved X-ray diffraction promise direct access to the dynamics of electronic, atomic and molecular motions in condensed matter triggered by a pulsed laser irradiation, i.e. to record "molecular movies" during the transformation of matter initiated by light pulse. These laser pump and X-ray probe techniques now provide an outstanding opportunity for the direct observation of a photoinduced structural phase transition as it takes place. The use of X-ray short-pulse of about 100ps around third-generation synchrotron sources allows structural investigations of fast photoinduced processes. Other new X-ray sources, such as laser-produced plasma ones, generate ultra-short pulses down to 100 fs. This opens the way to femtosecond X-ray crystallography, but with rather low X-ray intensities and more limited experimental possibilities at present. However this new ultra-fast science rapidly progresses around these sources and new large-scale projects exist. It is the aim of this contribution to overview the state of art and the perspectives of fast and ultra-fast X-ray scattering techniques to study photoinduced phase transitions (here, the word ultra-fast is used for sub-picosecond time resolution). In particular we would like to largely present the contribution of crystallographic methods in comparison with optical methods, such as pump-probe reflectivity measurements, the reader being not necessary familiar with X-ray scattering. Thus we want to present which type of physical information can be obtained from the positions of the Bragg peaks, their intensity and their shape, as well as from the diffuse scattering beyond Bragg peaks. An important physical feature is to take into consideration the difference in nature between a photoinduced phase transition and conventional homogeneous photoinduced chemical or biochemical processes where

  10. Electron-beam conditioning by thomson scattering.

    PubMed

    Schroeder, C B; Esarey, E; Leemans, W P

    2004-11-05

    A method is proposed for conditioning electron beams via Thomson scattering. The conditioning provides a quadratic correlation between the electron energy deviation and the betatron amplitude of the electrons, which results in enhanced gain in free-electron lasers. Quantum effects imply conditioning must occur at high laser fluence and moderate electron energy. Conditioning of x-ray free-electron lasers should be achievable with present laser technology, leading to significant size and cost reductions of these large-scale facilities.

  11. Thomson scattering for core plasma on DEMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhin, E. E.; Kurskiev, G. S.; Tolstyakov, S. Yu.

    2014-08-21

    This paper describes the challenges of Thomson scattering implementation for core plasma on DEMO and evaluates the capability to measure extremely high electron temperature range 0.5-40keV. A number of solutions to be developed for ITER diagnostics are suggested in consideration of their realization for DEMO. New approaches suggested for DEMO may also be of interest to ITER and currently operating magnetic confinement devices.

  12. Thomson scattering at general fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, W. C., E-mail: william.young@generalfusion.com; Parfeniuk, D.

    2016-11-15

    This paper provides an overview of the Thomson scattering diagnostic in use at General Fusion, including recent upgrades and upcoming plans. The plasma experiment under examination produces temperatures in the 50-500 eV range with density on the order of 10{sup 20} m{sup −3}. A four spatial point collection optics scheme has been implemented, with plans to expand to six spatial points. Recent changes to the optics of the laser beamline have reduced stray light. The system employs a frequency doubled Nd:YAG laser (532 nm), a grating spectrometer, and a photomultiplier array based detector.

  13. Application of maximum likelihood methods to laser Thomson scattering measurements of low density plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washeleski, Robert L.; Meyer, Edmond J. IV; King, Lyon B.

    2013-10-15

    Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. Themore » key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.« less

  14. Application of maximum likelihood methods to laser Thomson scattering measurements of low density plasmas.

    PubMed

    Washeleski, Robert L; Meyer, Edmond J; King, Lyon B

    2013-10-01

    Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. The key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.

  15. Spatial Expansion and Automation of the Pegasus Thomson Scattering Diagnostic System

    NASA Astrophysics Data System (ADS)

    Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Schlossberg, D. J.; Winz, G. R.

    2015-11-01

    The Pegasus Thomson scattering diagnostic system has recently undergone modifications to increase the spatial range of the diagnostic and automate the Thomson data collection process. Two multichannel spectrometers have been added to the original configuration, providing a total of 24 data channels to view the plasma volume. The new system configuration allows for observation of three distinct regions of the plasma: the local helicity injection (LHI) source (R ~ 67-73.8 cm), the plasma edge (R ~ 51.5-57.6 cm), and the plasma core (R ~ 35-41.1 cm). Each spectrometer utilizes a volume-phase holographic (VPH) grating and a gated-intensified CCD camera. The edge and the LHI spectrometers have been fitted with low-temperature VPH gratings to cover Te = 10 - 100 eV, while the core spectrometer has been fitted with a high-temperature VPH grating to cover Te = 0 . 1 - 1 . 0 keV. The additional spectrometers have been calibrated to account for detector flatness, detector linearity, and vignetting. Operation of the Thomson system has been overhauled to utilize LabVIEW software to synchronize the major components of the Thomson system with the Pegasus shot cycle and to provide intra-shot beam alignment. Multi-point Thomson scattering measurements will be obtained in the aforementioned regions of LHI and Ohmic discharges and will be compared to Langmuir probe measurements. Work supported by US DOE grant DE-FG02-96ER54375.

  16. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic.

    PubMed

    Zang, Qing; Hsieh, C L; Zhao, Junyu; Chen, Hui; Li, Fengjuan

    2013-09-01

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T(e)) gradient and low electron density (n(e)). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  17. A high-power spatial filter for Thomson scattering stray light reduction

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  18. Improvements of data quality of the LHD Thomson scattering diagnostics in high-temperature plasma experiments.

    PubMed

    Yamada, I; Narihara, K; Funaba, H; Hayashi, H; Kohmoto, T; Takahashi, H; Shimozuma, T; Kubo, S; Yoshimura, Y; Igami, H; Tamura, N

    2010-10-01

    In Large Helical Device (LHD) experiments, an electron temperature (T(e)) more than 15 keV has been observed by the yttrium-aluminum-garnet (YAG) laser Thomson scattering diagnostic. Since the LHD Thomson scattering system has been optimized for the temperature region, 50 eV≤T(e)≤10 keV, the data quality becomes worse in the higher T(e) region exceeding 10 keV. In order to accurately determine T(e) in the LHD high-T(e) experiments, we tried to increase the laser pulse energy by simultaneously firing three lasers. The technique enables us to decrease the uncertainties in the measured T(e). Another signal accumulation method was also tested. In addition, we estimated the influence of high-energy electrons on T(e) obtained by the LHD Thomson scattering system.

  19. Multi-Point Thomson Scattering Diagnostic for the Helicity Injected Torus

    NASA Astrophysics Data System (ADS)

    Liptac, J. E.; Smith, R. J.; Hoffman, C. S.; Jarboe, T. R.; Nelson, B. A.; Leblanc, B. P.; Phillips, P.

    1999-11-01

    The multi-point Thomson scattering system on the Helicity Injected Torus--II can determine electron temperature and density at 11 radial positions at a single time during the plasma discharge. The system includes components on loan from both PPPL and from the University of Texas. The collection optics and Littrow spectrometer from Princeton, and the 1 GW laser and multi-anode microchannel plate detector from Texas have been integrated into a compact structure, creating a mobile and reliable diagnostic. The mobility of the system allows alignment to occur in a room adjacent to the experiment, greatly reducing the disturbance to normal machine operation. The four main parts of the Thomson scattering system, namely, the laser, the beam line, the collection optics, and the mobile structure are presented and discussed.

  20. Sawtooth-cycle variation of electron temperature in MST, and prospects for improvement of fast Thomson scattering measurements

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.

    2005-10-01

    Initial measurements with the new Thomson scattering diagnostic on MST show a flattening of the Te profile during a sawtooth crash. These measurements were made in standard sawtoothing reversed-field pinch discharges, and show the core temperature dropping from 400 to approximately 150 eV, while the edge rises several-fold. Measurement of Te time dynamics in MST will be advanced by further development of the Thomson scattering diagnostic. In the near term, two independently triggerable lasers will be used to make two Te profile measurements separated by greater than or equal to 100 ns. By varying this separation time over the course of a data ensemble, an initial Te fluctuation spectrum will be produced. In the longer term, a third ``pulse-burst'' laser will be added to the diagnostic system. This laser will produce a burst of 10-30 approximately 1 J Q-switched pulses at repetition frequencies 5-250 kHz. The planned laser system will operate at 1064 nm and is based on existing Nd:YAG systems used to study fluid dynamics [Brian Thurow et al., Appl. Opt. 43, 5064 (2004)]. The burst train of laser pulses will enable the study of Te and ne dynamics in a single MST shot, and with ensembling, will enable correlation of Te and ne fluctuations with other fluctuating quantities.

  1. Observation of the Second Harmonic in Thomson Scattering from Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Babzien, Marcus; Ben-Zvi, Ilan; Kusche, Karl; Pavlishin, Igor V.; Pogorelsky, Igor V.; Siddons, David P.; Yakimenko, Vitaly; Cline, David; Zhou, Feng; Hirose, Tachishige; Kamiya, Yoshio; Kumita, Tetsuro; Omori, Tsunehiko; Urakawa, Junji; Yokoya, Kaoru

    2006-02-01

    A free relativistic electron in an electromagnetic field is a pure case of a light-matter interaction. In the laboratory environment, this interaction can be realized by colliding laser pulses with electron beams produced from particle accelerators. The process of single photon absorption and reemission by the electron, so-called linear Thomson scattering, results in radiation that is Doppler shifted into the x-ray and γ-ray regions. At elevated laser intensity, nonlinear effects should come into play when the transverse motion of the electrons induced by the laser beam is relativistic. In the present experiment, we achieved this condition and characterized the second harmonic of Thomson x-ray scattering using the counterpropagation of a 60 MeV electron beam and a subterawatt CO2 laser beam.

  2. Development of a neural network technique for KSTAR Thomson scattering diagnostics.

    PubMed

    Lee, Seung Hun; Lee, J H; Yamada, I; Park, Jae Sun

    2016-11-01

    Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ 2 method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ 2 method. The best results were obtained for 10 3 training cycles and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ 2 method and performs the calculation twenty times faster.

  3. Observation of the second harmonic in Thomson scattering from relativistic electrons.

    PubMed

    Babzien, Marcus; Ben-Zvi, Ilan; Kusche, Karl; Pavlishin, Igor V; Pogorelsky, Igor V; Siddons, David P; Yakimenko, Vitaly; Cline, David; Zhou, Feng; Hirose, Tachishige; Kamiya, Yoshio; Kumita, Tetsuro; Omori, Tsunehiko; Urakawa, Junji; Yokoya, Kaoru

    2006-02-10

    A free relativistic electron in an electromagnetic field is a pure case of a light-matter interaction. In the laboratory environment, this interaction can be realized by colliding laser pulses with electron beams produced from particle accelerators. The process of single photon absorption and reemission by the electron, so-called linear Thomson scattering, results in radiation that is Doppler shifted into the x-ray and gamma-ray regions. At elevated laser intensity, nonlinear effects should come into play when the transverse motion of the electrons induced by the laser beam is relativistic. In the present experiment, we achieved this condition and characterized the second harmonic of Thomson x-ray scattering using the counterpropagation of a 60 MeV electron beam and a subterawatt CO2 laser beam.

  4. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zang, Qing; Zhao, Junyu; Chen, Hui

    2013-09-15

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T{sub e}) gradient and low electron density (n{sub e}). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasingmore » stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.« less

  5. High-rep-rate Thomson scattering for LHD

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Borchardt, M. T.; Holly, D. J.; Schmitz, O.; Yasuhara, R.; Yamada, I.; Funaba, H.; Osakabe, M.; Morisaki, T.

    2017-10-01

    A high-rep-rate pulse-burst laser system is being built for the LHD Thomson scattering (TS) diagnostic. This laser will have two operating scenarios, a fast-burst sequence of 15 kHz rep rate for at least 15 ms, and a slow-burst sequence of 1 kHz for at least 50 ms. There will be substantial flexibility in burst sequences for tailoring to experimental requirements. This new laser system will operate alongside the existing lasers in the LHD TS diagnostic, and will use the same beamline. This increase in temporal resolution capability complements the high spatial resolution (144 points) of the LHD TS diagnostic, providing unique measurement capability unmatched on any other fusion experiment. The new pulse-burst laser is a straightforward application of technology developed at UW-Madison, consisting of a Nd:YAG laser head with modular flashlamp drive units and a customized control system. Variable pulse-width drive of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, producing >1.5 J q-switched pulses with 20 ns FWHM. Burst operation of this laser system will be used to capture fast time evolution of the electron temperature and density profiles during events such as ELMs, RMP perturbations, and various MHD modes. This work is supported by the U. S. Department of Energy and the National Institute for Fusion Science (Japan).

  6. Influence of local-field corrections on Thomson scattering in collision-dominated two-component plasmas.

    PubMed

    Fortmann, Carsten; Wierling, August; Röpke, Gerd

    2010-02-01

    The dynamic structure factor, which determines the Thomson scattering spectrum, is calculated via an extended Mermin approach. It incorporates the dynamical collision frequency as well as the local-field correction factor. This allows to study systematically the impact of electron-ion collisions as well as electron-electron correlations due to degeneracy and short-range interaction on the characteristics of the Thomson scattering signal. As such, the plasmon dispersion and damping width is calculated for a two-component plasma, where the electron subsystem is completely degenerate. Strong deviations of the plasmon resonance position due to the electron-electron correlations are observed at increasing Brueckner parameters r(s). These results are of paramount importance for the interpretation of collective Thomson scattering spectra, as the determination of the free electron density from the plasmon resonance position requires a precise theory of the plasmon dispersion. Implications due to different approximations for the electron-electron correlation, i.e., different forms of the one-component local-field correction, are discussed.

  7. Improving spatial and spectral resolution of TCV Thomson scattering

    NASA Astrophysics Data System (ADS)

    Hawke, J.; Andrebe, Y.; Bertizzolo, R.; Blanchard, P.; Chavan, R.; Decker, J.; Duval, B.; Lavanchy, P.; Llobet, X.; Marlétaz, B.; Marmillod, P.; Pochon, G.; Toussaint, M.

    2017-12-01

    The recently completed MST2 upgrade to the Thomson scattering (TS) system on TCV (Tokamak à Configuration Variable) at the Swiss Plasma Center aims to provide an enhanced spatial and spectral resolution while maintaining the high level of diagnostic flexibility for the study of TCV plasmas. The MST2 (Medium Sized Tokamak) is a work program within the Eurofusion ITER physics department, aimed at exploiting Europe's medium sized tokamak programs for a better understanding of ITER physics. This upgrade to the TCV Thomson scattering system involved the installation of 40 new compact 5-channel spectrometers and modifications to the diagnostics fiber optic design. The complete redesign of the fiber optic backplane incorporates fewer larger diameter fibers, allowing for a higher resolution in both the core and edge of TCV plasmas along the laser line, with a slight decrease in the signal to noise ratio of Thomson measurements. The 40 new spectrometers added to the system are designed to cover the full range of temperatures expected in TCV, able to measure electron temperatures (Te) with high precision between (6 eV and 20 keV) . The design of these compact spectrometers stems originally from the design utilized in the MAST (Mega Amp Spherical Tokamak) TS system located in Oxfordshire, United Kingdom. This design was implemented on TCV with an overall layout of optical fibers and spectrometers to achieve an overall increase in the spatial resolution, specifically a resolution of approximately 1% of the minor radius within the plasma pedestal region. These spectrometers also enhance the diagnostic spectral resolution, especially within the plasma edge, due to the low Te measurement capabilities. These additional spectrometers allow for a much greater diagnostic flexibility, allowing for quality full Thomson profiles in 75% of TCV plasma configurations.

  8. Thomson-scattering measurements in the collective and noncollective regimes in laser produced plasmas (invited).

    PubMed

    Ross, J S; Glenzer, S H; Palastro, J P; Pollock, B B; Price, D; Tynan, G R; Froula, D H

    2010-10-01

    We present simultaneous Thomson-scattering measurements of light scattered from ion-acoustic and electron-plasma fluctuations in a N(2) gas jet plasma. By varying the plasma density from 1.5×10(18) to 4.0×10(19) cm(-3) and the temperature from 100 to 600 eV, we observe the transition from the collective regime to the noncollective regime in the high-frequency Thomson-scattering spectrum. These measurements allow an accurate local measurement of fundamental plasma parameters: electron temperature, density, and ion temperature. Furthermore, experiments performed in the high densities typically found in laser produced plasmas result in scattering from electrons moving near the phase velocity of the relativistic plasma waves. Therefore, it is shown that even at low temperatures relativistic corrections to the scattered power must be included.

  9. Short-interval multi-laser Thomson scattering measurements of hydrogen pellet ablation in LHD.

    PubMed

    Yasuhara, R; Sakamoto, R; Yamada, I; Motojima, G; Hayashi, H

    2014-11-01

    Thomson scattering forms an important aspect of measuring the electron density and temperature profiles of plasmas. In this study, we demonstrate Thomson scattering measurements obtained over a short interval (<1 ms) by using an event triggering system with a multi-laser configuration. We attempt to use our system to obtain the electron temperature and density profiles before and immediately after pellet injection into the large helical device. The obtained profiles exhibit dramatic changes after pellet injection as per our shot-by-shot measurements. We believe that this measurement technique will contribute towards a better understanding of the physics of the pellet deposition.

  10. Short-interval multi-laser Thomson scattering measurements of hydrogen pellet ablation in LHD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuhara, R., E-mail: yasuhara@nifs.ac.jp; Sakamoto, R.; Yamada, I.

    2014-11-15

    Thomson scattering forms an important aspect of measuring the electron density and temperature profiles of plasmas. In this study, we demonstrate Thomson scattering measurements obtained over a short interval (<1 ms) by using an event triggering system with a multi-laser configuration. We attempt to use our system to obtain the electron temperature and density profiles before and immediately after pellet injection into the large helical device. The obtained profiles exhibit dramatic changes after pellet injection as per our shot-by-shot measurements. We believe that this measurement technique will contribute towards a better understanding of the physics of the pellet deposition.

  11. Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vais, O. E.; Bochkarev, S. G., E-mail: bochkar@sci.lebedev.ru; Bychenkov, V. Yu.

    The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D{sub F} ≳ λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that themore » ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ≃10λ.« less

  12. Progress on Thomson scattering in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Bongard, M. W.; Fonck, R. J.; Schoenbeck, N. L.; Winz, G. R.

    2013-11-01

    A novel Thomson scattering system has been implemented on the Pegasus Toroidal Experiment where typical densities of 1019 m-3 and electron temperatures of 10 to 500 eV are expected. The system leverages technological advances in high-energy pulsed lasers, volume phase holographic (VPH) diffraction gratings, and gated image intensified (ICCD) cameras to provide a relatively low-maintenance, economical, robust diagnostic system. Scattering is induced by a frequency-doubled, Q-switched Nd:YAG laser (2 J at 532 nm, 7 ns FWHM pulse) directed to the plasma over a 7.7 m long beam path, and focused to < 3 mm throughout the collection region. Inter-shot beam alignment is adjustable with less than a 0.01 mm spatial resolution in the collection region. A custom lens system collects scattered photons at radii 15 cm to 85 cm from the machine's center, at ~ F/6 with 14 mm radial resolution. The initial configuration provides scattering measurements at 12 spatial locations and 12 simultaneous background measurements at adjacent locations. If plasma background subtraction proves to be insignificant, these background channels will be used as viewing channels. Each spectrometer supports 8 spatial channels and can provide 8 or more spectral bins each. The spectrometers use high-efficiency VPH transmission gratings (eff. > 80%) and fast-gated ICCDs (gate > 2 ns, Gen III intensifier) with high-throughput (F/1.8), achromatic lensing. A stray light mitigation facility has been implemented, consisting of a multi-aperture optical baffle system and a simple beam dump. Successful stray light reduction has enabled detection of scattered signal, and Rayleigh scattering has been used to provide a relative calibration. Initial temperature measurements have been made and data analysis algorithms are under development.

  13. Conceptual design of a divertor Thomson scattering diagnostic for NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, A. G., E-mail: mclean@fusion.gat.com; Soukhanovskii, V. A.; Allen, S. L.

    2014-11-15

    A conceptual design for a divertor Thomson scattering (DTS) diagnostic has been developed for the NSTX-U device to operate in parallel with the existing multipoint Thomson scattering system. Higher projected peak heat flux in NSTX-U will necessitate application of advanced magnetics geometries and divertor detachment. Interpretation and modeling of these divertor scenarios will depend heavily on local measurement of electron temperature, T{sub e}, and density, n{sub e}, which DTS provides in a passive manner. The DTS design for NSTX-U adopts major elements from the successful DIII-D DTS system including 7-channel polychromators measuring T{sub e} to 0.5 eV. If implemented onmore » NSTX-U, the divertor TS system would provide an invaluable diagnostic for the boundary program to characterize the edge plasma.« less

  14. Thomson scattering diagnostic for the measurement of ion species fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, J S; Park, H S; Amendt, A

    2012-05-01

    Simultaneous Thomson scattering measurements of collective electron-plasma and ion-acoustic fluctuations have been utilized to determine ion species fraction from laser produced CH plasmas. The CH{sub 2} foil is heated with 10 laser beams, 500 J per beam, at the Omega Laser facility. Thomson scattering measurements are made 4 mm from the foil surface using a 30 J 2{omega} probe laser with a 1 ns pulse length. Using a series of target shots the plasma evolution is measured from 2.5 ns to 9 ns after the rise of the heater beams. Measuring the electron density and temperature from the electron-plasma fluctuationsmore » constrains the fit of the two-ion species theoretical form factor for the ion feature such that the ion temperature, plasma flow velocity and ion species fraction are determined. The ion species fraction is determined to an accuracy of {+-}0.06 in species fraction.« less

  15. First results from the Thomson scattering diagnostic on proto-MPEX.

    PubMed

    Biewer, T M; Meitner, S; Rapp, J; Ray, H; Shaw, G

    2016-11-01

    A Thomson scattering (TS) diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. TS is a technique used on many devices to measure the electron temperature (T e ) and electron density (n e ) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from argon plasmas in Proto-MPEX, indicating T e ∼ 2 eV and n e ∼ 1 × 10 19 m -3 . The configuration of the Proto-MPEX TS diagnostic will be described and plans for improvement will be given.

  16. Development of a neural network technique for KSTAR Thomson scattering diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seung Hun, E-mail: leesh81@nfri.re.kr; Lee, J. H.; Yamada, I.

    Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ{sup 2} method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ{sup 2} method. The best results were obtained for 10{sup 3} training cyclesmore » and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ{sup 2} method and performs the calculation twenty times faster.« less

  17. First measurement of electron temperature from signal ratios in a double-pass Thomson scattering system.

    PubMed

    Tojo, H; Ejiri, A; Hiratsuka, J; Yamaguchi, T; Takase, Y; Itami, K; Hatae, T

    2012-02-01

    This paper presents an experimental demonstration to determine electron temperature (T(e)) with unknown spectral sensitivity (transmissivity) in a Thomson scattering system. In this method, a double-pass scattering configuration is used and the scattered lights from each pass (with different scattering angles) are measured separately. T(e) can be determined from the ratio of the signal intensities without knowing a real chromatic dependence in the sensitivity. Note that the wavelength range for each spectral channel must be known. This method was applied to the TST-2 Thomson scattering system. As a result, T(e) measured from the ratio (T(e,r)) and T(e) measured from a standard method (T(e,s)) showed a good agreement with <∣T(e,r) - T(e,s)∣∕T(e,s)> = 7.3%.

  18. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S G; Barty, C P J; Betts, S M

    2003-07-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm{sup 2}/mrad{sup 2}. Initial results are reported and compared to theoretical calculations.

  19. Enhanced coherent Thomson scattering in the few-cycle regime.

    PubMed

    Hu, Ke; Wu, Hui-Chun

    2016-10-01

    We study x-ray production by coherent nonlinear Thomson scattering of few-cycle laser pulses from relativistic electron sheets. For an electron sheet thicker than the wavelength of the x-ray, the scattering efficiency is found to increase by two orders of magnitude for single-cycle laser pulses, as compared with longer pulses. This enhancement is attributed to the suppression of the destructive interference during the scattering process, as well as the frequency downshift related to the ultrabroad spectra of single-cycle pulses. The x-ray amplitude in this nonadiabatic regime is calculated and agrees with that from the particle-in-cell simulation. These results can be useful for designing more intense, shorter attosecond x-ray sources.

  20. Generation of High Brightness X-rays with the PLEIADES Thomson X-ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W J; Anderson, S G; Barty, C P J

    2003-05-28

    The use of short laser pulses to generate high peak intensity, ultra-short x-ray pulses enables exciting new experimental capabilities, such as femtosecond pump-probe experiments used to temporally resolve material structural dynamics on atomic time scales. PLEIADES (Picosecond Laser Electron InterAction for Dynamic Evaluation of Structures) is a next generation Thomson scattering x-ray source being developed at Lawrence Livermore National Laboratory (LLNL). Ultra-fast picosecond x-rays (10-200 keV) are generated by colliding an energetic electron beam (20-100 MeV) with a high intensity, sub-ps, 800 nm laser pulse. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm2/mrad2. Simulationsmore » of the electron beam production, transport, and final focus are presented. Electron beam measurements, including emittance and final focus spot size are also presented and compared to simulation results. Measurements of x-ray production are also reported and compared to theoretical calculations.« less

  1. A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies

    NASA Astrophysics Data System (ADS)

    Vincent, Benjamin; Tsikata, Sedina; Mazouffre, Stéphane; Minea, Tiberiu; Fils, Jérôme

    2018-05-01

    Incoherent Thomson scattering (ITS) has a long history of application for the determination of electron density and temperature in dense fusion plasmas, and in recent years, has been increasingly extended to studies in low-temperature plasma environments. In this work, the design and preliminary implementation of a new, sensitive and uniquely compact ITS platform known as Thomson scattering experiments for low temperature ion sources are described. Measurements have been performed on a hollow cathode plasma source, providing access to electron densities as low as 1016 m‑3 and electron temperatures of a few eV and below. This achievement has been made possible by the implementation of a narrow volume Bragg grating notch filter for the attenuation of stray light, a feature which guarantees compactness and reduced transmission losses in comparison to standard ITS platforms.

  2. The Thomson scattering diagnostic at Wendelstein 7-X and its performance in the first operation phase

    NASA Astrophysics Data System (ADS)

    Bozhenkov, S. A.; Beurskens, M.; Dal Molin, A.; Fuchert, G.; Pasch, E.; Stoneking, M. R.; Hirsch, M.; Höfel, U.; Knauer, J.; Svensson, J.; Trimino Mora, H.; Wolf, R. C.

    2017-10-01

    The optimized stellarator Wendelstein 7-X started operation in December 2015 with a 10 week limiter campaign. Divertor experiments will begin in the second half of 2017. The W7-X Thomson scattering system is an essential diagnostic for electron density and temperature profiles. In this paper the Thomson scattering diagnostic is described in detail, including its design, calibration, data evaluation and first experimental results. Plans for further development are also presented. The W7-X Thomson system is a Nd:YAG setup with up to five lasers, two sets of light collection lenses viewing the entire plasma cross-section, fiber bundles and filter based polychromators. To reduce hardware costs, two or three scattering volumes are measured with a single polychromator. The relative spectral calibration is carried out with the aid of a broadband supercontinuum light source. The absolute calibration is performed by observing Raman scattering in nitrogen. The electron temperatures and densities are recovered by Bayesian modelling. In the first campaign, the diagnostic was equipped for 10 scattering volumes. It provided temperature profiles comparable to those measured using an electron cyclotron emission diagnostic and line integrated densities within 10% of those from a dispersion interferometer.

  3. First results from the Thomson scattering diagnostic on proto-MPEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biewer, T. M., E-mail: biewertm@ornl.gov; Meitner, S.; Rapp, J.

    2016-11-15

    A Thomson scattering (TS) diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. TS is a technique used on many devices to measure the electron temperature (T{sub e}) and electron density (n{sub e}) of the plasma. A challenging aspect of the technique is tomore » discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from argon plasmas in Proto-MPEX, indicating T{sub e} ∼ 2 eV and n{sub e} ∼ 1 × 10{sup 19} m{sup −3}. The configuration of the Proto-MPEX TS diagnostic will be described and plans for improvement will be given.« less

  4. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    NASA Astrophysics Data System (ADS)

    Corvan, D. J.; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16-18 MeV) and ultra-high brilliance (exceeding 1020 photons s-1mm-2mrad-2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.

  5. The upgrade of the Thomson scattering system for measurement on the C-2/C-2U devices.

    PubMed

    Zhai, K; Schindler, T; Kinley, J; Deng, B; Thompson, M C

    2016-11-01

    The C-2/C-2U Thomson scattering system has been substantially upgraded during the latter phase of C-2/C-2U program. A Rayleigh channel has been added to each of the three polychromators of the C-2/C-2U Thomson scattering system. Onsite spectral calibration has been applied to avoid the issue of different channel responses at different spots on the photomultiplier tube surface. With the added Rayleigh channel, the absolute intensity response of the system is calibrated with Rayleigh scattering in argon gas from 0.1 to 4 Torr, where the Rayleigh scattering signal is comparable to the Thomson scattering signal at electron densities from 1 × 10 13 to 4 × 10 14 cm -3 . A new signal processing algorithm, using a maximum likelihood method and including detailed analysis of different noise contributions within the system, has been developed to obtain electron temperature and density profiles. The system setup, spectral and intensity calibration procedure and its outcome, data analysis, and the results of electron temperature/density profile measurements will be presented.

  6. Interpenetration and deflection phenomena in collisions between supersonic, magnetized, tungsten plasma flows diagnosed using high resolution optical Thomson scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Lebedev, S. V.; Burdiak, G.

    An optical Thomson scattering diagnostic has been used to investigate collisions between supersonic, magnetized plasma flows, in particular the transition from collisionless to collisional interaction dynamics. These flows were produced using tungsten wire array z-pinches, driven by the 1.4 MA 240 ns Magpie generator at Imperial College London. Measurements of the collective-mode Thomson scattering ion-feature clearly indicate that the ablation flows are interpenetrating at 100 ns (after current start), and this interpenetration continues until at least 140 ns. The Thomson spectrum at 150 ns shows a clear change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streamsmore » near the axis. The Thomson scattering data also provide indirect evidence of the presence of a significant toroidal magnetic field embedded in the “precursor” plasma near the axis of the array over the period 100–140 ns; these observations are in agreement with previous measurements [Swadling et al., Phys. Rev. Lett. 113, 035003 (2014)]. The Thomson scattering measurements at 150 ns suggest that this magnetic field must collapse at around the time the dense precursor column begins to form.« less

  7. Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tong; Chen, Min, E-mail: minchen@sjtu.edu.cn; Li, Fei-Yu

    2014-01-06

    We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of themore » scattered radiation.« less

  8. Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Traverso, Peter; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.

    2016-10-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two- color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line propagates 8 m to the CTH device mid-plane with the beam diameter < 3 mm inside the plasma volume. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and focused onto a custom fiber bundle. The fiber is then re-bundled and routed to a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 535-565 nm. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Work supported by USDOE Grant DE-FG02-00ER54610.

  9. Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Traverso, P. J.; Ennis, D. A.; Hartwell, G. J.; Kring, J. D.; Maurer, D. A.

    2017-10-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two-color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YAG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and routed via a fiber bundle through a Holospec f/1.8 spectrograph. The red-shifted scattered light from 533-563 nm will be collected by an array of Hamamatsu H11706-40 PMTs. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Stray light and calibration data for a single wavelength channel will be presented. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  10. Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping

    DOE PAGES

    Rykovanov, S. G.; Geddes, C. G. R.; Schroeder, C. B.; ...

    2016-03-18

    Effects of nonlinearity in Thomson scattering of a high intensity laser pulse from electrons are analyzed. Analytic expressions for laser pulse shaping in frequency (chirping) are obtained which control spectrum broadening for high laser pulse intensities. These analytic solutions allow prediction of the spectral form and required laser parameters to avoid broadening. Results of analytical and numerical calculations agree well. The control over the scattered radiation bandwidth allows narrow bandwidth sources to be produced using high scattering intensities, which in turn greatly improves scattering yield for future x- and gamma-ray sources.

  11. X-ray Thomson scattering measurements from hohlraum-driven spheres on the OMEGA laser [X-ray Thomson scattering measurements from hohlraum targets on the OMEGA laser

    DOE PAGES

    Saunders, A. M.; Jenei, A.; Doppner, T.; ...

    2016-08-30

    X-ray Thomson scattering (XRTS) is a powerful diagnostic for probing warm and hot dense matter. We present the design and results of the first XRTS experiments with hohlraum-driven CH 2 targets on the OMEGA laser. X-rays seen directly from the XRTS x-ray source overshadow the elastic scattering signal from the target capsule, but can be controlled in future experiments. From the inelastic scattering signal, an average plasma temperature is inferred that is in reasonable agreement with the temperatures predicted by simulations. Here, knowledge gained in this experiment show a promising future for further XRTS measurements on indirectly driven OMEGA targets.

  12. X-ray Thomson scattering measurements from hohlraum-driven spheres on the OMEGA laser [X-ray Thomson scattering measurements from hohlraum targets on the OMEGA laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saunders, A. M.; Jenei, A.; Doppner, T.

    X-ray Thomson scattering (XRTS) is a powerful diagnostic for probing warm and hot dense matter. We present the design and results of the first XRTS experiments with hohlraum-driven CH 2 targets on the OMEGA laser. X-rays seen directly from the XRTS x-ray source overshadow the elastic scattering signal from the target capsule, but can be controlled in future experiments. From the inelastic scattering signal, an average plasma temperature is inferred that is in reasonable agreement with the temperatures predicted by simulations. Here, knowledge gained in this experiment show a promising future for further XRTS measurements on indirectly driven OMEGA targets.

  13. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter.

    PubMed

    Johnson, W R; Nilsen, J

    2016-03-01

    The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.

  14. Examinations of electron temperature calculation methods in Thomson scattering diagnostics.

    PubMed

    Oh, Seungtae; Lee, Jong Ha; Wi, Hanmin

    2012-10-01

    Electron temperature from Thomson scattering diagnostic is derived through indirect calculation based on theoretical model. χ-square test is commonly used in the calculation, and the reliability of the calculation method highly depends on the noise level of input signals. In the simulations, noise effects of the χ-square test are examined and scale factor test is proposed as an alternative method.

  15. The upgrade of the Thomson scattering system for measurement on the C-2/C-2U devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, K.; Schindler, T.; Kinley, J.

    The C-2/C-2U Thomson scattering system has been substantially upgraded during the latter phase of C-2/C-2U program. A Rayleigh channel has been added to each of the three polychromators of the C-2/C-2U Thomson scattering system. Onsite spectral calibration has been applied to avoid the issue of different channel responses at different spots on the photomultiplier tube surface. With the added Rayleigh channel, the absolute intensity response of the system is calibrated with Rayleigh scattering in argon gas from 0.1 to 4 Torr, where the Rayleigh scattering signal is comparable to the Thomson scattering signal at electron densities from 1 × 10{supmore » 13} to 4 × 10{sup 14} cm{sup −3}. A new signal processing algorithm, using a maximum likelihood method and including detailed analysis of different noise contributions within the system, has been developed to obtain electron temperature and density profiles. The system setup, spectral and intensity calibration procedure and its outcome, data analysis, and the results of electron temperature/density profile measurements will be presented.« less

  16. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility.

    PubMed

    Döppner, T; Kraus, D; Neumayer, P; Bachmann, B; Emig, J; Falcone, R W; Fletcher, L B; Hardy, M; Kalantar, D H; Kritcher, A L; Landen, O L; Ma, T; Saunders, A M; Wood, R D

    2016-11-01

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5-10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  17. Scaling EUV and X-ray Thomson sources to optical free-electron laser operation with traveling-wave Thomson scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Steiniger, Klaus; Albach, Daniel; Debus, Alexander; Loeser, Markus; Pausch, Richard; Roeser, Fabian; Schramm, Ulrich; Siebold, Matthias; Bussmann, Michael

    2017-05-01

    Traveling-Wave Thomson-Scattering (TWTS) allows for the realization of optical free-electron lasers (OFELs) from the interaction of short, high-power laser pulses with brilliant relativistic electron bunches. The laser field provides the optical undulator which is traversed by the electrons. In order to achieve coherent amplification of radiation through electron microbunching the interaction between electrons and laser must be maintained over hundreds to thousands of undulator periods. Traveling-Wave Thomson-Scattering is the only scattering geometry so far allowing for the realization of optical undulators of this length which is at the same time scalable from extreme ultraviolet to X-ray photon energies. TWTS is also applicable for the realization of incoherent high peak brightness hard X-ray to gamma-ray sources which can provide orders of magnitude higher photon output than classic head-on Thomson sources. In contrast to head-on Thomson sources TWTS employs a side-scattering geometry where laser and electron propagation direction of motion enclose an angle. Tilting the laser pulse front with respect to the wave front by half of this interaction angle optimizes electron and laser pulse overlap. In the side-scattering geometry the tilt of the pulse-front compensates the spatial offset between electrons and laser pulse-front which would be present otherwise for an electron bunch far from the interaction point where it overlaps with the laser pulse center. Thus the laser pulse-front tilt ensures continuous overlap between laser pulse and electrons while these traverse the laser pulse cross-sectional area. This allows to control the interaction distance in TWTS by the laser pulse width rather than laser pulse duration as is the case for head-on Thomson scattering. Utilizing petawatt class laser pulses with millimeter to centimeter scale width allows for the realization of compact optical undulators with thousands of periods. When laser pulses for TWTS are prepared

  18. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter

    DOE PAGES

    Johnson, W. R.; Nilsen, J.

    2016-03-14

    Here, the influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity andmore » also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.« less

  19. Design and performance of the collective Thomson scattering receiver at ASDEX Upgrade.

    PubMed

    Furtula, V; Salewski, M; Leipold, F; Michelsen, P K; Korsholm, S B; Meo, F; Moseev, D; Nielsen, S K; Stejner, M; Johansen, T

    2012-01-01

    Here we present the design of the fast-ion collective Thomson scattering receiver for millimeter wave radiation installed at ASDEX Upgrade, a tokamak for fusion plasma experiments. The receiver can detect spectral power densities of a few eV against the electron cyclotron emission background on the order of 100 eV under presence of gyrotron stray radiation that is several orders of magnitude stronger than the signal to be detected. The receiver down converts the frequencies of scattered radiation (100-110 GHz) to intermediate frequencies (IF) (4.5-14.5 GHz) by heterodyning. The IF signal is divided into 50 IF channels tightly spaced in frequency space. The channels are terminated by square-law detector diodes that convert the signal power into DC voltages. We present measurements of the transmission characteristics and performance of the main receiver components operating at mm-wave frequencies (notch, bandpass, and lowpass filters, a voltage-controlled variable attenuator, and an isolator), the down-converter unit, and the IF components (amplifiers, bandpass filters, and detector diodes). Furthermore, we determine the performance of the receiver as a unit through spectral response measurements and find reasonable agreement with the expectation based on the individual component measurements.

  20. Spatially resolved Thomson scattering measurements of the transition from the collective to the non-collective regime in a laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Schaeffer, D. B.; Constantin, C. G.; Bondarenko, A. S.; Everson, E. T.; Niemann, C.

    2016-11-01

    We present optical Thomson scattering results that image for the first time in a single measurement the spatial transition from collective to non-collective scattering. Data were taken in the Phoenix laser laboratory at the University of California, Los Angeles. The Raptor laser was used to ablate a carbon plasma, which was diagnosed with the frequency-doubled Phoenix laser serving as a Thomson scattering probe. Scattered light was collected from the laser plasma up to 10 cm from the target surface and up to 10 us after ablation, and imaged with high spatial and spectral resolutions. The results show a strong Thomson collective feature close to the target surface that smoothly transitions to a non-collective feature over several mm.

  1. Spatially resolved Thomson scattering measurements of the transition from the collective to the non-collective regime in a laser-produced plasma.

    PubMed

    Schaeffer, D B; Constantin, C G; Bondarenko, A S; Everson, E T; Niemann, C

    2016-11-01

    We present optical Thomson scattering results that image for the first time in a single measurement the spatial transition from collective to non-collective scattering. Data were taken in the Phoenix laser laboratory at the University of California, Los Angeles. The Raptor laser was used to ablate a carbon plasma, which was diagnosed with the frequency-doubled Phoenix laser serving as a Thomson scattering probe. Scattered light was collected from the laser plasma up to 10 cm from the target surface and up to 10 us after ablation, and imaged with high spatial and spectral resolutions. The results show a strong Thomson collective feature close to the target surface that smoothly transitions to a non-collective feature over several mm.

  2. X-ray Thomson scattering measurement of temperature in warm dense carbon

    DOE PAGES

    Falk, Katerina; Fryer, C. L.; Gamboa, E. J.; ...

    2016-11-22

    Here, a novel platform to measure the equation of state using a combination of diagnostics, where the spectrally resolved x-ray Thomson scattering (XRTS) is used to obtain accurate temperature measurements of warm dense matter (WDM) was developed for the OMEGA laser facility. OMEGA laser beams have been used to drive strong shocks in carbon targets creating WDM and generating the Ni He-alpha x-ray probe used for XRTS. Additional diagnostics including x-ray radiography, velocity interferometry and streaked optical pyrometry provided complementary measurements of density and pressure. The WDM regime of near solid density and moderate temperatures (1–100 eV) is a challengingmore » yet important area of research in inertial confinement fusion and astrophysics. This platform has been used to study off-Hugoniot states of shock-released diamond and graphite at pressures between 1 and 10 Mbar and temperatures between 5 and 15 eV as well as first x-ray Thomson scattering data from shocked low density CH foams reaching five times compression and temperatures of 20–30 eV.« less

  3. Classical Heat-Flux Measurements in Coronal Plasmas from Collective Thomson-Scattering Spectra

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2016-10-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude was used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer-Härm flux (qSH = - κ∇Te ) and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. Additional experiments probed plasma waves perpendicular to the temperature gradient. The data show small effects resulting from heat flux compared to probing waves along the temperature gradient. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  4. X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules

    DOE PAGES

    Fletcher, L. B.; Glenzer, S. H.; Kritcher, A.; ...

    2013-05-24

    Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 μm thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-α x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules,more » with a maximum measured density of ρ > 6 g cm –3. Additionally, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.« less

  5. The Thomson scattering system at Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Pasch, E.; Beurskens, M. N. A.; Bozhenkov, S. A.; Fuchert, G.; Knauer, J.; Wolf, R. C.

    2016-11-01

    This paper describes the design of the Thomson scattering system at the Wendelstein 7-X stellarator. For the first operation campaign we installed a 10 spatial channel system to cover a radial half profile of the plasma cross section. The start-up system is based on one Nd:YAG laser with 10 Hz repetition frequency, one observation optics, five fiber bundles with one delay line each, and five interference filter polychromators with five spectral channels and silicon avalanche diodes as detectors. High dynamic range analog to digital converters with 14 bit, 1 GS/s are used to digitize the signals. The spectral calibration of the system was done using a pulsed super continuum laser together with a monochromator. For density calibration we used Raman scattering in nitrogen gas. Peaked temperature profiles and flat density profiles are observed in helium and hydrogen discharges.

  6. Z-pinch Plasma Temperature and Implosion Velocity from Laboratory Plasma Jets using Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Banasek, Jacob; Byvank, Tom; Kusse, Bruce; Hammer, David

    2016-10-01

    We discuss the use of collective Thomson scattering to determine the implosion velocity and other properties of laboratory plasma jets. The plasma jet is created using a 1 MA pulsed power machine with a 15 μm Al radial foil load. The Thomson scattering laser has a maximum energy of 10 J at 526.5 nm with a pulse duration of 3 ns. Using a time gated ICCD camera and spectrometer system we are able to record the scattered spectrum from 9 or 18 regions along the laser path with sub-mm spatial resolution. Collecting scattered radiation from the same area at two different angles simultaneously enables determination of both the radial and azimuthal velocities. The scattered spectrum for non-magnetized jets indicates a radial implosion velocity of 27 km/s into the jets. A determination of ion and electron temperatures from the scattered spectrum is in progress. Comparing results using a laser energy of 10 J and 1 J shows noticeable effects on plasma jet properties when using 10 J. Therefore the lower laser energy must be used to determine the plasma properties. This research is supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement DE-NA0001836.

  7. Design of a submillimeter laser Thomson scattering system for measurement of ion temperature in SUMMA

    NASA Technical Reports Server (NTRS)

    Praddaude, H. C.; Woskoboinikow, P.

    1978-01-01

    A thorough discussion of submillimeter laser Thomson scattering for the measurement of ion temperature in plasmas is presented. This technique is very promising and work is being actively pursued on the high power lasers and receivers necessary for its implementation. In this report we perform an overall system analysis of the Thomson scattering technique aimed to: (1) identify problem areas; (2) establish specifications for the main components of the apparatus; (3) study signal processing alternatives and identify the optimum signal handling procedure. Because of its importance for the successful implementation of this technique, we also review the work presently being carried out on the optically pumped submillimeter CH3F and D2O lasers.

  8. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    DOE PAGES

    Döppner, T.; Kraus, D.; Neumayer, P.; ...

    2016-08-03

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5-10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here in this paper we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction.more » Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.« less

  9. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Döppner, T., E-mail: doeppner1@llnl.gov; Bachmann, B.; Emig, J.

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5–10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photonmore » energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.« less

  10. Subterahertz gyrotron developments for collective Thomson scattering in LHDa)

    NASA Astrophysics Data System (ADS)

    Notake, T.; Saito, T.; Tatematsu, Y.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.; Fujii, A.; Agusu, La; Ogawa, I.; Idehara, T.

    2008-10-01

    Collective Thomson scattering (CTS) is expected to provide the spatially resolved velocity distribution functions of not only thermal and tail ions but also alpha particles resulting from fusion reactions. CTS using gyrotrons with frequency higher than the conventional ones used for plasma heating would have advantages to alleviate refraction, cutoff effects, and background electron cyclotron emission noise. Therefore, a high-power pulse gyrotron operating at approximately 400 GHz is being developed for CTS in Large Helical Device (LHD). A single-mode oscillation with a frequency greater than 400 GHz, applying the second-harmonic resonance, was successfully demonstrated in the first stage. At the same time, concrete feasibility study based on ray tracing, scattering spectra, and electron cyclotron emission calculations has been conducted.

  11. Design of Thomson scattering diagnostic system on J-TEXT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yinan; Gao, Li, E-mail: gaoli@hust.edu.cn; Huang, Jiefeng

    2016-11-15

    An infrared multi-channel Thomson scattering diagnostic system is designed from the viewpoint of development of the proposed system on the Joint Texas Experimental Tokamak (J-TEXT). A 3 J/50 Hz Nd:YAG laser, which is injected vertically into plasma in the direction from top to bottom, serves as the power source of the system. The scattering light is then collected horizontally and is transmitted to an interference-filter avalanche photodiode based polychromater for spectrum analysis. The system covers the half plasma cross section, providing 14 spatial points with 2 cm resolution. The proposed system can thus satisfy the requirements of the J-TEXT atmore » present and in the near future. A detailed description of the system design is presented in this paper.« less

  12. First observation of the depolarization of Thomson scattering radiation by a fusion plasma

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Kempenaars, M.; McCormack, O.; Flanagan, J.; Pasqualotto, R.; contributors, JET

    2018-04-01

    We report the first experimental observation of the depolarization of the Thomson scattering (TS) radiation, a relativistic effect expected to occur in very high {{T}e} plasmas and never observed so far in a fusion machine. A set of unused optical fibers in the collection optics of the high resolution Thomson scattering system of JET has been used to detect the depolarized TS radiation during a JET campaign with {{T}e}≤slant 8 keV . A linear polarizer with the axis perpendicular to the direction of the incident E-field was placed in front of a fiber optic pair observing a region close to the plasma core, while another fiber pair with no polariser simultaneously observed an adjacent plasma region. The measured intensity ratio was found to be consistent with the theory, taking into account sensitivity coefficients of the two measurement channels determined with post-experiment calibrations and Raman scattering. This depolarization effect is at the basis of polarimetric TS, a different and complementary method for the analysis of TS spectra that can provide significant advantages for {{T}e} measurements in very hot plasmas such as in ITER ≤ft({{T}e}≤slant 40 keV \\right) .

  13. Ab initio calculation of the ion feature in x-ray Thomson scattering.

    PubMed

    Plagemann, Kai-Uwe; Rüter, Hannes R; Bornath, Thomas; Shihab, Mohammed; Desjarlais, Michael P; Fortmann, Carsten; Glenzer, Siegfried H; Redmer, Ronald

    2015-07-01

    The spectrum of x-ray Thomson scattering is proportional to the dynamic structure factor. An important contribution is the ion feature which describes elastic scattering of x rays off electrons. We apply an ab initio method for the calculation of the form factor of bound electrons, the slope of the screening cloud of free electrons, and the ion-ion structure factor in warm dense beryllium. With the presented method we can calculate the ion feature from first principles. These results will facilitate a better understanding of x-ray scattering in warm dense matter and an accurate measurement of ion temperatures which would allow determining nonequilibrium conditions, e.g., along shock propagation.

  14. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D.

    PubMed

    Brookman, M W; Austin, M E; McLean, A G; Carlstrom, T N; Hyatt, A W; Lohr, J

    2016-11-01

    Thomson scattering produces n e profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n e ∝ I TS , which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n e calibration is adjusted against an absolute n e from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n e from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as "ECH pump-out" generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.

  15. Streaked Thomson Scattering on Laboratory Plasma Jets

    NASA Astrophysics Data System (ADS)

    Banasek, Jacob; Byvank, Tom; Rocco, Sophia; Kusse, Bruce; Hammer, David

    2017-10-01

    Streaked Thomson scattering measurements have been performed on plasma jets created from a 15 μm thick radial Al or Ti foil load on COBRA, a 1 MA pulsed power machine. The goal was to measure the electron temperatures inside the center of the plasma jet created by the radial foil. The laser used for these measurements had a maximum energy of 10 J at 526.5 nm in a 3 ns duration pulse. Early experiments showed using the full energy significantly heats the 5 ×1018 cm-3 jet by inverse bremsstrahlung radiation. Here we used a streak camera to record the scattered spectrum and measure the evolving electron temperature of this laser heated jet. Analysis of the streak camera image showed that the electron temperature of the Al jet was increased from about 25 eV to 80-100 eV within about 2 ns. The Ti jets showed even stronger interaction with the laser, being heated to over 150 eV, and showed some heating even when only 1 J of laser energy was used. Also, the ion-acoustic peaks in the scattered spectrum from the Ti jets were significantly narrower than those from Al jets. Initial results will also be presented with scattered spectra taken at two different times within a single experiment by splitting the probe beam. This research is supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement DE-NA0001836.

  16. Public Data Set: Control and Automation of the Pegasus Multi-point Thomson Scattering System

    DOE Data Explorer

    Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Rodriguez Sanchez, Cuauhtemoc [University of Wisconsin-Madison] (ORCID:0000000334712586); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)

    2016-08-12

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in G.M. Bodner et al., 'Control and Automation of the Pegasus Multi-point Thomson Scattering System,' Rev. Sci. Instrum. 87, 11E523 (2016).

  17. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source.

    PubMed

    Du, Yingchao; Yan, Lixin; Hua, Jianfei; Du, Qiang; Zhang, Zhen; Li, Renkai; Qian, Houjun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2013-05-01

    Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 × 10(6) per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.

  18. Material Assessment for ITER's Collective Thomson Scattering first mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, R.; Policarpo, H.; Goncalves, B.

    2015-07-01

    The International Thermonuclear Energy Reactor (ITER) Collective Thomson Scattering (CTS) system is a diagnostic instrument that measures plasma density and velocity through Thomson scattering of microwave radiation. Some of the key components of the CTS are quasi-optical mirrors that are used to produce astigmatic beam patterns, which have impact on the strength and spatial resolution of the diagnostic signal. The mirrors are exposed to neutron radiation, which may alter the quality of the signal received. In this work, three different materials (molybdenum (Mo), stainless steel 316 (SS-316) and tungsten (W)) are considered for the first mirror of the CTS. Themore » objective is to access which of the material studied are best suited for this mirror, considering different neutron radiation loads simulated scenarios defined by ITER, based on the resultant stresses and temperature distributions. For it, the neutron irradiation, and subsequent heat-load on the mirrors are simulated using the Monte Carlo N-Particle (MCNP) code. Based on the MCNP heat-load results, transient thermal-structural Finite Element Analysis (FEA) of the mirror over a 400 s discharge, with and without cooling on the rear side, are conducted using in commercial FEA software ANSYS. Results show that of the tested materials Mo and W are the most suitable material for this application. Even though, this study does not yet consider the variation of the material properties with temperature, it presents a quick initial satisfactory assessment that may be considered in subsequent and more complex analysis. (authors)« less

  19. Digital filter polychromator for Thomson scattering applications

    NASA Astrophysics Data System (ADS)

    Solokha, V.; Kurskiev, G.; Mukhin, E.; Tolstyakov, S.; Babinov, N.; Bazhenov, A.; Bukreev, I.; Dmitriev, A.; Kochergin, M.; Koval, A.; Litvinov, A.; Masyukevich, S.; Razdobarin, A.; Samsonov, D.; Semenov, V.; Solovey, V.; Chernakov, P.; Chernakov, Al; Chernakov, An

    2018-02-01

    Incoherent Thomson scattering diagnostics (TS) is a proven technique capable of reliable and robust instantaneous measurement of electron temperature (T e) and density (n e) local values in wide area of plasma physics experiments: from hall-effect thrusters to tokamaks and stellarators. The TS cross section is very low (˜ 6.7 × 10-30 m2), and the corresponding TS signals, measured in fusion experiments, are usually of ˜10-15 of incident power. This paper represents 6 (7) channel filter polychromator equipped with avalanche photodiodes and low-noise preamplifiers. The incorporated ADC system (5 GS/s, 12 bit) provides digital optical output preventing acquisition system from electromagnetic interferences. The calibration techniques and T e, n e with corresponding errors measured in Globus-M plasma are given for the digital polychromator test-bench.

  20. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST.

    PubMed

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  1. Polychromator for the edge Thomson scattering system in ITER.

    PubMed

    Yatsuka, E; Hatae, T; Fujie, D; Kurokawa, A; Kusama, Y

    2012-10-01

    A new type polychromator has been designed for the edge Thomson scattering system in ITER. Signal light is parallelly dispersed into two parts at the first interference filter. Spectral transmissivities for some spectral channels may enhance better than the conventional type polychromator. In the new type polychromator, the misalignment due to the machine accuracy is expected to be within the margin of APD area. In order to calibrate the spectral transmissivity using the dual-laser injection method during the plasma discharge, it is preferred that the spectral channels are separated at the geometric mean of the injected two wavelengths.

  2. Thomson scattering in magnetic fields. [of white dwarf stars

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara

    1989-01-01

    The equation of transfer in Thomson scattering atmospheres with magnetic fields is solved using Monte Carlo methods. Two cases, a plane parallel atmosphere with a magnetic field perpendicular to the atmosphere, and a dipole star, are investigated. The wavelength dependence of polarization from plane-parallel atmosphere is qualitatively similar to that observed in the magnetic white dwarf Grw+70 deg 8247, and the field strength determined by the calculation, 320 MG, is quantitatively similar to that determined from the line spectrum. The dipole model does not resemble the data as well as the single plane-parallel atmosphere.

  3. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities formore » each plasma flow are determined.« less

  4. THE THOMSON SURFACE. I. REALITY AND MYTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, T. A.; DeForest, C. E., E-mail: howard@boulder.swri.edu

    2012-06-20

    The solar corona and heliosphere are visible via sunlight that is Thomson-scattered off free electrons and detected by coronagraphs and heliospheric imagers. It is well known that these instruments are most responsive to material at the 'Thomson surface', the sphere with a diameter passing through both the observer and the Sun. It is less well known that in fact the Thomson scattering efficiency is minimized on the Thomson surface. Unpolarized heliospheric imagers such as STEREO/HI are thus approximately equally responsive to material over more than a 90 Degree-Sign range of solar exit angles at each given position in the imagemore » plane. We call this range of angles the 'Thomson plateau'. We observe that heliospheric imagers are actually more sensitive to material far from the Thomson surface than close to it, at a fixed radius from the Sun. We review the theory of Thomson scattering as applied to heliospheric imaging, feature detection in the presence of background noise, geometry inference, and feature mass measurement. We show that feature detection is primarily limited by observing geometry and field of view, that the highest sensitivity for detection of density features is to objects close to the observer, that electron surface density inference is independent of geometry across the Thomson plateau, and that mass inference varies with observer distance in all geometries. We demonstrate the sensitivity results with a few examples of features detected by STEREO, far from the Thomson surface.« less

  5. Demonstration of x-ray Thomson scattering using picosecond K-α x-ray sources in the characterization of dense heated matter

    DOE PAGES

    Kritcher, A. L.; Neumayer, P.; Lee, H. J.; ...

    2008-10-31

    Here, we present K-α x-ray Thomson scattering from shock compressed matter for use as a diagnostic in determining the temperature, density, and ionization state with picosecond resolution. The development of this source as a diagnostic as well as stringent requirements for successful K-α x-ray Thomson scattering are addressed. Here, the first elastic and inelastic scattering measurements on a medium size laser facility have been observed. We present scattering data from solid density carbon plasmas with >1X 10 5 photons in the elastic peak that validate the capability of single shot characterization of warm dense matter and the ability to usemore » this scattering source at future free electron lasers and for fusion experiments at the National Ignition Facility (NIF), LLNL.« less

  6. Thomson scattering laser-electron X-ray source for reduction of patient radiation dose in interventional coronary angiography

    NASA Astrophysics Data System (ADS)

    Artyukov, I. A.; Dyachkov, N. V.; Feshchenko, R. M.; Polunina, A. V.; Popov, N. L.; Shvedunov, V. I.; Vinogradov, A. V.

    2017-05-01

    It was medical applications that stimulated F. Carrol in the early 1990s to start the research of on relativistic Thomson scattering X-ray sources, as a part of the infrastructure of the future society. The possibility to use such a source in interventional cardiology is discussed in this paper. The replacement of X-ray tube by relativistic Thomson scattering Xray source is predicted to lower the patient radiation dose by a factor of 3 while image quality remains the same. The required general characteristics of accelerator and laser units are found. They can be reached by existing technology. A semiempirical method for simulation of medical and technical parameters of interventional coronary angiography systems is suggested.

  7. Two-wavelength LIDAR Thomson scattering for ITER core plasma

    NASA Astrophysics Data System (ADS)

    Nielsen, P.; Gowers, C.; Salzmann, H.

    2017-07-01

    Our proposal for a LIDAR Thomson scattering system to measure Te and ne profiles in the ITER core plasma, is based on experience with the LIDAR system on JET, which is still operational after 30 years. The design uses currently available technology and complies with the measurement requirements given by ITER. In addition, it offers the following advantages over the conventional imaging approach currently being adopted by ITER: 1) No gas fill of the vessel required for absolute calibration. 2) Easier alignment. 3) Measurements over almost the complete plasma diameter. 4) Two mirrors only as front optics. For a given laser wavelength the dynamic range of the Te measurements is mainly limited by the collection optics' transmission roll-off in the blue and the range of spectral sensitivity of the required fast photomultipliers. With the originally proposed Ti:Sapphire laser, measurements of the envisaged maximum temperature of 40 keV are marginally possible. Here we present encouraging simulation results on the use of other laser systems and on the use of two lasers with different wavelength. Alternating two wavelengths was proposed already in 1997 as a method for calibrating the transmission of the collection system. In the present analysis, the two laser pulses are injected simultaneously. We find that the use of Nd:YAG lasers operated at fundamental and second harmonic, respectively, yields excellent results and preserves the spectral recalibration feature.

  8. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brookman, M. W., E-mail: brookmanmw@fusion.gat.com; Austin, M. E.; McLean, A. G.

    2016-11-15

    Thomson scattering produces n{sub e} profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n{sub e} ∝ I{sub TS}, which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n{sub e} calibration is adjusted against an absolute n{sub e} from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n{sub e} from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoffmore » and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as “ECH pump-out” generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.« less

  9. Design of practical alignment device in KSTAR Thomson diagnostic.

    PubMed

    Lee, J H; Lee, S H; Yamada, I

    2016-11-01

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak's Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR's Thomson scattering diagnostics.

  10. Ponderomotive perturbations of low density low-temperature plasma under laser Thomson scattering diagnostics

    NASA Astrophysics Data System (ADS)

    Shneider, Mikhail N.

    2017-10-01

    The ponderomotive perturbation in the interaction region of laser radiation with a low density and low-temperature plasma is considered. Estimates of the perturbation magnitude are determined from the plasma parameters, geometry, intensity, and wavelength of laser radiation. It is shown that ponderomotive perturbations can lead to large errors in the electron density when measured using Thomson scattering.

  11. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Shumei; Zang, Qing, E-mail: zangq@ipp.ac.cn; Han, Xiaofeng

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump systemmore » can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.« less

  12. Design of a new Nd:YAG Thomson scattering system for MAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannell, R.; Walsh, M. J.; Carolan, P. G.

    2008-10-15

    A new infrared Thomson scattering system has been designed for the MAST tokamak. The system will measure at 120 spatial points with {approx_equal}10 mm resolution across the plasma. Eight 30 Hz 1.6 J Nd:YAG lasers will be combined to produce a sampling rate of 240 Hz. The lasers will follow separate parallel beam paths to the MAST vessel. Scattered light will be collected at approximately f/6 over scattering angles ranging from 80 deg. to 120 deg. The laser energy and lens size, relative to an existing 1.2 J f/12 system, greatly increases the number of scattered photons collected per unitmore » length of laser beam. This is the third generation of this polychromator to be built and a number of modifications have been made to facilitate mass production and to improve performance. Detected scattered signals will be digitized at a rate of 1 GS/s by 8 bit analog to digital converters (ADCs.) Data may be read out from the ADCs between laser pulses to allow for real-time analysis.« less

  13. Design of practical alignment device in KSTAR Thomson diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J. H., E-mail: jhlee@nfri.re.kr; University of Science and Technology; Lee, S. H.

    2016-11-15

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak’s Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broadmore » wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR’s Thomson scattering diagnostics.« less

  14. Collective Thomson scattering data analysis for Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Abramovic, I.; Pavone, A.; Svensson, J.; Moseev, D.; Salewski, M.; Laqua, H. P.; Lopes Cardozo, N. J.; Wolf, R. C.

    2017-08-01

    Collective Thomson scattering (CTS) diagnostic is being installed on the Wendelstein 7-X stellarator to measure the bulk ion temperature in the upcoming experimental campaign. In order to prepare for the data analysis, a forward model of the diagnostic (eCTS) has been developed and integrated into the Bayesian data analysis framework Minerva. Synthetic spectra have been calculated with the forward model and inverted using Minerva in order to demonstrate the feasibility to measure the ion temperature in the presence of nuisance parameters that also influence CTS spectra. In this paper we report on the results of this anlysis and discuss the main sources of uncertainty in the CTS data analysis.

  15. An energy-confinement study of the MST reversed-field pinch using a Thomson-scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den Hartog, D.J.

    1989-01-01

    Thomson scattering measurements of the central electron temperature and density during the plasma current peak have been performed on the MST Reversed Field Pinch (RFP). This Thomson scattering diagnostic was calibrated for absolute electron density measurements. These measurements of T{sub e} and n{sub e}, when combined with profile assumptions, were used to calculate estimates of energy confinement time ({tau}{sub E}) and poloidal beta ({beta}{sub {theta}}). A standard discharge with I{sub p} {approx} 400 kA, F {approx} {minus}0.1, and {theta} {approx} 1.6 typically exhibited T{sub e} {approx} 275 eV, n{sub e} {approx} 2.0 {times} 10{sup 13} cm{sup {minus}3}, {tau}{sub E} Thomson scattering diagnostic was used in conjunction with a bolometer, VUV radiation monitor, and edge magnetic coils to study the loss of energy from the plasma. Results indicate that thermal transport from stochastic magnetic fields, particle loss, and radiation are important energy loss processes. The experiments done for this study included an F-scan, a paddle limiter insertion series, and an argon doping series. The plasma maintained a constant {beta}{sub {theta}} during these perturbation experiments, suggesting that increases in one energy loss channel are compensated by drops in other channels and increases in input power to the plasma.« less

  16. Plasma turbulence imaging using high-power laser Thomson scattering

    NASA Astrophysics Data System (ADS)

    Zweben, S. J.; Caird, J.; Davis, W.; Johnson, D. W.; Le Blanc, B. P.

    2001-01-01

    The two-dimensional (2D) structure of plasma density turbulence in a magnetically confined plasma can potentially be measured using a Thomson scattering system made from components of the Nova laser of Lawrence Livermore National Laboratory. For a plasma such as the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory, the laser would form an ≈10-cm-wide plane sheet beam passing vertically through the chamber across the magnetic field. The scattered light would be imaged by a charge coupled device camera viewing along the direction of the magnetic field. The laser energy required to make 2D images of density turbulence is in the range 1-3 kJ, which can potentially be obtained from a set of frequency-doubled Nd:glass amplifiers with diameters in the range of 208-315 mm. A laser pulse width of ⩽100 ns would be short enough to capture the highest frequency components of the expected density fluctuations.

  17. High time resolved electron temperature measurements by using the multi-pass Thomson scattering system in GAMMA 10/PDX.

    PubMed

    Yoshikawa, Masayuki; Yasuhara, Ryo; Ohta, Koichi; Chikatsu, Masayuki; Shima, Yoriko; Kohagura, Junko; Sakamoto, Mizuki; Nakashima, Yousuke; Imai, Tsuyoshi; Ichimura, Makoto; Yamada, Ichihiro; Funaba, Hisamichi; Minami, Takashi

    2016-11-01

    High time resolved electron temperature measurements are useful for fluctuation study. A multi-pass Thomson scattering (MPTS) system is proposed for the improvement of both increasing the TS signal intensity and time resolution. The MPTS system in GAMMA 10/PDX has been constructed for enhancing the Thomson scattered signals for the improvement of measurement accuracy. The MPTS system has a polarization-based configuration with an image relaying system. We optimized the image relaying optics for improving the multi-pass laser confinement and obtaining the stable MPTS signals over ten passing TS signals. The integrated MPTS signals increased about five times larger than that in the single pass system. Finally, time dependent electron temperatures were obtained in MHz sampling.

  18. Improvements to the MST Thomson Scattering Diagnostic

    NASA Astrophysics Data System (ADS)

    Adams, D. T.; Borchardt, M. T.; den Hartog, D. J.; Holly, D. J.; Kile, T.; Kubala, S. Z.; Jacobson, C. M.; Thomas, M. A.; Wallace, J. P.; Young, W. C.; MST Thomson Scattering Team

    2017-10-01

    Multiple upgrades to the MST Thomson Scattering diagnostic have been implemented to expand capabilities of the system. In the past, stray laser light prevented electron density measurements everywhere and temperature measurements for -z/a >0.75. To mitigate stray light, a new laser beamline is being commissioned that includes a longer entrance flight tube, close-fitting apertures, and baffles. A polarizer has been added to the collection optics to further reduce stray light. An absolute density calibration using Rayleigh scattering in argon will be performed. An insertable integrating sphere will provide a full-system spectral calibration as well as maps optical fibers to machine coordinates. Reduced transmission of the collection optics due to coatings from plasma-surface interactions is regularly monitored to inform timely replacements of the first lens. Long-wavelength filters have been installed to better characterize non-Maxwellian electron distribution features. Previous work has identified residual photons not described by a Maxwellian distribution during m =0 magnetic bursts. Further effort to characterize the distribution function will be described. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences program under Award No. DE-FC02-05ER54814.

  19. Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering.

    PubMed

    Har-Shemesh, Omri; Di Piazza, Antonino

    2012-04-15

    The measurement of peak laser intensities exceeding 10(20) W/cm(2) is in general a very challenging task. We suggest a simple method to accurately measure such high intensities up to about 10(23) W/cm(2), by colliding a beam of ultrarelativistic electrons with the laser pulse. The method exploits the high directionality of the radiation emitted by ultrarelativistic electrons via nonlinear Thomson scattering. Initial electron energies well within the reach of laser wake-field accelerators are required, allowing in principle for an all-optical setup. Accuracies of the order of 10% are theoretically envisaged. © 2012 Optical Society of America

  20. Demonstration of imaging X-ray Thomson scattering on OMEGA EP.

    PubMed

    Belancourt, Patrick X; Theobald, Wolfgang; Keiter, Paul A; Collins, Tim J B; Bonino, Mark J; Kozlowski, Pawel M; Regan, Sean P; Drake, R Paul

    2016-11-01

    Foams are a common material for high-energy-density physics experiments because of low, tunable densities, and being machinable. Simulating these experiments can be difficult because the equation of state is largely unknown for shocked foams. The focus of this experiment was to develop an x-ray scattering platform for measuring the equation of state of shocked foams on OMEGA EP. The foam used in this experiment is resorcinol formaldehyde with an initial density of 0.34 g/cm 3 . One long-pulse (10 ns) beam drives a shock into the foam, while the remaining three UV beams with a 2 ns square pulse irradiate a nickel foil to create the x-ray backlighter. The primary diagnostic for this platform, the imaging x-ray Thomson spectrometer, spectrally resolves the scattered x-ray beam while imaging in one spatial dimension. Ray tracing analysis of the density profile gives a compression of 3 ± 1 with a shock speed of 39 ± 6 km/s. Analysis of the scattered x-ray spectra gives an upper bound temperature of 20 eV.

  1. Ultraviolet Thomson Scattering from Direct-Drive Coronal Plasmas

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Goncharov, V. N.; Michel, D. T.; Follett, R. K.; Katz, J.; Froula, D. H.

    2013-10-01

    Ultraviolet (λ4 ω = 263 nm) Thomson scattering (TS) was used to probe ion-acoustic waves (IAW's) and electron plasma waves (EPW's) from direct-drive coronal plasmas. Fifty-nine drive beams (λ3 ω = 351 nm) illuminate a spherical target with a radius of ~860 μm. Advances in the ultraviolet (UV) TS diagnostic at the Omega Laser Facility provide the ability to detect deep UV photons (~190 nm) and allow access to scattered light from EPW's propagating near the 3 ω quarter-critical surface (~2.5 × 1021 cm-3) . A series of experiments studied the effects of ablator materials on coronal plasma conditions. Electron temperatures and densities were measured from 150 μm to 400 μm from the initial target surface. Standard CH shells were compared to three-layered shells consisting of Si doped CH, Si, and Be. Early analysis indicates that these multilayered targets have less hot-electron energy as a result of higher electron temperature in the coronal plasma. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Relativistic Electron Beams, Forward Thomson Scattering, and ``Raman'' Scattering

    NASA Astrophysics Data System (ADS)

    Simon, A.

    1999-11-01

    Experiments at LLE (see abstract by D. Hicks at this meeting) show that surprisingly high potentials (+0.5 to 2.0 MV) develop in plasmas irradiated by high-energy lasers. The highly conducting plasma will be a near equipotential and should attract return-current electrons in a radial beam-like distribution, especially in the outer low-density regions. This will initiate the BOT instability, creating large plasma waves with phase velocities close to c. Coherent Thomson scattering of the interaction beam from these waves must occur primarily in the forward direction. This will appear to be ``backward SRS'' upon reflection from a critical surface. We will show that the resulting spectrum is fairly broad and at short wavelengths. Collisional absorption of the scattered EM wave limits the reflectivity to low values (depending on the density scale length). Thus, a distinct difference exists between the spectrum for thick targets (nc surface present) and thin targets (gasbags, etc., from which primarily a narrow absolute-SRS backward emission occurs, at the peak density). The thick-target, reflected-wave angular distribution will be concentrated in the backward direction. The corresponding plasma-wave k-vector will be a fraction of k_0. The variation of the spectrum with potential and angle will be discussed. Comparison will be made with recent results at LLE and LLNL. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, UR, and NYSERDA.

  3. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    DOE PAGES

    Fletcher, L. B.; Zastrau, U.; Galtier, E.; ...

    2016-08-15

    Here, we present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen andmore » focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].« less

  4. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, L. B., E-mail: lbfletch@slac.stanford.edu; Galtier, E.; Gamboa, E. J.

    2016-11-15

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focusedmore » on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].« less

  5. Simultaneous imaging electron- and ion-feature Thomson scattering measurements of radiatively heated Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollock, B. B.; University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093; Meinecke, J.

    2012-10-15

    Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 {mu}m in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 {mu}m at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accuratemore » determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 {mu}m spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 {mu}m, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20{+-}4 at up to 200 eV electron temperatures.« less

  6. Simultaneous imaging electron- and ion-feature Thomson scattering measurements of radiatively heated Xe.

    PubMed

    Pollock, B B; Meinecke, J; Kuschel, S; Ross, J S; Shaw, J L; Stoafer, C; Divol, L; Tynan, G R; Glenzer, S H

    2012-10-01

    Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 μm in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 μm at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 μm spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 μm, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20±4 at up to 200 eV electron temperatures.

  7. Polarization from Thomson scattering of the light of a spherical, limb-darkened star

    NASA Technical Reports Server (NTRS)

    Rudy, R. J.

    1979-01-01

    The polarized flux produced by the Thomson scattering of the light of a spherical, limb-darkened star by optically thin, extrastellar regions of electrons is calculated and contrasted to previous models which treated the star as a point source. The point-source approximation is found to be valid for scattering by particles more than a stellar radius from the surface of the star but is inappropriate for those lying closer. The specific effect of limb darkening on the fractional polarization of the total light of a system is explored. If the principal source of light is the unpolarized flux of the star, the polarization is nearly independent of limb darkening.

  8. Generation of bright attosecond x-ray pulse trains via Thomson scattering from laser-plasma accelerators.

    PubMed

    Luo, W; Yu, T P; Chen, M; Song, Y M; Zhu, Z C; Ma, Y Y; Zhuo, H B

    2014-12-29

    Generation of attosecond x-ray pulse attracts more and more attention within the advanced light source user community due to its potentially wide applications. Here we propose an all-optical scheme to generate bright, attosecond hard x-ray pulse trains by Thomson backscattering of similarly structured electron beams produced in a vacuum channel by a tightly focused laser pulse. Design parameters for a proof-of-concept experiment are presented and demonstrated by using a particle-in-cell code and a four-dimensional laser-Compton scattering simulation code to model both the laser-based electron acceleration and Thomson scattering processes. Trains of 200 attosecond duration hard x-ray pulses holding stable longitudinal spacing with photon energies approaching 50 keV and maximum achievable peak brightness up to 1020 photons/s/mm2/mrad2/0.1%BW for each micro-bunch are observed. The suggested physical scheme for attosecond x-ray pulse trains generation may directly access the fastest time scales relevant to electron dynamics in atoms, molecules and materials.

  9. Dissipative quantum hydrodynamics model of x-ray Thomson scattering in dense plasmas

    NASA Astrophysics Data System (ADS)

    Diaw, Abdourahmane; Murillo, Michael

    2017-10-01

    X-ray Thomson scattering (XRTS) provides detailed diagnostic information about dense plasma experiments. The inferences made rely on an accurate model for the form factor, which is typically expressed in terms of a well-known response function. Here, we develop an alternate approach based on quantum hydrodynamics using a viscous form of dynamical density functional theory. This approach is shown to include the equation of state self-consistently, including sum rules, as well as irreversibility arising from collisions. This framework is used to generate a model for the scattering spectrum, and it offers an avenue for measuring hydrodynamic properties, such as transport coefficients, using XRTS. This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0344).

  10. Edge Thomson scattering diagnostic on COMPASS tokamak: Installation, calibration, operation, improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohm, P., E-mail: bohm@ipp.cas.cz; Bilkova, P.; Melich, R.

    2014-11-15

    The core Thomson scattering diagnostic (TS) on the COMPASS tokamak was put in operation and reported earlier. Implementation of edge TS, with spatial resolution along the laser beam up to ∼1/100 of the tokamak minor radius, is presented now. The procedure for spatial calibration and alignment of both core and edge systems is described. Several further upgrades of the TS system, like a triggering unit and piezo motor driven vacuum window shutter, are introduced as well. The edge TS system, together with the core TS, is now in routine operation and provides electron temperature and density profiles.

  11. Public Data Set: A Novel, Cost-Effective, Multi-Point Thomson Scattering System on the Pegasus Toroidal Experiment

    DOE Data Explorer

    Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Rodriguez Sanchez, Cuauhtemoc [University of Wisconsin-Madison] (ORCID:0000000334712586)

    2016-09-16

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in D.J. Schlossberg et. al., 'A Novel, Cost-Effective, Multi-Point Thomson Scattering System on the Pegasus Toroidal Experiment,' Rev. Sci. Instrum. 87, 11E403 (2016).

  12. Thomson-Scattering Study of the Subharmonic Decay of Ion-Acoustic Waves Driven by the Brillouin Instability

    NASA Astrophysics Data System (ADS)

    Bandulet, H. C.; Labaune, C.; Lewis, K.; Depierreux, S.

    2004-07-01

    Thomson scattering (TS) has been used to investigate the two-ion decay instability of ion acoustic waves generated by stimulated Brillouin scattering in an underdense CH plasma. Two complementary TS diagnostics, spectrally and spatially resolved, demonstrate the occurrence of the subharmonic decay of the primary ion acoustic wave into two secondary waves. The study of the laser intensity dependence shows that the secondary ion acoustic waves are correlated with the SBS reflectivity saturation, at a level of a few percent.

  13. Development of a YAG laser system for the edge Thomson scattering system in ITER.

    PubMed

    Hatae, T; Yatsuka, E; Hayashi, T; Yoshida, H; Ono, T; Kusama, Y

    2012-10-01

    A prototype YAG laser system for the edge Thomson scattering system in ITER has been newly developed. Performance of the laser amplifier was improved by using flow tubes made of samarium-doped glass; the small signal gain reached 20 at its maximum. As a result, an output energy of 7.66 J at 100 Hz was successfully achieved, and the performance exceeded the target performance (5 J, 100 Hz).

  14. Prospects for the Thomson scattering system on NSTX-Upgrade.

    PubMed

    Diallo, A; LeBlanc, B P; Labik, G; Stevens, D

    2012-10-01

    The paper discusses the projected configuration of the Thomson system on the National Spherical Torus Experiment (NSTX-U). In this paper, we discuss the projected configuration of the Thomson system on NSTX-U. More specifically, we determine, through both optical modeling of the collection optics and in-vessel measurements, that the collecting fibers are to be displaced by at most 1 cm toward the imaging plane along the optical axis. Finally, we estimate the performance of the Thomson system in measuring the electron temperature for NSTX-U discharges.

  15. Detecting non-maxwellian electron velocity distributions at JET by high resolution Thomson scattering.

    PubMed

    Beausang, K V; Prunty, S L; Scannell, R; Beurskens, M N; Walsh, M J; de la Luna, E

    2011-03-01

    The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6–7 keV, where in some cases the ECE electron temperature measurements can be 15%–20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined. The difficulties and limitations of modern TS system designs to determine the electron velocity distribution are also discussed. It is demonstrated that small deviations such as those suggested by previous ECE analysis could be potentially detected, depending on the spectral layout of the TS polychromators. The spectral layout of the JET high resolution Thomson scattering system is such that it could be used to determine these deviations between 1 and 6 keV, and the results presented here indicate that no evidence of non-Maxwellian behavior is observed in this range. In this paper, a modification to the current polychromator design is proposed, allowing non-Maxwellian distortions to be detected up to at least 10 keV.

  16. A Thomson scattering diagnostic on the Pegasus Toroidal experiment.

    PubMed

    Schlossberg, D J; Schoenbeck, N L; Dowd, A S; Fonck, R J; Moritz, J I; Thome, K E; Winz, G R

    2012-10-01

    By exploiting advances in high-energy pulsed lasers, volume phase holographic diffraction gratings, and image intensified CCD cameras, a new Thomson scattering system has been designed to operate from 532 - 592 nm on the Pegasus Toroidal Experiment. The system uses a frequency-doubled, Q-switched Nd:YAG laser operating with an energy of 2 J at 532 nm and a pulse duration of 7 ns FWHM. The beam path is < 7m, the beam diameter remains ≤ 3 mm throughout the plasma, and the beam dump and optical baffling is located in vacuum but can be removed for maintenance by closing a gate valve. A custom lens system collects scattered photons from 15 cm < R(maj) < 85 cm at ~F∕6 with 14 mm radial resolution. Initial measurements will be made at 12 spatial locations with 12 simultaneous background measurements at corresponding locations. The estimated signal at the machine-side collection optics is ~3.5 × 10(4) photons for plasma densities of 10(19) m(-3). Typical plasmas measured will range from densities of mid-10(18) to mid-10(19) m(-3) with electron temperatures from 10 to 1000 eV.

  17. High resolution Thomson scattering system for steady-state linear plasma sources

    NASA Astrophysics Data System (ADS)

    Lee, K. Y.; Lee, K. I.; Kim, J. H.; Lho, T.

    2018-01-01

    The high resolution Thomson scattering system with 63 points along a 25 mm line measures the radial electron temperature (Te) and its density (ne) in an argon plasma. By using a DC arc source with lanthanum hexaboride (LaB6) electrode, plasmas with electron temperature of over 5 eV and densities of 1.5 × 1019 m-3 have been measured. The system uses a frequency doubled (532 nm) Nd:YAG laser with 0.25 J/pulse at 20 Hz. The scattered light is collected and sent to a triple-grating spectrometer via optical-fibers, where images are recorded by an intensified charge coupled device (ICCD) camera. Although excellent in stray-light reduction, a disadvantage comes with its relatively low optical transmission and in sampling a tiny scattering volume. Thus requires accumulating multitude of images. In order to improve photon statistics, pixel binning in the ICCD camera as well as enlarging the intermediate slit-width inside the triple-grating spectrometer has been exploited. In addition, the ICCD camera capture images at 40 Hz while the laser is at 20 Hz. This operation mode allows us to alternate between background and scattering shot images. By image subtraction, influences from the plasma background are effectively taken out. Maximum likelihood estimation that uses a parameter sweep finds best fitting parameters Te and ne with the incoherent scattering spectrum.

  18. High resolution Thomson scattering system for steady-state linear plasma sources.

    PubMed

    Lee, K Y; Lee, K I; Kim, J H; Lho, T

    2018-01-01

    The high resolution Thomson scattering system with 63 points along a 25 mm line measures the radial electron temperature (T e ) and its density (n e ) in an argon plasma. By using a DC arc source with lanthanum hexaboride (LaB 6 ) electrode, plasmas with electron temperature of over 5 eV and densities of 1.5 × 10 19 m -3 have been measured. The system uses a frequency doubled (532 nm) Nd:YAG laser with 0.25 J/pulse at 20 Hz. The scattered light is collected and sent to a triple-grating spectrometer via optical-fibers, where images are recorded by an intensified charge coupled device (ICCD) camera. Although excellent in stray-light reduction, a disadvantage comes with its relatively low optical transmission and in sampling a tiny scattering volume. Thus requires accumulating multitude of images. In order to improve photon statistics, pixel binning in the ICCD camera as well as enlarging the intermediate slit-width inside the triple-grating spectrometer has been exploited. In addition, the ICCD camera capture images at 40 Hz while the laser is at 20 Hz. This operation mode allows us to alternate between background and scattering shot images. By image subtraction, influences from the plasma background are effectively taken out. Maximum likelihood estimation that uses a parameter sweep finds best fitting parameters T e and n e with the incoherent scattering spectrum.

  19. Improvements, upgrades, and plans for Thomson scattering on DIII-D

    NASA Astrophysics Data System (ADS)

    Carlstrom, T. N.; Du, D.; Glass, F.; Liu, C.; Watkins, M.; McLean, A. G.

    2016-10-01

    The Thomson scattering diagnostic on DIII-D consists of 3 beam lines that probe vertically, horizontally, and in the divertor region of the tokamak, with 54 spatial locations, edge spatial resolution down to 5 mm, and 10 Nd:YAG lasers. In its 25-year history, the collection lens optics and interference filters degraded and have been replaced, restoring previous performance. In addition, improved calibrations and detector temperature control (+/- 0.1 C) have reduced systematic errors. Cross calibration with the CO2 interferometer and ECE cut-off have improved the density calibration. Improvements to the beam line and lasers have increased the laser energy delivered to the scattering volume in the plasma. Future plans include moving the divertor system to measure regions of high triangularity using in-vessel mirrors to redirect the laser beam; adding a wide angle lens to the horizontal system to view the entire plasma radius near the plasma mid plane; and reversing the direction of the laser beam on the horizontal system to reduce the scattering angle and compressing the spectrum in wavelength space so that higher central Te measurements (<5 KeV) can be made with improved accuracy. Work supported by the US DOE under DE-FC02-04ER54698 and by LLNL under DE-AC52-07NA27344.

  20. Dual-angle, self-calibrating Thomson scattering measurements in RFX-MOD

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Pasqualotto, R.; Fassina, A.

    2014-11-01

    In the multipoint Thomson scattering (TS) system of the RFX-MOD experiment the signals from a few spatial positions can be observed simultaneously under two different scattering angles. In addition the detection system uses optical multiplexing by signal delays in fiber optic cables of different length so that the two sets of TS signals can be observed by the same polychromator. Owing to the dependence of the TS spectrum on the scattering angle, it was then possible to implement self-calibrating TS measurements in which the electron temperature Te, the electron density ne and the relative calibration coefficients of spectral channels sensitivity Ci were simultaneously determined by a suitable analysis of the two sets of TS data collected at the two angles. The analysis has shown that, in spite of the small difference in the spectra obtained at the two angles, reliable values of the relative calibration coefficients can be determined by the analysis of good S/N dual-angle spectra recorded in a few tens of plasma shots. This analysis suggests that in RFX-MOD the calibration of the entire set of TS polychromators by means of the similar, dual-laser (Nd:YAG/Nd:YLF) TS technique, should be feasible.

  1. Dual-angle, self-calibrating Thomson scattering measurements in RFX-MOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giudicotti, L., E-mail: leonardo.giudicotti@unipd.it; Department of Industrial Engineering, Padova University, Via Gradenigo 6/a, 35131 Padova; Pasqualotto, R.

    2014-11-15

    In the multipoint Thomson scattering (TS) system of the RFX-MOD experiment the signals from a few spatial positions can be observed simultaneously under two different scattering angles. In addition the detection system uses optical multiplexing by signal delays in fiber optic cables of different length so that the two sets of TS signals can be observed by the same polychromator. Owing to the dependence of the TS spectrum on the scattering angle, it was then possible to implement self-calibrating TS measurements in which the electron temperature T{sub e}, the electron density n{sub e} and the relative calibration coefficients of spectralmore » channels sensitivity C{sub i} were simultaneously determined by a suitable analysis of the two sets of TS data collected at the two angles. The analysis has shown that, in spite of the small difference in the spectra obtained at the two angles, reliable values of the relative calibration coefficients can be determined by the analysis of good S/N dual‑angle spectra recorded in a few tens of plasma shots. This analysis suggests that in RFX-MOD the calibration of the entire set of TS polychromators by means of the similar, dual-laser (Nd:YAG/Nd:YLF) TS technique, should be feasible.« less

  2. Imaging Coronal Mass Ejections and Large-Scale Solar Wind Structure Using IPS and Thomson-Scattered Sunlight (Invited)

    NASA Astrophysics Data System (ADS)

    Clover, J. M.; Jackson, B. V.; Buffington, A.; Hick, P. P.; Bisi, M. M.; Tokumaru, M.; Fujiki, K.

    2010-12-01

    The Solar Mass Ejection Imager (SMEI) observes Thomson-scattered white light from heliospheric electrons across almost all of the sky nearly all of the time since early 2003. Interplanetary scintillation (IPS) observations of velocity and g-level provide similar structure information but with a less-complete sky-and-time coverage. The Solar TErrestrial RElations Observatory (STEREO) twin spacecraft outer Heliospheric Imagers (HI-2) currently image the heliosphere in Thomson-scattered light near the ecliptic plane far from Earth. The Solar-Terrestrial Environment Laboratory (STELab) IPS observations provide IPS velocity and g-level values, which in conjunction with our tomographic reconstruction program, yield velocities and densities of the inner heliosphere in three dimensions. The same tomographic program substitutes SMEI Thomson-scattering brightness information for the g-level values to derive heliospheric densities from these data alone. We look at the global structure of the heliosphere concentrating mainly on three events from 2007 through the rise phase of Solar Cycle 24. The first event, observed in both the IPS and SMEI defines the three-dimensional velocity and density structure around the time of the shock observed at Earth on 02:02 UT 17 December 2007. The second event, seen only by SMEI, is that of the 23-26 April 2008 coronal mass ejection (CME) and its interplanetary counterpart. The third event is the CME (and its interplanetary counterpart) that took place 17 January 2010 and arrived at STEREO-B about four days later. For each event, we isolate the particular portion of the heliosphere attributed to the transient density structure using our tomographic technique, and then estimate its extent.

  3. Development of Thomson scattering system on Shenguang-III prototype laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Tao; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900; Li, Zhichao

    2015-02-15

    A Thomson scattering diagnostic system, using a 263 nm laser as the probe beam, is designed and implemented on Shenguang-III prototype laser facility. The probe beam is provided by an additional beam line completed recently. The diagnostic system allows simultaneous measurements of both ion feature and red-shifted electron feature from plasmas in a high-temperature (≥2 keV) and high-density (≥10{sup 21} cm{sup −3}) regime. Delicate design is made to satisfy the requirements for successful detection of the electron feature. High-quality ion feature spectra have already been diagnosed via this system in recent experiments with gas-filled hohlraums.

  4. Investigation of reliability of the cutoff probe by a comparison with Thomson scattering in high density processing plasmas

    NASA Astrophysics Data System (ADS)

    Seo, Byonghoon; Kim, Dae-Woong; Kim, Jung-Hyung; You, Shinjae

    2017-12-01

    A "cutoff probe" uses microwaves to measure the electron density in a plasma. It is particularly attractive because it is easy to fabricate and use, its measurement is immune to surface contamination by dielectric materials, and it has a straightforward analysis to measure electron density in real time. In this work, we experimentally investigate the accuracy of the cutoff probe through a detailed comparison with Thomson scattering in a low temperature, high density processing plasma. The result shows that the electron density measured by the cutoff probe is lower than that by Thomson scattering and that the discrepancy of the two results becomes smaller as the gap between the two tips increases and/or the neutral gas pressure decreases. The underestimated electron density found by the cutoff probe can be explained by the influence of the probe holder, which becomes important as the pressure increases and the gap gets closer.

  5. Detailed modeling of the statistical uncertainty of Thomson scattering measurements

    NASA Astrophysics Data System (ADS)

    Morton, L. A.; Parke, E.; Den Hartog, D. J.

    2013-11-01

    The uncertainty of electron density and temperature fluctuation measurements is determined by statistical uncertainty introduced by multiple noise sources. In order to quantify these uncertainties precisely, a simple but comprehensive model was made of the noise sources in the MST Thomson scattering system and of the resulting variance in the integrated scattered signals. The model agrees well with experimental and simulated results. The signal uncertainties are then used by our existing Bayesian analysis routine to find the most likely electron temperature and density, with confidence intervals. In the model, photonic noise from scattered light and plasma background light is multiplied by the noise enhancement factor (F) of the avalanche photodiode (APD). Electronic noise from the amplifier and digitizer is added. The amplifier response function shapes the signal and induces correlation in the noise. The data analysis routine fits a characteristic pulse to the digitized signals from the amplifier, giving the integrated scattered signals. A finite digitization rate loses information and can cause numerical integration error. We find a formula for the variance of the scattered signals in terms of the background and pulse amplitudes, and three calibration constants. The constants are measured easily under operating conditions, resulting in accurate estimation of the scattered signals' uncertainty. We measure F ≈ 3 for our APDs, in agreement with other measurements for similar APDs. This value is wavelength-independent, simplifying analysis. The correlated noise we observe is reproduced well using a Gaussian response function. Numerical integration error can be made negligible by using an interpolated characteristic pulse, allowing digitization rates as low as the detector bandwidth. The effect of background noise is also determined.

  6. An energy confinement study of the MST (Madison Symmetric Torus) reversed field pinch using a Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den Hartog, D.J.

    1989-11-01

    Thomson scattering measurements of the central electron temperature and density during the plasma current peak have been performed on the MST Reversed Field Pinch (RFP). This Thomson scattering diagnostic was calibrated for absolute electron density measurements. These measurements of T{sub e} and n{sub e}, when combined with profile assumptions, were used to calculate estimates of energy confinement time ({tau}{sub E}) and poloidal beta ({beta}{sub {theta}}). A standard discharge with I{sub p} {approx} 400 kA, F {approx} {minus}0.1, and {theta} {approx} 1.6 typically exhibited T{sub e} {approx} 275 eV, n{sub e} {approx} 2.0 {times} 10{sup 13} cm{sup {minus}3}, {tau}{sub E} {le}more » 1 ms, and {beta}{sub {theta}} {le} 8%. The results of a limited plasma current scaling study did not indicate a strong scaling of T{sub e} or {tau}{sub E} with I{sub p}. The Thomson scattering diagnostic was used in conjunction with a bolometer, VUV radiation monitor, and edge magnetic coils to study the loss of energy from the plasma. Results indicate that thermal transport from stochastic magnetic fields, particle loss, and radiation are important energy loss processes. The experiments done for this study included an F-scan, a paddle limiter insertion series, and an argon doping series. The plasma maintained a constant {beta}{tau} during these perturbation experiments, suggesting that increases in one energy loss channel are compensated by drops in other channels and increases in input power to the plasma.« less

  7. Anisotropic electron temperature measurements without knowing the spectral transmissivity for a JT-60SA Thomson scattering diagnostic.

    PubMed

    Tojo, H; Hatae, T; Yatsuka, E; Itami, K

    2012-10-01

    This paper focuses on a method for measuring the electron temperature (T(e)) without knowing the transmissivity using Thomson scattering diagnostic with a double-pass scattering system. Application of this method for measuring the anisotropic T(e), i.e., the T(e) in the directions parallel (T(eparallel)) and perpendicular (T(eperpendicular)) to the magnetic field, is proposed. Simulations based on the designed parameters for a JT-60SA indicate the feasibility of the measurements except in certain T(e) ranges, e.g., T(eparallel) ~ 3.5T(eperpendicular) at 120° of the scattering angle.

  8. Using X-ray Thomson Scattering to Characterize Highly Compressed, Near-Degenerate Plasmas at the NIF

    NASA Astrophysics Data System (ADS)

    Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Divol, L.; Kritcher, A. L.; Landen, O. L.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; MacDonald, M. J.; Saunders, A.; Witte, B.; Redmer, R.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, S. A.

    2017-10-01

    We are developing x-ray Thomson scattering for implosion experiments at the National Ignition Facility to characterize plasma conditions in plastic and beryllium capsules near stagnation, reaching more than 20x compression and electron densities of 1025 cm-3, corresponding to a Fermi energy of 170 eV. Using a zinc He- α x-ray source at 9 keV, experiments at a large scattering angle of 120° measure non-collective scattering spectra with high sensitivity to K-shell ionization, and find higher charge states than predicted by widely used ionization models. Reducing the scattering angle to 30° probes the collective scattering regime with sensitivity to collisions and conductivity. We will discuss recent results and future plans. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Investigating the dynamics of laser induced sparks in atmospheric helium using Rayleigh and Thomson scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedanovska, E.; Nersisyan, G.; Lewis, C. L. S.

    2015-01-07

    We have used optical Rayleigh and Thomson scattering to investigate the expansion dynamics of laser induced plasma in atmospheric helium and to map its electron parameters both in time and space. The plasma is created using 9 ns duration, 140 mJ pulses from a Nd:YAG laser operating at 1064 nm, focused with a 10 cm focal length lens, and probed with 7 ns, 80 mJ, and 532 nm Nd:YAG laser pulses. Between 0.4 μs and 22.5 μs after breakdown, the electron density decreases from 3.3 × 10{sup 17 }cm{sup −3} to 9 × 10{sup 13 }cm{sup −3}, while the temperature drops from 3.2 eV to 0.1 eV. Spatially resolved Thomson scattering data recorded up to 17.5 μs revealmore » that during this time the laser induced plasma expands at a rate given by R ∼ t{sup 0.4} consistent with a non-radiative spherical blast wave. This data also indicate the development of a toroidal structure in the lateral profile of both electron temperature and density. Rayleigh scattering data show that the gas density decreases in the center of the expanding plasma with a central scattering peak reemerging after about 12 μs. We have utilized a zero dimensional kinetic global model to identify the dominant particle species versus delay time and this indicates that metastable helium and the He{sub 2}{sup +} molecular ion play an important role.« less

  10. Development of polarization-controlled multi-pass Thomson scattering system in the GAMMA 10 tandem mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, M.; Morimoto, M.; Shima, Y.

    2012-10-15

    In the GAMMA 10 tandem mirror, the typical electron density is comparable to that of the peripheral plasma of torus-type fusion devices. Therefore, an effective method to increase Thomson scattering (TS) signals is required in order to improve signal quality. In GAMMA 10, the yttrium-aluminum-garnet (YAG)-TS system comprises a laser, incident optics, light collection optics, signal detection electronics, and a data recording system. We have been developing a multi-pass TS method for a polarization-based system based on the GAMMA 10 YAG TS. To evaluate the effectiveness of the polarization-based configuration, the multi-pass system was installed in the GAMMA 10 YAG-TSmore » system, which is capable of double-pass scattering. We carried out a Rayleigh scattering experiment and applied this double-pass scattering system to the GAMMA 10 plasma. The integrated scattering signal was made about twice as large by the double-pass system.« less

  11. First results of electron temperature measurements by the use of multi-pass Thomson scattering system in GAMMA 10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, M., E-mail: yosikawa@prc.tsukuba.ac.jp; Nagasu, K.; Shimamura, Y.

    2014-11-15

    A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.

  12. First results of electron temperature measurements by the use of multi-pass Thomson scattering system in GAMMA 10.

    PubMed

    Yoshikawa, M; Yasuhara, R; Nagasu, K; Shimamura, Y; Shima, Y; Kohagura, J; Sakamoto, M; Nakashima, Y; Imai, T; Ichimura, M; Yamada, I; Funaba, H; Kawahata, K; Minami, T

    2014-11-01

    A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.

  13. Performance of JT-60SA divertor Thomson scattering diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajita, Shin, E-mail: kajita.shin@nagoya-u.jp; Hatae, Takaki; Tojo, Hiroshi

    2015-08-15

    For the satellite tokamak JT-60 Super Advanced (JT-60SA), a divertor Thomson scattering measurement system is planning to be installed. In this study, we improved the design of the collection optics based on the previous one, in which it was found that the solid angle of the collection optics became very small, mainly because of poor accessibility to the measurement region. By improvement, the solid angle was increased by up to approximately five times. To accurately assess the measurement performance, background noise was assessed using the plasma parameters in two typical discharges in JT-60SA calculated from the SONIC code. Moreover, themore » influence of the reflection of bremsstrahlung radiation by the wall is simulated by using a ray tracing simulation. The errors in the temperature and the density are assessed based on the simulation results for three typical field of views.« less

  14. Performance of JT-60SA divertor Thomson scattering diagnostics.

    PubMed

    Kajita, Shin; Hatae, Takaki; Tojo, Hiroshi; Enokuchi, Akito; Hamano, Takashi; Shimizu, Katsuhiro; Kawashima, Hisato

    2015-08-01

    For the satellite tokamak JT-60 Super Advanced (JT-60SA), a divertor Thomson scattering measurement system is planning to be installed. In this study, we improved the design of the collection optics based on the previous one, in which it was found that the solid angle of the collection optics became very small, mainly because of poor accessibility to the measurement region. By improvement, the solid angle was increased by up to approximately five times. To accurately assess the measurement performance, background noise was assessed using the plasma parameters in two typical discharges in JT-60SA calculated from the SONIC code. Moreover, the influence of the reflection of bremsstrahlung radiation by the wall is simulated by using a ray tracing simulation. The errors in the temperature and the density are assessed based on the simulation results for three typical field of views.

  15. Validations of calibration-free measurements of electron temperature using double-pass Thomson scattering diagnostics from theoretical and experimental aspects.

    PubMed

    Tojo, H; Yamada, I; Yasuhara, R; Ejiri, A; Hiratsuka, J; Togashi, H; Yatsuka, E; Hatae, T; Funaba, H; Hayashi, H; Takase, Y; Itami, K

    2016-09-01

    This paper evaluates the accuracy of electron temperature measurements and relative transmissivities of double-pass Thomson scattering diagnostics. The electron temperature (T e ) is obtained from the ratio of signals from a double-pass scattering system, then relative transmissivities are calculated from the measured T e and intensity of the signals. How accurate the values are depends on the electron temperature (T e ) and scattering angle (θ), and therefore the accuracy of the values was evaluated experimentally using the Large Helical Device (LHD) and the Tokyo spherical tokamak-2 (TST-2). Analyzing the data from the TST-2 indicates that a high T e and a large scattering angle (θ) yield accurate values. Indeed, the errors for scattering angle θ = 135° are approximately half of those for θ = 115°. The method of determining the T e in a wide T e range spanning over two orders of magnitude (0.01-1.5 keV) was validated using the experimental results of the LHD and TST-2. A simple method to provide relative transmissivities, which include inputs from collection optics, vacuum window, optical fibers, and polychromators, is also presented. The relative errors were less than approximately 10%. Numerical simulations also indicate that the T e measurements are valid under harsh radiation conditions. This method to obtain T e can be considered for the design of Thomson scattering systems where there is high-performance plasma that generates harsh radiation environments.

  16. X-Ray Thomson Scattering Without the Chihara Decomposition

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph; Baczewski, Andrew; Shulenburger, Luke; Hansen, Stephanie B.; Desjarlais, Michael P.; Sandia National Laboratories Collaboration

    X-Ray Thomson Scattering is an important experimental technique used in dynamic compression experiments to measure the properties of warm dense matter. The fundamental property probed in these experiments is the electronic dynamic structure factor that is typically modeled using an empirical three-term decomposition (Chihara, J. Phys. F, 1987). One of the crucial assumptions of this decomposition is that the system's electrons can be either classified as bound to ions or free. This decomposition may not be accurate for materials in the warm dense regime. We present unambiguous first principles calculations of the dynamic structure factor independent of the Chihara decomposition that can be used to benchmark these assumptions. Results are generated using a finite-temperature real-time time-dependent density functional theory applied for the first time in these conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  17. Ultrafast Kα x-ray Thomson scattering from shock compressed lithium hydride

    DOE PAGES

    Kritcher, A. L.; Neumayer, P.; Castor, J.; ...

    2009-04-13

    Spectrally and temporally resolved x-ray Thomson scattering using ultrafast Ti Kα x rays has provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 ns heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models. Here, the temperature evolution of the target at various times during shock progression was characterized from the intensity of the elastic scattering component. The observation of scattering from plasmons, electron plasma oscillations, at shock coalescence indicates a transitionmore » to a dense metallic plasma state in LiH. From the frequency shift of the measured plasmon feature the electron density was directly determined with high accuracy, providing a material compression of a factor of 3 times solid density. The quality of data achieved in these experiments demonstrates the capability for single shot dynamic characterization of dense shock compressed matter. Here, the conditions probed in this experiment are relevant for the study of the physics of planetary formation and to characterize inertial confinement fusion targets for experiments such as on the National Ignition Facility, Lawrence Livermore National Laboratory.« less

  18. Initial results of the high resolution edge Thomson scattering upgrade at DIII-D.

    PubMed

    Eldon, D; Bray, B D; Deterly, T M; Liu, C; Watkins, M; Groebner, R J; Leonard, A W; Osborne, T H; Snyder, P B; Boivin, R L; Tynan, G R

    2012-10-01

    Validation of models of pedestal structure is an important part of predicting pedestal height and performance in future tokamaks. The Thomson scattering diagnostic at DIII-D has been upgraded in support of validating these models. Spatial and temporal resolution, as well as signal to noise ratio, have all been specifically enhanced in the pedestal region. This region is now diagnosed by 20 view-chords with a spacing of 6 mm and a scattering length of just under 5 mm sampled at a nominal rate of 250 Hz. When mapped to the outboard midplane, this corresponds to ~3 mm spacing. These measurements are being used to test critical gradient models, in which pedestal gradients increase in time until a threshold is reached. This paper will describe the specifications of the upgrade and present initial results of the system.

  19. Investigation of thermodynamic equilibrium in laser-induced aluminum plasma using the H{sub α} line profiles and Thomson scattering spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvejić, M., E-mail: marko.cvejic@ipb.ac.rs, E-mail: krzysztof.dzierzega@uj.edu.pl; Faculty of Physics, Weizmann Institute of Science, Rehovot 7610001; Dzierżęga, K., E-mail: marko.cvejic@ipb.ac.rs, E-mail: krzysztof.dzierzega@uj.edu.pl

    2015-07-13

    We have studied isothermal equilibrium in the laser-induced plasma from aluminum pellets in argon at pressure of 200 mbar by using a method which combines the standard laser Thomson scattering and analysis of the H{sub α}, Stark-broadened, line profiles. Plasma was created using 4.5 ns, 4 mJ pulses from a Nd:YAG laser at 1064 nm. While electron density and temperature were determined from the electron feature of Thomson scattering spectra, the heavy particle temperature was obtained from the H{sub α} full profile applying computer simulation including ion-dynamical effects. We have found strong imbalance between these two temperatures during entire plasma evolution whichmore » indicates its non-isothermal character. At the same time, according to the McWhirter criterion, the electron density was high enough to establish plasma in local thermodynamic equilibrium.« less

  20. Thomson scattering diagnostic systems in ITER

    NASA Astrophysics Data System (ADS)

    Bassan, M.; Andrew, P.; Kurskiev, G.; Mukhin, E.; Hatae, T.; Vayakis, G.; Yatsuka, E.; Walsh, M.

    2016-01-01

    Thomson scattering (TS) is a proven diagnostic technique that will be implemented in ITER in three independent systems. The Edge TS will measure electron temperature Te and electron density ne profiles at high resolution in the region with r/a>0.8 (with a the minor radius). The Core TS will cover the region r/a<0.85 and shall be able to measure electron temperatures up to 40 keV . The Divertor TS will observe a segment of the divertor plasma more than 700 mm long and is designed to detect Te as low as 0.3 eV . The Edge and Core systems are primary contributors to Te and ne profiles. Both are installed in equatorial port 10 and very close together with the toroidal distance between the two laser beams of less than 600 mm at the first wall (~ 6° toroidal separation), a characteristic that should allow to reliably match the two profiles in the region 0.8

  1. A novel, cost-effective, multi-point Thomson scattering system on the Pegasus Toroidal Experiment (invited)

    DOE PAGES

    Schlossberg, David J.; Bodner, Grant M.; Bongard, Michael W.; ...

    2016-09-16

    Here, a novel, cost-effective, multi-point Thomson scattering system has been designed, implemented, and operated on the Pegasus Toroidal Experiment. Leveraging advances in Nd:YAG lasers, high-efficiency volume phase holographic transmission gratings, and increased quantum-efficiency Generation 3 image-intensified charge coupled device (ICCD) cameras, the system provides Thomson spectra at eight spatial locations for a single grating/camera pair. The on-board digitization of the ICCD camera enables easy modular expansion, evidenced by recent extension from 4 to 12 plasma/background spatial location pairs. Stray light is rejected using time-of-flight methods suited to gated ICCDs, and background light is blocked during detector readout by a fastmore » shutter. This –10 3 reduction in background light enables further expansion to up to 24 spatial locations. The implementation now provides single-shot T e(R) for n e > 5 × 10 18 m –3.« less

  2. Validations of calibration-free measurements of electron temperature using double-pass Thomson scattering diagnostics from theoretical and experimental aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tojo, H., E-mail: tojo.hiroshi@qst.go.jp; Hiratsuka, J.; Yatsuka, E.

    2016-09-15

    This paper evaluates the accuracy of electron temperature measurements and relative transmissivities of double-pass Thomson scattering diagnostics. The electron temperature (T{sub e}) is obtained from the ratio of signals from a double-pass scattering system, then relative transmissivities are calculated from the measured T{sub e} and intensity of the signals. How accurate the values are depends on the electron temperature (T{sub e}) and scattering angle (θ), and therefore the accuracy of the values was evaluated experimentally using the Large Helical Device (LHD) and the Tokyo spherical tokamak-2 (TST-2). Analyzing the data from the TST-2 indicates that a high T{sub e} andmore » a large scattering angle (θ) yield accurate values. Indeed, the errors for scattering angle θ = 135° are approximately half of those for θ = 115°. The method of determining the T{sub e} in a wide T{sub e} range spanning over two orders of magnitude (0.01–1.5 keV) was validated using the experimental results of the LHD and TST-2. A simple method to provide relative transmissivities, which include inputs from collection optics, vacuum window, optical fibers, and polychromators, is also presented. The relative errors were less than approximately 10%. Numerical simulations also indicate that the T{sub e} measurements are valid under harsh radiation conditions. This method to obtain T{sub e} can be considered for the design of Thomson scattering systems where there is high-performance plasma that generates harsh radiation environments.« less

  3. Design of collection optics and polychromators for a JT-60SA Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tojo, H.; Hatae, T.; Sakuma, T.

    2010-10-15

    This paper presents designs of collection optics for a JT-60SA Thomson scattering system. By using tangential (to the toroidal direction) YAG laser injection, three collection optics without strong chromatic aberration generated by the wide viewing angle and small design volume were found to measure almost all the radial space. For edge plasma measurements, the authors optimized the channel number and wavelength ranges of band-pass filters in a polychromator to reduce the relative error in T{sub e} by considering all spatial channels and a double-pass laser system with different geometric parameters.

  4. Particle-in-cell modeling of laser Thomson scattering in low-density plasmas at elevated laser intensities

    NASA Astrophysics Data System (ADS)

    Powis, Andrew T.; Shneider, Mikhail N.

    2018-05-01

    Incoherent Thomson scattering is a non-intrusive technique commonly used for measuring local plasma density. Within low-density, low-temperature plasmas and for sufficient laser intensity, the laser may perturb the local electron density via the ponderomotive force, causing the diagnostic to become intrusive and leading to erroneous results. A theoretical model for this effect is validated numerically via kinetic simulations of a quasi-neutral plasma using the particle-in-cell technique.

  5. Collective Thomson scattering of a high power electron cyclotron resonance heating beam in LHD (invited).

    PubMed

    Kubo, S; Nishiura, M; Tanaka, K; Shimozuma, T; Yoshimura, Y; Igami, H; Takahash, H; Mutoh, T; Tamura, N; Tatematsu, Y; Saito, T; Notake, T; Korsholm, S B; Meo, F; Nielsen, S K; Salewski, M; Stejner, M

    2010-10-01

    Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power electron cyclotron resonance heating (ECRH) system in Large Helical Device (LHD). The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH system. The 32 channel radiometer with sharp notch filter at the front end is attached to the ECRH system transmission line as a CTS receiver. The validation of the CTS signal is performed by scanning the scattering volume. A new method to separate the CTS signal from background electron cyclotron emission is developed and applied to derive the bulk and high energy ion components for several combinations of neutral beam heated plasmas.

  6. Thomson scattering diagnostics of thermal plasmas: Laser heating of electrons and the existence of local thermodynamic equilibrium.

    PubMed

    Murphy, A B

    2004-01-01

    A number of assessments of electron temperatures in atmospheric-pressure arc plasmas using Thomson scattering of laser light have recently been published. However, in this method, the electron temperature is perturbed due to strong heating of the electrons by the incident laser beam. This heating was taken into account by measuring the electron temperature as a function of the laser pulse energy, and linearly extrapolating the results to zero pulse energy to obtain an unperturbed electron temperature. In the present paper, calculations show that the laser heating process has a highly nonlinear dependence on laser power, and that the usual linear extrapolation leads to an overestimate of the electron temperature, typically by 5000 K. The nonlinearity occurs due to the strong dependence on electron temperature of the absorption of laser energy and of the collisional and radiative cooling of the heated electrons. There are further problems in deriving accurate electron temperatures from laser scattering due to necessary averages that have to be made over the duration of the laser pulse and over the finite volume from which laser light is scattered. These problems are particularly acute in measurements in which the laser beam is defocused in order to minimize laser heating; this can lead to the derivation of electron temperatures that are significantly greater than those existing anywhere in the scattering volume. It was concluded from the earlier Thomson scattering measurements that there were significant deviations from equilibrium between the electron and heavy-particle temperatures at the center of arc plasmas of industrial interest. The present calculations indicate that such deviations are only of the order of 1000 K in 20 000 K, so that the usual approximation that arc plasmas are approximately in local thermodynamic equilibrium still applies.

  7. Anisotropic electron temperature measurements without knowing the spectral transmissivity for a JT-60SA Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tojo, H.; Hatae, T.; Yatsuka, E.

    2012-10-15

    This paper focuses on a method for measuring the electron temperature (T{sub e}) without knowing the transmissivity using Thomson scattering diagnostic with a double-pass scattering system. Application of this method for measuring the anisotropic T{sub e}, i.e., the T{sub e} in the directions parallel (T{sub e Double-Vertical-Line Double-Vertical-Line }) and perpendicular (T{sub e Up-Tack }) to the magnetic field, is proposed. Simulations based on the designed parameters for a JT-60SA indicate the feasibility of the measurements except in certain T{sub e} ranges, e.g., T{sub e Double-Vertical-Line Double-Vertical-Line }{approx} 3.5T{sub e Up-Tack} at 120 Degree-Sign of the scattering angle.

  8. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanikova, E.; Division of Fusion Plasma Physics, KTH Royal Institute of Technology, SE-10691 Stockholm; Peterka, M.

    2016-11-15

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence onmore » the actual magnetic configuration.« less

  9. Dynamic conductivity and plasmon profile of aluminum in the ultra-fast-matter regime

    NASA Astrophysics Data System (ADS)

    Dharma-wardana, M. W. C.

    2016-06-01

    We use an explicitly isochoric two-temperature theory to analyze recent x-ray laser scattering data for aluminum in the ultra-fast-matter (UFM) regime up to 6 eV. The observed surprisingly low conductivities are explained by including strong electron-ion scattering effects using the phase shifts calculated via the neutral-pseudo-atom model. The difference between the static conductivity for UFM-Al and equilibrium aluminum in the warm-dense matter state is clearly brought out by comparisons with available density-fucntional+molecular-dynamics simulations. Thus the applicability of the Mermin model to UFM is questioned. The static and dynamic conductivity, collision frequency, and the plasmon line shape, evaluated within the simplest Born approximation for UFM aluminum, are in good agreement with experiment.

  10. Theoretical ultra-fast spectroscopy in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Molina-Sanchez, Alejandro; Sangalli, Davide; Marini, Andrea; Wirtz, Ludger

    Semiconducting 2D-materials like the transition metal dichalcogenides (TMDs) MoS2, MoSe2, WS2, WSe2 are promising alternatives to graphene for designing novel opto-electronic devices. The strong spin-orbit interaction along with the breaking of inversion symmetry in single-layer TMDs allow using the valley-index as a new quantum number. The practical use of valley physics depends on the lifetimes of valley-polarized excitons which are affected by scattering at phonons, impurities and by carrier-carrier interactions. The carrier dynamics can be monitored using ultra-fast spectroscopies such as pump-probe experiments. The carrier dynamics is simulated using non-equilibrium Green's function theory in an ab-initio framework. We include carrier relaxation through electron-phonon interaction. We obtain the transient absorption spectra of single-layer TMD and compare our simulations with recent pump-probe experiments

  11. Ultra-fast framing camera tube

    DOEpatents

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  12. Radial resolution enhancement of the NSTX Thomson scattering diagnostic.

    PubMed

    LeBlanc, B P; Diallo, A; Labik, G; Stevens, D R

    2012-10-01

    Current magnetic confinement plasma physics research has increased the demand for radial resolution in profile diagnostics, in particular in the edge and pedestal regions. On NSTX, an upgrade of the existing multi-point Thomson scattering diagnostic has been implemented in order to respond to the research program needs. Twelve new radial channels have been added bringing the total number of positions to 42. Four previously un-instrumented fiber bundles were put in service. Eight existing "active" fiber bundles were divided in two sub-bundles each in order to increase spatial resolution. Twelve radial channels now cover the pedestal region with a resolution near one centimeter. Fifteen radial channels cover the core and internal transport barrier regions. Two additional channels were added, one near the inner edge and one in the outer scrape-off layer. The intersection of the focused viewing optics field of view with a finite-width laser beam results in major-radius cross talk between adjacent fiber sub-bundles. A discussion and calculation of the cross talk will be presented.

  13. Generation of Optical Vortices by Nonlinear Inverse Thomson Scattering at Arbitrary Angle Interactions

    NASA Astrophysics Data System (ADS)

    Taira, Yoshitaka; Katoh, Masahiro

    2018-06-01

    We theoretically verify that optical vortices carrying orbital angular momentum are generated in various astrophysical situations via nonlinear inverse Thomson scattering. Arbitrary angle collisions between relativistic electrons and circularly polarized strong electromagnetic waves are treated. We reveal that the higher harmonic components of scattered photons carry well-defined orbital angular momentum under a specific condition that the Lorentz factor of the electron is much larger than the field strength parameter of the electromagnetic wave. Our study indicates that optical vortices in a wide frequency range from radio waves to gamma-rays are naturally generated in environments where high-energy electrons interact with circularly polarized strong electromagnetic waves at various interaction angles. Optical vortices should be a new multi-messenger member carrying information concerning the physical circumstances of their sources, e.g., the magnetic and radiation fields. Moreover, their interactions with matter via their orbital angular momenta may play an important role in the evolution of matter in the universe.

  14. A compact multichannel spectrometer for Thomson scatteringa)

    NASA Astrophysics Data System (ADS)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te < 100 eV are achieved by a 2971 l/mm VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  15. Spectroscopic Analysis and Thomson Scattering Diagnostics of Wire Produced Plasma

    NASA Astrophysics Data System (ADS)

    Plechaty, Christopher; Sotnikov, Vladimir; Main, Daniel; Caplinger, James; Wallerstein, Austin; Kim, Tony

    2014-10-01

    The Lower Hybrid Drift Instability (LHDI) in plasma is driven by the presence of inhomogeneities in density, temperature, or magnetic field (Krall 1971, Davidson 1977), and occurs in systems where the electrons are magnetized and the ions are effectively unmagnetized. The LHDI is thought to occur in magnetic reconnection (Huba 1977), and has also been investigated as a mitigation technique which can allow for communications to take place through the plasma formed around hypersonic aircraft (Sotnikov 2010). To further understand the phenomenology of the LHDI, we plan to carry out experiments at the Air Force Research Laboratory, in the newly formed Plasma Physics Sensors Laboratory. In experiment, a pulsed power generator is employed to produce plasma by passing current through single, or dual-wire configurations. To characterize the plasma, a Thomson scattering diagnostic is employed, along with a visible spectroscopy diagnostic. This work was performed under the auspices of the U.S. Department of Defense by Riverside Research under Contract BAA-FA8650-13-C-1539.

  16. X-ray radiation from nonlinear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma.

    PubMed

    Ta Phuoc, K; Rousse, A; Pittman, M; Rousseau, J P; Malka, V; Fritzler, S; Umstadter, D; Hulin, D

    2003-11-07

    We have generated x-ray radiation from the nonlinear Thomson scattering of a 30 fs/1.5 J laser beam on plasma electrons. A collimated x-ray radiation with a broad continuous spectrum peaked at 0.15 keV with a significant tail up to 2 keV has been observed. These characteristics are found to depend strongly on the laser strength parameter a(0). This radiative process is dominant for a(0) greater than unity at which point the relativistic scattering of the laser light originates from MeV energy electrons inside the plasma.

  17. Correction of the spectral calibration of the Joint European Torus core light detecting and ranging Thomson scattering diagnostic using ray tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawke, J.; Scannell, R.; Maslov, M.

    2013-10-15

    This work isolated the cause of the observed discrepancy between the electron temperature (T{sub e}) measurements before and after the JET Core LIDAR Thomson Scattering (TS) diagnostic was upgraded. In the upgrade process, stray light filters positioned just before the detectors were removed from the system. Modelling showed that the shift imposed on the stray light filters transmission functions due to the variations in the incidence angles of the collected photons impacted plasma measurements. To correct for this identified source of error, correction factors were developed using ray tracing models for the calibration and operational states of the diagnostic. Themore » application of these correction factors resulted in an increase in the observed T{sub e}, resulting in the partial if not complete removal of the observed discrepancy in the measured T{sub e} between the JET core LIDAR TS diagnostic, High Resolution Thomson Scattering, and the Electron Cyclotron Emission diagnostics.« less

  18. Upgrade to the MPTS Thomson scattering diagnostic in preparation for NSTX-U restart

    NASA Astrophysics Data System (ADS)

    Leblanc, Benoit; Diallo, Ahmed

    2017-10-01

    Upgrades to Multi-Pulse Thomson Scattering (MPTS) diagnostic are in progress. An innovative laser is being added to existing the two 30-Hz Nd:YAG lasers. The new laser also has 30-Hz base operation, but differs notably in its capacity of generating rapid bursts of nominally 50 pulses at either 1 KHz or 10 KHz. This Pulsed-Bursting Laser System (PBLS) is described elsewhere. The current laser delivery optics, which supports two paraxial beam paths, is maintained. One beam path will be occupied by PBLS. The other two laser beams will be actively combined coaxially and will occupy the second beam path. The new laser arrangement will result in a 90-Hz baseline operation, plus the PBLS burst capability. While the existing sample-and-hold electronics is expected to track a 1-KHz sequence, it will not be able to follow a 10-KHz burst. For this purpose, ten radial channels, dedicated to the pedestal region, will be instrumented with 250-MHz digitizers. The NSTX-U longer plasma duration and increased heating power will be conducive to situations with sustained high background light, a condition exacerbated by the absence of viewing dump necessitated by machine geometry. Additional work is slated to study the behavior of the fast signal detection in presence of strong background light. This work is supported by US DoE Contract DE-AC02-09CH11466 and ECRP funding.

  19. Ultra-fast ipsilateral DPOAE adaptation not modulated by attention?

    NASA Astrophysics Data System (ADS)

    Dalhoff, Ernst; Zelle, Dennis; Gummer, Anthony W.

    2018-05-01

    Efferent stimulation of outer hair cells is supposed to attenuate cochlear amplification of sound waves and is accompanied by reduced DPOAE amplitudes. Recently, a method using two subsequent f2 pulses during presentation of a longer f1 pulse was introduced to measure fast ipsilateral adaptation effects on separated DPOAE components. Compensating primary-tone onsets for their latencies at the f2-tonotopic place, the average adaptation measured in four normal-hearing subjects was 5.0 dB with a time constant below 5 ms. In the present study, two experiments were performed to determine the origin of this ultra-fast ipsilateral adaptation effect. The first experiment measured ultra-fast ipsilateral adaptation using a two-pulse paradigm at three frequencies in the four subjects, while controlling for visual attention of the subjects. The other experiment also controlled for visual attention, but utilized a sequence of f2 short pulses in the presence of a continuous f1 tone to sample ipsilateral adaptation effects with longer time constants in eight subjects. In the first experiment, no significant change in the ultra-fast adaptation between non-directed attention and visual attention could be detected. In contrast, the second experiment revealed significant changes in the magnitude of the slower ipsilateral adaptation in the visual-attention condition. In conclusion, the lack of an attentional influence indicates that the ultra-fast ipsilateral DPOAE adaptation is not solely mediated by the medial olivocochlear reflex.

  20. Bright and ultra-fast scintillation from a semiconductor?

    PubMed Central

    Derenzo, Stephen E.; Bourret-Courshesne, Edith; Bizarri, Gregory; Canning, Andrew

    2015-01-01

    Semiconductor scintillators are worth studying because they include both the highest luminosities and shortest decay times of all known scintillators. Moreover, many semiconductors have the heaviest stable elements (Tl, Hg, Pb, Bi) as a major constituent and a high ion pair yield that is proportional to the energy deposited. We review the scintillation properties of semiconductors activated by native defects, isoelectronic impurities, donors and acceptors with special emphasis on those that have exceptionally high luminosities (e.g. ZnO:Zn, ZnS:Ag,Cl, CdS:Ag,Cl) and those that have ultra-fast decay times (e.g. ZnO:Ga; CdS:In). We discuss underlying mechanisms that are consistent with these properties and the possibilities for achieving (1) 200,000 photons/MeV and 1% fwhm energy resolution for 662 keV gamma rays, (2) ultra-fast (ns) decay times and coincident resolving times of 30 ps fwhm for time-of-flight positron emission tomography, and (3) both a high luminosity and an ultra-fast decay time from the same scintillator at cryogenic temperatures. PMID:26855462

  1. Production of High Harmonic X-ray Radiation from Non-linear Thomson Scattering at LLNL PLEIADES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, J; Doyuran, A; Frigola, P

    2005-05-17

    We describe an experiment for production of high harmonic x-ray radiation from Thomson backscattering of an ultra-short high power density laser by a relativistic electron beam at the PLEIADES facility at LLNL. In this scenario, electrons execute a ''figure-8'' motion under the influence of the high-intensity laser field, where the constant characterizing the field strength is expected to exceed unity: a{sub L} = eE{sub L}/m{sub e}cw{sub L} {ge} 1. With large a{sub L} this motion produces high harmonic x-ray radiation and significant broadening of the spectral peaks. This paper is intended to give a layout of the PLEIADES experiment, alongmore » with progress towards experimental goals.« less

  2. mrsFAST-Ultra: a compact, SNP-aware mapper for high performance sequencing applications.

    PubMed

    Hach, Faraz; Sarrafi, Iman; Hormozdiari, Farhad; Alkan, Can; Eichler, Evan E; Sahinalp, S Cenk

    2014-07-01

    High throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for processing and downstream analysis. While tools that report the 'best' mapping location of each read provide a fast way to process HTS data, they are not suitable for many types of downstream analysis such as structural variation detection, where it is important to report multiple mapping loci for each read. For this purpose we introduce mrsFAST-Ultra, a fast, cache oblivious, SNP-aware aligner that can handle the multi-mapping of HTS reads very efficiently. mrsFAST-Ultra improves mrsFAST, our first cache oblivious read aligner capable of handling multi-mapping reads, through new and compact index structures that reduce not only the overall memory usage but also the number of CPU operations per alignment. In fact the size of the index generated by mrsFAST-Ultra is 10 times smaller than that of mrsFAST. As importantly, mrsFAST-Ultra introduces new features such as being able to (i) obtain the best mapping loci for each read, and (ii) return all reads that have at most n mapping loci (within an error threshold), together with these loci, for any user specified n. Furthermore, mrsFAST-Ultra is SNP-aware, i.e. it can map reads to reference genome while discounting the mismatches that occur at common SNP locations provided by db-SNP; this significantly increases the number of reads that can be mapped to the reference genome. Notice that all of the above features are implemented within the index structure and are not simple post-processing steps and thus are performed highly efficiently. Finally, mrsFAST-Ultra utilizes multiple available cores and processors and can be tuned for various memory settings. Our results show that mrsFAST-Ultra is roughly five times faster than its predecessor mrsFAST. In comparison to newly enhanced popular tools such as Bowtie2, it is more sensitive (it can report 10 times or more mappings per read) and much faster (six times or

  3. Collective effects in the Thomson back-scattering between a laser pulse and a relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Bacci, A.; Maroli, C.; Petrillo, V.; Serafini, L.

    2006-08-01

    Collective effects in the radiation emission via Thomson back-scattering of an intense optical laser pulse by high brightness electron beams are analyzed. The micro-bunching of the electron beam on the scale of the wavelength of the emitted radiation and the consequent free-electron-laser instability may significantly enhance the number of photons emitted. Scaling-laws of the radiation properties, both in the collective and incoherent spontaneous regimes versus laser and electron beam parameters are discussed in the framework of the one-dimensional model.

  4. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, W.; College of Science, National University of Defense Technology, Changsha 410073; Zhuo, H. B.

    2013-10-21

    The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ≤200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 10{sup 6} photons/s in the form of ∼160 as pulses in the range of 3–300 keV are predicted, with a peak brightness of ≥5 × 10{sup 20} photons/(s mm{sup 2} mrad{sup 2} 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed “attosecondmore » physics.”.« less

  5. An adjustable short-focal length, high-gradient PMQ electron-beam final-focus system for the PLEIADES ultra-fast x-ray Thomson source

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Ku

    In the span of a 100 year since the discovery of first x-rays by Roentgen that won him the first Nobel prize in physics, several types of radiation sources have been developed. Currently, radiations at extremely short wavelengths have only been accessed at synchrotron radiation sources. However, the current 3rd generation synchrotron sources can only produce x-rays of energy up to 60 keV and pulse lengths of several picoseconds long. But needs for shorter wavelength and shorter pulse duration radiations demanded by scientists to understand the nature of matter at atomic/molecular scale initiated the new scientific research for the production of sub-picosecond, hard x-rays. At the Lawrence Livermore National Laboratory, a Thomson x-ray source in the backscattering mode---a head-on collision between a high intensity Ti:Sapphire Chirped Pulse Amplification laser and a relativistic electron beam---called the PLEIADES (Picosecond Laser-Electron Inter-Action for the Dynamical Evaluation of Structures) laboratory has been developed. Early works demonstrated the production of quasi-monochromatic, femto-second long, hard x-rays. Initially reported x-ray flux was in the low range of 105--10 6 photons per shot. During the early stage of PLEIADES experiments, 15 T/m electromagnet final focusing quadrupoles (in a triplet lattice configuration) were employed to focus the beam to a 40-50 mum spot-size. A larger focal spot-size beam has a low-density of electron particles available at the interaction with incident photons, which leads to a low scattering probability. The current dissertation shows that by employing a 560 T/m PMQ (Permanent-Magnet Quadrupole) final focus system, an electron beam as small as 10-20 mum can be achieved. The implementation of this final focus system demonstrated the improvement of the total x-ray flux by two orders of magnitude. The PMQ final focus system also produced small electron beams consistently over 30-100 MeV electron beam energy, which

  6. Synoptic maps for the heliospheric Thomson scattering brightness as observed by the Helios photometers

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.; Schwenn, R.

    1991-01-01

    A method for displaying the electron Thomson scattering intensity in the inner heliosphere as observed by the zodiacal light photometers on board the Helios spacecraft in the form of synoptic maps is presented. The method is based on the assumption that the bulk of the scattering electrons along the line of sight is located near the point closest to the sun. Inner-heliospheric structures will generally be represented properly in these synoptic maps only if they are sufficiently long-lived (that is, a significant fraction of a solar rotation period). The examples of Helios synoptic maps discussed (from data in April 1976 and November 1978), indicate that it is possible to identify large-scale, long-lived density enhancements in the inner heliosphere. It is expected that the Helios synoptic maps will be particularly useful in the study of corotating structures (e.g., streamers), and the maps will be most reliable during periods when few transient featurs are present in the corona, i.e., during solar minimum.

  7. Assessment of multi-pulse laser-induced damage threshold of metallic mirrors for Thomson scattering system.

    PubMed

    Sato, Masaya; Kajita, Shin; Yasuhara, Ryo; Ohno, Noriyasu; Tokitani, Masayuki; Yoshida, Naoaki; Tawara, Yuzuru

    2013-04-22

    Multi-pulse laser-induced damage threshold (LIDT) was experimentally investigated up to ~10(6) pulses for Cu, Ag mirrors. The surface roughness and the hardness dependence on the LIDT were also examined. The LIDT of OFHC-Cu decreased with the pulse number and was 1.0 J/cm(2) at 1.8 × 10(6) pulses. The expected LIDT of cutting Ag at 10(7) pulses was the highest; Ag mirror would be one of the best choices for ITER Thomson scattering system. For the roughness and hardness, material dependences of LIDT are discussed with experimental results.

  8. The design of the optical Thomson scattering diagnostic for the National Ignition Facility.

    PubMed

    Datte, P S; Ross, J S; Froula, D H; Daub, K D; Galbraith, J; Glenzer, S; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manha, D; Manuel, A M; Molander, W; Montgomery, D; Moody, J; Swadling, G F; Weaver, J

    2016-11-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0 -210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3 . We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.

  9. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D

    DOE PAGES

    Brookman, M. W.; Austin, M. E.; McLean, A. G.; ...

    2016-08-08

    Thomson scattering (TS) produces n e profiles from measurement of scattered laser beam intensity. In the case of Rayleigh scattering, it provides a first calibration of the relation n e / ITS, which depends on many factors (e.g. laser alignment and power, optics, and measurement systems). On DIII-D, the n e calibration is adjusted for each laser and optic path against an absolute n e measurement from a density-driven cutoff on the 48 channel 2nd harmonic X-mode electron cyclotron emission (ECE) system. This method has been used to calibrate Thompson densities from the edge to near the core (r/a >more » 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core. ECH also changes underlying MHD activity. Furthermore, on the removal of ECH power, cutoff penetrates in from the edge to the core and channels fall successively and smoothly into cutoff. This improves the quality of the TS n e calibration while minimizing wall loading.« less

  10. Design advances of the Core Plasma Thomson Scattering diagnostic for ITER

    NASA Astrophysics Data System (ADS)

    Scannell, R.; Maslov, M.; Naylor, G.; O'Gorman, T.; Kempenaars, M.; Carr, M.; Bilkova, P.; Bohm, P.; Giudicotti, L.; Pasqualotto, R.; Bassan, M.; Vayakis, G.; Walsh, M.; Huxford, R.

    2017-11-01

    The Core Plasma Thomson Scattering (CPTS) diagnostic on ITER performs measurements of the electron temperature and density profiles which are critical to the understanding of the ITER plasma. The diagnostic must satisfy the ITER project requirements, which translate to requirements on performance as well as reliability, safety and engineering. The implications are particularly challenging for beam dump lifetime, the need for continuous active alignment of the diagnostic during operation, allowable neutron flux in the interspace and the protection of the first mirror from plasma deposition. The CPTS design has been evolving over a number of years. One recent improvement is that the collection optics have been modified to include freeform surfaces. These freeform surfaces introduce extra complexity to the manufacturing but provide greater flexibility in the design. The greater flexibility introduced allows for example to lower neutron throughput or use fewer surfaces while improving optical performance. Performance assessment has shown that scattering from a 1064 nm laser will be sufficient to meet the measurement requirements, at least for the system at the start of operations. Optical transmission at λ < 600 nm is expected to degrade over the ITER lifetime due to fibre darkening and deposition on the first mirror. For this reason, it is proposed that the diagnostic should additionally include measurements of TS 'depolarised light' and a 1319 nm laser system. These additional techniques have different spectral and polarisation dependencies compared to scattering from a 1064 nm laser and hence provide greater robustness into the inferred measurements of Te and ne in the core.

  11. Time resolved Thomson scattering diagnostic of pulsed gas metal arc welding (GMAW) process

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marquès, J. L.; Schein, J.

    2014-11-01

    In this work a Thomson scattering diagnostic technique was applied to obtain time resolved electron temperature and density values during a gas metal arc welding (GMAW) process. The investigated GMAW process was run with aluminum wire (AlMg 4,5 Mn) with 1.2 mm diameter as a wire electrode, argon as a shielding gas and peak currents in the range of 400 A. Time resolved measurements could be achieved by triggering the laser pulse at shifted time positions with respect to the current pulse driving the process. Time evaluation of resulting electron temperatures and densities is used to investigate the state of the plasma in different phases of the current pulse and to determine the influence of the metal vapor and droplets on the plasma properties.

  12. Ultraviolet Thomson Scattering from Direct-Drive Coronal Plasmas in Multilayer Targets

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Goncharov, V. N.; Michel, D. T.; Follett, R. K.; Katz, J.; Froula, D. H.

    2014-10-01

    Ultraviolet (λ4 ω = 263 nm) Thomson scattering (TS) was used to probe ion-acoustic waves (IAW's) and electron plasma waves (EPW's) from direct-drive coronal plasmas. Fifty-nine drive beams (λ3 ω = 351 nm) illuminate a spherical target with a radius of ~ 860 μ m. A series of experiments studied the effect of higher electron temperature near the 3 ω quarter-critical surface (~ 2 . 5 ×1021 cm-3) on laser-plasma interactions resulting from a Si layer in the target. Electron temperatures and densities were measured from 150 to 400 μm from the initial target surface. Standard CH shells were compared to two-layered shells of CH and Si and three-layered shells of CH, Si, and CH. These multilayer targets have less hot-electron energy than standard CH shells as a result of higher electron temperature in the coronal plasmas. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. Data-driven sensitivity inference for Thomson scattering electron density measurement systems.

    PubMed

    Fujii, Keisuke; Yamada, Ichihiro; Hasuo, Masahiro

    2017-01-01

    We developed a method to infer the calibration parameters of multichannel measurement systems, such as channel variations of sensitivity and noise amplitude, from experimental data. We regard such uncertainties of the calibration parameters as dependent noise. The statistical properties of the dependent noise and that of the latent functions were modeled and implemented in the Gaussian process kernel. Based on their statistical difference, both parameters were inferred from the data. We applied this method to the electron density measurement system by Thomson scattering for the Large Helical Device plasma, which is equipped with 141 spatial channels. Based on the 210 sets of experimental data, we evaluated the correction factor of the sensitivity and noise amplitude for each channel. The correction factor varies by ≈10%, and the random noise amplitude is ≈2%, i.e., the measurement accuracy increases by a factor of 5 after this sensitivity correction. The certainty improvement in the spatial derivative inference was demonstrated.

  14. Picosecond Thermal Dynamics in an Underdense Plasma Measured with Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Haberberger, D.; Katz, J.; Bucht, S.; Davies, A.; Bromage, J.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.

    2017-10-01

    Field-ionized underdense plasmas have many promising applications within the laser-plasma interaction field: nuclear fusion, particle accelerators, x-ray sources, and laser-plasma amplification. Having complete knowledge of the plasma dynamics is essential to establishing optimal parameters for a given application. Here picosecond-resolved Thomson scattering measurements have been used to determine the electron thermal dynamics of an underdense ( 1019/cm) H2 plasma irradiated by a 60-ps, 1053-nm laser pulse with an intensity of 2 × 1014 W/cm2. The picosecond-resolved spectra were obtained with a novel pulse-front tilt compensated streaked optical spectrometer. The electron temperature was observed to rise from an initial 5 eV to a density-dependent plateau in 23 ps. Simulation results indicate that inverse bremsstrahlung heating, radiative cooling, and radial conduction cooling all play an important role in modeling the thermal dynamics. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Estimation of reliable range of electron temperature measurements with sets of given optical bandpass filters for KSTAR Thomson scattering system based on synthetic Thomson data

    NASA Astrophysics Data System (ADS)

    Kim, K.-h.; Oh, T.-s.; Park, K.-r.; Lee, J. H.; Ghim, Y.-c.

    2017-11-01

    One factor determining the reliability of measurements of electron temperature using a Thomson scattering (TS) system is transmittance of the optical bandpass filters in polychromators. We investigate the system performance as a function of electron temperature to determine reliable range of measurements for a given set of the optical bandpass filters. We show that such a reliability, i.e., both bias and random errors, can be obtained by building a forward model of the KSTAR TS system to generate synthetic TS data with the prescribed electron temperature and density profiles. The prescribed profiles are compared with the estimated ones to quantify both bias and random errors.

  16. The SPARC_LAB Thomson source

    NASA Astrophysics Data System (ADS)

    Vaccarezza, C.; Alesini, D.; Anania, M. P.; Bacci, A.; Biagioni, A.; Bisesto, F.; Bellaveglia, M.; Cardarelli, P.; Cardelli, F.; Cianchi, A.; Chiadroni, E.; Croia, M.; Curcio, A.; Delogu, P.; Giovenale, D. Di; Domenico, G. Di; Pirro, G. Di; Drebot, I.; Ferrario, M.; Filippi, F.; Gallo, A.; Galletti, M.; Gambaccini, M.; Giribono, A.; Golosio, B.; Li, W.; Mostacci, A.; Oliva, P.; Palmer, D.; Petrillo, V.; Petrarca, M.; Pioli, S.; Piersanti, L.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Serafini, L.; Suliman, G.; Villa, F.

    2016-09-01

    The SPARC_LAB Thomson source is a compact X-ray source based on the Thomson backscattering process presently under its second phase of commissioning at the LNF. The electron beam energy ranges between 30 and 150 MeV, the electrons collide head-on with the Ti:Sapphire FLAME laser pulse the energy of which ranges between 1 and 5 J with pulse lengths in the 25 fs-10 ps range, this provides an X-ray energy tunability in the range of 20-500 keV, with the further capability to generate strongly non-linear phenomena and to drive diffusion processes due to multiple and plural scattering effects. The experimental results of the obtained X-ray radiation are presented.

  17. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ida, K.; Itoh, K.; Yoshinuma, M.; Moon, C.; Inagaki, S.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Ohdachi, S.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I.

    2016-04-01

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  18. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, T., E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp; Yoshinuma, M.; Ohdachi, S.

    2016-04-15

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  19. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging.

    PubMed

    Kobayashi, T; Ida, K; Itoh, K; Yoshinuma, M; Moon, C; Inagaki, S; Yamada, I; Funaba, H; Yasuhara, R; Tsuchiya, H; Ohdachi, S; Yoshimura, Y; Igami, H; Shimozuma, T; Kubo, S; Tsujimura, T I

    2016-04-01

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  20. A low-cost, ultra-fast and ultra-low noise preamplifier for silicon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Gasmi, Khaled

    2018-02-01

    An ultra-fast and ultra-low noise preamplifier for amplifying the fast and weak electrical signals generated by silicon avalanche photodiodes has been designed and developed. It is characterized by its simplicity, compactness, reliability and low cost of construction. A very wide bandwidth of 300 MHz, a very good linearity from 1 kHz to 280 MHz, an ultra-low noise level at the input of only 1.7 nV Hz-1/2 and a very good stability are its key features. The compact size (70 mm  ×  90 mm) and light weight (45 g), as well as its excellent characteristics, make this preamplifier very competitive compared to any commercial preamplifier. The preamplifier, which is a main part of the detection system of a homemade laser remote sensing system, has been successfully tested. In addition, it is versatile and can be used in any optical detection system requiring high speed and very low noise electronics.

  1. Evidence for out-of-equilibrium states in warm dense matter probed by x-ray Thomson scattering.

    PubMed

    Clérouin, Jean; Robert, Grégory; Arnault, Philippe; Ticknor, Christopher; Kress, Joel D; Collins, Lee A

    2015-01-01

    A recent and unexpected discrepancy between ab initio simulations and the interpretation of a laser shock experiment on aluminum, probed by x-ray Thomson scattering (XRTS), is addressed. The ion-ion structure factor deduced from the XRTS elastic peak (ion feature) is only compatible with a strongly coupled out-of-equilibrium state. Orbital free molecular dynamics simulations with ions colder than the electrons are employed to interpret the experiment. The relevance of decoupled temperatures for ions and electrons is discussed. The possibility that it mimics a transient, or metastable, out-of-equilibrium state after melting is also suggested.

  2. The real time multi point Thomson scattering diagnostic at NSTX-U

    NASA Astrophysics Data System (ADS)

    Laggner, Florian; Kolemen, Egemen; Diallo, Ahmed; Leblanc, Benoit; Rozenblat, Roman; Tchilinguirian, Greg; NSTX-U Team Team

    2017-10-01

    This contribution presents the upgrade of the multi point Thomson scattering (MPTS) diagnostic for real time application. As a key diagnostic at NSTX-U, the MPTS diagnostic simultaneously measures the electron density (ne) and electron temperature (Te) profiles of a plasma discharge. Therefore, this powerful diagnostic can directly access the electron pressure of the plasma. Currently, only post-discharge evaluation of the data is available, however, since the plasma pressure is one important drive for instabilities, real time measurements of this quantities would be beneficial for plasma control. In a first step, ten MPTS channels were equipped with real time electronics, which improve the data acquisition rate by five orders of magnitude. The commissioning of the system is ongoing and first benchmarks of the real time evaluation routines against the standard, post-discharge evaluation show promising results: The Te as well as ne profiles of both types of analyses agree within their uncertainties. This work was supported by the US Department of Energy under DE-SC0015878 and DE-SC0015480.

  3. Energy-angle correlation correction algorithm for monochromatic computed tomography based on Thomson scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang

    2017-12-01

    The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.

  4. Chevron beam dump for ITER edge Thomson scattering system.

    PubMed

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  5. Chevron beam dump for ITER edge Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatsuka, E.; Hatae, T.; Bassan, M.

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due tomore » nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.« less

  6. Feasibility of UltraFast Doppler in Post-operative Evaluation of Hepatic Artery in Recipients following Liver Transplantation.

    PubMed

    Kim, Se-Young; Kim, Kyoung Won; Choi, Sang Hyun; Kwon, Jae Hyun; Song, Gi-Won; Kwon, Heon-Ju; Yun, Young Ju; Lee, Jeongjin; Lee, Sung-Gyu

    2017-11-01

    To determine the feasibility of using UltraFast Doppler in post-operative evaluation of the hepatic artery (HA) after liver transplantation (LT), we evaluated 283 simultaneous conventional and UltraFast Doppler sessions in 126 recipients over a 2-mo period after LT, using an Aixplorer scanner The Doppler indexes of the HA (peak systolic velocity [PSV], end-diastolic velocity [EDV], resistive index [RI] and systolic acceleration time [SAT]) by retrospective analysis of retrieved waves from UltraFast Doppler clips were compared with those obtained by conventional spectral Doppler. Correlation, performance in diagnosing the pathologic wave, examination time and reproducibility were evaluated. The PSV, EDV, RI and SAT of spectral and UltraFast Doppler measurements exhibited excellent correlation with favorable diagnostic performance. During the bedside examination, the mean time spent for UltraFast clip storing was significantly shorter than that for conventional Doppler US measurements. Both conventional and UltraFast Doppler exhibited good to excellent inter-analysis consistency. In conclusion, compared with conventional spectral Doppler, UltraFast Doppler values correlated excellently and yielded acceptable pathologic wave diagnostic performance with reduced examination time at the bedside and excellent reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Upgrades to improve the usability, reliability, and spectral range of the MST Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Kubala, S. Z.; Borchardt, M. T.; Den Hartog, D. J.; Holly, D. J.; Jacobson, C. M.; Morton, L. A.; Young, W. C.

    2016-11-01

    The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.

  8. Upgrades to improve the usability, reliability, and spectral range of the MST Thomson scattering diagnostic.

    PubMed

    Kubala, S Z; Borchardt, M T; Den Hartog, D J; Holly, D J; Jacobson, C M; Morton, L A; Young, W C

    2016-11-01

    The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.

  9. Thomson scattering diagnostics of steady state and pulsed welding processes without and with metal vapor

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marqués, J.-L.; Schein, J.

    2015-01-01

    Thomson scattering is applied to measure temperature and density of electrons in the arc plasma of the direct current gas tungsten arc welding (GTAW) process and pulsed gas metal arc welding (GMAW) process. This diagnostic technique allows to determine these plasma parameters independent from the gas composition and heavy particles temperature. The experimental setup is adapted to perform measurements on stationary as well as transient processes. Spatial and temporal electron temperature and density profiles of a pure argon arc in the case of the GTAW process and argon arc with the presence of aluminum metal vapor in the case of the GMAW process were obtained. Additionally the data is used to estimate the concentration of the metal vapor in the GMAW plasma.

  10. Ultra-fast Object Recognition from Few Spikes

    DTIC Science & Technology

    2005-07-06

    Computer Science and Artificial Intelligence Laboratory Ultra-fast Object Recognition from Few Spikes Chou Hung, Gabriel Kreiman , Tomaso Poggio...neural code for different kinds of object-related information. *The authors, Chou Hung and Gabriel Kreiman , contributed equally to this work...Supplementary Material is available at http://ramonycajal.mit.edu/ kreiman /resources/ultrafast

  11. Design and implementation of a full profile sub-cm ruby laser based Thomson scattering system for MAST

    NASA Astrophysics Data System (ADS)

    O'Gorman, T.; Mc Carthy, P. J.; Prunty, S.; Walsh, M. J.; Dunstan, M. R.; Huxford, R. B.; Naylor, G.; Maguet, Emmanuel; Scannell, R.; Shibaev, S.

    2010-12-01

    A major upgrade to the ruby Thomson scattering (TS) system has been designed and implemented on the Mega-ampere spherical tokamak (MAST). MAST is equipped with two TS systems, a Nd:YAG laser system and a ruby laser system. Apart from common collection optics each system provides independent measurements of the electron temperature and density profile. This paper focuses on the recent upgrades to the ruby TS system. The upgraded ruby TS system measures 512 points across the major radius of the MAST vessel. The ruby laser can deliver one 10 J 40 ns pulse at 1 Hz or two 5 J pulses separated by 100-800 μs. The Thomson scattered light is collected at F/15 over 1.4 m. This system can resolve small (7 mm) structures at 200 points in both the electron temperature and density channels at high optical contrast; ˜50% modulated transfer function. The system is fully automated for each MAST discharge and requires little adjustment. The estimated measurement error for a 7 mm radial point is <4% of T_e and <3% of n_e in the range of 40 eV to 2 keV, for a density of n_e=2 × 10^{19} m ^{-3}. The photon statistics at lower density can be increased by binning in the radial direction as desired. A new intensified CCD camera design allows the ruby TS system to take two snapshots separated with a minimum time of 230 μs. This is exploited to measure two density and temperature profiles or to measure the plasma background light.

  12. Narrow-band emission in Thomson sources operating in the high-field regime.

    PubMed

    Terzić, Balša; Deitrick, Kirsten; Hofler, Alicia S; Krafft, Geoffrey A

    2014-02-21

    We present a novel and quite general analysis of the interaction of a high-field chirped laser pulse and a relativistic electron, in which exquisite control of the spectral brilliance of the up-shifted Thomson-scattered photon is shown to be possible. Normally, when Thomson scattering occurs at high field strengths, there is ponderomotive line broadening in the scattered radiation. This effect makes the bandwidth too large for some applications and reduces the spectral brilliance. We show that such broadening can be corrected and eliminated by suitable frequency modulation of the incident laser pulse. Furthermore, we suggest a practical realization of this compensation idea in terms of a chirped-beam-driven free electron laser oscillator configuration and show that significant compensation can occur, even with the imperfect matching to be expected in these conditions.

  13. Tangential System of Thomson Scattering for Tokamak T-15

    NASA Astrophysics Data System (ADS)

    Asadulin, G. M.; Bel'bas, I. S.; Gorshkov, A. V.

    2017-12-01

    Two systems of Thomson scattering diagnostics, with vertical and tangential probing, are used in the D-shaped plasma cross section in tokamak T-15. The tangential system allows measuring plasma temperature and density profiles along the major radius of the tokamak. This paper presents the tangential system project. The system is based on a Nd:YAG laser with wavelength of 1064 nm, pulse energy of 3 J, pulse duration of 10 ns, and repetition rate of 100 Hz. The chosen geometry allows collecting light from ten uniformly spaced points. Optimization of the registration system has been accomplished. The collected light will be transmitted through an optical fiber bundle with diameter of 3 mm and quartz fibers (numerical aperture is 0.22). Six-channel polychromators based on high-contrast interference filters have been chosen as spectral equipment. The radiation will be registered by avalanche photodiodes. The technique of electron temperature and density measurement is described, and estimation of its accuracy is carried out. The proposed system allows measuring the electron temperature with accuracy not worse than 10% within the range of 50 eV to 10 keV on the pinch edge over the internal contour, from 20 eV to 9 keV in the plasma central region, and from 2 eV to 400 eV on the pinch edge over the outer contour. The estimation is made for electron density of not less than 2.6 × 1013 cm-3.

  14. X-Ray Thomson Scattering and Radiography from Spherical Implosions on the OMEGA Laser

    NASA Astrophysics Data System (ADS)

    Saunders, A. M.; Laziki-Jenei, A.; Doeppner, T.; Landen, O. L.; MacDonald, M.; Nilsen, J.; Swift, D.; Falcone, R. W.

    2017-10-01

    X-ray Thomson scattering (XRTS) is an experimental technique that directly probes the physics of warm dense matter by measuring electron density, electron temperature, and ionization state. XRTS in combination with x-ray radiography offers a unique ability to measure an absolute equation of state (EOS) from material under compression. Recent experiments highlight uncertainties in EOS models and the predicted ionization of compressed matter, suggesting more validation of models is needed. We present XRTS and x-ray radiography measurements taken at the OMEGA Laser Facility from directly-driven solid carbon spheres at densities on the order of 1x1024 g cm-3 and temperatures on the order of 30 eV. The results shed light on the equations of state of matter under compression. This work performed under auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and under the Stewardship Science Graduate Fellowship, Grant Number DE- NA0002135.

  15. X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition.

    PubMed

    Baczewski, A D; Shulenburger, L; Desjarlais, M P; Hansen, S B; Magyar, R J

    2016-03-18

    X-ray Thomson scattering is an important experimental technique used to measure the temperature, ionization state, structure, and density of warm dense matter (WDM). The fundamental property probed in these experiments is the electronic dynamic structure factor. In most models, this is decomposed into three terms [J. Chihara, J. Phys. F 17, 295 (1987)] representing the response of tightly bound, loosely bound, and free electrons. Accompanying this decomposition is the classification of electrons as either bound or free, which is useful for gapped and cold systems but becomes increasingly questionable as temperatures and pressures increase into the WDM regime. In this work we provide unambiguous first principles calculations of the dynamic structure factor of warm dense beryllium, independent of the Chihara form, by treating bound and free states under a single formalism. The computational approach is real-time finite-temperature time-dependent density functional theory (TDDFT) being applied here for the first time to WDM. We compare results from TDDFT to Chihara-based calculations for experimentally relevant conditions in shock-compressed beryllium.

  16. The design of the optical Thomson scattering diagnostic for the National Ignition Facility [The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility

    DOE PAGES

    Datte, P. S.; Ross, J. S.; Froula, D. H.; ...

    2016-09-21

    Here, the National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community’s understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0-210 nm) will be used to optimize the scatteredmore » signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.« less

  17. The design of the optical Thomson scattering diagnostic for the National Ignition Facility [The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datte, P. S.; Ross, J. S.; Froula, D. H.

    Here, the National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community’s understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0-210 nm) will be used to optimize the scatteredmore » signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.« less

  18. Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS

    DOE PAGES

    MacDonald, M. J.; Gorkhover, T.; Bachmann, B.; ...

    2016-08-08

    Atomic clusters can serve as ideal model systems for exploring ultrafast (~100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally-resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities and ionization. Single shot x-ray Thomson scatterings signals were recorded at 120 Hz using a crystal spectrometer in combination withmore » a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. As a result, such measurements are important for understanding collective effects in laser-matter interactions on femtosecond timescales, opening new routes for the development of schemes for their ultrafast control.« less

  19. Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J., E-mail: macdonm@umich.edu; SLAC National Accelerator Laboratory, Menlo Park, California 94025; Gorkhover, T.

    2016-11-15

    Atomic clusters can serve as ideal model systems for exploring ultrafast (∼100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities, and ionization. Single shot x-ray Thomson scattering signals were recorded at 120 Hz using a crystal spectrometer in combination withmore » a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. Such measurements are important for understanding collective effects in laser-matter interactions on femtosecond time scales, opening new routes for the development of schemes for their ultrafast control.« less

  20. Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited).

    PubMed

    Swadling, G F; Lebedev, S V; Hall, G N; Patankar, S; Stewart, N H; Smith, R A; Harvey-Thompson, A J; Burdiak, G C; de Grouchy, P; Skidmore, J; Suttle, L; Suzuki-Vidal, F; Bland, S N; Kwek, K H; Pickworth, L; Bennett, M; Hare, J D; Rozmus, W; Yuan, J

    2014-11-01

    A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.

  1. Edge profile measurements using Thomson scattering on the KSTAR tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J. H., E-mail: jhleel@nfri.re.kr; Ko, W. H.; Department of Nuclear Fusion and Plasma Science, University of Science and Technology

    2014-11-15

    In the KSTAR Tokamak, a “Tangential Thomson Scattering” (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 10–15 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS systemmore » is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper.« less

  2. Narrowband Emission in Compton/Thomson Sources Operating in the High-Field Regime

    DOE PAGES

    Terzic, Balsa; Deitrick, Kirsten E.; Hofler, Alicia S.; ...

    2014-02-21

    We present a novel and quite general analysis of the interaction of a high-field chirped laser pulse and a relativistic electron, in which exquisite control of the spectral brilliance of the upshifted Thomson-scattered photon is shown to be possible. Normally, when Thomson scattering occurs at high field strengths, there is ponderomotive line broadening in the scattered radiation. This effect makes the bandwidth too large for some applications, and reduces the spectral brilliance. In this paper we show that such broadening can be corrected and eliminated by suitable frequency modulation of the incident laser pulse. Further, we suggest a practical realizationmore » of this compensation idea in terms of a chirped-beam driven FEL oscillator configuration, and show that significant compensation can occur, even with the imperfect matching to be expected in these conditions.« less

  3. Design and Study of the Observation Optics for the Thomson Scattering Planned at Wendelstein 7-X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantarini, J.; Knauer, J. P.; Pasch, E.

    2008-03-19

    The main aim of the Thomson scattering system is the measurement of electron temperature and density profiles with high time and spatial resolution. To cover the whole laser beam line (1.6 m) through the plasma cross section, two ports are provided for the observation optics, which image the scattering volumes (each with 28 mm length and 9 mm diameter) onto fiber bundles. The observation optics are important components of the diagnostic set-up, because their imaging properties determine the spectral and spatial resolution of the whole system. Therefore the design of the optics must be optimized according to the geometrical constrainsmore » of the observation ports in terms of position and dimensions. To optimize this optical engineering, the commercial ZEMAX program is used. The composition of the optical system is elaborated to minimize losses of collected light with wavelength from 700 nm up to 1064 nm. Environmental criteria (e.g. neutrons, ECR plasma heating and temperature) will be considered choosing optical materials. First results of calculations will be presented.« less

  4. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST).

    PubMed

    Jacobson, C M; Borchardt, M T; Den Hartog, D J; Falkowski, A F; Morton, L A; Thomas, M A

    2016-11-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  5. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A.

    2016-11-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  6. Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, W. C., E-mail: wcyoung2@wisc.edu; Den Hartog, D. J.; Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706

    2014-11-15

    A new, high-repetition rate laser is in development for use on the Thomson scattering diagnostic on the Madison Symmetric Torus. The laser has been tested at a rate of 200 kHz in a pulse-burst operation, producing bursts of 5 pulses above 1.5 J each, while capable of bursts of 17 pulses at 100 kHz. A master oscillator-power amplifier architecture is used with a Nd:YVO{sub 4} oscillator, four Nd:YAG amplifiers, and a Nd:glass amplifier. A radial profile over the pulse sequence is measured by using a set of graphite apertures and an energy meter, showing a change in beam quality overmore » a pulsing sequence.« less

  7. Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F., E-mail: swadling@imperial.ac.uk; Lebedev, S. V.; Hall, G. N.

    2014-11-15

    A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7–14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnosticsmore » are used to constrain analysis, increasing the accuracy of interpretation.« less

  8. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, C. M., E-mail: cjacobson@wisc.edu; Borchardt, M. T.; Den Hartog, D. J.

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The modelmore » of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.« less

  9. Progress on FIR interferometry and Thomson Scattering measurements on HIT-SI3

    NASA Astrophysics Data System (ADS)

    Everson, Christopher; Jarboe, Thomas; Morgan, Kyle

    2017-10-01

    Spatially resolved measurements of the electron temperature (Te) and density (ne) will be fundamental in assessing the degree to which HIT-SI3 demonstrates closed magnetic flux and energy confinement. Further, electron temperature measurements have not yet been made on an inductively-driven spheromak. Far infrared (FIR) interferometer and Thomson Scattering (TS) systems have been installed on the HIT-SI3 spheromak. The TS system currently implemented on HIT-SI3 was originally designed for other magnetic confinement experiments, and progress continues toward modifying and optimizing for HIT-SI3 plasmas. Initial results suggest that the electron temperature is of order 10 eV. Plans to modify the TS system to provide more sensitivity and accuracy at low temperatures are presented. The line-integrated ne is measured on one chord by the FIR interferometer, with densities near 5x1019 m-3. Four cylindrical volumes have been added to the HIT-SI3 apparatus to enhance passive pumping. It is hoped that this will allow for more control of the density during the 2 ms discharges. Density measurements from before and after the installation of the passive pumping volumes are presented for comparison.

  10. A pulse-burst laser system for a high-repetition-rate Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den Hartog, D. J.; Jiang, N.; Lempert, W. R.

    2008-10-15

    A ''pulse-burst'' laser system is being constructed for addition to the Thomson scattering diagnostic on the Madison Symmetric Torus (MST) reversed-field pinch. This laser is designed to produce a burst of up to 200 approximately 1 J Q-switched pulses at repetition frequencies 5-250 kHz. This laser system will operate at 1064 nm and is a master oscillator, power amplifier. The master oscillator is a compact diode-pumped Nd:YVO{sub 4} laser, intermediate amplifier stages are flashlamp-pumped Nd:YAG, and final stages will be flashlamp-pumped Nd:glass (silicate). Variable pulse width drive (0.3-20 ms) of the flashlamps is accomplished by insulated-gate bipolar transistor switching ofmore » large electrolytic capacitor banks. The burst train of laser pulses will enable the study of electron temperature (T{sub e}) and electron density (n{sub e}) dynamics in a single MST shot, and with ensembling, will enable correlation of T{sub e} and n{sub e} fluctuations with other fluctuating quantities.« less

  11. Ultra-small-angle neutron scattering with azimuthal asymmetry

    DOE PAGES

    Gu, X.; Mildner, D. F. R.

    2016-05-16

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less

  12. Ultra-small-angle neutron scattering with azimuthal asymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X.; Mildner, D. F. R.

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less

  13. Patterning of OPV modules by ultra-fast laser

    NASA Astrophysics Data System (ADS)

    Kubiš, Peter; Lucera, Luca; Guo, Fei; Spyropolous, George; Voigt, Monika M.; Brabec, Christoph J.

    2014-10-01

    A novel production process combining slot-die coating, transparent flexible IMI (ITO-Metal-ITO) electrodes and ultra-fast laser ablation can be used for the realization of P3HT:PCBM based thin film flexible OPV modules. The fast and precise laser ablation allows an overall efficiency over 3 % and a device geometric fill factor (GFF) over 95 %. Three functional layers can be ablated using the same wavelength only with varying the laser fluence and overlap. Different OPV device architectures with multilayers utilizing various materials are challenging for ablation but can be structured by using a systematical approach.

  14. First measurement of time evolution of electron temperature profiles with Nd:YAG Thomson scattering system on Heliotron J.

    PubMed

    Kenmochi, N; Minami, T; Takahashi, C; Tei, S; Mizuuchi, T; Kobayashi, S; Nagasaki, K; Nakamura, Y; Okada, H; Kado, S; Yamamoto, S; Ohshima, S; Konoshima, S; Shi, N; Zang, L; Ohtani, Y; Kasajima, K; Sano, F

    2014-11-01

    A Nd:YAG Thomson scattering system has been developed for Heliotron J. The system consists of two 550 mJ 50 Hz lasers, large collection optics, and 25 radial channel (∼1 cm spatial resolution) interference polychromators. This measurement system achieves a S/N ratio of ∼50 for low-density plasma (ne ∼ 0.5 × 10(19) m(-3)). A time evolution of electron temperature profiles was measured with this system for a high-intensity gas-puff (HIGP) fueling neutral-beam-injection plasma. The peripheral temperature of the higher-density phase after HIGP recovers to the low-density pre-HIGP level, suggesting that improving particle transport in the HIGP plasma may be possible.

  15. Ultra-high temperature stability Joule-Thomson cooler with capability to accomodate pressure variations

    NASA Technical Reports Server (NTRS)

    Bard, Steven (Inventor); Wu, Jiunn-Jeng (Inventor); Trimble, Curtis A. (Inventor)

    1992-01-01

    A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.

  16. Ultra-high temperature stability Joule-Thomson cooler with capability to accomodate pressure variations

    NASA Astrophysics Data System (ADS)

    Bard, Steven; Wu, Jiunn-Jeng; Trimble, Curtis A.

    1992-06-01

    A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.

  17. Review of total cross sections and forward scattering parameters at ultra-high energies

    NASA Astrophysics Data System (ADS)

    Block, M. M.; White, A. R.

    1991-10-01

    We review the field of the elastic scattering of pp and (bar p)p at the ultra-high energies. The recent total cross section, sigma (sub tot), and rho-value results from the Fermilab Tevatron Collider experiments presented at the 4th 'Blois' Workshop on Elastic and Diffractive Scattering (Elba, Italy, in May, 1991), allow us a comprehensive overview of the field.

  18. A New Observation Technique Applied to Early/Fast VLF Scattering Events

    NASA Astrophysics Data System (ADS)

    Kotovsky, D. A.; Moore, R. C.

    2012-12-01

    Early/fast very low frequency (VLF, 3-30 kHz) events are understood to result from ionospheric conductivity changes associated with lightning. Early/fast amplitude and phase perturbations have been observed coincidentally with various optical observations of transient luminous events (TLEs), including elves, sprites, and sprite halos, each of which can have temporal characteristics consistent with those of early/fast VLF events. It is yet unresolved, however, whether a specific type of TLE is directly related to the ionospheric conductivity changes responsible for the typical early/fast event. In this paper, we present spread spectrum VLF scattering observations of early/fast events. The spread spectrum analysis technique determines the amplitude and phase of a subionospherically propagating VLF signal as a function of time during the early/fast event and as a function of frequency across the 200 Hz bandwidth of the VLF transmission. VLF scattering observations, each identified with causative lightning logged by the National Lightning Detection Network (NLDN), are compared with the predictions of the Long-Wave Propagation Capability (LWPC) code, a three-dimensional earth-ionosphere waveguide propagation and scattering model. Theoretical predictions for VLF scattering from ionization changes associated with elves are compared with those associated with sprite halos, and each are compared with experimental observations. Results indicate that the observed frequency dependence of VLF scattering during early/fast events results from the combination of scattering source properties and Earth-ionosphere waveguide propagation effects. Observations are more consistent with the modeled amplitude perturbations associated with sprite halos than those with elves.

  19. The Soft X-ray View of Ultra Fast Outflows

    NASA Astrophysics Data System (ADS)

    Reeves, J.; Braito, V.; Nardini, E.; Matzeu, G.; Lobban, A.; Costa, M.; Pounds, K.; Tombesi, F.; Behar, E.

    2017-10-01

    The recent large XMM-Newton programmes on the nearby quasars PDS 456 and PG 1211+143 have revealed prototype ultra fast outflows in the iron K band through highly blue shifted absorption lines. The wind velocities are in excess of 0.1c and are likely to make a significant contribution to the host galaxy feedback. Here we present evidence for the signature of the fast wind in the soft X-ray band from these luminous quasars, focusing on the spectroscopy with the RGS. In PDS 456, the RGS spectra reveal the presence of soft X-ray broad absorption line profiles, which suggests that PDS 456 is an X-ray equivalent to the BAL quasars, with outflow velocities reaching 0.2c. In PG 1211, the soft X-ray RGS spectra show a complex of several highly blue shifted absorption lines over a wide range of ionisation and reveal outflowing components with velocities between 0.06-0.17c. For both quasars, the soft X-ray absorption is highly variable, even on timescales of days and is most prominent when the quasar flux is low. Overall the results imply the presence of a soft X-ray component of the ultra fast outflows, which we attribute to a clumpy or inhomogeneous phase of the disk wind.

  20. Ultra-fast movies of thin-film laser ablation

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2012-11-01

    Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.

  1. Continued Development of Python-Based Thomson Data Analysis and Associated Visualization Tool for NSTX-U

    NASA Astrophysics Data System (ADS)

    Wallace, William; Miller, Jared; Diallo, Ahmed

    2015-11-01

    MultiPoint Thomson Scattering (MPTS) is an established, accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Two Nd:YAG (1064 nm) lasers are fired into the plasma with a effective frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the NSTX-U midplane collect the scattered photons at various radii/scattering angles, and the avalanche photodiode voltages are saved to an MDSplus tree for later analysis. IDL code is then used to determine plasma temperature, pressure, and density from the captured polychromator measurements via Selden formulas. [1] Previous work [2] converted the single-processor IDL code into Python code, and prepared a new architecture for multiprocessing MPTS in parallel. However, that work was not completed to the generation of output data and curve fits that match with the previous IDL. This project refactored the Python code into a object-oriented architecture, and created a software test suite for the new architecture which allowed identification of the code which generated the difference in output. Another effort currently underway is to display the Thomson data in an intuitive, interactive format. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Community College Internship (CCI) program.

  2. Uneven-Layered Coding Metamaterial Tile for Ultra-wideband RCS Reduction and Diffuse Scattering.

    PubMed

    Su, Jianxun; He, Huan; Li, Zengrui; Yang, Yaoqing Lamar; Yin, Hongcheng; Wang, Junhong

    2018-05-25

    In this paper, a novel uneven-layered coding metamaterial tile is proposed for ultra-wideband radar cross section (RCS) reduction and diffuse scattering. The metamaterial tile is composed of two kinds of square ring unit cells with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Due to the phase cancellation between two unit cells, the metamaterial tile has the scattering pattern of four strong lobes deviating from normal direction. The metamaterial tile and its 90-degree rotation can be encoded as the '0' and '1' elements to cover an object, and diffuse scattering pattern can be realized by optimizing phase distribution, leading to reductions of the monostatic and bi-static RCSs simultaneously. The metamaterial tile can achieve -10 dB RCS reduction from 6.2 GHz to 25.7 GHz with the ratio bandwidth of 4.15:1 at normal incidence. The measured and simulated results are in good agreement and validate the proposed uneven-layered coding metamaterial tile can greatly expanding the bandwidth for RCS reduction and diffuse scattering.

  3. Synchronized operation by field programmable gate array based signal controller for the Thomson scattering diagnostic system in KSTAR.

    PubMed

    Lee, W R; Kim, H S; Park, M K; Lee, J H; Kim, K H

    2012-09-01

    The Thomson scattering diagnostic system is successfully installed in the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. We got the electron temperature and electron density data for the first time in 2011, 4th campaign using a field programmable gate array (FPGA) based signal control board. It operates as a signal generator, a detector, a controller, and a time measuring device. This board produces two configurable trigger pulses to operate Nd:YAG laser system and receives a laser beam detection signal from a photodiode detector. It allows a trigger pulse to be delivered to a time delay module to make a scattered signal measurement, measuring an asynchronous time value between the KSTAR timing board and the laser system injection signal. All functions are controlled by the embedded processor running on operating system within a single FPGA. It provides Ethernet communication interface and is configured with standard middleware to integrate with KSTAR. This controller has operated for two experimental campaigns including commissioning and performed the reconfiguration of logic designs to accommodate varying experimental situation without hardware rebuilding.

  4. First measurement of time evolution of electron temperature profiles with Nd:YAG Thomson scattering system on Heliotron J

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenmochi, N., E-mail: kemmchi.naoki.62r@st.kyoto-u.ac.jp; Tei, S.; Zang, L.

    2014-11-15

    A Nd:YAG Thomson scattering system has been developed for Heliotron J. The system consists of two 550 mJ 50 Hz lasers, large collection optics, and 25 radial channel (∼1 cm spatial resolution) interference polychromators. This measurement system achieves a S/N ratio of ∼50 for low-density plasma (n{sub e} ∼ 0.5 × 10{sup 19} m{sup −3}). A time evolution of electron temperature profiles was measured with this system for a high-intensity gas-puff (HIGP) fueling neutral-beam-injection plasma. The peripheral temperature of the higher-density phase after HIGP recovers to the low-density pre-HIGP level, suggesting that improving particle transport in the HIGP plasma maymore » be possible.« less

  5. Initial operation of a pulse-burst laser system for high-repetition-rate Thomson scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, W. S.; Hurst, N. C.; Den Hartog, D. J.

    2010-10-15

    A pulse-burst laser has been installed for Thomson scattering measurements on the Madison Symmetric Torus reversed-field pinch. The laser design is a master-oscillator power-amplifier. The master oscillator is a commercial Nd:YVO{sub 4} laser (1064 nm) which is capable of Q-switching at frequencies between 5 and 250 kHz. Four Nd:YAG (yttrium aluminum garnet) amplifier stages are in place to amplify the Nd:YVO{sub 4} emission. Single pulses through the Nd:YAG amplifier stages gives energies up to 1.5 J and the gain for each stage has been measured. Repetitive pulsing at 10 kHz has also been performed for 2 ms bursts, giving averagemore » pulse energies of 0.53 J with {Delta}E/E of 4.6%, where {Delta}E is the standard deviation between pulses. The next step will be to add one of two Nd:glass (silicate) amplifier stages to produce final pulse energies of 1-2 J for bursts up to 250 kHz.« less

  6. Ultra-fast consensus of discrete-time multi-agent systems with multi-step predictive output feedback

    NASA Astrophysics Data System (ADS)

    Zhang, Wenle; Liu, Jianchang

    2016-04-01

    This article addresses the ultra-fast consensus problem of high-order discrete-time multi-agent systems based on a unified consensus framework. A novel multi-step predictive output mechanism is proposed under a directed communication topology containing a spanning tree. By predicting the outputs of a network several steps ahead and adding this information into the consensus protocol, it is shown that the asymptotic convergence factor is improved by a power of q + 1 compared to the routine consensus. The difficult problem of selecting the optimal control gain is solved well by introducing a variable called convergence step. In addition, the ultra-fast formation achievement is studied on the basis of this new consensus protocol. Finally, the ultra-fast consensus with respect to a reference model and robust consensus is discussed. Some simulations are performed to illustrate the effectiveness of the theoretical results.

  7. Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region.

    PubMed

    Yoneda, Hitoki; Inubushi, Yuichi; Tanaka, Toshihiro; Yamaguchi, Yuta; Sato, Fumiya; Morimoto, Shunsuke; Kumagai, Taisuke; Nagasono, Mitsuru; Higashiya, Atsushi; Yabashi, Makina; Ishikawa, Tetsuya; Ohashi, Haruhiko; Kimura, Hiroaki; Kitamura, Hikaru; Kodama, Ryosuke

    2009-12-21

    Advances in free electron lasers producing high energy photons [Nat. Photonics 2(9), 555-559 (2008)] are expected to open up a new science of nonlinear optics of high energy photons. Specifically, lasers of photon energy higher than the plasma frequency of a metal can show new interaction features because they can penetrate deeply into metals without strong reflection. Here we show the observation of ultra-fast switching of vacuum ultra-violet (VUV) light caused by saturable absorption of a solid metal target. A strong gating is observed at energy fluences above 6J/cm2 at wavelength of 51 nm with tin metal thin layers. The ratio of the transmission at high intensity to low intensity is typically greater than 100:1. This means we can design new nonlinear photonic devices such as auto-correlator and pulse slicer for the VUV region.

  8. Fast Scattering Code (FSC) User's Manual: Version 2

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Dun, M. H.; Pope, D. Stuart

    2006-01-01

    The Fast Scattering Code (version 2.0) is a computer program for predicting the three-dimensional scattered acoustic field produced by the interaction of known, time-harmonic, incident sound with aerostructures in the presence of potential background flow. The FSC has been developed for use as an aeroacoustic analysis tool for assessing global effects on noise radiation and scattering caused by changes in configuration (geometry, component placement) and operating conditions (background flow, excitation frequency).

  9. Thomson scattering diagnostic system design for the Compact Toroidal Hybrid experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traverso, P. J., E-mail: pjt0002@auburn.edu; Maurer, D. A.; Ennis, D. A.

    2014-11-15

    A new Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The beam, generated by a frequency doubled Continuum PL DLS 2 J Nd:YAG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize the stray laser light that could enter the collection optics. The beam line has been designed with an 8 m propagation distance to the mid-plane of the CTH device with the beam diameter kept less than 3 mm inside the plasma volume. The beam exits the vacuum systemmore » through another Brewster window and enters a beam dump, again to minimize the stray light in the vacuum chamber. Light collection, spectral processing, and signal detection are accomplished with an f/#∼ 1 aspheric lens, a commercially available Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. Spectral rejection of stray laser light, if needed, can be performed with the use of an optional interference filter at the spectrometer input. The system has been developed for initial single point measurements of plasmas with core electron temperatures of approximately 20–300 eV and densities of 5 × 10{sup 18} to 5 × 10{sup 19} m{sup −3} dependent upon operational scenario.« less

  10. Thomson scattering diagnostics of decay processes of Ar/SF6 gas-blast arcs confined by a nozzle

    NASA Astrophysics Data System (ADS)

    Tomita, Kentaro; Gojima, Daisuke; Nagai, Kazuhiko; Uchino, Kiichiro; Kamimae, Ryo; Tanaka, Yasunori; Suzuki, Katsumi; Iijima, Takanori; Uchii, Toshiyuki; Shinkai, Takeshi

    2013-09-01

    Because of its instability, it is difficult to measure precisely the electron density (ne) of a long-gap decaying arc discharge in a circuit breaker. However, it is well known that it is an essential parameter for the determination of success or failure of the current interruption in a circuit breaker. In this paper, the spatiotemporal evolutions of the electron density were successfully measured in decaying SF6 gas-blast arc discharges formed with a long gap (50 mm) in a confined nozzle using laser Thomson scattering. Pure Ar gas and an 80%Ar/20%SF6 mixture gas were used as the arc quenching media at atmospheric pressure. After reducing the current to zero, both the measured ne and arc radius in the Ar/SF6 gas arc clearly decayed more rapidly than in the pure Ar gas arc.

  11. Progress On The Thomson Scattering Diagnostic For The Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Green, A.; Emami, T.; Davies, R.; Frank, J.; Hopson, J.; Karama, J.; James, R. W.; Hopson, J.; Paolino, R. N.; Sandri, E.; Turk, J.; Wicke, M.; Cgapl Team

    2017-10-01

    A high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 has been assembled on HPX at the Coast Guard Academy Plasma Laboratory (CGAPL). This spectrometer will collect doppler shifted photons, emitted from the plasma by the first harmonic (1064 nm) of a 2.5 J Nd:YAG laser. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) single spatial point diagnostic system. A zero order half wave plate rotates the polarization of the second harmonic TS laser beam when operating at a wavelength of 532 nm. A linear actuated periscope has been constructed to remotely redirect the beam so that 532 and 1064 nm wavelengths can both be used. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. Operating at both 532 and 1064 nm results in a self-consistent measurement and better use our existing spectrometer and soon to be constructed polychrometer. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. The current status of the diagnostic development, spectrometer, and collection optics system will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY17.

  12. Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, E. C.; Ao, T.; Bailey, J. E.

    2015-04-15

    The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-raysmore » with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.« less

  13. Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments.

    PubMed

    Harding, E C; Ao, T; Bailey, J E; Loisel, G; Sinars, D B; Geissel, M; Rochau, G A; Smith, I C

    2015-04-01

    The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

  14. Ultra-fast boriding of metal surfaces for improved properties

    DOEpatents

    Timur, Servet; Kartal, Guldem; Eryilmaz, Osman L.; Erdemir, Ali

    2015-02-10

    A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.

  15. 76 FR 50272 - West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-75,099] West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased Workers From Adecco, Albuquerque, New... former workers of West, A Thomson Reuters Business, Thomson Reuters Legal Division, including On-Site...

  16. Instrument to synchronize Thomson scattering diagnostic measurements with MHD acitivity in a tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wintenberg, A.L.

    1985-04-01

    An instrument to synchronize the firing of a ruby laser for a Thomson scattering diagnostic with plasma oscillations was designed, developed, and evaluated. The instrument will fire the laser at a user-selected phase of an input sine or sawtooth wave with an accuracy of +-15/sup 0/. Allowable frequencies range from 20 to 500 Hz for a sawtooth and from 1 to 30 kHz for a sine wave. The instrument also allows synchronization with a sine wave to be enabled by a preselected sawtooth phase. The instrument uses analog signal processing circuits to separate the signal components, remove unwanted components, andmore » produce zero-phase synchronization pulses. The instrument measures the period between zero-phase pulses in order to produce phase synchronization pulses delayed a fraction of the period from the zero-phase pulses. The laser is fired by the phase synchronization pulse. Unwanted signal components are attenuated by bandpass filters. A digitally controlled self-adjusting bandpass filter for sine processing. The instrument was used to investigate the variation of the electron temperature profile with the phase of the x-ray signal from an Impurity Studies Experiment (ISX-B) plasma exhibiting magnetohydrodynamic (MHD) activity.« less

  17. Enhanced Alignment Techniques for the Thomson Scattering Diagnostic on the Lithium Tokamak eXperiment (LTX)

    NASA Astrophysics Data System (ADS)

    Merino, Enrique; Kozub, Tom; Boyle, Dennis; Lucia, Matthew; Majeski, Richard; Kaita, Robert; Schmitt, John C.; Leblanc, Benoit; Diallo, Ahmed; Jacobson, C. M.

    2014-10-01

    The Thomson Scattering (TS) System in LTX is used to measure electron temperature and density profiles of core and edge plasmas. In view of TS measurements showing low signal-to-noise and high stray light, numerous improvements were performed in recent months. These will allow for better measurements. Due to the nature of LTX's lithium coated walls, a particular challenge was presented by alignment procedures which required insertion and precise positioning of equipment in the vacuum vessel without breaking vacuum. To overcome these difficulties, the laser flight tubes were removed and an alignment probe setup placed along the beam line on a differentially pumped assembly. The probe was then driven into the vacuum vessel and back-illumination of the viewing optics on it allowed for alignment and spatial calibration. Other upgrades included better bracing of flight tubes and viewing optics as well as a redesigned beam dump. An overview of these improvements will be presented. Supported by US DOE Contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

  18. A Platform for X-Ray Thomson Scattering Measurements of Radiation Hydrodynamics Experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Lefevre, Heath; Ma, Kevin; Belancourt, Patrick; MacDonald, Michael; Doeppner, Tilo; Keiter, Paul; Kuranz, Carolyn

    2017-10-01

    A recent experiment on the National Ignition Facility (NIF) radiographed the evolution of the Rayleigh-Taylor (RT) instability under high and low drive cases. This experiment showed that under a high drive the growth rate of the RT instability is reduced relative to the low drive case. The high drive launches a radiative shock, increases the temperature of the post-shock region, and ablates the spikes, which reduces the RT growth rate. The plasma parameters must be measured to validate this claim. We present a target design for making X-Ray Thomson Scattering (XRTS) measurements on radiation hydrodynamics experiments on NIF to measure the electron temperature of the shocked region in the above cases. Specifically, we show that a previously fielded NIF radiation hydrodynamics platform can be modified to allow sufficient signal and temperature resolution for XRTS measurements. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program.

  19. Demonstration of improvement in the signal-to-noise ratio of Thomson scattering signal obtained by using a multi-pass optical cavity on the Tokyo Spherical Tokamak-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Togashi, H., E-mail: togashi@fusion.k.u-tokyo.ac.jp; Ejiri, A.; Nakamura, K.

    2014-11-15

    The multi-pass Thomson scattering (TS) scheme enables obtaining many photons by accumulating multiple TS signals. The signal-to-noise ratio (SNR) depends on the accumulation number. In this study, we performed multi-pass TS measurements for ohmically heated plasmas, and the relationship between SNR and the accumulation number was investigated. As a result, improvement of SNR in this experiment indicated similar tendency to that calculated for the background noise dominant situation.

  20. ASHI: An All Sky Heliospheric Imager for Viewing Thomson-Scattered Light

    NASA Astrophysics Data System (ADS)

    Buffington, A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Bisi, M. M.

    2017-12-01

    We have developed, and are now making a detailed design for an All-Sky Heliospheric Imager (ASHI), to fly on future deep-space missions. ASHI's principal long-term objective is acquisition of a precision photometric map of the inner heliosphere as viewed from deep space. Photometers on the twin Helios spacecraft, the Solar Mass Ejection Imager (SMEI) upon the Coriolis satellite, and the Heliospheric Imagers (HIs) upon the Solar-TErrestrial RElations Observatory (STEREO) twin spacecraft, all indicate an optimum instrument design for visible-light Thomson-scattering observations. This design views a hemisphere of sky starting a few degrees from the Sun. Two imagers can cover almost all of the whole sky. A key photometric specification for ASHI is 0.1% differential photometry: this enables the three dimensional reconstruction of density starting from near the Sun and extending outward. SMEI analyses have demonstrated the success of this technique: when employed by ASHI, this will provide an order of magnitude better resolution in 3-D density over time. We augment this analysis to include velocity, and these imagers deployed in deep space can thus provide high-resolution comparisons both of direct in-situ density and velocity measurements to remote observations of solar wind structures. In practice we find that the 3-D velocity determinations provide the best tomographic timing depiction of heliospheric structures. We discuss the simple concept behind this, and present recent progress in the instrument design, and its expected performance specifications. A preliminary balloon flight of an ASHI prototype is planned to take place next Summer.

  1. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun, E-mail: wenjunwang@mail.xjtu.edu.cn

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloymore » were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.« less

  2. First-Principles Estimation of Electronic Temperature from X-Ray Thomson Scattering Spectrum of Isochorically Heated Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Mo, Chongjie; Fu, Zhenguo; Kang, Wei; Zhang, Ping; He, X. T.

    2018-05-01

    Through the perturbation formula of time-dependent density functional theory broadly employed in the calculation of solids, we provide a first-principles calculation of x-ray Thomson scattering spectrum of isochorically heated aluminum foil, as considered in the experiments of Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015), 10.1103/PhysRevLett.115.115001], where ions were constrained near their lattice positions. From the calculated spectra, we find that the electronic temperature cannot exceed 2 eV, much smaller than the previous estimation of 6 eV via the detailed balance relation. Our results may well be an indication of unique electronic properties of warm dense matter, which can be further illustrated by future experiments. The lower electronic temperature predicted partially relieves the concern on the heating of x-ray free electron laser to the sample when used in structure measurement.

  3. Wavelet transform fast inverse light scattering analysis for size determination of spherical scatterers

    PubMed Central

    Ho, Derek; Kim, Sanghoon; Drake, Tyler K.; Eldridge, Will J.; Wax, Adam

    2014-01-01

    We present a fast approach for size determination of spherical scatterers using the continuous wavelet transform of the angular light scattering profile to address the computational limitations of previously developed sizing techniques. The potential accuracy, speed, and robustness of the algorithm were determined in simulated models of scattering by polystyrene beads and cells. The algorithm was tested experimentally on angular light scattering data from polystyrene bead phantoms and MCF-7 breast cancer cells using a 2D a/LCI system. Theoretical sizing of simulated profiles of beads and cells produced strong fits between calculated and actual size (r2 = 0.9969 and r2 = 0.9979 respectively), and experimental size determinations were accurate to within one micron. PMID:25360350

  4. Ultra-Fast Hadronic Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, Dmitri; Lukić, Strahinja; Mokhov, Nikolai

    2017-12-18

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locationsmore » w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less

  5. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    NASA Astrophysics Data System (ADS)

    Cappi, M.; Tombesi, F.; Giustini, M.

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  6. Pair potentials for warm dense matter and their application to x-ray Thomson scattering in aluminum and beryllium.

    PubMed

    Harbour, L; Dharma-Wardana, M W C; Klug, D D; Lewis, L J

    2016-11-01

    Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.

  7. Synoptic maps of heliospheric Thomson scattering brightness from 1974-1985 as observed by the Helios photometers

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.; Schwenn, R.

    1992-01-01

    We display the electron Thomson scattering intensity of the inner heliosphere as observed by the zodiacal light photometers on board the Helios spacecraft in the form of synoptic maps. The technique extrapolates the brightness information from each photometer sector near the Sun and constructs a latitude/longitude map at a given solar height. These data are unique in that they give a determination of heliospheric structures out of the ecliptic above the primary region of solar wind acceleration. The spatial extent of bright, co-rotating heliospheric structures is readily observed in the data north and south of the ecliptic plane where the Helios photometer coverage is most complete. Because the technique has been used on the complete Helios data set from 1974 to 1985, we observe the change in our synoptic maps with solar cycle. Bright structures are concentrated near the heliospheric equator at solar minimum, while at solar maximum bright structures are found at far higher heliographic latitudes. A comparison of these maps with other forms of synoptic data are shown for two available intervals.

  8. Application of Fast Multipole Methods to the NASA Fast Scattering Code

    NASA Technical Reports Server (NTRS)

    Dunn, Mark H.; Tinetti, Ana F.

    2008-01-01

    The NASA Fast Scattering Code (FSC) is a versatile noise prediction program designed to conduct aeroacoustic noise reduction studies. The equivalent source method is used to solve an exterior Helmholtz boundary value problem with an impedance type boundary condition. The solution process in FSC v2.0 requires direct manipulation of a large, dense system of linear equations, limiting the applicability of the code to small scales and/or moderate excitation frequencies. Recent advances in the use of Fast Multipole Methods (FMM) for solving scattering problems, coupled with sparse linear algebra techniques, suggest that a substantial reduction in computer resource utilization over conventional solution approaches can be obtained. Implementation of the single level FMM (SLFMM) and a variant of the Conjugate Gradient Method (CGM) into the FSC is discussed in this paper. The culmination of this effort, FSC v3.0, was used to generate solutions for three configurations of interest. Benchmarking against previously obtained simulations indicate that a twenty-fold reduction in computational memory and up to a four-fold reduction in computer time have been achieved on a single processor.

  9. Spectrometer Development in Support of Thomson Scattering Investigations for the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Sandri, Eva; Davies, Richard; Azzari, Phil; Frank, John; Frank, Jackson; James, Royce; Hopson, Jordon; Duke-Tinson, Omar; Paolino, Richard; Sherman, Justin; Wright, Erin; Turk, Jeremy

    2016-10-01

    Now that reproducible plasmas have been created on the Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Laboratory (CGAPL), a high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 is being assembled. This spectrometer will collect doppler shifted photons created by exciting the plasma with the first harmonic of a 2.5 J Nd:YAG laser at a wavelength of 1064 nm. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) system as a single spatial point diagnostic. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. Concurrently, through intensive study of the high energy TS system, safety protocols and standard operation procedures (SOP) for the Coast Guard's largest and most powerful Laser have been developed. The current status of the TS SOP, diagnostic development, and the collection optic's spectrometer will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.

  10. Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, N.; Tomita, K.; Sugita, K.

    2012-07-15

    This paper reports on the development of a method for measuring xenon plasma properties using the laser Thomson scattering technique, for application to ion engine system design. The thresholds of photo-ionization of xenon plasma were investigated and the number density of metastable atoms, which are photo-ionized by a probe laser, was measured using laser absorption spectroscopy, for several conditions. The measured threshold energy of the probe laser using a plano-convex lens with a focal length of 200 mm was 150 mJ for a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W; the probe lasermore » energy was therefore set as 80 mJ. Electron number density was found to be (6.2 {+-} 0.4) Multiplication-Sign 10{sup 17} m{sup -3} and electron temperature was found to be 2.2 {+-} 0.4 eV at a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W. The threshold of the probe laser intensity against photo-ionization in a miniature xenon ion thruster is almost constant for various mass flow rates, since the ratio of population of the metastable atoms to the electron number density is little changed.« less

  11. Modeling and design of radiative hydrodynamic experiments with X-ray Thomson Scattering measurements on NIF

    NASA Astrophysics Data System (ADS)

    Ma, K. H.; Lefevre, H. J.; Belancourt, P. X.; MacDonald, M. J.; Doeppner, T.; Keiter, P. A.; Kuranz, C. C.; Johnsen, E.

    2017-10-01

    Recent experiments at the National Ignition Facility studied the effect of radiation on shock-driven hydrodynamic instability growth. X-ray radiography images from these experiments indicate that perturbation growth is lower in highly radiative shocks compared to shocks with negligible radiation flux. The reduction in instability growth is attributed to ablation from higher temperatures in the foam for highly radiative shocks. The proposed design implements the X-ray Thomson Scattering (XRTS) technique in the radiative shock tube platform to measure electron temperatures and densities in the shocked foam. We model these experiments with CRASH, an Eulerian radiation hydrodynamics code with block-adaptive mesh refinement, multi-group radiation transport and electron heat conduction. Simulations are presented with SiO2 and carbon foams for both the high temperature, radiative shock and the low-temperature, hydrodynamic shock cases. Calculations from CRASH give estimations for shock speed, electron temperature, effective ionization, and other quantities necessary for designing the XRTS diagnostic measurement. This work is funded by the LLNL under subcontract B614207, and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  12. Ultra-Fast Hadronic Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, Dmitri; Lukić, Strahinja; Mokhov, Nikolai

    2018-08-01

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper the time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations with respectmore » to the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 2 ns providing opportunity for ultra-fast calorimetry. Simulation results for an “ideal” calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less

  13. Ultra-fast hadronic calorimetry

    DOE PAGES

    Denisov, Dmitri; Lukic, Strahinja; Mokhov, Nikolai; ...

    2018-05-08

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper the time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations with respectmore » to the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 2 ns providing opportunity for ultra-fast calorimetry. As a result, simulation results for an “ideal” calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less

  14. 76 FR 27365 - West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-75,099] West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased Workers From ADECCO, Albuquerque, NM... Adjustment Assistance (TAA) applicable to workers and former workers of West, A Thomson Reuters Business...

  15. Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials.

    PubMed

    Heitzer, Henry M; Savoie, Brett M; Marks, Tobin J; Ratner, Mark A

    2014-07-14

    Organic photovoltaics (OPVs) offer the opportunity for cheap, lightweight and mass-producible devices. However, an incomplete understanding of the charge generation process, in particular the timescale of dynamics and role of exciton diffusion, has slowed further progress in the field. We report a new Kinetic Monte Carlo model for the exciton dissociation mechanism in OPVs that addresses the origin of ultra-fast (<1 ps) dissociation by incorporating exciton delocalization. The model reproduces experimental results, such as the diminished rapid dissociation with increasing domain size, and also lends insight into the interplay between mixed domains, domain geometry, and exciton delocalization. Additionally, the model addresses the recent dispute on the origin of ultra-fast exciton dissociation by comparing the effects of exciton delocalization and impure domains on the photo-dynamics.This model provides insight into exciton dynamics that can advance our understanding of OPV structure-function relationships. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Soft x-ray continuum radiation transmitted through metallic filters: an analytical approach to fast electron temperature measurements.

    PubMed

    Delgado-Aparicio, L; Tritz, K; Kramer, T; Stutman, D; Finkenthal, M; Hill, K; Bitter, M

    2010-10-01

    A new set of analytic formulas describes the transmission of soft x-ray continuum radiation through a metallic foil for its application to fast electron temperature measurements in fusion plasmas. This novel approach shows good agreement with numerical calculations over a wide range of plasma temperatures in contrast with the solutions obtained when using a transmission approximated by a single-Heaviside function [S. von Goeler et al., Rev. Sci. Instrum. 70, 599 (1999)]. The new analytic formulas can improve the interpretation of the experimental results and thus contribute in obtaining fast temperature measurements in between intermittent Thomson scattering data.

  17. Thomson-backscattered x rays from laser-accelerated electrons.

    PubMed

    Schwoerer, H; Liesfeld, B; Schlenvoigt, H-P; Amthor, K-U; Sauerbrey, R

    2006-01-13

    We present the first observation of Thomson-backscattered light from laser-accelerated electrons. In a compact, all-optical setup, the "photon collider," a high-intensity laser pulse is focused into a pulsed He gas jet and accelerates electrons to relativistic energies. A counterpropagating laser probe pulse is scattered from these high-energy electrons, and the backscattered x-ray photons are spectrally analyzed. This experiment demonstrates a novel source of directed ultrashort x-ray pulses and additionally allows for time-resolved spectroscopy of the laser acceleration of electrons.

  18. Ultra Fast, High Rep Rate, High Voltage Spark Gap Pulser

    DTIC Science & Technology

    1995-07-01

    current rise time. The spark gap was designed to have a coaxial geometry reducing its inductance. Provisions were made to pass flowing gas between the...ULTRA FAST, HIGH REP RATE, HIGH VOLTAGE SPARK GAP PULSER Robert A. Pastore Jr., Lawrence E. Kingsley, Kevin Fonda, Erik Lenzing Electrophysics and...Modeling Branch AMSRL-PS-EA Tel.: (908)-532-0271 FAX: (908)-542-3348 U.S. Army Research Laboratory Physical Sciences Directorate Ft. Monmouth

  19. A Flexible Master Oscillator for a Thomson Scattering Pulse-Burst Laser System

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Young, W. C.

    2015-11-01

    A new master oscillator will be installed in the pulse-burst laser system used for high-rep-rate Thomson scattering on the MST experiment. This new master oscillator will enable pulse repetition rates up to 1 MHz, with the ability to program a burst of pulses with arbitrary and varying time separation between each pulse. In addition, the energy of each master oscillator pulse can be adjusted to compensate for gain variations in the power amplifier section of the laser system. This flexibility is accomplished by chopping a CW laser source with a high-bandwidth acousto-optic modulator (AOM). The laser source is a 1064 nm diode-pumped solid-state laser with continuous output power variable from 100 to 500 mW. The 2 mm diameter polarized beam is focused into the gallium phosphide crystal of the AOM, which deflects the beam by approximately 60 mrad. Beam deflection is controlled by a simple digital input pulse, and is capable of producing laser pulses of less than 20 ns width at repetition rates much greater than 1 MHz. These pulses from the output of the AOM will be collimated and propagated into the laser amplifier system, where they will be amplified to ~ 2 J/pulse and injected into the MST plasma. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FC02-05ER54814, and by the National Science Foundation under Award Number PHY-0821899.

  20. Ultra-fast HPM detectors improve NAD(P)H FLIM

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Wetzker, Cornelia; Benda, Aleš

    2018-02-01

    Metabolic imaging by NAD(P)H FLIM requires the decay functions in the individual pixels to be resolved into the decay components of bound and unbound NAD(P)H. Metabolic information is contained in the lifetime and relative amplitudes of the components. The separation of the decay components and the accuracy of the amplitudes and lifetimes improves substantially by using ultra-fast HPM-100-06 and HPM-100-07 hybrid detectors. The IRF width in combination with the Becker & Hickl SPC-150N and SPC-150NX TCSPC modules is less than 20 ps. An IRF this fast does not interfere with the fluorescence decay. The usual deconvolution process in the data analysis then virtually becomes a simple curve fitting, and the parameters of the NAD(P)H decay components are obtained at unprecedented accuracy.

  1. Ultra-fast transient plasmonics using transparent conductive oxides

    NASA Astrophysics Data System (ADS)

    Ferrera, Marcello; Carnemolla, Enrico G.

    2018-02-01

    During the last decade, plasmonic- and metamaterial-based applications have revolutionized the field of integrated photonics by allowing for deep subwavelength confinement and full control over the effective permittivity and permeability of the optical environment. However, despite the numerous remarkable proofs of principle that have been experimentally demonstrated, few key issues remain preventing a widespread of nanophotonic technologies. Among these fundamental limitations, we remind the large ohmic losses, incompatibility with semiconductor industry standards, and largely reduced dynamic tunability of the optical properties. In this article, in the larger context of the new emerging field of all-dielectric nanophotonics, we present our recent progresses towards the study of large optical nonlinearities in transparent conducting oxides (TCOs) also giving a general overview of the most relevant and recent experimental attainments using TCO-based technology. However, it is important to underline that the present article does not represent a review paper but rather an original work with a broad introduction. Our work lays in a sort of ‘hybrid’ zone in the middle between high index contrast systems, whose behaviour is well described by applying Mie scattering theory, and standard plasmonic elements where optical modes originate from the electromagnetic coupling with the electronic plasma at the metal-to-dielectric interface. Beside remaining in the context of plasmonic technologies and retaining all the fundamental peculiarities that promoted the success of plasmonics in the first place, our strategy has the additional advantage to allow for large and ultra-fast tunability of the effective complex refractive index by accessing the index-near-zero regime in bulk materials at telecom wavelength.

  2. Ultra-fast dynamics in the nonlinear optical response of silver nanoprism ordered arrays.

    PubMed

    Sánchez-Esquivel, Héctor; Raygoza-Sanchez, Karen Y; Rangel-Rojo, Raúl; Kalinic, Boris; Michieli, Niccolò; Cesca, Tiziana; Mattei, Giovanni

    2018-03-15

    In this work we present the study of the ultra-fast dynamics of the nonlinear optical response of a honeycomb array of silver triangular nanoprisms, performed using a femtosecond pulsed laser tuned with the dipolar surface plasmon resonance of the nanoarray. Nonlinear absorption and refraction, and their time-dependence, were explored using the z-scan and time-resolved excite-probe techniques. Nonlinear absorption is shown to change sign with the input irradiance and the behavior was explained on the basis of a three-level model. The response time was determined to be in the picosecond regime. A technique based on a variable frequency chopper was also used in order to discriminate the thermal and electronic contributions to the nonlinearity, which were found to have opposite signs. All these findings propel the investigated nanoprism arrays as good candidates for applications in advanced ultra-fast nonlinear nanophotonic devices.

  3. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  4. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    PubMed

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm -2 . This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  5. Design and engineering of a target for x-ray Thomson scattering measurements on matter at extreme densities and gigabar pressures

    DOE PAGES

    Boehm, K. -J.; Hash, N.; Barker, D.; ...

    2016-06-24

    Reconciling the experimental and system requirements during the development of a new target system is one of the most challenging tasks in the design and engineering of targets used in the National Ignition Facility. Targets for the GigaBar 3 campaign were meant to allow the detection of extremely weak Thomson scattering from matter at extreme densities in the face of very bright backlighter and laser entry hole plasma emissions. The problem was to shield the detector sufficiently while maintaining beamline and view clearances, and observing target mass restrictions. A new construction process, based on a rapid prototype frame structure, wasmore » used to develop this target. As a result, details of the design process for these targets are described, and lessons from this development for production and target assembly teams are discussed.« less

  6. Plasmonic phased array feeder enabling ultra-fast beam steering at millimeter waves.

    PubMed

    Bonjour, R; Burla, M; Abrecht, F C; Welschen, S; Hoessbacher, C; Heni, W; Gebrewold, S A; Baeuerle, B; Josten, A; Salamin, Y; Haffner, C; Johnston, P V; Elder, D L; Leuchtmann, P; Hillerkuss, D; Fedoryshyn, Y; Dalton, L R; Hafner, C; Leuthold, J

    2016-10-31

    In this paper, we demonstrate an integrated microwave phoneeded for beamtonics phased array antenna feeder at 60 GHz with a record-low footprint. Our design is based on ultra-compact plasmonic phase modulators (active area <2.5µm2) that not only provide small size but also ultra-fast tuning speed. In our design, the integrated circuit footprint is in fact only limited by the contact pads of the electrodes and by the optical feeding waveguides. Using the high speed of the plasmonic modulators, we demonstrate beam steering with less than 1 ns reconfiguration time, i.e. the beam direction is reconfigured in-between 1 GBd transmitted symbols.

  7. Memory sparing, fast scattering formalism for rigorous diffraction modeling

    NASA Astrophysics Data System (ADS)

    Iff, W.; Kämpfe, T.; Jourlin, Y.; Tishchenko, A. V.

    2017-07-01

    The basics and algorithmic steps of a novel scattering formalism suited for memory sparing and fast electromagnetic calculations are presented. The formalism, called ‘S-vector algorithm’ (by analogy with the known scattering-matrix algorithm), allows the calculation of the collective scattering spectra of individual layered micro-structured scattering objects. A rigorous method of linear complexity is applied to model the scattering at individual layers; here the generalized source method (GSM) resorting to Fourier harmonics as basis functions is used as one possible method of linear complexity. The concatenation of the individual scattering events can be achieved sequentially or in parallel, both having pros and cons. The present development will largely concentrate on a consecutive approach based on the multiple reflection series. The latter will be reformulated into an implicit formalism which will be associated with an iterative solver, resulting in improved convergence. The examples will first refer to 1D grating diffraction for the sake of simplicity and intelligibility, with a final 2D application example.

  8. Network Modeling for Functional Magnetic Resonance Imaging (fMRI) Signals during Ultra-Fast Speech Comprehension in Late-Blind Listeners

    PubMed Central

    Dietrich, Susanne; Hertrich, Ingo; Ackermann, Hermann

    2015-01-01

    In many functional magnetic resonance imaging (fMRI) studies blind humans were found to show cross-modal reorganization engaging the visual system in non-visual tasks. For example, blind people can manage to understand (synthetic) spoken language at very high speaking rates up to ca. 20 syllables/s (syl/s). FMRI data showed that hemodynamic activation within right-hemispheric primary visual cortex (V1), bilateral pulvinar (Pv), and left-hemispheric supplementary motor area (pre-SMA) covaried with their capability of ultra-fast speech (16 syllables/s) comprehension. It has been suggested that right V1 plays an important role with respect to the perception of ultra-fast speech features, particularly the detection of syllable onsets. Furthermore, left pre-SMA seems to be an interface between these syllabic representations and the frontal speech processing and working memory network. So far, little is known about the networks linking V1 to Pv, auditory cortex (A1), and (mesio-) frontal areas. Dynamic causal modeling (DCM) was applied to investigate (i) the input structure from A1 and Pv toward right V1 and (ii) output from right V1 and A1 to left pre-SMA. As concerns the input Pv was significantly connected to V1, in addition to A1, in blind participants, but not in sighted controls. Regarding the output V1 was significantly connected to pre-SMA in blind individuals, and the strength of V1-SMA connectivity correlated with the performance of ultra-fast speech comprehension. By contrast, in sighted controls, not understanding ultra-fast speech, pre-SMA did neither receive input from A1 nor V1. Taken together, right V1 might facilitate the “parsing” of the ultra-fast speech stream in blind subjects by receiving subcortical auditory input via the Pv (= secondary visual pathway) and transmitting this information toward contralateral pre-SMA. PMID:26148062

  9. Network Modeling for Functional Magnetic Resonance Imaging (fMRI) Signals during Ultra-Fast Speech Comprehension in Late-Blind Listeners.

    PubMed

    Dietrich, Susanne; Hertrich, Ingo; Ackermann, Hermann

    2015-01-01

    In many functional magnetic resonance imaging (fMRI) studies blind humans were found to show cross-modal reorganization engaging the visual system in non-visual tasks. For example, blind people can manage to understand (synthetic) spoken language at very high speaking rates up to ca. 20 syllables/s (syl/s). FMRI data showed that hemodynamic activation within right-hemispheric primary visual cortex (V1), bilateral pulvinar (Pv), and left-hemispheric supplementary motor area (pre-SMA) covaried with their capability of ultra-fast speech (16 syllables/s) comprehension. It has been suggested that right V1 plays an important role with respect to the perception of ultra-fast speech features, particularly the detection of syllable onsets. Furthermore, left pre-SMA seems to be an interface between these syllabic representations and the frontal speech processing and working memory network. So far, little is known about the networks linking V1 to Pv, auditory cortex (A1), and (mesio-) frontal areas. Dynamic causal modeling (DCM) was applied to investigate (i) the input structure from A1 and Pv toward right V1 and (ii) output from right V1 and A1 to left pre-SMA. As concerns the input Pv was significantly connected to V1, in addition to A1, in blind participants, but not in sighted controls. Regarding the output V1 was significantly connected to pre-SMA in blind individuals, and the strength of V1-SMA connectivity correlated with the performance of ultra-fast speech comprehension. By contrast, in sighted controls, not understanding ultra-fast speech, pre-SMA did neither receive input from A1 nor V1. Taken together, right V1 might facilitate the "parsing" of the ultra-fast speech stream in blind subjects by receiving subcortical auditory input via the Pv (= secondary visual pathway) and transmitting this information toward contralateral pre-SMA.

  10. Fast analytical scatter estimation using graphics processing units.

    PubMed

    Ingleby, Harry; Lippuner, Jonas; Rickey, Daniel W; Li, Yue; Elbakri, Idris

    2015-01-01

    To develop a fast patient-specific analytical estimator of first-order Compton and Rayleigh scatter in cone-beam computed tomography, implemented using graphics processing units. The authors developed an analytical estimator for first-order Compton and Rayleigh scatter in a cone-beam computed tomography geometry. The estimator was coded using NVIDIA's CUDA environment for execution on an NVIDIA graphics processing unit. Performance of the analytical estimator was validated by comparison with high-count Monte Carlo simulations for two different numerical phantoms. Monoenergetic analytical simulations were compared with monoenergetic and polyenergetic Monte Carlo simulations. Analytical and Monte Carlo scatter estimates were compared both qualitatively, from visual inspection of images and profiles, and quantitatively, using a scaled root-mean-square difference metric. Reconstruction of simulated cone-beam projection data of an anthropomorphic breast phantom illustrated the potential of this method as a component of a scatter correction algorithm. The monoenergetic analytical and Monte Carlo scatter estimates showed very good agreement. The monoenergetic analytical estimates showed good agreement for Compton single scatter and reasonable agreement for Rayleigh single scatter when compared with polyenergetic Monte Carlo estimates. For a voxelized phantom with dimensions 128 × 128 × 128 voxels and a detector with 256 × 256 pixels, the analytical estimator required 669 seconds for a single projection, using a single NVIDIA 9800 GX2 video card. Accounting for first order scatter in cone-beam image reconstruction improves the contrast to noise ratio of the reconstructed images. The analytical scatter estimator, implemented using graphics processing units, provides rapid and accurate estimates of single scatter and with further acceleration and a method to account for multiple scatter may be useful for practical scatter correction schemes.

  11. Polarization-dependent force driving the Eg mode in bismuth under optical excitation: comparison of first-principles theory with ultra-fast x-ray experiments

    NASA Astrophysics Data System (ADS)

    Fahy, Stephen; Murray, Eamonn

    2015-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of a ultrafast pulse of polarized light. To compare the results with recent ultra-fast, time-resolved x-ray diffraction experiments, we include the decay of the force due to carrier scattering, as measured in optical Raman scattering experiments, and simulate the optical absorption process, depth-dependent atomic driving forces, and x-ray diffraction in the experimental geometry. We find excellent agreement between the theoretical predictions and the observed oscillations of the x-ray diffraction signal, indicating that first-principles theory of optical absorption is well suited to the calculation of initial atomic driving forces in photo-excited materials following ultrafast excitation. This work is supported by Science Foundation Ireland (Grant No. 12/IA/1601) and EU Commission under the Marie Curie Incoming International Fellowships (Grant No. PIIF-GA-2012-329695).

  12. A study of core Thomson scattering measurements in ITER using a multi-laser approach

    NASA Astrophysics Data System (ADS)

    Kurskiev, G. S.; Sdvizhenskii, P. A.; Bassan, M.; Andrew, P.; Bazhenov, A. N.; Bukreev, I. M.; Chernakov, P. V.; Kochergin, M. M.; Kukushkin, A. B.; Kukushkin, A. S.; Mukhin, E. E.; Razdobarin, A. G.; Samsonov, D. S.; Semenov, V. V.; Tolstyakov, S. Yu.; Kajita, S.; Masyukevich, S. V.

    2015-05-01

    The electron component is the main channel for anomalous power loss and the main indicator of transient processes in the tokamak plasma. The electron temperature and density profiles mainly determine the operational mode of the machine. This imposes demanding requirements on the precision and on the spatial and temporal resolution of the Thomson scattering (TS) measurements. Measurements of such high electron temperature with good accuracy in a large fusion device such as ITER using TS encounter a number of physical problems. The 40 keV TS spectrum has a significant blue shift. Due to the transmission functions of the fibres and to their darkening that can occur under a strong neutron irradiation, the operational wavelength range is bounded on the blue side. For example, high temperature measurements become impossible with the 1064 nm probing wavelength since the TS signal within the boundaries of the operational window weakly depends on Te. The second problem is connected with the TS calibration. The TS system for a large fusion machine like ITER will have a set of optical components inaccessible for maintenance, and their spectral characteristics may change with time. Since the present concept of the TS system for ITER relies on the classical approach to measuring the shape of the scattered spectra using wide spectral channels, the diagnostic will be very sensitive to the changes in the optical transmission. The third complication is connected with the deviation of the electron velocity distribution function from a Maxwellian that can happen under a strong ECRH/ECCD, and it may additionally hamper the measurements. This paper analyses the advantages of a ‘multi-laser approach’ implementation for the current design of the core TS system. Such an approach assumes simultaneous plasma probing with different wavelengths that allows the measurement accuracy to be improved significantly and to perform the spectral calibration of the TS system. Comparative analysis

  13. H.sub.2O doped WO.sub.3, ultra-fast, high-sensitivity hydrogen sensors

    DOEpatents

    Liu, Ping [Denver, CO; Tracy, C Edwin [Golden, CO; Pitts, J Roland [Lakewood, CO; Lee, Se-Hee [Lakewood, CO

    2011-03-22

    An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO.sub.3 layer coated on the substrate; and a palladium layer coated on the water-doped WO.sub.3 layer.

  14. Open Probe fast GC-MS - combining ambient sampling ultra-fast separation and in-vacuum ionization for real-time analysis.

    PubMed

    Keshet, U; Alon, T; Fialkov, A B; Amirav, A

    2017-07-01

    An Open Probe inlet was combined with a low thermal mass ultra-fast gas chromatograph (GC), in-vacuum electron ionization ion source and a mass spectrometer (MS) of GC-MS for obtaining real-time analysis with separation. The Open Probe enables ambient sampling via sample vaporization in an oven that is open to room air, and the ultra-fast GC provides ~30-s separation, while if no separation is required, it can act as a transfer line with 2 to 3-s sample transfer time. Sample analysis is as simple as touching the sample, pushing the sample holder into the Open Probe oven and obtaining the results in 30 s. The Open Probe fast GC was mounted on a standard Agilent 7890 GC that was coupled with an Agilent 5977A MS. Open Probe fast GC-MS provides real-time analysis combined with GC separation and library identification, and it uses the low-cost MS of GC-MS. The operation of Open Probe fast GC-MS is demonstrated in the 30-s separation and 50-s full analysis cycle time of tetrahydrocannabinol and cannabinol in Cannabis flower, sub 1-min analysis of trace trinitrotoluene transferred from a finger onto a glass surface, vitamin E in canola oil, sterols in olive oil, polybrominated flame retardants in plastics, alprazolam in Xanax drug pill and free fatty acids and cholesterol in human blood. The extrapolated limit of detection for pyrene is <1 fg, but the concentration is too high and the software noise calculation is untrustworthy. The broad range of compounds amenable for analysis is demonstrated in the analysis of reserpine. The possible use with alternate standard GC-MS and Open Probe fast GC-MS is demonstrated in the analysis of heroin in its street drug powder. The use of Open Probe with the fast GC acting as a transfer line is demonstrated in <10-s analysis without separation of ibuprofen and estradiol. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. An analytic formula for the relativistic incoherent Thomson backscattering spectrum for a drifting bi-Maxwellian plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naito, O.

    2015-08-15

    An analytic formula has been derived for the relativistic incoherent Thomson backscattering spectrum for a drifting anisotropic plasma when the scattering vector is parallel to the drifting direction. The shape of the scattering spectrum is insensitive to the electron temperature perpendicular to the scattering vector, but its amplitude may be modulated. As a result, while the measured temperature correctly represents the electron distribution parallel to the scattering vector, the electron density may be underestimated when the perpendicular temperature is higher than the parallel temperature. Since the scattering spectrum in shorter wavelengths is greatly enhanced by the existence of drift, themore » diagnostics might be used to measure local electron current density in fusion plasmas.« less

  16. Picosecond Pulse Recirculation for High Average Brightness Thomson Scattering-based Gamma-ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, V. A.

    2009-06-12

    Pulse recirculation has been successfully demonstrated with the interaction laser system of LLNL's Thomson-Radiated Extreme X-ray (T-REX) source. The recirculation increased twenty-eight times the intensity of the light coming out of the laser system, demonstrating the capability of increasing the gamma-ray flux emitted by T-REX. The technical approach demonstrated could conceivably increase the average gamma-ray flux output by up to a hundred times.

  17. Plasma cleaning of ITER edge Thomson scattering mock-up mirror in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Yan, Rong; Moser, Lucas; Wang, Baoguo; Peng, Jiao; Vorpahl, Christian; Leipold, Frank; Reichle, Roger; Ding, Rui; Chen, Junling; Mu, Lei; Steiner, Roland; Meyer, Ernst; Zhao, Mingzhong; Wu, Jinhua; Marot, Laurent

    2018-02-01

    First mirrors are the key element of all optical and laser diagnostics in ITER. Facing the plasma directly, the surface of the first mirrors could be sputtered by energetic particles or deposited with contaminants eroded from the first wall (tungsten and beryllium), which would result in the degradation of the reflectivity. The impurity deposits emphasize the necessity of the first mirror in situ cleaning for ITER. The mock-up first mirror system for ITER edge Thomson scattering diagnostics has been cleaned in EAST for the first time in a tokamak using radio frequency capacitively coupled plasma. The cleaning properties, namely the removal of contaminants and homogeneity of cleaning were investigated with molybdenum mirror insets (25 mm diameter) located at five positions over the mock-up plate (center to edge) on which 10 nm of aluminum oxide, used as beryllium proxy, were deposited. The cleaning efficiency was evaluated using energy dispersive x-ray spectroscopy, reflectivity measurements and x-ray photoelectron spectroscopy. Using argon or neon plasma without magnetic field in the laboratory and with a 1.7 T magnetic field in the EAST tokamak, the aluminum oxide films were homogeneously removed. The full recovery of the mirrors’ reflectivity was attained after cleaning in EAST with the magnetic field, and the cleaning efficiency was about 40 times higher than that without the magnetic field. All these results are promising for the plasma cleaning baseline scenario of ITER.

  18. Consistency between real and synthetic fast-ion measurements at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Geiger, B.; Salewski, M.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Michelsen, P. K.; Moseev, D.; Schubert, M.; Stober, J.; Tardini, G.; Wagner, D.; The ASDEX Upgrade Team

    2015-07-01

    Internally consistent characterization of the properties of the fast-ion distribution from multiple diagnostics is a prerequisite for obtaining a full understanding of fast-ion behavior in tokamak plasmas. Here we benchmark several absolutely-calibrated core fast-ion diagnostics at ASDEX Upgrade by comparing fast-ion measurements from collective Thomson scattering, fast-ion {{\\text{D}}α} spectroscopy, and neutron rate detectors with numerical predictions from the TRANSP/NUBEAM transport code. We also study the sensitivity of the theoretical predictions to uncertainties in the plasma kinetic profiles. We find that theory and measurements generally agree within these uncertainties for all three diagnostics during heating phases with either one or two neutral beam injection sources. This suggests that the measurements can be described by the same model assuming classical slowing down of fast ions. Since the three diagnostics in the adopted configurations probe partially overlapping regions in fast-ion velocity space, this is also consistent with good internal agreement among the measurements themselves. Hence, our results support the feasibility of combining multiple diagnostics at ASDEX Upgrade to reconstruct the fast-ion distribution function in 2D velocity space.

  19. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Ross, J. S.; Datte, P.

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimatedmore » to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.« less

  20. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Ross, J. S.; Datte, P.

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less

  1. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE PAGES

    Swadling, G. F.; Ross, J. S.; Datte, P.; ...

    2016-07-21

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less

  2. Controlled nanostructrures formation by ultra fast laser pulses for color marking.

    PubMed

    Dusser, B; Sagan, Z; Soder, H; Faure, N; Colombier, J P; Jourlin, M; Audouard, E

    2010-02-01

    Precise nanostructuration of surface and the subsequent upgrades in material properties is a strong outcome of ultra fast laser irradiations. Material characteristics can be designed on mesoscopic scales, carrying new optical properties. We demonstrate in this work, the possibility of achieving material modifications using ultra short pulses, via polarization dependent structures generation, that can generate specific color patterns. These oriented nanostructures created on the metal surface, called ripples, are typically smaller than the laser wavelength and in the range of visible spectrum. In this way, a complex colorization process of the material, involving imprinting, calibration and reading, has been performed to associate a priori defined colors. This new method based on the control of the laser-driven nanostructure orientation allows cumulating high quantity of information in a minimal surface, proposing new applications for laser marking and new types of identifying codes.

  3. Uniform laser-driven relativistic electron layer for coherent Thomson scattering.

    PubMed

    Wu, H-C; Meyer-ter-Vehn, J; Fernández, J; Hegelich, B M

    2010-06-11

    A novel scheme is proposed to generate uniform relativistic electron layers for coherent Thomson backscattering. A few-cycle laser pulse is used to produce the electron layer from an ultrathin solid foil. The key element of the new scheme is an additional foil that reflects the drive-laser pulse, but lets the electrons pass almost unperturbed. Making use of two-dimensional particle-in-cell simulations and well-known basic theory, it is shown that the electrons, after interacting with both the drive and reflected laser pulses, form a very uniform flyer freely cruising with a high relativistic γ factor exactly in the drive-laser direction (no transverse momentum). It backscatters the probe light with a full Doppler shift factor of 4γ(2). The reflectivity and its decay due to layer expansion are discussed.

  4. Pinhole-type two-dimensional ultra-small-angle X-ray scattering on the micrometer scale

    PubMed Central

    Kishimoto, Hiroyuki; Shinohara, Yuya; Suzuki, Yoshio; Takeuchi, Akihisa; Yagi, Naoto; Amemiya, Yoshiyuki

    2014-01-01

    A pinhole-type two-dimensional ultra-small-angle X-ray scattering set-up at a so-called medium-length beamline at SPring-8 is reported. A long sample-to-detector distance, 160.5 m, can be used at this beamline and a small-angle resolution of 0.25 µm−1 was thereby achieved at an X-ray energy of 8 keV. PMID:24365910

  5. Stimulated Brillouin scattering in ultra-long distributed feedback Bragg gratings in standard optical fiber.

    PubMed

    Loranger, Sébastien; Lambin-Iezzi, Victor; Wahbeh, Mamoun; Kashyap, Raman

    2016-04-15

    Distributed feedback (DFB) fiber Bragg gratings (FBG) are widely used as narrow-band filters and single-mode cavities for lasers. Recently, a nonlinear generation has been shown in 10-20 cm DFB gratings in a highly nonlinear fiber. First, we show in this Letter a novel fabrication technique of ultra-long DFBs in a standard fiber (SMF-28). Second, we demonstrate nonlinear generation in such gratings. A particular inscription technique was used to fabricate all-in-phase ultra-long FBG and to implement reproducible phase shift to form a DFB mode. We demonstrate stimulated Brillouin scattering (SBS) emission from this DFB mode and characterize the resulting laser. It seems that such a SBS based DFB laser stabilizes a pump's jittering and reduces its linewidth.

  6. Special Important Aspects of the Thomson Effect

    NASA Astrophysics Data System (ADS)

    Lashkevych, Igor; Velázquez, J. E.; Titov, Oleg Yu.; Gurevich, Yuri G.

    2018-06-01

    A comprehensive study of the mechanisms of heating and cooling originating from an electrical current in semiconductor devices is reported. The variation in temperature associated with the Peltier effect is not related to the presence of heat sources and sinks if the heat flux is correctly determined. The Thomson effect is commonly regarded as a heat source/sink proportional to the Thomson coefficient, which is added to the Joule heating. In the present work, we will show that this formulation of the Thomson effect is not sufficiently clear. When the heat flux is correctly defined, the Thomson heat source/sink is proportional to the Seebeck coefficient. In the conditions in which the Peltier effect takes place, the temperature gradient is created, and, consequently, the Thomson effect will occur naturally.

  7. Special Important Aspects of the Thomson Effect

    NASA Astrophysics Data System (ADS)

    Lashkevych, Igor; Velázquez, J. E.; Titov, Oleg Yu.; Gurevich, Yuri G.

    2018-03-01

    A comprehensive study of the mechanisms of heating and cooling originating from an electrical current in semiconductor devices is reported. The variation in temperature associated with the Peltier effect is not related to the presence of heat sources and sinks if the heat flux is correctly determined. The Thomson effect is commonly regarded as a heat source/sink proportional to the Thomson coefficient, which is added to the Joule heating. In the present work, we will show that this formulation of the Thomson effect is not sufficiently clear. When the heat flux is correctly defined, the Thomson heat source/sink is proportional to the Seebeck coefficient. In the conditions in which the Peltier effect takes place, the temperature gradient is created, and, consequently, the Thomson effect will occur naturally.

  8. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    DOE PAGES

    Mann, I. R.; Ozeke, L. G.; Murphy, K. R.; ...

    2016-06-20

    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave–particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. In this paper, using a data-driven, time-dependent specification of ultra-low-frequency (ULF) waves we showmore » for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave–particle scattering loss into the atmosphere is not needed in this case. Finally, when rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.« less

  9. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, I. R.; Ozeke, L. G.; Murphy, K. R.

    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave–particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. In this paper, using a data-driven, time-dependent specification of ultra-low-frequency (ULF) waves we showmore » for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave–particle scattering loss into the atmosphere is not needed in this case. Finally, when rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.« less

  10. Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression.

    PubMed

    Zheng, Yuejun; Zhou, Yulong; Gao, Jun; Cao, Xiangyu; Yang, Huanhuan; Li, Sijia; Xu, Liming; Lan, Junxiang; Jidi, Liaori

    2017-11-23

    A double-layer complementary metasurface (MS) with ultra-wideband polarization conversion is presented. Then, we propose two application cases by applying the polarization conversion structures to aperture coupling patch antenna (ACPA). Due to the existence of air-filled gap of ACPA, air substrate and dielectric substrate are used to construct the double-layer MS. The polarization conversion bandwidth is broadened toward low-frequency range. Subsequently, two application cases of antenna are proposed and investigated. The simultaneous improvement of radiation and scattering performance of antenna is normally considered as a contradiction. Gratifyingly, the contradiction is addressed in these two application cases. According to different mechanism of scattering suppression (i.e., polarization conversion and phase cancellation), the polarization conversion structures are utilized to construct uniform and orthogonal arrangement configurations. And then, the configurations are integrated into ACPA and two different kinds of metasurface-based (MS-based) ACPA are formed. Radiation properties of the two MS-based ACPAs are improved by optimizing the uniform and orthogonal arrangement configurations. The measured results suggest that ultra-wideband polarization conversion properties of the MS are achieved and radiation enhancement and scattering suppression of the two MS-based ACPAs are obtained. These results demonstrate that we provide novel approach to design high-performance polarization conversion MS and MS-based devices.

  11. Ultra high performance liquid chromatography with ion-trap TOF-MS for the fast characterization of flavonoids in Citrus bergamia juice.

    PubMed

    Sommella, Eduardo; Pepe, Giacomo; Pagano, Francesco; Tenore, Gian Carlo; Dugo, Paola; Manfra, Michele; Campiglia, Pietro

    2013-10-01

    We have developed a fast ultra HPLC with ion-trap TOF-MS method for the analysis of flavonoids in Citrus bergamia juice. With respect to the typical methods for the analysis of these matrices based on conventional HPLC techniques, a tenfold faster separation was attained. The use of a core-shell particle column ensured high resolution within the fast analysis time of only 5 min. Unambiguous determination of flavonoid identity was obtained by the employment of a hybrid ion-trap TOF mass spectrometer with high mass accuracy (average error 1.69 ppm). The system showed good retention time and peak area repeatability, with maximum RSD% values of 0.36 and 3.86, respectively, as well as good linearity (R(2) ≥ 0.99). Our results show that ultra HPLC can be a useful tool for ultra fast qualitative/quantitative analysis of flavonoid compounds in citrus fruit juices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Corrections on energy spectrum and scatterings for fast neutron radiography at NECTAR facility

    NASA Astrophysics Data System (ADS)

    Liu, Shu-Quan; Bücherl, Thomas; Li, Hang; Zou, Yu-Bin; Lu, Yuan-Rong; Guo, Zhi-Yu

    2013-11-01

    Distortions caused by the neutron spectrum and scattered neutrons are major problems in fast neutron radiography and should be considered for improving the image quality. This paper puts emphasis on the removal of these image distortions and deviations for fast neutron radiography performed at the NECTAR facility of the research reactor FRM- II in Technische Universität München (TUM), Germany. The NECTAR energy spectrum is analyzed and established to modify the influence caused by the neutron spectrum, and the Point Scattered Function (PScF) simulated by the Monte-Carlo program MCNPX is used to evaluate scattering effects from the object and improve image quality. Good analysis results prove the sound effects of the above two corrections.

  13. QUANTUM CONTROL OF LIGHT: From Slow Light and FAST CARS to Nuclear γ-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Scully, Marlan

    2007-06-01

    In recent work we have demonstrated strong coherent backward wave oscillation using forward propagating fields only. This surprising result is achieved by applying laser fields to an ultra-dispersive medium with proper chosen detunings to excite a molecular vibrational coherence that corresponds to a backward propagating wave [PRL, 97, 113001 (2006)]. The physics then has much in common with propagation of ultra-slow light. Applications of coherent scattering and remote sensing to the detection of bio and chemical pathogens (e.g., anthrax) via Coherent Anti-Raman Scattering together with Femtosecond Adaptive Spectroscopic Techniques (FAST CARS [Opt. Comm., 244, 423 (2005)]) will be discussed. Furthermore, the interplay between quantum optics (Dicke super and sub-radiant states) and nuclear physics (forward scattering of γ radiation) provides interesting problems and insights into the quantum control of scattered light [PRL, 96, 010501 (2005)].

  14. High performance infrared fast cooled detectors for missile applications

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Espuno, Laurent; Taalat, Rachid; Sultan, Ahmad; Cassaigne, Pierre; Matallah, Noura

    2016-05-01

    SOFRADIR was selected in the late 90's for the production of 320×256 MW detectors for major European missile programs. This experience has established our company as a key player in the field of missile programs. SOFRADIR has since developed a vast portfolio of lightweight, compact and high performance JT-based solutions for missiles. ALTAN is a 384x288 Mid Wave infrared detector with 15μm pixel pitch, and is offered in a miniature ultra-fast Joule- Thomson cooled Dewar. Since Sofradir offers both Indium Antimonide (InSb) and Mercury Cadmium Telluride technologies (MCT), we are able to deliver the detectors best suited to customers' needs. In this paper we are discussing different figures of merit for very compact and innovative JT-cooled detectors and are highlighting the challenges for infrared detection technologies.

  15. Narrow bandwidth Laser-Plasma Accelerator driven Thomson photon source development

    NASA Astrophysics Data System (ADS)

    Geddes, C. G. R.; Tsai, H.-E.; Otero, G.; Liu, X.; van Tilborg, J.; Toth, Cs.; Vay, J.-L.; Lehe, R.; Schroeder, C. B.; Esarey, E.; Friedman, A.; Grote, D. P.; Leemans, W. P.

    2017-10-01

    Compact, high-quality photon sources at MeV energies can be provided by Thomson scattering of a laser from the electron beam of a Laser-Plasma Accelerator (LPA). Recent experiments and simulations demonstrate controllable LPAs in the energy range appropriate to MeV sources. Simulations indicate that high flux with narrow energy spread can be achieved via control of the scattering laser pulse shape and laser guiding, and that undesired background bremsstrahlung can be mitigated by plasma based deceleration of the electron beam after photon production. Construction of experiments and laser capabilities to combine these elements will be presented, along with initial operations, towards a compact photon source system. Work supported by US DOE NNSA DNN R&D and by Sc. HEP under contract DE-AC02-05CH11231.

  16. Ultra-fast all-optical plasmon induced transparency in a metal–insulator–metal waveguide containing two Kerr nonlinear ring resonators

    NASA Astrophysics Data System (ADS)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-05-01

    In this work, an ultra-fast all-optical plasmon induced transparency based on a metal–insulator–metal nanoplasmonic waveguide with two Kerr nonlinear ring resonators is studied. Two-dimensional simulations utilizing the finite-difference time-domain method are used to show an obvious optical bistability and significant switching mechanisms of the signal light by varying the pump-light intensity. The proposed all-optical switching based on plasmon induced transparency demonstrates femtosecond-scale feedback time (90 fs), meaning ultra-fast switching can be achieved. The presented all-optical switch may have potential significant applications in integrated optical circuits.

  17. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    DOE PAGES

    Regan, S. P.; Falk, K.; Gregori, G.; ...

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Ly α line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×10 23 cm -3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  18. High-harmonic fast magnetosonic wave coupling, propagation, and heating in a spherical torus plasma

    NASA Astrophysics Data System (ADS)

    Menard, J.; Majeski, R.; Kaita, R.; Ono, M.; Munsat, T.; Stutman, D.; Finkenthal, M.

    1999-05-01

    A novel rotatable two-strap antenna has been installed in the current drive experiment upgrade (CDX-U) [T. Jones, Ph.D. thesis, Princeton University (1995)] in order to investigate high-harmonic fast wave coupling, propagation, and electron heating as a function of strap angle and strap phasing in a spherical torus plasma. Radio-frequency-driven sheath effects are found to fit antenna loading trends at very low power and become negligible above a few kilowatts. At sufficiently high power, the measured coupling efficiency as a function of strap angle is found to agree favorably with cold plasma wave theory. Far-forward microwave scattering from wave-induced density fluctuations in the plasma core tracks the predicted fast wave loading as the antenna is rotated. Signs of electron heating during rf power injection have been observed in CDX-U with central Thomson scattering, impurity ion spectroscopy, and Langmuir probes. While these initial results appear promising, damping of the fast wave on thermal ions at high ion-cyclotron-harmonic number may compete with electron damping at sufficiently high ion β—possibly resulting in a significantly reduced current drive efficiency and production of a fast ion population. Preliminary results from ray-tracing calculations which include these ion damping effects are presented.

  19. Characterization of Heavy Oxide Inorganic Scintillator Crystals for Direct Detection of Fast Neutrons Based on Inelastic Scattering

    DTIC Science & Technology

    2015-03-01

    HEAVY OXIDE INORGANIC SCINTILLATOR CRYSTALS FOR DIRECT DETECTION OF FAST NEUTRONS BASED ON INELASTIC SCATTERING by Philip R. Rusiecki...HEAVY OXIDE INORGANIC SCINTILLATOR CRYSTALS FOR DIRECT DETECTION OF FAST NEUTRONS BASED ON INELASTIC SCATTERING 6. AUTHOR(S) Philip R. Rusiecki 7...ABSTRACT (maximum 200 words) Heavy oxide inorganic scintillators may prove viable in the detection of fast neutrons based on the mechanism of

  20. Demonstration of space-resolved x-ray Thomson scattering capability for warm dense matter experiments on the Z accelerator

    DOE PAGES

    Ao, T.; Harding, E. C.; Bailey, J. E.; ...

    2016-01-13

    Experiments on the Sandia Z pulsed-power accelerator demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (> 20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH 2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm 3, andmore » temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data is composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Furthermore, these spectra provide detailed information on three target locations: the laser spot, the unshocked foam, and the shocked foam.« less

  1. Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range.

    PubMed

    Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei

    2013-05-06

    A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.

  2. Experimentally-based ExB drifts in the DIII-D divertor and SOL calculated from integration of Ohm's law using Thomson scattering measurements of T e and n e

    DOE PAGES

    Stangeby, Peter C.; Elder, J. David; McLean, Adam G.; ...

    2017-03-27

    We calculated the 2D spatial distributions of cross field drift velocities from 2D Thomson scattering measurements of T e and n e in the divertor and SOL of DIII-D. In contrast with the method that has been used on DIII-D where the 2D distribution of plasma potential V plasma is obtained from measurements of the probe floating potential of reciprocating probes, the present method does not require insertion of a probe into the plasma and can therefore be used in high power discharges. Furthermore, the 2D spatial distribution of V plasma is calculated from Ohm’s Law for the parallel electricmore » field E || along each flux tube, E || s || = -1.71dT e/ds || - T e/n edn e/ds ||, where the Thomson scattering values of T e and n e are used. To within a constant of integration, V plasma is obtained by integrating E || along the flux-tubes (field lines); the constant is obtained for each flux tube using the sheath drop at the target calculated from the characteristic of Langmuir probes built into the divertor tiles. The 2D distributions of E./01/2 = -dV4/ds./01/2, E452510/2 = -dV4/ds452510/2, v789 452510/2 = E./01/2/B and v789 ./01/2 = E452510/2/B are then calculated as well as the particle drift flux densities Γ789 452510/2 = nv789 452510/2 and Γ789 ./01/2 = nv789 ./01/2 for electrons, fuel ions and impurity ions, using the appropriate values of particle density, n.« less

  3. Experimentally-based ExB drifts in the DIII-D divertor and SOL calculated from integration of Ohm's law using Thomson scattering measurements of T e and n e

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stangeby, Peter C.; Elder, J. David; McLean, Adam G.

    We calculated the 2D spatial distributions of cross field drift velocities from 2D Thomson scattering measurements of T e and n e in the divertor and SOL of DIII-D. In contrast with the method that has been used on DIII-D where the 2D distribution of plasma potential V plasma is obtained from measurements of the probe floating potential of reciprocating probes, the present method does not require insertion of a probe into the plasma and can therefore be used in high power discharges. Furthermore, the 2D spatial distribution of V plasma is calculated from Ohm’s Law for the parallel electricmore » field E || along each flux tube, E || s || = -1.71dT e/ds || - T e/n edn e/ds ||, where the Thomson scattering values of T e and n e are used. To within a constant of integration, V plasma is obtained by integrating E || along the flux-tubes (field lines); the constant is obtained for each flux tube using the sheath drop at the target calculated from the characteristic of Langmuir probes built into the divertor tiles. The 2D distributions of E./01/2 = -dV4/ds./01/2, E452510/2 = -dV4/ds452510/2, v789 452510/2 = E./01/2/B and v789 ./01/2 = E452510/2/B are then calculated as well as the particle drift flux densities Γ789 452510/2 = nv789 452510/2 and Γ789 ./01/2 = nv789 ./01/2 for electrons, fuel ions and impurity ions, using the appropriate values of particle density, n.« less

  4. Improvements in simulation of multiple scattering effects in ATLAS fast simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basalaev, A. E., E-mail: artem.basalaev@cern.ch

    Fast ATLAS Tracking Simulation (Fatras) package was verified on single layer geometry with respect to full simulation with GEANT4. Fatras hadronic interactions and multiple scattering simulation were studied in comparison with GEANT4. Disagreement was found in multiple scattering distributions of primary charged particles (μ, π, e). A new model for multiple scattering simulation was implemented in Fatras. The model was based on R. Frühwirth’s mixture models. New model was tested on single layer geometry and a good agreement with GEANT4 was achieved. Also a comparison of reconstructed tracks’ parameters was performed for Inner Detector geometry, and Fatras with new multiplemore » scattering model proved to have better agreement with GEANT4. New model of multiple scattering was added as a part of Fatras package in the development release of ATLAS software—ATHENA.« less

  5. Development of Ultra-Fast Silicon Detectors for 4D tracking

    NASA Astrophysics Data System (ADS)

    Staiano, A.; Arcidiacono, R.; Boscardin, M.; Dalla Betta, G. F.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Ficorella, F.; Mandurrino, M.; Obertino, M.; Pancheri, L.; Paternoster, G.; Sola, V.

    2017-12-01

    In this contribution we review the progress towards the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~10 larger than standard silicon detectors. The basic design of UFSD consists of a thin silicon sensor with moderate internal gain and pixelated electrodes coupled to full custom VLSI chip. An overview of test beam data on time resolution and the impact on this measurement of radiation doses at the level of those expected at HL-LHC is presented. First I-V and C-V measurements on a new FBK sensor production of UFSD, 50 μm thick, with B and Ga, activated at two diffusion temperatures, with and without C co-implantation (in Low and High concentrations), and with different effective doping concentrations in the Gain layer, are shown. Perspectives on current use of UFSD in HEP experiments (UFSD detectors have been installed in the CMS-TOTEM Precision Protons Spectrometer for the forward physics tracking, and are currently taking data) and proposed applications for a MIP timing layer in the HL-LHC upgrade are briefly discussed.

  6. A flexible, on-line magnetic spectrometer for ultra-intense laser produced fast electron measurement

    NASA Astrophysics Data System (ADS)

    Ge, Xulei; Yuan, Xiaohui; Yang, Su; Deng, Yanqing; Wei, Wenqing; Fang, Yuan; Gao, Jian; Liu, Feng; Chen, Min; Zhao, Li; Ma, Yanyun; Sheng, Zhengming; Zhang, Jie

    2018-04-01

    We have developed an on-line magnetic spectrometer to measure energy distributions of fast electrons generated from ultra-intense laser-solid interactions. The spectrometer consists of a sheet of plastic scintillator, a bundle of non-scintillating plastic fibers, and an sCMOS camera recording system. The design advantages include on-line capturing ability, versatility of detection arrangement, and resistance to harsh in-chamber environment. The validity of the instrument was tested experimentally. This spectrometer can be applied to the characterization of fast electron source for understanding fundamental laser-plasma interaction physics and to the optimization of high-repetition-rate laser-driven applications.

  7. Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line.

    PubMed

    Audier, Xavier; Balla, Naveen; Rigneault, Hervé

    2017-01-15

    We demonstrate femtosecond pump-probe transient absorption spectroscopy using a programmable dispersive filter as an ultra-fast delay line. Combined with fast synchronous detection, this delay line allows for recording of 6 ps decay traces at 34 kHz. With such acquisition speed, we perform single point pump-probe spectroscopy on bulk samples in 80 μs and hyperspectral pump-probe imaging over a field of view of 100 μm in less than a second. The usability of the method is illustrated in a showcase experiment to image and discriminate between two pigments in a mixture.

  8. 76 FR 45879 - West, a Thomson Reuters Business, Thomson Reuters Legal, Including On-Site Leased Workers From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... Business, Thomson Reuters Legal, Including On-Site Leased Workers From Adecco, Including a Teleworker... for Worker Adjustment Assistance In accordance with section 223 of the Trade Act of 1974, as amended... Apply for Worker Adjustment Assistance on June 21, 2010, applicable to workers of West, A Thomson...

  9. NuSTAR REVEALS RELATIVISTIC REFLECTION BUT NO ULTRA-FAST OUTFLOW IN THE QUASAR PG 1211+143

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoghbi, A.; Miller, J. M.; Walton, D. J.

    We report on four epochs of observations of the quasar PG 1211+143 using NuSTAR. The net exposure time is 300 ks. Prior work on this source found suggestive evidence of an ultra-fast outflow (UFO) in the Fe K band with a velocity of approximately 0.1c. The putative flow would carry away a high-mass flux and kinetic power, with broad implications for feedback and black hole--galaxy co-evolution. NuSTAR detects PG 1211+143 out to 30 keV, meaning that the continuum is well-defined both through and above the Fe K band. A characteristic relativistic disk reflection spectrum is clearly revealed via a broadmore » Fe K emission line and Compton back-scattering curvature. The data offer only weak constraints on the spin of the black hole. A careful search for UFOs shows no significant absorption feature above 90% confidence. The limits are particularly tight when relativistic reflection is included. We discuss the statistics and the implications of these results in terms of connections between accretion onto quasars, Seyferts, and stellar-mass black holes, and feedback into their host environments.« less

  10. NuSTAR Reveals Relativistic Reflection But No Ultra-Fast Outflow in the Quasar Pg∼1211+143

    NASA Astrophysics Data System (ADS)

    Zoghbi, A.; Miller, J. M.; Walton, D. J.; Harrison, F. A.; Fabian, A. C.; Reynolds, C. S.; Boggs, S. E.; Christensen, F. E.; Craig, W.; Hailey, C. J.; Stern, D.; Zhang, W. W.

    2015-01-01

    We report on four epochs of observations of the quasar PG 1211+143 using NuSTAR. The net exposure time is 300 ks. Prior work on this source found suggestive evidence of an ultra-fast outflow (UFO) in the Fe K band with a velocity of approximately 0.1c. The putative flow would carry away a high-mass flux and kinetic power, with broad implications for feedback and black hole--galaxy co-evolution. NuSTAR detects PG 1211+143 out to 30 keV, meaning that the continuum is well-defined both through and above the Fe K band. A characteristic relativistic disk reflection spectrum is clearly revealed via a broad Fe K emission line and Compton back-scattering curvature. The data offer only weak constraints on the spin of the black hole. A careful search for UFOs shows no significant absorption feature above 90% confidence. The limits are particularly tight when relativistic reflection is included. We discuss the statistics and the implications of these results in terms of connections between accretion onto quasars, Seyferts, and stellar-mass black holes, and feedback into their host environments.

  11. Fast inverse scattering solutions using the distorted Born iterative method and the multilevel fast multipole algorithm

    PubMed Central

    Hesford, Andrew J.; Chew, Weng C.

    2010-01-01

    The distorted Born iterative method (DBIM) computes iterative solutions to nonlinear inverse scattering problems through successive linear approximations. By decomposing the scattered field into a superposition of scattering by an inhomogeneous background and by a material perturbation, large or high-contrast variations in medium properties can be imaged through iterations that are each subject to the distorted Born approximation. However, the need to repeatedly compute forward solutions still imposes a very heavy computational burden. To ameliorate this problem, the multilevel fast multipole algorithm (MLFMA) has been applied as a forward solver within the DBIM. The MLFMA computes forward solutions in linear time for volumetric scatterers. The typically regular distribution and shape of scattering elements in the inverse scattering problem allow the method to take advantage of data redundancy and reduce the computational demands of the normally expensive MLFMA setup. Additional benefits are gained by employing Kaczmarz-like iterations, where partial measurements are used to accelerate convergence. Numerical results demonstrate both the efficiency of the forward solver and the successful application of the inverse method to imaging problems with dimensions in the neighborhood of ten wavelengths. PMID:20707438

  12. Including Delbrück scattering in GEANT4

    NASA Astrophysics Data System (ADS)

    Omer, Mohamed; Hajima, Ryoichi

    2017-08-01

    Elastic scattering of γ-rays is a significant interaction among γ-ray interactions with matter. Therefore, the planning of experiments involving measurements of γ-rays using Monte Carlo simulations usually includes elastic scattering. However, current simulation tools do not provide a complete picture of elastic scattering. The majority of these tools assume Rayleigh scattering is the primary contributor to elastic scattering and neglect other elastic scattering processes, such as nuclear Thomson and Delbrück scattering. Here, we develop a tabulation-based method to simulate elastic scattering in one of the most common open-source Monte Carlo simulation toolkits, GEANT4. We collectively include three processes, Rayleigh scattering, nuclear Thomson scattering, and Delbrück scattering. Our simulation more appropriately uses differential cross sections based on the second-order scattering matrix instead of current data, which are based on the form factor approximation. Moreover, the superposition of these processes is carefully taken into account emphasizing the complex nature of the scattering amplitudes. The simulation covers an energy range of 0.01 MeV ≤ E ≤ 3 MeV and all elements with atomic numbers of 1 ≤ Z ≤ 99. In addition, we validated our simulation by comparing the differential cross sections measured in earlier experiments with those extracted from the simulations. We find that the simulations are in good agreement with the experimental measurements. Differences between the experiments and the simulations are 21% for uranium, 24% for lead, 3% for tantalum, and 8% for cerium at 2.754 MeV. Coulomb corrections to the Delbrück amplitudes may account for the relatively large differences that appear at higher Z values.

  13. The Fast Scattering Code (FSC): Validation Studies and Program Guidelines

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Dunn, Mark H.

    2011-01-01

    The Fast Scattering Code (FSC) is a frequency domain noise prediction program developed at the NASA Langley Research Center (LaRC) to simulate the acoustic field produced by the interaction of known, time harmonic incident sound with bodies of arbitrary shape and surface impedance immersed in a potential flow. The code uses the equivalent source method (ESM) to solve an exterior 3-D Helmholtz boundary value problem (BVP) by expanding the scattered acoustic pressure field into a series of point sources distributed on a fictitious surface placed inside the actual scatterer. This work provides additional code validation studies and illustrates the range of code parameters that produce accurate results with minimal computational costs. Systematic noise prediction studies are presented in which monopole generated incident sound is scattered by simple geometric shapes - spheres (acoustically hard and soft surfaces), oblate spheroids, flat disk, and flat plates with various edge topologies. Comparisons between FSC simulations and analytical results and experimental data are presented.

  14. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors.

    PubMed

    Fluegel, Brian; Mialitsin, Aleksej V; Beaton, Daniel A; Reno, John L; Mascarenhas, Angelo

    2015-05-28

    Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10(-4). Comparing our strain sensitivity and signal strength in Al(x)Ga(1-x)As with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 10(3), thus obviating key constraints in semiconductor strain metrology.

  15. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

    PubMed Central

    Fluegel, Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; Reno, John L.; Mascarenhas, Angelo

    2015-01-01

    Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10−4. Comparing our strain sensitivity and signal strength in AlxGa1−xAs with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology. PMID:26017853

  16. The design of a low-cost Thomson Scattering system for use on the ORNL PhIX device

    NASA Astrophysics Data System (ADS)

    Biewer, T. M.; Lore, J.; Goulding, R. H.; Hillis, D. L.; Owen, L.; Rapp, J.

    2012-10-01

    Study of the plasma-material interface (PMI) under high power and particle flux on linear plasma devices is an active area of research that is relevant to fusion-grade toroidal devices such as ITER and DEMO. ORNL is assembling a 15 cm diameter, ˜3 m long linear machine, called the Physics Integration eXperiment (PhIX), which incorporates a helicon plasma source, electron heating, and a material target. The helicon source has demonstrated coupling of up to 100 kW of rf power, and produced ne >= 4 x 10^19 m-3 in D, and He fueled plasmas, measured with interferometry and Langmuir probes (LP). Optical emission spectroscopy was used to confirm LP measurements that Te is about 10 eV in helicon heated plasmas, which will presumably increase when electron heating is applied. Plasma parameters (ne, Te, n0) of the PhIX device will be measured with a novel, low-cost Thomson Scattering (TS) system. The data will be used to characterize the PMI regime with multiple profile measurements in front of the target. Profiles near the source and target will be used to determine the parallel transport regime via comparison to 2D fluid plasma simulations. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  17. Ultra-fast electron capture by electrosterically-stabilized gold nanoparticles.

    PubMed

    Ghandi, Khashayar; Findlater, Alexander D; Mahimwalla, Zahid; MacNeil, Connor S; Awoonor-Williams, Ernest; Zahariev, Federico; Gordon, Mark S

    2015-07-21

    Ultra-fast pre-solvated electron capture has been observed for aqueous solutions of room-temperature ionic liquid (RTIL) surface-stabilized gold nanoparticles (AuNPs; ∼9 nm). The extraordinarily large inverse temperature dependent rate constants (k(e)∼ 5 × 10(14) M(-1) s(-1)) measured for the capture of electrons in solution suggest electron capture by the AuNP surface that is on the timescale of, and therefore in competition with, electron solvation and electron-cation recombination reactions. The observed electron transfer rates challenge the conventional notion that radiation induced biological damage would be enhanced in the presence of AuNPs. On the contrary, AuNPs stabilized by non-covalently bonded ligands demonstrate the potential to quench radiation-induced electrons, indicating potential applications in fields ranging from radiation therapy to heterogeneous catalysis.

  18. POLIX: A Thomson X-ray polarimeter for a small satellite mission

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit; Gopala Krishna, M. R.; Puthiya Veetil, Rishin

    2016-07-01

    POLIX is a Thomson X-ray polarimeter for a small satellite mission of ISRO. The instrument consists of a collimator, a scatterer and a set proportional counters to detect the scattered X-rays. We will describe the design, specifications, sensitivity, and development status of this instrument and some of the important scientific goals. This instrument will provide unprecedented opportunity to measure X-ray polarisation in the medium energy range in a large number of sources of different classes with a minimum detectable linear polarisation degree of 2-3%. The prime objects for observation with this instrument are the X-ray bright accretion powered neutron stars, accreting black holes in different spectral states, rotation powered pulsars, magnetars, and active galactic nuclei. This instrument will be a bridge between the soft X-ray polarimeters and the Compton polarimeters.

  19. Tunable all-optical quasimonochromatic thomson x-ray source in the nonlinear regime.

    PubMed

    Khrennikov, K; Wenz, J; Buck, A; Xu, J; Heigoldt, M; Veisz, L; Karsch, S

    2015-05-15

    We present an all-laser-driven, energy-tunable, and quasimonochromatic x-ray source based on Thomson scattering from laser-wakefield-accelerated electrons. One part of the laser beam was used to drive a few-fs bunch of quasimonoenergetic electrons, while the remainder was backscattered off the bunch at weakly relativistic intensity. When the electron energy was tuned from 17-50 MeV, narrow x-ray spectra peaking at 5-42 keV were recorded with high resolution, revealing nonlinear features. We present a large set of measurements showing the stability and practicality of our source.

  20. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

    DOE PAGES

    Fluegel., Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; ...

    2015-05-28

    In this study, the semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10 –4. Comparing our strain sensitivity andmore » signal strength in Al xGa 1–xAs with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 10 3, thus obviating key constraints in semiconductor strain metrology.« less

  1. Ultra-fast pulse propagation in nonlinear graphene/silicon ridge waveguide

    NASA Astrophysics Data System (ADS)

    Liu, Ken; Zhang, Jian Fa; Xu, Wei; Zhu, Zhi Hong; Guo, Chu Cai; Li, Xiu Jian; Qin, Shi Qiao

    2015-11-01

    We report the femtosecond laser propagation in a hybrid graphene/silicon ridge waveguide with demonstration of the ultra-large Kerr coefficient of graphene. We also fabricated a slot-like graphene/silicon ridge waveguide which can enhance its effective Kerr coefficient 1.5 times compared with the graphene/silicon ridge waveguide. Both transverse-electric-like (TE-like) mode and transverse-magnetic-like (TM-like) mode are experimentally measured and numerically analyzed. The results show nonlinearity dependence on mode polarization not in graphene/silicon ridge waveguide but in slot-like graphene/silicon ridge waveguide. Great spectral broadening was observed due to self-phase modulation (SPM) after propagation in the hybrid waveguide with length of 2 mm. Power dependence property of the slot-like hybrid waveguide is also measured and numerically analyzed. The results also confirm the effective Kerr coefficient estimation of the hybrid structures. Spectral blue shift of the output pulse was observed in the slot-like graphene/silicon ridge waveguide. One possible explanation is that the blue shift was caused by the ultra-fast free carrier effect with the optical absorption of the doped graphene. This interesting effect can be used for soliton compression in femtosecond region. We also discussed the broadband anomalous dispersion of the Kerr coefficient of graphene.

  2. Study of Stark broadening of Li I 460 and 497 nm spectral lines with independent plasma diagnostics by Thomson scattering

    NASA Astrophysics Data System (ADS)

    Dzierżȩga, Krzysztof; Piȩta, Tomasz; Zawadzki, Witold; Stambulchik, Evgeny; Gavrilović-Božović, Marijana; Jovićević, Sonja; Pokrzywka, Bartłomiej

    2018-02-01

    We present results of experimental and theoretical studies of the Stark broadening of the Li I 460 nm spectral line with forbidden components and of the isolated 497 nm line. Plasma was induced by Nd:YAG laser radiation at 1064 nm with pulse duration ˜4.5 ns. Laser-induced plasma was generated in front of the alumina pellet, with some content of Li2CO3, placed in a vacuum chamber filled with argon under reduced pressure. Plasma diagnostics was performed using the laser Thomson scattering technique, free from assumptions about the plasma equilibrium state and its composition and so independently of plasma emission spectra. Spatially resolved spectra with Li lines were obtained from the measured, laterally integrated ones applying the inverse Abel transform. The Stark profiles were calculated by computer simulation method assuming a plasma in the local thermodynamic equilibrium. Calculations were performed for experimentally-inferred electron densities and temperatures, from 1.422 × 1023 to 3.55 × 1022 m-3 and from 1.96 eV to 1.04 eV, respectively. Our studies show very good agreement between experimental Stark profiles and those computer simulated.

  3. Numerical investigations of transient heat transfer characteristics and vitrification tendencies in ultra-fast cell cooling processes.

    PubMed

    Jiao, Anjun; Han, Xu; Critser, John K; Ma, Hongbin

    2006-06-01

    During freezing, cells are often damaged directly or indirectly by ice formation. Vitrification is an alternative approach to cryopreservation that avoids ice formation. The common method to achieve vitrification is to use relatively high concentrations of cryoprotectant agents (CPA) in combination with a relatively slow cooling rate. However, high concentrations of CPAs have potentially damaging toxic and/or osmotic effects on cells. Therefore, establishing methods to achieve vitrification with lower concentrations of CPAs through ultra-fast cooling rates would be advantageous in these aspects. These ultra-fast cooling rates can be realized by a cooling system with an ultra-high heat transfer coefficient (h) between the sample and coolant. The oscillating motion heat pipe (OHP), a novel cooling device utilizing the pressure change to excite the oscillation motion of the liquid plugs and vapor bubbles, can significantly increase h and may fulfill this aim. The current investigation was designed to numerically study the effects of different values of h on the transient heat transfer characteristics and vitrification tendencies of the cell suspension during the cooling processes in an ultra-thin straw (100 microm in diameter). The transient temperature distribution, the cooling rate and the volume ratio (x) of the ice quantity to the maximum crystallizable ice of the suspension were calculated. From these numerical results, it is concluded that the ultra-high h (>10(4) W/m2 K) obtained by OHPs could facilitate vitrification by efficiently decreasing x as well as the time to pass through the dangerous temperature region where the maximum ice formation happens. For comparison, OHPs can decrease both of the parameters to less than 20% of those from the widely used open pulled straw methods. Therefore, the OHP method will be a promising approach to improving vitrification tendencies of CPA solutions and could also decrease the required concentration of CPAs for

  4. Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2006-09-25

    Laser plasma interaction experiments have been perform performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. Electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were cautiously compared with relevant 1D numerical simulation. Finally these results provide a first experience of searching for the time-space position of the so-called warm dense plasma in an ultra fast laser target interaction process. These experiments aim to prepare nearmore » solid-density plasmas for Thomson scattering experiments using the short wavelength free-electron laser FLASH, DESY Hamburg.« less

  5. Initial Thomson Scattering Survey of Local Helicity Injection and Ohmic Plasmas at the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Winz, G. R.

    2014-10-01

    A multipoint Thomson scattering diagnostic has recently been installed on the Pegasus ST. The system utilizes a frequency-doubled Nd:YAG laser (λ0 ~ 532 nm), spectrometers with volume phase holographic gratings, and a gated, intensified CCD camera. It provides measurements of Te and ne at 8 spatial locations for each spectrometer once per discharge. A new multiple aperture and beam dump system has been implemented to mitigate interference from stray light. This system has provided initial measurements in the core region of plasmas initiated by local helicity injection (LHI), as well as conventional Ohmic L- and H-mode discharges. Multi-shot averages of low-density (ne ~ 3 ×1018 m-3) , Ip ~ 0 . 1 MA LHI discharges show central Te ~ 75 eV at the end of the helicity injection phase. Ip ~ 0 . 13 MA Ohmic plasmas at moderate densities (ne ~ 2 ×1019 m-3) have core Te ~ 150 eV in L-mode. Generally, these plasmas do not reach transport equilibrium in the short 25 ms pulse length available. After an L-H transition, strong spectral broadening indicates increasing Te, to values above the range of the present spectrometer system with a high-dispersion VPH grating. Near-term system upgrades will focus on deploying a second spectrometer, with a lower-dispersion grating capable of measuring the 0.1-1.0 keV range. The second spectrometer system will also increase the available number of spatial channels, enabling study of H-mode pedestal structure. Work supported by US DOE Grant DE-FG02-96ER54375.

  6. The Fast Multipole Method and Fourier Convolution for the Solution of Acoustic Scattering on Regular Volumetric Grids

    PubMed Central

    Hesford, Andrew J.; Waag, Robert C.

    2010-01-01

    The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased. PMID:20835366

  7. The fast multipole method and Fourier convolution for the solution of acoustic scattering on regular volumetric grids

    NASA Astrophysics Data System (ADS)

    Hesford, Andrew J.; Waag, Robert C.

    2010-10-01

    The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.

  8. The Fast Multipole Method and Fourier Convolution for the Solution of Acoustic Scattering on Regular Volumetric Grids.

    PubMed

    Hesford, Andrew J; Waag, Robert C

    2010-10-20

    The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.

  9. Collective hydrodynamic communication through ultra-fast contractions

    NASA Astrophysics Data System (ADS)

    Bhamla, Saad; Mathijssen, Arnold; Prakash, Manu

    2017-11-01

    The biophysical relationships between physiological sensors and actuators were fundamental to the development of early life forms, as responding to external stimuli promptly is key to survival. We study an unusual protist Spirostomum ambiguum, a single-celled organism that can grow up to 4mm in size, visible to the naked eye, as a model system for impulsive systems. Coiling its cytoskeleton, this ciliate can contract its long body within milliseconds, one of the fastest accelerations known in cell biology. We demonstrate that these rapid contractions generate long-ranged vortex flows that can trigger other cells to contract, repeatedly, which collectively leads to an ultra-fast hydrodynamic signal transduction across a colony that moves hundreds of times faster than the swimming speed. By combining high-speed PIV experiments and analytical modelling we determine the critical rheosensitivity required to sustain these signal waves. Whereas the biological motive is not fully understood, contractions are known to release toxins from membrane-bound extrusomes, thus we hypothesize that synchronised discharges could facilitate the repulsion of large-scale predators cooperatively. Please also see our other talk ``Rheosensing by impulsive cells at intermediate Reynolds numbers''.

  10. John Thomson: Photojournalist in Asia, 1862-1872.

    ERIC Educational Resources Information Center

    Parker, Elliott S.

    John Thomson was a nineteenth-century British photojournalist who used the wet-plate process to illustrate his explorations of eastern and Southeast Asia. His travels from 1862 to 1872 took him to the following places, among others: Ceylon, Cambodia, Singapore, Thailand, Saigon, Siam, mainland China, and Taiwan. Thomson chose to use the wet-plate…

  11. 78 FR 30797 - Proposed Amendment of Class E Airspace; Point Thomson, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ...-1175; Airspace Docket No. 12-AAL-11] Proposed Amendment of Class E Airspace; Point Thomson, AK AGENCY... action proposes to modify the airspace at Point Thomson, AK by establishing Class E Airspace at Point Thomson Airstrip Airport, Point Thomson, AK. This will accommodate aircraft using a new Area Navigation...

  12. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    NASA Astrophysics Data System (ADS)

    Adamek, J.; Müller, H. W.; Silva, C.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Horacek, J.; Kurzan, B.; Bilkova, P.; Böhm, P.; Aftanas, M.; Vondracek, P.; Stöckel, J.; Panek, R.; Fernandes, H.; Figueiredo, H.

    2016-04-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (ΦBPP) and the floating potential (Vfl) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula Te = (ΦBPP - Vfl)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  13. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes.

    PubMed

    Adamek, J; Müller, H W; Silva, C; Schrittwieser, R; Ionita, C; Mehlmann, F; Costea, S; Horacek, J; Kurzan, B; Bilkova, P; Böhm, P; Aftanas, M; Vondracek, P; Stöckel, J; Panek, R; Fernandes, H; Figueiredo, H

    2016-04-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (ΦBPP) and the floating potential (Vfl) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula Te = (ΦBPP - Vfl)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  14. A Hierarchical Algorithm for Fast Debye Summation with Applications to Small Angle Scattering

    PubMed Central

    Gumerov, Nail A.; Berlin, Konstantin; Fushman, David; Duraiswami, Ramani

    2012-01-01

    Debye summation, which involves the summation of sinc functions of distances between all pair of atoms in three dimensional space, arises in computations performed in crystallography, small/wide angle X-ray scattering (SAXS/WAXS) and small angle neutron scattering (SANS). Direct evaluation of Debye summation has quadratic complexity, which results in computational bottleneck when determining crystal properties, or running structure refinement protocols that involve SAXS or SANS, even for moderately sized molecules. We present a fast approximation algorithm that efficiently computes the summation to any prescribed accuracy ε in linear time. The algorithm is similar to the fast multipole method (FMM), and is based on a hierarchical spatial decomposition of the molecule coupled with local harmonic expansions and translation of these expansions. An even more efficient implementation is possible when the scattering profile is all that is required, as in small angle scattering reconstruction (SAS) of macromolecules. We examine the relationship of the proposed algorithm to existing approximate methods for profile computations, and show that these methods may result in inaccurate profile computations, unless an error bound derived in this paper is used. Our theoretical and computational results show orders of magnitude improvement in computation complexity over existing methods, while maintaining prescribed accuracy. PMID:22707386

  15. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction

    NASA Astrophysics Data System (ADS)

    Kadrmas, Dan J.; Frey, Eric C.; Karimi, Seemeen S.; Tsui, Benjamin M. W.

    1998-04-01

    Accurate scatter compensation in SPECT can be performed by modelling the scatter response function during the reconstruction process. This method is called reconstruction-based scatter compensation (RBSC). It has been shown that RBSC has a number of advantages over other methods of compensating for scatter, but using RBSC for fully 3D compensation has resulted in prohibitively long reconstruction times. In this work we propose two new methods that can be used in conjunction with existing methods to achieve marked reductions in RBSC reconstruction times. The first method, coarse-grid scatter modelling, significantly accelerates the scatter model by exploiting the fact that scatter is dominated by low-frequency information. The second method, intermittent RBSC, further accelerates the reconstruction process by limiting the number of iterations during which scatter is modelled. The fast implementations were evaluated using a Monte Carlo simulated experiment of the 3D MCAT phantom with tracer, and also using experimentally acquired data with tracer. Results indicated that these fast methods can reconstruct, with fully 3D compensation, images very similar to those obtained using standard RBSC methods, and in reconstruction times that are an order of magnitude shorter. Using these methods, fully 3D iterative reconstruction with RBSC can be performed well within the realm of clinically realistic times (under 10 minutes for image reconstruction).

  16. Ultra-fast switching blue phase liquid crystals diffraction grating stabilized by chiral monomer

    NASA Astrophysics Data System (ADS)

    Manda, Ramesh; Pagidi, Srinivas; Sarathi Bhattacharya, Surjya; Yoo, Hyesun; T, Arun Kumar; Lim, Young Jin; Lee, Seung Hee

    2018-05-01

    We have demonstrated an ultra-fast switching and efficient polymer stabilized blue phase liquid crystal (PS-BPLC) diffraction grating utilizing a chiral monomer. We have obtained a 0.5 ms response time by a novel polymer stabilization method which is three times faster than conventional PS-BPLC. In addition, the diffraction efficiency was improved 2% with a much wider phase range and the driving voltage to switch the device is reduced. The polarization properties of the diffracted beam are unaffected by this novel polymer stabilization. This device can be useful for future photonic applications.

  17. Explaining the apparent impenetrable barrier to ultra-relativistic electrons in the outer Van Allen belt.

    PubMed

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Degeling, Alex W; Claudepierre, Seth G; Spence, Harlan E

    2018-05-10

    Recent observations have shown the existence of an apparent impenetrable barrier at the inner edge of the ultra-relativistic outer electron radiation belt. This apparent impenetrable barrier has not been explained. However, recent studies have suggested that fast loss, such as associated with scattering into the atmosphere from man-made very-low frequency transmissions, is required to limit the Earthward extent of the belt. Here we show that the steep flux gradient at the implied barrier location is instead explained as a natural consequence of ultra-low frequency wave radial diffusion. Contrary to earlier claims, sharp boundaries in fast loss processes at the barrier are not needed. Moreover, we show that penetration to the barrier can occur on the timescale of days rather than years as previously reported, with the Earthward extent of the belt being limited by the finite duration of strong solar wind driving, which can encompass only a single geomagnetic storm.

  18. Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation

    DOEpatents

    Barty, Christopher P. J. [Hayward, CA; Hartemann, Frederic V [San Ramon, CA; McNabb, Dennis P [Alameda, CA; Pruet, Jason A [Brentwood, CA

    2009-07-21

    The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

  19. Ultra fast all-optical fiber pressure sensor for blast event evaluation

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Wenhui; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

    2011-05-01

    Traumatic brain injury (TBI) is a great potential threat to soldiers who are exposed to explosions or athletes who receive cranial impacts. Protecting people from TBI has recently attracted a significant amount of attention due to recent military operations in the Middle East. Recording pressure transient data in a blast event is very critical to the understanding of the effects of blast events on TBI. However, due to the fast change of the pressure during blast events, very few sensors have the capability to effectively track the dynamic pressure transients. This paper reports an ultra fast, miniature and all-optical fiber pressure sensor which could be mounted at different locations of a helmet to measure the fast changing pressure simultaneously. The sensor is based on Fabry-Perot (FP) principle. The end face of the fiber is wet etched. A well controlled thickness silicon dioxide diaphragm is thermal bonded on the end face to form an FP cavity. A shock tube test was conducted at Natick Soldier Research Development and Engineering Center, where the sensors were mounted in a shock tube side by side with a reference sensor to measure the rapidly changing pressure. The results of the test demonstrated that the sensor developed had an improved rise time (shorter than 0.4 μs) when compared to a commercially available reference sensor.

  20. FastChem: An ultra-fast equilibrium chemistry

    NASA Astrophysics Data System (ADS)

    Kitzmann, Daniel; Stock, Joachim

    2018-04-01

    FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.

  1. Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.

    PubMed

    Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua

    2018-02-01

    Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.

  2. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tojo, H.; Hatae, T.; Hamano, T.

    2013-09-15

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system ismore » also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ∼0.3 mm and ∼0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.« less

  3. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system.

    PubMed

    Tojo, H; Hatae, T; Hamano, T; Sakuma, T; Itami, K

    2013-09-01

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ~0.3 mm and ~0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.

  4. Thermodynamic Analysis of TEG-TEC Device Including Influence of Thomson Effect

    NASA Astrophysics Data System (ADS)

    Feng, Yuanli; Chen, Lingen; Meng, Fankai; Sun, Fengrui

    2018-01-01

    A thermodynamic model of a thermoelectric cooler driven by thermoelectric generator (TEG-TEC) device is established considering Thomson effect. The performance is analyzed and optimized using numerical calculation based on non-equilibrium thermodynamic theory. The influence characteristics of Thomson effect on the optimal performance and variable selection are investigated by comparing the condition with and without Thomson effect. The results show that Thomson effect degrades the performance of TEG-TEC device, it decreases the cooling capacity by 27 %, decreases the coefficient of performance (COP) by 19 %, decreases the maximum cooling temperature difference by 11 % when the ratio of thermoelectric elements number is 0.6, the cold junction temperature of thermoelectric cooler (TEC) is 285 K and the hot junction temperature of thermoelectric generator (TEG) is 450 K. Thomson effect degrades the optimal performance of TEG-TEC device, it decreases the maximum cooling capacity by 28 % and decreases the maximum COP by 28 % under the same junction temperatures. Thomson effect narrows the optimal variable range and optimal working range. In the design of the devices, limited-number thermoelectric elements should be more allocated appropriately to TEG when consider Thomson effect. The results may provide some guidelines for the design of TEG-TEC devices.

  5. Ultra-Fast Degradation of Chemical Warfare Agents Using MOF-Nanofiber Kebabs.

    PubMed

    Zhao, Junjie; Lee, Dennis T; Yaga, Robert W; Hall, Morgan G; Barton, Heather F; Woodward, Ian R; Oldham, Christopher J; Walls, Howard J; Peterson, Gregory W; Parsons, Gregory N

    2016-10-10

    The threat associated with chemical warfare agents (CWAs) motivates the development of new materials to provide enhanced protection with a reduced burden. Metal-organic frame-works (MOFs) have recently been shown as highly effective catalysts for detoxifying CWAs, but challenges still remain for integrating MOFs into functional filter media and/or protective garments. Herein, we report a series of MOF-nanofiber kebab structures for fast degradation of CWAs. We found TiO 2 coatings deposited via atomic layer deposition (ALD) onto polyamide-6 nanofibers enable the formation of conformal Zr-based MOF thin films including UiO-66, UiO-66-NH 2 , and UiO-67. Cross-sectional TEM images show that these MOF crystals nucleate and grow directly on and around the nanofibers, with strong attachment to the substrates. These MOF-functionalized nanofibers exhibit excellent reactivity for detoxifying CWAs. The half-lives of a CWA simulant compound and nerve agent soman (GD) are as short as 7.3 min and 2.3 min, respectively. These results therefore provide the earliest report of MOF-nanofiber textile composites capable of ultra-fast degradation of CWAs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamek, J., E-mail: adamek@ipp.cas.cz; Horacek, J.; Bilkova, P.

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (Φ{sub BPP}) and the floating potential (V{sub fl}) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula T{submore » e} = (Φ{sub BPP} − V{sub fl})/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.« less

  7. Electronic Raman Scattering as an Ultra-Sensitive Probe of Strain Effects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Angelo; Fluegel, Brian; Beaton, Dan

    Semiconductor strain engineering has become a critical feature of high-performance electronics due to the significant device performance enhancements it enables. These improvements that emerge from strain induced modifications to the electronic band structure necessitate new ultra-sensitive tools for probing strain in semiconductors. Using electronic Raman scattering, we recently showed that it is possible to measure minute amounts of strain in thin semiconductor epilayers. We applied this strain measurement technique to two different semiconductor alloy systems, using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Comparing our strain sensitivity and signal strength in AlxGa1-xAs with those obtained using the industry-standard technique of phonon Raman scattering we found a sensitivity improvement of ×200, and a signal enhancement of 4 ×103 thus obviating key constraints in semiconductor strain metrology. The sensitivity of this approach rivals that of contemporary techniques and opens up a new realm for optically probing strain effects on electronic band structure. We acknowledge the financial support of the DOE Office of Science, BES under DE-AC36-80GO28308.

  8. Observation of fast sound in disparate-mass gas mixtures by light scattering

    NASA Astrophysics Data System (ADS)

    Wegdam, G. H.; Bot, Arjen; Schram, R. P. C.; Schaink, H. M.

    1989-12-01

    We performed light-scattering experiments on a mixture of hydrogen and argon. By varying the density of the sample, we can probe the range of reduced wave vectors in which Campa and Cohen [Phys. Rev. A 39, 4909 (1989)] predicted, in dilute disparate-mass gas mixtures, the onset of a mode supported by the light particles: the fast sound mode. The presence of the additional sound mode can be established most conveniently by analyzing ω2I(k,ω) rather than I(k,ω). Our results for the shift of fast and slow sound match the theoretical predictions very well.

  9. J. J. Thomson goes to America.

    PubMed

    Downard, Kevin M

    2009-11-01

    Joseph John (J. J.) Thomson was an accomplished scientist who helped lay the foundations of nuclear physics. A humble man of working class roots, Thomson went on to become one of the most influential physicists of the late 19th century. He is credited with the discovery of the electron, received a Nobel Prize in physics in 1906 for investigations into the conduction of electricity by gases, was knighted in 1908, and served as a Cavendish Professor and Director of the laboratory for over 35 years from 1884. His laboratory attracted some of the world's brightest minds; Francis W. Aston, Niels H. D. Bohr, Hugh L. Callendar, Charles T. R. Wilson, Ernest Rutherford, George F. C. Searle, Geoffrey I. Taylor, and John S. E. Townsend all worked under him. This article recounts J. J. Thomson's visits to North America in 1896, 1903, 1909, and finally 1923. It presents his activities and his personal impressions of the people and society of the U.S.A. and Canada, and the science of atomic physics and chemistry in the late 1800s and early 1900s.

  10. Ultra-fast speech comprehension in blind subjects engages primary visual cortex, fusiform gyrus, and pulvinar – a functional magnetic resonance imaging (fMRI) study

    PubMed Central

    2013-01-01

    Background Individuals suffering from vision loss of a peripheral origin may learn to understand spoken language at a rate of up to about 22 syllables (syl) per second - exceeding by far the maximum performance level of normal-sighted listeners (ca. 8 syl/s). To further elucidate the brain mechanisms underlying this extraordinary skill, functional magnetic resonance imaging (fMRI) was performed in blind subjects of varying ultra-fast speech comprehension capabilities and sighted individuals while listening to sentence utterances of a moderately fast (8 syl/s) or ultra-fast (16 syl/s) syllabic rate. Results Besides left inferior frontal gyrus (IFG), bilateral posterior superior temporal sulcus (pSTS) and left supplementary motor area (SMA), blind people highly proficient in ultra-fast speech perception showed significant hemodynamic activation of right-hemispheric primary visual cortex (V1), contralateral fusiform gyrus (FG), and bilateral pulvinar (Pv). Conclusions Presumably, FG supports the left-hemispheric perisylvian “language network”, i.e., IFG and superior temporal lobe, during the (segmental) sequencing of verbal utterances whereas the collaboration of bilateral pulvinar, right auditory cortex, and ipsilateral V1 implements a signal-driven timing mechanism related to syllabic (suprasegmental) modulation of the speech signal. These data structures, conveyed via left SMA to the perisylvian “language zones”, might facilitate – under time-critical conditions – the consolidation of linguistic information at the level of verbal working memory. PMID:23879896

  11. Scattering of fast electrons by vapour-atoms and by solid-atoms - A comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshipura, K.N.; Mohanan, S.

    1988-08-01

    A comparative theoretical study has been done on the scattering of fast electrons by free (vapour) atoms and bound (solid) atoms, in particular, the alkali atoms, Al and Cu. The Born differential cross-sections (DCS), calculated with the static plus polarization electron-atom potential, are found in general, to be larger for free atoms that for bound atoms, at least at small angles of scattering. For Rb and Cs the two DCS tend to merge at very large angles only. The sample incident energies chosen are 400 eV and above.

  12. Neutron Detection With Ultra-Fast Digitizer and Pulse Identification Techniques on DIII-D

    NASA Astrophysics Data System (ADS)

    Zhu, Y. B.; Heidbrink, W. W.; Piglowski, D. A.

    2013-10-01

    A prototype system for neutron detection with an ultra-fast digitizer and pulse identification techniques has been implemented on the DIII-D tokamak. The system consists of a cylindrical neutron fission chamber, a charge sensitive amplifier, and a GaGe Octopus 12-bit CompuScope digitizer card installed in a Linux computer. Digital pulse identification techniques have been successfully performed at maximum data acquisition rate of 50 MSPS with on-board memory of 2 GS. Compared to the traditional approach with fast nuclear electronics for pulse counting, this straightforward digital solution has many advantages, including reduced expense, improved accuracy, higher counting rate, and easier maintenance. The system also provides the capability of neutron-gamma pulse shape discrimination and pulse height analysis. Plans for the upgrade of the old DIII-D neutron counting system with these techniques will be presented. Work supported by the US Department of Energy under SC-G903402, and DE-FC02-04ER54698.

  13. New class of microminiature Joule — Thomson refrigerator and vacuum package

    NASA Astrophysics Data System (ADS)

    Paugh, Robert L.

    1990-12-01

    Progress is reported on the development of a two-stage, fast cooldown Joule — Thomson refrigerator using nitrogen gas and a nitrogen — hydrocarbon gas mixture as the refrigerants. The refrigerator incorporates a microminiature Venturi pump to reduce the pressure of the exhaust of the main boiler to bring the operating temperature of the cold stage to < 70 K in as little as 10 s. The vacuum package for the refrigerator contains no organic materials and is designed to provide a ten year shelf life. Special glass strengthening techniques are being used to achieve cooler survival of acceleration tests of up to 100 000g.

  14. Temperature dependence of the response of ultra fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Mulargia, R.; Arcidiacono, R.; Bellora, A.; Boscardin, M.; Cartiglia, N.; Cenna, F.; Cirio, R.; Dalla Betta, G. F.; Durando, S.; Fadavi, A.; Ferrero, M.; Galloway, Z.; Gruey, B.; Freeman, P.; Kramberger, G.; Mandic, I.; Monaco, V.; Obertino, M.; Pancheri, L.; Paternoster, G.; Ravera, F.; Sacchi, R.; Sadrozinski, H. F. W.; Seiden, A.; Sola, V.; Spencer, N.; Staiano, A.; Wilder, M.; Woods, N.; Zatserklyaniy, A.

    2016-12-01

    The Ultra Fast Silicon Detectors (UFSD) are a novel concept of silicon detectors based on the Low Gain Avalanche Diode (LGAD) technology, which are able to obtain time resolution of the order of few tens of picoseconds. First prototypes with different geometries (pads/pixels/strips), thickness (300 and 50 μm) and gain (between 5 and 20) have been recently designed and manufactured by CNM (Centro Nacional de Microelectrónica, Barcelona) and FBK (Fondazione Bruno Kessler, Trento). Several measurements on these devices have been performed in laboratory and in beam test and a dependence of the gain on the temperature has been observed. Some of the first measurements will be shown (leakage current, breakdown voltage, gain and time resolution on the 300 μm from FBK and gain on the 50 μm-thick sensor from CNM) and a comparison with the theoretically predicted trend will be discussed.

  15. Ultra-fast relaxation, decoherence, and localization of photoexcited states in π-conjugated polymers

    NASA Astrophysics Data System (ADS)

    Mannouch, Jonathan R.; Barford, William; Al-Assam, Sarah

    2018-01-01

    The exciton relaxation dynamics of photoexcited electronic states in poly(p-phenylenevinylene) are theoretically investigated within a coarse-grained model, in which both the exciton and nuclear degrees of freedom are treated quantum mechanically. The Frenkel-Holstein Hamiltonian is used to describe the strong exciton-phonon coupling present in the system, while external damping of the internal nuclear degrees of freedom is accounted for by a Lindblad master equation. Numerically, the dynamics are computed using the time evolving block decimation and quantum jump trajectory techniques. The values of the model parameters physically relevant to polymer systems naturally lead to a separation of time scales, with the ultra-fast dynamics corresponding to energy transfer from the exciton to the internal phonon modes (i.e., the C-C bond oscillations), while the longer time dynamics correspond to damping of these phonon modes by the external dissipation. Associated with these time scales, we investigate the following processes that are indicative of the system relaxing onto the emissive chromophores of the polymer: (1) Exciton-polaron formation occurs on an ultra-fast time scale, with the associated exciton-phonon correlations present within half a vibrational time period of the C-C bond oscillations. (2) Exciton decoherence is driven by the decay in the vibrational overlaps associated with exciton-polaron formation, occurring on the same time scale. (3) Exciton density localization is driven by the external dissipation, arising from "wavefunction collapse" occurring as a result of the system-environment interactions. Finally, we show how fluorescence anisotropy measurements can be used to investigate the exciton decoherence process during the relaxation dynamics.

  16. Effective Analysis of NGS Metagenomic Data with Ultra-Fast Clustering Algorithms (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Li, Weizhong

    2018-02-12

    San Diego Supercomputer Center's Weizhong Li on "Effective Analysis of NGS Metagenomic Data with Ultra-fast Clustering Algorithms" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  17. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Weiquan; Becker, Jacob; Liu, Shi

    2014-05-28

    This paper reports the proposal, design, and demonstration of ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer to optimize light management and minimize non-radiative recombination. According to our recently developed semi-analytical model, this design offers one of the highest potential achievable efficiencies for GaAs solar cells possessing typical non-radiative recombination rates found among commercially available III-V arsenide and phosphide materials. The structure of the demonstrated solar cells consists of an In{sub 0.49}Ga{sub 0.51}P/GaAs/In{sub 0.49}Ga{sub 0.51}P double-heterostructure PN junction with an ultra-thin 300 nm thick GaAs absorber, combined with a 5 μm thick Al{sub 0.52}In{sub 0.48}P layer with amore » textured as-grown surface coated with Au used as a reflective back scattering layer. The final devices were fabricated using a substrate-removal and flip-chip bonding process. Solar cells with a top metal contact coverage of 9.7%, and a MgF{sub 2}/ZnS anti-reflective coating demonstrated open-circuit voltages (V{sub oc}) up to 1.00 V, short-circuit current densities (J{sub sc}) up to 24.5 mA/cm{sup 2}, and power conversion efficiencies up to 19.1%; demonstrating the feasibility of this design approach. If a commonly used 2% metal grid coverage is assumed, the anticipated J{sub sc} and conversion efficiency of these devices are expected to reach 26.6 mA/cm{sup 2} and 20.7%, respectively.« less

  18. Thomson's Theorem of Electrostatics: Its Applications and Mathematical Verification

    ERIC Educational Resources Information Center

    Bakhoum, Ezzat G.

    2008-01-01

    A 100 years-old formula that was given by J. J. Thomson recently found numerous applications in computational electrostatics and electromagnetics. Thomson himself never gave a proof for the formula; but a proof based on Differential Geometry was suggested by Jackson and later published by Pappas. Unfortunately, Differential Geometry, being a…

  19. The Kelvin-Thomson Atom. Part 2: The Many-Electron Atoms

    ERIC Educational Resources Information Center

    Walton, Alan J.

    1977-01-01

    Presents part two of a two-part article describing the Kelvin-Thomson atom. This part discusses the arrangement of electrons within the atom and examines some of the properties predicted for elements in the Kelvin-Thomson model. (SL)

  20. BEAM DYNAMICS ANALYSIS FOR THE ULTRA-FAST KICKER IN CIRCULAR COOLER RING OF JLEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.

    An ultra-fast kicker system consisting of four quarter wavelength resonator based deflecting cavities was developed that simultaneously resonates at 10 subharmonic modes of the 476.3MHz bunch repetition frequency. Thus every 10th bunch in the bunch train will experience a transverse kick while all the other bunches are undisturbed. This fast kicker is being developed for the Energy Recovery Linac (ERL) based electron Circular Cooler Ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously MEIC). The electron bunches can be reused 10-30 turns thus the beam current in the ERL can be reduced to 1/10 - 1/30 (150mAmore » - 50mA) of the cooling bunch current (1.5A). In this paper, several methods to synthesize such a kicker waveform and the comparison made by the beam dynamics tracking in Elegant will be discussed.« less

  1. BESTIA - the next generation ultra-fast CO 2 laser for advanced accelerator research

    DOE PAGES

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; ...

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO 2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO 2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO 2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimesmore » in the particle acceleration of ions and electrons.« less

  2. Microchip capillary gel electrophoresis using programmed field strength gradients for the ultra-fast analysis of genetically modified organisms in soybeans.

    PubMed

    Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho

    2005-08-12

    We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.

  3. Fast-response and scattering-free polymer network liquid crystals for infrared light modulators

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Hsing; Lin, Yi-Hsin; Ren, Hongwen; Gauza, Sebastian; Wu, Shin-Tson

    2004-02-01

    A fast-response and scattering-free homogeneously aligned polymer network liquid crystal (PNLC) light modulator is demonstrated at λ=1.55 μm wavelength. Light scattering in the near-infrared region is suppressed by optimizing the polymer concentration such that the network domain sizes are smaller than the wavelength. The strong polymer network anchoring assists LC to relax back quickly as the electric field is removed. As a result, the PNLC response time is ˜250× faster than that of the E44 LC mixture except that the threshold voltage is increased by ˜25×.

  4. Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Yong, WANG; Cong, LI; Jielin, SHI; Xingwei, WU; Hongbin, DING

    2017-11-01

    As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5 × 1019 m-3 to 7.1 × 1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (configuration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.

  5. Nine time steps: ultra-fast statistical consistency testing of the Community Earth System Model (pyCECT v3.0)

    NASA Astrophysics Data System (ADS)

    Milroy, Daniel J.; Baker, Allison H.; Hammerling, Dorit M.; Jessup, Elizabeth R.

    2018-02-01

    The Community Earth System Model Ensemble Consistency Test (CESM-ECT) suite was developed as an alternative to requiring bitwise identical output for quality assurance. This objective test provides a statistical measurement of consistency between an accepted ensemble created by small initial temperature perturbations and a test set of CESM simulations. In this work, we extend the CESM-ECT suite with an inexpensive and robust test for ensemble consistency that is applied to Community Atmospheric Model (CAM) output after only nine model time steps. We demonstrate that adequate ensemble variability is achieved with instantaneous variable values at the ninth step, despite rapid perturbation growth and heterogeneous variable spread. We refer to this new test as the Ultra-Fast CAM Ensemble Consistency Test (UF-CAM-ECT) and demonstrate its effectiveness in practice, including its ability to detect small-scale events and its applicability to the Community Land Model (CLM). The new ultra-fast test facilitates CESM development, porting, and optimization efforts, particularly when used to complement information from the original CESM-ECT suite of tools.

  6. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyungsang; Ye, Jong Chul, E-mail: jong.ye@kaist.ac.kr; Lee, Taewon

    2015-09-15

    Purpose: In digital breast tomosynthesis (DBT), scatter correction is highly desirable, as it improves image quality at low doses. Because the DBT detector panel is typically stationary during the source rotation, antiscatter grids are not generally compatible with DBT; thus, a software-based scatter correction is required. This work proposes a fully iterative scatter correction method that uses a novel fast Monte Carlo simulation (MCS) with a tissue-composition ratio estimation technique for DBT imaging. Methods: To apply MCS to scatter estimation, the material composition in each voxel should be known. To overcome the lack of prior accurate knowledge of tissue compositionmore » for DBT, a tissue-composition ratio is estimated based on the observation that the breast tissues are principally composed of adipose and glandular tissues. Using this approximation, the composition ratio can be estimated from the reconstructed attenuation coefficients, and the scatter distribution can then be estimated by MCS using the composition ratio. The scatter estimation and image reconstruction procedures can be performed iteratively until an acceptable accuracy is achieved. For practical use, (i) the authors have implemented a fast MCS using a graphics processing unit (GPU), (ii) the MCS is simplified to transport only x-rays in the energy range of 10–50 keV, modeling Rayleigh and Compton scattering and the photoelectric effect using the tissue-composition ratio of adipose and glandular tissues, and (iii) downsampling is used because the scatter distribution varies rather smoothly. Results: The authors have demonstrated that the proposed method can accurately estimate the scatter distribution, and that the contrast-to-noise ratio of the final reconstructed image is significantly improved. The authors validated the performance of the MCS by changing the tissue thickness, composition ratio, and x-ray energy. The authors confirmed that the tissue-composition ratio estimation was

  7. Ultra-fast Escape of a Octopus-inspired Rocket

    NASA Astrophysics Data System (ADS)

    Weymouth, Gabriel; Triantafyllou, Michael

    2013-11-01

    The octopus, squid, and other cephalopods inflate with water and then release a jet to accelerate in the opposite direction. This escape mechanism is particularly interesting in the octopus because they become initially quite bluff, yet this does not hinder them in achieving impressive bursts of speed. We examine this somewhat paradoxical maneuver using a simple deflating spheroid model in both potential and viscous flow. We demonstrate that the dynamic reduction of the width of the body completely changes the flow and forces acting on the escaping rocket in three ways. First, a body which reduces in size can generate an added mass thrust which counteracts the added mass inertia. Second, the motion of the shrinking wall acts similar to suction on a static wall, reducing separation and drag forces in a viscous fluid, but that this effects depends on the rate of size change. Third, using a combination of these two features it is possible to initially load the fluid with kinetic energy when heavy and bluff and then recover that energy when streamlined and light, enabling ultra-fast accelerations. As a notable example, these mechanisms allow a shrinking spheroid rocket in a heavy inviscid fluid to achieve speeds greater than an identical rocket in the vacuum of space. Southampton Marine and Maritime Institute.

  8. Flow-through compression cell for small-angle and ultra-small-angle neutron scattering measurements

    NASA Astrophysics Data System (ADS)

    Hjelm, Rex P.; Taylor, Mark A.; Frash, Luke P.; Hawley, Marilyn E.; Ding, Mei; Xu, Hongwu; Barker, John; Olds, Daniel; Heath, Jason; Dewers, Thomas

    2018-05-01

    In situ measurements of geological materials under compression and with hydrostatic fluid pressure are important in understanding their behavior under field conditions, which in turn provides critical information for application-driven research. In particular, understanding the role of nano- to micro-scale porosity in the subsurface liquid and gas flow is critical for the high-fidelity characterization of the transport and more efficient extraction of the associated energy resources. In other applications, where parts are produced by the consolidation of powders by compression, the resulting porosity and crystallite orientation (texture) may affect its in-use characteristics. Small-angle neutron scattering (SANS) and ultra SANS are ideal probes for characterization of these porous structures over the nano to micro length scales. Here we show the design, realization, and performance of a novel neutron scattering sample environment, a specially designed compression cell, which provides compressive stress and hydrostatic pressures with effective stress up to 60 MPa, using the neutron beam to probe the effects of stress vectors parallel to the neutron beam. We demonstrate that the neutron optics is suitable for the experimental objectives and that the system is highly stable to the stress and pressure conditions of the measurements.

  9. Dispersed SiC nanoparticles in Ni observed by ultra-small-angle X-ray scattering

    DOE PAGES

    Xie, R.; Ilavsky, J.; Huang, H. F.; ...

    2016-11-24

    In this paper, a metal-ceramic composite, nickel reinforced with SiC nanoparticles, was synthesized and characterized for its potential application in next-generation molten salt nuclear reactors. Synchrotron ultra-small-angle X-ray scattering (USAXS) measurements were conducted on the composite. The size distribution and number density of the SiC nanoparticles in the material were obtained through data modelling. Scanning and transmission electron microscopy characterization were performed to substantiate the results of the USAXS measurements. Tensile tests were performed on the samples to measure the change in their yield strength after doping with the nanoparticles. Finally, the average interparticle distance was calculated from the USAXSmore » results and is related to the increased yield strength of the composite.« less

  10. Ultra-fast scintillation properties of β-Ga2O3 single crystals grown by Floating Zone method

    NASA Astrophysics Data System (ADS)

    He, Nuotian; Tang, Huili; Liu, Bo; Zhu, Zhichao; Li, Qiu; Guo, Chao; Gu, Mu; Xu, Jun; Liu, Jinliang; Xu, Mengxuan; Chen, Liang; Ouyang, Xiaoping

    2018-04-01

    In this investigation, β-Ga2O3 single crystals were grown by the Floating Zone method. At room temperature, the X-ray excited emission spectrum includes ultraviolet and blue emission bands. The scintillation light output is comparable to the commercial BGO scintillator. The scintillation decay times are composed of the dominant ultra-fast component of 0.368 ns and a small amount of slightly slow components of 8.2 and 182 ns. Such fast component is superior to most commercial inorganic scintillators. In contrast to most semiconductor crystals prepared by solution method such as ZnO, β-Ga2O3 single crystals can be grown by traditional melt-growth method. Thus we can easily obtain large bulk crystals and mass production.

  11. Coupled photonic crystal micro-cavities with ultra-low threshold power for stimulated Raman scattering.

    PubMed

    Liu, Qiang; Ouyang, Zhengbiao; Albin, Sacharia

    2011-02-28

    We propose coupled cavities to realize a strong enhancement of the Raman scattering. Five sub cavities are embedded in the photonic crystals. Simulations through finite-difference time-domain (FDTD) method demonstrate that one cavity, which is used to propagate the pump beam at the optical-communication wavelength, has a Q factor as high as 
1.254×10⁸ and modal volume as small as 0.03 μm3 (0.3192(λ/n)3). These parameters result in ultra-small threshold lasing power~17.7 nW and 2.58 nW for Stokes and anti-Stokes respectively. The cavities are designed to support the required Stokes and anti-Stokes modal spacing in silicon. The proposed structure has the potential for sensor devices, especially for biological and medical diagnoses.

  12. A study of optical scattering methods in laboratory plasma diagnosis

    NASA Technical Reports Server (NTRS)

    Phipps, C. R., Jr.

    1972-01-01

    Electron velocity distributions are deduced along axes parallel and perpendicular to the magnetic field in a pulsed, linear Penning discharge in hydrogen by means of a laser Thomson scattering experiment. Results obtained are numerical averages of many individual measurements made at specific space-time points in the plasma evolution. Because of the high resolution in k-space and the relatively low maximum electron density 2 x 10 to the 13th power/cu cm, special techniques were required to obtain measurable scattering signals. These techniques are discussed and experimental results are presented.

  13. Physical Conditions in Ultra-fast Outflows in AGN

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; Tombesi, F.; Bottorff, M. C.

    2018-01-01

    XMM-Newton and Suzaku spectra of Active Galactic Nuclei (AGN) have revealed highly ionized gas, in the form of absorption lines from H-like and He-like Fe. Some of these absorbers, ultra-fast outflows (UFOs), have radial velocities of up to 0.25c. We have undertaken a detailed photoionization study of high-ionization Fe absorbers, both UFOs and non-UFOs, in a sample of AGN observed by XMM-Newton. We find that the heating and cooling processes in UFOs are Compton-dominated, unlike the non-UFOs. Both types are characterized by force multipliers on the order of unity, which suggest that they cannot be radiatively accelerated in sub-Eddington AGN, unless they were much less ionized at their point of origin. However, such highly ionized gas can be accelerated via a magneto-hydrodynamic (MHD) wind. We explore this possibility by applying a cold MHD flow model to the UFO in the well-studied Seyfert galaxy, NGC 4151. We find that the UFO can be accelerated along magnetic streamlines anchored in the accretion disk. In the process, we have been able to constrain the magnetic field strength and the magnetic pressure in the UFO and have determined that the system is not in magnetic/gravitational equipartition. Open questions include the variability of the UFOs and the apparent lack of non-UFOs in UFO sources.

  14. Ultra-fast photon counting with a passive quenching silicon photomultiplier in the charge integration regime

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqing; Lina, Liu

    2018-02-01

    An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.

  15. Multiple Low Energy Long Bone Fractures in the Setting of Rothmund-Thomson Syndrome.

    PubMed

    Beckmann, Nicholas

    2015-01-01

    Rothmund-Thomson syndrome is a rare autosomal recessive genodermatosis characterized by a poikilodermatous rash starting in infancy as well as various skeletal anomalies, juvenile cataracts, and predisposition to certain cancers. Although Rothmund-Thomson syndrome is associated with diminished bone mineral density in addition to multiple skeletal abnormalities, there are few reports of the association with stress fractures or pathologic fractures in low energy trauma or delayed healing of fractures. Presented is a case of a young adult male with Rothmund-Thomson syndrome presenting with multiple episodes of long bone fractures caused by low energy trauma with one of the fractures exhibiting significantly delayed healing. The patient was also found to have an asymptomatic stress fracture of the lower extremity, another finding of Rothmund-Thomson syndrome rarely reported in the literature. A thorough review of the literature and comprehensive presentation of Rothmund-Thomson syndrome is provided in conjunction with our case.

  16. Photon-trapping micro/nanostructures for high linearity in ultra-fast photodiodes

    NASA Astrophysics Data System (ADS)

    Cansizoglu, Hilal; Gao, Yang; Perez, Cesar Bartolo; Ghandiparsi, Soroush; Ponizovskaya Devine, Ekaterina; Cansizoglu, Mehmet F.; Yamada, Toshishige; Elrefaie, Aly F.; Wang, Shih-Yuan; Islam, M. Saif

    2017-08-01

    Photodetectors (PDs) in datacom and computer networks where the link length is up to 300 m, need to handle higher than typical input power used in other communication links. Also, to reduce power consumption due to equalization at high speed (>25Gb/s), the datacom links will use PAM-4 signaling instead of NRZ with stringent receiver linearity requirements. Si PDs with photon-trapping micro/nanostructures are shown to have high linearity in output current verses input optical power. Though there is less silicon material due to the holes, the micro-/nanostructured holes collectively reradiate the light to an in-plane direction of the PD surface and can avoid current crowding in the PD. Consequently, the photocurrent per unit volume remains at a low level contributing to high linearity in the photocurrent. We present the effect of design and lattice patterns of micro/nanostructures on the linearity of ultra-fast silicon PDs designed for high speed multi gigabit data networks.

  17. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Cappi, M.; Reeves, J.; Nemmen, R.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60%, consistent with previous studies. The fraction of sources with UFOs is >34%, >67% of which also show WAs. The large dynamic range obtained when considering all the absorbers together allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. The absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. This strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The observed parameters and correlations are consistent with both radiation pressure through Compton scattering and MHD processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, have a sufficiently high mechanical power to significantly contribute to the AGN feedback.

  18. Ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Rosenberg, Adam Lewis

    Ion absorption of the high harmonic fast wave in a spherical torus is of critical importance to assessing the viability of the wave as a means of heating and driving current. Analysis of recent NSTX shots has revealed that under some conditions when neutral beam and RF power are injected into the plasma simultaneously, a fast ion population with energy above the beam injection energy is sustained by the wave. In agreement with modeling, these experiments find the RF-induced fast ion tail strength and neutron rate at lower B-fields to be less enhanced, likely due to a larger β profile, which promotes greater off-axis absorption where the fast ion population is small. Ion loss codes find the increased loss fraction with decreased B insufficient to account for the changes in tail strength, providing further evidence that this is an RF interaction effect. Though greater ion absorption is predicted with lower k∥, surprisingly little variation in the tail was observed, along with a neutron rate enhancement with higher k∥. Data from the neutral particle analyzer, neutron detectors, x-ray crystal spectrometer, and Thomson scattering is presented, along with results from the TRANSP transport analysis code, ray-tracing codes HPRT and CURRAY, full-wave code and AORSA, quasilinear code CQL3D, and ion loss codes EIGOL and CONBEAM.

  19. DESIGN OF A GAMMA-RAY SOURCE BASED ON INVERSE COMPTON SCATTERING AT THE FAST SUPERCONDUCTING LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, D.; Jacobson, B.; Murokh, A.

    2016-10-10

    A watt-level average-power gamma-ray source is currently under development at the Fermilab Accelerator Science & Technology (FAST) facility. The source is based on the Inverse Compton Scattering of a high-brightness 300-MeV beam against a high-power laser beam circulating in an optical cavity. The back scattered gamma rays are expected to have photon energies up to 1.5 MeV. This paper discusses the optimization of the source, its performances, and the main challenges ahead.

  20. What predicts performance in ultra-triathlon races? – a comparison between Ironman distance triathlon and ultra-triathlon

    PubMed Central

    Knechtle, Beat; Zingg, Matthias Alexander; Rosemann, Thomas; Stiefel, Michael; Rüst, Christoph Alexander

    2015-01-01

    Objective This narrative review summarizes recent intentions to find potential predictor variables for ultra-triathlon race performance (ie, triathlon races longer than the Ironman distance covering 3.8 km swimming, 180 km cycling, and 42.195 km running). Results from studies on ultra-triathletes were compared to results on studies on Ironman triathletes. Methods A literature search was performed in PubMed using the terms “ultra”, “triathlon”, and “performance” for the aspects of “ultra-triathlon”, and “Ironman”, “triathlon”, and “performance” for the aspects of “Ironman triathlon”. All resulting papers were searched for related citations. Results for ultra-triathlons were compared to results for Ironman-distance triathlons to find potential differences. Results Athletes competing in Ironman and ultra-triathlon differed in anthropometric and training characteristics, where both Ironmen and ultra-triathletes profited from low body fat, but ultra-triathletes relied more on training volume, whereas speed during training was related to Ironman race time. The most important predictive variables for a fast race time in an ultra-triathlon from Double Iron (ie, 7.6 km swimming, 360 km cycling, and 84.4 km running) and longer were male sex, low body fat, age of 35–40 years, extensive previous experience, a fast time in cycling and running but not in swimming, and origins in Central Europe. Conclusion Any athlete intending to compete in an ultra-triathlon should be aware that low body fat and high training volumes are highly predictive for overall race time. Little is known about the physiological characteristics of these athletes and about female ultra-triathletes. Future studies need to investigate anthropometric and training characteristics of female ultra-triathletes and what motivates women to compete in these races. Future studies need to correlate physiological characteristics such as maximum oxygen uptake (VO2max) with ultra

  1. Design and demonstration of ultra-fast W-band photonic transmitter-mixer and detectors for 25 Gbits/sec error-free wireless linking.

    PubMed

    Chen, Nan-Wei; Shi, Jin-Wei; Tsai, Hsuan-Ju; Wun, Jhih-Min; Kuo, Fong-Ming; Hesler, Jeffery; Crowe, Thomas W; Bowers, John E

    2012-09-10

    A 25 Gbits/s error-free on-off-keying (OOK) wireless link between an ultra high-speed W-band photonic transmitter-mixer (PTM) and a fast W-band envelope detector is demonstrated. At the transmission end, the high-speed PTM is developed with an active near-ballistic uni-traveling carrier photodiode (NBUTC-PD) integrated with broadband front-end circuitry via the flip-chip bonding technique. Compared to our previous work, the wireless data rate is significantly increased through the improvement on the bandwidth of the front-end circuitry together with the reduction of the intermediate-frequency (IF) driving voltage of the active NBUTC-PD. The demonstrated PTM has a record-wide IF modulation (DC-25 GHz) and optical-to-electrical fractional bandwidths (68-128 GHz, ~67%). At the receiver end, the demodulation is realized with an ultra-fast W-band envelope detector built with a zero-bias Schottky barrier diode with a record wide video bandwidth (37 GHz) and excellent sensitivity. The demonstrated PTM is expected to find applications in multi-gigabit short-range wireless communication.

  2. The origin of factor scores: Spearman, Thomson and Bartlett.

    PubMed

    Bartholomew, David J; Deary, Ian J; Lawn, Martin

    2009-11-01

    The indeterminacy of factor scores has been a perennial source of debate since the time of Spearman. The main purpose of this paper is to show that, in spite of his inadequate tools and concepts, Sir Godfrey Thomson's approach of 70 years ago was on the right lines. His thinking was constrained by the primitive state of his statistical understanding but it is illuminated by his substantial exchange of the correspondence with M. S. Bartlett in the 1930s, most of which has survived in the Godfrey Thomson archive at the University of Edinburgh. In order to justify our claim and clarify the issues, we have found it necessary to fill in some of the gaps in the original derivations of Spearman, Thomson and Bartlett and to express their work in terms which are intelligible today. The opportunity is taken to relate this earlier work to contemporary debates.

  3. Construction of Joule Thomson inversion curves for mixtures using equation of state

    NASA Astrophysics Data System (ADS)

    Patankar, A. S.; Atrey, M. D.

    2017-02-01

    The Joule-Thomson effect is at the heart of Joule-Thomson cryocoolers and gas liquefaction cycles. The effective harnessing of this phenomenon necessitates the knowledge of Joule-Thomson coefficient and the inversion curve. When the working fluid is a mixture, (in mix refrigerant Joule-Thomson cryocooler, MRJT) the phase diagrams, equations of state and inversion curves of multi-component systems become important. The lowest temperature attainable by such a cryocooler depends on the inversion characteristics of the mixture used. In this work the construction of differential Joule-Thomson inversion curves of mixtures using Redlich-Kwong, Soave-Redlich-Kwong and Peng-Robinson equations of state is investigated assuming single phase. It is demonstrated that inversion curves constructed for pure fluids can be improved by choosing an appropriate value of acentric factor. Inversion curves are used to predict maximum inversion temperatures of multicomponent systems. An application where this information is critical is a two-stage J-T cryocooler using a mixture as the working fluid, especially for the second stage. The pre-cooling temperature that the first stage is required to generate depends on the maximum inversion temperature of the second stage working fluid.

  4. Quantitative ultra-fast MRI of HPMC swelling and dissolution.

    PubMed

    Chen, Ya Ying; Hughes, L P; Gladden, L F; Mantle, M D

    2010-08-01

    For the first time quantitative Rapid Acquisition with Relaxation Enhancement (RARE) based ultra-fast two-dimensional magnetic resonance imaging has been used to follow the dissolution of hydroxypropylmethyl cellulose (HPMC) in water. Quantitative maps of absolute water concentration, spin-spin relaxation times and water self-diffusion coefficient are obtained at a spatial resolution of 469 microm in less than 3 min each. These maps allow the dynamic development of the medium release rate HPMC/water system to be followed. It is demonstrated that the evolution of the gel layer and, in particular, the gradient in water concentration across it, is significantly different when comparing the quantitative RARE sequence with a standard (nonquantitative) implementation of RARE. The total gel thickness in the axial direction grows faster than that in the radial direction and that the dry core initially expands anisotropically. Additionally, while HPMC absorbs a large amount of water during the dissolution process, the concentration gradient of water within the gel layer is relatively small. For the first time MRI evidence is presented for a transition swollen glassy layer which resides between the outer edge of the dry tablet core and the inner edge of the gel layer. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  5. Joining of thin glass with semiconductors by ultra-fast high-repetition laser welding

    NASA Astrophysics Data System (ADS)

    Horn, Alexander; Mingaeev, Ilja; Werth, Alexander; Kachel, Martin

    2008-02-01

    Lighting applications like OLED or on silicon for electro-optical applications need a reproducible sealing process. The joining has to be strong, the permeability for gasses and humidity very low and the process itself has to be very localized not affecting any organic or electronic parts inside the sealed region. The actual sealing process using glue does not fulfil these industrial needs. A new joining process using ultra-fast laser radiation offers a very precise joining with geometry dimensions smaller than 50 μm. Ultra-fast laser radiation is absorbed by multi-photon absorption in the glass. Due to the very definite threshold for melting and ablation the process of localized heating can be controlled without cracking. Repeating the irradiation at times smaller than the heat diffusion time the temperature in the focus is increased by heat accumulation reaching melting of the glass. Mowing the substrate relatively to the laser beam generates a seal of re-solidified glass. Joining of glass is achieved by positioning the laser focus at the interface. A similar approach is used for glass-silicon joining. The investigations presented will demonstrate the joining geometry by microscopy of cross-sections achieved by welding two glass plates (Schott D263 and AF45) with focused IR femtosecond laser radiation (wavelength λ = 1045nm, repetition rate f = 1 MHz, pulse duration t p = 500 fs, focus diameter w 0 = 4 μm, feeding velocity v= 1-10 mm/s). The strength of the welding seam is measured by tensile stress measurements and the gas and humidity is detected. A new diagnostic method for the on-line detection of the welding seam properties will be presented. Using a non-interferometric technique by quantitative phase microscopy the refractive index is measured during welding of glass in the time regime 0-2 μs. By calibration of the measured refractive index with a relation between refractive index and temperature a online-temperature detection can be achieved.

  6. Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2008-04-30

    Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in anmore » ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.« less

  7. Determination of multicomponent contents in Calculus bovis by ultra-performance liquid chromatography-evaporative light scattering detection and its application for quality control.

    PubMed

    Kong, Weijun; Jin, Cheng; Xiao, Xiaohe; Zhao, Yanling; Liu, Wei; Li, Zulun; Zhang, Ping

    2010-06-01

    A fast ultra-performance liquid chromatography-evaporative light scattering detection (UPLC-ELSD) method was established for simultaneous quantification of seven components in natural Calculus bovis (C. bovis) and its substitutes or spurious breeds. On a Waters Acquity UPLC BEH C(18) column, seven analytes were efficiently separated using 0.2% aqueous formic acid-acetonitrile as the mobile phase in a gradient program. The evaporator tube temperature of ELSD was set at 100 degrees C with the nebulizing gas flow-rate of 1.9 L/min. The results showed that this established UPLC-ELSD method was validated to be sensitive, precise and accurate with the LODs of seven analytes at 2-11 ng, and the overall intra-day and inter-day variations less than 3.0%. The recovery of the method was in the range of 97.8-101.6%, with RSD less than 3.0%. Further results of PCA on the contents of seven investigated analytes suggested that compounds of cholic acid, deoxycholic acid and chenodeoxycholic acid or cholesterol should be added as chemical markers to UPLC analysis of C. bovis samples for quality control and to discriminate natural C. bovis sample and its substitutes or some spurious breeds, then normalize the use of natural C. bovis and ensure its clinical efficacy.

  8. Thomson Scientific's expanding Web of Knowledge: beyond citation databases and current awareness services.

    PubMed

    London, Sue; Brahmi, Frances A

    2005-01-01

    As end-user demand for easy access to electronic full text continues to climb, an increasing number of information providers are combining that access with their other products and services, making navigating their Web sites by librarians seeking information on a given product or service more daunting than ever. One such provider of a complex array of products and services is Thomson Scientific. This paper looks at some of the many products and tools available from two of Thomson Scientific's businesses, Thomson ISI and Thomson ResearchSoft. Among the items of most interest to health sciences and veterinary librarians and their users are the variety of databases available via the ISI Web of Knowledge platform and the information management products available from ResearchSoft.

  9. Program For Joule-Thomson Analysis Of Mixed Cryogens

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Lund, Alan

    1994-01-01

    JTMIX computer program predicts ideal and realistic properties of mixed gases at temperatures between 65 and 80 K. Performs Joule-Thomson analysis of any gaseous mixture of neon, nitrogen, various hydrocarbons, argon, oxygen, carbon monoxide, carbon dioxide, and hydrogen sulfide. When used in conjunction with DDMIX computer program of National Institute of Standards and Technology (NIST), JTMIX accurately predicts order-of-magnitude increases in Joule-Thomson cooling capacities occuring when various hydrocarbons added to nitrogen. Also predicts boiling temperature of nitrogen depressed from normal value to as low as 60 K upon addition of neon. Written in Turbo C.

  10. Electron kinetic effects on optical diagnostics in fusion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirnov, V. V.; Den Hartog, D. J.; Duff, J.

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP) and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. We calculate electron thermal corrections to the interferometric phase and polarization state of an EM wave propagating along tangential and poloidal chords (Faraday and Cotton-Mouton polarimetry) and perform analysis of the degree of polarization for incoherent TS. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy themore » high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH and RF current drive effects. The classical problem of degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sup e} measurement relevant to ITER operational scenarios.« less

  11. Electroweak radiative corrections for polarized Moller scattering at the future 11 GeV JLab experiment

    DOE PAGES

    Aleksejevs, Aleksandrs; Barkanova, Svetlana; Ilyichev, Alexander; ...

    2010-11-19

    We perform updated and detailed calculations of the complete NLO set of electroweak radiative corrections to parity violating e – e – → e – e – (γ) scattering asymmetries at energies relevant for the ultra-precise Moller experiment coming soon at JLab. Our numerical results are presented for a range of experimental cuts and relative importance of various contributions is analyzed. In addition, we also provide very compact expressions analytically free from non-physical parameters and show them to be valid for fast yet accurate estimations.

  12. A fast and pragmatic approach for scatter correction in flat-detector CT using elliptic modeling and iterative optimization

    NASA Astrophysics Data System (ADS)

    Meyer, Michael; Kalender, Willi A.; Kyriakou, Yiannis

    2010-01-01

    Scattered radiation is a major source of artifacts in flat detector computed tomography (FDCT) due to the increased irradiated volumes. We propose a fast projection-based algorithm for correction of scatter artifacts. The presented algorithm combines a convolution method to determine the spatial distribution of the scatter intensity distribution with an object-size-dependent scaling of the scatter intensity distributions using a priori information generated by Monte Carlo simulations. A projection-based (PBSE) and an image-based (IBSE) strategy for size estimation of the scanned object are presented. Both strategies provide good correction and comparable results; the faster PBSE strategy is recommended. Even with such a fast and simple algorithm that in the PBSE variant does not rely on reconstructed volumes or scatter measurements, it is possible to provide a reasonable scatter correction even for truncated scans. For both simulations and measurements, scatter artifacts were significantly reduced and the algorithm showed stable behavior in the z-direction. For simulated voxelized head, hip and thorax phantoms, a figure of merit Q of 0.82, 0.76 and 0.77 was reached, respectively (Q = 0 for uncorrected, Q = 1 for ideal). For a water phantom with 15 cm diameter, for example, a cupping reduction from 10.8% down to 2.1% was achieved. The performance of the correction method has limitations in the case of measurements using non-ideal detectors, intensity calibration, etc. An iterative approach to overcome most of these limitations was proposed. This approach is based on root finding of a cupping metric and may be useful for other scatter correction methods as well. By this optimization, cupping of the measured water phantom was further reduced down to 0.9%. The algorithm was evaluated on a commercial system including truncated and non-homogeneous clinically relevant objects.

  13. X-ray Evidence for Ultra-Fast Outflows in Local AGNs

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.; Dadina, M.

    2012-08-01

    X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in ga 40% of the sources. Their outflow velocities are in the range ˜ 0.03-0.3c, with a mean value of ˜ 0.14c. The ionization is high, in the range logℰ ˜3-6rm erg s-1 cm, and also the associated column densities are large, in the interval ˜ 1022-1024rm cm-2. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets, and their study can provide important clues on the connection between accretion disks, winds, and jets.

  14. Spatial Quantum Beats in Vibrational Resonant Inelastic Soft X-Ray Scattering at Dissociating States in Oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietzsch, A.; Kennedy, B.; Sun, Y.-P.

    2011-04-15

    Resonant inelastic soft x-ray scattering (RIXS) spectra excited at the 1{sigma}{sub g}{yields}3{sigma}{sub u} resonance in gas-phase O{sub 2} show excitations due to the nuclear degrees of freedom with up to 35 well-resolved discrete vibronic states and a continuum due to the kinetic energy distribution of the separated atoms. The RIXS profile demonstrates spatial quantum beats caused by two interfering wave packets with different momenta as the atoms separate. Thomson scattering strongly affects both the spectral profile and the scattering anisotropy.

  15. Flux-limited diffusion in a scattering medium. [such as accretion-disk coronae

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio; Zylstra, Gregory J.

    1991-01-01

    A diffusion equation (FDT) is presented with a coefficient that reduces to the appropriate limiting form in the streaming and near thermodynamic limits for a moving fluid in which the dominant source of opacity is Thomson scattering. The present results are compared to those obtained with the corresponding equations for an absorptive medium. It is found that FDT for a scattering medium is accurate to better than less than about 17 percent over the range of optical depths of tau in the range of about 0 to 3.

  16. An ultra-fast EOD-based force-clamp detects rapid biomechanical transitions

    NASA Astrophysics Data System (ADS)

    Woody, Michael S.; Capitanio, Marco; Ostap, E. Michael; Goldman, Yale E.

    2017-08-01

    We assembled an ultra-fast infrared optical trapping system to detect mechanical events that occur less than a millisecond after a ligand binds to its filamentous substrate, such as myosin undergoing its 5 - 10 nm working stroke after actin binding. The instrument is based on the concept of Capitanio et al.1, in which a polymer bead-actin-bead dumbbell is held in two force-clamped optical traps. A force applied by the traps causes the filament to move at a constant velocity as hydrodynamic drag balances the applied load. When the ligand binds, the filament motion stops within 100 μs as the total force from the optical traps is transferred to the attachment. Subsequent translations signal active motions, such as the magnitude and timing of the motor's working stroke. In our instrument, the beads defining the dumbbell are held in independent force clamps utilizing a field-programmable gate array (FPGA) to update the trap beam positions at 250 kHz. We found that in our setup, acousto-optical deflectors (AODs) steering the beams were unsuitable for this purpose due to a slightly non-linear response in the beam intensity and deflection angle vs. the AOD ultra-sound wavelength, likely caused by low-amplitude standing acoustic waves in the deflectors. These aberrations caused instability in the force feedback loops leading to artefactual 20 nm jumps in position. This type of AOD non-linearity has been reported to be absent in electro-optical deflectors (EODs)2. We demonstrate that replacement of the AODs with EODs improves the performance of our instrument. Combining the superior beam-steering capability of the EODs, force acquisition via back-plane interferometry, and the dual high-speed FPGA-based feedback loops, we smoothly and precisely apply constant loads to study the dynamics of interactions between biological molecules such as actin and myosin.

  17. A highly ordered mesostructured material containing regularly distributed phenols: preparation and characterization at a molecular level through ultra-fast magic angle spinning proton NMR spectroscopy.

    PubMed

    Roussey, Arthur; Gajan, David; Maishal, Tarun K; Mukerjee, Anhurada; Veyre, Laurent; Lesage, Anne; Emsley, Lyndon; Copéret, Christophe; Thieuleux, Chloé

    2011-03-14

    Highly ordered organic-inorganic mesostructured material containing regularly distributed phenols is synthesized by combining a direct synthesis of the functional material and a protection-deprotection strategy and characterized at a molecular level through ultra-fast magic angle spinning proton NMR spectroscopy.

  18. The polarization of continuum radiation in sunspots. I - Rayleigh and Thomson scattering

    NASA Technical Reports Server (NTRS)

    Finn, G. D.; Jefferies, J. T.

    1974-01-01

    Expressions are derived for the Stokes parameters of light scattered by a layer of free electrons and hydrogen atoms in a sunspot. A physically reasonable sunspot model was found so that the direction of the calculated linear polarization agrees reasonably with observations. The magnitude of the calculated values of the linear polarization agrees generally with values observed in the continuum at 5830 A. Circular polarization in the continuum also accompanies electron scattering in spot regions; however for commonly accepted values of the longitudinal magnetic field, the predicted circular polarization is much smaller than observed.

  19. Ultra-fast three terminal perpendicular spin-orbit torque MRAM (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Boulle, Olivier; Cubukcu, Murat; Hamelin, Claire; Lamard, Nathalie; Buda-Prejbeanu, Liliana; Mikuszeit, Nikolai; Garello, Kevin; Gambardella, Pietro; Langer, Juergen; Ocker, Berthold; Miron, Mihai; Gaudin, Gilles

    2015-09-01

    The discovery that a current flowing in a heavy metal can exert a torque on a neighboring ferromagnet has opened a new way to manipulate the magnetization at the nanoscale. This "spin orbit torque" (SOT) has been demonstrated in ultrathin magnetic multilayers with structural inversion asymmetry (SIA) and high spin orbit coupling, such as Pt/Co/AlOx multilayers. We have shown that this torque can lead to the magnetization switching of a perpendicularly magnetized nanomagnet by an in-plane current injection. The manipulation of magnetization by SOT has led to a novel concept of magnetic RAM memory, the SOT-MRAM, which combines non volatility, high speed, reliability and large endurance. These features make the SOT-MRAM a good candidate to replace SRAM for non-volatile cache memory application. We will present the proof of concept of a perpendicular SOT-MRAM cell composed of a Ta/FeCoB/MgO/FeCoB magnetic tunnel junction and demonstrate ultra-fast (down to 300 ps) deterministic bipolar magnetization switching. Macrospin and micromagnetic simulations including SOT cannot reproduce the experimental results, which suggests that additional physical mechanisms are at stacks. Our results show that SOT-MRAM is fast, reliable and low power, which is promising for non-volatile cache memory application. We will also discuss recent experiments of magnetization reversal in ultrathin multilayers Pt/Co/AlOx by very short (<200 ps) current pulses. We will show that in this material, the Dzyaloshinskii-Moryia interaction plays a key role in the reversal process.

  20. A simple and fast method for computing the relativistic Compton Scattering Kernel for radiative transfer

    NASA Technical Reports Server (NTRS)

    Kershaw, David S.; Prasad, Manoj K.; Beason, J. Douglas

    1986-01-01

    The Klein-Nishina differential cross section averaged over a relativistic Maxwellian electron distribution is analytically reduced to a single integral, which can then be rapidly evaluated in a variety of ways. A particularly fast method for numerically computing this single integral is presented. This is, to the authors' knowledge, the first correct computation of the Compton scattering kernel.

  1. Recent trends in ultra-fast HPLC: new generation superficially porous silica columns.

    PubMed

    Ali, Imran; Al-Othman, Zeid A; Nagae, Norikaju; Gaitonde, Vinay D; Dutta, Kamlesh K

    2012-12-01

    New generation columns, i.e. packed with superficially porous silica particles are available as trade names with following manufacturers: Halo, Ascentis Express, Proshell 120, Kinetex, Accucore, Sunshell, and Nucleoshell. These provide ultra-fast HPLC separations for a variety of compounds with moderate sample loading capacity and low back pressure. Chemistries of these columns are C(8), C(18), RP-Amide, hydrophilic interaction liquid chromatography, penta fluorophenyl (PFP), F5, and RP-aqua. Normally, the silica gel particles are of 2.7 and 1.7 μm as total and inner solid core diameters, respectively, with 0.5-μm-thick of outer porous layer having 90 Å pore sizes and 150 m(2)/g surface area. This article describes these new generation columns with special emphasis on their textures and chemistries, separations, optimization, and comparison (inter and intra stationary phases). Besides, future perspectives have also been discussed. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Light scattering in gas mixtures - Evidence of fast and slow sound modes

    NASA Astrophysics Data System (ADS)

    Clouter, M. J.; Luo, H.; Kiefte, H.; Zollweg, J. A.

    1990-02-01

    Campa and Cohen (1989) have predicted that dilute, binary mixtures of gases with disparate masses should exhibit a (fast) sound mode whose velocity is considerably greater than expected on the basis of conventional hydrodynamic theory, and which should be observable via light-scattering experiments. Effects that are consistent with this prediction were observed in the Brillouin spectra of the H2 + Ar system, but were not detected for the case of CH4 + SF6. Results for the SF6 + H2 mixture demonstrate the existence of an analogous slow-mode contribution to the spectrum.

  3. Adiabatic and fast passage ultra-wideband inversion in pulsed EPR.

    PubMed

    Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar

    2013-05-01

    We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Achievable rate degradation of ultra-wideband coherent fiber communication systems due to stimulated Raman scattering.

    PubMed

    Semrau, Daniel; Killey, Robert; Bayvel, Polina

    2017-06-12

    As the bandwidths of optical communication systems are increased to maximize channel capacity, the impact of stimulated Raman scattering (SRS) on the achievable information rates (AIR) in ultra-wideband coherent WDM systems becomes significant, and is investigated in this work, for the first time. By modifying the GN-model to account for SRS, it is possible to derive a closed-form expression that predicts the optical signal-to-noise ratio of all channels at the receiver for bandwidths of up to 15 THz, which is in excellent agreement with numerical calculations. It is shown that, with fixed modulation and coding rate, SRS leads to a drop of approximately 40% in achievable information rates for bandwidths higher than 15 THz. However, if adaptive modulation and coding rates are applied across the entire spectrum, this AIR reduction can be limited to only 10%.

  5. Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows

    NASA Astrophysics Data System (ADS)

    Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei

    2016-02-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate the origin of the ultra-fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (˜30 Schwarzschild radii). A wide range of black hole masses (MBH) and Eddington ratios (ε) was investigated to study the conditions causing the line-driven winds. For MBH = 106-109 M⊙ and ε = 0.1-0.7, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70°-80° and with 10% of the speed of light. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as obscuration by the torus does not affect the observation of X-ray bands, the UFOs could be statistically observed in about 13%-28% of the luminous AGNs, which is not inconsistent with the observed ratio (˜40%). We also found that the results are insensitive to the X-ray luminosity and the density of the disk surface. Thus, we can conclude that UFOs could exist in any luminous AGNs, such as narrow-line Seyfert 1s and quasars with ε > 0.1, with which fast line-driven winds are associated.

  6. Measuring thermal conductivity of thin films and coatings with the ultra-fast transient hot-strip technique

    NASA Astrophysics Data System (ADS)

    Belkerk, B. E.; Soussou, M. A.; Carette, M.; Djouadi, M. A.; Scudeller, Y.

    2012-07-01

    This paper reports the ultra-fast transient hot-strip (THS) technique for determining the thermal conductivity of thin films and coatings of materials on substrates. The film thicknesses can vary between 10 nm and more than 10 µm. Precise measurement of thermal conductivity was performed with an experimental device generating ultra-short electrical pulses, and subsequent temperature increases were electrically measured on nanosecond and microsecond time scales. The electrical pulses were applied within metallized micro-strips patterned on the sample films and the temperature increases were analysed within time periods selected in the window [100 ns-10 µs]. The thermal conductivity of the films was extracted from the time-dependent thermal impedance of the samples derived from a three-dimensional heat diffusion model. The technique is described and its performance demonstrated on different materials covering a large thermal conductivity range. Experiments were carried out on bulk Si and thin films of amorphous SiO2 and crystallized aluminum nitride (AlN). The present approach can assess film thermal resistances as low as 10-8 K m2 W-1 with a precision of about 10%. This has never been attained before with the THS technique.

  7. Towards ultra-fast solvent evaporation, the development of a computer controlled solvent vapor annealing chamber

    NASA Astrophysics Data System (ADS)

    Nelson, Gunnar; Wong, J.; Drapes, C.; Grant, M.; Baruth, A.

    Despite the promise of cheap and fast nanoscale ordering of block polymer thin films via solvent vapor annealing, a standardized, scalable production scheme remains elusive. Solvent vapor annealing exposes a nano-thin film to the vapors of one or more solvents with the goal of forming a swollen and mobile state to direct the self-assembly process by tuning surface energies and mediating unfavorable chain interactions. We have shown that optimized annealing conditions, where kinetic and thermal properties for crystal growth are extremely fast (<1s), exist at solvent concentrations just below the order-disorder transition of the film. However, when investigating the propagation of a given morphology into the bulk of a film during drying, the role of solvent evaporation comes under great scrutiny. During this process, the film undergoes a competition between two fronts; phase separation and kinetic trapping. Recent results in both theory and experiment point toward this critical element in controlling the resultant morphologies; however, no current method includes a controllable solvent evaporation rate at ultra-fast time scales. We report on a computer-controlled, pneumatically actuated chamber that provides control over solvent evaporation down to 15 ms. Furthermore, in situ spectral reflectance monitors solvent concentration with 10 ms temporal resolution and reveals several possible evaporation trajectories, ranging from linear to exponential to logarithmic. Funded by Dr. Randolph Ferlic Summer Research Scholarship and NASA Nebraska Space Grant.

  8. Fast Computation of High Energy Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation (Conference Paper with Briefing Charts)

    DTIC Science & Technology

    2016-07-10

    Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play significant role in typical electric propulsion ...by ANSI Std. 239.18 Fast Computation of High Energy Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation∗ Samuel J. Araki1

  9. Ultra-fast low concentration detection of Candida pathogens utilizing high resolution micropore chips.

    PubMed

    Mulero, Rafael; Lee, Dong Heun; Kutzler, Michele A; Jacobson, Jeffrey M; Kim, Min Jun

    2009-01-01

    Although Candida species are the fourth most common cause of nosocomial blood stream infections in the United States, early diagnostic tools for invasive candidemia are lacking. Due to an increasing rate of candidemia, a new screening system is needed to detect the Candida species in a timely manner. Here we describe a novel method of detection using a solid-state micro-scale pore similar to the operational principles of a Coulter counter. With a steady electrolyte current flowing through the pore, measurements are taken of changes in the current corresponding to the shape of individual yeasts as they translocate or travel through the pore. The direct ultra-fast low concentration electrical addressing of C. albicans has established criteria for distinguishing individual yeast based on their structural properties, which may reduce the currently used methods' complexity for both identification and quantification capabilities in mixed blood samples.

  10. Ultra-Fast Low Concentration Detection of Candida Pathogens Utilizing High Resolution Micropore Chips

    PubMed Central

    Mulero, Rafael; Lee, Dong Heun; Kutzler, Michele A.; Jacobson, Jeffrey M.; Kim, Min Jun

    2009-01-01

    Although Candida species are the fourth most common cause of nosocomial blood stream infections in the United States, early diagnostic tools for invasive candidemia are lacking. Due to an increasing rate of candidemia, a new screening system is needed to detect the Candida species in a timely manner. Here we describe a novel method of detection using a solid-state micro-scale pore similar to the operational principles of a Coulter counter. With a steady electrolyte current flowing through the pore, measurements are taken of changes in the current corresponding to the shape of individual yeasts as they translocate or travel through the pore. The direct ultra-fast low concentration electrical addressing of C. albicans has established criteria for distinguishing individual yeast based on their structural properties, which may reduce the currently used methods’ complexity for both identification and quantification capabilities in mixed blood samples. PMID:22573974

  11. Compton scattering from nuclei and photo-absorption sum rules

    NASA Astrophysics Data System (ADS)

    Gorchtein, Mikhail; Hobbs, Timothy; Londergan, J. Timothy; Szczepaniak, Adam P.

    2011-12-01

    We revisit the photo-absorption sum rule for real Compton scattering from the proton and from nuclear targets. In analogy with the Thomas-Reiche-Kuhn sum rule appropriate at low energies, we propose a new “constituent quark model” sum rule that relates the integrated strength of hadronic resonances to the scattering amplitude on constituent quarks. We study the constituent quark model sum rule for several nuclear targets. In addition, we extract the α=0 pole contribution for both proton and nuclei. Using the modern high-energy proton data, we find that the α=0 pole contribution differs significantly from the Thomson term, in contrast with the original findings by Damashek and Gilman.

  12. Digenetic Changes in Macro- to Nano-Scale Porosity in the St. Peter Sandstone:L An (Ultra) Small Angle Neutron Scattering and Backscattered Electron Imagining Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anovitz, Lawrence; Cole, David; Rother, Gernot

    2013-01-01

    Small- and Ultra-Small Angle Neutron Scattering (SANS and USANS) provide powerful tools for quantitative analysis of porous rocks, yielding bulk statistical information over a wide range of length scales. This study utilized (U)SANS to characterize shallowly buried quartz arenites from the St. Peter Sandstone. Backscattered electron imaging was also used to extend the data to larger scales. These samples contain significant volumes of large-scale porosity, modified by quartz overgrowths, and neutron scattering results show significant sub-micron porosity. While previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior over many orders of magnitude, careful analysis of ourmore » data shows both fractal and pseudo-fractal behavior. The scattering curves are composed of subtle steps, modeled as polydispersed assemblages of pores with log-normal distributions. However, in some samples an additional surface-fractal overprint is present, while in others there is no such structure, and scattering can be explained by summation of non-fractal structures. Combined with our work on other rock-types, these data suggest that microporosity is more prevalent, and may play a much more important role than previously thought in fluid/rock interactions.« less

  13. Ultra small angle x-ray scattering in complex mixtures of triacylglycerols

    NASA Astrophysics Data System (ADS)

    Peyronel, Fernanda; Quinn, Bonnie; Marangoni, Alejandro G.; Pink, David A.

    2014-11-01

    Ultra-small angle x-ray scattering (USAXS) has been used to elucidate, in situ, the aggregation structure of unsheared model edible oils. Each system comprised one or two solid lipids and a combination of liquid lipids. The 3D nano- to micro-structures of each system were characterized. The length scale investigated, using the Bonse-Hart camera at beamline ID-15D at the Advanced Photon Source, ANL, ranged from 300 Å-10 µm. Using the Unified Fit model, level-1 analysis showed that the scatterers were 2D objects with either a smooth, a rough, or a diffuse surface. These 2D objects had an average radius of gyration Rg1 between 200-1500 Å. Level-2 analysis displayed a slope between -1 and -2. Use of the Guinier-Porod model gave s ≈ 1 thus showing that it was cylinders (TAGwoods) aggregating with fractal dimension 1 ≤ D2 ≤ 2. D2 = 1 is consistent with 1D structures formed from TAGwoods, while D2 = 2 implies that the TAGwoods had formed structures characteristic of diffusion or reaction limited cluster-cluster aggregation (DLCA/RLCA). These aggregates exhibited radii of gyration, Rg2, between 2500 and 6500 Å. Level-3 analyses showed diffuse surfaces, for most of the systems. These interpretations are in accord with theoretical models which studied crystalline nano-platelets (CNPs) coated with nano-scale layers arising from phase separation at the CNP surfaces. These layers could be due to either liquid-liquid phase separation with the CNPs coated, uniformly or non-uniformly, by a diffuse layer of TAGs, or solid-liquid phase separation with the CNPs coated by a rough layer of crystallites. A fundamental understanding of the self-organizing structures arising in these systems helps advance the characterization of fat crystal networks from nanometres to micrometres. This research can be used to design novel fat structures that use healthier fats via nano- and meso-scale structural engineering.

  14. Raman Scattering from Tin

    DTIC Science & Technology

    2015-09-01

    ARL-TR-7448 ● SEP 2015 US Army Research Laboratory Raman Scattering from Tin by Patrick A Folkes, Patrick Taylor, Charles Rong...REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Raman Scattering from Tin 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c... tin as an analytical tool for discerning specific allotropic differences in ultra-thin tin films, and discerning differences between the tin and the

  15. A theoretical study on phase-contrast mammography with Thomson-scattering x-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Caro, Liberato; Giannini, Cinzia; Bellotti, Roberto

    2009-10-15

    Purpose: The x-ray transmitted beam from any material/tissue depends on the complex refractive index (n=1-{delta}+i{beta}), where {delta} is responsible for the phase shift and {beta} is for the beam attenuation. Although for human tissues, the {delta} cross section is about 1000 times greater than the {beta} ones in the x-ray energy range from 10 to 150 keV, the gain in breast tumor visualization of phase-contrast mammography (PCM) with respect to absorption contact imaging (AI) is limited by the maximum dose that can be delivered to the patient. Moreover, in-line PC imaging (PCI) is the simplest experimental mode among all availablemore » x-ray PCI techniques since no optics are needed. The latter is a fundamental requirement in order to transfer the results of laboratory research into hospitals. Alternative to synchrotron radiation sources, the implementation of relativistic Thomson-scattering (TS) x-ray sources is particularly suitable for hospital use because of their high peak brightness within a relatively compact and affordable system. In this work, the possibility to realize PCM using a TS source in a hospital environment is studied, accounting for the effect of a finite deliverable dose on the PC visibility enhancement with respect to AI. Methods: The contrast-to-noise ratio of tumor-tissue lesions in PCM has been studied on the bases of a recent theoretical model, describing image contrast formation by means of both wave-optical theory and the mutual coherence formalism. The latter is used to describe the evolution, during wave propagation, of the coherence of the wave field emitted by a TS source. The contrast-to-noise ratio for both PCI and AI has been analyzed in terms of tumor size, beam energy, detector, and source distances, studying optimal conditions for performing PCM. Regarding other relevant factors which could influence ''tumor'' visibility, the authors have assumed simplified conditions such as a spherical shape description of the tumor

  16. Second order nonlinear QED processes in ultra-strong laser fields

    NASA Astrophysics Data System (ADS)

    Mackenroth, Felix

    2017-10-01

    In the interaction of ultra-intense laser fields with matter the ever increasing peak laser intensities render nonlinear QED effects ever more important. For long, ultra-intense laser pulses scattering large systems, like a macroscopic plasma, the interaction time can be longer than the scattering time, leading to multiple scatterings. These are usually approximated as incoherent cascades of single-vertex processes. Under certain conditions, however, this common cascade approximation may be insufficient, as it disregards several effects such as coherent processes, quantum interferences or pulse shape effects. Quantifying deviations of the full amplitude of multiple scatterings from the commonly employed cascade approximations is a formidable, yet unaccomplished task. In this talk we are going to discuss how to compute second order nonlinear QED amplitudes and relate them to the conventional cascade approximation. We present examples for typical second order processes and benchmark the full result against common approximations. We demonstrate that the approximation of multiple nonlinear QED scatterings as a cascade of single interactions has certain limitations and discuss these limits in light of upcoming experimental tests.

  17. Fast calculation of the light differential scattering cross section of optically soft and convex bodies

    NASA Astrophysics Data System (ADS)

    Gruy, Frédéric

    2014-02-01

    Depending on the range of size and the refractive index value, an optically soft particle follows Rayleigh-Debye-Gans or RDG approximation or Van de Hulst approximation. Practically the first one is valid for small particles whereas the second one works for large particles. Klett and Sutherland (Klett JD, Sutherland RA. App. Opt. 1992;31:373) proved that the Wentzel-Kramers-Brillouin or WKB approximation leads to accurate values of the differential scattering cross section of sphere and cylinder over a wide range of size. In this paper we extend the work of Klett and Sutherland by proposing a method allowing a fast calculation of the differential scattering cross section for any shape of particle with a given orientation and illuminated by unpolarized light. Our method is based on a geometrical approximation of the particle by replacing each geometrical cross section by an ellipse and then by exactly evaluating the differential scattering cross section of the newly generated body. The latter one contains only two single integrals.

  18. Inelastic X-ray scattering of RTAl3 (R = La, Ce, T = Cu, Au)

    NASA Astrophysics Data System (ADS)

    Tsutsui, Satoshi; Kaneko, Koji; Pospisil, Jiri; Haga, Yoshinori

    2018-05-01

    Inelastic X-ray scattering (IXS) experiments of RTAl3 (R = La Ce, T = Cu, Au) were carried out at 300 and 5.5 K. The spectra between LaCuAl3 and CeCuAl3 (LaAuAl3 and CeAuAl3) are nearly identical at both temperatures except for temperature factors such as temperature dependence of Bose factor in IXS spectra and effect on thermal expansion. This means that no evident temperature dependence of IXS spectra was observed in CeTAl3 (T = Cu, Au). Since the major contribution of scattering cross section in IXS measurements is Thomson scattering, the present results failed to confirm the presence of vibron in these compounds.

  19. X-ray evidence for ultra-fast outflows in AGNs

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Sambruna, Rita; Braito, Valentina; Reeves, James; Reynolds, Christopher; Cappi, Massimo

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 radio galaxies observed with XMM-Newton and Suzaku. We assessed the global detection significance of the absorption lines and performed a detailed photo-ionization modeling. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1} and the associated mechanical power is high, in the range ˜10^{43}--10^{45} erg/s. Therefore, UFOs are capable to provide a significant contribution to the AGN cosmological feedback and their study can provide important clues on the connection between accretion disks, winds and jets.

  20. An upgrade beamline for combined wide, small and ultra small-angle x-ray scattering at the ESRF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Vaerenbergh, Pierre; Léonardon, Joachim; Sztucki, Michael

    2016-07-27

    This contribution presents the main design features of the upgraded beamline ID02 (TRUSAXS). The beamline combines different small-angle X-ray scattering techniques in one unique instrument. The key component of this instrument is an evacuated (5×10{sup −3} mbar) stainless steel detector tube of length 34 m and diameter 2 m. Three different detectors (Rayonix MX170, Pilatus 300 K and FReLoN 4M) are housed inside a motorized wagon which travels along a rail system with very low parasitic lateral movements (± 0.3 mm). This system allows automatically changing the sample-to-detector distance from about 1 m to 31 m and selecting the desiredmore » detector. In addition, a wide angle detector (Rayonix LX170) is installed just above the entrance cone of the tube for optional wide-angle X-ray scattering measurements. The beamstop system enables monitoring of the X-ray beam intensity in addition to blocking the primary beam, and automated insertion of selected masks behind the primary beamstop. The focusing optics and collimation system permit to cover a scattering vector (q) range of 0.002 nm{sup −1} ≤ q ≤ 50 nm{sup −1} with one unique setting using 0.1 nm X-ray wavelength for moderate flux (5×10{sup 12} photons/sec). However, for higher flux (6x10{sup 13} photons/sec) or higher resolution (minimum q < 0.001 nm{sup −1}), focusing and collimation, respectively need to be varied. For a sample-to-detector distance of 31 m and 0.1 nm wavelength, two dimensional ultra small-angle X-ray scattering patterns can be recorded down to q≈0.001 nm{sup −1} with far superior quality as compared to one dimensional profiles obtained with a Bonse-Hart instrument.« less

  1. Edge turbulence effect on ultra-fast swept reflectometry core measurements in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Zadvitskiy, G. V.; Heuraux, S.; Lechte, C.; Hacquin, S.; Sabot, R.

    2018-02-01

    Ultra-fast frequency-swept reflectometry (UFSR) enables one to provide information about the turbulence radial wave-number spectrum and perturbation amplitude with good spatial and temporal resolutions. However, a data interpretation of USFR is quiet tricky. An iterative algorithm to solve this inverse problem was used in past works, Gerbaud (2006 Rev. Sci. Instrum. 77 10E928). For a direct solution, a fast 1D Helmholtz solver was used. Two-dimensional effects are strong and should be taken into account during data interpretation. As 2D full-wave codes are still too time consuming for systematic application, fast 2D approaches based on the Born approximation are of prime interest. Such methods gives good results in the case of small turbulence levels. However in tokamak plasmas, edge turbulence is usually very strong and can distort and broaden the probing beam Sysoeva et al (2015 Nucl. Fusion 55 033016). It was shown that this can change reflectometer phase response from the plasma core. Comparison between 2D full wave computation and the simplified Born approximation was done. The approximated method can provide a right spectral shape, but it is unable to describe a change of the spectral amplitude with an edge turbulence level. Computation for the O-mode wave with the linear density profile in the slab geometry and for realistic Tore-Supra density profile, based on the experimental data turbulence amplitude and spectrum, were performed to investigate the role of strong edge turbulence. It is shown that the spectral peak in the signal amplitude variation spectrum which rises with edge turbulence can be a signature of strong edge turbulence. Moreover, computations for misaligned receiving and emitting antennas were performed. It was found that the signal amplitude variation peak changes its position with a receiving antenna poloidal displacement.

  2. Fast computation of high energy elastic collision scattering angle for electric propulsion plume simulation

    NASA Astrophysics Data System (ADS)

    Araki, Samuel J.

    2016-11-01

    In the plumes of Hall thrusters and ion thrusters, high energy ions experience elastic collisions with slow neutral atoms. These collisions involve a process of momentum exchange, altering the initial velocity vectors of the collision pair. In addition to the momentum exchange process, ions and atoms can exchange electrons, resulting in slow charge-exchange ions and fast atoms. In these simulations, it is particularly important to accurately perform computations of ion-atom elastic collisions in determining the plume current profile and assessing the integration of spacecraft components. The existing models are currently capable of accurate calculation but are not fast enough such that the calculation can be a bottleneck of plume simulations. This study investigates methods to accelerate an ion-atom elastic collision calculation that includes both momentum- and charge-exchange processes. The scattering angles are pre-computed through a classical approach with ab initio spin-orbit free potential and are stored in a two-dimensional array as functions of impact parameter and energy. When performing a collision calculation for an ion-atom pair, the scattering angle is computed by a table lookup and multiple linear interpolations, given the relative energy and randomly determined impact parameter. In order to further accelerate the calculations, the number of collision calculations is reduced by properly defining two cut-off cross-sections for the elastic scattering. In the MCC method, the target atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play a significant role in typical electric propulsion plume simulations such that the sampling process is unnecessary. With these implementations, the computational run-time to perform a collision calculation is reduced significantly compared to previous methods, while retaining the accuracy of the high fidelity models.

  3. Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization.

    PubMed

    Tanaka, Akihiro; Fujiwara, Mikio; Nam, Sae W; Nambu, Yoshihiro; Takahashi, Seigo; Maeda, Wakako; Yoshino, Ken-ichiro; Miki, Shigehito; Baek, Burm; Wang, Zhen; Tajima, Akio; Sasaki, Masahide; Tomita, Akihisa

    2008-07-21

    We demonstrated ultra fast BB84 quantum key distribution (QKD) transmission at 625 MHz clock rate through a 97 km field-installed fiber using practical clock synchronization based on wavelength-division multiplexing (WDM). We succeeded in over-one-hour stable key generation at a high sifted key rate of 2.4 kbps and a low quantum bit error rate (QBER) of 2.9%. The asymptotic secure key rate was estimated to be 0.78- 0.82 kbps from the transmission data with the decoy method of average photon numbers 0, 0.15, and 0.4 photons/pulse.

  4. Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser.

    PubMed

    Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru

    2013-09-01

    We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5  cm-1 in the Raman spectral region around 2850  cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850  cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid.

  5. Assembly techniques for ultra-low mass drift chambers

    NASA Astrophysics Data System (ADS)

    Assiro, R.; Cascella, M.; Grancagnolo, F.; L'Erario, A.; Miccoli, A.; Rella, S.; Spedicato, M.; Tassielli, G.

    2014-03-01

    We presents a novel technique for the fast assembly of next generation ultra low mass drift chambers offering space point resolution of the order of 100 μm and high tolerance to pile-up. The chamber design has been developed keeping in mind the requirements for the search of rare processes: high resolutions (order of 100-200 KeV/c) for particles momenta in a range (50-100 MeV/c) totally dominated by the multiple scattering contribution (e.g., muon and kaon decay experiment such as MEG at PSI and Mu2e and ORKA at Fermilab). We describe a novel wiring strategy enabling the semiautomatic wiring of a complete layer with a high degree of control over wire tension and position. We also present feed-through-less wire anchoring system. These techniques have been already implemented at INFN-Lecce in the construction of a prototype drift chamber to be soon tested with cosmic rays and particle beams.

  6. X-ray evidence for ultra-fast outflows in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.

  7. INDUCED SCATTERING LIMITS ON FAST RADIO BURSTS FROM STELLAR CORONAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyubarsky, Yuri; Ostrovska, Sofiya

    2016-02-10

    The origin of fast radio bursts remains a puzzle. Suggestions have been made that they are produced within the Earth’s atmosphere, in stellar coronae, in other galaxies, or at cosmological distances. If they are extraterrestrial, the implied brightness temperature is very high, and therefore the induced scattering places constraints on possible models. In this paper, constraints are obtained on flares from coronae of nearby stars. It is shown that the radio pulses with the observed power could not be generated if the plasma density within and in the nearest vicinity of the source is as high as is necessary tomore » provide the observed dispersion measure. However, one cannot exclude the possibility that the pulses are generated within a bubble with a very low density and pass through the dense plasma only in the outer corona.« less

  8. Compton Scattering and Photo-absorption Sum Rules on Nuclei

    NASA Astrophysics Data System (ADS)

    Gorshteyn, Mikhail; Hobbs, Timothy; Londergan, J. Timothy; Szczepaniak, Adam P.

    2012-03-01

    We revisit the photo-absorption sum rule for real Compton scattering from the proton and from nuclear targets. In analogy with the Thomas-Reiche-Kuhn sum rule appropriate at low energies, we propose a new ``constituent quark model'' sum rule that relates the integrated strength of hadronic resonances to the scattering amplitude on constituent quarks. We study the constituent quark model sum rule for several nuclear targets. In addition we extract the J=0 pole contribution for both proton and nuclei. Using the modern high energy proton data we find that the J=0 pole contribution differs significantly from the Thomson term, in contrast with the original findings by Damashek and Gilman. We discuss phenomenological implications of this new result.

  9. Ultra-fast LuI{sub 3}:Ce scintillators for hard x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marton, Zsolt, E-mail: zmarton@rmdinc.com; Miller, Stuart R.; Ovechkina, Elena

    We have developed ultra-fast cerium-coped lutetium-iodide (LuI{sub 3}:Ce) films thermally evaporated as polycrystalline, structured scintillator using hot wall epitaxy (HWE) method. The films have shown a 13 ns decay compared to the 28 ns reported for crystals. The fast speed coupled with its high density (∼5.6 g/cm{sup 3}), high effective atomic number (59.7), and the fact that it can be vapor deposited in a columnar form makes LuI{sub 3}:Ce an attractive candidate for high frame rate, high-resolution, hard X-ray imaging. In crystal form, LuI{sub 3}:Ce has demonstrated bright (>100,000 photons/MeV) green (540 nm) emission, which is well matched to commercialmore » CCD/CMOS sensors and is critical for maintaining high signal to noise ratio in light starved applications. Here, we report on the scintillation properties of films and those for corresponding crystalline material. The vapor grown films were integrated into a high-speed CMOS imager to demonstrate high-speed radiography capability. The films were also tested at Advanced Photon Source, Argonne National Laboratory beamline 1-ID under hard X-ray irradiation. The data show a factor of four higher efficiency than the reference LuAG:Ce scintillators, high image quality, and linearity of scintillation response over a wide energy range. The films were employed to perform hard X-ray microtomography, the results of which will also be discussed.« less

  10. Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalev, S.; Green, B.; Golz, T.

    Here, understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systemsmore » and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.« less

  11. Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates.

    PubMed

    Kovalev, S; Green, B; Golz, T; Maehrlein, S; Stojanovic, N; Fisher, A S; Kampfrath, T; Gensch, M

    2017-03-01

    Understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systems and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.

  12. Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates

    DOE PAGES

    Kovalev, S.; Green, B.; Golz, T.; ...

    2017-03-06

    Here, understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systemsmore » and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.« less

  13. Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita

    There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements

  14. Strong-field physics with mid-infrared lasers

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    2002-04-01

    Mid-infrared gas laser technology promises to become a unique tool for research in strong-field relativistic physics. The degree to which physics is relativistic is determined by a ponderomotive potential. At a given intensity, a 10 μm wavelength CO2 laser reaches a 100 times higher ponderomotive potential than the 1 μm wavelength solid state lasers. Thus, we can expect a proportional increase in the throughput of such processes as laser acceleration, x-ray production, etc. These arguments have been confirmed in proof-of-principle Thomson scattering and laser acceleration experiments conducted at BNL and UCLA where the first terawatt-class CO2 lasers are in operation. Further more, proposals for the 100 TW, 100 fs CO2 lasers based on frequency-chirped pulse amplification have been conceived. Such lasers can produce physical effects equivalent to a hypothetical multi-petawatt solid state laser. Ultra-fast mid-infrared lasers will open new routes to the next generation electron and ion accelerators, ultra-bright monochromatic femtosecond x-ray and gamma sources, allow to attempt the study of Hawking-Unruh radiation, and explore relativistic aspects of laser-matter interactions. We review the present status and experiments with terawatt-class CO2 lasers, sub-petawatt projects, and prospective applications in strong-field science. .

  15. Atmospheric correction of short-wave hyperspectral imagery using a fast, full-scattering 1DVar retrieval scheme

    NASA Astrophysics Data System (ADS)

    Thelen, J.-C.; Havemann, S.; Taylor, J. P.

    2012-06-01

    Here, we present a new prototype algorithm for the simultaneous retrieval of the atmospheric profiles (temperature, humidity, ozone and aerosol) and the surface reflectance from hyperspectral radiance measurements obtained from air/space-borne, hyperspectral imagers such as the 'Airborne Visible/Infrared Imager (AVIRIS) or Hyperion on board of the Earth Observatory 1. The new scheme, proposed here, consists of a fast radiative transfer code, based on empirical orthogonal functions (EOFs), in conjunction with a 1D-Var retrieval scheme. The inclusion of an 'exact' scattering code based on spherical harmonics, allows for an accurate treatment of Rayleigh scattering and scattering by aerosols, water droplets and ice-crystals, thus making it possible to also retrieve cloud and aerosol optical properties, although here we will concentrate on non-cloudy scenes. We successfully tested this new approach using two hyperspectral images taken by AVIRIS, a whiskbroom imaging spectrometer operated by the NASA Jet Propulsion Laboratory.

  16. Micro-scale heat-exchangers for Joule-Thomson cooling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, Andrew John

    2014-01-01

    This project focused on developing a micro-scale counter flow heat exchangers for Joule-Thomson cooling with the potential for both chip and wafer scale integration. This project is differentiated from previous work by focusing on planar, thin film micromachining instead of bulk materials. A process will be developed for fabricating all the devices mentioned above, allowing for highly integrated micro heat exchangers. The use of thin film dielectrics provides thermal isolation, increasing efficiency of the coolers compared to designs based on bulk materials, and it will allow for wafer-scale fabrication and integration. The process is intended to implement a CFHX asmore » part of a Joule-Thomson cooling system for applications with heat loads less than 1mW. This report presents simulation results and investigation of a fabrication process for such devices.« less

  17. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Kil-Byoung; Bellan, Paul M.

    2013-12-15

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.

  18. A fast calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations

    NASA Astrophysics Data System (ADS)

    Fiorino, Steven T.; Elmore, Brannon; Schmidt, Jaclyn; Matchefts, Elizabeth; Burley, Jarred L.

    2016-05-01

    Properly accounting for multiple scattering effects can have important implications for remote sensing and possibly directed energy applications. For example, increasing path radiance can affect signal noise. This study describes the implementation of a fast-calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations into the Laser Environmental Effects Definition and Reference (LEEDR) atmospheric characterization and radiative transfer code. The multiple scattering algorithm fully solves for molecular, aerosol, cloud, and precipitation single-scatter layer effects with a Mie algorithm at every calculation point/layer rather than an interpolated value from a pre-calculated look-up-table. This top-down cumulative diffusivity method first considers the incident solar radiance contribution to a given layer accounting for solid angle and elevation, and it then measures the contribution of diffused energy from previous layers based on the transmission of the current level to produce a cumulative radiance that is reflected from a surface and measured at the aperture at the observer. Then a unique set of asymmetry and backscattering phase function parameter calculations are made which account for the radiance loss due to the molecular and aerosol constituent reflectivity within a level and allows for a more accurate characterization of diffuse layers that contribute to multiple scattered radiances in inhomogeneous atmospheres. The code logic is valid for spectral bands between 200 nm and radio wavelengths, and the accuracy is demonstrated by comparing the results from LEEDR to observed sky radiance data.

  19. Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering.

    PubMed

    Kritcher, A L; Neumayer, P; Brown, C R D; Davis, P; Döppner, T; Falcone, R W; Gericke, D O; Gregori, G; Holst, B; Landen, O L; Lee, H J; Morse, E C; Pelka, A; Redmer, R; Roth, M; Vorberger, J; Wünsch, K; Glenzer, S H

    2009-12-11

    We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

  20. Beam test results of a 16 ps timing system based on ultra-fast silicon detectors

    DOE PAGES

    Cartiglia, N.; Staiano, A.; Sola, V.; ...

    2017-04-01

    In this paper we report on the timing resolution obtained in a beam test with pions of 180 GeV/c momentum at CERN for the first production of 45 μm thick Ultra-Fast Silicon Detectors (UFSD). UFSD are based on the Low- Gain Avalanche Detector (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. The UFSD used in this test had a pad area of 1.7 mm 2. The gain was measured to vary between 5 and 70 depending on the sensor bias voltage. The experimental setup includedmore » three UFSD and a fast trigger consisting of a quartz bar readout by a SiPM. The timing resolution was determined by doing Gaussian fits to the time-of-flight of the particles between one or more UFSD and the trigger counter. For a single UFSD the resolution was measured to be 34 ps for a bias voltage of 200 V, and 27 ps for a bias voltage of 230 V. For the combination of 3 UFSD the timing resolution was 20 ps for a bias voltage of 200 V, and 16 ps for a bias voltage of 230 V.« less